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Summary

This thesis investigates various control algorithms for marine vehicles. Most of the
algorithms proposed in the thesis address the formation path-following problem
for a fleet of underactuated autonomous underwater vehicles, although other types
of vehicles, such as autonomous surface vehicles and differential drive robots, and
other types of control problems, such as collision avoidance, trajectory tracking,
and path following, are also considered. The thesis is divided into three parts.

In the first part, we develop a collision avoidance algorithm for overactuated ve-
hicles. The vehicles must reach a desired position while maintaining some minimum
safety distance from each other. To solve this problem, we propose an optimization-
based control allocation scheme augmented with control barrier functions. Control
allocation is a collection of methods for finding an actuator configuration that sat-
isfies a given goal (e.g., reaching a desired position), while control barrier functions
allow us to enforce constraints on dynamical systems (e.g., keeping a minimum
safety distance). By combining control allocation with control barrier functions,
we can create a controller that satisfies a given goal while avoiding collisions. The
proposed controller is tested in numerical simulations on two types of autonomous
surface vehicles: the milliAmpere ferry, and the Inocean Cat I drillship.

The second part addresses the formation path-following problem. We propose
to solve the problem using the null-space-behavioral method. This method allows
us to decompose the problem into several tasks. Then, by combining these tasks
in a hierarchic manner, we can achieve the desired behavior. To solve the forma-
tion path-following problem, we define three tasks: collision avoidance, formation
keeping, and path following. In this thesis, we develop and analyze three different
null-space-behavioral algorithms for the formation path-following problem. The
first algorithm uses a model of an autonomous underwater vehicle with five degrees
of freedom. Using Lyapunov analysis, we show that the path-following task is uni-
formly semiglobally exponentially stable. Numerical simulations then validate this
result. The second algorithm uses a six-degree-of-freedom model. Compared to the
previous method, this algorithm does not suffer from numerical singularities. This
algorithm also contains additional tasks, namely obstacle avoidance and depth lim-
iting. Moreover, we prove that both the path-following and the formation-keeping
tasks are uniformly semiglobally exponentially stable. These theoretical results are
then validated in numerical simulations. One issue with null-space-behavioral al-
gorithms is that they are centralized. In many applications, centralized algorithms
are difficult to implement, as they require a central node or an agent that can
communicate and coordinate with other agents in real-time. To solve this issue,
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the third algorithm combines the null-space-behavioral method with consensus,
resulting in a fully distributed controller. We propose two types of consensus al-
gorithms. First, we propose a continuous-time consensus algorithm and prove its
stability using Lyapunov analysis. Then, we present a modified discrete-time ver-
sion of the algorithm based on event-triggered control. The effectiveness of both the
continuous- and discrete-time algorithms is demonstrated in numerical simulations.
Furthermore, the discrete-time version is also tested in field experiments.

The third part of the thesis extends the hand position approach to underactu-
ated underwater vehicles moving in three dimensions. This approach was originally
developed to stabilize nonholonomic vehicles. By treating the hand position of the
vehicle as the output of the system, we can use input-output feedback lineariza-
tion to transform the underactuated highly nonlinear vehicle model into a system
with linear external dynamics and nonlinear internal dynamics. We analyze the
closed-loop behavior of a generic hand position-based controller and present four
applications of the hand position approach. First, we use this approach to solve
the trajectory-tracking and path-following problems. We propose simple PID-based
controllers to solve these problems and show that using these controllers renders
the external states globally exponentially stable, while the internal states remain
bounded. The theoretical results are validated in numerical simulations as well
as field experiments. Next, we present a spline-based model predictive control
method for solving the formation path-following problem. The proposed method
is not restricted to the hand position approach only. In fact, the method is ap-
plicable to any vehicle with a differentially flat model. To demonstrate this, we
present two case studies: underwater vehicles with the hand position controller,
and differential drive robots. Next, we use the hand position concept to solve
the tracking-in-formation problem for a fleet of autonomous underwater vehicles.
The proposed method combines consensus with barrier Lyapunov functions, al-
lowing the fleet to reach the desired formation while avoiding collisions and main-
taining connectivity. We show that the closed-loop system is almost-everywhere
uniformly asymptotically stable and that the output error dynamics converge to
the origin exponentially fast while satisfying the constraints. The theoretical re-
sults are verified in numerical simulations. Finally, we combine the hand position
approach with null-space-behavioral control. Specifically, we extend the null-space-
behavioral algorithm, which was originally developed for first-order kinematic sys-
tems, to second-order systems. Similarly to our previous work, we then design the
path-following, formation-keeping, and collision-avoidance tasks, so that the fleet
can follow a given path in a formation while avoiding collisions. We prove the
stability of the control scheme using Lyapunov analysis and verify its effectiveness
in simulations.
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Chapter 1

Introduction

In the beginning the Universe was created.
This has made a lot of people very angry
and been widely regarded as a bad move.

— Douglas Adams, “The Restaurant at the
End of the Universe,” 1980.

This thesis presents and studies control algorithms for autonomous marine ve-
hicles. The thesis is mainly focused on formation path-following control of under-
actuated autonomous underwater vehicles (AUVs), although some chapters also
consider autonomous surface vehicles (ASVs) and additional control problems, such
as reactive collision avoidance, path following, and trajectory tracking. The thesis
studies three main topics:

• the unification of reactive collision avoidance and control allocation (Chap-
ter 3),

• formation path following using the null-space-behavioral algorithm (Part I,
Chapters 4–6),

• the hand position concept and its applications (Part II, Chapters 7–11).

This chapter presents the motivation and the contributions of the thesis.

1.1 Literature Review and Motivation

In this section, we present a general introduction to the problems studied in the
thesis, as well as an overview of the existing literature.

1.1.1 Marine Robots

In this section, we briefly introduce the three main types of marine robots and their
use. Marine robots (i.e., unmanned marine vehicles) are being increasingly used in
a variety of applications such as transportation [1, 2], inspection, maintenance and
repair [3, 4], mapping of underwater structures, e.g., shipwrecks [5], and various
oceanographic and environmental missions such as tracking of oil spills [6] and

1



1. Introduction

harmful algal blooms [7]. These vehicles often operate in environments that are
inaccessible or dangerous to humans, such as the deep sea or the Arctic.

Marine robots can generally be split into three categories: autonomous surface
vehicles (ASVs), remotely operated vehicles (ROVs), and autonomous underwater
vehicles (AUVs). ASVs are also referred to as autonomous ships, since their design
is commonly based on surface vessels such as kayaks [8], catamarans [9, 10], and
miniature ferries [2]. ASVs are used in scientific missions as well as transportation.
ROVs, also referred to as underwater drones, are small, box-shaped vehicles with
thrusters. ROVs are typically fully actuated, meaning that the configuration of
thrusters allows the vehicle to move and rotate in any direction. ROVs are de-
signed for low speeds, often less than 1.5 meters per second, and due to the high
power demands of the thrusters, the vehicles can only operate for a few hours [11].
Consequently, ROVs are used for short-term inspection, maintenance and repair
missions. To complete these missions, ROVs are connected to an operator via a
series of cables, referred to as the tether.

Conversely, AUVs are able to operate independently and without any connect-
ing cables. There are various types of AUVs. This thesis studies slender, torpedo-
shaped AUVs with a propeller that provides forward (surge) thrust, and fins that
provide torque. This configuration of actuators means that these AUVs are un-
deractuated, as we cannot directly control the lateral (sway and heave) velocities.
Compared to ROVs, AUVs can reach higher speeds and operate longer [12, 13],
making them suitable for long-term oceanographic missions.

1.1.2 Control Problems for AUVs

This section presents the various control problems for AUVs studied in this thesis.

The Trajectory-Tracking and Path-Following Problems

Arguably, the trajectory-tracking and path-following problems are the most inter-
esting and significant ones, since many high-level mission planners assume that the
vehicle is able to follow a given path or trajectory.

For the purposes of this thesis, a path is a curve (i.e., a one-dimensional object
in two- or three-dimensional Euclidean space), while a trajectory is a time-varying
reference position. In the literature, it is often stated that a trajectory is a “path
with temporal constraints” [14]. Consequently, in trajectory tracking, the desired
position of the vehicle for a given time is fixed, while in path following, we have
some freedom in choosing which point on the desired path should be followed at
a given time. A more detailed discussion on the differences between trajectory
tracking and path following is presented in Section 2.3.

To solve the trajectory-tracking problem, numerous methods based on back-
stepping [15, 16], sliding-mode control [17], control Lyapunov functions (CLFs)
[18], and model predictive control (MPC) [19] have been proposed.

To solve the path-following problem, most controllers utilize line-of-sight (LOS)
guidance. In [20], an integral LOS guidance scheme is used to counteract the sea
loads, [21] combines LOS guidance with an adaptively tuned PID controller, and
[22] uses LOS with active disturbance rejection control.
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1.1. Literature Review and Motivation

The Formation Path-Following Problem

In many applications, it is advantageous to perform the tasks with a group of co-
operating AUVs. Compared to a single vehicle, a group of AUVs can cover a larger
area (e.g., in inspection and oceanographic tasks). A group is also more flexible,
able to reconfigure if the parameters of the mission change, and able to complete
the task even if one or more AUVs fail. Many of the aforementioned applications
can be formulated as a formation path-following problem, i.e., a problem of steering
a group of AUVs along a predefined path in a given formation.

As presented in [23], there exists a plethora of formation path-following meth-
ods, most of them based on two concepts: coordinated path-following [24, 25] and
leader-follower [26, 27]. In the coordinated path-following approach, each vehicle fol-
lows a predefined path separately. Formation is then achieved by coordinating the
motion of the vehicles along these paths. In this approach, the formation-keeping
error (i.e., the difference between the actual and desired relative position of the
vehicles) may initially grow as the vehicles converge to their predefined paths. In
the leader-follower approach, one leading vehicle tracks the given path while the
followers adjust their speed and position to obtain the desired formation shape,
relative to the leader.

Both the coordinated path-following and the leader-follower method can be
solved using model predictive control [28, 29]. MPC is a model-based optimal
control method that allows us to enforce constraints on the inputs and states of the
vehicles. However, most MPC methods are based on sampling. Consequently, any
constraints on the inputs or states can only be enforced at discrete-time instances.
In other words, we have no control over the behavior of the system between the
samples. We can mitigate this issue by decreasing the sampling time. However, by
decreasing the sampling time, we increase the number of optimized variables, thus
increasing the computational requirements.

In recent years, researchers have focused on computationally tractable MPC
schemes. One possibility of reducing the computational requirements is to param-
etrize the vehicles’ trajectories using splines. A spline-based path-planning MPC
algorithm for first-order nonholonomic vehicles was proposed [30]. The algorithm
solves the point-to-point formation tracking problem with static obstacles. Another
spline-based MPC algorithm was proposed in [31]. This algorithm is applicable to
a wider range of systems compared to [30], and it has been demonstrated on point-
to-point and trajectory-tracking problems.

Another method that can be applied to the formation path-following problem
is the so-called null-space-behavioral (NSB) algorithm [32–35]. In the NSB frame-
work, the control objective is expressed using multiple tasks. By combining several
simple tasks, the vehicles can exhibit the desired complex behavior. In the liter-
ature, there are many examples of NSB algorithms applied to kinematic vehicles
[32] and marine vehicles moving in the horizontal plane [33–35].

However, the standard NSB algorithm is centralized, meaning that in a real-life
application, there must be a central node that communicates and coordinates with
all the vehicles. While underwater, the AUVs typically communicate via acoustic
modems. These modems have low bandwidth and significant delays, making them
unsuitable for real-time control. A distributed NSB algorithm was proposed in

3



1. Introduction

[36]. In this algorithm, the group of vehicles is split into smaller, fully connected
subgroups. Each subgroup performs the standard, centralized NSB algorithm. The
proposed method is limited to static formations. A similar scheme was proposed
in [37], where a group of heterogenous surface vehicles is split into homogenous
subgroups. Each subgroup has one leading vehicle that exchanges information
with the leaders of other subgroups.

1.1.3 Safety Constraints

This section presents the various constraints that need to be considered when de-
ploying autonomous vehicles.

Collision Avoidance

Autonomous vehicles are often used in cluttered and unpredictable environments
where considerations to other vehicles and obstacles need to be made. Therefore,
the control system of autonomous vehicles should include some form of collision
avoidance (COLAV).

Reviews of various COLAV concepts are presented in [38–40]. In general, algo-
rithms for COLAV can be split into two categories: motion planning and reactive
algorithms.

Motion planning algorithms include, among others, various types of path plan-
ning algorithms [41–44], the dynamic window algorithm [45], and MPC. MPC can
be used both for a single vehicle [46, 47] and for multi-agent systems in a distributed
form [48, 49]. Some motion planning algorithms also include consideration of rel-
evant traffic protocols that apply in the given domain, e.g., the regulations for
marine vehicles known as COLREGs [41–43].

Reactive algorithms for COLAV include, among others, virtual potential fields
[50], geometric guidance [51], and control barrier functions (CBFs) [52–56]. Re-
active algorithms are often used together with motion planning algorithms in a
hybrid controller. In such a controller, the reactive algorithm ensures the safety of
the vehicle in unexpected situations. Such an algorithm is proposed in [57], where
a collision-free velocity reference is obtained through numerical optimization.

CBFs offer a COLAV method that is applicable to a wide range of systems
[58]. In the literature, there are typically two ways in which CBFs are applied
for COLAV. They are either applied to a simplified model of the vehicle (e.g., a
unicycle model [52, 53]) to provide safe velocity references, or they are used together
with CLFs [54–56] on the complete model.

Reactive COLAV methods that work with a simplified model do not take into
account the physical limitations of the vehicle, such as acceleration or actuator
constraints. Consequently, these methods may output reference signals that the
underlying controllers cannot track. To mitigate this, reactive COLAV methods
should be included at the lowest-possible control level.
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Connectivity Maintenance

In addition to COLAV, autonomous vehicles often need to maintain a sufficiently
close distance to each other to guarantee the reliability of the communication and
the connectivity of the multi-agent system. In special cases when the vehicles use
optical sensors or communications, the vehicles are also limited by field-of-view
(FOV) constraints.

Many works in the literature address the coordination problem of multiple ma-
rine vehicles under such inter-agent constraints. In [59, 60] planning-based methods
are developed to generate trajectories that satisfy the constraints. However, plan-
ning algorithms usually require a priori knowledge of the environment, which might
be unrealistic in highly dynamical environments, such as under water. Reactive al-
gorithms are based, e.g., on artificial potential fields [61, 62] and barrier Lyapunov
functions (BLFs) [63, 64].

1.2 Outline and Contributions

Chapter 3: Unifying Reactive Collision Avoidance and Control Alloca-
tion

This chapter differs from the rest of the thesis in the considered vehicle model. In
this chapter, we consider overactuated vehicles, i.e., vehicles with more actuators
than degrees of freedom (DOFs). As mentioned in Section 1.1, reactive collision
avoidance should be included at the lowest-possible control level. Overactuated ve-
hicles often use control allocation in their lowest-level controller [65]. Most control
allocation methods are based on numerical optimization [66–68] which makes them
ideal for augmenting with control barrier functions (CBFs).

The main contribution of Chapter 3 is a reactive collision avoidance (COLAV)
algorithm that is included at the lowest level in the control pipeline, i.e. in the
control allocation, to ensure the safety of the vehicle regarding collision avoidance.
Since it is included at the lowest-possible control level, it also ensures the “baseline”
safety of any other higher level (long term/deliberate) planners of the vehicle guid-
ance, navigation and control system. The algorithm can easily be implemented on
vehicles that apply a numerical optimization-based method to control allocation.
Moreover, the algorithm does not rely on any communication between the vehi-
cles; the only required information is the position and velocity of other vehicles.
The chapter extends the results in [69], which only considers autonomous surface
vehicles (ASVs) and simple encounters between one ASV and a vessel moving at
a constant course and speed, making the method applicable to a wider range of
vehicles and scenarios with multiple autonomous vehicles.

Chapter 4: Formation Path-Following Control of 5DOF Underactuated
AUVs

As mentioned in Section 1.1, the NSB algorithm has been applied to kinematic
vehicles (i.e., vehicles with single-integrator dynamics), as well as ASVs and AUVs
moving in the horizontal plane. Chapter 4 extends the NSB algorithm to AUVs
moving in three dimensions.
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Specifically, the chapter extends the results of [35], where an NSB algorithm is
used to guide two ASVs, by proposing an algorithm that works with an arbitrary
number of AUVs with five degrees of freedom (DOFs) moving in 3D. We solve
the formation path-following problem by defining three tasks: collision avoidance,
formation keeping, and path following. The tasks are combined using the NSB
algorithm to achieve the desired behavior. Similarly to [35], we solve the path-
following task using LOS guidance. Using the cascaded systems theory results
of [70], we prove that the closed-loop system consisting of a 3D LOS guidance
law, combined with surge, pitch, and yaw autopilots based on [71], is uniformly
semiglobally exponentially stable (USGES) and uniformly globally asymptotically
stable (UGAS). The theoretical results are verified through numerical simulations.

Chapter 5: Formation Path-Following Control of 6DOF Underactuated
AUVs

This chapter further extends the NSB algorithm proposed in Chapter 4. The algo-
rithm in Chapter 4 uses a 5DOF AUV model, considers only inter-vehicle collision
avoidance, and proves only the stability of the path-following task. Furthermore,
the orientation of the 5DOF model was expressed using Euler angles, which causes
singularities for a pitch angle of ±90 degrees.

This work applies the NSB algorithm to a full 6DOF model, uses rotation
matrices to describe the attitude of the vehicles to avoid singularities, modifies
and extends the tasks, and proves the stability of the combined path-following and
formation-keeping tasks. We also add a scheme for obstacle avoidance and a scheme
that keeps the vehicles within a given range of depths. As opposed to the previous
work, we do not limit the analysis to a specific low-level attitude controller. Con-
sequently, the new algorithm can be integrated into existing on-board controllers.
Assuming that the existing low-level controller allows exponential tracking, we use
results from cascaded systems theory [70] to prove that the closed-loop system com-
posed by the NSB algorithm and the low-level controller is uniformly semiglobally
exponentially stable (USGES). We verify the results in numerical simulations.

Chapter 6: A Distributed NSB Algorithm for Formation Path Following

The algorithms presented in Chapters 4 and 5 are centralized, making them difficult
to use in real-life applications. As mentioned in Section 1.1, there are distributed
NSB algorithms [36, 37]. However, these algorithms work by dividing the fleet
into smaller, fully connected subgroups, or by using leading vehicles. In both
approaches, there is still a requirement for fast and reliable communications within
the subgroups and between the leaders. Furthermore, the leader-follower scheme
is vulnerable to failures of the leading vehicles.

Chapter 6 presents an approach that is fully distributed, so that the fleet does
not need to decompose into subgroups nor requires leading vehicles. To do so,
the proposed algorithm combines the centralized schemes presented in Chapters 4
and 5 with a consensus algorithm. Specifically, we first propose a continuous-time
consensus algorithm and prove its stability using Lyapunov analysis. Then, we
present a modified discrete-time version of the algorithm based on event-triggered
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control. The effectiveness of both the continuous- and discrete-time algorithms is
demonstrated in numerical simulation. Furthermore, the discrete-time version is
also tested in field experiments.

Chapter 7: Hand Position for Underactuated Underwater Vehicles

This thesis studies slender torpedo-shaped autonomous underwater vehicles (AUVs)
with a propeller that provides forward (surge) thrust, and fins that provide torque.
The configuration of actuators means that AUVs are underactuated, as we cannot
directly control the lateral (sway and heave) velocities. Most control algorithms
use the so-called neutral point of the vehicle as the output of the system (see
Figure 1.1a). The neutral point is a location on the x-axis (the stern-bow axis) of
the vehicle such that, if chosen as the origin of the vehicle’s body-fixed coordinate
frame, the lateral motion of the vehicle is not affected by its control inputs. Due
to the underactuated nature of the AUV, controlling the neutral point requires
specialized algorithms, such as line-of-sight guidance [20–22, 72]. In this chapter,
we propose to use the hand position concept to control the AUV. The hand position
is a point located a given distance in front of the neutral point along the vehicle’s
x-axis (see Figure 1.1b for an illustration). The concept was first introduced in [73]
to stabilize nonholonomic vehicles with unicycle dynamics. Later, it was applied
to control formations of unicycles [74]. The concept was then extended to marine
vehicles moving in the horizontal plane [14], and two- and three-dimensional Euler-
Lagrange-like systems [75, 76].

There are two main advantages to using the hand position concept. The first
advantage stems from the applications of AUVs. The aim of many scientific mis-
sions is to scan a given area using a sensor attached to the AUV. Since the position
of the sensor typically does not coincide with the neutral point, there may be a
significant offset between the sensor and the desired trajectory, caused by the sea
loads (see Figure 1.1a). In some cases, the hand position can be chosen such that it
coincides with the position of the sensor, allowing to scan the area more accurately.
The second advantage is that if we choose the hand position as the output of our
system, it is possible to transform the nonlinear underactuated vehicle model to
a double integrator, using output feedback linearization. This allows us to apply
advanced control strategies, e.g., various consensus algorithms [74–77] that cannot
be directly used on nonholonomic or underactuated vehicles.

neutral
point

ocean current

path

hand
position

path

sensor

(a) (b)

Figure 1.1: Illustration of (a) the traditional approach where the aim is to
control the neutral point of the vehicle, and (b) the proposed hand position-based
approach. The dashed line represents the body-fixed x-axis.
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Note that the three-dimensional Euler-Lagrange-like system used in [76] does
not accurately represent AUVs, since it does not consider the Coriolis and cen-
tripetal effects or the restoring forces (gravity and buoyancy). Furthermore, the
model in [76] has five degrees of freedom (DOFs): three position coordinates, pitch
angle, and yaw angle. The use of Euler angles inherently introduces singularities
into the system.

The goal of this chapter is thus to further extend the hand position concept to
AUVs moving in three dimensions. We employ a more realistic AUV model than
in [76]. We model the full 6DOF motion and use rotation matrices to describe the
orientation of the vehicle, thus avoiding singularities. Using Lyapunov analysis,
we derive the sufficient conditions for boundedness of the internal states, i.e., the
orientation and the angular velocities, for a generic hand position-based controller.

Chapter 8: Trajectory Tracking and Path Following using the Hand
Position Concept

In this chapter, we use the hand position concept to solve the trajectory-tracking
and path-following problems. Specifically, we show that these two problems can
be solved using the hand position transformation and a simple PID controller.
We analyze the closed-loop behavior of the system and prove that the proposed
controllers exponentially track the desired trajectory or path, while the angular
velocities of the vehicle remain bounded. Moreover, we prove that in the special
case when the desired trajectory or path is a straight line, the whole closed-loop
system is exponentially stable. The theoretical results are verified both in numerical
simulations and experiments.

Chapter 9: Distributed MPC for Formation Path-Following of Multi-
Vehicle Systems

In this chapter, we employ the spline-based MPC presented in [30, 31] to solve the
formation path-following problem. The proposed scheme is applicable to a wide
range of vehicles. The only restriction is that the model of the vehicle must be
differentially flat. The spline-based MPC scheme can thus be seen as a trade-off
between lower computational requirements and more restrictive assumptions on
the model.

We present the results of two numerical case studies. The first case study
considers a fleet of AUVs. To make the AUV model differentially flat, we employ
the hand position transformation. The second case study considers a group of
differential drive robots modeled as first-order unicycles.

Chapter 10: Control of AUVs Under Hard and Soft Constraints

This chapter investigates the tracking-in-formation problem for a fleet of AUVs.
This problem is similar to the formation path-following problem, except that the
fleet should track a desired trajectory instead of following a desired path. We
assume that the AUVs communicate over a directed topology and are subject to
the COLAV and connectivity constraints discussed in Section 1.1.
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Under the control designs proposed in the literature, in many instances, in order
to guarantee the satisfaction of the inter-agent constraints, the vehicles are forced
to move backwards, oftentimes during a prolonged period of time and at relatively
high speeds (for backwards motion of a marine vehicle). However, although marine
vehicles are able to move backwards, they are not well-suited to do so due to their
shapes and their propulsion system. This issue, however, has not been addressed
in the literature of multi-AUV systems.

In Chapter 10, we propose a distributed control law that solves the tracking-in-
formation problem for multiple marine vehicles interacting over a directed commu-
nication graph and that guarantees, simultaneously, connectivity preservation and
inter-agent collision avoidance. Moreover, we address the issue of backwards motion
by imposing a non-negativity constraint on the surge velocity of the vehicles. More
precisely, on one hand we encode via BLFs the proximity and safety constraints as
hard constraints that need to be always satisfied. On the other hand, we encode
the non-negativity of the surge velocity as a soft constraint, so that it is imposed on
the vehicles as long as it does not interfere with the hard constraints, in which case
it is dynamically relaxed. The proposed controller is based on the hand-position-
based input-output feedback linearization method presented in Chapter 7 and on
the so-called edge-agreement representation of multi-agent systems [78], in which
the relative states of the connected agents are used instead of the absolute ones,
making it well adapted to practical applications where, usually, only relative mea-
surements are available. With regards to the stability analysis, differing from most
of the existing works in the literature, where only non-uniform convergence to the
formation and to the target vehicle is guaranteed, we establish almost-everywhere
uniform asymptotic stability of the tracking-in-formation objective and we show
that the output error dynamics converge to the origin exponentially fast, while
satisfying the constraints.

Chapter 11: Combining NSB with the Hand Position Approach

This chapter presents an extended null-space-behavioral (NSB) algorithm for vehi-
cles with second-order dynamics. The NSB algorithm, as presented in the existing
literature, is developed for kinematic single-integrator systems [33, 35, 79]. Al-
though existing NSB methods are developed for first-order systems, AUV dynam-
ics are inherently second-order. Therefore, any first-order solution is necessarily
perturbed by the dynamics of the maneuvering controller. In Chapter 11, we ex-
tend the NSB method to vehicles with double integrator dynamics and propose
an algorithm that uses the second-order closed-loop inverse kinematics equation to
control the task variables through desired acceleration. The procedure is inspired
by robotic manipulators, where second-order methods are more common, due to
the inherent second-order dynamics of mechanical systems [80, 81]. Compared to
the existing methods, our formulation handles the second-order dynamics directly
in the task space as interpretable mass-spring-damper systems.

We apply the proposed NSB method to a fleet of AUVs. To make the pro-
posed method applicable to AUVs, we use the hand position transformation. Sub-
sequently, through the design of specific path-following, formation-keeping, and
collision-avoidance tasks, we can control the fleet to follow a given path in a for-
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mation while avoiding collisions both within the fleet and with external obstacles.
We prove the stability of the control scheme using Lyapunov analysis and verify its
effectiveness in simulations. Because our reformulated NSB method works directly
with the second-order system, there is no need to transform desired velocities or
accelerations into surge and orientation references, as has been done in previous
works. This reduces one level of complexity in the controller design.
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Chapter 2

Background

The latter consisted simply of six hydrocoptic
marzlevanes, so fitted to the ambifacient lunar
waneshaft that side fumbling was effectively
prevented.

— John Hellins Quick, “The turbo-encabulator
in industry,” Students’ Quarterly Journal, 1944.

This chapter presents some of the background theory that is used in the thesis.
The theory presented here is relevant to multiple chapters throughout the thesis.
In Section 2.1, we present a control-oriented model of marine vehicles. Section 2.2
presents the theory behind paths, that is then used in Section 2.3 to define the
formation path-following problem. In Section 2.4, we then present the line-of-sight
guidance algorithm as a method for solving the path-following problem. Section 2.5
presents the NSB algorithm as a method for solving the combined formation path-
following problem. Finally, Section 2.6 presents the concept of uniform semiglobal
exponential stability.

2.1 Mathematical Models of Marine Vehicles

Mathematical models are vital to the design, analysis, and verification of control
algorithms. For complex systems, such as marine vehicles, there typically exist
different types of models. These models often represent a trade-off between sim-
plicity and fidelity. On one end of the spectrum, there are high-fidelity models.
These models are an accurate representation of the system. Consequently, high-
fidelity models are used in ship-handling simulators, as well as in some simulation
environments, e.g., the Unified Navigation Environment (DUNE) [89], to train the
operators and to verify the effectiveness of control algorithms. However, due to
their complexity, these models are not suitable for designing or analyzing control
algorithms.

On the other end of the spectrum, there are control-oriented models. Compared
to high-fidelity models, the structure of control-oriented models is simpler. This
simplicity means that we can use these models to design control algorithms and
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analyze their closed-loop properties. The control-oriented models are thus designed
to capture the system properties that are the most significant and relevant for the
design of the control system. The inaccuracies of control-oriented models can be
compensated by designing robust controllers.

This section presents control-oriented models of autonomous surface vehicles
(ASVs) and autonomous underwater vehicles (AUVs). The presented models are
similar to those used in [72] and [90]. The models are based on the matrix-vector
models of marine vehicles [91] and some simplifying assumptions.

2.1.1 State Variables and Degrees of Freedom

Marine vehicles are typically modeled as rigid bodies. A rigid body moving in
three-dimensional space has six DOFs, three for position and three for orientation.

The position of a marine vehicle is commonly expressed in a local north-east-
down (NED) coordinate frame. Although the NED frame is not inertial, it is often
used as an approximation of an inertial coordinate frame for short-term and short-
distance missions, since the effect of Earth’s rotation on the vehicles is negligible.
In general, we will denote the position of the vehicles as p = [x, y, z]

T.
The orientation of a vehicle can be expressed using Euler angles, Θ = [ϕ, θ, ψ]

T,
where ϕ is the roll angle, θ is the pitch angle, and ψ is the yaw angle. The complete
position and orientation vector of the vehicle is then given by ηT =

[
pT,ΘT

]
.

Although Euler angles can represent any orientation, in some cases, this rep-
resentation is not unique. For example, the following two sets of Euler angles
represent the same attitude

Θ1 =
[π
2
,
π

2
, 0
]T
, Θ2 =

[
0,
π

2
,−π

2

]T
. (2.1)

At these attitudes, there exist mathematical singularities called gimbal locks [92].
Furthermore, the use of Euler angles in control may lead to a phenomenon called
unwinding [93], in which the vehicle performs an unnecessary rotation to reach the
desired attitude.

The orientation of a vehicle can also be described using a rotation matrix.
Rotation matrices are members of the special orthogonal group SO(3). Unlike
Euler angles, rotation matrices do not suffer from singularities. For a given set of
Euler angles, the corresponding rotation matrix is given by [91]

R(ϕ, θ, ψ) =

cψ cθ cψ sϕ sθ − cϕ sψ sϕ sψ + cϕ cψ sθ
cθ sψ cϕ cψ + sϕ sψ sθ cϕ sψ sθ − cψ sϕ
−sθ cθ sϕ cϕ cθ

 , (2.2)

where cx and sx represent the cosine and sine of the corresponding angle.
Next, let us discuss the representation of velocities. The velocities of the vehicle

are expressed in the body-fixed frame, a non-inertial coordinate frame attached
to the vehicle, with the x-axis pointing towards the bow (front) side, the y-axis
pointing to the starboard (right) side, and the z-axis pointing to the bottom side of
the vehicle. The linear velocities of the vehicle υ = [u, v, w]

T consist of the surge,
sway, and heave velocities. The angular velocities of the vehicle ω = [p, q, r]

T
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consist of the roll, pitch, and yaw rates. The full velocity vector is then given by
νT =

[
υT,ωT

]
.

Throughout the thesis, we denote velocities in the body-fixed frame as υ, while
velocities in the inertial frame are denoted as v. The difference between these two
types of velocities is illustrated in Figure 2.1.

Finally, let us discuss simplified 3DOF and 5DOF models. In the case of ASVs
or AUVs moving in the horizontal plane, we often assume that the roll and pitch
angles are zero, and that the depth is constant. Consequently, we can disregard
the roll, pitch, and heave motion of the vehicle, and derive a simplified 3DOF
model with η = [x, y, ψ]

T and ν = [u, v, r]
T. In the case of slender, torpedo-shaped

AUVs, the roll motion is assumed to be small and self-stabilizing by the design of
the vehicle. Consequently, we can disregard the roll motion and derive a simplified
5DOF model with η = [x, y, z, θ, ψ]

T and ν = [u, v, w, q, r]
T.

2.1.2 Kinematics

First, let us discuss the kinematics of the vehicles, starting with the 6DOF model.
The time-derivative of the position is

ṗ = Rυ. (2.3)

The time-derivative of the Euler angles is given by [91]

Θ̇ = T(Θ)ω, T(Θ) =

1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ

 , (2.4)

where tθ = tan(θ). Due to the aforementioned singularities, Θ̇ is not defined for
θ = ±π/2. The time-derivative of a rotation matrix is given by

Ṙ = RS(ω), S(ω) =

 0 −r q
r 0 −p
−q p 0

 . (2.5)

p

x
y

z

u
O

v υ
w

(a) Illustration of body-fixed veloci-
ties. The kinematics of the vehicle are
ṗ = Rυ.

p

x
y

z

O

v

(b) Illustration of inertial velocities.
The kinematics of the vehicle are ṗ =
v.

Figure 2.1: Illustration of the difference between body-fixed and inertial veloci-
ties.
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To derive the kinematics of the 5DOF model, we simply substitute ϕ = 0 and
p = 0 into (2.3) and (2.4), and get

ṗ = R(0, θ, ψ)υ, (2.6a)

θ̇ = q, (2.6b)

ψ̇ =
r

cos(θ)
. (2.6c)

Similarly, we can derive the kinematics of the 3DOF model by substituting
z = ϕ = θ = w = p = q = 0 into (2.3) and (2.4)

η̇ = J(ψ)ν, J(ψ) =

cψ −sψ 0
sψ cψ 0
0 0 1

 . (2.7)

2.1.3 Dynamics

When modeling the dynamics of marine vehicles, we often need to consider the effect
of sea loads such as waves, wind, and ocean currents. Let Vc ∈ R3 be a vector
that represents the velocity of the ocean current in the inertial coordinate frame.
Since the dynamics of ocean currents are typically much slower than the dynamics
of the vehicle, the ocean current can be considered constant and irrotational. Let
υc = RTVc denote the velocity of the ocean current expressed in the vehicle’s
body-fixed frame. Furthermore, let υr = υ− υc ≜ [ur, vr, wr]

T denote the relative
surge, sway, and heave velocity of the vehicle, and let νT

r =
[
υT
r ,ω

T
]

denote the
full relative velocity vector. The dynamics of the vehicle can then be expressed
using the following matrix-vector model [91]

Mν̇r +C(νr)νr +D(νr)νr + g(R) = τ , (2.8)

where M is the mass and inertia matrix, including the added mass effects, C(νr)
is the Coriolis and centripetal matrix, also including the added mass, D(νr) is the
hydrodynamic damping matrix, g(R) represents the effects of gravity and buoy-
ancy, and τ represents additional forces and torques such as the effects of actuators
and external disturbances.

The model in (2.8) can also be expressed in terms of absolute velocities

M (ν̇ − ν̇c) +C(ν − νc)(ν − νc) +D(ν − νc)(ν − νc) + g(R) = τ , (2.9)

where νT
c =

[
υT
c ,0

T
]
.

The inertia matrix M is symmetric positive definite, the damping matrix D
is positive definite, and the Coriolis matrix C is parametrized so that it is skew-
symmetric. There exist multiple expressions for the Coriolis matrix, e.g.,

C(νr)=

[
O3×3 −S(M11υr +M12ω)

−S(M11υr +M12ω) −S(M21υr +M22ω)

]
,

[
M11 M12

M21 M22

]
=M. (2.10)

The gravity and buoyancy vector is given by [91]

g(R) = −
[

(W −B)RTe3
(Wrg −Brb)×RTe3

]
, (2.11)
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where W ∈ R>0 is the gravitational force, B ∈ R>0 is the buoyant force, rg is the
position of the center of gravity, rb is the position of the center of buoyancy, and
e3 = [0, 0, 1]

T.

2.1.4 Control-Oriented Model of Underactuated AUVs

Before deriving the control-oriented model, we need to present the assumptions
that allow us to simplify the matrix-vector model in (2.8).

Assumption 2.1. The vehicle is slender, torpedo-shaped, with port-starboard sym-
metry.

Assumption 2.2. The vehicle is maneuvering at low speeds. Consequently, the
hydrodynamic damping can be considered linear.

Under Assumption 2.2, the hydrodynamic damping matrix is constant. Under
Assumption 2.1, the inertia and damping matrices have the following structure

M=


m11 0 0 0 0 0
0 m22 0 0 0 m26

0 0 m33 0 m35 0
0 0 0 m44 0 0
0 0 m35 0 m55 0
0 m26 0 0 0 m66

, D=


d11 0 0 0 0 0
0 d22 0 0 0 d26
0 0 d33 0 d35 0
0 0 0 d44 0 0
0 0 d53 0 d55 0
0 d62 0 0 0 d66

.
(2.12)

Assumption 2.3. The vehicle is equipped with a propeller and fins. Consequently,
the vehicle is capable of generating a force in the surge direction and torques around
all three axes.

