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Summary

This thesis investigates various control algorithms for marine vehicles. Most of the
algorithms proposed in the thesis address the formation path-following problem
for a fleet of underactuated autonomous underwater vehicles, although other types
of vehicles, such as autonomous surface vehicles and differential drive robots, and
other types of control problems, such as collision avoidance, trajectory tracking,
and path following, are also considered. The thesis is divided into three parts.

In the first part, we develop a collision avoidance algorithm for overactuated ve-
hicles. The vehicles must reach a desired position while maintaining some minimum
safety distance from each other. To solve this problem, we propose an optimization-
based control allocation scheme augmented with control barrier functions. Control
allocation is a collection of methods for finding an actuator configuration that sat-
isfies a given goal (e.g., reaching a desired position), while control barrier functions
allow us to enforce constraints on dynamical systems (e.g., keeping a minimum
safety distance). By combining control allocation with control barrier functions,
we can create a controller that satisfies a given goal while avoiding collisions. The
proposed controller is tested in numerical simulations on two types of autonomous
surface vehicles: the milliAmpere ferry, and the Inocean Cat I drillship.

The second part addresses the formation path-following problem. We propose
to solve the problem using the null-space-behavioral method. This method allows
us to decompose the problem into several tasks. Then, by combining these tasks
in a hierarchic manner, we can achieve the desired behavior. To solve the forma-
tion path-following problem, we define three tasks: collision avoidance, formation
keeping, and path following. In this thesis, we develop and analyze three different
null-space-behavioral algorithms for the formation path-following problem. The
first algorithm uses a model of an autonomous underwater vehicle with five degrees
of freedom. Using Lyapunov analysis, we show that the path-following task is uni-
formly semiglobally exponentially stable. Numerical simulations then validate this
result. The second algorithm uses a six-degree-of-freedom model. Compared to the
previous method, this algorithm does not suffer from numerical singularities. This
algorithm also contains additional tasks, namely obstacle avoidance and depth lim-
iting. Moreover, we prove that both the path-following and the formation-keeping
tasks are uniformly semiglobally exponentially stable. These theoretical results are
then validated in numerical simulations. One issue with null-space-behavioral al-
gorithms is that they are centralized. In many applications, centralized algorithms
are difficult to implement, as they require a central node or an agent that can
communicate and coordinate with other agents in real-time. To solve this issue,



the third algorithm combines the null-space-behavioral method with consensus,
resulting in a fully distributed controller. We propose two types of consensus al-
gorithms. First, we propose a continuous-time consensus algorithm and prove its
stability using Lyapunov analysis. Then, we present a modified discrete-time ver-
sion of the algorithm based on event-triggered control. The effectiveness of both the
continuous- and discrete-time algorithms is demonstrated in numerical simulations.
Furthermore, the discrete-time version is also tested in field experiments.

The third part of the thesis extends the hand position approach to underactu-
ated underwater vehicles moving in three dimensions. This approach was originally
developed to stabilize nonholonomic vehicles. By treating the hand position of the
vehicle as the output of the system, we can use input-output feedback lineariza-
tion to transform the underactuated highly nonlinear vehicle model into a system
with linear external dynamics and nonlinear internal dynamics. We analyze the
closed-loop behavior of a generic hand position-based controller and present four
applications of the hand position approach. First, we use this approach to solve
the trajectory-tracking and path-following problems. We propose simple PID-based
controllers to solve these problems and show that using these controllers renders
the external states globally exponentially stable, while the internal states remain
bounded. The theoretical results are validated in numerical simulations as well
as field experiments. Next, we present a spline-based model predictive control
method for solving the formation path-following problem. The proposed method
is not restricted to the hand position approach only. In fact, the method is ap-
plicable to any vehicle with a differentially flat model. To demonstrate this, we
present two case studies: underwater vehicles with the hand position controller,
and differential drive robots. Next, we use the hand position concept to solve
the tracking-in-formation problem for a fleet of autonomous underwater vehicles.
The proposed method combines consensus with barrier Lyapunov functions, al-
lowing the fleet to reach the desired formation while avoiding collisions and main-
taining connectivity. We show that the closed-loop system is almost-everywhere
uniformly asymptotically stable and that the output error dynamics converge to
the origin exponentially fast while satisfying the constraints. The theoretical re-
sults are verified in numerical simulations. Finally, we combine the hand position
approach with null-space-behavioral control. Specifically, we extend the null-space-
behavioral algorithm, which was originally developed for first-order kinematic sys-
tems, to second-order systems. Similarly to our previous work, we then design the
path-following, formation-keeping, and collision-avoidance tasks, so that the fleet
can follow a given path in a formation while avoiding collisions. We prove the
stability of the control scheme using Lyapunov analysis and verify its effectiveness
in simulations.
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Chapter 1

Introduction

In the beginning the Universe was created.
This has made a lot of people very angry
and been widely regarded as a bad move.

— Douglas Adams, “The Restaurant at the
End of the Universe,” 1980.

This thesis presents and studies control algorithms for autonomous marine ve-
hicles. The thesis is mainly focused on formation path-following control of under-
actuated autonomous underwater vehicles (AUVs), although some chapters also
consider autonomous surface vehicles (ASVs) and additional control problems, such
as reactive collision avoidance, path following, and trajectory tracking. The thesis
studies three main topics:

e the unification of reactive collision avoidance and control allocation (Chap-
ter 3),

e formation path following using the null-space-behavioral algorithm (Part I,
Chapters 4-6),

e the hand position concept and its applications (Part IT, Chapters 7-11).

This chapter presents the motivation and the contributions of the thesis.

1.1 Literature Review and Motivation

In this section, we present a general introduction to the problems studied in the
thesis, as well as an overview of the existing literature.

1.1.1 Marine Robots

In this section, we briefly introduce the three main types of marine robots and their
use. Marine robots (i.e., unmanned marine vehicles) are being increasingly used in
a variety of applications such as transportation [1, 2|, inspection, maintenance and
repair [3, 4], mapping of underwater structures, e.g., shipwrecks [5], and various
oceanographic and environmental missions such as tracking of oil spills [6] and
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harmful algal blooms [7]. These vehicles often operate in environments that are
inaccessible or dangerous to humans, such as the deep sea or the Arctic.

Marine robots can generally be split into three categories: autonomous surface
vehicles (ASVs), remotely operated vehicles (ROVs), and autonomous underwater
vehicles (AUVs). ASVs are also referred to as autonomous ships, since their design
is commonly based on surface vessels such as kayaks [8], catamarans [9, 10|, and
miniature ferries [2]. ASVs are used in scientific missions as well as transportation.
ROVs, also referred to as underwater drones, are small, box-shaped vehicles with
thrusters. ROVs are typically fully actuated, meaning that the configuration of
thrusters allows the vehicle to move and rotate in any direction. ROVs are de-
signed for low speeds, often less than 1.5 meters per second, and due to the high
power demands of the thrusters, the vehicles can only operate for a few hours [11].
Consequently, ROVs are used for short-term inspection, maintenance and repair
missions. To complete these missions, ROVs are connected to an operator via a
series of cables, referred to as the tether.

Conversely, AUVs are able to operate independently and without any connect-
ing cables. There are various types of AUVs. This thesis studies slender, torpedo-
shaped AUVs with a propeller that provides forward (surge) thrust, and fins that
provide torque. This configuration of actuators means that these AUVs are un-
deractuated, as we cannot directly control the lateral (sway and heave) velocities.
Compared to ROVs, AUVs can reach higher speeds and operate longer [12, 13],
making them suitable for long-term oceanographic missions.

1.1.2 Control Problems for AUVs

This section presents the various control problems for AUVs studied in this thesis.

The Trajectory-Tracking and Path-Following Problems

Arguably, the trajectory-tracking and path-following problems are the most inter-
esting and significant ones, since many high-level mission planners assume that the
vehicle is able to follow a given path or trajectory.

For the purposes of this thesis, a path is a curve (i.e., a one-dimensional object
in two- or three-dimensional Euclidean space), while a trajectory is a time-varying
reference position. In the literature, it is often stated that a trajectory is a “path
with temporal constraints” [14]. Consequently, in trajectory tracking, the desired
position of the vehicle for a given time is fixed, while in path following, we have
some freedom in choosing which point on the desired path should be followed at
a given time. A more detailed discussion on the differences between trajectory
tracking and path following is presented in Section 2.3.

To solve the trajectory-tracking problem, numerous methods based on back-
stepping [15, 16], sliding-mode control [17], control Lyapunov functions (CLFs)
[18], and model predictive control (MPC) [19] have been proposed.

To solve the path-following problem, most controllers utilize line-of-sight (LOS)
guidance. In [20], an integral LOS guidance scheme is used to counteract the sea
loads, [21] combines LOS guidance with an adaptively tuned PID controller, and
[22] uses LOS with active disturbance rejection control.
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The Formation Path-Following Problem

In many applications, it is advantageous to perform the tasks with a group of co-
operating AUVs. Compared to a single vehicle, a group of AUVs can cover a larger
area (e.g., in inspection and oceanographic tasks). A group is also more flexible,
able to reconfigure if the parameters of the mission change, and able to complete
the task even if one or more AUVs fail. Many of the aforementioned applications
can be formulated as a formation path-following problem, i.e., a problem of steering
a group of AUVs along a predefined path in a given formation.

As presented in [23], there exists a plethora of formation path-following meth-
ods, most of them based on two concepts: coordinated path-following [24, 25] and
leader-follower [26, 27]. In the coordinated path-following approach, each vehicle fol-
lows a predefined path separately. Formation is then achieved by coordinating the
motion of the vehicles along these paths. In this approach, the formation-keeping
error (i.e., the difference between the actual and desired relative position of the
vehicles) may initially grow as the vehicles converge to their predefined paths. In
the leader-follower approach, one leading vehicle tracks the given path while the
followers adjust their speed and position to obtain the desired formation shape,
relative to the leader.

Both the coordinated path-following and the leader-follower method can be
solved using model predictive control [28, 29]. MPC is a model-based optimal
control method that allows us to enforce constraints on the inputs and states of the
vehicles. However, most MPC methods are based on sampling. Consequently, any
constraints on the inputs or states can only be enforced at discrete-time instances.
In other words, we have no control over the behavior of the system between the
samples. We can mitigate this issue by decreasing the sampling time. However, by
decreasing the sampling time, we increase the number of optimized variables, thus
increasing the computational requirements.

In recent years, researchers have focused on computationally tractable MPC
schemes. One possibility of reducing the computational requirements is to param-
etrize the vehicles’ trajectories using splines. A spline-based path-planning MPC
algorithm for first-order nonholonomic vehicles was proposed [30]. The algorithm
solves the point-to-point formation tracking problem with static obstacles. Another
spline-based MPC algorithm was proposed in [31]. This algorithm is applicable to
a wider range of systems compared to [30], and it has been demonstrated on point-
to-point and trajectory-tracking problems.

Another method that can be applied to the formation path-following problem
is the so-called null-space-behavioral (NSB) algorithm [32-35]. In the NSB frame-
work, the control objective is expressed using multiple tasks. By combining several
simple tasks, the vehicles can exhibit the desired complex behavior. In the liter-
ature, there are many examples of NSB algorithms applied to kinematic vehicles
[32] and marine vehicles moving in the horizontal plane [33-35].

However, the standard NSB algorithm is centralized, meaning that in a real-life
application, there must be a central node that communicates and coordinates with
all the vehicles. While underwater, the AUVs typically communicate via acoustic
modems. These modems have low bandwidth and significant delays, making them
unsuitable for real-time control. A distributed NSB algorithm was proposed in
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[36]. In this algorithm, the group of vehicles is split into smaller, fully connected
subgroups. Each subgroup performs the standard, centralized NSB algorithm. The
proposed method is limited to static formations. A similar scheme was proposed
in [37], where a group of heterogenous surface vehicles is split into homogenous
subgroups. Each subgroup has one leading vehicle that exchanges information
with the leaders of other subgroups.

1.1.3 Safety Constraints

This section presents the various constraints that need to be considered when de-
ploying autonomous vehicles.

Collision Avoidance

Autonomous vehicles are often used in cluttered and unpredictable environments
where considerations to other vehicles and obstacles need to be made. Therefore,
the control system of autonomous vehicles should include some form of collision
avoidance (COLAV).

Reviews of various COLAV concepts are presented in [38-40]. In general, algo-
rithms for COLAV can be split into two categories: motion planning and reactive
algorithms.

Motion planning algorithms include, among others, various types of path plan-
ning algorithms [41-44], the dynamic window algorithm [45], and MPC. MPC can
be used both for a single vehicle [46, 47] and for multi-agent systems in a distributed
form [48, 49]. Some motion planning algorithms also include consideration of rel-
evant traffic protocols that apply in the given domain, e.g., the regulations for
marine vehicles known as COLREGs [41-43)].

Reactive algorithms for COLAV include, among others, virtual potential fields
[50], geometric guidance [51], and control barrier functions (CBFs) [52-56]. Re-
active algorithms are often used together with motion planning algorithms in a
hybrid controller. In such a controller, the reactive algorithm ensures the safety of
the vehicle in unexpected situations. Such an algorithm is proposed in [57], where
a collision-free velocity reference is obtained through numerical optimization.

CBFs offer a COLAV method that is applicable to a wide range of systems
[68]. In the literature, there are typically two ways in which CBFs are applied
for COLAV. They are either applied to a simplified model of the vehicle (e.g., a
unicycle model [52, 53]) to provide safe velocity references, or they are used together
with CLFs [54-56] on the complete model.

Reactive COLAV methods that work with a simplified model do not take into
account the physical limitations of the vehicle, such as acceleration or actuator
constraints. Consequently, these methods may output reference signals that the
underlying controllers cannot track. To mitigate this, reactive COLAV methods
should be included at the lowest-possible control level.
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Connectivity Maintenance

In addition to COLAV, autonomous vehicles often need to maintain a sufficiently
close distance to each other to guarantee the reliability of the communication and
the connectivity of the multi-agent system. In special cases when the vehicles use
optical sensors or communications, the vehicles are also limited by field-of-view
(FOV) constraints.

Many works in the literature address the coordination problem of multiple ma-
rine vehicles under such inter-agent constraints. In [59, 60] planning-based methods
are developed to generate trajectories that satisfy the constraints. However, plan-
ning algorithms usually require a priori knowledge of the environment, which might
be unrealistic in highly dynamical environments, such as under water. Reactive al-
gorithms are based, e.g., on artificial potential fields [61, 62] and barrier Lyapunov
functions (BLFs) [63, 64].

1.2 Outline and Contributions

Chapter 3: Unifying Reactive Collision Avoidance and Control Alloca-
tion

This chapter differs from the rest of the thesis in the considered vehicle model. In
this chapter, we consider overactuated vehicles, i.e., vehicles with more actuators
than degrees of freedom (DOFs). As mentioned in Section 1.1, reactive collision
avoidance should be included at the lowest-possible control level. Overactuated ve-
hicles often use control allocation in their lowest-level controller [65]. Most control
allocation methods are based on numerical optimization [66-68] which makes them
ideal for augmenting with control barrier functions (CBFs).

The main contribution of Chapter 3 is a reactive collision avoidance (COLAV)
algorithm that is included at the lowest level in the control pipeline, 7.e. in the
control allocation, to ensure the safety of the vehicle regarding collision avoidance.
Since it is included at the lowest-possible control level, it also ensures the “baseline”
safety of any other higher level (long term/deliberate) planners of the vehicle guid-
ance, navigation and control system. The algorithm can easily be implemented on
vehicles that apply a numerical optimization-based method to control allocation.
Moreover, the algorithm does not rely on any communication between the vehi-
cles; the only required information is the position and velocity of other vehicles.
The chapter extends the results in [69], which only considers autonomous surface
vehicles (ASVs) and simple encounters between one ASV and a vessel moving at
a constant course and speed, making the method applicable to a wider range of
vehicles and scenarios with multiple autonomous vehicles.

Chapter 4: Formation Path-Following Control of 5DOF Underactuated
AUVs

As mentioned in Section 1.1, the NSB algorithm has been applied to kinematic
vehicles (i.e., vehicles with single-integrator dynamics), as well as ASVs and AUVs
moving in the horizontal plane. Chapter 4 extends the NSB algorithm to AUVs
moving in three dimensions.
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Specifically, the chapter extends the results of [35], where an NSB algorithm is
used to guide two ASVs, by proposing an algorithm that works with an arbitrary
number of AUVs with five degrees of freedom (DOFs) moving in 3D. We solve
the formation path-following problem by defining three tasks: collision avoidance,
formation keeping, and path following. The tasks are combined using the NSB
algorithm to achieve the desired behavior. Similarly to [35], we solve the path-
following task using LOS guidance. Using the cascaded systems theory results
of [70], we prove that the closed-loop system consisting of a 3D LOS guidance
law, combined with surge, pitch, and yaw autopilots based on [71], is uniformly
semiglobally exponentially stable (USGES) and uniformly globally asymptotically
stable (UGAS). The theoretical results are verified through numerical simulations.

Chapter 5: Formation Path-Following Control of 6DOF Underactuated
AUVs

This chapter further extends the NSB algorithm proposed in Chapter 4. The algo-
rithm in Chapter 4 uses a 5DOF AUV model, considers only inter-vehicle collision
avoidance, and proves only the stability of the path-following task. Furthermore,
the orientation of the 5DOF model was expressed using Euler angles, which causes
singularities for a pitch angle of £90 degrees.

This work applies the NSB algorithm to a full 6DOF model, uses rotation
matrices to describe the attitude of the vehicles to avoid singularities, modifies
and extends the tasks, and proves the stability of the combined path-following and
formation-keeping tasks. We also add a scheme for obstacle avoidance and a scheme
that keeps the vehicles within a given range of depths. As opposed to the previous
work, we do not limit the analysis to a specific low-level attitude controller. Con-
sequently, the new algorithm can be integrated into existing on-board controllers.
Assuming that the existing low-level controller allows exponential tracking, we use
results from cascaded systems theory [70] to prove that the closed-loop system com-
posed by the NSB algorithm and the low-level controller is uniformly semiglobally
exponentially stable (USGES). We verify the results in numerical simulations.

Chapter 6: A Distributed NSB Algorithm for Formation Path Following

The algorithms presented in Chapters 4 and 5 are centralized, making them difficult
to use in real-life applications. As mentioned in Section 1.1, there are distributed
NSB algorithms [36, 37]. However, these algorithms work by dividing the fleet
into smaller, fully connected subgroups, or by using leading vehicles. In both
approaches, there is still a requirement for fast and reliable communications within
the subgroups and between the leaders. Furthermore, the leader-follower scheme
is vulnerable to failures of the leading vehicles.

Chapter 6 presents an approach that is fully distributed, so that the fleet does
not need to decompose into subgroups nor requires leading vehicles. To do so,
the proposed algorithm combines the centralized schemes presented in Chapters 4
and 5 with a consensus algorithm. Specifically, we first propose a continuous-time
consensus algorithm and prove its stability using Lyapunov analysis. Then, we
present a modified discrete-time version of the algorithm based on event-triggered
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control. The effectiveness of both the continuous- and discrete-time algorithms is
demonstrated in numerical simulation. Furthermore, the discrete-time version is
also tested in field experiments.

Chapter 7: Hand Position for Underactuated Underwater Vehicles

This thesis studies slender torpedo-shaped autonomous underwater vehicles (AUVs)
with a propeller that provides forward (surge) thrust, and fins that provide torque.
The configuration of actuators means that AUVs are underactuated, as we cannot
directly control the lateral (sway and heave) velocities. Most control algorithms
use the so-called neutral point of the vehicle as the output of the system (see
Figure 1.1a). The neutral point is a location on the z-axis (the stern-bow axis) of
the vehicle such that, if chosen as the origin of the vehicle’s body-fixed coordinate
frame, the lateral motion of the vehicle is not affected by its control inputs. Due
to the underactuated nature of the AUV, controlling the neutral point requires
specialized algorithms, such as line-of-sight guidance [20-22, 72]|. In this chapter,
we propose to use the hand position concept to control the AUV. The hand position
is a point located a given distance in front of the neutral point along the vehicle’s
x-axis (see Figure 1.1b for an illustration). The concept was first introduced in [73]
to stabilize nonholonomic vehicles with unicycle dynamics. Later, it was applied
to control formations of unicycles [74]. The concept was then extended to marine
vehicles moving in the horizontal plane [14], and two- and three-dimensional Euler-
Lagrange-like systems [75, 76].

There are two main advantages to using the hand position concept. The first
advantage stems from the applications of AUVs. The aim of many scientific mis-
sions is to scan a given area using a sensor attached to the AUV. Since the position
of the sensor typically does not coincide with the neutral point, there may be a
significant offset between the sensor and the desired trajectory, caused by the sea
loads (see Figure 1.1a). In some cases, the hand position can be chosen such that it
coincides with the position of the sensor, allowing to scan the area more accurately.
The second advantage is that if we choose the hand position as the output of our
system, it is possible to transform the nonlinear underactuated vehicle model to
a double integrator, using output feedback linearization. This allows us to apply
advanced control strategies, e.g., various consensus algorithms [74-77] that cannot
be directly used on nonholonomic or underactuated vehicles.

>hand

position

ocean current

neutral
point

(a) path

Figure 1.1: Illustration of (a) the traditional approach where the aim is to
control the neutral point of the vehicle, and (b) the proposed hand position-based
approach. The dashed line represents the body-fixed x-axis.
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Note that the three-dimensional Euler-Lagrange-like system used in [76] does
not accurately represent AUVs, since it does not consider the Coriolis and cen-
tripetal effects or the restoring forces (gravity and buoyancy). Furthermore, the
model in [76] has five degrees of freedom (DOFs): three position coordinates, pitch
angle, and yaw angle. The use of Euler angles inherently introduces singularities
into the system.

The goal of this chapter is thus to further extend the hand position concept to
AUVs moving in three dimensions. We employ a more realistic AUV model than
in [76]. We model the full 6DOF motion and use rotation matrices to describe the
orientation of the vehicle, thus avoiding singularities. Using Lyapunov analysis,
we derive the sufficient conditions for boundedness of the internal states, i.e., the
orientation and the angular velocities, for a generic hand position-based controller.

Chapter 8: Trajectory Tracking and Path Following using the Hand
Position Concept

In this chapter, we use the hand position concept to solve the trajectory-tracking
and path-following problems. Specifically, we show that these two problems can
be solved using the hand position transformation and a simple PID controller.
We analyze the closed-loop behavior of the system and prove that the proposed
controllers exponentially track the desired trajectory or path, while the angular
velocities of the vehicle remain bounded. Moreover, we prove that in the special
case when the desired trajectory or path is a straight line, the whole closed-loop
system is exponentially stable. The theoretical results are verified both in numerical
simulations and experiments.

Chapter 9: Distributed MPC for Formation Path-Following of Multi-
Vehicle Systems

In this chapter, we employ the spline-based MPC presented in [30, 31| to solve the
formation path-following problem. The proposed scheme is applicable to a wide
range of vehicles. The only restriction is that the model of the vehicle must be
differentially flat. The spline-based MPC scheme can thus be seen as a trade-off
between lower computational requirements and more restrictive assumptions on
the model.

We present the results of two numerical case studies. The first case study
considers a fleet of AUVs. To make the AUV model differentially flat, we employ
the hand position transformation. The second case study considers a group of
differential drive robots modeled as first-order unicycles.

Chapter 10: Control of AUVs Under Hard and Soft Constraints

This chapter investigates the tracking-in-formation problem for a fleet of AUVs.
This problem is similar to the formation path-following problem, except that the
fleet should track a desired trajectory instead of following a desired path. We
assume that the AUVs communicate over a directed topology and are subject to
the COLAV and connectivity constraints discussed in Section 1.1.
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Under the control designs proposed in the literature, in many instances, in order
to guarantee the satisfaction of the inter-agent constraints, the vehicles are forced
to move backwards, oftentimes during a prolonged period of time and at relatively
high speeds (for backwards motion of a marine vehicle). However, although marine
vehicles are able to move backwards, they are not well-suited to do so due to their
shapes and their propulsion system. This issue, however, has not been addressed
in the literature of multi-AUV systems.

In Chapter 10, we propose a distributed control law that solves the tracking-in-
formation problem for multiple marine vehicles interacting over a directed commu-
nication graph and that guarantees, simultaneously, connectivity preservation and
inter-agent collision avoidance. Moreover, we address the issue of backwards motion
by imposing a non-negativity constraint on the surge velocity of the vehicles. More
precisely, on one hand we encode via BLFs the proximity and safety constraints as
hard constraints that need to be always satisfied. On the other hand, we encode
the non-negativity of the surge velocity as a soft constraint, so that it is imposed on
the vehicles as long as it does not interfere with the hard constraints, in which case
it is dynamically relaxed. The proposed controller is based on the hand-position-
based input-output feedback linearization method presented in Chapter 7 and on
the so-called edge-agreement representation of multi-agent systems [78], in which
the relative states of the connected agents are used instead of the absolute ones,
making it well adapted to practical applications where, usually, only relative mea-
surements are available. With regards to the stability analysis, differing from most
of the existing works in the literature, where only non-uniform convergence to the
formation and to the target vehicle is guaranteed, we establish almost-everywhere
uniform asymptotic stability of the tracking-in-formation objective and we show
that the output error dynamics converge to the origin exponentially fast, while
satisfying the constraints.

Chapter 11: Combining NSB with the Hand Position Approach

This chapter presents an extended null-space-behavioral (NSB) algorithm for vehi-
cles with second-order dynamics. The NSB algorithm, as presented in the existing
literature, is developed for kinematic single-integrator systems [33, 35, 79]. Al-
though existing NSB methods are developed for first-order systems, AUV dynam-
ics are inherently second-order. Therefore, any first-order solution is necessarily
perturbed by the dynamics of the maneuvering controller. In Chapter 11, we ex-
tend the NSB method to vehicles with double integrator dynamics and propose
an algorithm that uses the second-order closed-loop inverse kinematics equation to
control the task variables through desired acceleration. The procedure is inspired
by robotic manipulators, where second-order methods are more common, due to
the inherent second-order dynamics of mechanical systems [80, 81]. Compared to
the existing methods, our formulation handles the second-order dynamics directly
in the task space as interpretable mass-spring-damper systems.

We apply the proposed NSB method to a fleet of AUVs. To make the pro-
posed method applicable to AUVs, we use the hand position transformation. Sub-
sequently, through the design of specific path-following, formation-keeping, and
collision-avoidance tasks, we can control the fleet to follow a given path in a for-
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mation while avoiding collisions both within the fleet and with external obstacles.
We prove the stability of the control scheme using Lyapunov analysis and verify its
effectiveness in simulations. Because our reformulated NSB method works directly
with the second-order system, there is no need to transform desired velocities or
accelerations into surge and orientation references, as has been done in previous
works. This reduces one level of complexity in the controller design.

1.3 Publications

Conference Publications

[82]

[83]

[79]

[84]

7]

[85]

J. Matous, E. A. Basso, E. H. Thyri, and K. Y. Pettersen, “Unifying reac-
tive collision avoidance and control allocation for multi-vehicle systems,”
in Proc. 2021 IEEE Conference on Control Technology and Applications,
2021.

J. Matous, K. Y. Pettersen, and C. Paliotta, “Formation path following
control of underactuated AUVs,” in Proc. 2022 FEuropean Control Con-
ference, 2022.

J. Matous, K. Y. Pettersen, D. Varagnolo, and C. Paliotta, “Singularity-
free formation path following of underactuated AUVs,” in Proc. 2023
IFAC World Congress, 2023.

J. Matous, D. Varagnolo, K. Y. Pettersen, and C. Paliotta, “Distributed
mpc for formation path-following of multi-vehicle systems,” in Proc. 9th
IFAC Conference on Networked Systems, Jul. 2022.

E. Restrepo, J. Matous, and K. Y. Pettersen, “Tracking-in-formation
of multiple autonomous marine vehicles under proximity and collision-
avoidance constraints,” in Proc. 2022 Furopean Control Conference, Jul.
2022.

E. S. Lie, J. Matous, and K. Y. Pettersen, “Formation control of under-
actuated AUVs using the hand position concept,” in To appear in Proc.
2023 IEEE Conference on Decision and Control, 2023.

Journal Submissions

(86]

[87]

[88]

10

J. Matous, K. Y. Pettersen, D. Varagnolo, and C. Paliotta, “A distributed
NSB algorithm for formation path following,” Submitted to IEEE Trans-
actions on Control Systems Technology, 2023.

J. Matous, C. Paliotta, K. Y. Pettersen, and D. Varagnolo, “Trajectory
tracking and path following of underactuated AUVs using the hand posi-
tion concept,” Submitted to IEEE Transactions on Control Systems Tech-
nology, 2023.

E. Restrepo, J. Matous, and K. Y. Pettersen, “Tracking control of cooper-
ative marine vehicles under hard and soft constraints,” Submitted to IEEE
Transactions on Control of Network Systems, 2023.



Chapter 2

Background

The latter consisted simply of sixz hydrocoptic
marzlevanes, so fitted to the ambifacient lunar
waneshaft that side fumbling was effectively
prevented.

— John Hellins Quick, “The turbo-encabulator
in industry,” Students’ Quarterly Journal, 1944.

This chapter presents some of the background theory that is used in the thesis.
The theory presented here is relevant to multiple chapters throughout the thesis.
In Section 2.1, we present a control-oriented model of marine vehicles. Section 2.2
presents the theory behind paths, that is then used in Section 2.3 to define the
formation path-following problem. In Section 2.4, we then present the line-of-sight
guidance algorithm as a method for solving the path-following problem. Section 2.5
presents the NSB algorithm as a method for solving the combined formation path-
following problem. Finally, Section 2.6 presents the concept of uniform semiglobal
exponential stability.

2.1 Mathematical Models of Marine Vehicles

Mathematical models are vital to the design, analysis, and verification of control
algorithms. For complex systems, such as marine vehicles, there typically exist
different types of models. These models often represent a trade-off between sim-
plicity and fidelity. On one end of the spectrum, there are high-fidelity models.
These models are an accurate representation of the system. Consequently, high-
fidelity models are used in ship-handling simulators, as well as in some simulation
environments, e.g., the Unified Navigation Environment (DUNE) [89], to train the
operators and to verify the effectiveness of control algorithms. However, due to
their complexity, these models are not suitable for designing or analyzing control
algorithms.

On the other end of the spectrum, there are control-oriented models. Compared
to high-fidelity models, the structure of control-oriented models is simpler. This
simplicity means that we can use these models to design control algorithms and

11
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analyze their closed-loop properties. The control-oriented models are thus designed
to capture the system properties that are the most significant and relevant for the
design of the control system. The inaccuracies of control-oriented models can be
compensated by designing robust controllers.

This section presents control-oriented models of autonomous surface vehicles
(ASVs) and autonomous underwater vehicles (AUVs). The presented models are
similar to those used in [72] and [90]. The models are based on the matrix-vector
models of marine vehicles [91] and some simplifying assumptions.

2.1.1 State Variables and Degrees of Freedom

Marine vehicles are typically modeled as rigid bodies. A rigid body moving in
three-dimensional space has six DOFs, three for position and three for orientation.

The position of a marine vehicle is commonly expressed in a local north-east-
down (NED) coordinate frame. Although the NED frame is not inertial, it is often
used as an approximation of an inertial coordinate frame for short-term and short-
distance missions, since the effect of Earth’s rotation on the vehicles is negligible.
In general, we will denote the position of the vehicles as p = [z, v, Z]T.

The orientation of a vehicle can be expressed using Fuler angles, ® = [¢,0, w]T,
where ¢ is the roll angle, 8 is the pitch angle, and ¢ is the yaw angle. The complete
position and orientation vector of the vehicle is then given by T = [pT, @T].

Although Euler angles can represent any orientation, in some cases, this rep-
resentation is not unique. For example, the following two sets of Euler angles
represent the same attitude

T m 17T T w7

61_[2’2’0} ’ @2_{0’2’ 2} ' 21)
At these attitudes, there exist mathematical singularities called gimbal locks [92].
Furthermore, the use of Euler angles in control may lead to a phenomenon called
unwinding [93], in which the vehicle performs an unnecessary rotation to reach the
desired attitude.

The orientation of a vehicle can also be described using a rotation matriz.
Rotation matrices are members of the special orthogonal group SO(3). Unlike
Euler angles, rotation matrices do not suffer from singularities. For a given set of
Euler angles, the corresponding rotation matrix is given by [91]

CypChH CypSpSe — CpSy  Se Sy + Cp Cyp S
R(¢,0,9) = [CoSy CpCp +5¢5pS0  CepSySe — CypSe | » (2.2)
—Sp Cp S¢ Cop Co

where ¢, and s, represent the cosine and sine of the corresponding angle.

Next, let us discuss the representation of velocities. The velocities of the vehicle
are expressed in the body-fized frame, a non-inertial coordinate frame attached
to the vehicle, with the z-axis pointing towards the bow (front) side, the y-axis
pointing to the starboard (right) side, and the z-axis pointing to the bottom side of
the vehicle. The linear velocities of the vehicle v = [u, v, w]T consist of the surge,

sway, and heave velocities. The angular velocities of the vehicle w = [p,q,r]T
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consist of the roll, pitch, and yaw rates. The full velocity vector is then given by
vl = [oT W™

Throughout the thesis, we denote velocities in the body-fixed frame as v, while
velocities in the inertial frame are denoted as v. The difference between these two
types of velocities is illustrated in Figure 2.1.

Finally, let us discuss simplified 3DOF and 5DOF models. In the case of ASVs
or AUVs moving in the horizontal plane, we often assume that the roll and pitch
angles are zero, and that the depth is constant. Consequently, we can disregard
the roll, pitch, and heave motion of the vehicle, and derive a simplified 3DOF
model with n = [z, y, 1/J]T and v = [u,v, T]T. In the case of slender, torpedo-shaped
AUVs, the roll motion is assumed to be small and self-stabilizing by the design of
the vehicle. Consequently, we can disregard the roll motion and derive a simplified
5DOF model with n = [z, ¥, z, 0,¢]T and v = [u,v,w,q,r]T

2.1.2 Kinematics

First, let us discuss the kinematics of the vehicles, starting with the 6DOF model.
The time-derivative of the position is

p =Rv. (2.3)

The time-derivative of the Euler angles is given by [91]

) 1 sgte Cyto
O = T(@)w, T(@) = |0 Cop —S¢ y (2.4)
0 sg/co co/co

where tg = tan(f). Due to the aforementioned singularities, © is not defined for
0 = +7/2. The time-derivative of a rotation matrix is given by

0 —r ¢
R = RS(w), Sw)y=1|r 0 —pj|. (2.5)
—-q¢ p 0
g
Y
0)
\'%
z
(a) Hlustration of body-fixed veloci- (b) Ilustration of inertial velocities.
ties. The kinematics of the vehicle are The kinematics of the vehicle are p =
p = Rwv. v.

Figure 2.1: Illustration of the difference between body-fixed and inertial veloci-
ties.
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To derive the kinematics of the 5DOF model, we simply substitute ¢ = 0 and
p =0 into (2.3) and (2.4), and get

p =R(0,0,¢)v, (2.6a)
6 =q, (2.6b)
= wos(@)’ (2.6¢)

Similarly, we can derive the kinematics of the 3DOF model by substituting
z=¢=0=w=p=q=0into (2.3) and (2.4)

Cqp —Sy 0
n=J, J(@) = |sy ¢y 0. (2.7)
0 0 1

2.1.3 Dynamics

When modeling the dynamics of marine vehicles, we often need to consider the effect
of sea loads such as waves, wind, and ocean currents. Let V. € R? be a vector
that represents the velocity of the ocean current in the inertial coordinate frame.
Since the dynamics of ocean currents are typically much slower than the dynamics
of the vehicle, the ocean current can be considered constant and irrotational. Let
v, = RTV, denote the velocity of the ocean current expressed in the vehicle’s
body-fixed frame. Furthermore, let v, = v — v, = [u,, v, wT}T denote the relative
surge, sway, and heave velocity of the vehicle, and let v} = [v},w™T] denote the
full relative velocity vector. The dynamics of the vehicle can then be expressed
using the following matrix-vector model [91]

My, + C(v,)v, + D(v,)v, + g(R) =T, (2.8)

where M is the mass and inertia matrix, including the added mass effects, C(v,.)
is the Coriolis and centripetal matrix, also including the added mass, D(v;.) is the
hydrodynamic damping matrix, g(R) represents the effects of gravity and buoy-
ancy, and 7 represents additional forces and torques such as the effects of actuators
and external disturbances.

The model in (2.8) can also be expressed in terms of absolute velocities

My—-v.,)+Cv—v.)(v—v.)+Dwv—-v.)(v—r.)+gR) =, (2.9)

where vl = [’UE,OT].
The inertia matrix M is symmetric positive definite, the damping matrix D
is positive definite, and the Coriolis matrix C is parametrized so that it is skew-

symmetric. There exist multiple expressions for the Coriolis matrix, e.g.,

O3.3 —-S(My v, +M12w)} [Mu M,

Clr)= —S(My1v, + Migw) —S(Ma1v, + Maow) My, Mo,

} =M. (2.10)

The gravity and buoyancy vector is given by [91]

(W — B)R"es ] ’

g(R) = - (Wry — Bry) x RTe; (2.11)
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where W € R is the gravitational force, B € R is the buoyant force, r, is the

position of the center of gravity, r; is the position of the center of buoyancy, and
T

e; =[0,0,1] .

2.1.4 Control-Oriented Model of Underactuated AUVs

Before deriving the control-oriented model, we need to present the assumptions
that allow us to simplify the matrix-vector model in (2.8).

Assumption 2.1. The vehicle is slender, torpedo-shaped, with port-starboard sym-
metry.

Assumption 2.2. The vehicle is maneuvering at low speeds. Consequently, the
hydrodynamic damping can be considered linear.

Under Assumption 2.2, the hydrodynamic damping matrix is constant. Under
Assumption 2.1, the inertia and damping matrices have the following structure

mi1 0 0 0 0 0 d
mao2 0 0 0 mog

0 mss 0 mss 0

0 0 mayq 0 0 ’

0 mss 0 ms5 0
moge 0 0 0 mee

1 00 0 O 0
das 0 0 0 dos
0 dsz3 0 dss 0
0 0 daa O 0
0 d53 0 dss 0
dgo O 0 0 dgs
(2.12)

—

OO O OO
OO O OO

Assumption 2.3. The vehicle is equipped with a propeller and fins. Consequently,
the vehicle is capable of generating a force in the surge direction and torques around
all three azes.

Under this assumption, the external forces acting on the vehicle are given by

by 0O 0 0
0 0 0 b
_ o 0 by 0
T = Bf, B=|0 4o o ol (2.13)
0 0 bsg O
0 0 0 b

where f = [Tu,Tp,Tq,TT]T is the control input consisting of the surge thrust and
the forces produced by the fins.

If the vehicle model (2.8) satisfies Assumptions 2.1-2.3, then we can perform a
change of coordinates such that the actuators produce no sway or heave accelera-
tion. In other words, for all inputs f, there exist f,,t,,t,,t, € R such that

M™IBf = [£4,0,0,tp,tg, tr] " . (2.14)

This change of coordinates was demonstrated for 5DOF vehicles in [72], and can
be trivially extended to 6DOFs. The transformed body-fixed velocities, v, are

V;‘ = [uT'v’UT‘+61T7wr+52q7p7Q7r]T7 (215)
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where 1,5 € R. This transformation can also be written as

0 0 0
o / . I3 0 0 —€&1
v, = Hy/, H= 0 —c5 0 (2.16)
O3x3 I3
The transformed dynamics are then given by
My, +C' (V). +D'v. + H g(R) = H 7, (2.17)

where M’ = HTMH, D’ = HTDH are the transformed inertia and damping
matrices, and C'(v.) = HIC(v,)H
If we choose

baa mee — bea Mo bsz mss — bsz mas
g1 = s €9 = s (218)
baa mag — bea Moo bsz mizs — bsz M3
the effect of the actuators on the dynamics of v’ is given by
- by -
myp~
0
1—legT 0
M’ "H Bf = %Tp . (2.19)
MT
m33 Ms5— mSo
(bo4 Mo —boy mzo) T
L a2 mes—mac?
We have thus shown that (2.14) is satisfied with
b b
ty = —=T,, t, = —=T,, (2.20a)
mi1 zv

o (b53 mg33 — b33 m35) (b64 mag — bay m26)

Ty, t, = T,. 2.20b
m33 M55 — M3s? e " Mag Mes — Mae? " ( )

Moreover, if all the numerators in (2.20) are nonzero, then the converse holds
as well, i.e., for all ¢,,%p,t4,t,, there exists an input f such that (2.14) holds.
Consequently, we can treat t,,tp,tq,t, as the new inputs to the system.

Remark. If the vehicle is rotationally symmetric around the x-azis (i.e., if
Mg = M33, M35 = —Mag, M55 = Mee, bz = —bay, and bsz = bgs), then we
have €1 = —e5, and the transformation (2.16) corresponds to moving the body-fixed
coordinate frame a distance 1 along the body-fized x-azis.

Assumption 2.4. The vehicle is neutrally buoyant, with the centers of gravity and
buoyancy located on one vertical axis.

Under this assumption, g(R) has the following shape

B = | o Rrey] (2.21)

Wnge3 x R e3

where zg, is the distance between the centers of gravity and buoyancy.
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2.1.5 The Component Form

In this section, we express the matrix-vector model (2.8) in a component form by
writing out the equations of motion for the individual state variables. The purpose
of this model is to gain a better understanding of the AUV dynamics, which allows
us to design low-level controllers and analyze their closed-loop behavior.

Consider an AUV model that satisfies Assumptions 2.1-2.4. Then, the model
in the component form is given by

iy = Fu(vy) + fu, (2.22a)
Op = Xo(u)r + Yo (ur)vr + Zy (p)w,, (2.22D)
Wy = Xy (ur)g + Yo (ur)wy + Zy (p)vr + G(R), (2.22¢)
p=Fy(v) + 1, (2.22d)
q=Fy(vy) +tq (2.22¢)
i = F, () + . (2.22f)

The expressions for Fy, Xy, Yy, Zy, Xw, Y, Zuw, G, Fp, Fy, and F, are shown
in Appendix A.1. Note that %,, p, ¢, and 7 depend on the control inputs. Conse-
quently, it is possible to stabilize these states using feedback control. The states
v and w are commonly referred to as the underactuated dynamics of the vehicle,
as these states cannot be controlled directly. The terms Y, and Y., represent the
effects of hydrodynamic damping. Because hydrodynamic damping is dissipative,
the terms Y, and Y,, are negative. The term G represents the effects of gravity and
buoyancy on the heave velocity. The remaining terms represent the Coriolis and
centripetal forces.

In the remainder of this section, we derive a component form for the absolute
velocities. From (2.22), we have

w=F,(v—v:) +tc+ fu, (2.23a)
0= X,(u—uc)r+Y,(u—uc)(v—1v.) + Zp(p)(w — we) + Ve, (2.23b)
W= Xy(u—uc)g+ Yy(u—u)(w—we) + Zy(p)(v —ve) + G(R) + ., (2.23c)
p=F,(v —v.) +1tp, (2.23d)
§=F,(v—v.)+ tq, (2.23e)
=y —ve)+ (2.23)

From the expressions in Appendix A.1, we conclude that all terms in (2.22)
that contain the relative velocities are either linear or quadratic. Since the relative
velocities are affine in the ocean current (v, = v — RTV,), we can conclude that
all terms in (2.23) that contain the ocean current are also linear or quadratic.
Consequently, if we denote the components of the ocean current velocity as V., =
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Va, Vi, VZ]T7 the model (2.23) can be written as

i = F,(v) + fu + ®,(v,R)TV,, (2.24a)
v = X, (u)r + Yy (u)v + Z,(p)w + @, (v,R)TV,, (2.24b)
W = Xy (u)q + Yo (w)w + Zy(p)v + G(R) + @, (v, R)TV,, (2.24c)
p=F,w,R)+t,+®,wv,R)TV,, (2.24d)
qg=F,w,R)+t,+®,v,R)TV,, (2.24e)
7= F.(v)+t. + ®.(v,R)TV,, (2.24f)

where V. = [V,,V,, V., V2, V2, V2, V.V, V,V.,V, V. The expressions for ®,,
®,, ®y, ), 4, and @, are omitted in this thesis. Instead, let us present a method
for finding them.

Let ry, ry, and r3 denote the columns of the rotation matrix R. The ocean

current velocities in the body-fixed frame are given by

ve=R'V, = wu.=r{V, v.=1r3V,, w.=r;3V,. (2.25)

]T

Suppose then that the right-hand side of (2.22) contains a linear term, e.g. ku,.,
where k£ € R. This term can be expressed as

ku, = k(u —u.) = ku — kr] V. = ku + koL V., (2.26)
where ol = [fr"f, OE]. We can derive similar equations for linear terms containing
v, and w,.

Next, consider a quadratic term, e.g., ku,v,, where k € R. This term can be
expressed as

ku,v, = E(uv — wve — uet + ueve) = kuv + kg (u, v) TV, (2.27)
where
Puo(u,v)" = [ —ury —orf, riira1, ri2re2, T13r23, T117T22 + T12721, (2.28)
711723 + T13721, T12723 + 7"137"22],
where

1 = [ri, 12,71 T2 = [ro1, T22,723] - (2.29)

We can derive similar equations for all the other quadratic terms.
Finally, let us investigate the derivatives of the ocean current velocities. The
derivative of v, is
V. = (RS(w))" Vo £ [iy, #2,15]" Ve, (2.30)
where 11, 9, and 73 denote the columns of RS(w). The components of ¥, are thus
given by

e = 1 Vo, b, = 13 Ve, W, = 13 V. (2.31)

We have thus shown that the AUV dynamics can be split into an ocean current-
independent and an ocean current-dependent part.

In the remainder of this section, we derive a component form for the 5DOF and
3DOF models.
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2.1. Mathematical Models of Marine Vehicles

5DOF Component Form

In the 5DOF model, the roll dynamics are disregarded. Consequently, the inertia,
damping, and Coriolis matrices of the 5DOF model are obtained by removing the
fourth row and fourth column from the inertia, damping, and Coriolis matrices of
the 6DOF model from Section 2.1.4.

The assumptions for deriving the 5DOF control-oriented model are analogous
to the assumptions in Section 2.1.4, with one exception. Due to fewer degrees of
freedom, Assumption 2.3 must be modified.

Assumption 2.3 (5DOF). The vehicle is equipped with a propeller and fins.
Consequently, the vehicle is capable of generating a force in the surge direction and
torques in pitch and yaw.

Under this assumption, the external forces acting on the vehicle are

bu 0 O
0 0 b
T = Bf, B= 0 b32 0 s (232)
0 bsz O
0 0 s

where f = [T}, T,,, T,]" is the control input.

Similarly to Section 2.1.4, we can perform a change of coordinates so that the
actuators produce no sway or heave acceleration. In other words, for all inputs f,
there exist f,,tq,t, € R such that

M !Bf = [£,,0,0,t,,t,]" . (2.33)

The component form of the 5DOF model is then simply obtained by substituting
p =0 into (2.24)

i = Fy(v) + fu+ Pu(v,0,9)"V,, (2.34a)
0 = Xy (u)r + Yy (u)v + @, (v,0,9)TV,, (2.34b)
W = Xop(u)q + Yo (v)w + G(0) + @, (v,0,9)TV,, (2.34c)
G=F,(v) +t,+ ®,(v,0,9)"V,, (2.34d)
= F.(v) +t, +@,.(v,0,9)"V.. (2.34e)

3DOF Component Form

First, let us discuss the 3DOF control-oriented model. Similarly to the previous
section, the model is derived using assumptions that are analogous to the ones in
Section 2.1.4, with some modifications. Namely, due to fewer degrees of freedom,
Assumption 2.3 needs to be modified.