Under this assumption, the external forces acting on the vehicle are given by

τ = Bf , B =


b11 0 0 0
0 0 0 b24
0 0 b33 0
0 b42 0 0
0 0 b53 0
0 0 0 b64

 , (2.13)

where f = [Tu, Tp, Tq, Tr]
T is the control input consisting of the surge thrust and

the forces produced by the fins.
If the vehicle model (2.8) satisfies Assumptions 2.1–2.3, then we can perform a

change of coordinates such that the actuators produce no sway or heave accelera-
tion. In other words, for all inputs f , there exist fu, tp, tq, tr ∈ R such that

M−1Bf = [fu, 0, 0, tp, tq, tr]
T
. (2.14)

This change of coordinates was demonstrated for 5DOF vehicles in [72], and can
be trivially extended to 6DOFs. The transformed body-fixed velocities, ν′

r, are

ν′
r = [ur, vr + ε1r, wr + ε2q, p, q, r]

T
, (2.15)
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where ε1, ε2 ∈ R. This transformation can also be written as

νr = Hν′
r, H =

 I3

0 0 0
0 0 −ε1
0 −ε2 0

O3×3 I3

 . (2.16)

The transformed dynamics are then given by

M′ν̇′
r +C′(ν′

r)ν
′
r +D′ν′

r +HTg(R) = HTτ , (2.17)

where M′ = HTMH, D′ = HTDH are the transformed inertia and damping
matrices, and C′(ν′

r) = HTC(νr)H.
If we choose

ε1 =
b24m66 − b64m26

b24m26 − b64m22
, ε2 =

b33m55 − b53m35

b33m35 − b53m33
, (2.18)

the effect of the actuators on the dynamics of ν′ is given by

M′−1
HTBf =



b11
m11

Tu
0
0

b42
m44

Tp
(b53m33−b33m35)
m33m55−m35

2 Tq
(b64m22−b24m26)
m22m66−m26

2 Tr


. (2.19)

We have thus shown that (2.14) is satisfied with

tu =
b11
m11

Tu, tp =
b42
m44

Tp, (2.20a)

tq =
(b53m33 − b33m35)

m33m55 −m35
2
Tq, tr =

(b64m22 − b24m26)

m22m66 −m26
2
Tr. (2.20b)

Moreover, if all the numerators in (2.20) are nonzero, then the converse holds
as well, i.e., for all tu, tp, tq, tr, there exists an input f such that (2.14) holds.
Consequently, we can treat tu, tp, tq, tr as the new inputs to the system.

Remark. If the vehicle is rotationally symmetric around the x-axis ( i.e., if
m22 = m33, m35 = −m26, m55 = m66, b33 = −b24, and b53 = b64), then we
have ε1 = −ε2, and the transformation (2.16) corresponds to moving the body-fixed
coordinate frame a distance ε1 along the body-fixed x-axis.

Assumption 2.4. The vehicle is neutrally buoyant, with the centers of gravity and
buoyancy located on one vertical axis.

Under this assumption, g(R) has the following shape

g(R) =

[
03

Wzgbe3 ×RTe3

]
, (2.21)

where zgb is the distance between the centers of gravity and buoyancy.
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2.1. Mathematical Models of Marine Vehicles

2.1.5 The Component Form

In this section, we express the matrix-vector model (2.8) in a component form by
writing out the equations of motion for the individual state variables. The purpose
of this model is to gain a better understanding of the AUV dynamics, which allows
us to design low-level controllers and analyze their closed-loop behavior.

Consider an AUV model that satisfies Assumptions 2.1–2.4. Then, the model
in the component form is given by

u̇r = Fu(νr) + fu, (2.22a)
v̇r = Xv(ur)r + Yv(ur)vr + Zv(p)wr, (2.22b)
ẇr = Xw(ur)q + Yw(ur)wr + Zw(p)vr +G(R), (2.22c)
ṗ = Fp(νr) + tp, (2.22d)
q̇ = Fq(νr) + tq, (2.22e)
ṙ = Fr(νr) + tr. (2.22f)

The expressions for Fu, Xv, Yv, Zv, Xw, Yw, Zw, G, Fp, Fq, and Fr are shown
in Appendix A.1. Note that u̇r, ṗ, q̇, and ṙ depend on the control inputs. Conse-
quently, it is possible to stabilize these states using feedback control. The states
v and w are commonly referred to as the underactuated dynamics of the vehicle,
as these states cannot be controlled directly. The terms Yv and Yw represent the
effects of hydrodynamic damping. Because hydrodynamic damping is dissipative,
the terms Yv and Yw are negative. The term G represents the effects of gravity and
buoyancy on the heave velocity. The remaining terms represent the Coriolis and
centripetal forces.

In the remainder of this section, we derive a component form for the absolute
velocities. From (2.22), we have

u̇ = Fu(ν − νc) + u̇c + fu, (2.23a)
v̇ = Xv(u− uc)r + Yv(u− uc)(v − vc) + Zv(p)(w − wc) + v̇c, (2.23b)
ẇ = Xw(u− uc)q + Yw(u− uc)(w − wc) + Zw(p)(v − vc) +G(R) + ẇc, (2.23c)
ṗ = Fp(ν − νc) + tp, (2.23d)
q̇ = Fq(ν − νc) + tq, (2.23e)
ṙ = Fr(ν − νc) + tr. (2.23f)

From the expressions in Appendix A.1, we conclude that all terms in (2.22)
that contain the relative velocities are either linear or quadratic. Since the relative
velocities are affine in the ocean current (υr = υ −RTVc), we can conclude that
all terms in (2.23) that contain the ocean current are also linear or quadratic.
Consequently, if we denote the components of the ocean current velocity as Vc =

17
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[Vx, Vy, Vz]
T, the model (2.23) can be written as

u̇ = Fu(ν) + fu +Φu(ν,R)TVc, (2.24a)

v̇ = Xv(u)r + Yv(u)v + Zv(p)w +Φv(ν,R)TVc, (2.24b)

ẇ = Xw(u)q + Yw(u)w + Zw(p)v +G(R) + Φw(ν,R)TVc, (2.24c)

ṗ = Fp(ν,R) + tp +Φp(ν,R)TVc, (2.24d)

q̇ = Fq(ν,R) + tq +Φq(ν,R)TVc, (2.24e)

ṙ = Fr(ν) + tr +Φr(ν,R)TVc, (2.24f)

where Vc =
[
Vx, Vy, Vz, V

2
x , V

2
y , V

2
z , VxVy, VxVz, VyVz

]T. The expressions for Φu,
Φv, Φw, Φp, Φq, and Φr are omitted in this thesis. Instead, let us present a method
for finding them.

Let r1, r2, and r3 denote the columns of the rotation matrix R. The ocean
current velocities in the body-fixed frame are given by

υc = RTVc =⇒ uc = rT1 Vc, vc = rT2 Vc, wc = rT3 Vc. (2.25)

Suppose then that the right-hand side of (2.22) contains a linear term, e.g. kur,
where k ∈ R. This term can be expressed as

kur = k(u− uc) = ku− krT1 Vc = ku+ kφT
uVc, (2.26)

where φT
u =

[
−rT1 ,0T

6

]
. We can derive similar equations for linear terms containing

vr and wr.
Next, consider a quadratic term, e.g., kurvr, where k ∈ R. This term can be

expressed as

kurvr = k(uv − uvc − ucv + ucvc) = kuv + kφuv(u, v)
TVc, (2.27)

where

φuv(u, v)
T =

[
− urT2 − vrT1 , r11r21, r12r22, r13r23, r11r22 + r12r21, (2.28)

r11r23 + r13r21, r12r23 + r13r22
]
,

where

r1 = [r11, r12, r13]
T
, r2 = [r21, r22, r23]

T
. (2.29)

We can derive similar equations for all the other quadratic terms.
Finally, let us investigate the derivatives of the ocean current velocities. The

derivative of υc is
υ̇c = (RS(ω))

T
Vc ≜ [ṙ1, ṙ2, ṙ3]

T
Vc, (2.30)

where ṙ1, ṙ2, and ṙ3 denote the columns of RS(ω). The components of υ̇c are thus
given by

u̇c = ṙT1 Vc, v̇c = ṙT2 Vc, ẇc = ṙT3 Vc. (2.31)

We have thus shown that the AUV dynamics can be split into an ocean current-
independent and an ocean current-dependent part.

In the remainder of this section, we derive a component form for the 5DOF and
3DOF models.
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2.1. Mathematical Models of Marine Vehicles

5DOF Component Form

In the 5DOF model, the roll dynamics are disregarded. Consequently, the inertia,
damping, and Coriolis matrices of the 5DOF model are obtained by removing the
fourth row and fourth column from the inertia, damping, and Coriolis matrices of
the 6DOF model from Section 2.1.4.

The assumptions for deriving the 5DOF control-oriented model are analogous
to the assumptions in Section 2.1.4, with one exception. Due to fewer degrees of
freedom, Assumption 2.3 must be modified.

Assumption 2.3 (5DOF). The vehicle is equipped with a propeller and fins.
Consequently, the vehicle is capable of generating a force in the surge direction and
torques in pitch and yaw.

Under this assumption, the external forces acting on the vehicle are

τ = Bf , B =


b11 0 0
0 0 b23
0 b32 0
0 b42 0
0 0 b53

 , (2.32)

where f = [Tu, Tq, Tr]
T is the control input.

Similarly to Section 2.1.4, we can perform a change of coordinates so that the
actuators produce no sway or heave acceleration. In other words, for all inputs f ,
there exist fu, tq, tr ∈ R such that

M−1Bf = [fu, 0, 0, tq, tr]
T
. (2.33)

The component form of the 5DOF model is then simply obtained by substituting
p = 0 into (2.24)

u̇ = Fu(ν) + fu +Φu(ν, θ, ψ)
TVc, (2.34a)

v̇ = Xv(u)r + Yv(u)v +Φv(ν, θ, ψ)
TVc, (2.34b)

ẇ = Xw(u)q + Yw(u)w +G(θ) + Φw(ν, θ, ψ)
TVc, (2.34c)

q̇ = Fq(ν) + tq +Φq(ν, θ, ψ)
TVc, (2.34d)

ṙ = Fr(ν) + tr +Φr(ν, θ, ψ)
TVc. (2.34e)

3DOF Component Form

First, let us discuss the 3DOF control-oriented model. Similarly to the previous
section, the model is derived using assumptions that are analogous to the ones in
Section 2.1.4, with some modifications. Namely, due to fewer degrees of freedom,
Assumption 2.3 needs to be modified.

Assumption 2.3 (3DOF). The vehicle is equipped with a propeller and a rudder.
Consequently, the vehicle is capable of generating a force in the surge direction and
a torque in yaw.
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Under this assumption, the external forces acting on the vehicle are

τ = Bf , B =

b11 0
0 b22
0 b32

 , (2.35)

where f = [Tu, Tr]
T is the control input.

The inertia, damping, and Coriolis matrices of the 3DOF model are [90]

M =

m11 0 0
0 m22 m23

0 m23 m33

 , D =

d11 0 0
0 d22 d23
0 d32 d33

 , (2.36)

C(νr) =

 0 0 −m22vr −m23r
0 0 m11ur

m22vr +m23r −m11ur 0

 . (2.37)

In [90], it is shown that the origin of the body-fixed coordinate frame can be
chosen such that the actuators produce no sway acceleration. In other words, for
all inputs f , there exist fu, tr ∈ R such that

M−1Bf = [fu, 0, tr]
T
. (2.38)

The change of coordinates is done by translating the origin of the body-fixed frame
by ε along the x-axis. The transformed velocities are given by

ν′
r = Hνr, H =

1 0 0
0 1 ε
0 0 1

 . (2.39)

Similarly to the procedure in Section 2.1.4, we define the transformed inertia matrix
M′ = HTMH. If we choose

ε = −b22m33 − b32m23

b22m23 − b32m22
, (2.40)

then the effect of actuators in the new coordinate frame is given by

M′−1
HTBf =

 b11
m11

Tu
0

b32m22−b22m23

m22m33−m23
2 Tr

 . (2.41)

We can then perform a change of inputs

fu =
b11
m11

Tu, tr =
b32m22 − b22m23

m22m33 −m23
2
Tr, (2.42)

and express the 3DOF model in the following component form

u̇r = Fu(νr) + fu, (2.43a)
v̇r = Xv(ur)r + Yv(ur)vr, (2.43b)
ṙ = Fr(νr) + tr. (2.43c)

The expressions for Fu, Xv, Yv, and Fr are shown in Appendix A.1.
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2.2. Geometric Paths

2.2 Geometric Paths

This section presents the definitions of paths in the context of guidance. The theory
presented in this section applies to two- and three-dimensional Euclidean spaces.
Let nd ∈ {2, 3} denote the number of dimensions.

2.2.1 Paths and Their Parametrizations

A path is a curve in nd-dimensional space. A path can be expressed as a subset of
Euclidean space P ⊂ Rnd . A parametrization of a path is a function pp : R 7→ Rnd

whose image space represents the given path, i.e., {pp(s)|s ∈ R} = P . Note that
for a given path, there exist infinitely many parametrizations. For example, the
following two functions

pp,1(s) = [s, 0, 0]
T
, pp,1(s) =

[
s3, 0, 0

]T
, (2.44)

represent the same path; a straight line going through the origin, parallel to the
x-axis. Furthermore, if we multiply these parametrizations by a positive scalar, we
also get a valid parametrization. In general, if pp(s) is a path parametrization that
is defined for all s ∈ R, and ρ(s) is a monotonically increasing function that is also
defined for all s ∈ R, then pp(s) and pp(ρ(s)) parametrize the same path. We will
refer to pp(ρ(s)) as a reparametrization of pp(s).

2.2.2 Continuity and Regularity

Continuity of paths, also referred to as smoothness, is an important property, as
some vehicles are not able to follow a path that has discontinuities or sharp turns.
There are two types of continuity; parametric and geometric. Parametric continuity
is related to a specific parametrization of a path, while geometric continuity is
related to the curve itself. Here, we will only present the definition of parametric
continuity, as this will be used further in the thesis. For details on geometric
continuity, the reader is referred to [94]. Parametric continuity is denoted Cn, where
n ∈ Z≥0 is the order. A parametrization pp(s) is Cn if it is n-times continuously
differentiable.

A parametrization is regular if ∥∥∥∥∂pp∂s
∥∥∥∥ ̸= 0. (2.45)

A regular parametrization means that there are no “stops” along the path. Recalling
the two examples in (2.44), both pp,1 and pp,2 are C∞, but only pp,1 is regular
since the derivative of pp,2(s) at s = 0 is zero. Regularity is an important property
when defining the path-tangential vector and the path-tangential coordinate frame,
as we discuss next.

2.2.3 Path-Tangential Vector and Coordinate Frame

If a parametrization is C1 and regular, then the path-tangential vector is simply the
first partial derivative of pp(s) with respect to s.
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A path-tangential coordinate frame has its origin at pp(s), and is oriented such
that the path-tangential vector is aligned with its x-axis.

In the case of two-dimensional paths, this frame is uniquely defined. Let Rp(s) ∈
SO(2) be the rotation matrix between the path-tangential and the inertial frame.
This matrix is given by

Rp(s) =

[
cos (ψp(s)) − sin (ψp(s))
sin (ψp(s)) cos (ψp(s))

]
, ψp(s) = arctan2

(
∂yp(s)

∂s
,
∂xp(s)

∂s

)
,

(2.46)
where xp(s) and yp(s) are the components of pp(s).

In the case of three-dimensional paths, the path-tangential frame is not unique.
To make the x-axis of the coordinate frame aligned with the path-tangential vector,
the rotation matrix Rp(s) ∈ SO(3) must satisfy

Rp(s) [1, 0, 0]
T
=

∥∥∥∥∂pp(s)∂s

∥∥∥∥−1
∂pp(s)

∂s
. (2.47)

There exists a subspace of rotation matrices Rp(s) that satisfy (2.47). For the
purpose of this thesis, the choice of Rp(s) is not important as long as it is smooth
(i.e., the partial derivative of Rp(s) with respect to s exists and is continuous).

One potential method for choosing Rp(s) is to use Euler angles and enforce a
zero roll angle. The rotation matrix is then given by

Rp(s) =

cos (ψp(s)) cos (θp(s)) − sin (ψp(s)) cos (ψp(s)) sin (θp(s))
cos (θp(s)) sin (ψp(s)) cos (ψp(s)) sin (ψp(s)) sin (θp(s))

− sin (θp(s)) 0 cos (θp(s))

 , (2.48)

where

θp(s) = − arcsin

(
∂zp(s)/∂s

∥∂pp(s)/∂s∥

)
, ψp(s) = arctan2

(
∂yp(s)

∂s
,
∂xp(s)

∂s

)
. (2.49)

An illustration is shown in Figure 2.2. Note that the yaw angle ψp(s) is not defined
if the desired path is vertical (i.e., if θp(s) = ±π2 ). However, we also note that
most commercial AUVs can only reach a limited range of pitch angles, making
them unable to move vertically. Consequently, we should avoid designing vertical
paths, where the singularities of Euler angles become an issue.

2.2.4 Curvature

As previously mentioned, some vehicles are unable to follow paths with “sharp
turns”. For the purpose of this thesis, we define curvature as a measure of change
of the path-tangential coordinate frame.

In the two-dimensional case, the curvature, κ(s), is defined as

κ(s) =
∂ψp(s)

∂s
. (2.50)
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x

xp

y
O

z
zp

θp(s)
ψp(s)

pp(s) ≡ Op

yp

Figure 2.2: Illustration of the path-tangential coordinate frame. O denotes the
origin of the inertial coordinate frame, Op denotes the origin of the path-tangential
coordinate frame. The red line represents the projection of the path-tangential
vector onto the xy-plane of the inertial coordinate frame.

In the three-dimensional case, the curvature is not defined as a scalar, but rather
as a vector ωp(s) ∈ R3 such that

∂Rp(s)

∂s
= Rp(s)S (ωp(s)) . (2.51)

If the rotation matrix Rp(s) was chosen according to (2.48), then we can also define
curvature in pitch and yaw, κ(s) and ι(s), as

κ(s) =
∂θp(s)

∂s
, ι(s) =

∂ψp(s)

∂s
. (2.52)

The vector ωp(s) is then given by

ωp(s) = [−ι(s) sin (θp(s)) , κ(s), ι(s) cos (θp(s))]T . (2.53)

2.2.5 Parametrization by Arc Length

A path parametrization pp(s) is said to be a parametrization by arc length if, for
all s1, s2 ∈ R, we have ∫ s2

s1

∥∥∥∥∂pp(s)∂s

∥∥∥∥ds = s2 − s1. (2.54)

This condition is equivalent to ∥∥∥∥∂pp(s)∂s

∥∥∥∥ = 1. (2.55)

A convenient property of parametrizations by arc length is that the path pa-
rameter s can be interpreted as distance. Consequently, parametrizations by arc
length are useful when we want the vehicles to follow the path at a constant speed.
For example, choosing the corresponding path parameter s(t) such that ṡ(t) = 1
means that the vehicles should follow the path at a constant speed of 1 meter per
second.
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Now, let us discuss how to find a parametrization by arc length. Let pp(s) be an
arbitrary parametrization that is C1 and regular. Then, we can find a parametriza-
tion by arc length by reparametrizing pp(s), i.e., by finding a monotonically in-
creasing function ρ(s) : R 7→ R such that∥∥∥∥∂pp(ρ(s))∂s

∥∥∥∥ = 1. (2.56)

The function ρ(s) can be found by solving the following differential equation

∂ρ(s)

∂s
=

∥∥∥∥∂pp(ρ)∂ρ

∥∥∥∥−1

, ρ(0) = ρ0, (2.57)

where ρ0 ∈ R is the initial condition. Although the initial condition is arbitrary, it
is convenient to choose ρ0 = 0 so that the new parametrization starts at the same
point.

2.3 Formation Path Following

This section formally defines the formation path-following problem. Throughout
the section, we consider a fleet of N vehicles. Let p1, . . . ,pN denote the positions
of the vehicles.

2.3.1 The Path-Following Problem

To formulate the path-following problem, we first need to define the barycenter of
the fleet. The barycenter, pb, is given by the mean position of the vehicles, i.e.,

pb =
1

N

N∑
i=1

pi. (2.58)

To solve the path-following problem, we need to control the vehicles such that
the barycenter coincides with the desired path. Let pp(s) be the parametrization
of the desired path. Then, the goal of path following is to control the vehicles such
that

pb → pp(s). (2.59)

Let ppb denote the position of the barycenter in the path-tangential coordinate
frame (see Section 2.2.3).

ppb = RT
p (pb − pp(s)) . (2.60)

Note that ppb can be interpreted as the path-following error. Indeed, pb is equal to
pp(s) if and only if ppb is zero.

Furthermore, there is a geometric interpretation of the components of ppb . Let
us define [xpb , y

p
b , z

p
b ]

T
= ppb . The component xpb is commonly referred to as the

along-track error, since the value of xpb indicates whether the barycenter is “in front
of” or “behind” the desired path. The components ypb and zpb are referred to as the
cross-track errors, since they indicate the lateral deviation from the desired path.
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Path-Following versus Trajectory-Tracking

In the remainder of this section, we discuss the difference between the trajectory-
tracking and the path-following problem.

The goal of trajectory tracking is to control the vehicles such that the barycenter
follows a given trajectory pd(t). Note that the desired trajectory is a function of
time. Consequently, in trajectory tracking, the desired position of the barycenter
for a given time t is fixed. In path following, the desired position of the barycenter
depends on the path parameter s. The path parameter can thus be treated as an
additional degree of freedom when designing the path-following controller.

2.3.2 The Formation-Keeping Problem

The formation is defined by the relative positions of the vehicles. Let

prel,i = pi − pb, (2.61)

denote the position of vehicle i, relative to the barycenter. The goal of formation
keeping is to control the vehicles such that

prel,i → pf,i, ∀i = 1, . . . , N, (2.62)

where pf,1, . . . ,pf,N are vectors that represent the desired formation.
From (2.58) and (2.61), the sum of the relative positions is

N∑
i=1

prel,i =

N∑
i=1

pi −
1

N

N∑
j=1

pj

 = 0. (2.63)

Consequently, to make the formation-keeping problem feasible, pf,1, . . . ,pf,N must
be chosen such that

N∑
i=1

pf,i = 0. (2.64)

Formations can be split into two categories: static and dynamic. In static
formations, the vectors pf,i are constant. In dynamic formations, the vectors
pf,i are time-varying. In this thesis, we investigate a specific type of dynamic
formations: formations that rotate with the desired path. In this type of formation,
the desired relative positions are given by

pf,i = Rp(s)p
f
f,i, i = 1, . . . , N, (2.65)

where pff,i is a constant vector.
An example of a static and a dynamic formation is shown in Figure 2.3. In

both cases, the barycenter should follow a sine-wave path parametrized by

pp(s) =
[
s, 2 sin

(π
8
s
)]T

. (2.66)
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(a) Example of a static formation.
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(b) Example of a dynamic formation.

Figure 2.3: Examples of a static and a dynamic formation. The black line
represents the desired path, the blue and red lines represent the desired positions
of the vehicles. The markers represent the desired positions for s = 0, 4, . . . , 16.

Figure 2.3a shows a static formation consisting of two vehicles, with the desired
relative positions given by

pf,1 = [0, 1]
T
, pf,2 = [0,−1]T . (2.67)

Figure 2.3a shows a dynamic formation that rotates with the desired path. The
formation consists of two vehicles with the desired relative positions given by

pf,i = Rp(s)p
f
f,i, pff,1 = [0, 1]

T
, pff,2 = [0,−1]T . (2.68)

2.4 Line-of-Sight Guidance

This section describes the LOS guidance algorithm. LOS is an intuitive method
for steering vehicles towards the desired path. A review of LOS guidance methods
for marine vehicles is presented in [95].

First, let us discuss LOS guidance for vehicles moving in the horizontal plane.
Let ppb = [xpb , y

p
b ]

T denote the path-following error of the barycenter. Let vLOS

denote the desired (inertial) line-of-sight velocity that steers the barycenter towards

∆

vLOS
ypb

yp

Op xp

pb

(a) Two-dimensional line-of-sight guidance.

xp

vLOS

ypzp

Op

ypb

pb

zpb
∆

(b) Three-dimensional coupled line-of-sight
guidance.

Figure 2.4: Illustrations of line-of-sight guidance methods.
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the desired path. This velocity is given by [91, 96]

vLOS = ULOS [cos(χLOS), sin(χLOS)]
T
, χLOS = ψp− arctan

(
ypb
∆

)
, (2.69)

where ULOS > 0 is the desired path-following speed, ψp is the path-tangential angle,
as defined in (2.46), and ∆ > 0 is the so-called lookahead distance. An illustration
of LOS guidance in the horizontal plane is shown in Figure 2.4a.

For vehicles moving in three dimensions, there exist two types of LOS guidance
algorithms: decoupled [97, 98] and coupled [99–101]. A decoupled LOS algorithm
consists of two separate guidance schemes that steer the vehicle in the horizontal
and vertical plane. Let ppb = [xpb , y

p
b , z

p
b ]

T denote the path-following error of the
barycenter. Let us assume that the path-tangential coordinate frame is chosen
according to (2.48), so that the rotation matrix Rp(s) has a zero roll angle. The
desired line-of-sight velocity, vLOS, is then given by

vLOS = ULOS

cos(γLOS) cos(χLOS)
cos(γLOS) sin(χLOS)
− sin(γLOS)

, γLOS = θp+ arctan

(
zpb
∆z

)
,

χLOS = ψp− arctan

(
ypb
∆y

)
,

(2.70)

where ULOS > 0 is the desired path-following speed, θp and ψp are the path-
tangential angles, as defined in (2.49), and ∆y,∆z > 0 are the lookahead distances
of the horizontal and vertical guidance scheme, respectively. Comparing the de-
coupled guidance scheme in (2.70) to the two-dimensional LOS algorithm in (2.69),
we can see that the decoupled guidance scheme effectively consists of two separate
two-dimensional LOS guidance algorithms.

In a coupled LOS guidance scheme, the desired velocity is given by

vLOS =
ULOS√

∆2 + ypb
2
+ zpb

2
Rp [∆,−ypb ,−z

p
b ]

T
, (2.71)

where ULOS > 0 is the desired path-following speed, Rp is the rotation matrix
between the path-tangential and the inertial coordinate frame, and ∆ > 0 is the
lookahead distance. An illustration of this scheme is shown in Figure 2.4b. The
coupled scheme can be seen as an extension of the horizontal LOS guidance scheme
to three dimensions. Indeed, the two-dimensional guidance scheme (2.69) can also
be written as

vLOS =
ULOS√
∆2 + ypb

2

[
∆cos(ψp) + ypb sin(ψp)
∆ sin(ψp)− ypb cos(ψp)

]
=

ULOS√
∆2 + ypb

2
Rp

[
∆
−ypb

]
. (2.72)

Comparing (2.72) to (2.71), we can see that both equations have a similar form.

2.5 Null Space Behavioral Algorithm

This section describes the null-space-behavioral (NSB) algorithm. The NSB algo-
rithm is a method that allows us to combine several tasks in a hierarchic manner.
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The algorithm was originally developed for first-order systems

ṗ = v, (2.73)

where p ∈ Rn are the generalized coordinates, and v ∈ Rn are the input velocities.
In NSB algorithms, the desired behavior of the system is divided into several

tasks. Let there be M tasks arranged by priority in descending order (i.e., task 1
has the highest priority, task M has the lowest priority). Let σ1, . . . ,σM denote
the so-called task variables. Each variable is a function of the system coordinates

σm = fm(p), fm : Rn 7→ Rnm , ∀m = 1, . . . ,M, (2.74)

where nm ≤ n is the dimensionality of task m. Applying the chain rule, the
time-derivative of σm is

σ̇m =
∂fm(p)

∂p
v ≜ Jm(p)v. (2.75)

Let σ̇∗
m be the desired closed-loop behavior of the task variable. Then, the smallest

input (in terms of Euclidean norm) that guarantees the desired behavior is

vm = J†
mσ̇∗

m, (2.76)

where J†
m is the Moore-Penrose pseudoinverse of the task Jacobian.

Remark. In many applications, the task variable should track some pre-defined
desired value, σd,m. In such cases, we typically choose

σ̇∗
m = σ̇d,m −Λm (σm − σd,m) , (2.77)

where Λm is a positive definite gain matrix. In the literature, (2.77) is commonly
referred to as the closed-loop inverse kinematics (CLIK) equation [102].

If the task is redundant, i.e., if the inequality nm < n strictly holds, then there
exists a subspace of control inputs that do not interfere with the task. Let vadd be
an additional input. Then, the following control input

v = vm +Nmvadd, (2.78)

where Nm = IN − J†
mJm is the null-space projector of Jm, guarantees the desired

behavior of the task. The additional control input is satisfied only if it does not
interfere with the task.

In the NSB algorithm, the control inputs from the individual tasks are composed
by projecting the inputs from the lower-priority tasks onto the null space of the
higher-priority tasks. In the literature, there exist two variants of the algorithm.
The first variant calculates the control input v using the following equation

v = v1 +N1

(
v2 +N2

(
v3 · · ·+NM−2

(
vM−1 +NM−1vM

)))
, (2.79)

with vm given by (2.76).
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The second variant uses the so-called augmented Jacobians

J̄m =
[
JT
1 , . . . ,J

T
m

]T
. (2.80)

Let N̄m denote the null-space projector of J̄m. Then, the control input v is given
by

v = v1 +

M∑
m=2

N̄m−1vm. (2.81)

The advantages and disadvantages of both approaches are discussed in [103]. In
this thesis, we will mostly use the first variant.

2.5.1 Independence and Orthogonality

The concepts of independence and orthogonality are important when analyzing the
interactions between the tasks. Specifically, these concepts determine whether the
tasks can be executed simultaneously, and how the null-space projector affects the
lower-priority tasks.

Two tasks are independent if the pseudoinverses of their Jacobians are linearly
independent. Let Ja and Jb denote the Jacobians of task a and b, respectively.
These tasks are independent if

rank
(
J†
a

)
+ rank

(
J†
b

)
= rank

([
J†
a, J

†
b

])
, (2.82)

Antonelli et al. [103] remark that the pseudoinverse and the transpose of the task
Jacobian share the same span. Consequently, (2.82) is equivalent to

rank
(
JT
a

)
+ rank

(
JT
b

)
= rank

([
JT
a , J

T
b

])
. (2.83)

Two tasks are orthogonal if the subspaces spanned by their Jacobians tasks are
orthogonal, i.e., if

Ja J
†
b = Ona×nb

. (2.84)

Now, let us consider two consecutive tasks that are independent and orthogonal.
Without loss of generality, let us denote these tasks 1 and 2. The control input
produced by combining these two tasks is

v = J†
1σ̇

∗
1 +N1J

†
2σ̇

∗
2 = J†

1σ̇
∗
1 +

(
I− J†

1J1

)
J†
2σ̇

∗
2 = J†

1σ̇
∗
1 + J†

2σ̇
∗
2 . (2.85)

We have thus shown that if two consecutive tasks are independent and orthogo-
nal, they can be executed simultaneously. Moreover, the null-space projector does
not affect the lower-priority task.

2.5.2 NSB Algorithm for the Formation Path-Following Problem

In the remainder of this section, we demonstrate how the NSB algorithm can be
used to solve the formation path-following problem. A similar scheme was proposed
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in [33] for static formations, in [102, 103] for circular formations, and in [35] for
dynamic formations.

Let pT =
[
pT
1 , . . . ,p

T
N

]
be the concatenated position vector of N vehicles. To

solve the problem, we define two tasks: formation-keeping and path-following. The
formation-keeping task has the highest priority. The task variable, σ1, is given by

σ1 =
[
σT
1,1,σ

T
1,2, . . . ,σ

T
1,N−1

]T
, σ1,i = pi − pb, (2.86)

where pb =
1
N

N∑
i=1

pi is the barycenter of the formation (see Section 2.3).

Remark. The formation-keeping task contains the relative positions of the first
N − 1 vehicles. The relative position of the last vehicle is omitted because it can be
expressed as a linear combination of the remaining relative positions. Indeed, from
(2.86), we get

σ1,N = pN − pb = −
N−1∑
i=1

σ1,i. (2.87)

By omitting the last relative position vector, the task Jacobian has full row rank.
Indeed, the Jacobian of the formation-keeping task is

J1 =
∂σ1

∂p
=


N−1
N I3 − 1

N I3 · · · − 1
N I3 − 1

N I3

− 1
N I3

N−1
N I3 − 1

N I3 − 1
N I3

...
. . .

...
− 1
N I3 − 1

N I3 · · · N−1
N I3 − 1

N I3


=
(
[IN−1, 0N−1]−

1

N
1(N−1)×N

)
⊗ I3.

(2.88)

One can verify that the rank of J1 is 3(N − 1), and the Jacobian thus has full row
rank.

The desired value of the formation-keeping task variable is

σd,1 =
[
pT
f,1,p

T
f,2, . . . ,p

T
f,N−1

]T
, (2.89)

where pf,i is the desired position of vehicle i within the formation (see Section 2.3).
The formation-keeping control input v1 can then be found, e.g., using the CLIK

equation (2.77)
v1 = J†

1 (σ̇d,1 −Λ1(σ1 − σd,1)) , (2.90)

where Λ1 is a positive definite gain matrix.
For the path-following task, the task variable is given by the position of the

barycenter i.e.,

σ2 = pb =
1

N

N∑
i=1

pi. (2.91)

Proposition 2.1. The formation-keeping and path-following tasks are independent
and orthogonal.
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Proof. The Jacobian of the path-following task is given by

J2 =
∂σ2

∂p
=

1

N
11×N ⊗ I3. (2.92)

The matrices J1 and J2 satisfy

rank
([
JT
1 , J

T
2

])
= 3N = rank

(
JT
1

)
+ rank

(
JT
2

)
, (2.93)

and the tasks are thus independent. Moreover, the pseudoinverse of J2 is given by

J†
2 = 1N×1 ⊗ I3. (2.94)

One can then verify that the Jacobians satisfy

J1J
†
2 = O3(N−1)×3, (2.95)

and the tasks are thus orthogonal.

The desired value of the path-following task is given by

σd,2 = pp(s), (2.96)

where s is the value of the path parameter.
We propose to solve the path-following problem using line-of-sight guidance.

The desired behavior of the path-following task is thus given by

σ̇∗
2 = vLOS, (2.97)

where vLOS is either the coupled (2.71) or decoupled (2.70) LOS guidance law. The
path-following control input v2 is then given by

v2 = J†
2σ̇

∗
2 = 1N×1 ⊗ vLOS. (2.98)

Thanks to the independence and orthogonality of the tasks, the combined con-
trol input v is given by

v = v1 +N1v2 = v1 + v2. (2.99)

Finally, let us investigate the closed-loop behavior of the tasks. First, we need
to define the error variables. The formation-keeping error is defined as

σ̃1 = σ1 − σ1,d. (2.100)

The path-following error is given by the position of the barycenter in the path-
tangential coordinate frame, i.e.,

σ̃2 = ppb = Rp(s)
T (pb − pp(s)) . (2.101)

Now, let us analyze the closed-loop behavior of the formation-keeping error.
Differentiating (2.100) with respect to time, we get

˙̃σ1 = J1v − σ̇1,d = −Λ1σ̃1. (2.102)
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Since Λ1 is positive definite by design, the closed-loop system (2.102) is globally
exponentially stable (GES).

From (2.101), the dynamics of the path-following error are given by

ṗpb = Rp(s)
T (J2v − ṗp(s))− S(ωp(s))Rp(s)

T (pb − pp(s))

= Rp(s)
T (vLOS − ṗp(s))− S(ωp(s))p

p
b .

(2.103)

The stability of the path-following task depends on the choice of the LOS guidance
law. The stability of controllers that utilize decoupled and coupled LOS guidance
will be discussed in Chapters 4 and 5, respectively.

2.6 Uniform Semiglobal Exponential Stability

This section discusses the concept of USGES. In some cases, dynamical systems
cannot attain global stability due to, for instance, high-order nonlinearities, the
choice of the control law, or actuator saturations. An example of such a system
is marine vehicles controlled by line-of-sight guidance laws. In [104], it has been
shown that the structure of proportional LOS guidance laws prevents the system
from having global exponential convergence.

Uniform semiglobal exponential stability has been studied, e.g., in [70, 105]. In
these works, USGES is defined as follows.

Definition 2.1 (USGES). Consider a nonlinear system given by the following set
of ordinary differential equations (ODEs)

ẋ = f(t,x), x(0) = x0, (2.104)

with the origin x = 0 being the equilibrium point of the system.
Let x(t|x0) be a solution to (2.104) that is defined for all t ≥ 0. The origin

x = 0 is a USGES equilibrium point of (2.104) if for all ∆ > 0, there exist positive
constants k∆ and λ∆ such that ∀x0 ∈ Bn

∆

∥x(t|x0)∥ ≤ k∆ ∥x0∥ e−λ∆t, ∀t ≥ 0. (2.105)

Remark. The work in [70] studies parametric systems, i.e., systems with ODEs
in the following form

ẋ = f(x, t, θ), (2.106)

where θ ∈ Θ ⊂ Rm is a constant parameter. However, since this thesis does not
consider parametric systems, and since the parameter θ is assumed constant, we
can omit the parametric dependence for the sake of simplicity.