Assumption 2.3 (3DOF). The vehicle is equipped with a propeller and a rudder.
Consequently, the vehicle is capable of generating a force in the surge direction and
a torque in yaw.
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2. Background

Under this assumption, the external forces acting on the vehicle are

bin O
T = Bf, B = 0 b22 5 (235)
0 bss
where f = [T}, T,]" is the control input.
The inertia, damping, and Coriolis matrices of the 3DOF model are [90]
_mn 0 0 Cl11 0 0 i
M = 0 Mmoo MM23| , D= 0 d22 d23 s (236)
| 0 mog mas 0 d32 ds3]
I 0 0 —MmMo2Uy — ’HIQg’I‘_
C(VT) = 0 0 mi1Uy (237)
| M22Vy + Ma3r  —Mi1Uy 0 ]

In [90], it is shown that the origin of the body-fixed coordinate frame can be
chosen such that the actuators produce no sway acceleration. In other words, for

all inputs f, there exist f,, ¢, € R such that
M 'Bf = [f,,0,t,]" .

(2.38)

The change of coordinates is done by translating the origin of the body-fixed frame

by ¢ along the z-axis. The transformed velocities are given by

1 0 0
v, = Hy,, H=1|0 1 ¢
0 0 1

(2.39)

Similarly to the procedure in Section 2.1.4, we define the transformed inertia matrix

M’ = HTMH. If we choose

_ bay mgzz — by mog

baz Moz — bsg Mmoo’
then the effect of actuators in the new coordinate frame is given by

bi1

myp T Y

-1
M H'Bf =
b3 Mmoo —bao mos T
Moz maz—ma3z? 7T

We can then perform a change of inputs

_ bs2 mag — baa ma3

fu = —TT,, ty 2

mi1

T,
Ma2 M33 — M23

and express the 3DOF model in the following component form
Uy = Fu(’/r) + fua
i}r = Xv (UT)T + Yv (Ur)’Ur,
7= F.(vy) + tr.

The expressions for F,,, X,, Y,, and F. are shown in Appendix A.1.
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2.2. Geometric Paths

2.2 Geometric Paths

This section presents the definitions of paths in the context of guidance. The theory
presented in this section applies to two- and three-dimensional Euclidean spaces.
Let ng € {2,3} denote the number of dimensions.

2.2.1 Paths and Their Parametrizations

A path is a curve in ng-dimensional space. A path can be expressed as a subset of
Euclidean space P C R™. A parametrization of a path is a function p, : R — R™¢
whose image space represents the given path, i.e., {p,(s)|s € R} = P. Note that
for a given path, there exist infinitely many parametrizations. For example, the
following two functions

ppa(s) =[50,0", py(s) = [s%,0,0]", (2.44)

represent the same path; a straight line going through the origin, parallel to the
z-axis. Furthermore, if we multiply these parametrizations by a positive scalar, we
also get a valid parametrization. In general, if p,(s) is a path parametrization that
is defined for all s € R, and p(s) is a monotonically increasing function that is also
defined for all s € R, then p,(s) and p,(p(s)) parametrize the same path. We will
refer to p,(p(s)) as a reparametrization of p,(s).

2.2.2 Continuity and Regularity

Continuity of paths, also referred to as smoothness, is an important property, as
some vehicles are not able to follow a path that has discontinuities or sharp turns.
There are two types of continuity; parametric and geometric. Parametric continuity
is related to a specific parametrization of a path, while geometric continuity is
related to the curve itself. Here, we will only present the definition of parametric
continuity, as this will be used further in the thesis. For details on geometric
continuity, the reader is referred to [94]. Parametric continuity is denoted C™, where
n € Z>o is the order. A parametrization p,(s) is C™ if it is n-times continuously
differentiable.
A parametrization is reqular if

Hap” £0. (2.45)

0s

A regular parametrization means that there are no “stops” along the path. Recalling
the two examples in (2.44), both p, 1 and p,2 are C*°, but only p, 1 is regular
since the derivative of p, 2(s) at s = 0 is zero. Regularity is an important property
when defining the path-tangential vector and the path-tangential coordinate frame,
as we discuss next.

2.2.3 Path-Tangential Vector and Coordinate Frame

If a parametrization is C! and regular, then the path-tangential vector is simply the
first partial derivative of p,(s) with respect to s.
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2. Background

A path-tangential coordinate frame has its origin at p,(s), and is oriented such
that the path-tangential vector is aligned with its xz-axis.

In the case of two-dimensional paths, this frame is uniquely defined. Let R, (s) €
SO(2) be the rotation matrix between the path-tangential and the inertial frame.
This matrix is given by

~eos (p(s))  —sin (¢p(s)) B Oyp(s) Oxp(s)
By 00) = [Snr() cmtinran) | volo) =sectam (252, 20 ).
(2.46)
where z,(s) and y,(s) are the components of p,(s).
In the case of three-dimensional paths, the path-tangential frame is not unique.
To make the z-axis of the coordinate frame aligned with the path-tangential vector,

the rotation matrix R,(s) € SO(3) must satisfy

Ipy(s)

- (2.47)

Ro(s) [1.0.07 - H ‘ Opy(5)

Os

There exists a subspace of rotation matrices R,(s) that satisfy (2.47). For the
purpose of this thesis, the choice of R)(s) is not important as long as it is smooth
(i.e., the partial derivative of R (s) with respect to s exists and is continuous).

One potential method for choosing R, (s) is to use Euler angles and enforce a
zero roll angle. The rotation matrix is then given by

cos (Yp(s)) cos (Bp(s))  —sin (¢Pp(s))  cos (¥p(s)) sin (6,(s))
Ry (s) = | cos (0p(s)) sin(P(s))  cos(¥p(s))  sin(p(s)) sin(6,(s)) | , (2.48)
—sin (6,(s)) 0 cos (0p(s))

S
S

where

s) = — arcsin M s) — arctan Ayp(s) Op(s)
0,(s) (napp(s)/as)’ Yrls) = arct ( s ' 0s ) (249)

An illustration is shown in Figure 2.2. Note that the yaw angle 1,(s) is not defined
if the desired path is vertical (i.e., if 6,(s) = £%). However, we also note that
most commercial AUVs can only reach a limited range of pitch angles, making
them unable to move vertically. Consequently, we should avoid designing vertical
paths, where the singularities of Euler angles become an issue.

2.2.4 Curvature

As previously mentioned, some vehicles are unable to follow paths with “sharp
turns”. For the purpose of this thesis, we define curvature as a measure of change
of the path-tangential coordinate frame.

In the two-dimensional case, the curvature, k(s), is defined as

K(s) = awgf). (2.50)
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2.2. Geometric Paths

Figure 2.2: Illustration of the path-tangential coordinate frame. O denotes the
origin of the inertial coordinate frame, O denotes the origin of the path-tangential
coordinate frame. The red line represents the projection of the path-tangential
vector onto the xy-plane of the inertial coordinate frame.

In the three-dimensional case, the curvature is not defined as a scalar, but rather
as a vector wp(s) € R? such that

IR, (s)
Js

= R, (5)S (wy(s). (2.51)

If the rotation matrix R, (s) was chosen according to (2.48), then we can also define
curvature in pitch and yaw, k(s) and ¢(s), as

k(s) = 89§£8), u(s) = 5'1/)82(8). (2.52)
The vector wy(s) is then given by
wp(s) = [—u(s)sin (0,(5)) , k(s), t(s) cos (Gp(s))]T. (2.53)

2.2.5 Parametrization by Arc Length

A path parametrization p,(s) is said to be a parametrization by arc length if, for
all s1,s9 € R, we have

S2 a
/51 paz(s)‘ds:@—sl. (2.54)
This condition is equivalent to
Ipp(s)
— =1 2.55
| (2.55)

A convenient property of parametrizations by arc length is that the path pa-
rameter s can be interpreted as distance. Consequently, parametrizations by arc
length are useful when we want the vehicles to follow the path at a constant speed.
For example, choosing the corresponding path parameter s(t) such that $(¢t) = 1
means that the vehicles should follow the path at a constant speed of 1 meter per
second.
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2. Background

Now, let us discuss how to find a parametrization by arc length. Let p,(s) be an
arbitrary parametrization that is C! and regular. Then, we can find a parametriza-
tion by arc length by reparametrizing p,(s), i.e., by finding a monotonically in-
creasing function p(s) : R — R such that

H Opy(p(s))

), 0

The function p(s) can be found by solving the following differential equation

8?)28) - “61)5,0([)) Hl ’ p(0) = po, (2.57)

where py € R is the initial condition. Although the initial condition is arbitrary, it
is convenient to choose pg = 0 so that the new parametrization starts at the same
point.

2.3 Formation Path Following

This section formally defines the formation path-following problem. Throughout
the section, we consider a fleet of N vehicles. Let p1,...,pn denote the positions
of the vehicles.

2.3.1 The Path-Following Problem

To formulate the path-following problem, we first need to define the barycenter of
the fleet. The barycenter, py, is given by the mean position of the vehicles, i.e.,

1 N
- — . 2.58
Ps N;p (2.58)

To solve the path-following problem, we need to control the vehicles such that
the barycenter coincides with the desired path. Let p,(s) be the parametrization
of the desired path. Then, the goal of path following is to control the vehicles such
that

Ps — Pp(s). (2.59)

Let p} denote the position of the barycenter in the path-tangential coordinate
frame (see Section 2.2.3).

pj = R}; (Py — Pp(9)) - (2.60)

Note that pj can be interpreted as the path-following error. Indeed, py is equal to
pp(s) if and only if p} is zero.

Furthermore, there is a geometric interpretation of the components of p}. Let
us define [z}, y} 725]T = p!. The component z} is commonly referred to as the
along-track error, since the value of 2} indicates whether the barycenter is “in front
of” or “behind” the desired path. The components y} and z! are referred to as the
cross-track errors, since they indicate the lateral deviation from the desired path.

24



2.3. Formation Path Following

Path-Following versus Trajectory-Tracking

In the remainder of this section, we discuss the difference between the trajectory-
tracking and the path-following problem.

The goal of trajectory tracking is to control the vehicles such that the barycenter
follows a given trajectory py(t). Note that the desired trajectory is a function of
time. Consequently, in trajectory tracking, the desired position of the barycenter
for a given time ¢ is fixed. In path following, the desired position of the barycenter
depends on the path parameter s. The path parameter can thus be treated as an
additional degree of freedom when designing the path-following controller.

2.3.2 The Formation-Keeping Problem
The formation is defined by the relative positions of the vehicles. Let
Preli = Pi — Pb, (2.61)

denote the position of vehicle i, relative to the barycenter. The goal of formation
keeping is to control the vehicles such that

Prel,i %pf,ia Vi = 1,...,]\7, (262)

where pys1,...,pys,n are vectors that represent the desired formation.
From (2.58) and (2.61), the sum of the relative positions is

N N 1N
Zprelﬁi = Z Pi — N ij =0. (263)
=1 =1 j=1

Consequently, to make the formation-keeping problem feasible, py 1, ..., pys,n must

be chosen such that

N
> pri=0. (2.64)
i=1

Formations can be split into two categories: static and dynamic. In static
formations, the vectors py; are constant. In dynamic formations, the vectors
Py, are time-varying. In this thesis, we investigate a specific type of dynamic
formations: formations that rotate with the desired path. In this type of formation,
the desired relative positions are given by

i = Ry(s)p} i=1,...,N, (2.65)
where p?i is a constant vector.

An example of a static and a dynamic formation is shown in Figure 2.3. In
both cases, the barycenter should follow a sine-wave path parametrized by

pp(s) = [S,QSin (gs)}T (2.66)
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Static formation Dynamic formation
2 2
>0 > 0
-2 —2
0 4 8 12 16 0 4 8 12 16
T T
(a) Example of a static formation. (b) Example of a dynamic formation.

Figure 2.3: Examples of a static and a dynamic formation. The black line
represents the desired path, the blue and red lines represent the desired positions
of the vehicles. The markers represent the desired positions for s = 0,4, ..., 16.

Figure 2.3a shows a static formation consisting of two vehicles, with the desired
relative positions given by
T T
Pf1 = [07 1} ) Pr2 = [07 _1] . (267)

Figure 2.3a shows a dynamic formation that rotates with the desired path. The
formation consists of two vehicles with the desired relative positions given by

T T
pri = Ry(s)p},. p}, =100,1", pf,=[0,-1". (2.68)

2.4 Line-of-Sight Guidance

This section describes the LOS guidance algorithm. LOS is an intuitive method
for steering vehicles towards the desired path. A review of LOS guidance methods
for marine vehicles is presented in [95].

First, let us discuss LOS guidance for vehicles moving in the horizontal plane.
Let p) = [z} 7yf]T denote the path-following error of the barycenter. Let vios
denote the desired (inertial) line-of-sight velocity that steers the barycenter towards

(b) Three-dimensional coupled line-of-sight
(a) Two-dimensional line-of-sight guidance. guidance.

Figure 2.4: Illustrations of line-of-sight guidance methods.
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2.5. Null Space Behavioral Algorithm

the desired path. This velocity is given by [91, 96]

D
vios = Uros [cos(xros), sin(xros)],  Xros = p — arctan <22>7 (2.69)

where Upog > 0 is the desired path-following speed, 1, is the path-tangential angle,
as defined in (2.46), and A > 0 is the so-called lookahead distance. An illustration
of LOS guidance in the horizontal plane is shown in Figure 2.4a.

For vehicles moving in three dimensions, there exist two types of LOS guidance
algorithms: decoupled [97, 98] and coupled [99-101]. A decoupled LOS algorithm
consists of two separate guidance schemes that steer the vehicle in the horizontal
and vertical plane. Let pj = [z}, v}, 2 ]T denote the path-following error of the
barycenter. Let us assume that the path-tangential coordinate frame is chosen
according to (2.48), so that the rotation matrix R,(s) has a zero roll angle. The
desired line-of-sight velocity, vi,0s, is then given by

Zp
cos(vLos) cos(xLos) TLos = Op+ arctan <AI;>’
vios = Uros | cos(yLos) sin(xros) |, N (2.70)
- Sin(VLOS) XLOS = ’ll)p — arctan <Zb> s
Y

where Urog > 0 is the desired path-following speed, 6, and v, are the path-
tangential angles, as defined in (2.49), and Ay, A, > 0 are the lookahead distances
of the horizontal and vertical guidance scheme, respectively. Comparing the de-
coupled guidance scheme in (2.70) to the two-dimensional LOS algorithm in (2.69),
we can see that the decoupled guidance scheme effectively consists of two separate
two-dimensional LOS guidance algorithms.

In a coupled LOS guidance scheme, the desired velocity is given by

Uros

VLOs = 2 2
VAZ+y + 2

where Upps > 0 is the desired path-following speed, R, is the rotation matrix
between the path-tangential and the inertial coordinate frame, and A > 0 is the
lookahead distance. An illustration of this scheme is shown in Figure 2.4b. The
coupled scheme can be seen as an extension of the horizontal LOS guidance scheme
to three dimensions. Indeed, the two-dimensional guidance scheme (2.69) can also
be written as

RP [Aa _yfv _ZIZ;]T ) (271)

ULos |:A cos(¥p) +yp Sin(wp):| _ ULos R |: A
= D

VLOS = —F/——— . ——
/A2 N yfz Asin(t,) — yb cos(v,) /A2 N yi,g

Comparing (2.72) to (2.71), we can see that both equations have a similar form.

,,} . (2.72)

b

2.5 Null Space Behavioral Algorithm

This section describes the null-space-behavioral (NSB) algorithm. The NSB algo-
rithm is a method that allows us to combine several tasks in a hierarchic manner.
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The algorithm was originally developed for first-order systems
p=v, (2.73)

where p € R™ are the generalized coordinates, and v € R™ are the input velocities.

In NSB algorithms, the desired behavior of the system is divided into several
tasks. Let there be M tasks arranged by priority in descending order (i.e., task 1
has the highest priority, task M has the lowest priority). Let o1,...,0 denote
the so-called task variables. Each variable is a function of the system coordinates

om = fm(P), fm : R > R™, Ym=1,..., M, (2.74)

where n,, < n is the dimensionality of task m. Applying the chain rule, the
time-derivative of o, is

_ Ofm(p)

O = p v2J,.(p)Vv. (2.75)

Let o7, be the desired closed-loop behavior of the task variable. Then, the smallest
input (in terms of Euclidean norm) that guarantees the desired behavior is

Vim = JT o (276)

m= m?
where JI  is the Moore-Penrose pseudoinverse of the task Jacobian.

Remark. In many applications, the task variable should track some pre-defined
desired value, 04 . In such cases, we typically choose

0';:1 = d’d,m — Am (O'm — a'd,m) 5 (277)

where Ay, is a positive definite gain matriz. In the literature, (2.77) is commonly
referred to as the closed-loop inverse kinematics (CLIK) equation [102].

If the task is redundant, i.e., if the inequality n,, < n strictly holds, then there
exists a subspace of control inputs that do not interfere with the task. Let v,qq be
an additional input. Then, the following control input

vV =V, + N,,Vadd, (2.78)

where N,,, = Iy — JI J,, is the null-space projector of J,,, guarantees the desired
behavior of the task. The additional control input is satisfied only if it does not
interfere with the task.

In the NSB algorithm, the control inputs from the individual tasks are composed
by projecting the inputs from the lower-priority tasks onto the null space of the
higher-priority tasks. In the literature, there exist two variants of the algorithm.
The first variant calculates the control input v using the following equation

v=v;+N; (V2 + N (VS e NM72(VM71 + NM1VM))>, (2.79)

with v,,, given by (2.76).

28



2.5. Null Space Behavioral Algorithm

The second variant uses the so-called augmented Jacobians
3 T 71T
I =[J1,.. 0 T0] (2.80)

Let N,,, denote the null-space projector of J,,. Then, the control input v is given
by
M
v=vi+ Y Ny_1vn. (2.81)

m=2

The advantages and disadvantages of both approaches are discussed in [103]. In
this thesis, we will mostly use the first variant.

2.5.1 Independence and Orthogonality

The concepts of independence and orthogonality are important when analyzing the
interactions between the tasks. Specifically, these concepts determine whether the
tasks can be executed simultaneously, and how the null-space projector affects the
lower-priority tasks.

Two tasks are independent if the pseudoinverses of their Jacobians are linearly
independent. Let J, and J, denote the Jacobians of task a and b, respectively.
These tasks are independent if

rank (J}) + rank (J}:) = rank ({J:;, J}:D , (2.82)

Antonelli et al. [103] remark that the pseudoinverse and the transpose of the task
Jacobian share the same span. Consequently, (2.82) is equivalent to

rank (J; ) + rank (J; ) = rank ([J7, J;7]). (2.83)

Two tasks are orthogonal if the subspaces spanned by their Jacobians tasks are
orthogonal, i.e., if
3,3 =0, xm,- (2.84)

Now, let us consider two consecutive tasks that are independent and orthogonal.
Without loss of generality, let us denote these tasks 1 and 2. The control input
produced by combining these two tasks is

v=Jor + NIy = Jlor + <I - J{Jl) e =dlor + 363 (2.85)
We have thus shown that if two consecutive tasks are independent and orthogo-

nal, they can be executed simultaneously. Moreover, the null-space projector does
not affect the lower-priority task.

2.5.2 NSB Algorithm for the Formation Path-Following Problem

In the remainder of this section, we demonstrate how the NSB algorithm can be
used to solve the formation path-following problem. A similar scheme was proposed
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in [33] for static formations, in [102, 103] for circular formations, and in [35] for
dynamic formations.

Let pT = [pf, . ,p%} be the concatenated position vector of N vehicles. To
solve the problem, we define two tasks: formation-keeping and path-following. The
formation-keeping task has the highest priority. The task variable, o1, is given by

T }T

_ T T —
o= [0'1,1, G101 N-1] > O1,; = Pi — Pb, (2.86)

pi is the barycenter of the formation (see Section 2.3).

where p, = %

-

1

3

Remark. The formation-keeping task contains the relative positions of the first
N — 1 vehicles. The relative position of the last vehicle is omitted because it can be
expressed as a linear combination of the remaining relative positions. Indeed, from
(2.86), we get

N-1
O1,N =PN —Pp = — Z O1,i- (2.87)
i=1

By omitting the last relative position vector, the task Jacobian has full row rank.
Indeed, the Jacobian of the formation-keeping task is

AL L
leaalz —%13 7N]§113 —%13 —%13
op : : (2.88)
S dn S '
1
= ([IN—h On_1] — Nl(zv—mxzv) @ Is.

One can verify that the rank of Jy is 3(N — 1), and the Jacobian thus has full row
rank.

The desired value of the formation-keeping task variable is
T
o-d,l = [p’£17pr_¥)2>"’7p}:N71} 9 (289)

where py; is the desired position of vehicle ¢ within the formation (see Section 2.3).
The formation-keeping control input vy can then be found, e.g., using the CLIK

equation (2.77)
vi =31 (6a1 — Ai(or — 041)), (2.90)

where A; is a positive definite gain matrix.
For the path-following task, the task variable is given by the position of the
barycenter i.e.,

N
1
®=m=ﬁgm- (2.91)
=1

Proposition 2.1. The formation-keeping and path-following tasks are independent
and orthogonal.
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Proof. The Jacobian of the path-following task is given by

80'2 1
Jo ap NN ® I3 (2.92)
The matrices J; and J, satisfy
rank ([J7, J3]) = 3N = rank (JT) + rank (J7), (2.93)

and the tasks are thus independent. Moreover, the pseudoinverse of Js is given by
N =1ya eI (2.94)
One can then verify that the Jacobians satisfy
335 = O3(nv—1)x3; (2.95)
and the tasks are thus orthogonal. O
The desired value of the path-following task is given by
o2 = Pp(s), (2.96)

where s is the value of the path parameter.
We propose to solve the path-following problem using line-of-sight guidance.
The desired behavior of the path-following task is thus given by

05 = VLOS, (2.97)

where vi,0g is either the coupled (2.71) or decoupled (2.70) LOS guidance law. The
path-following control input vy is then given by

Vo = J;d; =1nx1 ®VLOS. (2.98)

Thanks to the independence and orthogonality of the tasks, the combined con-
trol input v is given by

V=v]+ N1V2 = V] + va. (299)

Finally, let us investigate the closed-loop behavior of the tasks. First, we need
to define the error variables. The formation-keeping error is defined as

51 =01 —014d- (2100)

The path-following error is given by the position of the barycenter in the path-
tangential coordinate frame, i.e.,

G2 =p) = Rp(s)" (po — Py(s)) . (2.101)

Now, let us analyze the closed-loop behavior of the formation-keeping error.
Differentiating (2.100) with respect to time, we get

G1=Jiv—61a=—AiG1. (2.102)
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Since A; is positive definite by design, the closed-loop system (2.102) is globally
exponentially stable (GES).
From (2.101), the dynamics of the path-following error are given by

Py = Ry(8)T (Jav — Pp(s)) — S(wp(s))Ry(s)" (Po — Pp(5))
= RP(S)T (Veos — Pp(s)) — S(wy(s))py-

The stability of the path-following task depends on the choice of the LOS guidance
law. The stability of controllers that utilize decoupled and coupled LOS guidance
will be discussed in Chapters 4 and 5, respectively.

(2.103)

2.6 Uniform Semiglobal Exponential Stability

This section discusses the concept of USGES. In some cases, dynamical systems
cannot attain global stability due to, for instance, high-order nonlinearities, the
choice of the control law, or actuator saturations. An example of such a system
is marine vehicles controlled by line-of-sight guidance laws. In [104], it has been
shown that the structure of proportional LOS guidance laws prevents the system
from having global exponential convergence.

Uniform semiglobal exponential stability has been studied, e.g., in [70, 105]. In
these works, USGES is defined as follows.

Definition 2.1 (USGES). Consider a nonlinear system given by the following set
of ordinary differential equations (ODEs)

x = f(t,x), x(0) = xo, (2.104)

with the origin x = 0 being the equilibrium point of the system.

Let x(t|xg) be a solution to (2.104) that is defined for all t > 0. The origin
x = 0 is a USGES equilibrium point of (2.104) if for all A > 0, there exist positive
constants ka and Aa such that Vxo € B

Ix(t|x0)|l < ka %ol €747, vt > 0. (2.105)

Remark. The work in [70] studies parametric systems, i.e., systems with ODEs
in the following form
x = f(x,t,0), (2.106)

where § € © C R™ is a constant parameter. However, since this thesis does not
consider parametric systems, and since the parameter 0 is assumed constant, we
can omit the parametric dependence for the sake of simplicity.

2.6.1 Lyapunov Sufficient Conditions for Uniform Semiglobal Ex-
ponential Stability

In this section, we restate Theorem 5 and Proposition 9 from [70].
Theorem 5 introduces sufficient conditions for uniform semiglobal exponential
stability (USGES) of nonlinear systems.
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Theorem 2.1 (Theorem 5. [70]). Consider the nonlinear system given in (2.104).
If for any A > 0, there exist a continuously differentiable Lyapunov function Va :
R>o xBR — R>o and positive constants k1, , ko, k3., and a, such that Vx € B},
vVt >0

kia Ix1" < Va(t,x) < kay (1%, (2.107a)
' k'lA 1/a
lim [ —= A = o0, (2.107Db)
A—o00 24
VA  OVa a
O OV ft,30) < oy ) (2.107¢)

then the origin of (2.104) is USGES.

Proposition 9 then introduces sufficient conditions for uniform semiglobal ex-
ponential stability (USGES) of nonlinear cascaded systems.

Proposition 2.2 (Proposition 9. [70]). Consider the following cascaded nonlinear
time-varying system

x1 = fi(t,x1) + g(t, x1)x2, (2.108a)
X2 = fa(t, x2), (2.108b)

wheret € R>g, x1 € R™, x93 € R"2. The functions fi, f2, and g are continuous in
t and locally Lipschitz in x1 and Xo. Furthermore, f, is assumed C' in t and x1,
and the origin [XIT,XT] = 0% is an equilibrium point of (2.108).

Let each of the systems

5(1 = f1 (t,Xl), (2109)
%o = fa(t, x2), (2.110)

be UGAS and satisfy the conditions of Theorem 2.1. Then, the origin of the cas-
caded system (2.108) is USGES and UGAS if the following two assumptions hold

1. There exist constants c1,ca,m > 0 and a positive definite, radially unbounded
Lyapunov function V : R>¢ x R™ of (2.109) such that V(t,x1) <0 and

ov

Haxl ball < eV, Vx>, (2.111a)
oV
|| S <. 2.111b
o] < Vil <7 (2.111b)

2. There exist two continuous functions a1, as : R>o — Rx>o such that

llg(t, %1, %2)[| < e ([Ix2ll) + a2 (%2l [[x1]l - (2.112)
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Chapter 3

Unifying Reactive Collision Avoidance
and Control Allocation

To enable autonomous vehicles to operate in cluttered and unpredictable environ-
ments with numerous obstacles, such vehicles need a collision avoidance system
that can react to and handle sudden changes in the environment. This chapter
discusses an optimization-based reactive collision avoidance system that uses con-
trol barrier functions integrated into the control allocation. We demonstrate the
effectiveness of this method through numerical simulations of autonomous surface
vehicles. The simulated vehicles track their reference waypoints while maintaining
safe distances. The proposed method can be readily implemented on vehicles that
already use an optimization-based control allocation method. The contents of this
chapter are based on [82].

The chapter is organized as follows. Section 3.1 defines the notation and de-
scribes the model of the vehicle. Section 3.2 defines the combined control allo-
cation/collision avoidance problem. The proposed control allocation method and
CBFs for solving this problem are then introduced in Sections 3.3 and 3.4. Section
3.5 describes the resulting combined COLAV and control allocation optimization
problem. Finally, Section 3.6 presents the results of numerical simulations using
models of ASVs.

3.1 Vehicle Model

In this chapter, we consider overactuated vehicles, i.e., vehicles with more actuators
than degrees of freedom (DOFs), with a control system consisting of blocks shown
in Figure 3.1. The control system contains a long-term, deliberate planner, a
high-level controller that outputs desired forces and torques (74), and a control
allocation block. The goal of control allocation is to find actuator control inputs
(u) that generate the desired forces and torques.

3.1.1 Notation

Let p denote the position and © the orientation (expressed using the Euler angles)
of the vehicle in a north-east-down (NED) reference frame. Let i be the pose of
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3. Unifying Reactive Collision Avoidance and Control Allocation

ioh- T,
Planner High-level d Contrp : u Actuators
controller allocation

Figure 3.1: Control system of overactuated vehicles considered in this chapter

the vehicle
T
n=[p", 0" . (3.1)

Let v be the velocities of the vehicle in the body-fixed frame. The complete
state of the vehicle, x, is defined as

x = [nT ,VT]T . (3.2)

Let 7 be the vector of generalized forces acting on the vehicle. Let K be the
number of actuator parameters and u € R¥ the vector of inputs. Furthermore, let
b: RE — R™0OF be a nonlinear function that maps the inputs to the generalized
forces (npor is the number of DOFs).

3.1.2 Equations of Motion

The time-derivative of the pose can be obtained by transforming the velocities.
In addition, we assume that the time-derivatives of the velocities are affine in the
generalized forces. We thus consider vehicles described by the following dynamical

equations
= 1] = Lo taterr) = Lot st 33

where J(©) is the transformation matrix. This equation describes a large class of
systems, including the matrix-vector model of marine vessels [91]

n=JO)v, (3.4a)
Mv +(C(v) + D(v)) v + g(n) = b(u), (3.4b)

This model can be converted to the form in (3.3) since the matrix M is invertible.

3.2 Problem Definition

We consider a scenario with N vehicles. We shall denote the variables that belong
to a given vehicle by a lower index (e.g., x; is the state of the i*? vehicle). Let us
assume that each vehicle has access to the position (p;) and the inertial velocity
(p;) of all other vehicles.

Furthermore, let 74 ; be the desired forces and torques obtained from the high-
level controller of vehicle i (see Figure 3.1). The goal of this chapter is to design
a control allocation block that incorporates safety constraints. This block outputs
actuator configuration u; that produces the desired forces and torques as closely as
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possible (i.e., that minimizes the difference between 74, and b(u;)) while avoiding
collisions with other vehicles. To avoid collisions, we want the vehicle i to satisfy

Hpi_ij deiru VJ € {LaN}\{Zjﬁ (35)

where dpi, > 0 is some minimum safety distance.

3.3 Control Allocation

As stated in the Introduction, the goal of the control allocation is to find the inputs
that generate the desired forces given by the high-level controller. For details on
control allocation techniques for both linear and nonlinear systems, the reader is
referred to [65]. Since control allocation is done individually for each vehicle, we
can omit the lower index ¢ in this section.

In this chapter, we consider systems where the function b can be nonlinear. In
the literature, nonlinear control allocation is commonly solved by linearizing the
function b [67, 68]

b(ug + Au) = b(up) + B(ug) Au, (3.6)

where ug are the inputs around which we linearize, Au is the increment, and

0b(u)
ou ’

o

is the Jacobian of b evaluated at ug. Let 74 be the desired forces. The goal of our
control allocation scheme is to find optimal inputs u* that satisfy

u* = argmin ||b(u) — 4|°. (3.8)
ucRE

Using the approximation (3.6), we can formulate the control allocation problem
as a quadratic program (QP)

u* =uy + Au”, (3.9)
Au* = argmin [|b(ug) + B(ug) Au — 74]°. (3.10)
AucRK

3.4 Control Barrier Functions

In this section, we will briefly present the theory behind control barrier functions
(CBFs). For more details, the reader is referred to [58]. After presenting the
notation for multiple vehicles, we define the CBF for COLAV.

3.4.1 Introduction to CBFs

Consider a nonlinear control-affine system

x = f(x) +g(x) u, (3.11)
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where x € R™. Suppose that the system must satisfy a safety constraint h(x) > 0,
where h : R™ — R is the so-called barrier function. Then, we can define the
so-called safe set, a set of all states that satisfy the safety constraint, as

C = {x|h(x)>0}. (3.12)

If the initial condition of the system (3.11) lies in the safe set, the system trajectory
will stay within C if the following inequality holds [58]

S0 = 2 (Fo) 15 ) > 1 (h(r0). (313)

where v is an extended class-K, function. If there exists an input u such that
(3.13) is satisfied, then h is a valid CBF for the system (3.11).

3.4.2 CBFs for Reactive Collision Avoidance
Let us define the relative position of vehicles ¢ and j as

To ensure safety, we need a collection of CBFs that enforce safe distances be-
tween each pair of vehicles. In the literature, vehicles described by the model (3.3)
frequently use CBFs in the following form [55, 69]

d
hij (i, %5) = [[Pij ]| — dmin + ko [P35, (3.15)

where dpi, is a minimum safe distance, and k, is a coefficient that penalizes the
relative speed of the vehicles.

To use h;; as a control barrier function, we need to calculate its time-derivative.
Differentiating (3.15) with respect to time yields

d d d?
71 (%i:%5) = Pl + ko 5 [Pl (3.16)

To calculate the first and second time-derivative of the relative distance, we need
to find the first and second time-derivatives of the relative position. For p;;, we
split the derivative of n from (3.3) into the derivatives of position and orientation

N = [gﬂ = [JJ(I;(((E)Z))} v;. (3.17)
Substituting this into the time-derivative of (3.14) yields
pij = Jp(O;) vi — p;. (3.18)
For p;;, we assume that the other vehicle maintains its velocity, i.e.,
Pij ~ Pi, (3.19)
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when calculating the time-derivative for the i*" vehicle. As discussed in [69], this is
a “mild worst-case” assumption, since maneuvers of the target vehicle tend to aid
to resolving the situation. Thus, taking the time-derivative of (3.18) yields

Pi = Jp(@) v + Ip(0;) ;. (3.20)

Finally, we substitute the approximation of forces from (3.6) into the equation
for  in (3.3) to get

vi = f(xi) +g(xi) (b(uo,i) + B(ug,i) Au;), (3.21)

which we can substitute into (3.20) to calculate P;.

3.5 Formulating the Optimization Problem

Now we can combine the definitions from Sections 3.3 and 3.4 to formulate the
proposed optimization problem for control allocation with multi-vehicle COLAV.

3.5.1 The Basic Optimization Problem

Let up ; be the inputs of vehicle ¢ from the previous control period. The new inputs
are calculated as

u; = Uo; + Auf, (322)
where Au? is obtained by solving the following QP
Au} = argmin [|b(ug;) + B(ug;) Au; — 744 (3.23a)
Au; ERE

s.t ih--(x- x;) > =7 (hij(xi,%5))

vt ij\Xi»y Xj) =2 =77 (Ni5(Xi, X5)) (323b)
jE {17"')N}\{i}7

U; min < Uo,4 + Aui < Ui max (323C)
Aui,min S Auz S Aui,maxa (323d)

where U; min and U; max are the absolute actuator limits, and Au; min and Au; max
are the actuator rate limits. The absolute limits are usually given by the physical
limitations of the vehicle (e.g., the thrust of a propeller or the deflection of control
surfaces) whereas the rate limits are user-defined to reduce the rapid changes that
wear out the actuators.

Simulation results using this control allocation algorithm are presented in Sec-
tion 3.6.

3.5.2 Modified Optimization Problem

The algorithm in (3.23) is suitable for vehicles where the number of actuators is
equivalent to the number of DOFs. Applying the algorithm to vehicles where the
number of actuators is much greater than the number of DOFs results in inefficient
usage of the available actuators, as can be seen in Section 3.6.
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To reduce this effect, we add penalty terms on the actuator usage, similar to
those proposed in [68], in the cost function. To simplify the notation, let [|x[|g be
the squared norm of a vector x weighted by a matrix Q, i.e.,

Ixg =x" Qx. (3.24)
The modified optimization problem is defined as follows

Au} = argmin ||b(u;0) + B(u; o) Au; — Td7i||2Q

Au;eRK (3.25a)
2 2
+ w0, + Auiflg,, + [[Auillg,,,
s.t. constraints (3.23b)—(3.23d), (3.25b)

where Q is a positive definite matrix that penalizes the difference between the
desired and actual forces, and R,ps and R,e are positive semidefinite matrices
that penalize the absolute and incremental usage of actuators, respectively.

Note that both (3.23) and (3.25) use only local information and measurements,
and can thus be solved locally for each vehicle.

When choosing the weight matrices, we first note that the vector T contains
both forces and torques. The matrix Q should penalize them differently. In the
simulations in Section 3.6, we choose

1
Q = diag (1, 1, L2> (3.26)

where diag(-) is a diagonal matrix and L is the smallest distance of the thrusters
from the center of mass. The matrix Q is chosen according to (3.26) because the
term T4 ; contains both forces and torques. Specifically, the third element of 74 ; is
the desired yaw torque. If we divide the squared toruge error by L2, we effectively
convert it to a squared force error.

3.6 Simulations

In the simulations, we test the ability of the proposed algorithms to resolve a
situation when four surface vessels are simultaneously in danger of collision. Each
vessel starts in the corner of a square and is guided towards a reference located in
the diagonally opposite corner.

We tested the proposed algorithms on two models of ASVs — the milliAmpere
ferry [106] and the 1 : 90 scaled model of the Inocean Cat I drillship [107] — using
Simulink. Both vessels are equipped with azimuth thrusters; the milliAmpere has
two and the drillship has six. Each thruster is parametrized by two values: its
thrust force and its azimuth. The input vector for these vessels is defined as

u=1[f1, s fr o1, ..., o, (3.27)

where f; is the thrust force and o is the azimuth angle of the i*® thruster, and k
is the number of thrusters. Both ASV models have 3DOFs, i.e., the North-East
position and the yaw angle. The function that maps the inputs to the generalized
forces is
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(a) Algorithm (3.23) on four milliAmpere vessels
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(b) Algorithm (3.23) on four drillships
Figure 3.2: Simulations of the control allocation algorithm (3.23)

b(u) = Zle fi [cos a;,sin oy, LY sin o — L; cos ai]T, (3.28)

where Li and L; are the z- and y-components of the position of the i*? thruster,
relative to the center of mass.

For the higher-level controller that provides the desired forces, we use a nonlin-
ear PID controller [91]. The nonlinear PID is an output-linearizing controller that
transforms the nonlinear dynamical equations from (3.4) to

N+2Q,Z70+Q2n=0, (3.29)
where Z is the diagonal relative damping matrix, and €2, is the diagonal natural

frequency matrix. Both matrices are tuning parameters. For convenience, we
express €2, in terms of a bandwidth matrix 2y,

—1
Q. = o, <\/1222+ 4z44z2+21> : (3.30)

where /" is an elementwise square root.

The simulation parameters for both vessels are summarized in Table 3.1.
Since the power consumption of a thruster increases with the absolute value of
its thrust force and the increment of its azimuth, the matrices R,ps and R, are
chosen as

Tabs I Opxk Oixr  Orxk
Ra s = 5 Rre - 5 3.31
b {kak kak} ! {kak Trel Ik] (3.31)
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Trajectory Shortest distance between vessels
10 T T I I I I
z° i
El - 6l i
= 5 c
= ® 4 —
> hz
A 7 e e S
0
0 | | | |
0 5 10 0 20 40 60 80
East [m] t[s]

(b) Algorithm (3.25) on four drillships

Figure 3.3: Simulations of the modified control allocation algorithm (3.25)

Parameter

milliAmpere drillship

wa
Z

Q

Tabs
T'rel
dmin [m]
ko [s]
v(h)
fmin [N]
fmax [N]
A frnax [N]

Amax [rad]

Table 3.1: Simulation parameters. Parameters Q4.

diag (0.1, 0.1, 0.5)
diag (0.95, 0.95, 0.97)
diag (1,1,0.7) diag(1,1,1.13)

1 1
100 1
15 2.5
15 15

0.1h 0.1h

~350 —0.8
500 1.5
350 0.5
8 g

and Z are identical for both

scenarios, diag (.) is a diagonal matrix
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(a) Algorithm (3.25) on four milliAmpere vessels with one uncontrolled vessel
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(b) Algorithm (3.25) on four drillships with one uncontrolled vessel

Figure 3.4: Simulations of the modified control allocation algorithm (3.25) with
one uncontrolled vessel (plotted in black)

The rate constraints are identical for all thrusters and symmetric, i.e.,

_ Afmax ]-k: R
AUy = |:Aamax 1J , Aupin = —Aupgay, (3.32)

where A fiax and Aampax are the force and azimuth rate constraints, respectively,
and 1 is a vector of ones.

The results of the simulations are shown in Figures 3.2, 3.3, and 3.4. Figure
3.2 shows the results of algorithm (3.23). Figure 3.3 shows the results of algorithm
(3.25). Each figure consists of two plots. The plot on the left displays the trajectory
of the vessels. The colored lines show the trajectory of each vessel and the boat-
shaped polygons represent the pose of the vessels at several evenly spaced time-
instances. The plot on the right shows the smallest distance between the vessels
compared to the minimum safe distance d,,i,. In both scenarios, the vessels reach
their reference position while maintaining safe distance.

We also tested a scenario where one of the vessels is uncontrolled. The results
are shown in Figure 3.4. In this scenario, the uncontrolled vessel (plotted in black)
solves the control allocation problem without the CBF constraints (3.23b). Al-
though the time it takes the vessels to converge to their goal positions is greater,
the minimum safe distance is still maintained. Note that in Figure 3.4b, the red
vessel does not seem to converge to its desired position. This is because the sim-
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Thruster utilization [%]

Vessel Scenario Maximum Minimum Mean
milliAmpere basic 2.074 1.550 1.822
modified 0.838 0.835 0.837

drillship basic 100.000 1.282 51.496
modified 6.161 0.259 3.816

Table 3.2: Steady-state thruster utilization of the basic algorithm (3.23) and the
modified algorithm (3.25).

ulation was terminated too early, after 100 seconds. Given more time, the vessel
would eventually converge to its desired position.

In this section, we have provided some insight into how to chose some of the
parameters for the simulated models. When it comes to the choice of the coefficient
ky, introduced in (3.15), and the extended class-K, function =, introduced in
(3.23), the following considerations can be made. Intuitively, increasing k, increases
the size of the “unsafe” region where the barrier function is negative, causing the
system to react sooner in situations where two vehicles are on collision course.
Conversely, increasing the slope of v decreases the size of the region where the
constraint (3.23b) is active, causing the system to react later.
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Formation Path-Following
using the Null Space
Behavioral Algorithm






Chapter 4

Formation Path-Following Control of
5DOF Underactuated AUVs

An ant is very stupid . ..
and yet, many ants together are smart.

Kurzgesagt — In a Nutshell, “Emergence,”
youtu.be/16W7cOmb- rE.

This chapter presents a novel method for formation path following of multiple
underactuated autonomous underwater vehicles. The method combines line-of-
sight guidance with null-space-behavioral control, allowing the vehicles to follow
curved paths while maintaining the desired formation. We investigate the dynam-
ics of the path-following error using cascaded systems theory, and show that the
closed-loop system is uniformly semiglobally exponentially stable. We validate the
theoretical results through numerical simulations. The contents of this chapter are
based on [83].

The chapter is organized as follows. Section 4.1 defines the formation path-
following problem that is addressed in this chapter. In Section 4.2, we describe
the control system. The stability of the control system is proven in Section 4.3.
Finally, Section 4.4 contains the results of a numerical simulation.

4.1 Problem Definition

In this section, we briefly present the AUV model and the formation path-following
problem.

4.1.1 Vehicle Model

We consider a fleet of N underactuated AUVs. The dynamics are described using
the 5DOF control-oriented model from Section 2.1.4. The pose (1) and velocities
(v) of the AUVs are defined as

T

T’ = [x7 y7 Z? 9’ /l/)] v = [u7 v’w7Q7 T]T * (4'1)
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The roll dynamics are disregarded as the roll motion is assumed to be small and
self-stabilizing by the vehicle design. Let V. € R? be the velocity of an unknown,
constant and irrotational ocean current.

Recalling (2.34), the dynamics of the AUVs are

& = wcos (¢) cos (0) — vsin () + wcos (¢) sin (0) , (4.2a)
¥ = ucos (0)sin (¢) + v cos () + wsin () sin () , (4.2b)
2= —usin () + wcos (), (4.2c)
0 =q, (4.2d)
)= cosl(é?) T, (4.2e)
0= fu+ Fulu,v,w,q,7) + ¢u(u,v,w,q,7,0,%) V., (4.2f)
b = X (1, 0e)r + Ya(u, u)or, (4.2¢)
= Xy (u, uc)q + Y (u, uc)wr + G(0), (4.2h)
G =tq+ Fy(u,w,q,0) + ¢pgu,w,q,0,9)" V., (4.2i)
=ty + Fp(u,v,7) + ¢ (u,v,7,0,0) V. (4.2j)

4.1.2 Control Objectives

The goal is to control the AUVs so that they move in a prescribed formation while
avoiding collisions, and their barycenter follows a given path.

The prescribed path is parametrized by a smooth function p, : R — R3. We
assume that the parametrization is C? and regular. Therefore, for every point p,(s)
on the path, there exist path-tangential angles, 6,(s) and 1,(s), and a correspond-
ing path-tangential coordinate frame (see Section 2.2 for more details).

The path-following error p} is given by the position of the barycenter expressed
in the path-tangential coordinate frame

p;Z = Rp(S)T (pb - pp(5)>a (4.3)
where
L&
T
Py =5 ;pu Pi = [T, ¥i, %) - (4.4)

The vehicles should converge to a dynamic formation that rotates with the
desired path (see Section 2.3.2 for details). Let p?l, e ,p; ,, be the position vectors
that represent the desired formation. The objective is to control the vehicles so
that

pi — Py — Ry (s)p] Vie{l,...,N}. (4.5)

We propose to solve this problem using an NSB algorithm. We note that the
proposed algorithm is centralized. Consequently, to implement this algorithm in
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a real-life situation, there must be a central node that can communicate and co-
ordinate with all the AUVs. Alternatively, every AUV must have access to the
complete state of all other AUVs.

4.2 Control System

To solve the formation path following problem, we propose a method that combines
collision avoidance (COLAV), formation keeping, and path following in a hierarchic
manner using an NSB algorithm. Since the NSB algorithm outputs inertial velocity
references, we also need a low-level attitude control system to track these references.

In this section, we first present the attitude control system. Then, in Sec-
tion 4.2.2, we present the NSB algorithm and the associated tasks. Finally, in
Section 4.2.3, we demonstrate how to use the update law of the path variable to
cancel unwanted terms in the path-following error dynamics.

4.2.1 Attitude Control System

This system controls the surge velocity, pitch, and yaw via the corresponding ac-
celerations. The system is based on the autopilots in [71], but extended to five
degrees of freedom.

Let ug be the desired surge velocity and 14 its derivative. Let V. be the estimate
of the ocean current. Furthermore, let us define & = u — ug and VC = V - V..
The surge controller consists of an output-linearizing sliding-mode P-controller and
an ocean current observer

fu=1ta = Fu() = u()" Ve = ky @ — ke sign (@), (4.6)
‘A’c = Cy ¢u() u, (47)
where k,, k. and ¢, are positive gains. o .

Let 64 be the desired pitch angle and 64,64 its derivatives. Let V, be the
estimate of V.. Furthermore, let us define § =0 —04,  =q—03and V, =V, —-V_.
Inspired by [108], we introduce the following transformation

q = d"'_)\q 57 (48)
where ), is a positive constant. The pitch controller consists of an output-linearizing
sliding-mode PD-controller and an ocean current observer

ty = ba = Fy(1) = $a()" V= 0@ (4.9)
— ko0 —kysq — kasign(sq),
G = e0 o) 50 (4.10)

where kg, kq, kq and ¢, are positive gains.