2.6.1 Lyapunov Sufficient Conditions for Uniform Semiglobal Ex-
ponential Stability

In this section, we restate Theorem 5 and Proposition 9 from [70].
Theorem 5 introduces sufficient conditions for uniform semiglobal exponential

stability (USGES) of nonlinear systems.
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Theorem 2.1 (Theorem 5. [70]). Consider the nonlinear system given in (2.104).
If for any ∆ > 0, there exist a continuously differentiable Lyapunov function V∆ :
R≥0×Bn

∆ 7→ R≥0 and positive constants k1∆ , k2∆ , k3∆ , and a, such that ∀x ∈ Bn
∆,

∀t ≥ 0

k1∆ ∥x∥
a ≤ V∆(t,x) ≤ k2∆ ∥x∥

a
, (2.107a)

lim
∆→∞

(
k1∆
k2∆

)1/a

∆ =∞, (2.107b)

∂V∆
∂t

+
∂V∆
∂x

f(t,x) ≤ −k3∆ ∥x∥
a
, (2.107c)

then the origin of (2.104) is USGES.

Proposition 9 then introduces sufficient conditions for uniform semiglobal ex-
ponential stability (USGES) of nonlinear cascaded systems.

Proposition 2.2 (Proposition 9. [70]). Consider the following cascaded nonlinear
time-varying system

ẋ1 = f1(t,x1) + g(t,x1)x2, (2.108a)
ẋ2 = f2(t,x2), (2.108b)

where t ∈ R≥0, x1 ∈ Rn1 , x2 ∈ Rn2 . The functions f1, f2, and g are continuous in
t and locally Lipschitz in x1 and x2. Furthermore, f1 is assumed C1 in t and x1,
and the origin

[
xT
1 ,x

T
2

]
= 0T is an equilibrium point of (2.108).

Let each of the systems

ẋ1 = f1(t,x1), (2.109)
ẋ2 = f2(t,x2), (2.110)

be UGAS and satisfy the conditions of Theorem 2.1. Then, the origin of the cas-
caded system (2.108) is USGES and UGAS if the following two assumptions hold

1. There exist constants c1, c2, η > 0 and a positive definite, radially unbounded
Lyapunov function V : R≥0 × Rn1 of (2.109) such that V̇ (t,x1) ≤ 0 and∥∥∥∥ ∂V∂x1

∥∥∥∥ ∥x1∥ ≤ c1V, ∀ ∥x1∥ ≥ η, (2.111a)∥∥∥∥ ∂V∂x1

∥∥∥∥ ≤ c2, ∀ ∥x1∥ ≤ η. (2.111b)

2. There exist two continuous functions α1, α2 : R≥0 7→ R≥0 such that

∥g(t,x1,x2)∥ ≤ α1 (∥x2∥) + α2 (∥x2∥) ∥x1∥ . (2.112)
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Chapter 3

Unifying Reactive Collision Avoidance
and Control Allocation

To enable autonomous vehicles to operate in cluttered and unpredictable environ-
ments with numerous obstacles, such vehicles need a collision avoidance system
that can react to and handle sudden changes in the environment. This chapter
discusses an optimization-based reactive collision avoidance system that uses con-
trol barrier functions integrated into the control allocation. We demonstrate the
effectiveness of this method through numerical simulations of autonomous surface
vehicles. The simulated vehicles track their reference waypoints while maintaining
safe distances. The proposed method can be readily implemented on vehicles that
already use an optimization-based control allocation method. The contents of this
chapter are based on [82].

The chapter is organized as follows. Section 3.1 defines the notation and de-
scribes the model of the vehicle. Section 3.2 defines the combined control allo-
cation/collision avoidance problem. The proposed control allocation method and
CBFs for solving this problem are then introduced in Sections 3.3 and 3.4. Section
3.5 describes the resulting combined COLAV and control allocation optimization
problem. Finally, Section 3.6 presents the results of numerical simulations using
models of ASVs.

3.1 Vehicle Model

In this chapter, we consider overactuated vehicles, i.e., vehicles with more actuators
than degrees of freedom (DOFs), with a control system consisting of blocks shown
in Figure 3.1. The control system contains a long-term, deliberate planner, a
high-level controller that outputs desired forces and torques (τd), and a control
allocation block. The goal of control allocation is to find actuator control inputs
(u) that generate the desired forces and torques.

3.1.1 Notation

Let p denote the position and Θ the orientation (expressed using the Euler angles)
of the vehicle in a north-east-down (NED) reference frame. Let η be the pose of
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Planner High-level
controller

Control
allocation Actuators

τd u

Figure 3.1: Control system of overactuated vehicles considered in this chapter

the vehicle
η =

[
pT, ΘT

]T
. (3.1)

Let ν be the velocities of the vehicle in the body-fixed frame. The complete
state of the vehicle, x, is defined as

x =
[
ηT ,νT

]T
. (3.2)

Let τ be the vector of generalized forces acting on the vehicle. Let K be the
number of actuator parameters and u ∈ RK the vector of inputs. Furthermore, let
b : RK → RnDOF be a nonlinear function that maps the inputs to the generalized
forces (nDOF is the number of DOFs).

3.1.2 Equations of Motion

The time-derivative of the pose can be obtained by transforming the velocities.
In addition, we assume that the time-derivatives of the velocities are affine in the
generalized forces. We thus consider vehicles described by the following dynamical
equations

ẋ =

[
η̇
ν̇

]
=

[
J(Θ)ν

f(x) + g(x) τ

]
=

[
J(Θ)ν

f(x) + g(x) b(u)

]
, (3.3)

where J(Θ) is the transformation matrix. This equation describes a large class of
systems, including the matrix-vector model of marine vessels [91]

η̇ = J(Θ)ν, (3.4a)
M ν̇ + (C(ν) +D(ν)) ν + g(η) = b(u), (3.4b)

This model can be converted to the form in (3.3) since the matrix M is invertible.

3.2 Problem Definition

We consider a scenario with N vehicles. We shall denote the variables that belong
to a given vehicle by a lower index (e.g., xi is the state of the ith vehicle). Let us
assume that each vehicle has access to the position (pj) and the inertial velocity
(ṗj) of all other vehicles.

Furthermore, let τd,i be the desired forces and torques obtained from the high-
level controller of vehicle i (see Figure 3.1). The goal of this chapter is to design
a control allocation block that incorporates safety constraints. This block outputs
actuator configuration ui that produces the desired forces and torques as closely as
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possible (i.e., that minimizes the difference between τd,i and b(ui)) while avoiding
collisions with other vehicles. To avoid collisions, we want the vehicle i to satisfy

∥pi − pj∥ ≥ dmin, ∀j ∈ {1, . . . , N} \ {i}, (3.5)

where dmin > 0 is some minimum safety distance.

3.3 Control Allocation

As stated in the Introduction, the goal of the control allocation is to find the inputs
that generate the desired forces given by the high-level controller. For details on
control allocation techniques for both linear and nonlinear systems, the reader is
referred to [65]. Since control allocation is done individually for each vehicle, we
can omit the lower index i in this section.

In this chapter, we consider systems where the function b can be nonlinear. In
the literature, nonlinear control allocation is commonly solved by linearizing the
function b [67, 68]

b(u0 +∆u) ≈ b(u0) +B(u0)∆u, (3.6)

where u0 are the inputs around which we linearize, ∆u is the increment, and

B(u0) =
∂b(u)

∂u

∣∣∣∣
u0

, (3.7)

is the Jacobian of b evaluated at u0. Let τd be the desired forces. The goal of our
control allocation scheme is to find optimal inputs u∗ that satisfy

u∗ = argmin
u∈RK

∥b(u)− τd∥2 . (3.8)

Using the approximation (3.6), we can formulate the control allocation problem
as a quadratic program (QP)

u∗ = u0 +∆u∗, (3.9)

∆u∗ = argmin
∆u∈RK

∥b(u0) +B(u0)∆u− τd∥2 . (3.10)

3.4 Control Barrier Functions

In this section, we will briefly present the theory behind control barrier functions
(CBFs). For more details, the reader is referred to [58]. After presenting the
notation for multiple vehicles, we define the CBF for COLAV.

3.4.1 Introduction to CBFs

Consider a nonlinear control-affine system

ẋ = f̃(x) + g̃(x)u, (3.11)
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where x ∈ Rn. Suppose that the system must satisfy a safety constraint h(x) ≥ 0,
where h : Rn → R is the so-called barrier function. Then, we can define the
so-called safe set, a set of all states that satisfy the safety constraint, as

C = {x |h(x) ≥ 0} . (3.12)

If the initial condition of the system (3.11) lies in the safe set, the system trajectory
will stay within C if the following inequality holds [58]

d

dt
h(x) =

∂h(x)

∂x

(
f̃(x) + g̃(x)u

)
≥ −γ

(
h(x)

)
, (3.13)

where γ is an extended class-K∞ function. If there exists an input u such that
(3.13) is satisfied, then h is a valid CBF for the system (3.11).

3.4.2 CBFs for Reactive Collision Avoidance

Let us define the relative position of vehicles i and j as

pij = pi − pj . (3.14)

To ensure safety, we need a collection of CBFs that enforce safe distances be-
tween each pair of vehicles. In the literature, vehicles described by the model (3.3)
frequently use CBFs in the following form [55, 69]

hij(xi,xj) = ∥pij∥ − dmin + kv
d

dt
∥pij∥, (3.15)

where dmin is a minimum safe distance, and kv is a coefficient that penalizes the
relative speed of the vehicles.

To use hij as a control barrier function, we need to calculate its time-derivative.
Differentiating (3.15) with respect to time yields

d

dt
hij(xi,xj) =

d

dt
∥pij∥+ kv

d2

dt2
∥pij∥. (3.16)

To calculate the first and second time-derivative of the relative distance, we need
to find the first and second time-derivatives of the relative position. For ṗij , we
split the derivative of η from (3.3) into the derivatives of position and orientation

η̇i =

[
ṗi
Θ̇i

]
=

[
Jp(Θi)
JΘ(Θi)

]
νi. (3.17)

Substituting this into the time-derivative of (3.14) yields

ṗij = Jp(Θi)νi − ṗj . (3.18)

For p̈ij , we assume that the other vehicle maintains its velocity, i.e.,

p̈ij ≈ p̈i, (3.19)
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when calculating the time-derivative for the ith vehicle. As discussed in [69], this is
a “mild worst-case” assumption, since maneuvers of the target vehicle tend to aid
to resolving the situation. Thus, taking the time-derivative of (3.18) yields

p̈i = J̇p(Θi)νi + Jp(Θi) ν̇i. (3.20)

Finally, we substitute the approximation of forces from (3.6) into the equation
for ν̇ in (3.3) to get

ν̇i = f(xi) + g(xi) (b(u0,i) +B(u0,i)∆ui) , (3.21)

which we can substitute into (3.20) to calculate p̈i.

3.5 Formulating the Optimization Problem

Now we can combine the definitions from Sections 3.3 and 3.4 to formulate the
proposed optimization problem for control allocation with multi-vehicle COLAV.

3.5.1 The Basic Optimization Problem

Let u0,i be the inputs of vehicle i from the previous control period. The new inputs
are calculated as

ui = u0,i +∆u∗
i , (3.22)

where ∆u∗
i is obtained by solving the following QP

∆u∗
i = argmin

∆ui∈RK

∥b(u0,i) +B(u0,i)∆ui − τd,i∥2 , (3.23a)

s.t.
d

dt
hij(xi,xj) ≥ −γ (hij(xi,xj)) ,

j ∈ {1, . . . , N} \ {i} ,
(3.23b)

ui,min ≤ u0,i +∆ui ≤ ui,max, (3.23c)
∆ui,min ≤ ∆ui ≤ ∆ui,max, (3.23d)

where ui,min and ui,max are the absolute actuator limits, and ∆ui,min and ∆ui,max

are the actuator rate limits. The absolute limits are usually given by the physical
limitations of the vehicle (e.g., the thrust of a propeller or the deflection of control
surfaces) whereas the rate limits are user-defined to reduce the rapid changes that
wear out the actuators.

Simulation results using this control allocation algorithm are presented in Sec-
tion 3.6.

3.5.2 Modified Optimization Problem

The algorithm in (3.23) is suitable for vehicles where the number of actuators is
equivalent to the number of DOFs. Applying the algorithm to vehicles where the
number of actuators is much greater than the number of DOFs results in inefficient
usage of the available actuators, as can be seen in Section 3.6.
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To reduce this effect, we add penalty terms on the actuator usage, similar to
those proposed in [68], in the cost function. To simplify the notation, let ∥x∥2Q be
the squared norm of a vector x weighted by a matrix Q, i.e.,

∥x∥2Q = xT Qx. (3.24)

The modified optimization problem is defined as follows

∆u∗
i = argmin

∆ui∈RK

∥b(ui,0) +B(ui,0)∆ui − τd,i∥2Q

+ ∥u0,i +∆ui∥2Rabs
+ ∥∆ui∥2Rrel

,
(3.25a)

s.t. constraints (3.23b)–(3.23d), (3.25b)

where Q is a positive definite matrix that penalizes the difference between the
desired and actual forces, and Rabs and Rrel are positive semidefinite matrices
that penalize the absolute and incremental usage of actuators, respectively.

Note that both (3.23) and (3.25) use only local information and measurements,
and can thus be solved locally for each vehicle.

When choosing the weight matrices, we first note that the vector τ contains
both forces and torques. The matrix Q should penalize them differently. In the
simulations in Section 3.6, we choose

Q = diag

(
1, 1,

1

L2

)
, (3.26)

where diag(·) is a diagonal matrix and L is the smallest distance of the thrusters
from the center of mass. The matrix Q is chosen according to (3.26) because the
term τd,i contains both forces and torques. Specifically, the third element of τd,i is
the desired yaw torque. If we divide the squared toruqe error by L2, we effectively
convert it to a squared force error.

3.6 Simulations

In the simulations, we test the ability of the proposed algorithms to resolve a
situation when four surface vessels are simultaneously in danger of collision. Each
vessel starts in the corner of a square and is guided towards a reference located in
the diagonally opposite corner.

We tested the proposed algorithms on two models of ASVs — the milliAmpere
ferry [106] and the 1 : 90 scaled model of the Inocean Cat I drillship [107] — using
Simulink. Both vessels are equipped with azimuth thrusters; the milliAmpere has
two and the drillship has six. Each thruster is parametrized by two values: its
thrust force and its azimuth. The input vector for these vessels is defined as

u = [f1, . . . , fk, α1, . . . , αk]
T
, (3.27)

where fi is the thrust force and αi is the azimuth angle of the ith thruster, and k
is the number of thrusters. Both ASV models have 3DOFs, i.e., the North-East
position and the yaw angle. The function that maps the inputs to the generalized
forces is
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Figure 3.2: Simulations of the control allocation algorithm (3.23)

b(u) =
∑k
i=1 fi

[
cosαi, sinαi, L

i
x sinαi − Liy cosαi

]T
, (3.28)

where Lix and Liy are the x- and y-components of the position of the ith thruster,
relative to the center of mass.

For the higher-level controller that provides the desired forces, we use a nonlin-
ear PID controller [91]. The nonlinear PID is an output-linearizing controller that
transforms the nonlinear dynamical equations from (3.4) to

η̈ + 2Ωn Z η̇ +Ω2
n η = 0, (3.29)

where Z is the diagonal relative damping matrix, and Ωn is the diagonal natural
frequency matrix. Both matrices are tuning parameters. For convenience, we
express Ωn in terms of a bandwidth matrix Ωbw

Ωn = Ωbw

(√
I− 2Z2 +

√
4Z4 − 4Z2 + 2 I

)−1

, (3.30)

where √. is an elementwise square root.
The simulation parameters for both vessels are summarized in Table 3.1.

Since the power consumption of a thruster increases with the absolute value of
its thrust force and the increment of its azimuth, the matrices Rabs and Rrel are
chosen as

Rabs =

[
rabs Ik Ok×k
Ok×k Ok×k

]
, Rrel =

[
Ok×k Ok×k
Ok×k rrel Ik

]
, (3.31)
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(a) Algorithm (3.25) on four milliAmpere vessels
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Figure 3.3: Simulations of the modified control allocation algorithm (3.25)

Parameter milliAmpere drillship
Ωbw diag (0.1, 0.1, 0.5)
Z diag (0.95, 0.95, 0.97)
Q diag (1, 1, 0.7) diag (1, 1, 1.13)
rabs 1 1
rrel 100 1

dmin [m] 15 2.5
kv [s] 15 15
γ(h) 0.1h 0.1h

fmin [N] −350 −0.8
fmax [N] 500 1.5
∆fmax [N] 350 0.5
∆αmax [rad]

π
8

π
8

Table 3.1: Simulation parameters. Parameters Ωbw and Z are identical for both
scenarios, diag (.) is a diagonal matrix
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Figure 3.4: Simulations of the modified control allocation algorithm (3.25) with
one uncontrolled vessel (plotted in black)

The rate constraints are identical for all thrusters and symmetric, i.e.,

∆umax =

[
∆fmax 1k
∆αmax 1k

]
, ∆umin = −∆umax, (3.32)

where ∆fmax and ∆αmax are the force and azimuth rate constraints, respectively,
and 1k is a vector of ones.

The results of the simulations are shown in Figures 3.2, 3.3, and 3.4. Figure
3.2 shows the results of algorithm (3.23). Figure 3.3 shows the results of algorithm
(3.25). Each figure consists of two plots. The plot on the left displays the trajectory
of the vessels. The colored lines show the trajectory of each vessel and the boat-
shaped polygons represent the pose of the vessels at several evenly spaced time-
instances. The plot on the right shows the smallest distance between the vessels
compared to the minimum safe distance dmin. In both scenarios, the vessels reach
their reference position while maintaining safe distance.

We also tested a scenario where one of the vessels is uncontrolled. The results
are shown in Figure 3.4. In this scenario, the uncontrolled vessel (plotted in black)
solves the control allocation problem without the CBF constraints (3.23b). Al-
though the time it takes the vessels to converge to their goal positions is greater,
the minimum safe distance is still maintained. Note that in Figure 3.4b, the red
vessel does not seem to converge to its desired position. This is because the sim-
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3. Unifying Reactive Collision Avoidance and Control Allocation

Vessel Scenario Thruster utilization [%]
Maximum Minimum Mean

milliAmpere basic 2.074 1.550 1.822
modified 0.838 0.835 0.837

drillship basic 100.000 1.282 51.496
modified 6.161 0.259 3.816

Table 3.2: Steady-state thruster utilization of the basic algorithm (3.23) and the
modified algorithm (3.25).

ulation was terminated too early, after 100 seconds. Given more time, the vessel
would eventually converge to its desired position.

In this section, we have provided some insight into how to chose some of the
parameters for the simulated models. When it comes to the choice of the coefficient
kv, introduced in (3.15), and the extended class-K∞ function γ, introduced in
(3.23), the following considerations can be made. Intuitively, increasing kv increases
the size of the “unsafe” region where the barrier function is negative, causing the
system to react sooner in situations where two vehicles are on collision course.
Conversely, increasing the slope of γ decreases the size of the region where the
constraint (3.23b) is active, causing the system to react later.
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Part I

Formation Path-Following
using the Null Space
Behavioral Algorithm
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Chapter 4

Formation Path-Following Control of
5DOF Underactuated AUVs

An ant is very stupid . . .
and yet, many ants together are smart.

Kurzgesagt — In a Nutshell, “Emergence,”
youtu.be/16W7c0mb-rE.

This chapter presents a novel method for formation path following of multiple
underactuated autonomous underwater vehicles. The method combines line-of-
sight guidance with null-space-behavioral control, allowing the vehicles to follow
curved paths while maintaining the desired formation. We investigate the dynam-
ics of the path-following error using cascaded systems theory, and show that the
closed-loop system is uniformly semiglobally exponentially stable. We validate the
theoretical results through numerical simulations. The contents of this chapter are
based on [83].

The chapter is organized as follows. Section 4.1 defines the formation path-
following problem that is addressed in this chapter. In Section 4.2, we describe
the control system. The stability of the control system is proven in Section 4.3.
Finally, Section 4.4 contains the results of a numerical simulation.

4.1 Problem Definition

In this section, we briefly present the AUV model and the formation path-following
problem.

4.1.1 Vehicle Model

We consider a fleet of N underactuated AUVs. The dynamics are described using
the 5DOF control-oriented model from Section 2.1.4. The pose (η) and velocities
(ν) of the AUVs are defined as

η = [x, y, z, θ, ψ]
T
, ν = [u, v, w, q, r]

T
. (4.1)
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4. Formation Path-Following Control of 5DOF Underactuated AUVs

The roll dynamics are disregarded as the roll motion is assumed to be small and
self-stabilizing by the vehicle design. Let Vc ∈ R3 be the velocity of an unknown,
constant and irrotational ocean current.

Recalling (2.34), the dynamics of the AUVs are

ẋ = u cos (ψ) cos (θ)− v sin (ψ) + w cos (ψ) sin (θ) , (4.2a)
ẏ = u cos (θ) sin (ψ) + v cos (ψ) + w sin (ψ) sin (θ) , (4.2b)
ż = −u sin (θ) + w cos (θ) , (4.2c)

θ̇ = q, (4.2d)

ψ̇ =
1

cos (θ)
r, (4.2e)

u̇ = fu + Fu(u, v, w, q, r) + ϕu(u, v, w, q, r, θ, ψ)
TVc, (4.2f)

v̇ = Xv(u, uc)r + Yv(u, uc)vr, (4.2g)
ẇ = Xw(u, uc)q + Yw(u, uc)wr +G(θ), (4.2h)

q̇ = tq + Fq(u,w, q, θ) + ϕq(u,w, q, θ, ψ)
TVc, (4.2i)

ṙ = tr + Fr(u, v, r) + ϕr(u, v, r, θ, ψ)
TVc. (4.2j)

4.1.2 Control Objectives

The goal is to control the AUVs so that they move in a prescribed formation while
avoiding collisions, and their barycenter follows a given path.

The prescribed path is parametrized by a smooth function pp : R → R3. We
assume that the parametrization is C2 and regular. Therefore, for every point pp(s)
on the path, there exist path-tangential angles, θp(s) and ψp(s), and a correspond-
ing path-tangential coordinate frame (see Section 2.2 for more details).

The path-following error ppb is given by the position of the barycenter expressed
in the path-tangential coordinate frame

ppb = Rp(s)
T
(
pb − pp(s)

)
, (4.3)

where

pb =
1

N

N∑
i=1

pi, pi = [xi, yi, zi]
T
. (4.4)

The vehicles should converge to a dynamic formation that rotates with the
desired path (see Section 2.3.2 for details). Let pff,1, . . . ,p

f
f,n be the position vectors

that represent the desired formation. The objective is to control the vehicles so
that

pi − pb → Rp(s)p
f
f,i, ∀i ∈ {1, . . . , N} . (4.5)

We propose to solve this problem using an NSB algorithm. We note that the
proposed algorithm is centralized. Consequently, to implement this algorithm in
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a real-life situation, there must be a central node that can communicate and co-
ordinate with all the AUVs. Alternatively, every AUV must have access to the
complete state of all other AUVs.

4.2 Control System

To solve the formation path following problem, we propose a method that combines
collision avoidance (COLAV), formation keeping, and path following in a hierarchic
manner using an NSB algorithm. Since the NSB algorithm outputs inertial velocity
references, we also need a low-level attitude control system to track these references.

In this section, we first present the attitude control system. Then, in Sec-
tion 4.2.2, we present the NSB algorithm and the associated tasks. Finally, in
Section 4.2.3, we demonstrate how to use the update law of the path variable to
cancel unwanted terms in the path-following error dynamics.

4.2.1 Attitude Control System

This system controls the surge velocity, pitch, and yaw via the corresponding ac-
celerations. The system is based on the autopilots in [71], but extended to five
degrees of freedom.

Let ud be the desired surge velocity and u̇d its derivative. Let V̂c be the estimate
of the ocean current. Furthermore, let us define ũ = u − ud and Ṽc = V̂c −Vc.
The surge controller consists of an output-linearizing sliding-mode P-controller and
an ocean current observer

fu = u̇d − Fu(·)− ϕu(·)T V̂c − ku ũ− kc sign (ũ) , (4.6)
˙̂vc = cu ϕu(·) ũ, (4.7)

where ku, kc and cu are positive gains.
Let θd be the desired pitch angle and θ̇d, θ̈d its derivatives. Let V̂q be the

estimate of Vc. Furthermore, let us define θ̃ = θ−θd, q̃ = q− θ̇d and Ṽq = V̂q−Vc.
Inspired by [108], we introduce the following transformation

sq = q̃ + λq θ̃, (4.8)
where λq is a positive constant. The pitch controller consists of an output-linearizing
sliding-mode PD-controller and an ocean current observer

tq = θ̈d − Fq(·)− ϕq(·)T V̂q − λq q̃
− kθ θ̃ − kq sq − kd sign(sq),

(4.9)

˙̂Vq = cq ϕq(·) sq, (4.10)

where kθ, kq, kd and cq are positive gains.
Let ψd be the desired yaw angle and ψ̇d, ψ̈d its derivatives. Let V̂r be the

estimate of Vc. Furthermore, let us define ψ̃ = ψ−ψd and Ṽr = V̂r−Vc. Similarly
to the pitch controller, we introduce the following transformation

sr =
˙̃
ψ + λr ψ̃ =

r

cos θ
− ψ̇d + λr ψ̃, (4.11)
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where λr is a positive constant. The yaw controller is analogous to the pitch
controller introduced previously

tr = −Fr(·)− ϕr(·)T V̂r − r tan(θ)θ̇

+cos(θ)
(
ψ̈d − λr ˙̃

λ− kψ ψ̃ − kr sr − kd sign(sr)
)
,

(4.12)

˙̂Vr= cr ϕr(·) sr, (4.13)

where kψ, kr, kd and cr are positive gains.

4.2.2 NSB Tasks

Let us denote the variables associated with the COLAV, formation-keeping, and
path-following tasks by lower indices 1, 2, and 3, respectively. Each task produces
a vector of desired velocities, v1,v2,v3 ∈ R3N .

First, let us consider the COLAV task. Let dCOLAV be the activation distance,
i.e., the distance at which the vehicles need to start performing the evasive ma-
neuvers. The task variable is then given by a vector of relative distances between
the vehicles smaller than dCOLAV, i.e.,

σ1 =
[
∥pi − pj∥

]T
,

∀i, j ∈ {1, . . . , N}, j > i,

∥pi − pj∥ < dCOLAV.
(4.14)

The desired value of the task variable is

σd,1 = dCOLAV 1, (4.15)

where 1 is a vector of ones of the corresponding size. The velocity associated with
the COLAV task is given by

v1 = −J†
1 Λ1 σ̃1, (4.16)

where Λ1 is a positive definite gain matrix, and σ̃1 = σ1 − σd,1. Note that this
task does not guarantee robust collision avoidance. During the transients, the
relative distance may become smaller than dCOLAV. Therefore, to ensure collision
avoidance, dCOLAV shuld be chosen as dmin + dsec, where dmin is the minimum safe
distance between the vehicles, and dsec is an additional security distance.

The formation-keeping and path-following tasks are defined identically as in
Section 2.5.2. The task variable of the formation-keeping task is

σ2 =
[
σT
2,1, . . . ,σ

T
2,N−1

]T
, σ2,i = pi − pb, (4.17)

and its desired values are

σd,2 =


R (θp(s), ψp(s)) p

f
f,1

...
R (θp(s), ψp(s)) p

f
f,N−1

 . (4.18)
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The desired velocity of the formation-keeping task is given by

v2 = J†
2 (σ̇d,2 −Λ2 σ̃2) , (4.19)

where σ̃2 = σ2 − σd,2 is the error, and Λ2 is a positive definite gain matrix.
The task variable and the desired value of the path-following task is given by pb

and pp(s), respectively. The desired velocity of the path-following task is obtained
using the decoupled LOS guidance algorithm (2.70). We choose the same lookahead
distance for the horizontal and vertical guidance schemes, i.e., ∆y = ∆z = ∆.
Inspired by [109], we employ a time-varying error-dependent lookahead distance

∆(ppb) =

√
∆2

0 + (xpb)
2
+ (ypb )

2
+ (zpb )

2
, (4.20)

where ∆0 > 0 is a constant. The desired velocity of the path-following task is then
given by

v3 = 1N ⊗ vLOS, (4.21)

where

vLOS = ULOS

cos(γLOS) cos(χLOS)
cos(γLOS) sin(χLOS)
− sin(γLOS)

, γLOS = θp+ arctan

(
zpb

∆(ppb)

)
,

χLOS = ψp− arctan

(
ypb

∆(ppb)

)
,

(4.22)

where ULOS > 0 is the desired path-following speed.
The three tasks are then combined using the recursive NSB algorithm (2.79).

If the COLAV task is active, the NSB velocity is given by

vNSB = v1 +N1 (v2 +N2v3) . (4.23)

If the COLAV task is inactive, (4.23) is simplified to

vNSB = v2 + v3, (4.24)

thanks to the independence and orthogonality of the formation-keeping and path-
following tasks.

Let vNSB,i be the desired NSB velocity associated with vehicle i, i.e.,[
vT
NSB,1, . . . ,v

T
NSB,N

]
= vT

NSB. (4.25)

These velocities must be decomposed into surge, pitch, and yaw references that
can be tracked by the attitude control system presented in Section 4.2.1. Similarly
to [33], we propose a method with angle of attack and sideslip compensation

ud,i= UNSB,i
1+cos(γNSB,i−γi) cos(χNSB,i−χi)

2 , (4.26)

θd,i= γNSB,i + αd,i, αd,i = arctan
(
wi

ud,i

)
, (4.27)

ψd,i= χNSB,i − βd,i, βd,i = arcsin

(
vi√

u2
d,i+v

2
i+w

2
i

)
, (4.28)
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where vi and wi are the sway and heave velocities, and γi and χi are the flight-path
and course angles of the ith vehicle, respectively, and UNSB,i, γNSB,i and χNSB,i are
given by

UNSB,i = ∥vNSB,i∥ , vNSB,i =

ẋNSB,i

ẏNSB,i

żNSB,i

 , (4.29a)

γNSB,i = − arcsin

(
ẏNSB,i

UNSB,i

)
, (4.29b)

χNSB,i = arctan2 (ẏNSB,i, ẋNSB,i) . (4.29c)

4.2.3 Path Parameter Update Law

Inspired by [109], we use the update law of the path variable s to get desirable
behavior of the along-track error (xpb).

Note that the kinematics of the ith vehicle can be alternatively expressed using
the total speed (Ui) and the flight-path (γi) and course (χi) angles of the vehicle
as

ṗi = [cos (χi) cos (γi) , cos (γi) sin (χi) , − sin (γi)]
T
Ui. (4.30)

Now, let us investigate the kinematics of the barycenter. Differentiating (4.3) with
respect to time and substituting (4.30) yields the following equations

ẋpb =
1

N

N∑
i=1

UiΩx (γi, θp, χi, ψp)

−
∥∥∥∂pp(s)

∂s

∥∥∥ṡ+ ωzy
p
b − ωyz

p
b ,

(4.31a)

ẏpb =
1

N

N∑
i=1

UiΩy (γi, θp, χi, ψp) + ωxz
p
b − ωzx

p
b , (4.31b)

żpb =
1

N

N∑
i=1

UiΩz (γi, θp, χi, ψp) + ωyx
p
b − ωxy

p
b , (4.31c)

where

Ωx(·)= sin (θp) sin (γi) + cos (θp) cos (γi) cos (ψp − χi) , (4.32a)
Ωy(·)= − cos (γi) sin (ψp − χi) , (4.32b)
Ωz(·)= − cos (θp) sin (γi) + cos (γi) sin(θp) cos (ψp − χi) (4.32c)
ωx= −ιṡ sin(θp), ωy= κṡ, ωz= ιṡ cos(θp), (4.32d)

κ(s)=
∂θp(s)
∂s , ι(s)=

∂ψp(s)
∂s . (4.32e)

To stabilize the along-track error dynamics, we choose the following path variable
update

ṡ =

∥∥∥∥∂pp(s)∂s

∥∥∥∥−1
 1

N

N∑
i=1

UiΩx (γi, θp, χi, ψp) + ks
xpb√

1 + (xpb)
2

 , (4.33)
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where ks > 0 is a constant.

4.3 Closed-Loop Analysis

In this section, we investigate the closed-loop stability of the path following task.
We define two error states, X̃1 and X̃2, as

X̃1 = [xpb , y
p
b , z

p
b ]

T
, (4.34)

X̃2 =
[
X̃T

2,1, . . . , X̃
T
2,N

]T
, X̃2,i =

[
ũi, sq,i, θ̃i, sr,i, ψ̃i

]T
, (4.35)

Now, we can take the barycenter kinematics from (4.31) and express it in terms
of X̃1 and X̃2 as

ẋpb = −ks
xpb√

1 + (xpb)
2
+ ωzy

p
b − ωyz

p
b , (4.36a)

ẏpb = − 1

N

N∑
i=1

Ud,i
cos (γLOS) y

p
b√

∆(ppb)
2
+ (ypb )

2
+ ωxz

p
b − ωzx

p
b

+Gy
(
ũ1, . . . , ũN , ψ̃1, . . . , ψ̃N , γ1, . . . , γN ,

ud,1, . . . , ud,N , v1, . . . , vN , w1, . . . , wN ,p
p
b , ψp

)
,

(4.36b)

żpb =
1

N

N∑
i=1

Ud,i
zpb√

∆(ppb)
2
+ (zpb )

2
+ ωyx

p
b − ωxy

p
b

+Gz
(
ũ1, . . . , ũN , θ̃1, . . . , θ̃N , γ1, . . . , γN , χ1, . . . , χN ,

ud,1, . . . , ud,N , v1, . . . , vN , w1, . . . , wN ,p
p
b , ψp, θp

)
.

(4.36c)

The equations for Gy(·) and Gz(·) are given in Appendix B.1. Substituting the
attitude control system (4.6)–(4.13) into vehicle dynamics (4.2) yields the following
closed-loop behavior of X̃2

˙̃ui = −ku ũi − kc sign (ũi)− ϕu(·)Tṽc,i, (4.37a)

ṡq,i = −kθ θ̃i − kq sq,i − kd sign(sq,i)− ϕq(·)T Ṽq,i, (4.37b)
˙̃
θi = sq,i − λq θ̃i, (4.37c)

ṡr,i = −kθ θ̃i − kr sr,i − kd sign(sr,i)− ϕr(·)T Ṽr,i, (4.37d)
˙̃
ψi = sr,i − λr ψ̃i, (4.37e)

the ocean current estimate errors

˙̃vc,i = cu ϕu(·) ũi, (4.38a)
˙̃Vq,i = cq ϕq(·) sq,i, (4.38b)
˙̃Vr,i = cr ϕr(·) sr,i, (4.38c)
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and the underactuated sway and heave dynamics

v̇i = Xv(ui, uc) ri + Yv(ui, uc) (vi − vc), (4.39)
ẇi = Xw(ui, uc) qi + Yw(ui, uc) (wi − wc) +G(θi). (4.40)

To prove the stability of the closed-loop system, we need the results of the three
following lemmas. The lemmas follow the same structure as the 2D case for two
ASVs in [35], and are extended to handle an arbitrary number of AUVs moving in
3D.

Lemma 4.1. The trajectories of the closed-loop system (4.36)–(4.40) are forward
complete.

Proof. The complete proof is given in Appendix B.3. Here, we only present a sketch
of the proof.

The proof is split into three parts: proving the forward-completeness of the
attitude control system (4.37), (4.38), the underactuated dynamics (4.39), (4.40),
and the path-following errors (4.36).

Using the same arguments as for the horizontal case in [71], we can prove that
the system (4.37) is GES and the ocean current estimates (4.38) are bounded.
Exponential stability and boundedness imply forward completeness. Therefore,
(4.37) and (4.38) are forward complete.

For the underactuated dynamics, we define Lyapunov function candidates

Vv(vi) =
1

2
v2i , Vw(wi) =

1

2
w2
i , (4.41)

and show that there exist positive constants αv, αw, βv, βw such that

V̇v(vi) ≤ αvVv(vi) + βv, V̇w(wi) ≤ αwVw(wi) + βw. (4.42)

Using the comparison lemma, we conclude that vi and wi are forward-complete.
For the path-following errors, we define a Lyapunov function candidate

Vb (p
p
b) =

1

2

(
(xpb)

2
+ (ypb )

2
+ (zpb )

2
)
, (4.43)

and show that there exists a class-K∞ function ζp such that

V̇p (p
p
b) ≤ Vp (p

p
b) + ζp

(
vi, wi, X̃2

)
. (4.44)

Since all the arguments of ζp(·) are forward complete, Corollary 2.11 of [110] is
satisfied, and the barycenter dynamics is forward complete, concluding the proof
of Lemma 4.1.

Lemma 4.2. The underactuated sway and heave dynamics are bounded near the
manifold

[
X̃T

1 , X̃
T
2

]
= 0T if Yv(u, uc) < 0, Yw(u, uc) < 0 and the curvature of the

path satisfies

|κ(s)| < N

2

∣∣∣∣ Yw(u, uc)Xw(u, uc)

∣∣∣∣ , |ι(s)| < N

2

∣∣∣∣ Yv(u, uc)Xv(u, uc)

∣∣∣∣ , (4.45)

for all u > 0 and uc ∈ [−∥Vc∥ , ∥Vc∥].
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Proof. The complete proof is given in Appendix B.4. Here, we only present a sketch
of the proof.