Let 14 be the desired yaw angle and Nlbd,lﬁd its derivatives. Let ¥, be the
estimate of V.. Furthermore, let us define ¥ =¥ —4 and V,. = V, — V.. Similarly
to the pitch controller, we introduce the following transformation

~ r . ~
Sr:¢+>\rw:m_wd+>\rwa (411)
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4. Formation Path-Following Control of 5DOF Underactuated AUVs

where A, is a positive constant. The yaw controller is analogous to the pitch
controller introduced previously

t,=—F.(-) — ¢T(~)TVT -7 tan(e)é
+ cos(0) (d;d — A 5\ —ky 1; — ks, — kg Sign(sT)) ,

Vo= er () 1, (4.13)

(4.12)

where ky, k., kq and ¢, are positive gains.

4.2.2 NSB Tasks

Let us denote the variables associated with the COLAV, formation-keeping, and
path-following tasks by lower indices 1, 2, and 3, respectively. Each task produces
a vector of desired velocities, vy, vy, vz € R3V,

First, let us consider the COLAV task. Let dcorav be the activation distance,
i.e., the distance at which the vehicles need to start performing the evasive ma-
neuvers. The task variable is then given by a vector of relative distances between
the vehicles smaller than dcorav, €.,

T Vi,je{l,...,N},j >,

4.14
lpi — pjll < dcorav. (4.14)

o1 = [lpi —p;ll]

The desired value of the task variable is
041 = dcorav 1, (4.15)

where 1 is a vector of ones of the corresponding size. The velocity associated with
the COLAYV task is given by

vi=-JI A&, (4.16)

where A; is a positive definite gain matrix, and oy = 01 — 04,1. Note that this
task does not guarantee robust collision avoidance. During the transients, the
relative distance may become smaller than dcor,ay. Therefore, to ensure collision
avoidance, door,av shuld be chosen as dyin + dsec, Where dpin is the minimum safe
distance between the vehicles, and dg.. is an additional security distance.
The formation-keeping and path-following tasks are defined identically as in
Section 2.5.2. The task variable of the formation-keeping task is
T T ]T

oy = [0'271, Oy N_1] 02,i = Pi — Po, (4.17)

and its desired values are

R (0,(s), ¥p(s)) P},
Oas = : . (4.18)

R (6,(5). 4p(5)) Py

50



4.2. Control System

The desired velocity of the formation-keeping task is given by
vy =I5 (642 — A252), (4.19)

where 63 = o2 — 04,2 is the error, and A, is a positive definite gain matrix.

The task variable and the desired value of the path-following task is given by py
and p,(s), respectively. The desired velocity of the path-following task is obtained
using the decoupled LOS guidance algorithm (2.70). We choose the same lookahead
distance for the horizontal and vertical guidance schemes, i.e., A, = A, = A.
Inspired by [109], we employ a time-varying error-dependent lookahead distance

A(p]) = A2+ () + () + (D)%, (4.20)

where Ay > 0 is a constant. The desired velocity of the path-following task is then
given by
vz = 1N ® VLOos; (4.21)

where

Zp
b
cos(yLos) cos(yLos)|  TLos = OpF arctan (A(pi’ ) )
vios = Uros | cos(vLos) sin(xvos) | , »

—sin(yL0s) XLOS = ¥, — arctan < L >,
3 A(p})

(4.22)

where Urog > 0 is the desired path-following speed.
The three tasks are then combined using the recursive NSB algorithm (2.79).
If the COLAV task is active, the NSB velocity is given by

vNsB = Vi + Ny (va + Navs). (4.23)
If the COLAV task is inactive, (4.23) is simplified to
VNSB = Vg2 + V3, (424)

thanks to the independence and orthogonality of the formation-keeping and path-
following tasks.
Let vnsp,i be the desired NSB velocity associated with vehicle ¢, i.e.,

[VEISB,D e 7V§SB,N} = VEI‘SB' (4.25)

These velocities must be decomposed into surge, pitch, and yaw references that
can be tracked by the attitude control system presented in Section 4.2.1. Similarly
to [33], we propose a method with angle of attack and sideslip compensation

1 SB,i — i) COS SB,i —Xi
Ug,i= UNSB,z’ +cos(INsB, ’YQ)COS(XNSB, X)’ 4.26)

04.4= YNSB, + Qdi, 0q; = arctan ( i ) ; (4.27)

Ud,q

. Vs
= i — Bd.i ; = arcsin | ————
d)d,z XNSB,i 5d,z» ﬂd,z < ug.iJrU?er?) ;
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4. Formation Path-Following Control of 5DOF Underactuated AUVs

where v; and w; are the sway and heave velocities, and 7; and x; are the flight-path
and course angles of the i*" vehicle, respectively, and UnsB,i, 7nsB,: and XNsB,; are
given by

TNSB,i
Unsg,i = |[vNsB,ill,  VNsBi = |[UNsB,i | (4.29a)
ZNSB,i
INSB,i = — arcsin (yNSB7i ) y (429b)
NSB,i
XNSB,; = arctans (Yxss,i, ENSBi) - (4.29c¢)

4.2.3 Path Parameter Update Law

Inspired by [109], we use the update law of the path variable s to get desirable
behavior of the along-track error (x}).

Note that the kinematics of the i*" vehicle can be alternatively expressed using
the total speed (U;) and the flight-path (;) and course (x;) angles of the vehicle
as

Pi = [cos (xs) cos (1), cos () sin (xi), —sin (v)]" Us. (4.30)
Now, let us investigate the kinematics of the barycenter. Differentiating (4.3) with
respect to time and substituting (4.30) yields the following equations

N
1
_ N Z U,L Qx (’y“ 9p7Xia/l/}p)
i=1

(4.31a)
_‘ 0 |15 g — w2,

| XN
yf = NZU’L Qy (%aezﬂxiad)p) +wlelj7 —szga (431b)

i=1

| XN
pr = NZUz Qz ('}/iaepyXiaql)p) +wyxi) 7wxyf7 (4310)

i=1

where

Qs ()= sin () sin (7;) + cos (6) cos (7i) cos (vp — X)) » (4.32a)
Q,(-)= —cos (v;) sin (¥ — i) , (4.32b)
Q,(-)= —cos () sin (v;) + cos () sin(8,) cos (¥, — Xi) (4.32¢)
wp= —t5sin(6), wy= KS, w,= 5 cos(b), (4.32d)
K(s)= 2, u(s5)= 2], (4.32¢)

To stabilize the along-track error dynamics, we choose the following path variable
update

. Ipp(s) N xy
S = T E Uz Qa: (’717 91)7 Xis ’lpp) + ks ) (433)
0s N 4 P\2
i=1 14 ()
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where kg > 0 is a constant.

4.3 Closed-Loop Analysis

In this section, we investigate the closed-loop stability of the path following task.
We define two error states, X; and Xy, as
I (4.34)

b

Xy = [z}, 5, 2
< < T T 17* % ~ 7] 71T
Xy = [Xg,p e 7X27N} ; Xoi = (Ui, Sq,is Oiy Sriy Yi| (4.35)
Now, we can take the barycenter kinematics from (4.31) and express it in terms
of X; and X5 as

P
il = —k, il + wyh — wy2l, (4.36a)
1+ (ap)
1 cos (YLos) ¥¥
yf:_*ZUdi L w2 — wath
N 4 ’ 2 P2
i=1 A(pb) +(yb) (4.36b)
+Gy(ﬁla"'7ﬂN712;17"'712;N771a"'arYNa
’U,d’l,...,Ud’N,Uh...,’UN,’lU],...,’LUN,pg,wp),
1 2P
B = D Ui el — vl
i=1 Ap))” + (=)

0 A (4.36¢)
+Gz<ﬂ17"'7121\/'3017"'70N7V17"'77N7X1a"'7XN7

ud,la"'aud,Nyvlv"'aUvalv'“?wva:Zawpng)'
The equations for G,(-) and G.(-) are given in Appendix B.1. Substituting the

attitude control system (4.6)—(4.13) into vehicle dynamics (4.2) yields the following
closed-loop behavior of Xy

Ui = —ky 1y — ke sign (@) — du () Ve, (4.37a)
$q.0 = —ko 0; — kg 5qi — kasign(sq:) — ¢q()T Vi, (4.37b)
0; = 4. — Mg 0, (4.37c)
§ri = —ko 0; — ky 5, — kasign(s,;) — ¢ ()T Vi, (4.37d)
bi = $pi — Ar U, (4.37e)

the ocean current estimate errors

‘:}C,i = Ccy Gu (") Ui, (4.38a)
Vi = g @) 54, (4.38D)
vr,i = Cr ¢r() Sryiy (4.38C)
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4. Formation Path-Following Control of 5DOF Underactuated AUVs

and the underactuated sway and heave dynamics

i)i = Xv(ui7 uc) ri + Yrv (’U,,L', uc) ('Ui - Uc)a (439)
w; = Xw(“iv uc) q; + Yw(uia UC) (wl - wC) + G(el) (4'40)

To prove the stability of the closed-loop system, we need the results of the three
following lemmas. The lemmas follow the same structure as the 2D case for two
ASVs in [35], and are extended to handle an arbitrary number of AUVs moving in
3D.

Lemma 4.1. The trajectories of the closed-loop system (4.36)—(4.40) are forward
complete.

Proof. The complete proof is given in Appendix B.3. Here, we only present a sketch
of the proof.

The proof is split into three parts: proving the forward-completeness of the
attitude control system (4.37), (4.38), the underactuated dynamics (4.39), (4.40),
and the path-following errors (4.36).

Using the same arguments as for the horizontal case in [71], we can prove that
the system (4.37) is GES and the ocean current estimates (4.38) are bounded.
Exponential stability and boundedness imply forward completeness. Therefore,
(4.37) and (4.38) are forward complete.

For the underactuated dynamics, we define Lyapunov function candidates

1 1
Vo(v;) = 51)2-2, Ve (w;) = iwf, (4.41)
and show that there exist positive constants «y,, ay, By, B such that
Vv(vi) < avVv(vi) + 61}7 Vw(wz) < awVw(wi) + Bw' (442)

Using the comparison lemma, we conclude that v; and w; are forward-complete.
For the path-following errors, we define a Lyapunov function candidate

V(o) = 5 ()" + 68)° + (%), (1.3

and show that there exists a class-Ko, function ¢, such that

Vo () <V, (P}) + Gy (vi,wi,Xa) : (4.44)

Since all the arguments of (,(-) are forward complete, Corollary 2.11 of [110] is
satisfied, and the barycenter dynamics is forward complete, concluding the proof
of Lemma 4.1. O

Lemma 4.2. The underactuated sway and heave dynamics are bounded near the
manifold [X?,Xﬂ =07 if Y, (u,u.) <0, Yy(u,u.) < 0 and the curvature of the
path satisfies

Y, (u, ue)

X (00 (wu) |’ (4.45)

N | Yy (u, ue)
n(s)l < X ]Xw(w)

for allu >0 and u. € [— |V|, | Vell]-

N
, o)l < 5 |
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Proof. The complete proof is given in Appendix B.4. Here, we only present a sketch
of the proof.

Consider the derivatives of the Lyapunov function candidates V,,, V,, from (4.41).
Substituting X; = 0, X, = 0, we get the following inequalities

Vi) < (X, () 1O+ Yo wasne) | o + e, (0.40)
Vi) < (X0 (a0 ¢ 1]+ Yo (i) ) w? + Fufws), (447

where F,, and F,, grow at most linearly with v; and w;, respectively. Then, we con-
clude that for a sufficiently large v; and w;, the quadratic terms will dominate the
linear terms. Therefore, the underactuated dynamics are bounded if the quadratic
terms are negative, which is equivalent to condition (4.45). O

Lemma 4.3. The underactuated sway and heave dynamics are bounded near the
manifold Xo = 0, independently of Xy if the assumptions in Lemma 4.2 are satis-
fied and the constant term Ag in the lookahead distance (4.20) is chosen so that

3 3

Yy (u,uce ’ Yo, (u,uce
N ‘ Xv((uauc)) —2 |L(S)| N ’ X'w((uvuc))

Ay > max , (4.48)

—2|r(s)|

for allu >0 and uc € [— ||V, [ Vell]-

Proof. The complete proof is given in Appendix B.5. Here, we only present a sketch
of the proof.

Once again, we consider the derivatives of the Lyapunov function candidates
Vo, Vi from (4.41). Substituting Xo = 0, we get the following inequalities

Vu(w) < (Xvwd,i, ) (3 1O+ Frarps ) + Yo luas uc>) 4 B,
(4.49)
Vi (w;) < (Xw(ud,i,uc) (; |k(&)] + NA?)(pZU) +Y, (ud,i,uc)>wf + Fy(w;),
(4.50)

where F, and F,, grow at most linearly with v; and w;, respectively. Using the
same arguments as in the proof of Lemma 4.2, we conclude that the underactuated
dynamics are bounded if both (4.45) and (4.48) hold. O

Theorem 4.1. The origin [X?,Xg} = 0T of the system described by (4.36),
(4.37) is a USGES equilibrium point if the conditions of Lemmas 4.2 and 4.3 hold

and the mazimum pitch angle of the path satisfies
™

. (4.51)

Op.max = Iglézﬁ( 16,(s)] <

Moreover, the ocean current estimate errors (4.38) and the underactuated sway and
heave dynamics (4.39), (4.40) are bounded.
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Remark. Condition (4.51) is needed to ensure that |yLos| < 7/2. Indeed, from
(4.22), the largest possible LOS reference angle is

zf%oo Ag—i— (zg)

YLOS,max = Opmax + lim arctan (%)
(4.52)
m
= ep,max + Z
With (4.51) satisfied, the cosine of yr,o0s is always positive. We will use this fact

in the proof.

Proof. The proof follows along the lines of [35], but is extended to an arbitrary
number of 5DOF vehicles. We will also use the results of [70] to prove that the
system is USGES.

In Lemmas 4.1-4.3, we have shown that the closed-loop system is forward com-
plete and the underactuated sway and heave dynamics are bounded near the man-
ifold X9 = 0. Since (4.37) is UGES [71], we can conclude that there exists a finite
time T' > to such that the solutions of (4.37) will be sufficiently close to Xy = 0
to guarantee boundedness of v; and w;. Having established that the underactu-
ated dynamics are bounded, we will now utilize cascaded theory to analyze the
cascade (4.36), (4.37), where (4.37) perturbs the nominal dynamics (4.36) through
the terms G, (-) and G (-).

Now, consider the nominal dynamics of X; (i.e., (4.36) without the perturbing
terms G, and G), and a Lyapunov function candidate

VK)) = gXT Ry = 5 (@) + 0+ ()7). (4.53)

whose derivative along the trajectories of (4.36) is

V(Xl) = _Xrlr Q le Q = diag(qh q2, Q3)v (4543‘)
ks L f\i Ui cos (7,08)
Q= 727 g2 = N Z =1 5 5 s (4.54b)
1+ (ap) A(py)” + (yg)
1 N
LN
gy = iz Ui (4.54c)

AP))’ + (=)

Note that Q is positive definite, and the nominal system is thus UGAS. Further-
more, note that the following inequality

2

V(X1) € ~min Xl‘ , (4.55a)
(min = Min ks % Zivzl Ua,i cos (YLos) (4.55b)
e V1Fr2 /A3 + 4r? ’

holds ¥X; € B,. Thus, the conditions of [70, Theorem 5] are fulfilled with k1 =
ko =1/2, a =2, and k3 = ¢min, and the nominal system is USGES.
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As discussed in the proof of Lemma 4.1, the perturbing system (4.37) is UGES,
implying both UGAS and USGES. Furthermore, it is straightforward to show that
the following holds for the Lyapunov function (4.53)

122] %] =[5 =2v (%), v -
ch/l = %] < V|| %] < (4.57)

Therefore, [70, Assumption 1] is satisfied with ¢; = 2 and ¢2 = p for any p > 0.

Finally, [70, Assumption 2] must be investigated. From (B.12), (B.22), it can be
shown that for both perturbing terms there exist positive functions {y1(), y2(),
C21(), Cx2(+), such that

Gy ()] < Gy (szH) + Cy,2 (HX2H) HX1 ; (4.58)
G2 < G (HXQH) + (a2 (HXQH) HX1H (4.59)
Therefore, all conditions of [70, Proposition 9] are satisfied, and the closed-loop
system is USGES. O

4.4 Simulation Results

In this section, we present the results of a numerical simulation of three light
autonomous underwater vehicles (LAUVs) [12]. The parameters of the simulation
are summarized in Table 4.1. The barycenter should follow a spiral path given by

Pp(s) = [s,a cos(ws), b sin(ws)]" . (4.60)
The maximum curvature of this path is

2
bw 9

= 4.61
ma r?eaﬂi(‘b(s)l aw’, (4.61)

x |k(s)| = ——m———,
e w(s)] = =
while the smallest absolute values of Y, /X, and Y,,/X,, for the LAUV model are
approximately 0.26. Consequently, the path is chosen such that the maximum
curvature is

max |k(s)| = 0.013, max |t(s)| = 0.040, (4.62)
and (4.45) is satisfied. From (4.48), the lookahead distance must then satisfy
Ag > 4.29. We choose Ay = 5, since smaller distances guarantee faster convergence.

The very minimum relative distance to avoid collision is the length of the LAUV,
i.e. 2.4 m. For additional safety, we design the COLAV task with d,;, =5 m. To
add a security zone during transients, dcorav is chosen to be 10 m.

The desired formation is an isosceles triangle parallel to the yz plane. Specifi-
cally, the desired positions of the three vehicles are

. 0 0 0
pfi=[10], P = |-10], pls=|0 |. (4.63)
5 5 ~10
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Figure 4.1: Simulation results. The top-left plot shows the z-, y- and z-

components of the path-following error p}, as defined in (4.3). The bottom-
left plot shows the distance between the vehicles (d;,; = ||p; — p;l|)- The plots
on the right show the z-, y- and z-components of the formation-keeping error
& = 02 — 04,2 with o3 given by (4.17) and 04,2 given by (4.18). The grey rectan-
gles mark the intervals when the COLAV task is active.
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Figure 4.2: 3D trajectory of the vehicles. The markers represent the position of
the vehicles at times ¢ = 0,25,50,...,150 seconds. Markers with corresponding
times are connected by dotted lines to better illustrate the resulting formation.
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Parameter | Value Parameter | Value
%y | 0.05 V. | [0,0.25,0.05]"
k. | 0.1 Ay | 5

ko, ky | 0.0625 dcorav | 10
kg, kr | 0.25 Upos | 1
kg | 0.1 ks 1
Ags A | 0.75 po | O3
Cy | D a | 40
cgsCr | 1 b | 20
A | I w | /100
Ao | 0.051

Table 4.1: Simulation parameters

The gains of the low-level control systems (4.6),(4.9),(4.12) are chosen such that
the settling time is approximately 10 seconds. The gains of the pitch and yaw PD
controllers are chosen such that the closed-loop system is critically damped.

The results of the numerical simulation are shown in Figures 4.1 and 4.2. The
vehicles start in an inverted triangular formation. The COLAV task is briefly
activated, and the distance between the vehicles drops to approximately 8 meters
during the transient. Eventually, the vehicles resolve the situation and continue to
converge to the desired path and formation.

Note that while the COLAV task is active, the formation-keeping error is di-
verging. After resolving the situation, the formation-keeping error converges to
zero exponentially. The rate of convergence is given by the formation-keeping gain
As.

The path-following error seems to converge linearly at first, and then exponen-
tially as the error gets smaller. This phenomenon is caused by the LOS guidance
law (4.22), ¢f. [104], and the path parameter update law (4.33). The inverse tan in
(4.22) and the last term in (4.33) act as a saturation, slowing the convergence for
large errors. The rate of convergence of the along-track error (z}) is given by the
path parameter update gain kg, while the rate of convergence of the cross-track er-
rors (yy, z; ) is given by the lookahead distance Ag. The path-following error seems
to increase at t = 150s. This increase is probably caused by low-level tracking
errors. To avoid chattering, the sign functions in the low-level sliding-mode con-
trollers (4.6)—(4.12) are approximated using hyperbolic tan. These approximations
result in a non-zero steady-state error.
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Chapter 5

Formation Path-Following Control of
6DOF Underactuated AUVs

This chapter presents a method for formation path-following control of a fleet of
underactuated autonomous underwater vehicles. The proposed method combines
several hierarchic tasks in a null-space-behavioral algorithm to safely guide the vehi-
cles. Compared to the previous chapter, the algorithm includes both inter-vehicle
and obstacle collision avoidance, and employs a scheme that keeps the vehicles
within given operation limits. The algorithm is applied to a six degree-of-freedom
model, using rotation matrices to describe the attitude to avoid singularities. Us-
ing the results of cascaded systems theory, we prove that the closed-loop system
is uniformly semiglobally exponentially stable. We use numerical simulations to
validate the results. The contents of this chapter are based on [79].

The chapter is organized as follows. Section 5.1 introduces the model of the
AUVs and defines the formation path-following problem. Section 5.2 describes
the proposed modified NSB algorithm. The stability of the closed-loop system is
proven in Section 5.3. Finally, Section 5.4 presents the results of the numerical
simulations.

5.1 Problem Definition

In this section, we briefly present the AUV model and the formation path-following
problem.

5.1.1 Vehicle Model

We consider a fleet of N underactuated AUVs. The dynamics of the AUVs are
described using the 6DOF control-oriented model from Section 2.1.4. Let p =
[x,y7z]T be the position, and let v = [u,v,w]T and w = [p,q,r]T be the linear
and angular velocities, respectively. To avoid the singularities caused by the use of
Euler angles, the orientation of the AUV is given by a rotation matrix R € SO(3).
Furthermore, let V. € R? be the velocities of an unknown, constant and irrotational
ocean current.
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Recalling (2.8), the dynamics of the AUVs are

p = Ru, (5.1a)
R = RS(w), (5.1b)
Mz, + (C(v,) + D(v,))v, + g(R) = Bf. (5.1c)

Unlike the previous chapter, here we do not design a specific low-level con-
troller. The aim of this chapter is to demonstrate that the proposed formation
path-following algorithm can be readily implemented on vehicles with existing low-
level controllers. Consequently, the choice of a low-level velocity and attitude
controller is not discussed in this chapter. However, there are some assumptions
about the low-level controller.

Assumption 5.1. The vehicle is equipped with a low-level controller that allows
exponential tracking of the surge velocity, orientation, and angular velocity. Specif-
ically, let uqg, Ry and wy be the reference signals. We define an error

~ T ~ 7 ~
X = |u—uglogm(R)", (w - Rde> } : R = RIR, (5.2)

where logm : SO(3) — B2 is the matrix logarithm [111]. Note that by Assump-
tion 2.3, X is controllable through the input £. Consider the closed-loop system

i =F (f(,v,w,Vc) , (5.3)

consisting of (5.1b), (5.1¢), and the low-level controller. We assume that X = 0 is
a globally exponentially stable (GES) equilibrium of (5.3).

An example of a global exponential attitude tracking controller can be found,
e.g., in [112].

Note that for a complete system analysis, we need to consider the underactuated
sway and heave dynamics explicitly. Recalling (2.22), the underactuated dynamics
have the following form

O = Xy (up)r + Yo (ur)or + Zy(p)wr, (5.4a)
Wy = X (ur)q + Yo (up)w, + Zy(p)or, (5.4b)

where X (+),Y(-), Z(-) are affine functions of the respective variables.

5.1.2 Formation Path-Following Problem

Similarly to the previous chapter, the goal is to control a fleet of N AUVs so that
they move in a prescribed formation and their barycenter follows a given path.
The prescribed path is parametrized by a smooth function p, : R — R3. We
assume that the function is C* and regular. Therefore, for every point p,(s) on the
path, there exists a path-tangential coordinate frame and a corresponding rotation
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matrix R, (s) (see Section 2.2). Moreover, we assume that the curvature vector
wy(s) exists and is continuously differentiable.

The path-following error p} is given by the position of the barycenter in the
path-tangential coordinate frame

N
1
P} =R} (Po — pu(s)), Pr= D _Pi (5.5)
=1

The goal of path following is to control the vehicles so that p? — 03.