Consider the derivatives of the Lyapunov function candidates Vv, Vw from (4.41).
Substituting X̃1 = 0, X̃2 = 0, we get the following inequalities

V̇v(vi) ≤
(
Xv (ud,i, uc)

2

N
|ι(ξ)|+ Yv (ud,i, uc)

)
v2i + Fv(vi), (4.46)

V̇w(wi) ≤
(
Xw (ud,i, uc)

2

N
|κ(ξ)|+ Yw (ud,i, uc)

)
w2
i + Fw(wi), (4.47)

where Fv and Fw grow at most linearly with vi and wi, respectively. Then, we con-
clude that for a sufficiently large vi and wi, the quadratic terms will dominate the
linear terms. Therefore, the underactuated dynamics are bounded if the quadratic
terms are negative, which is equivalent to condition (4.45).

Lemma 4.3. The underactuated sway and heave dynamics are bounded near the
manifold X̃2 = 0, independently of X̃1 if the assumptions in Lemma 4.2 are satis-
fied and the constant term ∆0 in the lookahead distance (4.20) is chosen so that

∆0 > max

 3

N
∣∣∣ Yv(u,uc)
Xv(u,uc)

∣∣∣− 2 |ι(s)|
,

3

N
∣∣∣ Yw(u,uc)
Xw(u,uc)

∣∣∣− 2 |κ(s)|

 , (4.48)

for all u > 0 and uc ∈ [−∥Vc∥ , ∥Vc∥].

Proof. The complete proof is given in Appendix B.5. Here, we only present a sketch
of the proof.

Once again, we consider the derivatives of the Lyapunov function candidates
Vv, Vw from (4.41). Substituting X̃2 = 0, we get the following inequalities

V̇v(vi) ≤

(
Xv(ud,i, uc)

(
2

N
|ι(ξ)|+ 3

N ∆(ppb)

)
+ Yv (ud,i, uc)

)
v2i + Fv(vi),

(4.49)

V̇w(wi) ≤

(
Xw(ud,i, uc)

(
2

N
|κ(ξ)|+ 3

N ∆(ppb)

)
+ Yw (ud,i, uc)

)
w2
i + Fw(wi),

(4.50)
where Fv and Fw grow at most linearly with vi and wi, respectively. Using the
same arguments as in the proof of Lemma 4.2, we conclude that the underactuated
dynamics are bounded if both (4.45) and (4.48) hold.

Theorem 4.1. The origin
[
X̃T

1 , X̃
T
2

]
= 0T of the system described by (4.36),

(4.37) is a USGES equilibrium point if the conditions of Lemmas 4.2 and 4.3 hold
and the maximum pitch angle of the path satisfies

θp,max = max
s∈R
|θp(s)| <

π

4
. (4.51)

Moreover, the ocean current estimate errors (4.38) and the underactuated sway and
heave dynamics (4.39), (4.40) are bounded.
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Remark. Condition (4.51) is needed to ensure that |γLOS| < π/2. Indeed, from
(4.22), the largest possible LOS reference angle is

γLOS,max = θp,max + lim
zpb→∞

arctan

(
zpb√

∆2
0+(z

p
b )

2

)
= θp,max +

π

4
.

(4.52)

With (4.51) satisfied, the cosine of γLOS is always positive. We will use this fact
in the proof.

Proof. The proof follows along the lines of [35], but is extended to an arbitrary
number of 5DOF vehicles. We will also use the results of [70] to prove that the
system is USGES.

In Lemmas 4.1–4.3, we have shown that the closed-loop system is forward com-
plete and the underactuated sway and heave dynamics are bounded near the man-
ifold X̃2 = 0. Since (4.37) is UGES [71], we can conclude that there exists a finite
time T > t0 such that the solutions of (4.37) will be sufficiently close to X̃2 = 0
to guarantee boundedness of vi and wi. Having established that the underactu-
ated dynamics are bounded, we will now utilize cascaded theory to analyze the
cascade (4.36), (4.37), where (4.37) perturbs the nominal dynamics (4.36) through
the terms Gy(·) and Gz(·).

Now, consider the nominal dynamics of X̃1 (i.e., (4.36) without the perturbing
terms Gy and Gz), and a Lyapunov function candidate

V (X̃1) =
1

2
X̃T

1 X̃1 =
1

2

(
(xpb)

2 + (ypb )
2 + (zpb )

2
)
, (4.53)

whose derivative along the trajectories of (4.36) is

V̇ (X̃1) = −X̃T
1 QX̃1, Q = diag(q1, q2, q3), (4.54a)

q1 =
ks√

1 + (xpb)
2
, q2 =

1
N

∑N
i=1 Ud,i cos (γLOS)√
∆(ppb)

2
+ (ypb )

2
, (4.54b)

q3 =
1
N

∑N
i=1 Ud,i√

∆(ppb)
2
+ (zpb )

2
. (4.54c)

Note that Q is positive definite, and the nominal system is thus UGAS. Further-
more, note that the following inequality

V̇ (X̃1) ≤ −qmin

∥∥∥X̃1

∥∥∥2 , (4.55a)

qmin = min

{
ks√
1 + r2

,
1
N

∑N
i=1 Ud,i cos (γLOS)√

∆2
0 + 4r2

}
, (4.55b)

holds ∀X̃1 ∈ Br. Thus, the conditions of [70, Theorem 5] are fulfilled with k1 =
k2 = 1/2, a = 2, and k3 = qmin, and the nominal system is USGES.
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As discussed in the proof of Lemma 4.1, the perturbing system (4.37) is UGES,
implying both UGAS and USGES. Furthermore, it is straightforward to show that
the following holds for the Lyapunov function (4.53)∥∥∥∥ ∂V∂X̃1

∥∥∥∥ ∥∥∥X̃1

∥∥∥ =
∥∥∥X̃1

∥∥∥2 = 2V
(
X̃1

)
, ∀X̃1, (4.56)∥∥∥∥ ∂V∂X̃1

∥∥∥∥ =
∥∥∥X̃1

∥∥∥ ≤ µ, ∀
∥∥∥X̃1

∥∥∥ ≤ µ. (4.57)

Therefore, [70, Assumption 1] is satisfied with c1 = 2 and c2 = µ for any µ > 0.
Finally, [70, Assumption 2] must be investigated. From (B.12), (B.22), it can be

shown that for both perturbing terms there exist positive functions ζy,1(·), ζy,2(·),
ζz,1(·), ζz,2(·), such that

|Gy(·)| ≤ ζy,1
(∥∥∥X̃2

∥∥∥)+ ζy,2

(∥∥∥X̃2

∥∥∥)∥∥∥X̃1

∥∥∥ , (4.58)

|Gz(·)| ≤ ζz,1
(∥∥∥X̃2

∥∥∥)+ ζz,2

(∥∥∥X̃2

∥∥∥)∥∥∥X̃1

∥∥∥ . (4.59)

Therefore, all conditions of [70, Proposition 9] are satisfied, and the closed-loop
system is USGES.

4.4 Simulation Results

In this section, we present the results of a numerical simulation of three light
autonomous underwater vehicles (LAUVs) [12]. The parameters of the simulation
are summarized in Table 4.1. The barycenter should follow a spiral path given by

pp(s) = [s, a cos(ω s), b sin(ω s)]
T
. (4.60)

The maximum curvature of this path is

max
s∈R
|κ(s)| = b ω2

√
a2 ω2 + 1

, max
s∈R
|ι(s)| = aω2, (4.61)

while the smallest absolute values of Yv/Xv and Yw/Xw for the LAUV model are
approximately 0.26. Consequently, the path is chosen such that the maximum
curvature is

max
s∈R
|κ(s)| = 0.013, max

s∈R
|ι(s)| = 0.040, (4.62)

and (4.45) is satisfied. From (4.48), the lookahead distance must then satisfy
∆0 > 4.29. We choose ∆0 = 5, since smaller distances guarantee faster convergence.

The very minimum relative distance to avoid collision is the length of the LAUV,
i.e. 2.4 m. For additional safety, we design the COLAV task with dmin = 5 m. To
add a security zone during transients, dCOLAV is chosen to be 10 m.

The desired formation is an isosceles triangle parallel to the yz plane. Specifi-
cally, the desired positions of the three vehicles are

pff,1 =

 0
10
5

 , pff,2 =

 0
−10
5

 , pff,3 =

 0
0
−10

 . (4.63)
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Figure 4.1: Simulation results. The top-left plot shows the x-, y- and z-
components of the path-following error pp

b , as defined in (4.3). The bottom-
left plot shows the distance between the vehicles (di,j = ∥pi − pj∥). The plots
on the right show the x-, y- and z-components of the formation-keeping error
σ̃ = σ2 −σd,2 with σ2 given by (4.17) and σd,2 given by (4.18). The grey rectan-
gles mark the intervals when the COLAV task is active.

Trajectory

0 20 40 60 80 100

0

−50

−100
0

−10

10
20

x [m]

y [m]

z
[m

]

Vehicle 1
Vehicle 2
Vehicle 3
Path

Figure 4.2: 3D trajectory of the vehicles. The markers represent the position of
the vehicles at times t = 0, 25, 50, . . . , 150 seconds. Markers with corresponding
times are connected by dotted lines to better illustrate the resulting formation.
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Parameter Value
ku 0.05
kc 0.1

kθ, kψ 0.0625
kq, kr 0.25

kd 0.1
λq, λr 0.75

cu 5
cq, cr 1
Λ1 I
Λ2 0.05 I

Parameter Value
Vc [0, 0.25, 0.05]

T

∆0 5
dCOLAV 10
ULOS 1

ks 1
p0 03

a 40
b 20
ω π/100

Table 4.1: Simulation parameters

The gains of the low-level control systems (4.6),(4.9),(4.12) are chosen such that
the settling time is approximately 10 seconds. The gains of the pitch and yaw PD
controllers are chosen such that the closed-loop system is critically damped.

The results of the numerical simulation are shown in Figures 4.1 and 4.2. The
vehicles start in an inverted triangular formation. The COLAV task is briefly
activated, and the distance between the vehicles drops to approximately 8 meters
during the transient. Eventually, the vehicles resolve the situation and continue to
converge to the desired path and formation.

Note that while the COLAV task is active, the formation-keeping error is di-
verging. After resolving the situation, the formation-keeping error converges to
zero exponentially. The rate of convergence is given by the formation-keeping gain
Λ2.

The path-following error seems to converge linearly at first, and then exponen-
tially as the error gets smaller. This phenomenon is caused by the LOS guidance
law (4.22), cf. [104], and the path parameter update law (4.33). The inverse tan in
(4.22) and the last term in (4.33) act as a saturation, slowing the convergence for
large errors. The rate of convergence of the along-track error (xpb) is given by the
path parameter update gain ks, while the rate of convergence of the cross-track er-
rors (ypb , z

p
b ) is given by the lookahead distance ∆0. The path-following error seems

to increase at t = 150 s. This increase is probably caused by low-level tracking
errors. To avoid chattering, the sign functions in the low-level sliding-mode con-
trollers (4.6)–(4.12) are approximated using hyperbolic tan. These approximations
result in a non-zero steady-state error.
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Chapter 5

Formation Path-Following Control of
6DOF Underactuated AUVs

This chapter presents a method for formation path-following control of a fleet of
underactuated autonomous underwater vehicles. The proposed method combines
several hierarchic tasks in a null-space-behavioral algorithm to safely guide the vehi-
cles. Compared to the previous chapter, the algorithm includes both inter-vehicle
and obstacle collision avoidance, and employs a scheme that keeps the vehicles
within given operation limits. The algorithm is applied to a six degree-of-freedom
model, using rotation matrices to describe the attitude to avoid singularities. Us-
ing the results of cascaded systems theory, we prove that the closed-loop system
is uniformly semiglobally exponentially stable. We use numerical simulations to
validate the results. The contents of this chapter are based on [79].

The chapter is organized as follows. Section 5.1 introduces the model of the
AUVs and defines the formation path-following problem. Section 5.2 describes
the proposed modified NSB algorithm. The stability of the closed-loop system is
proven in Section 5.3. Finally, Section 5.4 presents the results of the numerical
simulations.

5.1 Problem Definition

In this section, we briefly present the AUV model and the formation path-following
problem.

5.1.1 Vehicle Model

We consider a fleet of N underactuated AUVs. The dynamics of the AUVs are
described using the 6DOF control-oriented model from Section 2.1.4. Let p =
[x, y, z]

T be the position, and let υ = [u, v, w]
T and ω = [p, q, r]

T be the linear
and angular velocities, respectively. To avoid the singularities caused by the use of
Euler angles, the orientation of the AUV is given by a rotation matrix R ∈ SO(3).
Furthermore, let Vc ∈ R3 be the velocities of an unknown, constant and irrotational
ocean current.
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Recalling (2.8), the dynamics of the AUVs are

ṗ = Rυ, (5.1a)

Ṙ = RS(ω), (5.1b)

Mν̇r +
(
C(νr) +D(νr)

)
νr + g(R) = Bf . (5.1c)

Unlike the previous chapter, here we do not design a specific low-level con-
troller. The aim of this chapter is to demonstrate that the proposed formation
path-following algorithm can be readily implemented on vehicles with existing low-
level controllers. Consequently, the choice of a low-level velocity and attitude
controller is not discussed in this chapter. However, there are some assumptions
about the low-level controller.

Assumption 5.1. The vehicle is equipped with a low-level controller that allows
exponential tracking of the surge velocity, orientation, and angular velocity. Specif-
ically, let ud,Rd and ωd be the reference signals. We define an error

X̃ =

[
u− ud, logm

(
R̃
)T
,
(
ω − R̃Tωd

)T]T
, R̃ = RT

dR, (5.2)

where logm : SO(3) 7→ B3
π is the matrix logarithm [111]. Note that by Assump-

tion 2.3, X̃ is controllable through the input f . Consider the closed-loop system

˙̃
X = F

(
X̃, v, w,Vc

)
, (5.3)

consisting of (5.1b), (5.1c), and the low-level controller. We assume that X̃ = 0 is
a globally exponentially stable (GES) equilibrium of (5.3).

An example of a global exponential attitude tracking controller can be found,
e.g., in [112].

Note that for a complete system analysis, we need to consider the underactuated
sway and heave dynamics explicitly. Recalling (2.22), the underactuated dynamics
have the following form

v̇r = Xv(ur)r + Yv(ur)vr + Zv(p)wr, (5.4a)
ẇr = Xw(ur)q + Yw(ur)wr + Zw(p)vr, (5.4b)

where X(·), Y (·), Z(·) are affine functions of the respective variables.

5.1.2 Formation Path-Following Problem

Similarly to the previous chapter, the goal is to control a fleet of N AUVs so that
they move in a prescribed formation and their barycenter follows a given path.

The prescribed path is parametrized by a smooth function pp : R 7→ R3. We
assume that the function is C∞ and regular. Therefore, for every point pp(s) on the
path, there exists a path-tangential coordinate frame and a corresponding rotation
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matrix Rp(s) (see Section 2.2). Moreover, we assume that the curvature vector
ωp(s) exists and is continuously differentiable.

The path-following error ppb is given by the position of the barycenter in the
path-tangential coordinate frame

ppb = RT
p

(
pb − pp(s)

)
, pb =

1

N

N∑
i=1

pi. (5.5)

The goal of path following is to control the vehicles so that ppb → 03.
The vehicles should converge to a dynamic formation that rotates with the

desired path (see Section 2.3.2 for details). Let pff,1, . . . ,p
f
f,N be the position

vectors that represent the desired formation. The objective is to control the vehicles
so that

pi − pb → Rp(s)p
f
f,i, ∀i ∈ {1, . . . , N} . (5.6)

5.2 The Proposed Algorithm

The AUVs must perform the goals stated in Section 5.1.2 safely, i.e., avoid collisions
with other vehicles and obstacles, and remain within a given range of depths. An
upper limit on the depth of the AUVs is needed to prevent them from colliding
with the seabed or exceeding their depth rating. A lower limit is needed in busy
environments (e.g., harbors), where the AUVs may otherwise collide or interfere
with surface vessels.

To solve the formation path-following problem, we propose a method that com-
bines inter-vehicle collision avoidance (COLAV), formation keeping, line-of-sight
(LOS) path following, obstacle avoidance, and depth limiting in a hierarchic man-
ner using an NSB algorithm. Similarly to Chapter 4, the proposed algorithm is
centralized, meaning that to implement it in a real-life scenario, we require a cen-
tral node that can communicate and coordinate with the AUVs. Since the NSB
algorithm outputs inertial velocity references, we also need a method for converting
these to surge and orientation.

In this section, we first present the NSB algorithm and the associated tasks. We
then present in Section 5.2.6 a strategy for converting inertial velocity references
to surge/orientation ones.

5.2.1 NSB Algorithm

Similarly to the previous chapter, we define three tasks: COLAV, formation-
keeping, and path-following. Each task will be described in detail in Sections 5.2.2,
5.2.3, and 5.2.4. As we will explain in Section 5.2.5, obstacle avoidance and depth
limiting will not be defined as separate tasks but rather achieved through a modi-
fication to the path-following task. Let us denote the variables associated with the
COLAV, formation-keeping, and path-following tasks by lower indices 1, 2, and
3, respectively. Define the so-called task variables as σm = fm (p1, . . . ,pN ) ,m ∈
{1, 2, 3}, and their desired values as σd,m,m ∈ {1, 2, 3}.
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Furthermore, let vm,m ∈ {1, 2, 3} be the desired velocities of each task. These
velocities are combined using the recursive NSB algorithm (2.79).

vNSB = v1 +N1 (v2 +N2v3) . (5.7)

5.2.2 Inter-Vehicle Collision Avoidance

Let dCOLAV be the activation distance, i.e., the distance at which the vehicles need
to start performing the evasive maneuvers. The task variable is given by a vector
of relative distances between the vehicles smaller than dCOLAV

σ1 =
[
∥pi − pj∥

]
,

∀i, j ∈ {1, . . . , N}, j > i,

∥pi − pj∥ < dCOLAV.
(5.8)

The desired values of the task are

σd,1 = dCOLAV 1, (5.9)

where 1 is a vector of ones. To ensure a faster response to a potential collision
than in the previous chapter, we propose the following sliding-mode-like COLAV
velocity

v1 = −UCOLAVJ
†
1

σ̃1

∥σ̃1∥
, σ̃1 = σ1 − σd,1, (5.10)

where UCOLAV is a positive constant.
Similarly to the previous chapter, this task does not guarantee robust collision

avoidance. During the transients, the relative distance may become smaller than
dCOLAV. Therefore, to ensure collision avoidance, dCOLAV should be chosen as
dmin+dsec, where dmin is the minimum safe distance between the vehicles, and dsec
is an additional security distance.

To avoid collisions robustly, we would need to consider the dynamics of the
AUVs and employ a reactive COLAV algorithm, c.f., Section 1.1.3.

5.2.3 Formation Keeping

The formation-keeping task variable is defined as

σ2 =
[
σT
2,1, . . . ,σ

T
2,N−1

]T
, σ2,i = pi − pb, (5.11)

and its desired values are

σd,2 =
[(
Rp p

f
f,1

)T
, . . . ,

(
Rp p

f
f,N−1

)T]T
. (5.12)

The formation-keeping velocity is given by

v2 = J†
2σ̇d,2 − v2,maxJ

†
2 sat (Λ2σ̃2) , σ̃2 = σ2 − σd,2, (5.13)

where v2,max is a positive constant, and sat is a saturation function given by

sat(x) = x
tanh (∥x∥)
∥x∥

. (5.14)

The use of a saturation function guarantees some bounds on the NSB velocity, as
we will explain in Section 5.2.6.
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5.2.4 Path Following

To solve the path-following, we employ the coupled LOS guidance algorithm (2.71).
Let ∆(ppb) be the lookahead distance of the LOS guidance law. Inspired by [109],
we choose an error-dependent lookahead distance

∆(ppb) =

√
∆2

0 + (xpb)
2
+ (ypb )

2
+ (zpb )

2 (5.15)

where ∆0 is a positive constant. The LOS velocity is then given by

vLOS =
ULOS

D
Rp [∆ (ppb) ,−y

p
b ,−z

p
b ]

T
, (5.16)

where ULOS > 0 is the desired path-following speed, and

D =

√
∆(·)2 + (ypb )

2
+ (zpb )

2
. (5.17)

The task velocity is then given by

v3 = 1N ⊗ vLOS. (5.18)

Note that the path parameter s in (5.5) can be treated as an additional degree of
freedom in the control design, and used to get a stable behavior of the along-track
error xpb . Inspired by [109], we choose the update law of s as

ṡ =

∥∥∥∥∂pp(s)∂s

∥∥∥∥−1

ULOS

∆

D
+ ks

xpb√
1 + (xpb)

2

 , (5.19)

where ks is a positive gain.

5.2.5 Obstacle Avoidance and Depth Limiting

Obstacle avoidance is typically implemented individually for each vehicle [102].
However, we propose to perform this task globally by incorporating it into the
path-following algorithm so that it does not interfere with the inter-vehicle COLAV.

To arrive at the proposed algorithm, we first restrict the obstacle avoidance
maneuvers to the xy-plane to avoid interfering with the subsequent depth-limiting
logic. Let po = [xo, yo, zo]

T be the position of the obstacle and ro the obsta-
cle avoidance radius. Note that ro must be chosen sufficiently large to cover
the size of both the obstacle and the AUV. Furthermore, let us define the for-
mation radius rf = maxi∈{1,...,N}

∥∥∥[xb − xi, yb − yi]T∥∥∥ and the relative position

prel = [xb − xo, yb − yo]T. As illustrated in Figure 5.1a, obstacle avoidance is en-
sured if

∥prel∥ ≥ ro + rf . (5.20)

To guarantee obstacle avoidance, we utilize the collision cone concept [113].
Inspired by [114], we employ a constant avoidance angle and define a switching
condition. More precisely, let

vrel = [vx,LOS − ẋo, vy,LOS − ẏo]T (5.21)
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ro

pb

po

rf

p1

p2

pn
∥prel∥

(a) Obstacle and formation
radii

ro + rf

α

pb

po

vrel

(b) Collision cone

Figure 5.1: Illustration motivating the obstacle avoidance constraint (5.20) and
conflict condition (5.22).

denote the relative line-of-sight velocity (vx,LOS and vy,LOS are the components of
vLOS). As shown in Figure 5.1b, a conflict between the AUVs and the obstacle
arises if the relative velocity lies in the so-called collision cone, i.e., if

|∠ (prel,−vrel)| ≤ α, α = sin−1

(
ro + rf
∥prel∥

)
, (5.22)

where ∠ (a,b) denotes the angle between two vectors.
The obstacle avoidance task is activated if simultaneously such a conflict arises

and the cone angle satisfies α ≥ αmin, where 0 < αmin ≪ π/2. Note that [114] use
a switching condition based on distance, i.e., ∥prel∥ ≤ dmin. Since our definition
of a safe distance (5.20) is not constant, we instead suggest using a switching rule
based on the cone angle.

When the task is active, the x- and y-components of the LOS velocity are
replaced by the obstacle avoidance velocity vOA given by

vOA = ∥vrel∥ [cos(ψOA), sin(ψOA)]
T
+ [ẋo, ẏo]

T
, (5.23)

ψOA = atan2 (yo − yb, xo − xb)± α. (5.24)

Note that ψOA has two solutions corresponding to the clockwise and counterclock-
wise directions. Inspired by [115], we propose the following method for choosing
a direction: When the conflict first happens, we choose the value of ψOA that is
closer to the direction of vrel. Afterwards, we maintain the same direction.

As for the depth-limiting logic, let zmin and zmax be the operation limits. We
assume the limits to be wide enough to accommodate the formation. We then
propose to replace the z-component of the LOS velocity with a depth-limiting
velocity vz,lim given by

vz,lim =


vz, if mini∈{1,...,N} zi ≤ zmin,

−vz, if maxi∈{1,...,N} zi ≥ zmax,

vz,LOS, otherwise,
(5.25)
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where vz is a positive constant.

5.2.6 Surge and Orientation References

Since the NSB algorithm outputs inertial velocity references, we also need a method
for converting these to surge and orientation references. The strategy for choosing
these references changes depending on whether the avoidance or depth-limiting
tasks are active. The proposed strategy allows us to prove the closed-loop stability
of both the path-following and formation-keeping tasks (c.f. [33], where no stability
proofs are given, and [35, 83], that only prove the stability of the path-following
task).

First, let us consider the case when neither the avoidance nor depth-limiting
tasks are active. Because the formation-keeping and the path-following task are
independent and orthogonal, (5.7) can be simplified to

vNSB = v2 + v3. (5.26)

Let vNSB,i denote the desired velocity of vehicle i. To achieve the desired behavior,
the surge reference ud,i should be chosen such that∥∥∥[ud,i, vi, wi]T∥∥∥ = ∥vNSB,i∥ , (5.27)

However, since we cannot directly control the sway and heave velocities, (5.27) can
only be satisfied if

∥vNSB,i∥2 ≥ v2i + w2
i . (5.28)

In addition, AUVs typically need to maintain a minimum surge velocity to be able
to maneuver, implying a stricter inequality

∥vNSB,i∥2 ≥ u2min + v2i + w2
i (5.29)

where umin > 0. We will show that this inequality can be satisfied by choosing a
time-varying path-following speed ULOS.

Substituting task velocity definitions (5.13) and (5.18) into (5.26) and exploiting
the structure of the task Jacobian J2, we get that the NSB velocity of vehicle i is
given by

vNSB,i = vLOS + Ṙp(s)p
f
f,i + v2,i, (5.30)

where [
vT
2,1, . . . ,v

T
2,N

]T
= −v2,max sat

(
J†
2Λ2σ̃2

)
. (5.31)

From (2.51), the time-derivative of Rp(s) is given by

Ṙp(s) = Rp(s)S
(
ωp(s)

)
ṡ. (5.32)

From (5.19), we get the following upper bound on ṡ

|ṡ| ≤
∥∥∥∥∂pp(s)∂s

∥∥∥∥−1

ULOS (1 + ks) . (5.33)

67



5. Formation Path-Following Control of 6DOF Underactuated AUVs

Substituting (5.31), (5.32), and (5.33) into (5.30), we get the following lower bound
on the NSB velocity

∥vNSB,i∥ ≥ ULOS

(
1− ∥ωp∥

∥∥∥∂pp

∂s

∥∥∥−1 ∥∥∥pff,i∥∥∥ (1 + ks)

)
− v2,max. (5.34)

Now, assuming the existence of an upper bound on the product

∥ωp(s)∥ ∥∂pp(s)/∂s∥−1
,

there exists a positive constant kNSB such that for every vehicle

∥vNSB,i∥ ≥ (1− kNSB)ULOS − v2,max. (5.35)

Assuming that kNSB < 1, we can satisfy (5.29) by choosing

ULOS =
v2,max +maxi

√
v2i + w2

i + u2min

1− kNSB
. (5.36)

However, the max function would introduce switching behavior. To avoid this, we
approximate the former with

ULOS =
v2,max +

√∑N
i=1 (v

2
i + w2

i ) + u2min

1− kNSB
. (5.37)

If the avoidance or depth-limiting tasks are active, we still choose ULOS in
accordance with (5.37). However, since (5.29) cannot be satisfied with a generic
NSB velocity (5.7), we choose the surge reference as

ud,i =

{√
∥vNSB,i∥2 − v2i − w2

i , if (5.29) satisfied,
umin, otherwise.

(5.38)

Finally, let us discuss the choice of desired orientation. Let vNSB,i and υi denote
normalized vectors. We are seeking Rd,i ∈ SO(3) such that

vNSB,i = Rd,i υi. (5.39)

Assume that at a given time, there is Rd,i that satisfies (5.39). Differentiating
(5.39) with respect to time yields

v̇NSB,i = Rd,i S(ωd,i)υi +Rd,i υ̇i, (5.40)

where ωd,i is the desired angular velocity of the vehicle. Let us define

ωvNSB,i
= vNSB,i × v̇NSB,i, ωυi

= υi × υ̇i. (5.41)

Then, (5.40) can be rewritten as

ωvNSB,i
× vNSB,i = Rd,i (ωd,i × υi + ωυi

× υi) . (5.42)
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Therefore, the desired angular velocity must satisfy(
ωd,i + ωυi

−RT
d,iωvNSB,i

)
× υi = 0. (5.43)

Thus, instead of finding Rd,i directly, we propose to choose

ωd,i = RT
d,iωvNSB,i

− ωυi
, (5.44)

and then evolve the desired orientation according to

Ṙd,i = Rd,iS(ωd,i). (5.45)

Note that choosing ωd,i according to (5.44) leads to the smallest (in terms of
Euclidean norm) angular velocity that satisfies (5.43). We also note that there
exists a subspace of angular velocities that satisfy (5.43) and a subspace of rotation
matrices that satisfy (5.39). This differs from 3DOF [33, 35] and 5DOF [83] models,
for which only one solution exists.

5.3 Closed-Loop Analysis

In this section, we analyze the closed-loop behavior of the system. Throughout this
section, we assume that neither the avoidance nor depth-limiting tasks are active.
Let us define the combined formation-keeping and path-following error as

σ̃ =
[
σ̃T
2 , (p

p
b)

T
]T
, (5.46)

and the combined low-level controller error as

X̃ =
[
X̃T

1 , . . . , X̃
T
N

]T
. (5.47)

First, let us investigate the closed-loop dynamics of σ̃. Differentiating (5.11),
(5.12), and (5.5) with respect to time yields

˙̃σ2 = J2ṗ− σ̇d,2, ṗ =
[
ṗT
1 , . . . , ṗ

T
N

]T
(5.48a)

ṗpb = RT
p

(
1

N

N∑
i=1

ṗi − ṗp

)
− S

(
ωpṡ

)
ppb . (5.48b)

From (5.1a) and (5.2) it follows that ṗi is given by

ṗi = Riυi = expm (δi)Rd,i [ud,i + ũi, vi, wi]
T
, (5.49)

with

expm(δ) = cos θ I+ sS(δ) + cS(δ)2,

θ = ∥δ∥ ,
s = sin(θ)

θ ,

c = 1−cos(θ)
θ2 .

(5.50)
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Substituting (5.50), (5.27), and (5.39) into (5.49) we get

ṗi = vNSB,i + s(δi × vNSB,i) + c δi × (δi × vNSB,i) +Ri [ũi, 0, 0]
T
. (5.51)

Defining a perturbing term gi as

gi = s(δi × vNSB,i) + c δi × (δi × vNSB,i) +Ri [ũi, 0, 0]
T
, (5.52)

and substituting (5.52) and (5.51) into (5.48) yields

˙̃σ2 = J2vNSB − σ̇d,2 + J2G, G =
[
gT
1 , . . . ,g

T
N

]T
(5.53a)

ṗpb = RT
p

(
1

N

N∑
i=1

(vNSB,i + gi)− ṗp

)
− S

(
ωpṡ

)
ppb . (5.53b)

Now, to account for the underactuated dynamics, we define a vector of concate-
nated sway and heave velocities as

υu = [v1, w1, . . . , vN , wN ]
T
, υu,c = 1N ⊗ [vc, wc]

T
. (5.54)

The underactuated dynamics can then be written as

υ̇u = XΩ+Y (υu − υu,c) + υ̇u,c, (5.55)

where Ω = [ω1, . . . ,ωN ]
T, and X and Y are block diagonal matrices consisting of

blocks X1, . . . ,XN and Y1, . . . ,YN , that are given by

Xi =

[
0 0 Xv(ur,i)
0 Xw(ur,i) 0

]
, Yi =

[
Yv(ur,i) Zv(pi)
Zw(pi) Yw(ur,i)

]
. (5.56)

Theorem 5.1. Let Assumptions 2.1–5.1 be satisfied. Then,
[
σ̃T, X̃T

]
= 0T is

a uniformly semiglobally exponentially stable (USGES) equilibrium point of the
closed-loop system (5.53), (5.3), (5.55). Moreover, let X be the largest signular
value of X and let Y be the smallest eigenvalue of −Y. Then, the underactuated
sway and heave dynamics are bounded near the manifold

[
σ̃T, X̃T

]
= 0T if the

second and third partial derivatives of pp(s) with respect to s are bounded and X
and Y satisfy Y > aX, where a is a positive constant that will be defined later in
the proof.

Proof. We analyze the closed-loop system as a cascade where X̃ perturbs the dy-
namics of σ̃ through G. Consider the nominal dynamics of σ̃ (i.e., (5.53) with
G = 0) and the following Lyapunov function candidate

V =
1

2
σ̃Tσ̃ =

1

2

(
σ̃T
2 σ̃2 + (ppb)

T
ppb

)
. (5.57)

The time-derivative of V is

V̇ = σ̃T
2 (J2vNSB − σ̇d,2)−(ppb)

T
S(ωpṡ)p

p
b+(ppb)

T
RT
p

(
1

N

N∑
i=1

vNSB,i− ṗp
)
. (5.58)
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Due to the properties of the NSB tasks defined in Sections 5.2.3 and 5.2.4, the
following identities hold:

J2vNSB = J2v2,

N∑
i=1

vNSB,i = vLOS. (5.59)

By definition (see Section 5.1.2), Rp must satisfy

RT
p ṗp = ṡ

∥∥∥∂pp(s)
∂s

∥∥∥−1

e1, e1 = [1, 0, 0]
T
. (5.60)

Substituting (5.13) and (5.16) into (5.58) leads to

V̇ = −v2,maxσ̃
T
2 sat (Λ2σ̃2)

− ULOS

(
ks

(xp
b)

2√
1+(xp

b)
2
+

(ypb )
2

D +
(zpb )

2

D

)
.

(5.61)

For any σ̃ ∈ B3N
r , the following holds:

V̇ ≤ −v2,maxλ2,min
tanh(r)

r ∥σ̃2∥2

− ULOS min

{
ks√
1+r2

, 1√
∆2

0+2r2

}
∥ppb∥

2
,

(5.62)

where λ2,min is the smallest eigenvalue of Λ2. From (5.62), we conclude that the
derivative of V satisfies

V̇ ≤ −kr ∥σ̃∥2 , (5.63)

where
kr = min

{
v2,maxλ2,min

tanh(r)
r , ULOSks√

1+r2
, ULOS√

∆2
0+2r2

}
(5.64)

All assumptions of [70, Theorem 5] are thus satisfied, and the origin of the nominal
system is USGES.

Moreover, note that the low-level controller is GES by Assumption 5.1. There-
fore, if the two assumptions of Proposition 2.2 hold, the origin of the cascade is
USGES. Since ∥∂V/∂σ̃∥ = ∥σ̃∥, the first assumption is satisfied for c1 = 1/2, c2 = η,
and any η ∈ R≥0.

To validate the second assumption, we first need to investigate the perturbing
terms gi from (5.52). From (5.30) we get the following upper bound on vNSB,i

∥vNSB,i∥ ≤ ULOS (1 + kNSB) + v2,max tanh (∥σ̃2∥) , (5.65)

and from (5.50), we get the inequalities

s ≤ 1, ∥c δ∥ ≤ √
2/2. (5.66)

Therefore, gi can be upper-bounded by

∥gi∥ ≤ ∥vNSB,i∥ (1 +
√
2/2) ∥δi∥+ |ũi| . (5.67)
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Consider then the two functions α1,i, α2,i : R≥0 7→ R≥0

α1,i(r) = (ULOS (1 + kNSB) (1 +
√
2/2) + 1) r, (5.68)

α2,i(r) = v2,max (1 +
√
2/2) r. (5.69)

Then, the following holds:

∥gi∥ ≤ α1,i

(∥∥X̃i

∥∥)+ α2,i

(∥∥X̃i

∥∥) ∥σ̃∥ . (5.70)

Therefore, (2.112) can be satisfied by

α1(r) =

N∑
i=1

α1,i(r), α2(r) =

N∑
i=1

α2,i(r), (5.71)

and consequently all assumptions of [70, Proposition 9] are satisfied. To summarize,
the origin of the closed-loop system is USGES.

As for the underactuated dynamics, the assumption X̃ = 0 implies ωi = ωd,i
and ui = ud,i. Therefore the underactuated dynamics depend on the desired angu-
lar velocity. Recall the definition of ωd,i in (5.44). To find a closed-loop expression
for ωd,i, we shall analyze ωvNSB,i and ωυi .

First, we consider ωvNSB,i . In Appendix C.1, we show that there exist positive
constants aNSB and bNSB such that∥∥ωvNSB,i

∥∥ ≤ aNSB ∥υu∥+ bNSB. (5.72)

Now, let us consider ωυi
. In Appendix C.2, we show that ωυi

depends on the
angular velocities of the vehicle, thus forming an algebraic loop. However, under
certain conditions, this loop can be resolved.

We show that ωυi is affine in ωi. In other words, there exist ω0,i and Aωi such
that

ωυi = ω0,i +Aωi ωi. (5.73)

Moreover, we show that Aωi
satisfies

det (I+Aωi
) ≥ 1− ka, (5.74)

where ka is a positive constant depending on the physical properties of the vehicle,
the minimum surge velocity, and the ocean current. If ka < 1, then (I+Aωi

) is
invertible, and the desired angular velocity is

ωd,i = (I+Aωi)
−1 (

RT
d,iωvNSB,i − ω0,i

)
. (5.75)

In addition, there exist positive constants av, and bv such that

∥ω0,i∥ ≤ av ∥υu∥+ bv. (5.76)

By combining (5.72), (5.74), and (5.76), we can upper bound the angular ve-
locity with

∥ωd,i∥ ≤
(aNSB + av) ∥υu∥+ bNSB + bv

1− ka
. (5.77)
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The Lyapunov function candidate

Vu =
1

2
υT
uυu (5.78)

for the underactuated dynamics may then be shown that, leveraging (5.55), has its
time-derivative bounded by

V̇u ≤ υT
uYυu + aXmax ∥υu∥2 +H (∥υu∥ , ∥Vc∥) , (5.79)

where a = (aNSB + av)/(1 − ka), Xmax is the largest singular value of X, and H
represents the terms that grow at most linearly with υu. Since Y contains terms
associated with hydrodynamic damping, it is negative definite. Therefore, V̇u can
be further bounded by

V̇u ≤ − (Ymin − aXmax) ∥υu∥2 +H(·), (5.80)

where Ymin is the real part of the smallest eigenvalue of −Y. For a sufficiently
large υu, the quadratic terms will dominate the linear terms. Consequently, the
underactuated dynamics are bounded if

Ymin > aXmax. (5.81)

We have thus shown that the origin of the closed-loop system (5.53), (5.3), (5.55)
is USGES, and the underactuated sway and heave dynamics are bounded.

5.4 Simulations

We simulate the proposed approach on a fleet of six LAUVs [12] using MATLAB,
delegating low-level control to an attitude-tracking PID controller as in [116] and
an output-linearizing P surge controller as in [83].

The desired path is a spiral given by

pp(s) = pp,0 + [s, ap cos(ωp s), bp sin(ωp s)]
T (5.82)

where

pp,0 = [0,−40, 25]T , ap = 40, bp = 20, ωp =
π

100 ,

while the desired formation is an isosceles triangle parallel to the yz plane. Specif-
ically, the desired positions in the formation-centered frame are

pff,1 =

 0
10
5

 , pff,2 =

 0
−10
5

 , pff,3 =

 0
0
−10

 . (5.83)

For the simulation parameters, we choose the velocity of the ocean current to
be Vc = [0, 0.15, 0.05]

T, the formation-keeping gain Λ2 = 0.1I, the maximum
formation-keeping velocity v2,max = 0.5m s−1, and the lookahead distance ∆0 =
5m.
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Figure 5.2: The 3D trajectory of the vehicles. The markers represent the position
of the vehicles at times t = 0, 50, . . . , 250 seconds. Markers with corresponding
times are connected by dotted lines to better illustrate the resulting formation.

The very minimum relative distance to avoid collision is the length of the LAUV,
i.e., 2.4 m. For additional safety, we design the COLAV task with dmin = 5 m. For
additional safety during transients, dCOLAV is chosen to be 10 m.

We then let the vehicles encounter an obstacle of similar size as the LAUV that
moves east at a constant speed of 0.3m s−1. Given its size, we choose ro = dCOLAV.
The minimum cone angle is set to αmin = 15◦. The operation limits are chosen as
zmin = 1m, zmax = 49m, and the depth-limiting velocity is vz = 0.3m s−1. Note
that the limits are deliberately chosen too small for the given path and formation,
so that depth limiting is activated.

Figures 5.2 and 5.3 show the results of this numerical simulation. Figure 5.3a
shows the distance between the vehicles and the distance to the obstacle. At
t = 20 s, the COLAV task is activated, and the distance between the vehicles drops
to approximately 9.5 meters during the transient. The situation is resolved after
30 seconds. At t = 35 s, the vehicles enter the collision cone and perform an evasive
maneuver in a clockwise direction. The distance to the obstacle is always above
the required limit.

Figure 5.3b shows the depth of the vehicles. At t = 73 s and t = 212 s, the
depth-limiting task is activated. When the task is active, the depth of the vehicles
fluctuates around the prescribed limit.

Figures 5.3c and 5.3d show the path-following and formation-keeping errors. We
can see that the path-following errors diverge when obstacle avoidance or depth
limiting is active. Conversely, the formation-keeping errors diverge during inter-
agent COLAV. This behavior corresponds to the interpretation of the NSB tasks
— path-following is global and thus cannot be satisfied during obstacle avoidance,
whereas formation-keeping works with relative velocities and thus cannot be satis-
fied during inter-agent COLAV.

Figure 5.3e shows the surge velocity of the vehicles. We can see that the surge
velocities are always above the required limit. In fact, our solution appears to be
overly conservative. Figure 5.3f shows the sway and heave velocities. We can see
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Figure 5.3: Simulation results.
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that the velocities change abruptly when the collision avoidance or depth limiting
tasks are active, as the vehicles switch to a different behavior. However, the veloci-
ties still remain bounded during the whole simulation. The peak in sway velocities
at t = 180 s coincides with the sharpest turn (i.e., the largest ωp(s)) of the desired
path.
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Chapter 6

A Distributed NSB Algorithm for For-
mation Path Following

This chapter presents a distributed null-space-behavioral algorithm for the forma-
tion path-following problem of vehicles moving in three dimensions. The algorithm
is applied to fleets of underactuated autonomous underwater vehicles. The algo-
rithm combines null-space-behavioral control with consensus methods. First, we
present a continuous-time version of the algorithm and prove its stability using
Lyapunov analysis. Then, we present a discrete-time event-triggered version that,
compared to similar formation path-following methods, can achieve the same steady
state-error performance with fewer inter-vehicle transmissions. The effectiveness of
both the continuous-time and the discrete-time algorithm is verified in numerical
simulations. Furthermore, the discrete-time version is tested in field experiments.
The contents of this chaper are based on [79].

The chapter is organized as follows. Section 6.1 defines the formation path fol-
lowing problem. Section 6.2 presents the centralized NSB algorithm. In Section 6.3,
we present the continuous-time distributed NSB algorithm, and in Section 6.4, we
analyze its closed-loop behavior. Section 6.5 discusses how to apply the proposed
algorithm to underactuated AUVs and proposes the discrete-time modification.
Finally, Sections 6.6 and 6.7 present the results of numerical simulations and ex-
periments, respectively.

6.1 Problem Definition

We begin by considering a group of N vehicles with single-integrator dynamics.
An extension to more complex vehicle models will be shown in Section 6.5. Let
pi ∈ R3 be the position of vehicle i. The kinematic equation of vehicle i is

ṗi = vi, (6.1)

where vi ∈ R3 is the input velocity.
The vehicles should follow a predefined path in a given formation. Let pp :

R 7→ R3 be a parametrization of the desired path. We assume that the function is
C1 and regular. Consequently, for any point pp(s), there exists a path-tangential
coordinate frame and a corresponding rotation matrix Rp(s).
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6. A Distributed NSB Algorithm for Formation Path Following

The path-following error ppb is given by the position of the barycenter in the
path-tangential coordinate frame

ppb = RT
p

(
pb − pp(s)

)
, pb =

1

N

N∑
i=1

pi. (6.2)

The goal of path following is to control the vehicles so that ppb → 03.
The vehicles should converge to a dynamic formation that rotates with the

desired path (see Section 2.3.2 for details). Let pff,1, . . . ,p
f
f,N be the position

vectors that represent the desired formation. The objective is to control the vehicles
so that

pi − pb → Rp(s)p
f
f,i, ∀i ∈ {1, . . . , N} . (6.3)

6.2 NSB Algorithm for the Formation Path Following Prob-
lem

In this section, we present the centralized formation path-following NSB algorithm
for vehicles moving in three dimensions. The algorithm is a simplified version of
the two methods presented in Chapters 4 and 5.

For the sake of simplicity, we do not consider inter-vehicle collision avoidance.
Instead, we focus on the formation path-following problem with obstacle avoidance.
To solve the problem, we define two tasks: path following and formation keeping.
Obstacle avoidance is not implemented as a separate task but rather as an extension
of path following.

In the nominal case (i.e., when obstacle avoidance is not active), the path-
following velocity is given by the coupled line-of-sight (LOS) guidance law (2.71)

vLOS =
Ud
D

Rp [∆,−ypb ,−z
p
b ]

T
, D =

∥∥∥[∆,−ypb ,−zpb ]T∥∥∥ , (6.4)

with a constant lookahead distance ∆ > 0.
The method for obstacle avoidance is identical to the one presented in Chapter 5.

Let po ∈ R2 and vo ∈ R2 denote the position and velocity of the obstacle. When
the task is active, the x- and y-components of the LOS velocity are replaced by the
obstacle avoidance velocity vOA given by

vOA = ∥vrel∥ [cos(ψOA), sin(ψOA)]
T
+ [ẋo, ẏo]

T
, (6.5)

ψOA = arctan2 (yo − yb, xo − xb)± α, (6.6)

where vrel is the relative velocity and α is the collision cone angle, as defined in
(5.21) and (5.22), respectively. Note that ψOA has two solutions corresponding to
avoiding the obstacle in the clockwise and counterclockwise directions. Inspired by
[115], we propose the following method for choosing a direction: When the conflict
first happens, we choose the value of ψOA that is closer to the direction of vrel.
Afterwards, we maintain the same direction.
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6.3. Distributed NSB Algorithm

Finally, let us discuss formation keeping. The proposed formation-keeping law
is analogous to (2.90) and (4.19). The formation-keeping velocity of the whole fleet
is given by

vf = J†
f (σ̇d,f −Λf (σf − σd,f )) , (6.7)

where Jf is the Jacobian of the formation-keeping task, σf is the formation-keeping
task variable, and σd,f is its desired value, as defined in (2.88), (2.86), and (2.89),
respectively.

Assuming that the gain matrix is chosen as Λf = kfI, where kf > 0 is a
constant, then the formation-keeping velocity of vehicle i is given by

vf,i = −kf (σi − σd,i) + σ̇d,i, (6.8)

where

σi = pi − pb, σd,i = Rpp
f
f,i. (6.9)

Since the formation-keeping and path-following tasks are independent and or-
thogonal, the total desired NSB velocity of vehicle i is given by

vNSB,i = vLOS + vf,i. (6.10)

Similarly to (5.19), we choose the following update law for the path parameter

ṡ = Ud

∥∥∥∥∂pp(s)∂s

∥∥∥∥−1(
∆

D
+ ksfs (x

p
b)

)
, (6.11)

where
fs(x) =

x√
1 + x2

, (6.12)

and ks is a positive gain.

6.3 Distributed NSB Algorithm

Now, let us discuss how to make the algorithm presented in the previous section
distributed. To perform the NSB algorithm in a distributed manner, the vehicles
do not need to know the exact positions of each other. They only need to know
the position of the barycenter and the radius of the formation, and converge to a
common value of the path parameter.

In this section, we assume that the AUVs exchange information continuously.
The connections between the vehicles can be represented using an undirected graph
G = (V, E), where V = {1, . . . , N} is the set of vertices corresponding to the AUVs,
and E ⊂ V × V is the set of edges, where (i, j) ∈ E means that vehicle i can
exchange information with vehicle j. Let A be the adjacency matrix and let L
be the Laplacian matrix of the communications graph, respectively. Moreover, let
Ni denote the set of neighbors of vehicle i. The set of neighbors is defined as
Ni =

{
j
∣∣Aji = 1

}
, where Aji is the element of A at row j, column i.

79



6. A Distributed NSB Algorithm for Formation Path Following

Remark. To exchange information continuously, the vehicles require a commu-
nication channel with high bandwidth and small delays. For AUVs, underwater
optical communications may provide such a channel [117]. However, optical com-
munications tend to be unreliable. We address this issue in Section 6.5.3, where we
modify the distributed NSB algorithm to handle discrete-time delayed communica-
tions.

Let pb,i, rf,i, and si denote vehicle i’s estimates of the barycenter, formation
radius, and path parameter, respectively. The vehicle can then calculate its LOS
velocity as

vLOS,i =
Ud
Di

Rp(si)
[
∆,−ypb,i,−z

p
b,i

]T
, (6.13)

where [
xpb,i, y

p
b,i, z

p
b,i

]T
= Rp(si)

T (pb,i − pp (si)) , (6.14)

Di =

√
∆2 +

(
ypb,i

)2
+
(
zpb,i

)2
. (6.15)

In addition, the vehicle can estimate the cone angle as

αi = arcsin

(
ro + rf,i
∥prel,i∥

)
, prel,i = po − [xb,i, yb,i]

T
, (6.16)

where xb,i and yb,i are the x- and y-components of pb,i. The vehicle then deter-
mines if there is a need for obstacle avoidance according to the rules described in
Chapter 5, and calculates its obstacle avoidance velocity as

vOA,i = ∥vrel,i∥ [cos(ψOA,i), sin(ψOA,i)]
T
+ [ẋo, ẏo]

T
, (6.17)

ψOA,i = arctan2 (yo − yb,i, xo − xb,i)± αi. (6.18)

The distributed formation-keeping velocity is calculated as

vf,i = −kf (σ̂i − σ̂d,i) + ˙̂σd,i, (6.19)

where

σ̂i = pi − pb,i, σ̂d,i = Rpp
f
f,i. (6.20)

The path-following and formation-keeping velocities are then combined to obtain
the desired NSB velocity

vNSB,i = vLOS,i + vf,i. (6.21)

Finally, let us discuss the update laws for the estimates pb,i, rf,i, and si. We
assume that the vehicles communicate over a connected undirected graph. Each
vehicle transmits its own estimates pb,i, si, and rf,i. We propose the following
equations to update the barycenter and path parameter estimates

ṗb,i = vLOS,i + kb (σ̂i − σ̂d,i) + cp
∑
j∈Ni

(pb,j − pb,i) , (6.22)

ṡi = Ud

∥∥∥∥∂pp(si)∂si

∥∥∥∥−1(
∆

Di
+ ksfs

(
xpb,i

))
+ cs

∑
j∈Ni

(sj− si) , (6.23)
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where kb, cp, and cs are positive gains, and Ni is the set of neighbors of vehicle i.
Let us briefly discuss the reasoning behind these equations. The first term in (6.22)
assumes that the barycenter moves according to the LOS guidance algorithm. One
can verify that if the barycenter estimates are correct and the path parameters are
equal for all vehicles, then the true barycenter will, in fact, follow the LOS guidance
law. The second term provides feedback from the vehicle’s position. In the next
section, we will show that this term steers the barycenter estimates towards the
true barycenter. The first term in (6.23) is analogous to the path parameter update
law (6.11). The last terms in (6.22) and (6.23) represent the consensus algorithm.
This algorithm allows the barycenter estimates and path parameters to converge
to a common value.

The formation radius estimate is updated according to the following hybrid
scheme

ṙf,i = kr (r̂f,i − rf,i) , (6.24a)

r+f,i = r̂f,i, if r̂f,i > rf,i, (6.24b)

r+f,i = max
j∈Ni

rf,j , if max
j∈Ni

rf,j > rf,i, (6.24c)

where kr is a positive constant and r̂f,i = ∥pb,i − pi∥. We note that if the barycen-
ter estimates are accurate, the formation radius is given by rf = maxi r̂f,i. Equa-
tions (6.24b) and (6.24c) represent a max-consensus scheme, ensuring that the
values of rf,i are always greater than or equal to maxi r̂f,i. The continuous-time
update law (6.24a) allows the values of rf,i to converge to maxi r̂f,i.

6.4 Closed-Loop Analysis

In this section, we define the error variables and investigate their closed-loop be-
havior. In the subsequent proofs, we consider the nominal case without obstacle
avoidance. Furthermore, we assume that the desired path is a straight line. Con-
sequently, the rotation matrix Rp is constant, and the path is parametrized by

pp(s) = p0 +Rp [s, 0, 0]
T
, (6.25)

where p0 ∈ R3 is the origin of the path.
Now, let us define the error variables. The path-following error is given by ppb .

For formation-keeping, we define σ̃1, . . . , σ̃N as

σ̃i = pi − pb −Rpp
f
f,i. (6.26)

The “true value” of the path parameter, s, is given by the mean of si, i.e.,
s = 1

N

∑N
i=1 si. Consequently, the barycenter and path parameter estimate errors,

p̃b,i and s̃i, are given by

p̃b,i = pb,i − pb, s̃i = si − s. (6.27)
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∆

vLOS

vLOS,i

ṽLOS,i

ypb

ypb,i

Figure 6.1: Illustration of the inequality (6.31).

6.4.1 Closed-Loop Dynamics

In this section, we derive closed-loop equations for the error variables.
First, let us investigate the closed-loop properties of the path-following error.

The barycenter kinematics are given by

ṗpb = RT
p

(
1

N

N∑
i=1

vNSB,i − ṗp(s)

)
=

1

N

N∑
i=1

RT
p (vLOS,i + vf,i)− [ṡ, 0, 0]

T
. (6.28)

Let us define the “true” LOS velocity, vLOS, according to (6.4). Then, the LOS
velocity calculated by vehicle i can be expressed as

vLOS,i = vLOS + ṽLOS,i, (6.29)

where
ṽLOS,i =

Ud
Di

Rp

[
∆,−ypb,i,−z

p
b,i

]T
− Ud
D

Rp [∆,−ypb ,−z
p
b ]

T (6.30)

It is straightforward to show that ṽLOS,i = 0 if p̃b,i = 0. Moreover, the norm of
the LOS velocity error satisfies the following inequality

∥ṽLOS,i∥ ≤
Ud
∆
∥p̃b,i∥ . (6.31)

We can illustrate this property on the following two-dimensional example. Consider
a situation where ypb and ypb,i have the same magnitude but opposite signs, and
zpb = zpb,i = 0 (see Figure 6.1). Then, the norm of the LOS error is given by

∥ṽLOS,i∥ =

∥∥∥∥∥ Ud√
∆2 − (ypb )

2

([
∆
−ypb,i

]
−
[
∆
−ypb

])∥∥∥∥∥ =
2Udy

p
b√

∆2 − (ypb )
2

≤ Ud
∆
∥p̃b,i∥ .

(6.32)

The case where the errors have opposite signs is, in fact, the “worst-case scenario”.
In all other cases, the inequality (6.31) holds as well.

To further investigate the barycenter kinematics in (6.28), we need to derive a
closed-loop expression for ṡ. From (6.23), ṡ is given by

ṡ =
1

N

N∑
i=1

ṡi =
1

N

N∑
i=1

Ud

(
∆

Di
+ ksfs

(
xpb,i

))
. (6.33)
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Note that since the vehicles communicate over an undirected graph, the consensus
terms cancel out, and from the definition of a straight-line path in (6.25), it follows
that

∥∥∥∂pp(s)
∂s

∥∥∥ = 1.
Now, let us define path parameter update errors, g1, . . . , gN , as

gi = Ud

(
∆

Di
− ∆

D
+ ks

(
fs

(
xpb,i

)
− fs(xpb)

))
. (6.34)

Note that if both p̃b,i and s̃i are zero, then gi is zero as well. Moreover, it can be
shown that gi satisfies the following inequality

|gi| ≤ Ud
(

1

∆
+ ks

)
∥p̃b,i∥+ Udks |s̃i| . (6.35)

Substituting (6.34) into (6.33), we get

ṡ = Ud

(
∆

D
+ ksfs(x

p
b)

)
+

1

N

N∑
i=1

gi. (6.36)

Finally, let us investigate the sum of formation-keeping velocities. From (6.19),
we get

1

N

N∑
i=1

RT
p vf,i= −

1

N

N∑
i=1

RT
p kf

(
pi − pb,i −Rpp

f
f,i

)
= − 1

N

N∑
i=1

RT
p kf

(
pi−pb−p̃b,i−Rpp

f
f,i

)
= −kf

N
RT
p

(
N∑
i=1

(
pi−pb

)
−

N∑
i=1

p̃b,i−
N∑
i=1

Rpp
f
f,i

)

=
kf
N

RT
p

N∑
i=1

p̃b,i.

(6.37)

Substituting (6.29), (6.36), and (6.37) into (6.28), we get

ṗpb =−Ud
[
ksfs(x

p
b),

1

D
ypb ,

1

D
zpb

]T
+

1

N

N∑
i=1

(
RT
p (ṽLOS,i+ kf p̃b,i)− gi

)
. (6.38)

Next, we find a closed-loop equation for the formation-keeping errors. Differ-
entiating (6.26) with respect to time yields

˙̃σi = ṗi − ṗb = vLOS,i + vf,i −
1

N

N∑
j=1

(vLOS,j + vf,j) (6.39)

Substituting (6.29) and (6.19) into (6.39) yields

˙̃σi = −kf σ̃i + ṽLOS,i − kf p̃b,i +
1

N

N∑
j=1

(ṽLOS,j − kf p̃b,j) . (6.40)
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This equation can be rewritten in a more compact form. To do so, let us define
the following concatenated error vectors

ṼT
LOS=

[
ṽT
LOS,1, . . . , ṽ

T
LOS,N

]
, Σ̃T=

[
σ̃T
1 , . . . , σ̃

T
N

]
, (6.41a)

P̃T
b =

[
p̃T
b,1, . . . , p̃

T
b,N

]
, S̃T= [s̃1, . . . , s̃N ] . (6.41b)

Furthermore, let LF denote the Laplacian matrix of a fully connected graph with
N nodes (LF = NIN − 1N ). Then, (6.40) can be written in the following form

˙̃
Σ = −kf Σ̃+

(
1

N
LF ⊗ I3

)(
ṼLOS− kf P̃b

)
. (6.42)

Finally, we find a closed-loop equation for the estimation errors. From (6.27),
the time-derivative of p̃b,i is given by

˙̃pb,i = ṗb,i − ṗb (6.43)

= ṽLOS,i + kb (σ̃i − p̃b,i) + cp
∑
j∈Ni

(p̃b,j − p̃b,i)−
1

N

N∑
j=1

(ṽLOS,j − kf p̃b,j) .

This equation can be written in the following compact form

˙̃
Pb = −

((
kbIN +

kf
N

1N + cpL

)
⊗ I3

)
P̃b + kbΣ̃+

(
1

N
LF ⊗ I3

)
ṼLOS, (6.44)

where L is the Laplacian matrix of the communications graph.
The time-derivative of s̃i is given by

˙̃si = ṡi − ṡ = cs
∑
j∈Ni

(s̃j− s̃i) + gi −
1

N

N∑
j=1

gj . (6.45)

This equation can be written in the following compact form

˙̃
S = −csLS̃+

1

N
LF [g1, . . . , gN ]

T
. (6.46)

6.4.2 Stability Analysis

In this section, we analyze the stability of the closed-loop system derived in the pre-
vious section. To perform this analysis, we split the system into several connected
subsystems and analyze them as a cascade.

We begin by analyzing the subsystem given by (6.44) and (6.42).

Lemma 6.1. The origin,
[
P̃T
b , Σ̃

T
]
= 0T, is a globally exponentially stable (GES)

equilibrium of the subsystem (6.44), (6.42) if the communications graph G is con-
nected and the control gains kb and kf are chosen such that kb, kf > 3Ud

∆ .
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Proof. From (6.44) and (6.42), this subsystem can be written in the following form[
˙̃
Pb

˙̃
Σ

]
= (F⊗ I3)

[
P̃b

Σ̃

]
+

[
1
NLF ⊗ I3
1
NLF ⊗ I3

]
ṼLOS, (6.47)

where

F =

[
−
(
kbIN +

kf
N 1N + cpL

)
kbIN

−kfN LF −kfIN

]
. (6.48)

Due to its structure, F is a negative definite matrix. Let λmin denote the real part
of the smallest eigenvalue of −F. Note that λmin ≥ min{kb, kf}.

Consider the following Lyapunov function candidate

Vp =
1

2

(∥∥∥P̃b

∥∥∥2 + ∥∥∥Σ̃∥∥∥2) . (6.49)

The derivative of Vp along the trajectories of (6.47) is given by

V̇p=
[
P̃T
b Σ̃T

]
(F⊗ I3)

[
P̃b

Σ̃

]
+
[
P̃T
b Σ̃T

][ 1
NLF ⊗ I3
1
NLF ⊗ I3

]
ṼLOS (6.50)

By applying the inequality (6.31), we get

V̇p≤−λmin

(∥∥∥P̃b

∥∥∥2+∥∥∥Σ̃∥∥∥2)+ 2Ud
∆

∥∥∥P̃b

∥∥∥(∥∥∥P̃b

∥∥∥+ ∥∥∥Σ̃∥∥∥)
≤−λmin

(∥∥∥P̃b

∥∥∥2+∥∥∥Σ̃∥∥∥2)+2Ud
∆

(
3

2

∥∥∥P̃b

∥∥∥2+1

2

∥∥∥Σ̃∥∥∥2). (6.51)

From (6.51), we can conclude that V̇p is negative definite, and the subsystem is
thus GES, if λmin ≥ min{kb, kf} > 3Ud

∆ .

In the remainder of this section, we use the results from the cascaded systems
theory. Specifically, we use Proposition 9 from [70], which, for the sake of conve-
nience, is re-stated in Section 2.6. Now, let us analyze the subsystem (6.46).

Lemma 6.2. The origin, S̃ = 0, is a USGES equilibrium of the subsystem (6.46)
if kb, kf > 3Ud

∆ , and the consensus gain cs is chosen such that csλ2 > 2Udks, where
λ2 is the Fiedler eigenvalue of L.

Proof. Recall the equation for ˙̃
S from (6.46)

˙̃
S = −csLS̃+

1

N
LFG, G = [g1, . . . , gN ]

T
. (6.52)

We intend to analyze this subsystem as a cascade where P̃b perturbs the dynamics
of S̃ through G. The following equation describes the nominal dynamics of S̃

˙̃
S = −csLS̃+

1

N
LFGs, (6.53)
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where Gs is obtained by substituting P̃b = 0 into G. From (6.35) the following
inequality holds true for Gs

∥Gs∥ ≤ Udks
∥∥∥S̃∥∥∥ . (6.54)

Consider then the following Lyapunov function candidate for the nominal system

Vs =
1

2

∥∥∥S̃∥∥∥2 . (6.55)

The derivative of Vs along the trajectories of (6.53) is

V̇s=−csS̃TLS̃+
1

N
S̃TLFGs ≤(−csλ2+ 2Udks)

∥∥∥S̃∥∥∥2. (6.56)

From (6.56), we can conclude that V̇s is negative definite, and the nominal system
is thus GES, if csλ2 > 2Udks.

Note that both the nominal and the perturbing system are GES. GES implies
both UGAS and USGES. Consider the Lyapunov function candidate Vs. The first
assumption in [70, Proposition 9] is satisfied with c1 = 1

2 , an arbitrary η > 0,
and c2 = η. The second assumption in [70, Proposition 9] is satisfied with α1 =
Ud
(

1
∆ + ks

)
, and α2 = 0. Consequently, all assumptions of [70, Proposition 9] are

satisfied, and the cascaded system is USGES.

Finally, let us analyze the subsystem (6.38).

Lemma 6.3. The origin, ppb = 0, is a USGES equilibrium of the subsystem (6.38)
if kb, kf > 3Ud

∆ and csλ2 > 2Udks.

Proof. Similarly to the proof of the previous lemma, this subsystem can be analyzed
as a cascade where S̃ and P̃b perturb the dynamics of ppb through ṼLOS, P̃b, and
G. Consider the following nominal system

ṗpb = −Ud
[
ksfs (x

p
b) ,

1

D
ypb ,

1

D
zpb

]T
. (6.57)

This type of system has been proven USGES in Chapter 5, Theorem 5.1.
Consider then the following Lyapunov function candidate

Vb =
1

2
∥ppb∥

2
. (6.58)

Similarly to the previous lemma, the first assumption in [70, Proposition 9] is
satisfied with c1 = 1

2 , an arbitrary η > 0, and c2 = η.
Let h denote the perturbing term in (6.38). This term is given by

h =
1

N

N∑
i=1

(
RT
p (ṽLOS,i + kf p̃b,i)− gi

)
. (6.59)
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From (6.31) and (6.35), we arrive at the following upper bound on the norm of h

∥h∥ ≤
(
2
Ud
∆

+ kf + Udks

)∥∥∥P̃b

∥∥∥+ Udks

∥∥∥S̃∥∥∥
≤
(
2
Ud
∆

+ kf + Udks

)∥∥∥[P̃T
b , S̃

T
]∥∥∥ . (6.60)

Consequently, the second assumption in [70, Proposition 9] is satisfied with
α1 =

(
2Ud

∆ + kf + Udks
)
, α2 = 0, and the subsystem is thus USGES.

The results of the three lemmas can be summarized in the following theorem.

Theorem 6.1. The origin,
[
(ppb)

T, Σ̃T, P̃T
b , S̃

T
]
= 0T, is a uniformly semiglobally

exponentially stable (USGES) equilibrium of the closed-loop system (6.38), (6.42),
(6.44), (6.46) if kb, kf > 3Ud

∆ and csλ2 > 2Udks.

Proof. The stability of the complete system can be proven by applying the results
from Lemmas 6.1—6.3.

6.5 Application to Underactuated AUVs

To apply the proposed distributed NSB algorithm to underactuated AUVs, we
need to resolve two issues. Firstly, unlike vehicles with single-integrator dynamics
(6.1), the position of AUVs cannot be controlled directly. Specifically, due to
underactuation, there is no input to directly control the sway and heave dynamics,
so these states must be controlled indirectly through the surge, pitch, and yaw
dynamics. Secondly, in real-life situations, the continuous-time consensus algorithm
(6.22), (6.23) cannot be implemented, as the vehicles communicate at discrete
time instances. In fact, the limited bandwidth of most underwater communication
methods (e.g., acoustics) introduce a significant delay and long periods between
transmissions. In this section, we introduce the model of underactuated AUVs and
propose solutions to the two aforementioned problems.

6.5.1 AUV Model

Let pi ∈ R3 denote the position of vehicle i. Let Ri ∈ SO(3) be a rotation matrix
that describes the orientation. The kinematics of the vehicle are [91]

ṗi = Riυi, Ṙi = RiS(ωi). (6.61)

Similarly to the previous chapter, we assume that the AUVs are equipped with
a low-level controller that can track a desired surge velocity and orientation. The
vehicle dynamics can then be expressed as[

υ̇i
ω̇i

]
= f (Ri,Rd,i,υi, ud,i,ωi) , (6.62)

where f is a function representing the closed-loop dynamics, and Rd,i and ud,i are
the desired orientation and surge velocity, respectively.
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6. A Distributed NSB Algorithm for Formation Path Following

6.5.2 Handling the Underactuated Dynamics

In this section, we propose a method for choosing the desired surge velocity and
orientation in order to handle the underactuated dynamics.

First, let us discuss the method for choosing the desired surge velocity. Ideally,
ud,i should be chosen such that ∥[ud,i, vi, wi]∥ = ∥vNSB,i∥. However, as discussed
in the previous chapter, this equation cannot always be satisfied. In the previous
chapter, we solved this problem by scaling the LOS velocity. However, such scaling
must be done globally for all vehicles, which would require additional communica-
tions and consensus. Consequently, we propose the following simpler method for
choosing the desired surge velocity

ud,i =

{√
UNSB,i, if UNSB,i ≥ u2min,

umin, otherwise,
(6.63)

where UNSB,i = ∥vNSB,i∥2 − v2i −w2
i , and umin > 0 is the minimum required surge

velocity.
Now, let us discuss the method for choosing the desired orientation. In Chap-

ter 4, we used a method that compensates for the sideslip angle and the angle of
attack. In Chapter 5, we proposed to find the desired orientation indirectly by first
finding the desired angular rates. Both methods require accurate estimates of the
underactuated sway and heave velocities. However, in real-life applications, these
estimates are often noisy, which can deteriorate the performance of the controller.
Therefore, we propose a method with integral actions that provide some robustness
towards measurement noise. The proposed method consists of two steps. In the
first step, we find the desired course, χd,i, and flight-path angle, γd,i, as

χd,i = arctan2 (yNSB,i, xNSB,i) , (6.64)

γd,i = − arcsin

(
zNSB,i

∥vNSB,i∥

)
. (6.65)

In the second step, we calculate the desired pitch (θd,i) and yaw (ψd,i) angles

θd,i = satθmax

(
γd,i − kγ

∫ t

0

γ̃i(τ)dτ

)
, (6.66)

ψd,i = χd,i − kχ
∫ t

0

χ̃i(τ)dτ, (6.67)

where kγ and kχ are positive gains, sat(·) is a saturation function

satxmax
(x) =


−xmax, if x < −xmax,

x, if − xmax ≤ x ≤ xmax,

xmax, if x > xmax,

(6.68)
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and γ̃i(τ) and χ̃i(τ) are the flight-path angle and course errors

γ̃i = γi − γd,i = θi − arctan

(
wi
ui

)
− γd,i, (6.69)

χ̃i = χi − χd,i = ψi + arctan

(
vi
ui

)
− χd,i. (6.70)

The purpose of the saturation function is to avoid singularities introduced by the
Euler angles. Consequently, the saturation limit must satisfy θmax <

π
2 .

The desired orientation can then be calculated as

Rd,i=

cosψd,i cos θd,i − sinψd,i cosψd,i sin θd,i
cos θd,i sinψd,i cosψd,i sinψd,i sin θd,i
− sin θd,i 0 cos θd,i

. (6.71)

6.5.3 Handling Discrete-Time Communications

In this section, we discuss the issue of discrete-time delayed communications. We
assume that the AUVs can broadcast data via an acoustic modem. However, due
to the relatively low bitrate and propagation speed of underwater acoustics, there
is a significant delay between transmission and reception. To model the commu-
nications, we assume that when vehicle i transmits a packet at a time t, vehicle
j receives the packet at a time t + ∆Tij , where ∆Tij > 0 is the delay. Since the
acoustic communications channel has a range of several kilometers [118], we can
assume that all vehicles can recieve the transmitted packet (in other words, that
the communications graph is fully connected). To address the issues with discrete-
time communications, delays, and limited bandwidth, we need to discretize the
consensus scheme (6.22), (6.23), compensate for the delays, and reduce the number
of transmissions.

To discretize the consensus scheme, we propose the following method. Each
vehicle continuously updates its variables using the following equations

ṗb,i = vLOS,i + kb (σ̂i − σ̂d,i) , (6.72)

ṡi = Ud

∥∥∥∥∂pp(si)∂si

∥∥∥∥−1(
∆

Di
+ ksfs

(
xpb,i

))
, (6.73)

ṙf,i = kr (r̂f,i − rf,i) , r+f,i = r̂f,i, if r̂f,i > rf,i. (6.74)

To perform the consensus algorithm, each AUV transmits the following packet:
(ti, si,pb,i, rf,i, σ̆i), where ti is the time of transmission, and σ̆i = σ̂i− σ̂d,i. When
vehicle i receives a consensus packet from vehicle j, it first compensates for the
delay by solving the following set of differential equations

ṗb,j = vLOS,j + kbσ̆j , (6.75a)
˙̆σj = −kf σ̆j , (6.75b)

ṡj = Ud

∥∥∥∥∂pp(sj)∂sj

∥∥∥∥−1(
∆

Dj
+ ksfs

(
xpb,j

))
. (6.75c)
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6. A Distributed NSB Algorithm for Formation Path Following

Note that (6.75a) and (6.75c) are analogous to (6.72) and (6.73). The equation for
˙̆σj is motivated by the fact that σ̆j is used as the formation-keeping error (c.f.,
(6.19)). Under ideal conditions (i.e., if the consensus errors are zero), σ̆j evolves
according to (6.75b). The value of rf,j is kept constant.

After compensating for the delay, the vehicle updates its consensus variables
using the following scheme

p+
b,i = appb,j + (1− ap)pb,i, (6.76)

s+i = assj + (1− as) si, (6.77)

r+f,i = max {rf,i, rf,j} , (6.78)

where ap, as ∈ (0, 1) are the mixing gains.
Finally, let us discuss the method for determining when the AUVs should trans-

mit the consensus packets. To minimize the number of transmissions, we propose
an event-triggered scheme. When vehicle i receives a consensus packet from vehicle
j, it also calculates the following quantity:

Tj,i = Tmin +
1√

bp ∥pb,i − pb,j∥2 + bs (si − sj)2
, (6.79)

where Tmin, bp, and bs are positive constants. Let us assume that the last transmis-
sion of vehicle i was at a time ti. The next transmission time is then calculated as
ti +maxj Tj,i. This event triggering scheme, inspired by the techniques discussed
in [119], was chosen because it is easy to implement and has a strictly defined mini-
mum delay in-between transmission, making it suitable in applications with limited
bandwidth and communication delays. We demonstrate that the proposed scheme
works both in simulations and field trials. However, proving the effectiveness of
the scheme is not the main focus of this work.

6.6 Simulations

In this section, we present the results of a numerical simulation study. The sim-
ulations were carried out in MATLAB using a model of the light autonomous
underwater vehicle (LAUV) [12]. We conducted two types of simulations. We
tested the continuous-time NSB algorithm proposed in Section 6.3. Furthermore,
the performance of the event-triggered NSB algorithm proposed in Section 6.5.3 is
compared to the performance of a cooperative path following algorithm proposed
in [25].

First, let us present the parameters that are common to both simulations. We
simulate four AUVs. The barycenter should follow an elliptic path given by

pp(s) =
[
a cos(s), b sin(s), c sin(s)2

]T
, (6.80)

where a = 60m, b = 40m, c = 10m. The desired path-following speed is Ud =
1.3m s−1. The lookahead distance is chosen as ∆ = 5m. The shape of the desired
formation is [

pff,1,p
f
f,2,p

f
f,3,p

f
f,4

]
=

10 −10 0 0
0 0 10 −10
0 −4 4 0

 . (6.81)
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To satisfy the assumptions in Lemma 6.1, kb and kf must be greater than 3Ud

∆ =
0.78. We choose kb = kf = 1. The gain of the path parameter update law is
ks = 0.5. The adjacency matrix of the communication graph is

A =


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

 . (6.82)

6.6.1 Continuous-Time Consensus

The purpose of this simulation is to demonstrate that the path-following, formation-
keeping, and consensus errors of the continuous-time scheme converge to zero. To
satisfy the assumptions of Lemma 6.2, the consensus gain cs must be greater than
2Udks
λ2

= 0.65. We choose cs = cp = 1. To test the obstacle avoidance scheme, we
place a static obstacle at po = [0, 40]

T with radius ro = 5m. The minimum cone
αmin is set to 2 degrees, and the formation radius update gain is kr = 0.1.