The vehicles should converge to a dynamic formation that rotates with the
desired path (see Section 2.3.2 for details). Let p}il,...,p'}’:’N be the position
vectors that represent the desired formation. The objective is to control the vehicles
so that

pi — Py — Ry ()P} ;. Vie{l,...,N}. (5.6)

5.2 The Proposed Algorithm

The AUVs must perform the goals stated in Section 5.1.2 safely, i.e., avoid collisions
with other vehicles and obstacles, and remain within a given range of depths. An
upper limit on the depth of the AUVs is needed to prevent them from colliding
with the seabed or exceeding their depth rating. A lower limit is needed in busy
environments (e.g., harbors), where the AUVs may otherwise collide or interfere
with surface vessels.

To solve the formation path-following problem, we propose a method that com-
bines inter-vehicle collision avoidance (COLAV), formation keeping, line-of-sight
(LOS) path following, obstacle avoidance, and depth limiting in a hierarchic man-
ner using an NSB algorithm. Similarly to Chapter 4, the proposed algorithm is
centralized, meaning that to implement it in a real-life scenario, we require a cen-
tral node that can communicate and coordinate with the AUVs. Since the NSB
algorithm outputs inertial velocity references, we also need a method for converting
these to surge and orientation.

In this section, we first present the NSB algorithm and the associated tasks. We
then present in Section 5.2.6 a strategy for converting inertial velocity references
to surge/orientation ones.

5.2.1 NSB Algorithm

Similarly to the previous chapter, we define three tasks: COLAV, formation-
keeping, and path-following. Each task will be described in detail in Sections 5.2.2,
5.2.3, and 5.2.4. As we will explain in Section 5.2.5, obstacle avoidance and depth
limiting will not be defined as separate tasks but rather achieved through a modi-
fication to the path-following task. Let us denote the variables associated with the
COLAV, formation-keeping, and path-following tasks by lower indices 1, 2, and
3, respectively. Define the so-called task variables as o, = fm (P1,-..,PN), M €
{1,2,3}, and their desired values as o4 ,,m € {1,2,3}.
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Furthermore, let v,,, m € {1,2,3} be the desired velocities of each task. These
velocities are combined using the recursive NSB algorithm (2.79).

vnsB = Vi + Ny (v2 + Navs) . (5.7)

5.2.2 Inter-Vehicle Collision Avoidance

Let doopav be the activation distance, i.e., the distance at which the vehicles need
to start performing the evasive maneuvers. The task variable is given by a vector
of relative distances between the vehicles smaller than dcorav

Vi,je{l,...,N},j>1,

(5.8)
i — p;ll < dcorav-

o1 = [lpi —p;ll],

The desired values of the task are

04,1 = dcorav 1, (5.9)
where 1 is a vector of ones. To ensure a faster response to a potential collision

than in the previous chapter, we propose the following sliding-mode-like COLAV
velocity

o ~
vy = *UCOLAVJJ{ma 01=01—04,, (5.10)

where Ucorav is a positive constant.

Similarly to the previous chapter, this task does not guarantee robust collision
avoidance. During the transients, the relative distance may become smaller than
doorav. Therefore, to ensure collision avoidance, dcorav should be chosen as
Amin + dsec, Wwhere dpi, is the minimum safe distance between the vehicles, and dgec
is an additional security distance.

To avoid collisions robustly, we would need to consider the dynamics of the
AUVs and employ a reactive COLAV algorithm, c.f., Section 1.1.3.

5.2.3 Formation Keeping
The formation-keeping task variable is defined as
T
o2 = [o{l,...,o{N_l] , 02,i = Pi — Pob, (5.11)
and its desired values are
T T
Can = {(Rpp?l) v (Rl ) } . (5.12)
The formation-keeping velocity is given by
Vo = J;d’d,g — ’Ug.’maXJE sat (AQ&Q) 5 5’2 =092 — 0'd72, (513)
where v2 max is a positive constant, and sat is a saturation function given by

sat(x) = XM.

x|
The use of a saturation function guarantees some bounds on the NSB velocity, as
we will explain in Section 5.2.6.

(5.14)
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5.2.4 Path Following

To solve the path-following, we employ the coupled LOS guidance algorithm (2.71).
Let A (p}) be the lookahead distance of the LOS guidance law. Inspired by [109],
we choose an error-dependent lookahead distance

AB]) = A3+ () + ) + (:f)° (5.15)
where A is a positive constant. The LOS velocity is then given by
ULos T
vios =~ Ry [A(py), —uis —2] (5.16)

where Urog > 0 is the desired path-following speed, and

2 2
D= /A2 + 6 + () (5.17)
The task velocity is then given by
vy =1y ® VLos. (5.18)

Note that the path parameter s in (5.5) can be treated as an additional degree of
freedom in the control design, and used to get a stable behavior of the along-track
error . Inspired by [109], we choose the update law of s as
-1

A p
Uos | 3 + ks |, (5.19)
14 («h)?

s Ipy(s)
S_H Js

where kg is a positive gain.

5.2.5 Obstacle Avoidance and Depth Limiting

Obstacle avoidance is typically implemented individually for each vehicle [102].
However, we propose to perform this task globally by incorporating it into the
path-following algorithm so that it does not interfere with the inter-vehicle COLAV.

To arrive at the proposed algorithm, we first restrict the obstacle avoidance
maneuvers to the xy-plane to avoid interfering with the subsequent depth-limiting
logic. Let p, = [xo,yo,zo]T be the position of the obstacle and r, the obsta-
cle avoidance radius. Note that r, must be chosen sufficiently large to cover
the size of both the obstacle and the AUV. Furthermore, let us define the for-

Prel = [Tb — To, Yb — yo}T. As illustrated in Figure 5.1a, obstacle avoidance is en-
sured if

[Pretll > 7o + 7. (5.20)

To guarantee obstacle avoidance, we utilize the collision cone concept [113].
Inspired by [114], we employ a constant avoidance angle and define a switching
condition. More precisely, let

Vrel = [U2.00S — %o, Uy 10S — o] (5.21)
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(a) Obstacle and formation (b) Collision cone
radii

Figure 5.1: Illustration motivating the obstacle avoidance constraint (5.20) and
conflict condition (5.22).

denote the relative line-of-sight velocity (vg os and vy 1,05 are the components of
vLos). As shown in Figure 5.1b, a conflict between the AUVs and the obstacle
arises if the relative velocity lies in the so-called collision cone, i.e., if

|Z (Prel, —Vrel)| < @, a=sin"! (ro * Tf) ; (5.22)
[[Prell
where Z (a,b) denotes the angle between two vectors.

The obstacle avoidance task is activated if simultaneously such a conflict arises
and the cone angle satisfies & > qin, where 0 < apin < 7/2. Note that [114] use
a switching condition based on distance, i.e., ||Prei|| < dmin. Since our definition
of a safe distance (5.20) is not constant, we instead suggest using a switching rule
based on the cone angle.

When the task is active, the z- and y-components of the LOS velocity are
replaced by the obstacle avoidance velocity voa given by

voa = |[Vielll [cos(voa), sin(voa)]" + [0, 90) ", (5.23)
Yoa = atang (Yo — Yp, To — Tp) = . (5.24)

Note that 1Yo has two solutions corresponding to the clockwise and counterclock-
wise directions. Inspired by [115], we propose the following method for choosing
a direction: When the conflict first happens, we choose the value of 9o that is
closer to the direction of v,¢. Afterwards, we maintain the same direction.

As for the depth-limiting logic, let zyin and zpax be the operation limits. We
assume the limits to be wide enough to accommodate the formation. We then
propose to replace the z-component of the LOS velocity with a depth-limiting
velocity v, 1im given by

Uz, if mingeqq,... N} 2 < Zmin,
Vrlim = —Vz, i MaXjeq1 N} Zi > Zmax (5.25)
v;1,08, Otherwise,

66



5.2. The Proposed Algorithm

where v, is a positive constant.

5.2.6 Surge and Orientation References

Since the NSB algorithm outputs inertial velocity references, we also need a method
for converting these to surge and orientation references. The strategy for choosing
these references changes depending on whether the avoidance or depth-limiting
tasks are active. The proposed strategy allows us to prove the closed-loop stability
of both the path-following and formation-keeping tasks (c.f. [33], where no stability
proofs are given, and [35, 83], that only prove the stability of the path-following
task).

First, let us consider the case when neither the avoidance nor depth-limiting
tasks are active. Because the formation-keeping and the path-following task are
independent and orthogonal, (5.7) can be simplified to

VNSB = V2 + V3. (526)

Let vnsB,; denote the desired velocity of vehicle ¢. To achieve the desired behavior,
the surge reference u,4; should be chosen such that

H[ud,,-,vi,wi]TH = [lvnsg.il » (5.27)

However, since we cannot directly control the sway and heave velocities, (5.27) can
only be satisfied if
2
[vasp.ill® > vf +w?. (5.28)

In addition, AUVs typically need to maintain a minimum surge velocity to be able
to maneuver, implying a stricter inequality

Ivasl® = wa + 0 +wf (5.29)

where Ui, > 0. We will show that this inequality can be satisfied by choosing a
time-varying path-following speed Uros.

Substituting task velocity definitions (5.13) and (5.18) into (5.26) and exploiting
the structure of the task Jacobian Jo, we get that the NSB velocity of vehicle i is
given by

VNSB,i = VLOS + Rp(S)P}C-,Z- +va, (5.30)
where
[vg,l, . ,vgN]T = —U2 max Sat (J;A2&2) . (5.31)

From (2.51), the time-derivative of R,(s) is given by
R, (s) = Ry(s) S(wp(s)) 5. (5.32)

From (5.19), we get the following upper bound on $

1
Uros (1 + kS) . (5.33)

. 8pp(5)
<
5l < H :d
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Substituting (5.31), (5.32), and (5.33) into (5.30), we get the following lower bound
on the NSB velocity

sl Usos (1~ oyl | 22 (+5)) = vame 630)

2
Now, assuming the existence of an upper bound on the product
lwop ()] 105 (s) /0],
there exists a positive constant knsp such that for every vehicle
[vNss,ill > (1 — knse)ULos — v2,max- (5.35)

Assuming that knsp < 1, we can satisfy (5.29) by choosing

V2 max + Max; /v? + w? + uﬁﬁn. (5.36)

1 — knsB

Uros =

However, the max function would introduce switching behavior. To avoid this, we
approximate the former with

V2, max + \/Zv{il (UIZ + wvz) + u?nin
1 — knsB '

ULos = (5.37)

If the avoidance or depth-limiting tasks are active, we still choose Urps in
accordance with (5.37). However, since (5.29) cannot be satisfied with a generic
NSB velocity (5.7), we choose the surge reference as

- {\/HVNSB,,H v —w?, if (5.29) satisfied, (5.38)

Umin s otherwise.

Finally, let us discuss the choice of desired orientation. Let Vngp,; and U; denote
normalized vectors. We are seeking Ry ; € SO(3) such that

VNSB,i = R, U;. (5.39)

Assume that at a given time, there is Ry; that satisfies (5.39). Differentiating
(5.39) with respect to time yields

VnsB,i = Rai S(wa) U; + Ra,; Ui, (5.40)
where wg ; is the desired angular velocity of the vehicle. Let us define
Wynsp,: = VNSB,i X vNSB,i, Wy; = U; X E. (5.41)

Then, (5.40) can be rewritten as

Wynsp,; X VNSB,i = Rd,i (wdﬁi X U + Wy, X 61) . (542)
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Therefore, the desired angular velocity must satisfy
(wa,i + wo, — R jwyyep,) X T; = 0. (5.43)
Thus, instead of finding Ry ; directly, we propose to choose
Wi = R;inNSB’i — Wy, (5.44)
and then evolve the desired orientation according to
Rai = RyiS(wa). (5.45)

Note that choosing wg,; according to (5.44) leads to the smallest (in terms of
Euclidean norm) angular velocity that satisfies (5.43). We also note that there
exists a subspace of angular velocities that satisfy (5.43) and a subspace of rotation
matrices that satisfy (5.39). This differs from 3DOF [33, 35] and 5DOF [83] models,
for which only one solution exists.

5.3 Closed-Loop Analysis

In this section, we analyze the closed-loop behavior of the system. Throughout this
section, we assume that neither the avoidance nor depth-limiting tasks are active.
Let us define the combined formation-keeping and path-following error as

T

&=[ar.o)"] (5.46)
and the combined low-level controller error as
- o <17
X = [Xl,...7XN} . (5.47)

First, let us investigate the closed-loop dynamics of . Differentiating (5.11),
(5.12), and (5.5) with respect to time yields

- .. ) ) 1T

o2 = J2p — 04,2, P= I:prlr7 B p%] (548&)
L&

Py =R, (N > pi— pp> — S(wy$)p?. (5.48b)
i=1

From (5.1a) and (5.2) it follows that p; is given by

p: = R;v; = expm (61) Rdﬂ; [ud7i + U;, 4, wi]T R (549)
with
o= 5]
expm(8) = cos 01+ sS(8) + cS(8)?, s = %, (5.50)
c—= 1—0025(9)
—gz -
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Substituting (5.50), (5.27), and (5.39) into (5.49) we get
Pi = vnsp.i + 5(8; X VNsB.i) + ¢8; x (8; X vnss.i) + R [45,0,0]7 . (5.51)
Defining a perturbing term g; as
g = 5(8; X vNsB.i) + ¢; X (8; X vnsp.i) + Ri [U4,0,0]" (5.52)

and substituting (5.52) and (5.51) into (5.48) yields

- . T

(o)) :JQVNSB 7O'd’2+J2G, G = [grlr,...,g%] (5533.)
N

) 1 3 .

pé’ = Rg <N E (VNSB,i + gi) — p]; - S(wps)pg. (5.53b)
=1

Now, to account for the underactuated dynamics, we define a vector of concate-
nated sway and heave velocities as

T T
v, = [v1, w1, ..., 0N, wWN] Uye = 1N @ [Ue, we] ™ . (5.54)
The underactuated dynamics can then be written as

Uy = XQ+Y (Uy — Vye) + Vue, (5.55)

where = [wy,. .. ,wN}T, and X and Y are block diagonal matrices consisting of
blocks Xy,..., Xy and Y7q,..., Yy, that are given by

0 0 Xv(ur,i) Yv(um) ZU( 1)
=[x 07 W= [RG ] e

Theorem 5.1. Let Assumptions 2.1-5.1 be satisfied. Then, [&T,YT} = 07T is

a uniformly semiglobally exponentially stable (USGES) equilibrium point of the
closed-loop system (5.53), (5.3), (5.55). Moreover, let X be the largest signular
value of X and let Y be the smallest eigenvalue of —Y. Then, the underactuated

sway and heave dynamics are bounded near the manifold [E'T,XVT} = 07 if the

second and third partial derivatives of pp(s) with respect to s are bounded and X
and Y satisfy Y > aX, where a is a positive constant that will be defined later in
the proof.

Proof. We analyze the closed-loop system as a cascade where X perturbs the dy-
namics of o through G. Consider the nominal dynamics of & (i.e., (5.53) with
G = 0) and the following Lyapunov function candidate

S R
V=s5e=3 (agaz + ()" pg) . (5.57)

The time-derivative of V' is

N

o . . 1 .

V=353 (Javnss — 642) — (P}) " S(wys)ph + (p}) 'Ry (N > vNss.i —pp>. (5.58)
i=1
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Due to the properties of the NSB tasks defined in Sections 5.2.3 and 5.2.4, the
following identities hold:

N

Javnse = Java, > VNsBi = VLOs- (5.59)
i=1

By definition (see Section 5.1.2), R, must satisfy

-1

e, e =[1,0,0]". (5.60)

T. _ .|l 9pw(s)
R’ppp_ H 55

Substituting (5.13) and (5.16) into (5.58) leads to

V = 02 max0q sat (Ayds)
=P 2 uP 2 2P 2 (561)
—Uos | ks ( b) +(Jb) +(b) .
< \/1+(z§)2 D D

For any & € B3V, the following holds:

V S _’U2,max>\2,minw ||a:2||2
(5.62)

—Uposmin{ 2 —L__1|pP|,
V1412’ JAZ4or2 b

where Ag yin is the smallest eigenvalue of Ay. From (5.62), we conclude that the
derivative of V satisfies .
V< —k |57, (5.63)

where

. .~ tanh(r) Uposks Uros
kr = min {UQ,max)\Z,mm T ) 14r2 \/Ag+2r2 (564)

All assumptions of [70, Theorem 5| are thus satisfied, and the origin of the nominal
system is USGES.

Moreover, note that the low-level controller is GES by Assumption 5.1. There-
fore, if the two assumptions of Proposition 2.2 hold, the origin of the cascade is
USGES. Since ||0V/0e | = ||&||, the first assumption is satisfied for ¢; = 1/2, co = n,
and any 1 € Rxq.

To validate the second assumption, we first need to investigate the perturbing
terms g; from (5.52). From (5.30) we get the following upper bound on vnsg ;

[lvnss,ill < ULos (1 4+ knsB) + v2,max tanh (||o2||) , (5.65)

and from (5.50), we get the inequalities

s<1, [cd] < v2/a. (5.66)
Therefore, g; can be upper-bounded by
lgill < llvnss,ill (1 + v2/2) [|64]] + |l - (5.67)
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Consider then the two functions a ;, ag; : R>0 = R>q

o1,i(r) = (ULos (1 + knsg) (14 v2/2) + 1) 7, (5.68)
@2, (1) = V2, max (1 + V2/2) - (5.69)

Then, the following holds:
leill < av (Xl + i (1%6]) 157 (5.70)

Therefore, (2.112) can be satisfied by

o (r) = Z api(r), as(r) = Z gi(r), (5.71)

and consequently all assumptions of [70, Proposition 9] are satisfied. To summarize,
the origin of the closed-loop system is USGES. _

As for the underactuated dynamics, the assumption X = 0 implies w; = wq,;
and u; = uq,. Therefore the underactuated dynamics depend on the desired angu-
lar velocity. Recall the definition of wg; in (5.44). To find a closed-loop expression
for wq,;, we shall analyze wy g, , and wy,,.

First, we consider wy,, ;. In Appendix C.1, we show that there exist positive
constants ansg and bysg such that

< anss [[vull + bxss- (5.72)

HwVNSB,i

Now, let us consider w,,. In Appendix C.2, we show that w,, depends on the
angular velocities of the vehicle, thus forming an algebraic loop. However, under
certain conditions, this loop can be resolved.
We show that w,,, is affine in w;. In other words, there exist wg; and A, such
that
Wo,

i

Moreover, we show that A, satisfies
det (I+ Ag,) >1— kg, (5.74)

where k, is a positive constant depending on the physical properties of the vehicle,
the minimum surge velocity, and the ocean current. If k, < 1, then (I+ A,,,) is
invertible, and the desired angular velocity is

wai =T+ Au,) " (RY i Wyysn, — wWo,i) - (5.75)
In addition, there exist positive constants a,,, and b, such that
[wo,ill < av vl + by (5.76)
By combining (5.72), (5.74), and (5.76), we can upper bound the angular ve-
locity with

(ansB + @) ||Uu]| + bnss + by
1—k, '

|wa,qil < (5.77)
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The Lyapunov function candidate

1
Vu = i’UE’Uu (578)

for the underactuated dynamics may then be shown that, leveraging (5.55), has its
time-derivative bounded by

Vi € vg Yo, + aXmax [[ou]| + H ([Joul, [Vell), (5.79)

where a = (ansB + av)/(1 — kq), Xmax is the largest singular value of X, and H
represents the terms that grow at most linearly with v,. Since Y contains terms

associated with hydrodynamic damping, it is negative definite. Therefore, V,, can
be further bounded by

Vu S - (Y;nin - aXmax) ||'Uu||2 + H(), (580)

where Y, is the real part of the smallest eigenvalue of —Y. For a sufficiently
large v,,, the quadratic terms will dominate the linear terms. Consequently, the
underactuated dynamics are bounded if

Ymin > aXmax~ (581)

We have thus shown that the origin of the closed-loop system (5.53), (5.3), (5.55)
is USGES, and the underactuated sway and heave dynamics are bounded. O

5.4 Simulations

We simulate the proposed approach on a fleet of six LAUVs [12] using MATLAB,
delegating low-level control to an attitude-tracking PID controller as in [116] and
an output-linearizing P surge controller as in [83].

The desired path is a spiral given by

Pp(s) = Ppo + [s,ap cos(w, s), by sin(w, s)]T (5.82)
where

Ppo = [0,—40,25]" a, = 40, b, = 20, Wp = 785

while the desired formation is an isosceles triangle parallel to the yz plane. Specif-
ically, the desired positions in the formation-centered frame are

0 0 0
p}, = [10], pf, = |-10], ply=|0 |. (5.83)
5 5 ~10

For the simulation parameters, we choose the velocity of the ocean current to
be V. = [070.1570.05]T, the formation-keeping gain Ao = 0.1I, the maximum
formation-keeping velocity vz max = 0.5ms~ !, and the lookahead distance Ay =
5m.
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Trajectory
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Figure 5.2: The 3D trajectory of the vehicles. The markers represent the position
of the vehicles at times t = 0,50,...,250 seconds. Markers with corresponding
times are connected by dotted lines to better illustrate the resulting formation.

The very minimum relative distance to avoid collision is the length of the LAUV,
i.e., 2.4 m. For additional safety, we design the COLAV task with dyj, = 5 m. For
additional safety during transients, dcorav is chosen to be 10 m.

We then let the vehicles encounter an obstacle of similar size as the LAUV that
moves east at a constant speed of 0.3ms™!. Given its size, we choose 1, = dcorav-
The minimum cone angle is set to amin = 15°. The operation limits are chosen as
Zmin = 1M, Znax = 49m, and the depth-limiting velocity is v, = 0.3ms~!. Note
that the limits are deliberately chosen too small for the given path and formation,
so that depth limiting is activated.

Figures 5.2 and 5.3 show the results of this numerical simulation. Figure 5.3a
shows the distance between the vehicles and the distance to the obstacle. At
t = 20s, the COLAV task is activated, and the distance between the vehicles drops
to approximately 9.5 meters during the transient. The situation is resolved after
30 seconds. At ¢t = 35s, the vehicles enter the collision cone and perform an evasive
maneuver in a clockwise direction. The distance to the obstacle is always above
the required limit.

Figure 5.3b shows the depth of the vehicles. At t = 73s and ¢t = 212s, the
depth-limiting task is activated. When the task is active, the depth of the vehicles
fluctuates around the prescribed limit.

Figures 5.3c and 5.3d show the path-following and formation-keeping errors. We
can see that the path-following errors diverge when obstacle avoidance or depth
limiting is active. Conversely, the formation-keeping errors diverge during inter-
agent COLAV. This behavior corresponds to the interpretation of the NSB tasks
— path-following is global and thus cannot be satisfied during obstacle avoidance,
whereas formation-keeping works with relative velocities and thus cannot be satis-
fied during inter-agent COLAV.

Figure 5.3e shows the surge velocity of the vehicles. We can see that the surge
velocities are always above the required limit. In fact, our solution appears to be
overly conservative. Figure 5.3f shows the sway and heave velocities. We can see
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5. Formation Path-Following Control of 6DOF Underactuated AUVs

that the velocities change abruptly when the collision avoidance or depth limiting
tasks are active, as the vehicles switch to a different behavior. However, the veloci-
ties still remain bounded during the whole simulation. The peak in sway velocities
at t = 180s coincides with the sharpest turn (i.e., the largest wy(s)) of the desired
path.
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Chapter 6

A Distributed NSB Algorithm for For-
mation Path Following

This chapter presents a distributed null-space-behavioral algorithm for the forma-
tion path-following problem of vehicles moving in three dimensions. The algorithm
is applied to fleets of underactuated autonomous underwater vehicles. The algo-
rithm combines null-space-behavioral control with consensus methods. First, we
present a continuous-time version of the algorithm and prove its stability using
Lyapunov analysis. Then, we present a discrete-time event-triggered version that,
compared to similar formation path-following methods, can achieve the same steady
state-error performance with fewer inter-vehicle transmissions. The effectiveness of
both the continuous-time and the discrete-time algorithm is verified in numerical
simulations. Furthermore, the discrete-time version is tested in field experiments.
The contents of this chaper are based on [79].