The results are shown in Figure 6.2. Figure 6.3 shows the 3D trajectory of
the AUVs. We can see that the AUVs converge to their desired formation while
avoiding the obstacle represented by the green cylinder. Figure 6.2a shows the
path-following and formation-keeping errors. Initially, these errors exponentially
converge to zero. When the obstacle avoidance scheme is activated, the path-
following errors start diverging, as the LOS velocity enters the collision cone. After
the vehicles successfully avoid the obstacle, the errors again converge exponentially
to zero. Figure 6.2b shows the distance between the AUVs and the obstacle. We
can see that the distance is always greater than ro. Figs. 6.2c, 6.2d, and 6.2e show
the errors of the consensus variables. These plots are in a logarithmic scale to
demonstrate the exponential rate of convergence. Initially, the logarithmic error
is clearly bounded by a decreasing straight line, demonstrating the exponential
convergence. The norm of the error decreases by a factor of 10 approximately
every 25 seconds. When obstacle avoidance is active, the errors start diverging
but remain bounded. After avoiding the obstacle, the errors continue to decrease
exponentially, but eventually, the convergence stagnates. We cannot expect that
the errors continue to fall indefinitely due to numerical innacuracies, that come
mostly from two sources: the inaccuracies in floating-point arithmetics and the
tolerances of the ODE solver.

Note that although Section 6.4 presents stability proof for a simplified case
of straight-line paths and vehicles with single-integrator dynamics, the simulation
results show stability for curved paths and more complex vehicle models. It may
be possible to extend the results of Section 6.3 to curved paths and more complex
vehicle models by assuming that the curvature of the desired path is small enough
and that the low-level control system is capable of exponential tracking, similarly
to the proofs in Chapters 4 and 5.
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Figure 6.2: Results of numerical simulations. The blue, red, yellow, and purple
lines represent AUV 1, 2, 3, and 4, respectively.

6.6.2 Event-Triggered Consensus

In this section, we test the event-triggered scheme proposed in Section 6.5.3. We
choose the mixing gains ap = as = 0.4, and the penalty gains: bp = 10−4, bs = 4.

We compare our algorithm with an event-triggered cooperative path-following
algorithm proposed in [25]. In this algorithm, each vehicle follows its own desired
path given by pd,i(s) = pp(s) + Rp(s)p

f
f,i. Coordination is then achieved by

running a consensus scheme on the path parameter.
The comparison was done using a Monte Carlo simulation. We performed ten

thousand simulations with randomly selected initial conditions and communication
delays. The initial positions of the AUVs ranged from [60,−40, 0]T to [140, 40, 15]

T.
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Figure 6.3: The 3D trajectory of the AUVs. The markers represent the AUVs at
times t = 0, 40, . . . , 240 seconds. The dotted lines represent the communications
graph.

The initial orientations were specified in Euler angles, with a zero roll angle, a pitch
angle from −π8 to π

8 , and a yaw angle from 0 to π. The initial linear velocities
ranged from [0.5,−0.2,−0.1]T to [1.5, 0.2, 0.1]

T, and the initial angular velocities
were zero. The communication delays ranged from 0 to 5 seconds.

Figure 6.4 shows the absolute value of the path parameter error and the norm
of the path-following error. Both errors are plotted in a logarithmic scale. In
terms of path parameter errors, both algorithms perform similarly. In terms of
path-following errors, the distributed NSB algorithm is marginally better.

The communication requirements of the two algorithms are summarized in Ta-
ble 6.1. This table shows the minimum, maximum, and median of the period
in-between transmissions (τt), and the total number of transmissions in one simu-
lation (Nt). Here, we can see that distributed NSB performs considerably better
in comparison to the cooperative path following method, with longer periods in-
between transmissions and a lower number of transmissions.

However, it is worth mentioning that the packets transmitted by the cooperative
path following method are smaller than the NSB packets. Indeed, in the scheme
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Figure 6.4: Comparison between the proposed event-triggered distributed NSB
algorithm and the cooperative path-following algorithm proposed in [25]. The full
lines represent the median, the colored areas represent the smallest and largest
recorded value.
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proposed in [25], the AUVs only need to transmit the path parameter and its
derivative. In contrast, the NSB packet consists of the estimates of path parameter,
barycenter, radius of formation, and formation-keeping error. In this context, the
two algorithms present a trade-off between packet size and communication periods.

Table 6.1: Comparison of communication requirements.

Method Quantity Minimum Median Maximum
Distributed
NSB

τt 2.00 8.50 275.30
Nt 125 187 253

Coordinated
path following

τt 0.10 2.15 138.65
Nt 196 548 1064

6.7 Experiments

In this section, we present the results of field experiments we designed and exe-
cuted to verify the effectiveness of the event-triggered distributed NSB algorithm
proposed in Section 6.5.3. The experiments were conducted in the fjord of Trond-
heim, Norway, near the Trondheim Biological Station, using two LAUVs as in
Figure 6.5.

To guarantee stable communications and accurate navigation, the vehicles were
operating at the surface and communicating over WiFi. The algorithm was imple-
mented in C++, using the Unified Navigation Environment (DUNE) [89].

The algorithm was tested in two scenarios: a nominal scenario, i.e., formation
path following without any obstacles, and a scenario with a static obstacle. In both
scenarios, the barycenter of the AUVs should follow the elliptic path

pp(s) = [a cos(s), b sin(s), 0]
T
, a = 100m, b = 80m, (6.83)

in the formation defined by

pff,1 = [0,−25, 0]T , pff,2 = [0, 25, 0]
T
. (6.84)

The reason for choosing a larger path and formation, compared to the simulations
in Section 6.6, was to reduce the risk of the AUVs colliding. The obstacle was placed
at po = [0, 80]

T. The remaining parameters were identical to the simulations.

6.7.1 Nominal Scenario

The results are shown in Figure 6.6. Figure 6.6a shows the trajectories of the
AUVs, as estimated by their onboard navigation system. The disturbances in the
trajectories are caused by two factors: the sea loads (waves, currents, and wind),
and the errors of the navigation system. However, the exponential stability of the
NSB algorithm given by Theorem 6.1 provides some robustness towards these dis-
turbances, c.f., [120, Lemma 9.2]. Figure 6.6b shows the path parameter errors
and the event-triggered communications. Initially, the vehicles need to communi-
cate frequently, approximately every five seconds, because the barycenter estimates
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Figure 6.5: Photo of one of the two LAUVs used in the reported field experiments,
courtesy of www.ntnu.edu/aur-lab/.
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Figure 6.6: Results of a nominal experiment.
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differ (as seen in Figure 6.6d). During this transient period, the path parameter
estimates initially diverge before finally converging. After convergence, the com-
munication period increases to over 100 seconds. Note that the barycenter estimate
errors in Figure 6.6d converge to a common value but not to zero. This behavior
is caused by the aforementioned disturbances acting on the vehicles. Figure 6.6c
shows the formation-keeping and path-following errors. Due to the disturbances
and event-triggered communications, these errors do not converge to zero but rather
to a small area near zero.

6.7.2 Scenario with a Static Obstacle

The results are shown in Figure 6.7. In general, the results are similar to the
nominal scenario, so we will only highlight the differences. The path-following
errors in Figure 6.7b diverge when obstacle avoidance is active. As previously
mentioned, this behavior is caused by the fact that the vehicles cannot stay on the
desired path while avoiding the obstacle. The estimate errors in Figs. 6.7c and 6.7d
behave similarly to the nominal case. As shown in Figure 6.7e, the distance between
the AUVs and the obstacle is always greater than ro. Figure 6.7f shows the errors
between the estimated and true formation radius. Note that the formation radius
errors are connected to the barycenter estimates. A wrong barycenter estimate may
lead to both overestimation and underestimation of the formation radius. Despite
these uncertainties, the AUVs still manage to perform all control goals safely.
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Figure 6.7: Experiment with a static obstacle.
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Chapter 7

Hand Position for Underactuated Un-
derwater Vehicles

This chapter motivates and defines the hand position concept. Compared to pre-
vious works that utilize this concept, our approach works on six-degree-of-freedom
vehicles and does not introduce singularities. By choosing the hand position as
the output of the controlled system, we can apply output feedback linearization
to simplify the dynamics of the vehicle. Specifically, we can then transform the
six-degree-of-freedom nonlinear underactuated vehicle model into a double integra-
tor. This transformation enables the use of numerous control strategies that could
otherwise not be used on nonholonomic or underactuated vehicles. The contents
of this chapter are based on [87].

The chapter is organized as follows. Section 7.1 presents the AUV model.
Section 7.2 defines the hand position transformation and presents the necessary
assumptions about the generic hand position-based controller. The closed-loop
system is then analyzed in Section 7.3.

7.1 AUV Model

We consider an underactuated AUV with dynamics described using the 6DOF
control-oriented model from Section 2.1.4. The AUV model is given by the following
equations

ṗ = Rυr +Vc, (7.1a)

Ṙ = RS(ω), (7.1b)
Mν̇r +C(νr)νr +Dνr + g(R) = Bf , (7.1c)

In the remainder of this section, we introduce some necessary assumptions about
the AUV and rewrite (7.1c) in a more compact form. To do so, let us first decom-
pose M, M−1, C(νr), and D into 3-by-3 blocks

M=

[
M11 M12

M21 M22

]
, C(υr)=

[
C11(υr) C12(υr)
C21(υr) C22(υr)

]
, (7.2a)

M−1=

[
M′

11 M′
12

M′
21 M′

22

]
, D=

[
D11 D12

D21 D22

]
. (7.2b)
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In addition to Assumptions 2.1–2.4 of the control-oriented model, we need to
add one more simplifying assumption.

Assumption 7.1. The effect of gravity and buoyancy on the linear velocities is
negligible. Therefore, the following approximation

M−1g(R) ≈
[

03

M′
22

(
Wzgbe3 ×RTe3

)] , (7.3)

can be used to simplify the dynamics.

Remark. The effect of gravity and buoyancy on the linear velocities is given by

M′
12

(
Wzgbe3 ×RTe3

)
=

Wzgbm35

m33m55 −m2
35

[0, 0, sin θ]
T
, (7.4)

where θ ∈ [−π/2, π/2] is the pitch angle of the vehicle. Assumption 7.1 can thus be
used if θ remains small.

Remark. Throughout the chapter, we will sometimes show expressions with Euler
angles, because they are more intuitive than rotation matrices. This does not mean
that we transform our model to Euler angles, these expressions are only used for
illustration.

We can then rewrite (7.1c) in the following compact form

υ̇r = [fu, 0, 0]
T −Dυ(νr)− Cυ(νr), (7.5a)

ω̇ = [fp, fq, fr]
T −Dω (νr)− Cω(νr)−M′

22

(
Wzgbe3 ×RTe3

)
, (7.5b)

where
Dυ = (M′

11D11 +M′
12D21)υr + (M′

12D22 +M′
11D12)ω, (7.6a)

Cυ = (M′
11C11 +M′

12C21)υr + (M′
12C22 +M′

11C12)ω, (7.6b)
Dω = (M′

21D11 +M′
22D21)υr + (M′

22D22 +M′
21D12)ω, (7.6c)

Cω = (M′
21C11 +M′

22C21)υr + (M′
22C22 +M′

21C12)ω. (7.6d)

7.2 Hand Position

In this section, we present the hand position transformation for the 3D case. The
procedure is inspired by the 2D transformation in [14]. We begin with the following
change of coordinates:

x1 = p+Rℓ, (7.7a)
x2 = Rυr +R (ω × ℓ) , (7.7b)

where ℓ = [h, 0, 0]
T, where h > 0 is the hand length.

We will treat x1 as the output of our system, and perform an output feedback
linearization. Differentiating (7.7) with respect to time yields:

ẋ1 = x2 +Vc, (7.8a)

ẋ2 = R
(
[fu, hfr,−hfq]T−Dυ(ν)− Cυ(ν) + ω×υr + ω × (ω × ℓ) (7.8b)

+ ℓ×
(
Dω(ν) + Cω(ν) +M′

22

(
Wzgbe3 ×RTe3

)) )
.
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7.2. Hand Position

Note that ẋ2 does not depend on the roll torque fp. We can therefore use fp to
stabilize the roll dynamics by canceling the Coriolis effect:

fp = eT1 Cω(ν), (7.9)

To linearize the output dynamics, we employ the following change of inputfufq
fr

=
1 0 0
0 0 − 1

h
0 1

h 0

(RTµ+Dυ(ν) + Cυ(ν)− ω × υr − ω × (ω × ℓ)

− ℓ×
(
Dω(ν) + Cω(ν) +M′

22

(
Wzgbe3 ×RTe3

)))
, (7.10)

where µ ∈ R3 is the new control input. This procedure transforms the system (7.5)
into the following form

ẋ1 = x2 +Vc, (7.11a)
ẋ2 = µ, (7.11b)

Ṙ = RS(ω), (7.11c)

ω̇ = ℓ̄×
(
RTµ+Dυ(ν) + Cυ(ν)− ω ×RTx2

)
(7.11d)

−
(
ℓ̄ℓT
) (
Dω(ν) +M′

22

(
Wzgbe3 ×RTe3

))
,

where ℓ̄ = [1/h, 0, 0]
T. Note that (7.11a) and (7.11b) form a double integrator with

a constant disturbance caused by the ocean current.

7.2.1 Hand Position-Based Controller

In this section, we present some necessary assumtpions about the hand position-
based controller. We assume that the goal of the control algorithm is to track a
desired trajectory. Although this assumption seems restrictive, we will demonstrate
that many controllers fall into this category.

Let ξ1,d represent the desired trajectory, and let ξ2,d = ξ̇1,d. We assume that
there exist ξ2,d,max and ξ̇2,d,max such that

∥Vc∥ < ∥ξ2,d∥ ≤ ξ2,d,max,
∥∥∥ξ̇2,d∥∥∥ ≤ ξ̇2,d,max. (7.12)

Furthermore, we define the following error states

ξ̃1 = x1 − ξ1,d, (7.13a)

ξ̃2 = x2 − ξ2,d +Vc. (7.13b)

The dynamics of these error states are given by

˙̃
ξ1 = ξ̃2, (7.14a)
˙̃
ξ2 = µ− ξ̇2,d. (7.14b)
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Assumption 7.2. The hand position-based controller is designed such that the
norm of the control input µ is finite and the origin

[
ξ̃1, ξ̃2

]
= 0T is a uniformly

globally asymptotically stable (UGAS) equilibrium of (7.14).

7.3 Closed-Loop Analysis

In this section, we analyze the closed-loop behavior of the orientation and the an-
gular rates. Because these states cannot be controlled directly through the control
input µ, they are commonly referred to as the internal states, while x1 and x2 are
referred to as the external states [14]. For a generic hand position-based controller
and a generic trajectory, the internal states do not converge to a specific value.
Consequently, we intend to prove that the internal states are bounded. The orien-
tation is restricted to a closed set SO(3), and thus inherently bounded. Only the
angular rates can grow unboundedly.

By the choice of the control law (7.9), the dynamics of the roll rate no longer
depend on the other angular velocities. Indeed, from (7.11d), we get

ṗ = −eT1
(
Dω(ν) +M′

22

(
Wzgbe3 ×RTe3

))
= − d44

m44
p− 1

m44
eT1
(
Wzgbe3 ×RTe3

)
.

(7.15)

Let us define

ax =
d44
m44

, bx =
Wzgb
m44

, (7.16)

and prove the following proposition:

Lemma 7.1. The roll rate dynamics are bounded if ax > 0. Specifically, the
trajectory p(t) satisfies

|p(t)| ≤ |p(0)| e−axt + bx
ax

(
1− e−axt

)
. (7.17)

Proof. Consider the following two functions

Vp =
1

2
p2, Wp =

√
2Vp. (7.18)

The following inequality holds for the derivative of Wp along the trajectories of p

Ẇp ≤ −axWp + bx. (7.19)

By applying the comparison lemma, we get

Wp(t) = |p(t)| ≤ |p(0)| e−axt +
bx
ax

(
1− e−axt

)
, (7.20)

which concludes the proof.
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7.3. Closed-Loop Analysis

Now, we investigate the boundedness of q and r. In the subsequent analysis, we
will treat the roll rate and the external dynamics as a perturbation. From (7.11d),
we get[

q̇
ṙ

]
=

[
0 0 − 1

h
0 1

h 0

](
RTµ+Dυ(ν) + Cυ(ν)− ω ×RT

(
ξ̃2 + ξ2,d −Vc

))
. (7.21)

Note that the linear velocities of the vehicle can be expressed in terms of the
external dynamics as

υr = RT
(
ξ̃2 + ξ2,d −Vc

)
− ω × ℓ. (7.22)

Let us define
υe = RT

(
ξ̃2 + ξ2,d −Vc

)
≜ [υe,1, υe,2, υe,3]

T
. (7.23)

Note that the norm of υe can be bounded by the following expression

∥υe∥ ≤
∥∥∥ξ̃2∥∥∥+ ∥ξ2,d −Vc∥ , (7.24)

and since the external dynamics are assumed UGAS, ∥υe∥ converges to ∥ξ2,d −Vc∥.
Consider then the following Lyapunov function candidate

Vω =
1

2

(
q2 + r2

)
. (7.25)

Let us define ω̂ = [q, r]
T. The following inequality holds for the derivative of Vω

along the trajectories of (7.11)

V̇ω ≤− ayq2 − azr2 + ∥υe∥ ∥ω̂∥
(
∥ω∥
h

+ ae

)
+ axyzpqr + axyυe,2pq (7.26)

+ axzυe,3pr + ayeυe,1q
2 + azeυe,1r

2 + aleyυe,3q

+ alezυe,2r + aeyυe,1υe,3q + aezυe,1υe,2r + ∥ω̂∥µmax,

where µmax is the largest norm of the control input. The remaining coefficients are
shown in Appendix D.1.

Lemma 7.2. Let us define

p̄ = bx/ax, ῡe = max
t∈R≥0

∥ξ2,d(t)−Vc∥ , (7.27a)

ᾱy = ay −
(
1

h
ῡe +

1

2
|axyz p̄|+ |ayeῡe|

)
, (7.27b)

ᾱz = az −
(
1

h
ῡe +

1

2
|axyz p̄|+ |azeῡe|

)
. (7.27c)

The angular rate dynamics are ultimately bounded if ax, ᾱy, ᾱz > 0.
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Proof. Consider the candidate Lyapunov function Vω and the bound on its deriva-
tive in (7.26). Using the following identities

∥ω∥ ∥ω̂∥ ≤ (|p|+ ∥ω̂∥) ∥ω̂∥ , (7.28a)

|pqr| ≤ 1

2
|p|
(
q2 + r2

)
, (7.28b)

we arrive at the following upper bound on V̇ω

V̇ω ≤ −αyq2 − αzr2 +G
(
υe,ω, ξ̃1, ξ̃2, ξ̃I , ξ̇2,d

)
, (7.29)

where

αy=

(
ay−

(
1

h
∥υe∥+

1

2
|axyz| |p|+ |aye| ∥υe∥

))
, (7.30a)

αz=

(
az−

(
1

h
∥υe∥+

1

2
|axyz| |p|+ |aze| ∥υe∥

))
, (7.30b)

and G(·) represents the terms that grow at most linearly with q and r.
From Lemma 7.1, we can conclude that if ax > 0, then

lim
t→∞

|p(t)| ≤ p̄. (7.31)

Moreover, this limit converges exponentially. Consequently, from (7.27) and (7.30),
we get the following limits

lim
t→∞

αy ≥ ᾱy, lim
t→∞

αz ≥ ᾱz. (7.32)

Therefore, if ᾱy, ᾱz > 0, then there exists a finite time T after which αy, αz > 0.
First, let us investigate the candidate Lyapunov function for t < T . Since αy

and αz may be negative, we cannot prove boundedness. However, note that the
derivative of the Lyapunov function in (7.29) has the following form

V̇ω ≤ k ∥ω̂∥2 +G(·), (7.33)

where k is a positive constant and G(·) grows at most linearly with ∥ω̂∥. We can
therefore conclude that the dynamics of q and r are forward complete [110].

For t ≥ T , V̇ω has the following form

V̇ω ≤ −αyq2 − αzr2 +G(·) (7.34)

For sufficiently large angular velocities, the quadratic term will dominate the linear
term G(·), and q and r will remain bounded.

The angular rate dynamics are thus ultimately bounded.

In Lemma 7.2, we derived the sufficient conditions for ultimate boundedness of
a hand position-based controller. In the remainder of the chapter, we provide an
interpretation of the condition ax, ᾱy, ᾱz > 0, and compare it to our intuition.
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First, we analyze the term ax. This term represents the effects of hydrodynamic
damping on the roll rate of the vehicle. Based on the definition (7.16) and the
fact that the inertia and damping matrices M and D are positive definite (c.f.,
Section 2.1.3), the term ax must be positive.

Next, we analyze the terms ᾱy and ᾱz defined in (7.27). First, we remark
that there are some similarities between the hand position concept and a three-
dimensional pendulum. In Figure 7.1a, we illustrate that the hand position point
can be understood as a pivot, and the AUV can be understood as the weight of
the pendulum. In a typical pendulum, the pivot is fixed, and the weight is affected
by gravity. In the case of the hand position, the pivot moves and drags the weight
through a resistive medium. The resulting hydrodynamic forces have a similar
effect on the vehicle as gravity would have on the pendulum.

Using the pendulum analogy, let us analyze the terms ᾱy and ᾱz. We can see
that these terms depend on the physical parameters of the vehicle (i.e., the terms
ax, ay, axyz, aye, and aze), the hand length h, and the steady-state trajectory,
represented by the term ῡe.

First, let us investigate the terms ay and az. These terms represent the effects
of hydrodynamic damping on the sway and heave velocities. These terms have a
stabilizing effect, meaning that the angular rate dynamics are ultimately bounded if
ay and az are sufficiently large. This fact is consistent with our pendulum analogy,
since hydrodynamic forces have a dampening effect on the “swinging” motion of
the AUV.

Next, the terms ᾱy and ᾱz depend on the norm of the steady-state velocity,
ῡe. We can see that ῡe has a destabilizing effect, meaning that the angular rates
may grow unboundedly if ῡe is too large. Once again, this fact is consistent with
our pendulum analogy, since dragging the pendulum at a high speed is likely to
result in large oscillations. In (7.27b) and (7.27c), ῡe is multiplied by the terms aye
and aze, respectively. These terms represent the cross-coupling between the surge

neutral
point

hand
position

steady-state
trajectory

ξ2

hydrodynamic
forces

(a) The pendulum analogy

µ

τ = µ
h

h

(b) The effects of hand length

Figure 7.1: Illustrations of the hand position concept.
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dynamics and the sway and heave dynamics of the vehicle. Note that the Lyapunov
analysis in the proof is conservative and always considers the worst-case scenario.
Consequently, we assume that the cross-coupling terms have a destabilizing effect.

Next, we investigate the effect of the hand length h. We can see that h has a sta-
bilizing effect, the destabilizing term ῡe is divided by h. The intuition behind this
effect is illustrated in Figure 7.1b. A greater hand length gives us more “leverage”.
In the figure, we show that if the lateral acceleration of the hand position point
is µ, then the angular acceleration of the vehicle must be τ = µ

h . Consequently, a
greater hand length results in smaller angular velocities.

Finally, the constants ᾱy and ᾱz depend on the term |axyz p̄|. This term rep-
resents the cross-coupling between the roll dynamics and the sway and heave dy-
namics of the vehicle. Once again, due to the conservative nature of the underlying
Lyapunov analysis, we assume that the cross-coupling has a destabilizing effect.

To summarize, when we design a hand position-based controller, we must ensure
that the hand length h is sufficiently large and the steady-state velocity ῡe is
sufficiently small to satisfy the requirements of Lemma 7.2. Otherwise, the angular
rate dynamics may become unbounded.
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Chapter 8

Trajectory Tracking and Path Follow-
ing using the Hand Position Concept

This chapter presents hand position-based trajectory-tracking and path-following
controllers for underactuated underwater vehicles. Using Lyapunov analysis, we
show that the proposed controllers exponentially track the desired trajectory or
path, while the angular velocities of the vehicle remain bounded. The theoretical
results are verified both in numerical simulations and experiments. The contents
of this chapter are based on [87].

The chapter is organized as follows. Sections 8.1 and 8.2 present and analyze
the trajectory-tracking and the path-following controller, respectively. Sections 8.3
and 8.4 show the results of numerical simulations and experiments, respectively.

8.1 Trajectory Tracking

In this section, we propose a control law for tracking a predefined trajectory. Let
ξ1,d represent the desired trajectory, and let ξ2,d = ξ̇1,d. We assume that there
exist ξ2,d,max and ξ̇2,d,max such that

∥Vc∥ < ∥ξ2,d∥ ≤ ξ2,d,max,
∥∥∥ξ̇2,d∥∥∥ ≤ ξ̇2,d,max. (8.1)

The goal of trajectory tracking is to control the vehicle such that x1 converges
to ξ1,d. To achieve the goal, we define the following error states

x̃1 = x1 − ξ1,d, (8.2a)
x̃2 = x2 − ξ2,d, (8.2b)

x̃I =

∫ t

0

x̃1(s) ds, (8.2c)

and choose the following PID controller

µ = −kpx̃1 − kdx̃2 − kI x̃I + ξ̇2,d, (8.3)
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where kp, kd, and kI are positive gains chosen such that the matrix

Hξ =

O3×3 I3 O3×3

O3×3 O3×3 I3
−kII3 −kpI3 −kdI3

 (8.4)

is Hurwitz.

8.1.1 Closed-Loop Analysis

In this section, we investigate the closed-loop dynamics of the system (7.11) with
the control law (8.3). We begin by defining an additional change of coordinates:

ξ̃1 = x̃1, (8.5a)

ξ̃2 = x̃2 +Vc, (8.5b)

ξ̃I = x̃I −
kd
kI

Vc. (8.5c)

This change is necessary to transform the equilibrium of the closed-loop system to
the origin, as the error states x̃2 and x̃I defined in (8.3) do not converge to zero.

For convenience, we will also define a concatenated state vector

ΞT =
[
ξ̃TI , ξ̃

T
1 , ξ̃

T
2

]
. (8.6)

Differentiating (8.6) with respect to time and substituting the external dynamics
(7.11a)–(7.11b) and the control law (8.3), we get

Ξ̇ = HξΞ. (8.7)

Proposition 8.1. The origin Ξ = 0 is a globally exponentially stable (GES) equi-
librium point of (8.7). Consequently, x1, x2, and x̃I exponentially converge to ξ1,d,
ξ2,d −Vc, and kI/kdVc, respectively.

Moreover, let us define ax, ᾱy, ᾱz in accordance with (7.27). The internal dy-
namics are ultimately bounded if ax, ᾱy, ᾱz > 0.

Proof. Since the matrix Hξ, defined in (8.4) is Hurwitz by design, we can conclude
that the external dynamics are GES, and ξ̃1, ξ̃2, and ξ̃I exponentially converge to
zero.

From (8.2), we can conclude that if ξ̃1 exponentially converges to zero, then
the hand position x1 exponentially converges towards the desired trajectory ξ1,d.
Similarly, if ξ̃2 converges to zero, then the relative hand velocity x2 converges to
ξ2,d −Vc. Moreover, if ξ̃I converges to zero, then the integral state x̃I converges
to kI/kdVc. Consequently, the integral state provides an estimate of the ocean
current.

Moreover, because the external dynamics are stable, the error states x̃1, x̃2,
and x̃I are bounded. Consequently, the control input µ is bounded. Therefore, if
ax, ᾱy, ᾱz > 0, then all assumptions of Lemma 7.2 are satisfied, and the internal
dynamics are ultimately bounded.
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8.1.2 Straight-Line Trajectory Tracking

In this section, we will focus on the special case when ξ2,d is constant, and the
vehicle is thus tracking a straight line. The purpose of this section is to demon-
strate that in this special case, we can prove that both the external and internal
dynamics are exponentially stable. First, let us present the necessary definitions
and assumptions.

Definition 8.1. Two vectors a,b ∈ R3 are aligned if there exists k ∈ R such that
a = kb. Equivalently, a and b are aligned if a× b = 03.

Assumption 8.1. The distance between the centers of gravity and buoyancy, zgb,
is positive, and the vector ξ2,d,r = (ξ2,d −Vc) is not aligned with e3.

Remark. From (2.21), one can verify that if zgb is positive, then the restoring
forces stabilize the vehicle’s roll angle around zero. Consequently, most commercial
AUVs are designed so that zgb > 0. The second part of Assumption 8.1 can be
satisfied by choosing an appropriate reference trajectory.

We begin by finding the equilibria of the closed-loop system. Since the external
dynamics is a linear system, Ξ = 09 is the only equilibrium. From (7.11c), we can
conclude that Ṙ = O3×3 if and only if ω = 03. Substituting Ξ = 09 and ω = 03

into (7.11d) yields

ω̇ = ℓ̄× (Dυ(νr) + Cυ(νr))−
(
ℓ̄ℓT
) (
Dω(νr) +M′

22

(
Wzgbe3 ×RTe3

))
. (8.8)

Note that the right-hand-side of (8.8) has the following form

ω̇ = ℓ̄× a+
(
ℓ̄ℓT
)
b, (8.9)

where a = [a1, a2, a3]
T, b = [b1, b2, b3]

T are vectors in R3. From the definition of ℓ
and ℓ̄, the following two equalities hold for any a and b:

ℓ̄× a =
1

h
[0,−a3, a2]T ,

(
ℓ̄ℓT
)
b = [b1, 0, 0]

T
. (8.10)

Consequently, ω̇ is zero if and only if both terms of the right-hand-side of (8.8) are
zero.

The first term is zero only if (Dυ(νr) + Cυ(νr)) is aligned with e1. In other
words, there exists k ∈ R such that

Dυ(νr) + Cυ(νr) = ke1. (8.11)

Substituting (7.6) into (8.11), we get the following equation
d11
m11

ur
m66d22−d62m26+m26(m11−m22)ur

m22m66−m2
26

vr
m55d33−d53m35−m35(m11−m33)ur

m33m55−m2
35

wr

 =

k0
0

 , (8.12)

which has at least one solution given by

[ur, vr, wr]
T
=
m11

d11
ke1. (8.13)
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ξ2d,r
x y

z (a) (b) (c) (d)

Figure 8.1: Illustration of the four equilibria. (a) Positive surge velocity, zero
roll angle. (b) Positive surge velocity, π radians roll. (c) Negative surge velocity,
zero roll angle. (d) Negative surge velocity, π radians roll.

Note that if
d62m26 −m66d22
m26 (m11 −m22)

̸= m55d33 − d53m35

m35 (m11 −m33)
, (8.14)

then (8.13) is the only solution of (8.12). From (7.22), the steady-state linear
velocities must also satisfy

υr = RTξ2,d,r =⇒ ∥υr∥ = ∥ξ2,d,r∥ . (8.15)

Combining (8.13) and (8.15) gives us two possible steady-state linear velocities

υr = ±∥ξ2,d,r∥ e1, (8.16)

which leads to the following condition on the steady-state orientation

Re1 = ± ξ2,d,r
∥ξ2,d,r∥

. (8.17)

This condition does not uniquely define the steady-state orientation. Indeed, in
terms of Euler angles, (8.17), defines the steady-state yaw and pitch angles. An
additional condition on the steady-state orientation comes from the second term
in (8.8). This term is zero if

eT1
(
Wzgbe3 ×RTe3

)
= 0. (8.18)

If Assumption 8.1 holds, then (8.18) is equivalent to

sinϕ = 0, (8.19)

where ϕ ∈ [0, 2π) is the steady-state roll angle. Consequently, (8.17) and (8.18)
result in four distinct steady-state orientations. Intuitively, the vehicle can have
positive or negative surge velocity, and a roll angle of zero or π radians. These four
equilibria are illustrated in Figure 8.1.

In the remainder of this section, we will analyze the equilibrium in which the
vehicle has a positive surge velocity, and the roll angle is zero, c.f., Figure 8.1a.
Let R0 denote the steady-state orientation. We define the orientation error, δ, as

δ = logm
(
RT

0 R
)
, (8.20)

where logm : SO(3) 7→ B3
π is the matrix logarithm [111], and introduce the follow-

ing change of coordinates

ξ̃′I = RT ξ̃I , ξ̃′1 = RT ξ̃1, ξ̃′2 = RT ξ̃2. (8.21)
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The motivation behind the change of coordinates is to simplify the relation between
the external dynamics and υr. From, (7.22), υr is given by

υr = RT
(
ξ̃2 + ξ2,d −Vc

)
− ω × ℓ

= ξ̃′2 + expm(δ)T
∥∥ξ2d,r∥∥ e1 − ω × ℓ,

(8.22)

where expm : B3
π 7→ SO(3) is the inverse of logm.

The complete closed-loop system is then given by

˙̃
ξ′I = ξ̃′1 − ω × ξ̃′I , (8.23a)
˙̃
ξ′1 = ξ̃′2 − ω × ξ̃′1, (8.23b)
˙̃
ξ′2 = −kI ξ̃′I − kpξ̃′1 − kdξ̃′2 − ω × ξ̃′2, (8.23c)

δ̇ = ω, (8.23d)

ω̇ = ℓ̄×
(
− kI ξ̃′I − kpξ̃′1 − kdξ̃′2 +Dυ(νr) + Cυ(νr)

− ω ×
(
ξ̃′2 + expm(δ)T

∥∥ξ2d,r∥∥ e1))
−
(
ℓ̄ℓT
) (
Dω(νr) +M′

22

(
Wzgbe3 ×RTe3

))
. (8.23e)

Next, we define a vector zT =
[
ξ̃′TI , ξ̃′T1 , ξ̃′T2 , δT,ωT

]
and a function f such that

ż = f(z). Let J denote the Jacobian of f(z), evaluated at z = 0. J is given by

J=


O3×3 I3 O3×3 O3×3 O3×3

O3×3 O3×3 I3 O3×3 O3×3

−kII3 −kpI3 −kdI3 O3×3 O3×3

O3×3 O3×3 O3×3 O3×3 I3
JξI

Jξ1
Jξ2

Jδ Jω

 , (8.24)

where

JξI
= −S

(
kI
h
e1

)
, Jξ1 = −S

(
kp
h
e1

)
, (8.25a)

Jξ2
=

0 0 0
0 0 Ξ23

0 Ξ32 0

 , Jω = −

Ω1 0 0
0 Ω2 0
0 0 Ω3

 (8.25b)

Jδ =

−∆1 cos θ 0 ∆1 sin θ
0 −∆2 0
0 0 −∆3

 . (8.25c)

where θ is the steady-state pitch angle. The components of Jξ2 , Jω, and Jδ are
shown in Appendix D.2.

Proposition 8.2. The point z = 015 is a (locally) exponentially stable equilibrium
point of ż = f(z) if Assumption 8.1 holds, and all ∆i and Ωi for i ∈ {1, 2, 3} are
positive.
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Proof. Using the indirect Lyapunov method, the system is locally exponentially
stable if J is Hurwitz. Let us define

J21=

[
O3×3 O3×3 O3×3

JξI
Jξ1

Jξ2

]
, J22=

[
O3×3 I3
Jδ Jω

]
. (8.26)

The matrix J can then be written in the following form

J =

[
Hξ O9×6

J21 J22

]
. (8.27)

Due to its block triangular structure, the eigenvalues of J are equal to the union of
eigenvalues of Hξ and J22. Note that Hξ is Hurwitz by design. Furthermore, the
eigenvalues of J22, λ1, . . . , λ6 are given by

λ1, λ2 = −Ω1

2
±
√
Ω1

2 − 4∆1 cos θ0
2

, (8.28a)

λ3, λ4 = −Ω2

2
±
√
Ω2

2 − 4∆2

2
, (8.28b)

λ5, λ6 = −Ω3

2
±
√
Ω3

2 − 4∆3

2
. (8.28c)

If Assumption 8.1 holds, then the steady-state pitch angle satisfies |θ| < π/2.
Therefore, the real part of λ1, . . . , λ6 is strictly negative if Assumption 8.1 holds
and all ∆i and Ωi for i ∈ {1, 2, 3} are positive.

Remark. For surface vessels, it has been shown that a similar controller can
achieve almost global asymptotic stability [14]. For underwater vehicles, proving
almost global stability is complicated. It can be shown that vehicles with rotational
symmetry around the x-axis violate inequality (8.14). Since most commercial AUVs
have a cylindrical shape, this type of symmetry is common among underwater vehi-
cles. If a vehicle violates inequality (8.14), then there exists a subspace of unstable
equilibria in addition to the four previously described equilibrium points, making
almost global results impossible.

8.2 Path Following

In this section, we present a path-following controller based on the hand position
concept. Let s be the path parameter, pp : R 7→ R3 the parametrization of the
desired path, and Ud > 0 the desired path following speed. We assume that pp is
C2 and parametrized by the arc length (see Section 2.2). Let us define the following
three functions

ξ1,d = pp(s), ξ2,d = ξ̇1,d = ṡ
∂pp (s)

∂s
, ξ∗2,d = Ud

∂pp(s)

∂s
, (8.29)

The goal of the path following is to control the vehicle and continuously update
the path parameter such that

lim
t→∞

x1(t)− ξ1,d(t) = 03, lim
t→∞

ṡ(t) = Ud. (8.30)
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x̃1

σ

pp(s)

∂pp(s)
∂s

x1p

Figure 8.2: Illustration of the path function, the path following error, and its
projection.

To solve the path-following problem, we define the following error states

x̃1 = x1 − ξ1,d, (8.31a)
x̃2 = x2 − ξ∗2,d, (8.31b)

x̃I =

∫ t

0

x̃1(τ)dτ, (8.31c)

and propose a PID controller analogous to the one in Section 8.1

µ = −kpx̃1 − kdx̃2 − kI x̃I + ξ̇∗2,d. (8.32)

Inspired by [109], we propose the following update law for the path parameter

ṡ = Ud (1 + ε tanh (kσσ)) , (8.33)

where ε and kσ are positive gains, and σ = x̃T
1
∂pp(s)
∂s is the projection of the path

following error onto the path-tangential vector (see Figure 8.2). The motivation
behind this update scheme is to allow the path to parameter “slow down” or “speed
up” if the vehicle is lagging or leading the desired path.

8.2.1 Closed-Loop Analysis

Here we investigate the properties of the closed-loop system. Similarly to Sec-
tion 8.1, we define the following change of coordinates

ξ̃1 = x̃1, (8.34a)

ξ̃2 = x̃2 +Vc, (8.34b)

ξ̃I = x̃I −
kd
kI

Vc. (8.34c)

The external dynamics of the vehicle are then given by

Ξ̇ = HξΞ+
[
0T
3 ,d

T, kdd
T
]T
, (8.35)

where Hξ is given by (8.4), and

d = εUd tanh (kσσ)
∂pp(s)

∂s
. (8.36)
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Since Hξ is Hurwitz by design, for any positive definite matrix Q there exists a
positive definite matrix P such that HT

ξ P + PHξ = −Q. Let ϱ denote the ratio
between the smallest eigenvalue of Q and the largest eigenvalue of P, and let us
choose Q such that ϱ is maximized.

Proposition 8.3. The external dynamics (8.35) are GES if

ϱ > 2 (1 + kd) εkσUd. (8.37)

Consequently, x1, x2, and x̃I exponentially converge to ξ1,d, ξ∗2,d−Vc, and kd/kIVc,
respectively, and ṡ converges to Ud.

Moreover, let us define

ῡe = max
s,σ∈R

∥∥∥∥Ud (1 + ε tanh(kσσ))
∂pp(s)

∂s
−Vc

∥∥∥∥ (8.38)

and ᾱy and ᾱz in accordance with (7.27). The internal dynamics are ultimately
bounded if ax, ᾱy, ᾱz > 0

Proof. Consider the following Lyapunov function candidate

V = ΞTPΞ, (8.39)

The derivative of V along the trajectories of the closed-loop system (8.35) is given
by

V̇ = ΞT
(
HT
ξ P+PHξ

)
Ξ+ 2

[
0T
3 ,d

T, kdd
T
]
PΞ

≤ −λQ,min ∥Ξ∥2 + 2λP,max (1 + kd) ∥d∥ ∥Ξ∥ ,
(8.40)

where λQ,min is the smallest eigenvalue of Q, and λP,max is the largest eigenvalue
of P. From (8.36), we get the following upper bound on ∥d∥

∥d∥ ≤ εkσUd
∥∥∥ξ̃1∥∥∥ ≤ εkσUd ∥Ξ∥ , (8.41)

and arrive at the following expression

V̇ ≤ − (λQ,min − 2λP,max (1 + kd) εkσUd) ∥Ξ∥2 . (8.42)

Therefore, if the following inequality holds

λQ,min

λP,max
= ϱ > 2 (1 + kd) εkσUd, (8.43)

the origin of the closed-loop system is GES, and thus ξ̃1, ξ̃2, and ξ̃I exponentially
converge to zero. Using the same arguments as in the proof of Proposition 8.1, we
can conclude that x1, x2, and x̃I exponentially converge to ξ1,d, ξ∗2,d − Vc, and
kd/kI Vc, respectively. In addition, substituting ξ̃1 = 03 into the path parameter
update law (8.33) gives ṡ = Ud.

Moreover, because the external dynamics are stable, the error states x̃1, x̃2,
and x̃I are bounded. Consequently, the control input µ is bounded. Note that
ῡe defined in (8.38) represents the upper bound on ∥ξ2,d −Vc∥. Therefore, if
ax, ᾱy, ᾱz > 0, then all assumptions of Lemma 7.2 are satisfied, and the internal
dynamics are ultimately bounded.
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Figure 8.3: Illustration of straight-line path following.

8.2.2 Straight-Line Path Following

In this section, we propose a path following controller for straight-line paths. Sim-
ilarly to Section 8.1.2, we can prove the exponential stability of the whole closed-
loop system. Moreover, straight-line paths are natively supported by most guid-
ance, navigation, and control systems, e.g., the Unified Navigation Environment
(DUNE) [89]. Such paths can be parametrized by the following function

pp(s) = p0 +Rpe1s, (8.44)

where p0 ∈ R3 is the origin of the path, and Rp ∈ SO(3) defines the orientation of
the path.

Instead of the path parameter update law (8.33), we propose to determine the
path parameter by finding the closest point on the desired path to the vehicle’s
hand position. This approach is commonly done in the literature when following
straight lines or circles [121]. From (8.44), the path parameter of the closest point
to x1 is given by

s = (x1 − p0)
T
Rpe1. (8.45)

In addition, let us define cross-track errors, ỹ and z̃, as

[0, ỹ, z̃]
T
= RT

p (x1 − pp(s)) . (8.46)

The cross-track errors are illustrated in Figure 8.3. Substituting (8.45) and (8.44)
into (8.46), we get[

ỹ
z̃

]
= ÎTRT

p (x1 − p0) , ÎT =

[
0 1 0
0 0 1

]
. (8.47)

For a straight-line path, the control goal (8.30) is equivalent to controlling the
vehicle such that ỹ and z̃ converge to zero. To achieve the goal, we define the
following error states

x̃1 = [ỹ, z̃]
T
, x̃2 = RT

p x2 − Ude1, x̃I =

∫ t

0

x̃1(τ)dτ, (8.48)

and a PID control law

µ = −kpRpÎx̃1 − kdRpx̃2 − kIRpÎx̃I , (8.49)
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where kp, kd, and kI are positive gains chosen such that the matrix

H̄ξ =

O2×2 I2 O2×3

O2×2 O2×2 ÎT

−kI Î −kpÎ −kdI3

 , (8.50)

is Hurwitz. Similarly to the previous sections, we can perform the following change
of coordinates

ξ̃1 = x̃1, (8.51a)

ξ̃2 = x̃2 + ĨRT
pVc, (8.51b)

ξ̃I = x̃I −
kd
kI

ÎTRT
pVc, (8.51c)

where Ĩ =

0 0 0
0 1 0
0 0 1

. For convenience, let us define Ξ′T =
[
ξ̃′

T

I , ξ̃
′T
1 , ξ̃

′T
2

]
.

Proposition 8.4. The external dynamics are GES. Specifically, ỹ and z̃ converge
to zero, x2 converges to UdRpe1 −RpĨR

T
pVc, and x̃I converges to kd

kI
ÎTRT

pVc.
Moreover, let us define ξ2,d = UdRpe1, ῡe = ∥ξ2,d −Vc∥, and ax, ᾱy, and

ᾱz in accordance with (7.27). The internal dynamics are ultimately bounded if
ax, ᾱy, ᾱz > 0.

Proof. Differentiating (8.51) with respect to time yields

Ξ̇ = H̄ξΞ, (8.52)

with H̄ξ defined in (8.50). Since H̄ξ is Hurwitz by design, Ξ exponentially converges
to zero. From (8.51), if Ξ converges to zero, then the cross-track errors ỹ and
z̃ converge to zero, x2 converges to UdRpe1 − RpĨR

T
pVc, and x̃I converges to

kd
kI
ÎTRT

pVc.
Moreover, because the external dynamics are stable, the error states x̃1, x̃2,

and x̃I are bounded. Consequently, the control input µ is bounded. Therefore, if
ax, ᾱy, ᾱz > 0, then all assumptions of Lemma 7.2 are satisfied, and the internal
dynamics are ultimately bounded.

Finally, let us investigate the exponential stability of the whole closed-loop
system. We begin by finding the equilibria. Let us define the desired relative
velocity ξ2,d,r = UdRpe1−RpĨR

T
pVc. Using the same procedure as in Section 8.1.2,

we can conclude that if Assumption 8.1 holds, then the steady-state orientation
must satisfy

Re1 = ± ξ2,d,r
∥ξ2,d,r∥

, sinϕ = 0, (8.53)

where ϕ is the steady-state roll angle.
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Using the orientation error δ, as defined in (8.20), the complete closed-loop
system is given by

˙̃
ξI = ξ̃1, (8.54a)
˙̃
ξ1 = ξ̃2, (8.54b)
˙̃
ξ2 = −kI Îξ̃I − kpÎξ̃1 − kdξ̃2, (8.54c)

δ̇ = ω, (8.54d)

ω̇ = ℓ̄×
(
− kIRTRpÎξ̃I − kpRTRpÎξ̃1

− kdRTRpξ̃2 +Dυ(ν) + Cυ(ν)

− ω ×
(
RTRpξ̃2 + expm(δ)T

∥∥ξ2d,r∥∥ e1))
−
(
ℓ̄ℓT
) (
Dω(ν) +M22

(
Wzgbe3 ×RTe3

))
, (8.54e)

Next, we define a vector z̄T =
[
ΞT, δT,ωT

]
and a function f̄ such that ˙̄z = f̄(z̄).

Let J̄ denote the Jacobian of f̄(z̄), evaluated at z̄ = 013. J̄ is given by

J̄ =


O2×2 I2 O2×3 O2×3 O2×3

O2×2 O2×2 ÎT O2×3 O2×3

−kI Î −kpÎ −kdI3 O3×3 O3×3

O3×2 O3×2 O3×3 O3×3 I3
RTRpÎJξI

RTRpÎJξ1
RTRpJξ2

Jδ Jω

 . (8.55)

The blocks of J̄ are shown in (8.25). Using the same reasoning as in the proof
of Proposition 8.2, we can conclude that the closed-loop system is exponentially
stable if Assumption 8.1 holds and all ∆i and Ωi for i ∈ {1, 2, 3} are positive.

8.3 Simulations

In this section, we present the results of numerical simulations. The simulations
were carried out in MATLAB using a model of the light autonomous underwater
vehicle (LAUV).

We tested the trajectory tracking algorithm proposed in Section 8.1, the curved
path following algorithm proposed in Section 8.2, and the straight-line path fol-
lowing algorithm in Section 8.2.2. The following parameters are common for the
first two tests: The initial state of the vehicle is p(0) = 03, R(0) = I3, υr(0) = e1,
ω(0) = 03. The hand length is h = 5m, the velocity of the ocean current is
VT
c = [0.15,−0.1, 0.05], and the PID gains are kp = 0.03, kd = 0.4, kI = 8.5 · 10−4.

8.3.1 Trajectory Tracking

In this test, the vehicle should track a figure eight trajectory

ξ1,d(t) =

[
50 cos

( π

200
t
)
, 25 sin

(
2π

200
t

)
, 15 cos

(
2π

200
t

)]T
. (8.56)
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Figure 8.4: Simulation results of the trajectory-tracking algorithm proposed in
Section 8.1.

We use the trajectory-tracking controller proposed in Section 8.1. The PID gains
are chosen such that Hξ is Hurwitz, guaranteeing the stability of the external
dynamics. The value of ᾱy = ᾱz for the chosen parameters is 0.05, guaranteeing
the boundedness of the internal dynamics by Proposition 8.1.

The results are shown in Figure 8.4. Figure 8.4a shows the 3D trajectory of the
vehicle, and Figures 8.4c, 8.4d, and 8.4e show the external dynamics. The vehicle
converges to the desired trajectory after approximately 120 seconds. Figure 8.4b
shows the angular velocities of the vehicle. Initially, the angular velocities grow.
However, after the external dynamics have converged, the angular velocities remain
bounded.

8.3.2 Path Following

In this test, we have chosen a path with the same shape as in the trajectory-tracking
test. The path parametrization is given by

pp(s) = [50 cos (γ(s)) , 25 sin (2γ(s)) , 15 cos (2γ(s))]
T
, (8.57)

where γ : R 7→ R is a function chosen such that pp(s) is a parametrization by arc
length (see Section 2.2).

We use the path-following controller proposed in Section 8.2. The gains of the
path parameter update law are chosen as ε = 0.5, and kσ = 0.1. The value of
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Figure 8.5: Simulation results of the path-following algorithm proposed in Sec-
tion 8.2.

ᾱy = ᾱz for the chosen parameters is 0.02, guaranteeing the boundedness of the
internal dynamics by Proposition 8.3.

The results are shown in Figure 8.5. Figure 8.5a shows the 3D trajectory of the
vehicle, and Figures 8.5d, 8.5e, and 8.5f show the external dynamics. Compared
to the trajectory tracking simulation, the vehicle converges to the desired path
faster, after approximately 90 seconds. Figure 8.5b shows the angular velocities
of the vehicle. The behavior is very similar to the trajectory tracking simulation.
Figure 8.5c shows the derivative of the path parameter. We can see that ṡ decreases
or increases depending on whether the vehicle is “behind” or “in front of” the desired
path. After the transient period, ṡ converges to Ud.

Since the vehicle model and parameters of the controller are identical for both
simulations, the results of these simulations are very similar. The main difference
between the proposed controllers is that in path following, one has an additional
“degree of freedom” when choosing the path parameter, while in trajectory tracking,
the trajectory is parametrized in time and thus fixed. In [122], it is argued that the
control signals of path-following controllers are smoother and have a lower peak
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Figure 8.6: The desired path used in the simulation in Section 8.3.3 and exper-
iment, with waypoints in (latitude, longitude, depth) format.

value than in the case of trajectory-tracking controllers. This fact is confirmed by
the simulations, as the peak value of the control input µ is 0.1m s−2 lower, and
the surge velocity ur is 0.2m s−1 lower in the path-following simulation.

8.3.3 Straight-Line Path Following

In this test, the vehicle should follow a path consisting of a series of waypoints
connected by line segments. The vehicle switches to the next line segment when
the distance to the current waypoint is less than five meters. The desired path is
shown in Figure 8.6. The parameters of the simulation are chosen identically to
the experiment described in the next section. The initial position of the vehicle
is p(0) = [−1.8,−9.3, 0]T, the initial yaw angle is 185 degrees, and the remaining
angles and velocities are zero. The desired path-following speed is Ud = 1.3m s−1,
and the gains of the PID controller are kp = 0.2, kd = 0.9, kI = 0.01. The gains
are chosen so that H̄ξ is Hurwitz, guaranteeing the exponential stability of the
external dynamics by Proposition 8.4.

The results are shown in Figure 8.7. Figure 8.7a shows the trajectory of the
vehicle. The vehicle starts converging to the desired line segment. When it reaches
the circle of acceptance, i.e., five meters within the current waypoint, it switches
to the next segment. Figure 8.7b shows the angular velocities. The dotted vertical
lines indicate when the waypoints change. We can see that after each change, there
is a transient period where the angular velocities increase before converging back
to zero. Figures 8.7c–8.7e show the position, velocity, and integral errors. When
the waypoints change, the steady-state value of the external states changes as well,
causing an abrupt increase in the error states. The error states then exponentially
converge to zero.
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Figure 8.7: Simulation results of the path-following algorithm proposed in Sec-
tion 8.2.

8.4 Experiments

In this section, we present the results of an experiment performed on the LAUV.
In the experiment, we verify the effectiveness of the straight-line path following
controller proposed in Section 8.2.2. The reason for choosing this specific controller
for experimental validation is that straight-line paths are natively supported by
DUNE [89], the onboard software running on the LAUV.

The experiment was performed at the harbor of Porto, Portugal. Due to shallow
water, the depth of the vehicle had to be restricted to two meters. To fully utilize
the available space, the desired path was given by a series of waypoints with varying
depths arranged in a hexagon (see Figure 8.6). The vehicle follows straight-line
segments given by the waypoints, and switches to the next waypoint when the
distance to the current waypoint is less than five meters. The parameters of the
controller are identical to the simulation in Section 8.3.3.

The results of the experiment are shown in Figure 8.8. Figure 8.8a shows the
trajectory of the AUV. The green line represents the hand position x1, the red
line represents the desired path, and the arrows represent the orientation of the
vehicle, with the base of the arrow located at p, and the tip of the arrow pointing
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Figure 8.8: Experimental results.

towards x1. Figure 8.8b shows the cross-track errors. The dotted lines show when
the waypoints change. The sudden increase in cross-track errors is caused by the
switching logic explained in the previous paragraph. The errors then exponentially
converge to within 0.2 meters of zero, which is approximately the measurement
noise of the navigation system. In addition to measurement noise, the control
system is also subject to disturbances caused by the sea loads, and perturbations
caused by modeling errors. However, the experiments confirm that the integral
state and the overall exponential stability of the controller provide some robustness
to these effects.
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Chapter 9

Distributed MPC for Formation Path-
Following of Multi-Vehicle Systems

The chapter considers the problem of formation path-following of multiple vehicles
and proposes a solution based on combining distributed model predictive control
with parametrizations of the trajectories of the vehicles using polynomial splines.
Introducing such parametrization leads indeed to two potential benefits: a) reduc-
ing the number of optimization variables, and b) enabling enforcing constraints
on the vehicles in a computationally efficient way. Moreover, the proposed solu-
tion formulates the formation path-following problem as a distributed optimization
problem that may then be solved using the alternating direction method of mul-
tipliers (ADMM). The proposed approach is applicable to all vehicles that can be
modeled as differentially flat systems. In this chapter, we present numerical sim-
ulations with autonomous underwater vehicles and differential drive robots. The
contents of this chapter are based on [84].

The chapter is organized as follows. In Section 9.1, we present the general
assumptions on the model of the vehicles and formally define the formation path-
following problem. In Section 9.2, we propose the distributed spline-based MPC
scheme. Finally, Section 9.3 presents two numerical case studies.

9.1 Problem Description

In this section, we first introduce the assumptions on the model of the vehicles.
Then, we define the objective of formation path following and pose it as an opti-
mization problem.

9.1.1 Vehicle Model

As mentioned in the introduction to this chapter, the proposed MPC algorithm can
be applied to a wide range of vehicles, not just AUVs. Consequently, the model
presented in this section is more general than the hand position model presented
in Chapter 7. A case study showing how the theory developed in this chapter can
be applied to AUVs will be presented in Section 9.3.1.
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9. Distributed MPC for Formation Path-Following of Multi-Vehicle Systems

Here, we discuss the dynamics of a single agent in the network. Let x ∈ Rnx

be the vector of states. We assume that the state vector includes the position of
the agent. Without loss of generality, let the first nq states be the position of the
vehicle. We can then define the position vector of the vehicle as

q =
[
x1, . . . , xnq

]T
. (9.1)

Since vehicles typically move in either two or three dimensions, we assume that
nq ∈ {2, 3}. Let u ∈ Rnq be the vector of control inputs. We assume the dynamics
of the vehicle to be given by an ordinary differential equation

ẋ = f (x,u) . (9.2)

Note that we assume the number of inputs to be equal to nq. In cases where this
assumption does not hold because the vehicle is overactuated, we need to reduce
the number of inputs by introducing a control allocation scheme (see, e.g., [65]).

Let y ∈ Rnq be the output of the system. Note that, in general, the output
can be different from the position of the vehicle. However, as discussed in the next
paragraph, it must be possible to obtain the position from the output.

We assume the system to be differentially flat [123], i.e., we assume that the
input and state can be determined from the output, its derivatives, and antideriva-
tives. Moreover, we assume that the relation between the output and the position
is polynomial. In other words, there exist suitable (nonlinear) functions ϕu and
ϕx, and a multidimensional polynomial function ϕq of suitable dimensions such
that, at any time,

u = ϕu

(
y, ẏ, ÿ, . . . ,y(r′)

)
, (9.3)

x = ϕx

(
y(−r′′), . . . ,y, ẏ, ÿ, . . . ,y(r′)

)
, (9.4)

q = ϕq

(
y(−r′′), . . . ,y, ẏ, ÿ, . . . ,y(r′)

)
, (9.5)

where r′ and r′′ are positive integers.
To model the constraints on the dynamics of the vehicle, we use a multidimen-

sional function e. The set of feasible states and inputs is given by{
(x,u)

∣∣e(x,u) ≥ 0
}

(9.6)

where the inequality is defined component-wise. We assume that substituting (9.3),
(9.4) into (9.6) yields a set of polynomial constraints. In other words, we assume
that there exists a multidimensional polynomial function h such that

e(x,u) ≥ 0 ⇐⇒ h
(
y(−r′′), . . . ,y(r′)

)
≥ 0. (9.7)

9.1.2 Formation Path-Following Problem

The goal is to control N vehicles, all subject to the dynamics introduced in Sec-
tion 9.1.1, so that they move in a prescribed formation while their barycenter

126



9.1. Problem Description

follows a given path. Let pp : R→ Rnq be a parametrization by arc length that is
continuously differentiable. This implies that for every path point p(s), we can de-
fine a path-tangential coordinate frame and a corresponding rotation matrix Rp(s)
between the inertial and path-tangential frames (see Section 2.2).

The vehicles should converge to a dynamic formation that rotates with the
desired path (see Section 2.3.2). Let pff,1, . . . ,p

f
f,N be the position vectors that

represent the desired formation. Using this notation, the desired trajectory for
agent i is given by

qd,i(s) = pp(s) +Rp(s)p
f
f,i, (9.8)

for a given s.
The objective of the control system is to steer the actual vehicle positions qi(t)

to follow the desired trajectories qd,i. Ideally, this means that for a given function
s(t) we seek the actual positions to be such that

qi(t)→ qd,i
(
s(t)

)
, ∀i = 1, . . . , N. (9.9)

Similarly to the NSB algorithms in Part I, the path parameter s(t) can be
treated as an additional degree of freedom when designing the controller. Conse-
quently, we also need to find a suitable control law for s(t). For this purpose, let
Ud be the desired speed of the barycenter of the formation. If the vehicles follow
the path perfectly, the actual speed of the barycenter is given by

U(t) =
∥∥ṗp(s(t))∥∥ =

∥∥∥∥∂pp(s)∂s
ṡ(t)

∥∥∥∥ = |ṡ(t)| . (9.10)

The equivalence above implies that the path parameter s(t) should thus be chosen
such that

ṡ→ Ud. (9.11)

9.1.3 A Centralized Solution

The problem of finding for each agent i its actuation signal ui(t) that guarantees
following the desired path qd,i

(
s(t)

)
as close as possible can thanks to (9.3)–(9.5)

be transformed into the problem of finding a corresponding output trajectory yi(t).
In general, it is not possible to find an output trajectory yi(t) such that (9.9) is

satisfied, since the dynamics of the agents are constrained by both (9.2) and (9.7).
This means that at any time t, there is a position error

q̃i(t) = qi(t)− qd,i
(
s(t)

)
. (9.12)

Thanks to (9.5), we can express q̃i(t) in terms of yi(t)

q̃i(t) = ϕq

(
y
(−r′′)
i (t), . . . ,y

(r′)
i (t)

)
− qd,i

(
s(t)

)
, (9.13)

and thus solve the problem by optimizing yi(t) and s(t).
The problem should be cast in a receding horizon fashion to reject potential

disturbances as the mission proceeds. We thus propose to formulate the centralized
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9. Distributed MPC for Formation Path-Following of Multi-Vehicle Systems

problem of optimizing a part of the trajectory, i.e., {yi(t : t+ T )}, s(t : t+ T ), as
that of solving the following constrained problem

minimize
{yi(t:t+T )},s(t:t+T )

N∑
i=1

∫ t+T

t

q̃T
i (τ)Qp q̃i(τ)dτ

+

∫ t+T

t

Qs (ṡ(τ)− Ud)2 dτ,

(9.14)

with T being the prediction horizon, Qp and Qs positive weight matrices, q̃i the
position error as defined in (9.13), and subject to, for every agent i = 1, . . . , N , to
the constraints C1 to C3 below:

C1 the implicit constraint on the inputs and states, i.e.,

h
(
y
(−r′′)
i (τ), . . . ,y

(r′)
i (τ)

)
≥ 0, ∀τ ∈ [t, t+ T ],

C2 the constraint on the initial condition of the state of the system, i.e.,

ϕx

(
y
(−r′′)
i (t), . . . ,y

(r′)
i (t)

)
= xi(t),

C3 the constraint on the initial condition of the path of the agents, i.e., s(t). In
other words, s(t) is not a decision variable, while s(t+ τ) for any τ > 0 is.

We note that the variational problem above may not be solvable using off-the-shelf
hardware with limited computing power. For this reason, it will be rewritten below.

9.1.4 A Distributed Solution

To make the centralized approach from the previous section distributed, we assume
synchronous bidirectional reliable communication. In other words, we assume that
all vehicles exchange information simultaneously and there are no packet losses.
Bidirectional communication implies that the communication network can be de-
scribed by an undirected graph G = (V, E), where V = {1, . . . , N} correspond to
the agents, and E ⊂ V × V represents the communication between pairs of agents.
We further assume that G is connected. Similarly to Chapter 6, we denote the set
of neighbors of agent i as Ni.

Before doing the rewriting, we note that it is possible to make (9.14) distributed
by letting the path parameter s(t) be a local variable (i.e., si(t)), and adding a
synchronization constraint on the set of si(t)’s. This leads to the local reformulation
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9.2. A Distributed Spline-Based MPC Solution

minimize
{yi(t:t+T ),si(t:t+T )}

∫ t+T

t

q̃T
i (τ)Qp q̃i(τ)dτ

+

∫ t+T

t

Qs (ṡi(τ)− Ud)2 dτ,
(9.15a)

subject to h
(
y
(−r′′)
i (τ), . . . ,y

(r′)
i (τ)

)
≥ 0, (9.15b)

ϕx

(
y
(−r′′)
i (t), . . . ,y

(r′)
i (t)

)
= xi(t), (9.15c)

si(τ) = sj(τ), ∀i ∈ V,∀j ∈ Ni,∀τ ∈ [t, t+ T ] (9.15d)

where j is the index of the generic neighbor of agent i. This formulation is again
only an intermediate step towards the approach proposed in this chapter, as ex-
plained below.

9.2 A Distributed Spline-Based MPC Solution

The goal of this section is to show how constraining yi and si to be splines enables
rewriting the variational problem above in a way that is computationally tractable.

For the sake of readability, we will use the convention for which sans-serif fonts
(e.g., y) indicate quantities relative to splines, while serif fonts (e.g., y) indicate
trajectories parametrized in time as above.

9.2.1 Spline Parametrization

Let b = [b1, . . . , bn]
T be the vector of basis functions of a B-spline, and let yi =[

yTi,1, . . . , y
T
i,n

]T be a generic matrix and si = [si,1, . . . , si,n]
T a generic vector of

spline coefficients. Assume then that the trajectories and path parameters may be
expressed as B-splines, i.e., as

yi(τ) =

n∑
l=1

yi,l bl(τ) = yTi b(τ), (9.16)

si(τ) =

n∑
l=1

si,l bl(τ) = sTi b(τ). (9.17)

This assumption implies the possibility of exploiting the convex hull property

yi ≥ 0 =⇒ y(τ) ≥ 0, (9.18)

that implies that any polynomial constraint on a spline can be replaced by a
(stricter) constraint on the spline coefficients. In other words, by assuming the
output to be a spline, we assume that there exists a function h such that

h (yi) ≥ 0 =⇒ h
(
y
(−r′′)
i (τ), . . . ,y

(r′)
i (τ)

)
≥ 0. (9.19)

129



9. Distributed MPC for Formation Path-Following of Multi-Vehicle Systems

t t+ T
0

1

Time

V
al

ue

Predicted output at time t

Spline Knots

t+∆T t+ T +∆T
0

1

Time

V
al

ue

Initial guess at time t+∆T

Figure 9.1: Warm-starting the optimization problem. The grey area represents
the prediction horizon.

This eventually enables us to rewrite the trajectory optimization problems in
Section 9.1 as corresponding spline-based MPC problems.

To do so, each agent i must locally approximate the path function and the
associated rotation matrix as polynomials

pp(s) ≈ pp,0 + pp,1 s+ . . .+ pp,m s
m, (9.20)

Rp(s) ≈ Rp,0 +Rp,1 s+ . . .+Rp,m s
m, (9.21)

over an interval [si(t), si(t) + sT ], where t is the current time and sT is chosen such
that sT ≥ UdT . We then need to impose an additional constraint on the path
parameter

si(t) ≤ si(τ) ≤ si(t) + sT , ∀τ ∈ [t, t+ T ] , (9.22)

to ensure that the polynomial approximation is valid.
This approximation transforms the criterion from (9.15a) into a polynomial

function. The optimization problem (9.15) can then be reformulated in terms of
spline coefficients

minimize
yi,si

Ji (yi, si) , (9.23a)

subject to yi ∈ Yi, (9.23b)
si ∈ Si, (9.23c)
si = sj , ∀i ∈ V,∀j ∈ Ni, (9.23d)

where Ji is the objective function from (9.15a), reformulated using the spline coef-
ficients, and Yi and Si are the sets of feasible coefficients given by (9.15b), (9.15c)
and (9.22).

This optimization problem is then solved in discrete time-steps. Similarly to
collocation-based MPC, we can use the results from the previous time-step to
“warm-start” the optimization problem. We do this by extrapolating the previous
results over the new horizon (see Figure 9.1).
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9.2. A Distributed Spline-Based MPC Solution

9.2.2 ADMM

We solve the distributed optimization problem (9.23) using the alternating direc-
tion method of multipliers (ADMM). In [124], it is discussed that ADMM tends
to converge to “modest accuracy” within a few iterations. Due to this property,
ADMM is often used to solve distributed MPC problems. Specifically, we use the
relaxed ADMM algorithm proposed in [125] to solve the problem.

Relaxed ADMM solves the optimization problem (9.23) by introducing an aux-
iliary variable zji for all i ∈ V, j ∈ Ni. The auxiliary variable zji represents agent
i’s estimate of sj . The optimization problem (9.23) can then be reformulated as

minimize
yi,si,zji

Ji (yi, si) , (9.24a)

subject to yi ∈ Yi, (9.24b)
si ∈ Si, (9.24c)
zji = sj , (9.24d)
zji = zij , ∀i ∈ V,∀j ∈ Ni, (9.24e)

It is then possible to apply the so-called Peaceman-Rachford splitting [126] and
solve the optimization problem iteratively. We omit the derivations, as they can
be found in [125], and only show the algorithm. The problem is solved iteratively
in two steps. First, we compute yi and si by solving

yi, si ← argmin
yi∈Yi,si∈Si

Li (yi, si, zji) , (9.25)

where Li(yi, si, zji) is the so-called augmented Lagrangian given by

Li(yi, si, zji) = Ji(yi, si)−
∑
j∈Ni

zTjisi +
ρ

2
di ∥si∥2 , (9.26)

where ρ > 0 is a penalty weight and di is the cardinality of Ni. In the second step,
we update the auxiliary variables

zji ← (1− α)zji + α (2ρsj − zij) , (9.27)

where 0 < α < 1 is the step size. To perform this step, each agent j ∈ Ni sends a
packet

wji = 2ρsi − zji, (9.28)

to agent i. The update law (9.27) then becomes

zji ← (1− α)zji + αwji. (9.29)

To further reduce the needed communication bandwidth, we only perform one
ADMM iteration per MPC step. An overview of the resulting distributed MPC is
shown in Algorithm 1.
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Algorithm 1 ADMM for Distributed MPC

1: Initialization: Perform several ADMM iterations (9.25), (9.27) to converge
to yi(0), si(0) and zij(0)

2: for k = 1, 2, . . . do every ∆T
3: Use extrapolation (see Figure 9.1) to provide an initial guess for

yi(k∆T ), si(k∆T ) and zij(k∆T )
4: Perform one ADMM iteration (9.25), (9.27)
5: end for

9.3 Case Studies

In this section, we demonstrate the proposed MPC scheme on autonomous under-
water vehicles (AUVs) and differential drive robots. In both cases, we simulate six
vehicles, the prediction horizon is set to 50 seconds, and the path parameter and
outputs are represented by cubic splines with 11 breakpoints. Consequently, each
spline is represented by 13 coefficients.

9.3.1 AUVs

In the first case study, we consider AUVs with six degrees of freedom. Because the
vehicle is underactuated (second-order nonholonomic), we cannot use the origin
of the body-fixed frame p as the output of our system. Instead, we choose the
hand position defined in Chapter 7 as the output (see Figure 9.2a). Using output-
feedback linearization, we can simplify the system to a double integrator

ÿ = u. (9.30)

Remark. In Chapters 7 and 8, we assumed that only the relative velocities of the
AUV are known. Here, we assume that the absolute velocities of the AUV are
known as well. This assumption implies that the ocean current Vc can either be
measured or estimated. We note that there exist methods for estimating the ocean
current, e.g., [127].
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(a) Output of the AUV model.
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(b) Desired formation.

Figure 9.2: Illustration of the case study with autonomous underwater vehicles
(AUVs).
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Figure 9.3: Results of numerical simulations with six marine vehicles.

Having transformed the system model into the required form, we validated the
proposed method in numerical simulations. The simulations were carried out on a
6DOF model of the light autonomous underwater vehicle (LAUV). The barycenter
should follow a spiral path given by

pp(s) = [ρ(s), ap cos(ρ(s)), bp sin(ρ(s))]
T
, (9.31)

where ap = bp = 20m, and ρ(s) is a monotonically increasing function designed
such that pp(s) is a parametrization by arc length. The desired formation is shaped
like an octahedron; the relative position vectors are given by

[
pff,1 · · · pff,6

]
=

af 0 0 0 0 −af
0 bf −bf 0 0 0
0 0 0 cf −cf 0

 , (9.32)

where af = 15m, and bf = cf = 10m. The adjacency matrix of the communica-
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tions graph is given by

A =


0 1 1 1 1 0
1 0 0 1 1 1
1 0 0 1 1 1
1 1 1 0 0 1
1 1 1 0 0 1
0 1 1 1 1 0

 . (9.33)

The desired formation and the communications graph are illustrated in Figure 9.2b.
The MPC and ADMM parameters are shown in Table 9.1a.

The results are shown in Figure 9.3. The top plot shows how the vehicles
converge to the desired formation. The bottom plot shows the path-following errors
q̃i. We only show the first 75 seconds since the errors converge to zero afterwards.

9.3.2 Differential Drive Robots

In the second case study, we consider differential drive robots modeled as unicycles
(see Figure 9.4a). The model is given by

ẋ1 = u1 cosx3, (9.34a)
ẋ2 = u1 sinx3, (9.34b)
ẋ3 = u2, (9.34c)

where x1, x2 give the position, x3 is the orientation of the vehicle, and u1 and u2
are the tangential and angular velocities.

Similarly to the previous case, we could use the hand position to enable the
application of the spline-based MPC. However, doing so would prevent us from
imposing constraints on the inputs. Instead, we will use the procedure from [31].
First, we introduce z = tan x3

2 and use the following trigonometric identities

cosx3 =
1− z2

1 + z2
, sinx3 =

2z

1 + z2
. (9.35)

Next, we substitute z and a modified input ū1 = u1

1+z2 into the first two lines of
(9.34) to obtain

ẋ1 = ū1
(
1− z2

)
, ẋ2 = 2ū1z. (9.36)

x1

x2
x3

(a) Unicycle model.

1
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6
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4

(b) Desired formation.
Figure 9.4: Illustration of the case study with differential drive robots.
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We choose y = [ū1, z]
T as the output of the system. The states and inputs can

then be expressed as

x1(t) =

∫ t

0

y1(τ)
(
1− y22(τ)

)
dτ + x1(0), (9.37a)

x2(t) =

∫ t

0

2y1(τ)y2(τ) dτ + x2(0), (9.37b)

x3(t) = 2 arctan y2(t), (9.37c)

u1(t) = y1(t)
(
1 + y22(t)

)
, (9.37d)

u2(t) =
2ẏ2(t)

1 + y22(t)
. (9.37e)

Let us assume that there are no constraints on the states and the constraints on
the inputs are given by

u1,min ≤ u1(t) ≤ u1,max, u2,min ≤ u2(t) ≤ u2,max, (9.38)

From (9.37d), (9.37e), the constraints can be expressed as

u1,min ≤ y1(t)
(
1 + y22(t)

)
≤ u1,max, (9.39a)

u2,min

(
1 + y22(t)

)
≤ 2ẏ2(t) ≤ u2,max

(
1 + y22(t)

)
. (9.39b)

We have thus shown how to express the states, inputs and constraints in terms of
the outputs.

Having transformed the system model into the required form, we validated the
proposed method in numerical simulations. The barycenter should follow a sine
wave given by

pp(s) = [ρ(s), ap sin(ρ(s))]
T
, (9.40)

where ap = 15m, and ρ(s) is a monotonically increasing function designed such
that pp(s) is a parametrization by arc length. The desired formation is shaped like
an equilateral triangle; the relative position vectors are given by[

pff,1 · · · pff,6

]
=

[
4af af af −2af −2af −2af
0 −bf bf −2bf 0 2bf

]
, (9.41)

where af = 5
√
3

3 m, and bf = 5m. The adjacency matrix of the communications
graph is given by

A =


0 1 1 0 0 0
1 0 1 1 1 0
1 1 0 0 1 1
0 1 0 0 1 0
0 1 1 1 0 1
0 0 1 0 1 0

 . (9.42)

The desired formation and the communications graph are illustrated in Figure 9.4b.
The MPC and ADMM parameters are shown in Table 9.1b.