The chapter is organized as follows. Section 6.1 defines the formation path fol-
lowing problem. Section 6.2 presents the centralized NSB algorithm. In Section 6.3,
we present the continuous-time distributed NSB algorithm, and in Section 6.4, we
analyze its closed-loop behavior. Section 6.5 discusses how to apply the proposed
algorithm to underactuated AUVs and proposes the discrete-time modification.
Finally, Sections 6.6 and 6.7 present the results of numerical simulations and ex-
periments, respectively.

6.1 Problem Definition

We begin by considering a group of IV vehicles with single-integrator dynamics.
An extension to more complex vehicle models will be shown in Section 6.5. Let
pi € R3 be the position of vehicle i. The kinematic equation of vehicle i is

where v; € R? is the input velocity.

The vehicles should follow a predefined path in a given formation. Let p, :
R — R? be a parametrization of the desired path. We assume that the function is
C! and regular. Consequently, for any point p,(s), there exists a path-tangential
coordinate frame and a corresponding rotation matrix R, (s).
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6. A Distributed NSB Algorithm for Formation Path Following

The path-following error p} is given by the position of the barycenter in the
path-tangential coordinate frame

N
1
p, =R, (pr — pp(s)), Py =+ > pi. (6.2)
=1

The goal of path following is to control the vehicles so that p! — 03.

The vehicles should converge to a dynamic formation that rotates with the
desired path (see Section 2.3.2 for details). Let p?l,...,pﬁN be the position
vectors that represent the desired formation. The objective is to control the vehicles
so that

pi — P» — Ry (s)p], vie{l,...,N}. (6.3)

6.2 NSB Algorithm for the Formation Path Following Prob-
lem

In this section, we present the centralized formation path-following NSB algorithm
for vehicles moving in three dimensions. The algorithm is a simplified version of
the two methods presented in Chapters 4 and 5.

For the sake of simplicity, we do not consider inter-vehicle collision avoidance.
Instead, we focus on the formation path-following problem with obstacle avoidance.
To solve the problem, we define two tasks: path following and formation keeping.
Obstacle avoidance is not implemented as a separate task but rather as an extension
of path following.

In the nominal case (i.e., when obstacle avoidance is not active), the path-
following velocity is given by the coupled line-of-sight (LOS) guidance law (2.71)

vios = 4R, (8, 47, =], D= - 6w
with a constant lookahead distance A > 0.

The method for obstacle avoidance is identical to the one presented in Chapter 5.
Let p, € R? and v, € R? denote the position and velocity of the obstacle. When
the task is active, the z- and y-components of the LOS velocity are replaced by the
obstacle avoidance velocity vpoa given by

vor = [[Veall| [eos(v0a). sin(oa)]” + . (6.5)
Yoa = arctans (Yo — Yo, To — Tp) T @,

where v, is the relative velocity and « is the collision cone angle, as defined in
(5.21) and (5.22), respectively. Note that 1)oa has two solutions corresponding to
avoiding the obstacle in the clockwise and counterclockwise directions. Inspired by
[115], we propose the following method for choosing a direction: When the conflict
first happens, we choose the value of 1¥)ps that is closer to the direction of vye.
Afterwards, we maintain the same direction.
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Finally, let us discuss formation keeping. The proposed formation-keeping law
is analogous to (2.90) and (4.19). The formation-keeping velocity of the whole fleet
is given by

vi =34 (60— As(of —0ay)), (6.7)
where J is the Jacobian of the formation-keeping task, o s is the formation-keeping
task variable, and o4  is its desired value, as defined in (2.88), (2.86), and (2.89),
respectively.

Assuming that the gain matrix is chosen as Ay = kI, where ky > 0 is a
constant, then the formation-keeping velocity of vehicle i is given by

vii=—ki(0; —04:)+ Fa, (6.8)
where
0; = Pi — Pb, Odi = Rpp?i. (6.9)

Since the formation-keeping and path-following tasks are independent and or-
thogonal, the total desired NSB velocity of vehicle ¢ is given by

VNSB,i = VLOS t Vy,i- (6.10)

Similarly to (5.19), we choose the following update law for the path parameter

-1
$=1U, 8p{;’§8) (g ko fs (x§)> , (6.11)
where
fulw) = ——— (6.12)

VI+a?

and kg is a positive gain.

6.3 Distributed NSB Algorithm

Now, let us discuss how to make the algorithm presented in the previous section
distributed. To perform the NSB algorithm in a distributed manner, the vehicles
do not need to know the exact positions of each other. They only need to know
the position of the barycenter and the radius of the formation, and converge to a
common value of the path parameter.

In this section, we assume that the AUVs exchange information continuously.
The connections between the vehicles can be represented using an undirected graph
G=V,E), where V = {1,..., N} is the set of vertices corresponding to the AUVs,
and &€ C V x V is the set of edges, where (i,j) € £ means that vehicle ¢ can
exchange information with vehicle j. Let A be the adjacency matrix and let L
be the Laplacian matrix of the communications graph, respectively. Moreover, let
N; denote the set of neighbors of vehicle i. The set of neighbors is defined as
N; = {j ‘ Aj = 1}, where A j; is the element of A at row j, column i.
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6. A Distributed NSB Algorithm for Formation Path Following

Remark. To exchange information continuously, the vehicles require a commu-
nication channel with high bandwidth and small delays. For AUVs, underwater
optical communications may provide such a channel [117]. However, optical com-
munications tend to be unreliable. We address this issue in Section 6.5.3, where we
modify the distributed NSB algorithm to handle discrete-time delayed communica-
tions.

Let pys, 75,4, and s; denote vehicle i’s estimates of the barycenter, formation
radius, and path parameter, respectively. The vehicle can then calculate its LOS
velocity as

_Uip o la g " 6.13
VLOS,z—D_ p(5i) |A, Yoo ~%byi| > (6.13)
where
T
[xgm Ybir Zf,z} =R, (si)" (Po,i — Py (54)) (6.14)

D; = \/A2 + (ygi)Q + (zgi)2. (6.15)

In addition, the vehicle can estimate the cone angle as
. To+ Tt T
@; = arcsin <°fl) ; Preli = Po = [Zb,is Yb) (6.16)
Hprel,i”

where z;,; and y;; are the z- and y-components of py ;. The vehicle then deter-
mines if there is a need for obstacle avoidance according to the rules described in
Chapter 5, and calculates its obstacle avoidance velocity as

von,i = [Veell [cos(toa,i), sin(Woa,)] " + [0, o] (6.17)
Yoa,i = arctang (Yo — Yb,i, To — Tp,i) £ . (6.18)
The distributed formation-keeping velocity is calculated as
vii=—ks(Gi—Ga;)+ Gy, (6.19)
where
0; = Pi — Pb,i, Odi = pp}c,i- (6.20)

The path-following and formation-keeping velocities are then combined to obtain
the desired NSB velocity
VNSB,i = VLOS,i + Vf.i- (6.21)
Finally, let us discuss the update laws for the estimates py s, 77, and s;. We
assume that the vehicles communicate over a connected undirected graph. Each
vehicle transmits its own estimates ps;, s;, and ry;. We propose the following
equations to update the barycenter and path parameter estimates

Pv,i = VLos,i + ko (00 — 04) + sz (Pv,j — Pb,i) s (6.22)
JEN;
c Ipp(si) A »
$i = Uq s, D, + ksfS(xb,i) + 08j§/v(33 =89, (6.23)

80



6.4. Closed-Loop Analysis

where ky, ¢,, and ¢, are positive gains, and N; is the set of neighbors of vehicle .
Let us briefly discuss the reasoning behind these equations. The first term in (6.22)
assumes that the barycenter moves according to the LOS guidance algorithm. One
can verify that if the barycenter estimates are correct and the path parameters are
equal for all vehicles, then the true barycenter will, in fact, follow the LOS guidance
law. The second term provides feedback from the vehicle’s position. In the next
section, we will show that this term steers the barycenter estimates towards the
true barycenter. The first term in (6.23) is analogous to the path parameter update
law (6.11). The last terms in (6.22) and (6.23) represent the consensus algorithm.
This algorithm allows the barycenter estimates and path parameters to converge
to a common value.

The formation radius estimate is updated according to the following hybrid
scheme

Pri =ke (Tpi = 714) (6.24a)
77,1' =Trir if 75 > 71y, (6.24b)
+ .
rr.=maxrs,, if maxry; >re;, 6.24c
fi = maxry; max Ty > 1 (6.24c)
where k, is a positive constant and 7y ; = ||ps,; — Pil|. We note that if the barycen-

ter estimates are accurate, the formation radius is given by r; = max; 7 ,;. Equa-
tions (6.24b) and (6.24c) represent a max-consensus scheme, ensuring that the
values of ry; are always greater than or equal to max;7¢;. The continuous-time
update law (6.24a) allows the values of r¢; to converge to max; 'y ;.

6.4 Closed-Loop Analysis
In this section, we define the error variables and investigate their closed-loop be-
havior. In the subsequent proofs, we consider the nominal case without obstacle

avoidance. Furthermore, we assume that the desired path is a straight line. Con-
sequently, the rotation matrix R, is constant, and the path is parametrized by

pp(s) =po + Ry [5,0,0]", (6.25)
where pg € R3 is the origin of the path.

Now, let us define the error variables. The path-following error is given by p}.
For formation-keeping, we define 4, ...,0y as

E’i = Pi — P — Rpp;z,i' (626)

The “true value” of the path parameter, s, is given by the mean of s;, i.e.,

§ = % Zf\; s;. Consequently, the barycenter and path parameter estimate errors,
Ps,i and §;, are given by

Pb.i = Pb,i — Pb, 3; =8; —S. (6.27)
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6. A Distributed NSB Algorithm for Formation Path Following

Figure 6.1: Illustration of the inequality (6.31).

6.4.1 Closed-Loop Dynamics

In this section, we derive closed-loop equations for the error variables.
First, let us investigate the closed-loop properties of the path-following error.
The barycenter kinematics are given by

N N

. 1 . 1 .

p;Z = Rg (N E VNSB,i — pp(8)> = N E Rg (VLOS,i + Vf’i) — [S,O,O}T . (628)
=1

i=1

Let us define the “true” LOS velocity, vios, according to (6.4). Then, the LOS
velocity calculated by vehicle ¢ can be expressed as

VLOS,i = VLOS + V1L0S,is (6.29)
where U T U
- d d T
VLOS,: = HRp Aa 7ybp,ia 7251' - BRP [Aa 7y}1))7 7’25] (630)

It is straightforward to show that Vios; = 0 if pp; = 0. Moreover, the norm of
the LOS velocity error satisfies the following inequality

~ Ug  ~

[Vios.ill < A Py, - (6.31)
We can illustrate this property on the following two-dimensional example. Consider
a situation where y; and y} , have the same magnitude but opposite signs, and

2y = 2 ; = 0 (see Figure 6.1). Then, the norm of the LOS error is given by
[Vios,ll = S — ({ Ap } - [ A D = Wt
il = _ P =
A2 = (yp)? \[7%il "% A =()?*  (6.32)
Uj, ~
< — ill -
= A ||pb,1,||

The case where the errors have opposite signs is, in fact, the “worst-case scenario”.
In all other cases, the inequality (6.31) holds as well.

To further investigate the barycenter kinematics in (6.28), we need to derive a
closed-loop expression for . From (6.23), $ is given by

. 1 . 1 < A p
s= > si= > U (Di + ko fs (xb)> . (6.33)
3 i=1

=1 1=
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Note that since the vehicles communicate over an undirected graph, the consensus
terms cancel out, and from the definition of a straight-line path in (6.25), it follows

that || 22| = 1.

Now, let us define path parameter update errors, g1,...,gn, as

~ U, (ﬁ - % ko (fs(2h) = £ (x;f))) . (6.34)

Note that if both pp; and §; are zero, then g; is zero as well. Moreover, it can be
shown that g; satisfies the following inequality

1 N _
o < U (5 5 ) sl + Va5 (6.35)
Substituting (6.34) into (6.33), we get
A
§=Ua 5+ hsfs() +—Zgl (6.36)

Finally, let us investigate the sum of formation-keeping velocities. From (6.19),
we get

iZR V= 7—ZRka( — Pbvi — ppf,i)

1 ~
_ ﬁzngf (pi —Pb—Pb,i — Rppi,i)
i=1

(6.37)
ko al N~ > f
SR orp) - B SR,
=1 =1 =1
[ —
:ﬁRg;pb’i'

Substituting (6.29), (6.36), and (6.37) into (6.28), we get

DD N 2

T N
1 1 1 - -
P Ud[ksfs(xf)a =Y pr] + = E (R, (VLos,i+ ksPui) — gi).  (6.38)

Next, we find a closed-loop equation for the formation-keeping errors. Differ-
entiating (6.26) with respect to time yields

N
5 . . 1
0i=DP;i—Pb=V0LOS, + Vfi— N ; (VLOS,j + Vf’j) (6.39)
Substituting (6.29) and (6.19) into (6.39) yields
- -~ - 1 ~ -
0; = —kyo; +VLos,i — kfPb,i + N ; (VLos,j — kfPb,j) - (6.40)
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This equation can be rewritten in a more compact form. To do so, let us define
the following concatenated error vectors

{/EOS = [GEOSJ’ e 7GEOS,N] 5 ET: [&IT, ey a’]’]\:‘f] 5 (64134)

Pl = [Pi1.---Pin] ST=1[51,...,5n]. (6.41Db)

Furthermore, let Lr denote the Laplacian matrix of a fully connected graph with
N nodes (Ly = NIy — 1y). Then, (6.40) can be written in the following form

- 1 - ~
Y= kX + <NLF ® 13> (VLOS_ kab) . (642)

Finally, we find a closed-loop equation for the estimation errors. From (6.27),
the time-derivative of py; is given by

Py = Pbi — Pb (6.43)
L

= VLos,i + kb (G — Pbi) + ¢p > (Poj — Poi) — NZ(VLOSJ —ksPo.j) -

JEN; j=1

This equation can be written in the following compact form
L kf ~ ~ 1 ~
P,=- kpln + ﬁlN + CpL QI3 | Py + kX + NLF ® 13 ) Vyos, (644)

where L is the Laplacian matrix of the communications graph.
The time-derivative of §; is given by

N

i, . - 1

SiZSZ‘—SZCSZ(S]'—SZ‘)—FQ,‘—Nzgj. (6.45)
JEN; Jj=1

This equation can be written in the following compact form

< < 1
S=-cLS+ L Lrlg.... gn]" . (6.46)

6.4.2 Stability Analysis

In this section, we analyze the stability of the closed-loop system derived in the pre-
vious section. To perform this analysis, we split the system into several connected
subsystems and analyze them as a cascade.

We begin by analyzing the subsystem given by (6.44) and (6.42).

Lemma 6.1. The origin, {ISE, ENJT} =07, is a globally exponentially stable (GES)

equilibrium of the subsystem (6.44), (6.42) if the communications graph G is con-
nected and the control gains ky and ks are chosen such that ky, kg > %.
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Proof. From (6.44) and (6.42), this subsystem can be written in the following form

p P lLreIs] o
Al (F®Is) O+ [gLi ®I§] Vios, (6.47)
where
— (kT + K1 L) Kl
p_ |- (WIx+ Fiv +or) *’N]. (6.48)

A —kfIy

Due to its structure, F is a negative definite matrix. Let Ay, denote the real part
of the smallest eigenvalue of —F. Note that Apin > min{ky, ky}.

Consider the following Lyapunov function candidate
1 /1~ 12 112
=3 (0 T o
The derivative of V,, along the trajectories of (6.47) is given by

V= [By S| @ ey |2

1
~ = ~Lr®1I3| &
T T N
+ {Pb 3 } |:11]I F®13:| Vios (6.50)

By applying the inequality (6.31), we get

. ~ 12 |lxl? 20U,
<o [P [5]7) 5 [P (1P + [ )
~ 12 | ~2 2 ~
<o [+ + Ud( [Be3l=) e
From (6.51), we can conclude that ‘./}, is negative definite, and the subsystem is
thus GES, if Amin > min{ky, ks} > 352. O

In the remainder of this section, we use the results from the cascaded systems
theory. Specifically, we use Proposition 9 from [70], which, for the sake of conve-
nience, is re-stated in Section 2.6. Now, let us analyze the subsystem (6.46).

Lemma 6.2. The origin, S =0, is a USGES equilibrium of the subsystem (6.46)
if kp, ky > %, and the consensus gain cs is chosen such that csho > 2Ugks, where
Ao is the Fiedler eigenvalue of L.

Proof. Recall the equation for S from (6.46)
- - 1
S =—cLS + LrG, G=Ig,...,9n]". (6.52)

We intend to analyze this subsystem as a cascade where Pb perturbs the dynamics
of S through G. The following equation describes the nominal dynamics of S

- -~ 1
S = —¢.L§ + LrG,, (6.53)
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where G, is obtained by substituting P, = 0 into G. From (6.35) the following
inequality holds true for Gg

||Gs|| S Udks

§H . (6.54)

Consider then the following Lyapunov function candidate for the nominal system

1 ~12
oL 659
2
The derivative of V; along the trajectories of (6.53) is
. o~ 1~ 12
Vo=—cSTLS + -STLrG, < (—e ot 2Uak,) SH . (6.56)

From (6.56), we can conclude that V; is negative definite, and the nominal system
is thus GES, if c; Ao > 2Ugks.

Note that both the nominal and the perturbing system are GES. GES implies
both UGAS and USGES. Consider the Lyapunov function candidate V. The first
assumption in [70, Proposition 9| is satisfied with ¢; = %, an arbitrary n > 0,
and co = 7. The second assumption in [70, Proposition 9| is satisfied with oy =
Uqg (% + ks), and as = 0. Consequently, all assumptions of [70, Proposition 9] are
satisfied, and the cascaded system is USGES. O

Finally, let us analyze the subsystem (6.38).

Lemma 6.3. The origin, p} =0, is a USGES equilibrium of the subsystem (6.38)
if ko, ky > 282 and cho > 2Ugks.

Proof. Similarly to the proof of the previous lemma, this subsystem can be analyzed
as a cascade where S and P}, perturb the dynamics of p} through Viog, Py, and
G. Consider the following nominal system

D Lol '

p, = —Ua |ksfs (2}), =y, D (6.57)

This type of system has been proven USGES in Chapter 5, Theorem 5.1.
Consider then the following Lyapunov function candidate

1
Vi =3 lppl”. (6.58)

Similarly to the previous lemma, the first assumption in [70, Proposition 9] is

satisfied with ¢; = %, an arbitrary n > 0, and co = 7.

Let h denote the perturbing term in (6.38). This term is given by
1 ~ ~
h= =% (Ry (Vios.i + ksBui) — gi) (6.59)

86



6.5. Application to Underactuated AUVs

From (6.31) and (6.35), we arrive at the following upper bound on the norm of h

| < <2UAd + kot Udks> HEH + Ugks §H
< (2? +ky+ Udks> H {f’bT, §T] H . (6.60)

Consequently, the second assumption in [70, Proposition 9] is satisfied with
o = (2% +ky+ Udk’s), ag = 0, and the subsystem is thus USGES. O

The results of the three lemmas can be summarized in the following theorem.

Theorem 6.1. The origin, {(pf)T, ET, f’;, gT} = 07T, is a uniformly semiglobally

exponentially stable (USGES) equilibrium of the closed-loop system (6.38), (6.42),
(6.44), (6.46) if ky, ky > 2¥2 and c, Ay > 2Ugks.

Proof. The stability of the complete system can be proven by applying the results
from Lemmas 6.1—6.3. O

6.5 Application to Underactuated AUVs

To apply the proposed distributed NSB algorithm to underactuated AUVs, we
need to resolve two issues. Firstly, unlike vehicles with single-integrator dynamics
(6.1), the position of AUVs cannot be controlled directly. Specifically, due to
underactuation, there is no input to directly control the sway and heave dynamics,
so these states must be controlled indirectly through the surge, pitch, and yaw
dynamics. Secondly, in real-life situations, the continuous-time consensus algorithm
(6.22), (6.23) cannot be implemented, as the vehicles communicate at discrete
time instances. In fact, the limited bandwidth of most underwater communication
methods (e.g., acoustics) introduce a significant delay and long periods between
transmissions. In this section, we introduce the model of underactuated AUVs and
propose solutions to the two aforementioned problems.

6.5.1 AUV Model

Let p; € R? denote the position of vehicle i. Let R; € SO(3) be a rotation matrix
that describes the orientation. The kinematics of the vehicle are [91]

pi = Riv;, R; = R;S(w;). (6.61)

Similarly to the previous chapter, we assume that the AUVs are equipped with
a low-level controller that can track a desired surge velocity and orientation. The
vehicle dynamics can then be expressed as

{ZJ;] = [ (Ri, Ra,i, viy ug i, wi) (6.62)

where f is a function representing the closed-loop dynamics, and Ry ; and ug; are
the desired orientation and surge velocity, respectively.
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6.5.2 Handling the Underactuated Dynamics

In this section, we propose a method for choosing the desired surge velocity and
orientation in order to handle the underactuated dynamics.

First, let us discuss the method for choosing the desired surge velocity. Ideally,
uq,; should be chosen such that ||[ug, vi, w;]|| = ||vnss,i||. However, as discussed
in the previous chapter, this equation cannot always be satisfied. In the previous
chapter, we solved this problem by scaling the LOS velocity. However, such scaling
must be done globally for all vehicles, which would require additional communica-
tions and consensus. Consequently, we propose the following simpler method for
choosing the desired surge velocity

Uy = V/Unsp.i, if UNsB.i > Uy, (6.63)
o Umin, Otherwise, :

2 . .. .
— v? — wf, and Upin, > 0 is the minimum required surge

where Unsg,i = ||[VNsB,i
velocity.

Now, let us discuss the method for choosing the desired orientation. In Chap-
ter 4, we used a method that compensates for the sideslip angle and the angle of
attack. In Chapter 5, we proposed to find the desired orientation indirectly by first
finding the desired angular rates. Both methods require accurate estimates of the
underactuated sway and heave velocities. However, in real-life applications, these
estimates are often noisy, which can deteriorate the performance of the controller.
Therefore, we propose a method with integral actions that provide some robustness
towards measurement noise. The proposed method consists of two steps. In the
first step, we find the desired course, xq,;, and flight-path angle, vq,;, as

Xd,i = arctans (YnsB,i, TNSB,i) » (6.64)
Yd,; = — arcsin (ZNSBZ> ) (6.65)
[vnse,ill

In the second step, we calculate the desired pitch (64;) and yaw (¢4;) angles

t
gd,i = satg, . <’Yd,i — k’Y/ ﬁz (T)dT) R (666)
0
t

i = xai — b [ Tlr)dr, (6.67)
0
where k- and k, are positive gains, sat(-) is a saturation function
—Tmax; lf T < —Zmax;
Satwmax (3?) = xz, lf — Tmax S & S Tmax (668)

Imax» lf X > xmaxa
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and 7;(7) and X;(7) are the flight-path angle and course errors

Yi = — V4 = 0i — arctan <1:Z> — Yd,is (6.69)

3

~ v;
Xi = Xi — Xd,i = ¥; + arctan (;) — Xd,i- (6.70)
1
The purpose of the saturation function is to avoid singularities introduced by the
Euler angles. Consequently, the saturation limit must satisfy Omax < 5.
The desired orientation can then be calculated as

cosPq,; coslq; —sintg,; cosyg; sinfy;
Ry;=|cosbq; sintg; costg; sintg; sinfyy |. (6.71)
—sinfg; 0 cos g

6.5.3 Handling Discrete-Time Communications

In this section, we discuss the issue of discrete-time delayed communications. We
assume that the AUVs can broadcast data via an acoustic modem. However, due
to the relatively low bitrate and propagation speed of underwater acoustics, there
is a significant delay between transmission and reception. To model the commu-
nications, we assume that when vehicle ¢ transmits a packet at a time ¢, vehicle
J receives the packet at a time t + ATj;, where AT;; > 0 is the delay. Since the
acoustic communications channel has a range of several kilometers [118], we can
assume that all vehicles can recieve the transmitted packet (in other words, that
the communications graph is fully connected). To address the issues with discrete-
time communications, delays, and limited bandwidth, we need to discretize the
consensus scheme (6.22), (6.23), compensate for the delays, and reduce the number
of transmissions.

To discretize the consensus scheme, we propose the following method. Each
vehicle continuously updates its variables using the following equations

Pvi = VLos,i + kb (605 — Gqi), (6.72)
. 8pp(sl) B A v
§i = Ua|= = iﬁ+“ﬂ@@ : (6.73)
’I'“f,i =k, (?f,i — Tfﬂ;) s T}r’i = ?f,ia if ?f,i >Tfi. (674)

To perform the consensus algorithm, each AUV transmits the following packet:
(ti, Si, Pb,i» 7105 Fi), Where t; is the time of transmission, and &; = 6; — 64,;. When
vehicle ¢ receives a consensus packet from vehicle j, it first compensates for the
delay by solving the following set of differential equations

Pv,j = VLos,; + kb0, (6.75a)
o, = —ks&;, (6.75b)
. app(s;)|| Y A
! aSj Dj ( b’])
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6. A Distributed NSB Algorithm for Formation Path Following

Note that (6.75a) and (6.75c) are analogous to (6.72) and (6.73). The equation for
&; is motivated by the fact that &; is used as the formation-keeping error (c.f.,
(6.19)). Under ideal conditions (i.e., if the consensus errors are zero), &; evolves
according to (6.75b). The value of 7y ; is kept constant.

After compensating for the delay, the vehicle updates its consensus variables
using the following scheme

Py = appy; + (1 - ap) Poi, (6.76)
si=assj+ (1 - as)si, (6.77)
rii=max{rzirs;}, (6.78)

where a,,as € (0,1) are the mixing gains.

Finally, let us discuss the method for determining when the AUVs should trans-
mit the consensus packets. To minimize the number of transmissions, we propose
an event-triggered scheme. When vehicle i receives a consensus packet from vehicle
j, it also calculates the following quantity:

1

, (6.79)

Tj,i = Tmin +
1 + b (50 — 55)°

\/bp IPe,i — Po.;j

where Tinin, by, and b are positive constants. Let us assume that the last transmis-
sion of vehicle 7 was at a time ¢;. The next transmission time is then calculated as
t; +max; T} ;. This event triggering scheme, inspired by the techniques discussed
in [119], was chosen because it is easy to implement and has a strictly defined mini-
mum delay in-between transmission, making it suitable in applications with limited
bandwidth and communication delays. We demonstrate that the proposed scheme
works both in simulations and field trials. However, proving the effectiveness of
the scheme is not the main focus of this work.

6.6 Simulations

In this section, we present the results of a numerical simulation study. The sim-
ulations were carried out in MATLAB using a model of the light autonomous
underwater vehicle (LAUV) [12]. We conducted two types of simulations. We
tested the continuous-time NSB algorithm proposed in Section 6.3. Furthermore,
the performance of the event-triggered NSB algorithm proposed in Section 6.5.3 is
compared to the performance of a cooperative path following algorithm proposed
in [25].

First, let us present the parameters that are common to both simulations. We
simulate four AUVs. The barycenter should follow an elliptic path given by

py(s) = [acos(s), bsin(s)7csin(s)2]T, (6.80)

where a = 60m, b = 40m, ¢ = 10m. The desired path-following speed is Uy =
1.3ms~!. The lookahead distance is chosen as A = 5m. The shape of the desired

formation is
10 —-10 O 0

p}c,hpizvpﬁg,ph}: 0 0 10 -10]. (6.81)
0 —4 4 0
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To satisfy the assumptions in Lemma 6.1, k; and ky must be greater than % =

0.78. We choose ky, = ky = 1. The gain of the path parameter update law is
ks = 0.5. The adjacency matrix of the communication graph is

(6.82)

= =0 O
= =0 O
SO = =
S O ==

6.6.1 Continuous-Time Consensus

The purpose of this simulation is to demonstrate that the path-following, formation-
keeping, and consensus errors of the continuous-time scheme converge to zero. To
satisfy the assumptions of Lemma 6.2, the consensus gain ¢; must be greater than

% = 0.65. We choose ¢s = ¢, = 1. To test the obstacle avoidance scheme, we

place a static obstacle at p, = [0,40]" with radius 7, = 5m. The minimum cone
Qmin 18 set to 2 degrees, and the formation radius update gain is k. = 0.1.

The results are shown in Figure 6.2. Figure 6.3 shows the 3D trajectory of
the AUVs. We can see that the AUVs converge to their desired formation while
avoiding the obstacle represented by the green cylinder. Figure 6.2a shows the
path-following and formation-keeping errors. Initially, these errors exponentially
converge to zero. When the obstacle avoidance scheme is activated, the path-
following errors start diverging, as the LOS velocity enters the collision cone. After
the vehicles successfully avoid the obstacle, the errors again converge exponentially
to zero. Figure 6.2b shows the distance between the AUVs and the obstacle. We
can see that the distance is always greater than r,. Figs. 6.2c, 6.2d, and 6.2e show
the errors of the consensus variables. These plots are in a logarithmic scale to
demonstrate the exponential rate of convergence. Initially, the logarithmic error
is clearly bounded by a decreasing straight line, demonstrating the exponential
convergence. The norm of the error decreases by a factor of 10 approximately
every 25 seconds. When obstacle avoidance is active, the errors start diverging
but remain bounded. After avoiding the obstacle, the errors continue to decrease
exponentially, but eventually, the convergence stagnates. We cannot expect that
the errors continue to fall indefinitely due to numerical innacuracies, that come
mostly from two sources: the inaccuracies in floating-point arithmetics and the
tolerances of the ODE solver.

Note that although Section 6.4 presents stability proof for a simplified case
of straight-line paths and vehicles with single-integrator dynamics, the simulation
results show stability for curved paths and more complex vehicle models. It may
be possible to extend the results of Section 6.3 to curved paths and more complex
vehicle models by assuming that the curvature of the desired path is small enough
and that the low-level control system is capable of exponential tracking, similarly
to the proofs in Chapters 4 and 5.
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(a) The path-following and formation-keeping
errors. The green area represents the time
when obstacle avoidance is active. The black
line is the path-following error, the colored
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true formation radius, plotted in a logarithmic
scale.

Figure 6.2: Results of numerical simulations. The blue, red, yellow, and purple
lines represent AUV 1, 2, 3, and 4, respectively.

6.6.2 Event-Triggered Consensus

In this section, we test the event-triggered scheme proposed in Section 6.5.3. We
choose the mixing gains a, = a, = 0.4, and the penalty gains: b, = 1074, by = 4.

We compare our algorithm with an event-triggered cooperative path-following
algorithm proposed in [25]. In this algorithm, each vehicle follows its own desired
path given by pai(s) = pp(s) + Rp(s)p?i. Coordination is then achieved by
running a consensus scheme on the path parameter.

The comparison was done using a Monte Carlo simulation. We performed ten
thousand simulations with randomly selected initial conditions and communication
delays. The initial positions of the AUVs ranged from [60, —40, O]T to [140, 40, 15]T.
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Trajectory

AUV 1 AUV 3 Path
AUV 2 AUV 4 I Obstacle

80 60 40 20 0 -20 -40 -60
 [m]
Figure 6.3: The 3D trajectory of the AUVs. The markers represent the AUVs at
times t = 0,40,...,240 seconds. The dotted lines represent the communications

graph.

The initial orientations were specified in Euler angles, with a zero roll angle, a pitch
angle from —¢ to %, and a yaw angle from 0 to m. The initial linear velocities
ranged from [0.5, —0.2, —().1]T to [1.5,0.2,0.1]T, and the initial angular velocities
were zero. The communication delays ranged from 0 to 5 seconds.

Figure 6.4 shows the absolute value of the path parameter error and the norm
of the path-following error. Both errors are plotted in a logarithmic scale. In
terms of path parameter errors, both algorithms perform similarly. In terms of
path-following errors, the distributed NSB algorithm is marginally better.

The communication requirements of the two algorithms are summarized in Ta-
ble 6.1. This table shows the minimum, maximum, and median of the period
in-between transmissions (73), and the total number of transmissions in one simu-
lation (N). Here, we can see that distributed NSB performs considerably better
in comparison to the cooperative path following method, with longer periods in-
between transmissions and a lower number of transmissions.

However, it is worth mentioning that the packets transmitted by the cooperative
path following method are smaller than the NSB packets. Indeed, in the scheme

Path parameter error Path-following error

Figure 6.4: Comparison between the proposed event-triggered distributed NSB
algorithm and the cooperative path-following algorithm proposed in [25]. The full
lines represent the median, the colored areas represent the smallest and largest
recorded value.

93
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proposed in [25], the AUVs only need to transmit the path parameter and its
derivative. In contrast, the NSB packet consists of the estimates of path parameter,
barycenter, radius of formation, and formation-keeping error. In this context, the
two algorithms present a trade-off between packet size and communication periods.

Table 6.1: Comparison of communication requirements.

Method Quantity | Minimum | Median | Maximum
Distributed Tt 2.00 8.50 275.30
NSB N, 125 187 253
Coordinated T 0.10 2.15 138.65
path following Ny 196 548 1064

6.7 Experiments

In this section, we present the results of field experiments we designed and exe-
cuted to verify the effectiveness of the event-triggered distributed NSB algorithm
proposed in Section 6.5.3. The experiments were conducted in the fjord of Trond-
heim, Norway, near the Trondheim Biological Station, using two LAUVs as in
Figure 6.5.

To guarantee stable communications and accurate navigation, the vehicles were
operating at the surface and communicating over WiFi. The algorithm was imple-
mented in C++, using the Unified Navigation Environment (DUNE) [89].

The algorithm was tested in two scenarios: a nominal scenario, i.e., formation
path following without any obstacles, and a scenario with a static obstacle. In both
scenarios, the barycenter of the AUVs should follow the elliptic path

po(s) = [acos(s), bsin(s),0]" a=100m, b=280m, (6.83)
in the formation defined by
pf, =1[0,-25,0", p’,=10,25,0". (6.84)

The reason for choosing a larger path and formation, compared to the simulations
in Section 6.6, was to reduce the risk of the AUVs colliding. The obstacle was placed
at p, = [0, SO]T. The remaining parameters were identical to the simulations.

6.7.1 Nominal Scenario

The results are shown in Figure 6.6. Figure 6.6a shows the trajectories of the
AUVs, as estimated by their onboard navigation system. The disturbances in the
trajectories are caused by two factors: the sea loads (waves, currents, and wind),
and the errors of the navigation system. However, the exponential stability of the
NSB algorithm given by Theorem 6.1 provides some robustness towards these dis-
turbances, c.f., [120, Lemma 9.2]. Figure 6.6b shows the path parameter errors
and the event-triggered communications. Initially, the vehicles need to communi-
cate frequently, approximately every five seconds, because the barycenter estimates
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Figure 6.5: Photo of one of the two LAUVs used in the reported field experiments,

courtesy of www.ntnu.edu/aur-1lab/.
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Figure 6.6: Results of a nominal experiment.
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differ (as seen in Figure 6.6d). During this transient period, the path parameter
estimates initially diverge before finally converging. After convergence, the com-
munication period increases to over 100 seconds. Note that the barycenter estimate
errors in Figure 6.6d converge to a common value but not to zero. This behavior
is caused by the aforementioned disturbances acting on the vehicles. Figure 6.6¢
shows the formation-keeping and path-following errors. Due to the disturbances
and event-triggered communications, these errors do not converge to zero but rather
to a small area near zero.

6.7.2 Scenario with a Static Obstacle

The results are shown in Figure 6.7. In general, the results are similar to the
nominal scenario, so we will only highlight the differences. The path-following
errors in Figure 6.7b diverge when obstacle avoidance is active. As previously
mentioned, this behavior is caused by the fact that the vehicles cannot stay on the
desired path while avoiding the obstacle. The estimate errors in Figs. 6.7c and 6.7d
behave similarly to the nominal case. Asshown in Figure 6.7¢e, the distance between
the AUVs and the obstacle is always greater than r,. Figure 6.7f shows the errors
between the estimated and true formation radius. Note that the formation radius
errors are connected to the barycenter estimates. A wrong barycenter estimate may
lead to both overestimation and underestimation of the formation radius. Despite
these uncertainties, the AUVs still manage to perform all control goals safely.
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Figure 6.7: Experiment with a static obstacle.
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Chapter 7

Hand Position for Underactuated Un-
derwater Vehicles

This chapter motivates and defines the hand position concept. Compared to pre-
vious works that utilize this concept, our approach works on six-degree-of-freedom
vehicles and does not introduce singularities. By choosing the hand position as
the output of the controlled system, we can apply output feedback linearization
to simplify the dynamics of the vehicle. Specifically, we can then transform the
six-degree-of-freedom nonlinear underactuated vehicle model into a double integra-
tor. This transformation enables the use of numerous control strategies that could
otherwise not be used on nonholonomic or underactuated vehicles. The contents
of this chapter are based on [87].

The chapter is organized as follows. Section 7.1 presents the AUV model.
Section 7.2 defines the hand position transformation and presents the necessary
assumptions about the generic hand position-based controller. The closed-loop
system is then analyzed in Section 7.3.

7.1 AUV Model

We consider an underactuated AUV with dynamics described using the 6DOF
control-oriented model from Section 2.1.4. The AUV model is given by the following
equations

p=Rv, +V, (7.1a)
R = RS(w), (7.1b)
My, + C(v,)v, + Dy, + g(R) = Bf, (7.1c)

In the remainder of this section, we introduce some necessary assumptions about
the AUV and rewrite (7.1c) in a more compact form. To do so, let us first decom-
pose M, M~!, C(v,.), and D into 3-by-3 blocks

o M1 My, . Cu(Ur) Clz(Ur)
M= [M21 M22]’ Clor)= |:C21(Ur) Caz(vr) |’ (7:22)
My, M, D;; D
M-!— 11 12 D= |1 1z} 7.2b
[M/m M/m] ’ {Dm Dao (7.2b)
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In addition to Assumptions 2.1-2.4 of the control-oriented model, we need to
add one more simplifying assumption.

Assumption 7.1. The effect of gravity and buoyancy on the linear velocities is
negligible. Therefore, the following approximation

03

M 'gR) ~ , 7.3
8R)~ | My, (Wzye5 x RTes) (7.3)

can be used to simplify the dynamics.
Remark. The effect of gravity and buoyancy on the linear velocities is given by

Wng mss

M, (Wzges x RTes) = [0,0,sin0]", (7.4)

Ma3zMmss — M3
where 0 € [—m/2,7/2] is the pitch angle of the vehicle. Assumption 7.1 can thus be

used if 0 remains small.

Remark. Throughout the chapter, we will sometimes show expressions with Euler
angles, because they are more intuitive than rotation matrices. This does not mean
that we transform our model to Fuler angles, these expressions are only used for
illustration.

We can then rewrite (7.1c) in the following compact form

Or = [fu,0,0]" — Dy (v,) — Co (1), (7.5a)
& = [fp for il =D () = Co(vr) = Miyy (Wzgres x RTes),  (7.5D)
where
D, = (M, D11 + MyDs1) v, + (M)yDss + M/, D1s) w, (7.6a)
Co = M};C11 + M},Ca1) v, + (M75,Cas + M};C12) w, (7.6b)
Dy = (M3, D11 + M, Dor) vy + (M5yDaz + My Dio) w, (7.6¢)
Cor = (M C11 + M}, Cay) vy + (MlyCas + M), Cz) w. (7.6d)

7.2 Hand Position

In this section, we present the hand position transformation for the 3D case. The
procedure is inspired by the 2D transformation in [14]. We begin with the following
change of coordinates:

x1 =p + R, (7.7a)
x2 =Rvu, + R(w x £), (7.7b)

where £ = [h, 0, O]T, where h > 0 is the hand length.
We will treat x; as the output of our system, and perform an output feedback
linearization. Differentiating (7.7) with respect to time yields:

X1 =x2+ V, (7.8a)
%o = R([fu,th, —hf,)T Do) — Cov) + wxv, +w x (wx L) (7.8b)

+ 0% (Do (1) + Coo (1) + My (Wrgpes x RTes)) )
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Note that %3 does not depend on the roll torque f,. We can therefore use f, to
stabilize the roll dynamics by canceling the Coriolis effect:

fp = erlrcw(u)v (79)
To linearize the output dynamics, we employ the following change of input
fu 1 0 O
fal=10 0 —% (RT,u—l—Dv(l/)—l—Cv(V)—wva—wx(wxf)
fr 0 + 0

e (Du(u) + Coo () + My (W zgpes x RTeg))>, (7.10)

where p € R3 is the new control input. This procedure transforms the system (7.5)
into the following form

X1 = X2 + Vg, (7.11a)
Xy = W, (7.11b)
R = RS(w), (7.11c)
w=2Lx (RTu+Dy(v) +Cyu(v) —w x RTxy) (7.11d)

— (€67 (Do (v) + My (Wzgres x Rles)) ,

where £ = [1/h,0,0]". Note that (7.11a) and (7.11b) form a double integrator with
a constant disturbance caused by the ocean current.

7.2.1 Hand Position-Based Controller

In this section, we present some necessary assumtpions about the hand position-
based controller. We assume that the goal of the control algorithm is to track a
desired trajectory. Although this assumption seems restrictive, we will demonstrate
that many controllers fall into this category. _

Let &;1,4 represent the desired trajectory, and let &2 4 = &1,4. We assume that
there exist £2.4,max and 527d,max such that

IVell < l1g2.0ll < €2.a.mx |éoa < braman. (712)
Furthermore, we define the following error states

€~1 =x1 —&1,d, (7.13a)
éz =xXp —&24+ Ve. (7.13b)

The dynamics of these error states are given by

21 =&, (7.14a)
Er=p— o (7.14b)
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Assumption 7.2. The hand position-based controller is designed such that the
norm of the control input p is finite and the origin |:€1,ég:| = 07 is a uniformly
globally asymptotically stable (UGAS) equilibrium of (7.14).

7.3 Closed-Loop Analysis

In this section, we analyze the closed-loop behavior of the orientation and the an-
gular rates. Because these states cannot be controlled directly through the control
input p, they are commonly referred to as the internal states, while x; and x5 are
referred to as the external states [14]. For a generic hand position-based controller
and a generic trajectory, the internal states do not converge to a specific value.
Consequently, we intend to prove that the internal states are bounded. The orien-
tation is restricted to a closed set SO(3), and thus inherently bounded. Ouly the
angular rates can grow unboundedly.

By the choice of the control law (7.9), the dynamics of the roll rate no longer
depend on the other angular velocities. Indeed, from (7.11d), we get

p= —elT (Dw(u) + M, (Wngeg, X RTeg))

d 1 7.15
=M, ——e] (Wzges x RTes). (7.15)
Mgy Mgy
Let us define
d w
az = 44 9 bJZ = Zgb7 (716)
Mayq v

and prove the following proposition:

Lemma 7.1. The roll rate dynamics are bounded if a, > 0. Specifically, the
trajectory p(t) satisfies

—a by —a
[p()] < [p(0)] ™" 4+ —= (1 —e7*). (7.17)
Proof. Consider the following two functions
1
V, = 5p°, W, = \/2V,. (7.18)

2
The following inequality holds for the derivative of W, along the trajectories of p

W, < —a,W, + b,. (7.19)

By applying the comparison lemma, we get

which concludes the proof. O
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Now, we investigate the boundedness of ¢ and r. In the subsequent analysis, we
will treat the roll rate and the external dynamics as a perturbation. From (7.11d),
we get

gl |0

7| |0
Note that the linear velocities of the vehicle can be expressed in terms of the
external dynamics as

T= O

_0’11] (RTM +Dy(V) 4+ Cop (V) — w x RT(éz +&2.4 — Vc))' (7.21)

v, =R" (52 t g Vc) WXL (7.22)

Let us define
Ve = RT <€2 + 52,(1 - Vc) é [Ue,la Ue,Qa Ue,S}T . (723)

Note that the norm of v, can be bounded by the following expression
Jvell < [[€| + llg2.a = VeI, (7.24)

and since the external dynamics are assumed UGAS, |lv.|| converges to [[€2.4 — V||
Consider then the following Lyapunov function candidate

Vo == (¢ +1r7). (7.25)

DN | =

Let us define @ = g, T]T. The following inequality holds for the derivative of V,
along the trajectories of (7.11)

. ~ w
V< o = aur® + ol 101 (51 4 ) 4 anpopr + asyocana (120)
+ Up2Ve 3PT + QyeVe1q° + AzeVe 1T + QleyVe,3q

+ AlezVe 2T + QeyUe,1Ve, 39 + QezVe,1Ve,2T + ||U.J|| Hmax

where fimax 1S the largest norm of the control input. The remaining coefficients are
shown in Appendix D.1.

Lemma 7.2. Let us define

p=b./a,, Ve = max ||&2.4(t) — Ve, (7.27a)
tERZO
) 11 . )
ay = a,y — (h Ve + 5 |amyzp| + ayeve|> 5 (727b)
_ 11 _ _
Oy =ay — (h Ve + 3 |agy-D| + CLZ@U6|> . (7.27¢)

The angular rate dynamics are ultimately bounded if a, &y, o, > 0.
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Proof. Consider the candidate Lyapunov function V,, and the bound on its deriva-
tive in (7.26). Using the following identities

lwll ] <

—~

pl +ll@l) Il (7.28a)

pl (¢ +77), (7.28b)

N |

Ipgr| <

we arrive at the following upper bound on V,,

Vw S —OéyQQ - OéZT‘2 + G (Ue7w7£1752aél76.2,d) 5 (729)
where
1 1
Qy=|ay— n [[vell + B azy:| [Pl + layel |vell ) ), (7.30a)
1 1
Qz=\0z— h lvell + ) |a$yZ| | + |aze| lvell ) (7.30b)

and G(-) represents the terms that grow at most linearly with ¢ and r.
From Lemma 7.1, we can conclude that if a; > 0, then
i <p. .
Jm [p(t)] < p (7.31)

Moreover, this limit converges exponentially. Consequently, from (7.27) and (7.30),
we get the following limits

li > li > a,. .32
8,0 = O Am, 0 2 0 (7:32)
Therefore, if &, . > 0, then there exists a finite time 7" after which oy, o, > 0.

First, let us investigate the candidate Lyapunov function for ¢ < T'. Since oy,
and «, may be negative, we cannot prove boundedness. However, note that the
derivative of the Lyapunov function in (7.29) has the following form

where k is a positive constant and G(-) grows at most linearly with [|&|. We can
therefore conclude that the dynamics of ¢ and r are forward complete [110].
For ¢t > T, V,, has the following form

Vw < *ayq2 - azr2 +G() (7.34)

For sufficiently large angular velocities, the quadratic term will dominate the linear
term G(-), and ¢ and r will remain bounded.
The angular rate dynamics are thus ultimately bounded. O

In Lemma 7.2, we derived the sufficient conditions for ultimate boundedness of
a hand position-based controller. In the remainder of the chapter, we provide an
interpretation of the condition a, &, &, > 0, and compare it to our intuition.
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7.3. Closed-Loop Analysis

First, we analyze the term a,. This term represents the effects of hydrodynamic
damping on the roll rate of the vehicle. Based on the definition (7.16) and the
fact that the inertia and damping matrices M and D are positive definite (c.f.,
Section 2.1.3), the term a, must be positive.

Next, we analyze the terms &, and &, defined in (7.27). First, we remark
that there are some similarities between the hand position concept and a three-
dimensional pendulum. In Figure 7.1a, we illustrate that the h