The results of numerical simulations are shown in Figure 9.5. Due to the numer-
ical inaccuracies caused by (9.37) and arising primarily from the multiplication and
division of splines, the MPC time-step ∆T must be shorter than in the previous
case-study.
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Figure 9.5: Results of numerical simulations with six differential drive robots.

Table 9.1: Simulation parameters

(a) Marine vehicles

Parameter Value
∆T 1
Qp I3
Qs 10
ρ 10
α 0.6
h 1

Vc

 0.15
0.1
−0.05



(b) Differential drive robots

Parameter Value
∆T 0.1
Qp I2
Qs 10
ρ 10
α 0.6

u1,min −1
u1,max 2
u2,min −π/8
u2,max π/8
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Chapter 10

Control of AUVs Under Hard and Soft
Constraints

This chapter investigates the tracking-in-formation problem for a group of under-
actuated autonomous marine vehicles interconnected over a directed topology. The
agents are subject to hard inter-agent constraints, i.e., connectivity maintenance
and collision avoidance, and soft constraints, specifically on the non-negativity of
the surge velocity, as well as to constant disturbances in the form of unknown
ocean currents. The control approach is based on two concepts: the 3D hand po-
sition output linearization presented in Chapter 7, and the edge-based framework
for multi-agent consensus under constraints. We establish almost-everywhere uni-
form asymptotic stability of the output dynamics with guaranteed respect of the
constraints. Numerical and high-fidelity simulations are provided to illustrate the
effectiveness of our approach. The contents of this chapter are based on [77, 88].

The chapter is organized as follows. In Section 10.1 we present the model of the
multi-agent system and the problem formulation. For clarity of exposition, in Sec-
tion 10.2 we present the control design when considering only the hard constraints,
followed by the stability analysis. Then, in Section 10.3 we present the control
design adding the soft constraints. Finally, the results of numerical simulations are
presented in Section 10.4.

10.1 Model and Problem Formulation

10.1.1 Model of the Marine Vehicle

We consider underactuated AUVs with six DOFs, and apply the hand position
transformation from Chapter 7. Recalling (7.11), the dynamics of the transformed
system are

ẋ1 = x2 +Vc, (10.1a)
ẋ2 = µ, (10.1b)

Ṙ = RS(ω), (10.1c)

ω̇ = ℓ̄×
(
RTµ+Dυ(ν) + Cυ(ν)− ω ×RTx2

)
(10.1d)

−
(
ℓ̄ℓT
) (
Dω(ν) +M′

22

(
Wzgbe3 ×RTe3

))
.
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10.1.2 Problem Statement

We consider a multi-agent system composed of N marine vehicles modeled by
(10.1). The states of the vehicles are denoted by double subscripts (e.g., the hand
position of vehicle i is x1,i). The interaction between the AUVs is given by a di-
rected graph G = (V, E) which has either a spanning tree or a cycle. Moreover, we
consider that the multi-agent system is subject to inter-agent output constraints.
For one part, these constraints may come from embedded relative-measurements
devices, which are reliable only if used within a limited range. Hence, the vehicles
must remain within a limited distance from their neighbors in order to maintain
the connectivity of the graph. Furthermore, to ensure the safety of the system,
the agents must avoid collisions among themselves, that is, they must always guar-
antee a minimal distance with respect to their neighbors. These connectivity and
collision-avoidance constraints may be defined as a set of restrictions on x1. Also,
such constraints may be considered as hard constraints since they are fundamental
for ensuring the safety of the system and for reaching the control goal.

More precisely, define the relative output

z1,k = x1,i − x1,j , ∀k ≤M, ek = (i, j) ∈ E , (10.2)

where M is the cardinality of E . For each k ≤ M , let δk and ∆k be, the minimal
and maximal distances between agents i and j so that collisions are avoided and
that the communication through edge ek is reliable, respectively. Then, the set of
inter-agent output constraints is defined as

Dk =
{
z1k ∈ R3 | δk < ∥z1k∥ < ∆k

}
, ∀ k ≤M. (10.3)

Coming back to each individual agent, it is important to note that, in practice,
marine vehicles are not optimized for moving backwards. However, backwards
motion is not prevented from the dynamical model (10.1). Therefore, in order to
let the vehicles evolve in an optimal way, besides the inter-agent connectivity and
collision-avoidance constraints, we could formulate the additional constraints

ur,i(t) > 0, ∀ i ≤ N, ∀t ≥ 0. (10.4)

However, in some cases, the constraints (10.4) could conflict with the constraints
defined by the set (10.3). Indeed, there might exist situations when the only way
to avoid a collision or avoid losing connectivity is to move backwards. Moreover,
although not optimized to, marine vehicles can move backwards. The latter fact
motivates us to reformulate the constraints (10.4) as soft constraints, that is, to im-
pose a positive surge velocity as long as this does not interfere with the satisfaction
of the hard constraints (10.3). We formulate these soft constraints as follows:

ur,i(t) + ρi(t) > 0, ∀ i ≤ N, ∀t ≥ 0, (10.5)

where ρi : R≥0 → R≥0 will be defined later, such that ρi(t) ≊ 0 when there are
no conflicts with the hard constraints and ρi(t) > 0 otherwise, allowing ur,i(t) to
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become negative. Akin to (10.3), we may define the set of soft constraints as

Ci =
{
ur,i ∈ R |ur,i > −ρi(t)

}
, ∀ i ≤ N. (10.6)

Now, let x1,o, x2,o, and µo define the position, velocity, and acceleration of a
virtual target, and let its dynamics be modeled as a second-order integrator

ẋ1,o = x2,o, ẋ2,o = µo(t). (10.7)

Moreover, assume the following.

Assumption 10.1. For all t, there exist positive constants x2,o, x2,o, and µo such
that ∥Vc∥ < x2,o ≤ ∥x2,o(t)∥ ≤ x2,o, and ∥µo(t)∥ ≤ µo.

Then, the control goal is for the N marine vehicles to achieve the desired for-
mation and track the target modeled by (10.7), all while guaranteeing that the
hard constraints given by the set Dk in (10.3) and the soft constraints (10.5) are
respected.

For the tracking part of the problem, we consider the case that only one agent,
labeled i = 1 without loss of generality, has access to the state of the target, and
knows the upper bound µo on the target’s acceleration. Let zd1,o ∈ R3 be the desired
displacement with respect to the target. Then, we define the tracking error states
as

z̃1,o = x1,1 − x1,o − zd1,o, z2,o = x2,1 − x2,o. (10.8)

To address the formation part, we rely on the edge-agreement framework [78]
where instead of considering the states of each individual agent (the nodes of the
graph), we consider the variables z1,k defined in (10.2) which correspond to the
edges in the graph. Hence, let us denote by E ∈ RN×M the incidence matrix of
graph G, where its (i, k)th entry is defined as follows: [E]ik = −1 if i is the terminal
node of edge ek, [E]ik = 1 if i is the initial node of edge ek, and [E]ik = 0 otherwise.
Let xT

1 =
[
xT
1,1 · · · xT

1,N

]
be the collection of the hand-position coordinates of all

the agents of the system, and let zT1 = [zT1,1 · · · zT1,M ]T be the collection of all the
relative positions between the pairs of neighboring agents. Then, we can express
the edge states in the following compact form

z1 = [ET ⊗ I3]x1. (10.9)

The formation error, in turn, is defined as

z̃1 = [ET ⊗ I3]x1 − zd1, zd,T1 =
[
zdT1,1 · · · zdT1,M

]
(10.10)

where zd1,k ∈ R3 denotes the desired relative position between a pair of neighboring
agents over edge ek. In the same way, let xT

2 =
[
xT
2,1 · · · xT

2,N

]
be the collection

of the hand-position velocities. Then, the relative hand-position velocities in the
edge coordinates, z2, are given by

z2 = [ET ⊗ I3]x2. (10.11)

139



10. Control of AUVs Under Hard and Soft Constraints

Let us also define the collection of the control inputs µT =
[
µT

1 · · · µT
N

]
. Then,

mathematically, the tracking-in-formation problem translates into designing a dis-
tributed controller µ such that

lim
t→∞

z̃1,o(t) = 0 lim
t→∞

z2,o(t) = 0 (10.12a)

lim
t→∞

z̃1(t) = 0 lim
t→∞

z2(t) = 0. (10.12b)

Now, as observed in [128], using an appropriate labeling of the edges, the inci-
dence matrix can be expressed as E = [Et Ec] , where Et ∈ RN×(N−1) denotes
the full column-rank incidence matrix corresponding to an arbitrary spanning tree
Gt ⊂ G and Ec ∈ RN×(M−N+1) represents the incidence matrix corresponding to
the remaining edges in G \ Gt. Similarly, the error edge states may be split as
zι =

[
zTι,t zTι,c

]T, ι = {1, 2}, where zι,t ∈ R3(N−1) are the states corresponding to
the edges of Gt and zι,c ∈ Rn(M−N+1) denote the states of the remaining edges,
G\Gt. Note that the spanning tree and the error variables associated with its edges
are sufficient to describe the errors of the multi-agent system. Indeed, defining the
following transformation matrix

R = [IN−1 T] , T =
(
ET
t Et

)−1
ET
t Ec, (10.13)

we get the following identities

E = EtR, zι =
[
RT ⊗ I3

]
z̃ι,t, ι ∈ {1, 2}. (10.14)

We have thus shown that is is possible to obtain the incidence matrix and the error
variables corresponding to the original graph from its spanning tree.

Then, using (10.14) and denoting zd1,t ∈ Rn(N−1) as the vector of desired relative
displacements corresponding to Gt, a reduced-order model for the external dynamics
in terms of the edges of a spanning tree is given by

ż1,o = z2,o +Vc (10.15a)
˙̃z1,t = z2,t (10.15b)
ż2,o = µ1 − µo(t) (10.15c)

ż2,t =
[
ET
t ⊗ I3

]
µ. (10.15d)

In these coordinates, the control objective as defined in (10.12) is achieved if the
origin of system (10.15) is asymptotically stabilized. More precisely, we consider
the following problem.

Tracking-in-formation under hard and soft constraints: Consider a system of
N autonomous marine vehicles with dynamics given by (10.1), interacting over a
directed graph which has either a spanning tree or a cycle. Assume, in addition,
that the agents are subject to the hard inter-agent output constraints given by
the set defined in (10.3) and the soft constraints given by (10.6). Under these
conditions, find distributed controllers µi, i ≤ N , that asymptotically stabilize
the origin of (10.15) and render the sets (10.3) and (10.6) forward invariant, i.e.,
z1,k(t0) ∈ Dk (ur,i(t0) ∈ Ci) implies that z1,k(t) ∈ Dk (ur,i(t) ∈ Ci), ∀k ≤ M
(∀i ≤ N) and ∀t ≥ t0.
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10.2 Designing a Tracking Controller under Proximity and
Safety Constraints

For clarity of exposition, in this section we begin by presenting the control design
considering only the hard constraints, i.e., connectivity maintenance and collision
avoidance. The inclusion of the soft constraints is addressed in Section 10.3.

We will show how the tracking-in-formation problem, with the previously for-
mulated inter-agent constraints, can be solved following a backstepping approach
which is well adapted to the normal form of the external dynamics (10.15). We
start by defining a virtual control law for (10.15a)-(10.15b) with z2,o and z2,t as
inputs. In order to account for the output constraints, a good choice of control
design for the virtual inputs consists in using the gradient of a barrier Lyapunov
function (BLF) [129].

10.2.1 On Barrier Lyapunov Functions

BLFs are reminiscent of Lyapunov functions in that they are positive definite, but
their domain is restricted by design to open subsets of the Euclidean space and
they grow unbounded as their argument approaches the boundary of their domain.
We define them as follows, c.f., [129].

Definition 10.1 (BLF). Consider the system ẋ = f(x) and let M ⊂ Rn be an
open set containing the origin. A BLF is a positive definite function V :M 7→ R≥0

that satisfies

∇V (x)Tf(x) =
∂V (x)

∂x

T

f(x) ≤ 0,

and V (x)→∞ and ∥∇V (x)∥ → ∞ as x→ ∂M.

Akin to (10.3), the inter-agent constraints in terms of the formation error are
given, for all k ≤M , by the set

D̃k = {z̃1,k ∈ R3 | δk <
∥∥z̃1,k + zd1,k

∥∥ < ∆k}. (10.16)

Then, for each k ≤M , we define a candidate BLF Wk : D̃k 7→ R≥0, of the form

Wk(z̃1,k) =
1

2

[
∥z̃1,k∥2 +Bk(z̃1,k + zd1,k)

]
, (10.17)

where

Bk(z1,k) = κ1,k

ln( ∆2
k

∆2
k − ∥z1,k∥

2

)
− ln

 ∆2
k

∆2
k −

∥∥∥zd1,k∥∥∥2



+ κ2,k

ln( ∥z1,k∥2

∥z1,k∥2 − δ2k

)
− ln


∥∥∥zd1,k∥∥∥2∥∥∥zd1,k∥∥∥2 − δ2k


 ,

κ1,k =
δ2k∥∥∥zd1,k∥∥∥2 (∥∥∥zd1,k∥∥∥2 − δ2k) , κ2,k =

1

∆2
k −

∥∥∥zd1,k∥∥∥2 .
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Note that Bk is a non-negative function that satisfies: Bk(zd1,k)=0, ∇Bk(zd1,k)=
0, and Bk(z̃1,k + zd1,k) → ∞ as either

∥∥∥z̃1,k + zd1,k

∥∥∥ → ∆k or
∥∥∥z̃1,k + zd1,k

∥∥∥ →
δk. Therefore, the candidate BLF (10.17) satisfies: Wk(z̃1,k) → ∞ as either∥∥∥z̃1,k + zd1,k

∥∥∥→ ∆k or
∥∥∥z̃1,k + zd1,k

∥∥∥→ δk.

Remark 10.1. The function in (10.17) is reminiscent of scalar potential functions
in constrained environments. Hence, the appearance of multiple critical points is
inevitable [130]. Indeed, the gradient of the BLF (10.17), ∇Wk(z̃1,k), vanishes at
the origin and at an isolated saddle point separated from the origin. Therefore,
when using the gradient of (10.17), the closed-loop system has multiple equilibria.
We address such technicalities using tools for multi-stable systems [131, 132].

Now, we define a BLF for the multi-agent system as

W (z̃1) =
∑
k≤M

ϱkWk(z̃1,k), ϱk > 0, (10.18)

and, in light of Remark 10.1, let z̃∗1 ∈ R3M denote the vector containing the saddle
points of the BLF for each edge (10.17). Moreover, let us define the disjoint set

W = {0} ∪ {z̃∗1}, (10.19)

which corresponds to the critical points of W in (10.17). Then, W satisfies

a1
2
∥z̃1∥2W ≤W (z̃1) ≤ a2 ∥∇W (z̃1)∥2 , (10.20)

where a1, a2 > 0 and ∥z̃1∥W = min
{
∥z̃1∥ , ∥z̃1 − z̃∗1∥

}
.

10.2.2 Control Design for Systems over Directed Graphs

Let us define the so-called in-incidence matrix E⊙ ∈ RN×M , whose elements are
defined as follows: [E⊙]i,k = −1 if i is the terminal node of edge ek and [E⊙]ik = 0
otherwise. Then, in the edge-agreement framework, the virtual controllers are

z∗2,t = [ET
t ⊗ I3]x

∗
2

x∗
2 = −c1[E⊙ ⊗ I3]∇W (z̃1,t)− c1[C⊗ I3]z̃1,o − V̂c, (10.21)

where c1 is a positive gain, V̂c is a vector of estimates of the ocean current for each
agent, and CT =

[
1 0T

N−1

]
. To avoid a cumbersome notation we write ∇W (z̃1,t)

in place of the more appropriate spelling ∇W
([
RT ⊗ I3

]
z̃1,t
)
.

Defining velocity errors z̃2,t = z2,t − z∗2,t, z̃2,o = z̃2,1 − z2,o, and using (10.21),
the subsystem (10.15a)–(10.15b) becomes[

˙̃z1,o
˙̃z1,t

]
=− c1

[[
1 CTEt

ET
t C ET

t E⊙

]
⊗ I3

] [
z̃1,o

∇W (z̃1)

]
+

[[
CT

ET
t

]
⊗ I3

]
Ṽc +

[
z̃2,o
z̃2,t

]
(10.22)
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where the estimation error Ṽc is defined as

Ṽc = V̄c − V̂c, with V̄c = 1N ⊗Vc. (10.23)

With the aim of making Ṽc → 0, we design the adaptation law

V̂c = cv (x1 −φ) , cv > 0 (10.24a)

φ̇ = x2 + V̂c. (10.24b)

Using (10.24) and (10.1a)–(10.1b), the derivative of (10.23) becomes

˙̃Vc = −cv
(
x2 + V̄c − x2 − V̂c

)
= −cvṼc. (10.25)

In the error coordinates z̃2,o and z̃2,t, we have

˙̃z2,o = µ1 − ẋ∗
2,1 (10.26a)

˙̃z2,t =
[
ET
t ⊗ I3

]
µ− ż∗2,t. (10.26b)

Hence, we design the tracking-in-formation control law as

µ =− c2
[
E⊙RT ⊗ I3

]
z̃2,t − c2[C⊗ I3]z̃2,o + ˙̄x∗

2

− γsign
([
E⊙RT ⊗ I3

]
z̃2,t + [C⊗ I3]z̃2,o

)
+ µ∗(t) (10.27)

where c2, γ > 0, x̄∗
2 = −c1[E⊙⊗I3]∇W (z̃1) − c1[C⊗I3]z̃1,o. The signal µ∗(t)T =

[µ∗
1(t) · · · µ∗

N (t)], satisfying ∥µ∗(t)∥ ≤ µ̄∗ for a constant µ̄∗, is given by

µ∗
i (t) = RT

i f
∗
u,ie1, (10.28)

where f∗u,i is an additional bounded control input that will be used to deal with
the soft constraints, c.f., Section 10.3.

10.2.3 Closed-Loop Analysis

First, let us define ςT1 =
[
z̃T1,o z̃T1,t

]
, and ςT2 =

[
z̃T2,o z̃T2,t

]
. We note that the control

goal defined in (10.12) is equivalent to lim
t→∞

ς1 = 0, lim
t→∞

ς2 = 0. Consequently, ς1
and ς2 are valid error variables. From (10.22), (10.26), and (10.27), the closed-loop
dynamics are

ς̇1 =− c1L1ς̄1 + ς2 + T1Ṽc, (10.29a)

ς̇2 =− c2L2ς2+cvT1Ṽc+T1[µ∗(t)− 1N⊗µo(t)]−γT1sign
(
T T
2 ς2
)
, (10.29b)

˙̃Vc =− cvṼc, (10.29c)

where

ς̄T1 =
[
z̃1,o ∇W (z̃1)

T
]
, (10.30a)

L1 =

[[
1 CTEt

ET
t C ET

t E⊙

]
⊗ I3

]
, T1 =

[[
CT

ET
t

]
⊗I3

]
(10.30b)

L2 =

[[
1 CTEt

ET
t C ET

t E⊙RT

]
⊗ I3

]
, T2 =

[[
CT

RET
⊙

]
⊗I3

]
. (10.30c)

The first part of the main result is stated as follows:
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Proposition 10.1. Consider N AUVs, each described by the model (10.1), and
interconnected over a directed graph which has either a spanning tree or a cycle.
Then, under Assumption 10.1 and

γ ≥ µ̄∗ +
√
2Nµ̄o, (10.31)

the controller (10.27) renders the constraints set (10.3) forward invariant and guar-
antees the achievement of the tracking-in-formation objective (10.12) for almost all
initial conditions such that z1,k(t0) ∈ Dk, for all k ≤M .

Moreover, let us define ξ2,d = x2,o and ax, ᾱy, ᾱz in accordance with (7.27).
The internal dynamics are ultimately bounded for almost all initial conditions if
ax, ᾱy, ᾱz > 0.

Proof. We begin by analyzing the external dynamics (10.29). First define the
function

W1(ς1) =
1

2
∥z̃1,o∥2 +W (z̃1,t), (10.32)

where, with a slight abuse of notation, z̃1,t 7→ W (z̃1,t) is defined in (10.18). The
derivative of W1 along the trajectories of (10.29a) yields

Ẇ1(ς1) = −c1ς̄T1 L1ς̄1 + ς̄T1 ς2 + ς̄T1 T1Ṽc. (10.33)

Note that for any directed graph containing a spanning tree, −ET
t E⊙ is Hurwitz

(c.f., [128, Proposition 1]). Consequently, from (10.30b), we can conclude that
there exist c′1, c′v > 0 such that

Ẇ1(ς1) ≤ −c′1 ∥ς̄1∥
2
+ ∥ς̄1∥ ∥ς2∥+ c′v ∥ς̄1∥

∥∥∥Ṽc

∥∥∥ . (10.34)

Moreover, for any directed graph containing a spanning tree, it follows that
−ET

t E⊙RT is Hurwitz (c.f., [133]). Consequently, we can define the following
candidate Lyapunov function

W2(ς2) =
1

2
ςT2 Pς2 (10.35)

where P is a positive definite such that for any positive definite Q, it holds that
LT
2 P+PL2 = Q. Then, the derivative of (10.35) along the trajectories of (10.29b),

is defined by the differential inclusion ς2 ∈ F2(t, ς2), where

F2(t, ς2)=

{
(10.29b), if T T

2 ς2 ̸= 0,

−c2L2ς2 + cvT1Ṽc − γλ+T1[µ∗(t)− 1N⊗µo(t)] , if T T
2 ς2 = 0,

and λ ∈ [−1, 1]. Thus, using (10.31) and the fact that ∥s∥1 = sTsign(s), the
derivative of W2 is

Ẇ2(ς2) = −c2ςT2 PL2ς2 + cvς
T
2 PT1Ṽc − γςT2 PT1sign

(
T T
2 ς2

)
+ ςT2 PT1 [µ∗(t)− 1N ⊗ µo(t)]

≤ −c′2 ∥ς2∥
2
+ c′′v ∥ς2∥

∥∥∥Ṽc

∥∥∥ , (10.36)
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where c′2 and c′′v are positive constants.
Next, let us define ςT =

[
ςT1 ςT2 ṼT

c

]
and define the candidate Lyapunov

function
Wς(ς) =W1(ς1) + κ1W2(ς2) +

κ2
2

∥∥∥Ṽc

∥∥∥2 , (10.37)

where κ1 and κ2 are positive constants. From (10.34), (10.36), and (10.29c), we
have

Ẇς(ς) ≤ −c′1 ∥ς̄1∥
2 − κ1c′2 ∥ς2∥

2 − κ2cv
∥∥∥Ṽc

∥∥∥2 + ∥ς̄1∥ ∥ς2∥
+ c′v ∥ς1∥

∥∥∥Ṽc

∥∥∥+ κ1c
′′
v ∥ς2∥

∥∥∥Ṽc

∥∥∥ . (10.38)

Setting κ1, κ2 large enough, we can find c̄1, c̄2, c̄3, c̄ > 0 such that

Ẇς(ς) ≤ −c̄1 ∥ς̄1∥2 − c̄2 ∥ς2∥2 − c̄v
∥∥∥Ṽc

∥∥∥2 ≤ −c̄Wς(ς). (10.39)

Now, letWς be the set of the equilibria of the closed-loop system (10.29). Recalling
Remark 10.1, Wς is given by

Wς = {0} ×W × {0} × {0}2(N−1) × {0}2N (10.40)

where W is defined in (10.19). Then, from (10.20) we have

Ẇς(ς) ≤− c̄′ ∥ς∥2Wς
. (10.41)

Thus, the closed-loop system (10.29) is uniformly asymptotically multi-stable at
Wς , c.f., [131]. Furthermore, the critical point z̃∗1 of the barrier Lyapunov function
is a saddle point. After [132, Proposition 1], it follows that the region of attraction
of the unstable equilibrium z̃∗1 has zero Lebesgue measure. Therefore, we conclude
that the origin of (10.29) is almost-everywhere uniformly asymptotically stable in
D = R3 × D̃ × R3M × R3N , except for a zero-measure set of initial conditions.

In order to establish forward invariance of the set D̃ we proceed by contradiction.
Assume that there exists T > 0 such that z̃1,k(t) ∈ D̃k for all t ∈ [t0, t0 + T ), but
z̃1,k(t0 + T ) /∈ D̃k for at least one k ≤M . In other words, we have ∥z1,k(t)∥ → ∆k

or ∥z1,k(t)∥ → δk as t → t0 + T for at least one k ≤M . From the definition
of z̃1,t 7→ W (z̃1,t) in (10.18) and z̃1,k 7→ Wk(z̃1,k) in (10.17), this implies that
Wς(ς(t)) → ∞ as t → t0 + T which is in contradiction with (10.39). We can
therefore conclude that Wς(ς(t)) is bounded for all initial conditions such that
z̃1(t0) ∈ D̃, therefore, Wς(ς(t)) ≤ Wς(ς(t0)) < ∞ for all ς(t0) ∈ D and all t ≥ t0.
The respect of the inter-agent constraints follows from the forward invariance of D̃.

Since (10.29) is asymptotically stable at the origin with domain of attraction D
it follows that for almost all initial conditions ς(t0) ∈ D, there exist small positive
constants ϵ(ς(t0)) and ϵ(ς(t0)) such that z̃1,k(t) ∈ D̃ϵk, where

D̃ϵk=
{
z̃1,k ∈ R3 | δk + ϵ ≤

∥∥z̃1,k + zd1,k
∥∥ ≤ ∆k − ϵ

}
, ∀k ≤M. (10.42)

Moreover, for any z̃1 ∈ D̃ϵ, with D̃ϵ =
⋂
k≤M D̃ϵk, we have that the BLF W in

(10.18) satisfies
a1
2
∥z̃1.t∥2W ≤W (z̃1,t) ≤

a′2
2
∥z̃1,t∥2W . (10.43)
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Therefore, from (10.43) and (10.39), we conclude that for almost all initial con-
ditions ς(t0) ∈ D, the trajectories ς(t) of the external dynamics converge to the
origin exponentially.

The ultimate boundedness of the internal dynamics can then be proven using
Lemma 7.2. We showed that for almost all initial conditions ς(t0) ∈ D, there
exist small positive constants ϵ(ς(t0)) and ϵ(ς(t0)) such that z̃1,k(t) ∈ D̃ϵk, with
D̃ϵk defined in (10.42). Consequently, for almost all initial conditions ς(t0) ∈ D,
the input µ defined in (10.27) is bounded. Therefore, if ax, ᾱy, ᾱz > 0, then all
assumptions of Lemma 7.2 are satisfied, and the internal dynamics are ultimately
bounded.

10.3 Control Design for Tracking with Hard and Soft Con-
straints

In this section, we build on the results of Section 10.2 to include the soft constraints
defined in (10.5) that act on the surge velocity of the marine vehicles. For this
purpose we explicitly design the additional control input f∗u,i introduced in Eq.
(10.28) and we analyze the closed-loop system in terms of the barrier function
framework.

Consider the surge velocity subsystem (2.22a) with an additional control input.
That is,

u̇r,i = Fu(νr,i) + fu,i + f∗u,i. (10.44)

In order to satisfy the soft constraints, we design the additional input f∗u,i as the
gradient of a barrier function. For each agent i, define the barrier function

Ui(t, ur,i) := − ln

(
ur,i + ρi(t)

ur,i + ρi(t) + 1

)
. (10.45)

Note that if ur,i + ρi(t) > 0, then Ui(t, ur,i) > 0 for all t ≥ 0, and Ui(t, ur,i) → ∞
as ur,i + ρi(t)→ 0. Then, we set the additional control input to

f∗u,i = −κu∇Ui(t, ur,i) = −κu
∂Ui(t, ur,i)

∂ur,i
, i ≤ N, (10.46)

with κu > 0 and

ρ̇i = −κρρi +
1

2
[1− sign (σ − |Fu(νr,i) + fu,i|)] |Fu(νr,i) + fu,i| , (10.47)

where κρ, σ > 0 are design constants. Initially, we set ρi(t0) = 0.

Remark 10.2. Note that under (10.47) and the initial condition ρi(t0) = 0, we
have that ρi(t) ≥ 0, for all t ≥ t0. To see this, note that second term on the right-
hand side of (10.47) is always positive. Therefore, ρ̇i(t) ≥ −κρρi(t), which means
that the set Cρ = {ρi ∈ R | ρi ≥ 0} is forward invariant.

Remark 10.3. The definition of (10.47) is loosely inspired by the framework de-
veloped in [134] to deal with hard and soft constraints in the setting of prescribed-
performance control of single-agent systems. The signal ρi(t) adjusts the soft con-
straints whenever the hard constraints become conflicting. Note that when the term
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|Fu + fu,i| is less than or equal to a given positive constant σ, it means that the edges
connected to vehicle i are far from the border of the set D̃k, since under the barrier-
function-based law (10.27) the controller fu,i grows unbounded as z1,k → ∂D̃k for
any k ≤M . In this case, the second term on the right-hand side of (10.47) is equal
to zero. Hence, assuming that in an interval t ∈ [t0, t0 + T ], |Fu + fu,i| ≤ σ, then
(10.5), with ρ(t) = 0, corresponds to a positive-velocity constraint. Conversely,
when |Fu + fu,i| > σ, the right-hand side of (10.47) becomes positive and ρi grows.
Hence, ur,i may take negative values, i.e., ur,i > −ρi(t), avoiding possible con-
flicts between the constraints. Then, as the vehicles move away from the border of
the set D̃k, |Fu + fu,i| ≤ σ again and ρi(t) → 0 exponentially fast, recovering the
non-negativity constraint.

Then, the second part of our main result is stated as follows:

Proposition 10.2. Consider N AUVs, each described by the model (10.1), and
interconnected over a directed graph which has either a spanning tree or a cycle.
Then, under the same assumptions as in Proposition 10.1, and with initial condi-
tions such that z1,k(t0) ∈ Dk for all k ≤ M and ur,i(t0) ∈ Ci for all i ≤ N , the
controller (10.27), with f∗u,i given by (10.46), achieves the tracking-in-formation
objective (10.12) almost everywhere and renders the constraints sets (10.3) and
(10.6) forward invariant. Moreover, the internal dynamics are ultimately bounded.

Proof. In Proposition 10.1 we established that the controller (10.27) with the addi-
tional bounded input f∗u,i renders the hard-constraints set (10.3) forward invariant
and guarantees the achievement of the tracking-in-formation objective (10.12) for
almost all initial conditions such that z1,k(t0) ∈ Dk, for all k ≤ M . Therefore,
to prove Proposition 10.2, what remains is to show that f∗u,i given by (10.46) is
bounded and guarantees the satisfaction of the soft constraints (10.4). For that pur-
pose, consider the barrier function (10.45), whose derivative along the trajectories
of (10.44) in Ci yields

U̇i(t, ur,i) = ∇Ui(t, ur,i) (−κu∇Ui(t, ur,i) + Fu(νr,i) + fu,i + ρ̇i(t)) . (10.48)

Now, in view of (10.47), we split the analysis into two cases.
Case 1 (|Fu + fu,i| ≤ σ): in this case (10.48) becomes

U̇i(t, ur,i) ≤− κu |∇Ui(t, ur,i)|2 + |∇Ui(t, ur,i)| [σ − κρρi(t)]

≤− κ′u |∇Ui(t, uri)|
2
+ λσσ

2 +
κρρi(t)

(ur,i + ρi(t))(ur,i + ρi(t) + 1)
,

(10.49)

with κ′u, λσ > 0. Since ρi(t) is non-negative in Ci for all t ≥ t0, c.f., Remark 10.2,
the last term on the right-hand side of (10.49) is bounded by a constant λρ > 0.
Therefore, we have

U̇i(t, ur,i) ≤ −κu |∇Ui(t, ur,i)|2 + λσσ
2 + λρ. (10.50)

Case 2 (|Fu + fu,i| > σ): for ur,i ∈ Ci, (10.48) becomes

U̇i(t, ur,i) ≤ |∇Ui(t, ur,i)| [|Fu + fu,i| − κρρi(t)− |Fu + fu,i|]

− κu |∇Ui(t, ur,i)|2

≤− κu |∇Ui(t, ur,i)|2 + λρ.

(10.51)
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From (10.50)-(10.51) we conclude that for ur,i ∈ Ci, the function Ui(t, ur,i) is
bounded along the trajectories. Therefore, akin to the forward invariance of D̃
established in the proof of Proposition 10.1, it is straightforward to show forward
invariance of Ci. Hence, there exists a constant f̄∗ such that |fu,i(t)| ≤ f̄∗ for all
t ≥ t0.

Note that the additional input f∗u,i does not affect the internal dynamics. Hence,
the analysis of the internal dynamics presented in the proof of Proposition 10.1 still
holds under the action of f∗u,i.

10.4 Simulations

In this section we illustrate the performance of the controller (10.27) through sim-
ulations in MATLAB and DUNE [89]. The MATLAB simulation enables us to
validate the closed-loop behavior under ideal conditions. The Unified Navigation
Environment (DUNE) is a software platform designed to run on autonomous un-
derwater vehicles. It also contains a high-fidelity AUV simulator, allowing us to
validate the proposed control algorithm, reproducing as closely as possible a labo-
ratory experiment.

The simulation case consists in the tracking-in-formation problem for six AUVs
subject to hard (proximity and collision-avoidance) and soft (positive surge veloc-
ity) constraints. We assume that the vehicles are interconnected at the initial time
and that the controller must preserve this connectivity. We further assume that
the AUVs interact over a directed spanning tree illustrated in Figure 10.1a and
that only AUV 1 has knowledge of the (relative) state of the target (labeled 0).

10.4.1 MATLAB Example

Here we simulate six light autonomous underwater vehicles (LAUVs). The ocean
current velocity is set to Vc = [0.05 − 0.08 − 0.03]

T. The desired formation is
illustrated in Figure 10.1b. The desired relative positions zd1,k are given by

[
zd1,1 · · · zd1,5

]
=

20 10 10 10 10
0 15 −15 15 −15
0 −5 −5 −5 −5

 (10.52)
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(b) Desired formation shape.

Figure 10.1: Illustrations of the simulated example.
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Figure 10.2: Results of numerical simulations in MATLAB.
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The trajectory of the virtual target is

x1,o =
[
a cos(ωot), b sin(ωot), c sin(ωot)

2
]T
, (10.53)

where a = 60, b = 40, c = 10, and ωo = π
150 .

The maximal and minimal distance parameters are ∆k = 50m and δk = 5m.
The hand position length is chosen as h = 5m, and the control gains are set to
c1 = 0.1, c2 = 0.5, γ = 0.25, cv = 0.2, κu = 0.1, κρ = 4, and σ = 0.3. Furthermore,
in order to avoid discontinuities in the control, the non-smooth sign(s) function
in (10.27) and (10.47) is replaced by the smooth approximation tanh (ca s), with
ca = 103.

Figure 10.2 presents the results of the simulation scenario. Specifically, Fig-
ure 10.2a shows the 3D trajectories of the AUVs. We can see that the vehicles
successfully reach the desired formation while following the target, as is also ev-
idenced from the formation and tracking errors in Figure 10.2b and the velocity
errors in Figure 10.2c. Furthermore, note that the hard connectivity and collision-
avoidance constraints, shown as dashed black lines in Figure 10.2d, are always
respected. The soft constraints are satisfied as well, and the surge velocities are
kept non-negative, as shown in Figure 10.2e.

10.4.2 DUNE simulations

Here, we simulate a formation of six LAUVs using DUNE. The parameters of the
simulation are chosen identically to the MATLAB example.

Figure 10.3 presents the results of the simulation. Specifically, Figure 10.3a
shows the 3D trajectories of the AUVs. We can see that the vehicles manage to
reach the desired formation. However, the transient behavior is different from the
one under the ideal conditions of the MATLAB simulation. One reason behind
these differences is that in the DUNE simulation, the torque produced by the fins
depends on the speed of the vehicle. Consequently, the AUVs cannot turn if their
speed is too low. In addition, the surge thrust of the AUVs is limited. Consequently,
the AUVs can only reach a surge velocity of 1.8m s−1, as shown in Figure 10.3e.
Unlike the MATLAB simulations, the soft constraints cannot always be satisfied,
and the surge velocities of AUVs 2 and 5 briefly drop below zero. Having a negative
surge velocity is necessary to satisfy the hard connectivity and collision-avoidance
constraints shown as dashed black lines in Figure 10.3d. The formation-tracking
errors and the velocity errors are shown in Figures 10.3b and 10.3c, respectively.
We can see that these errros do not converge to zero but rather to a small area
around zero. These nonzero steady-state errors are caused by two factors: the
uncertainty of the navigation system, and the delay in the actuators.
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(a) The 3D trajectory of the AUVs. The black line represents the
virtual target.

0 100 200 300
0

50

100

t [s]

∥z̃
1
,k
∥

[m
]

Formation tracking errors
e1 e2
e3 e4
e5 e0

(b) Norms of the formation-keeping errors,
z̃1,k, and the tracking error, z̃1,o.

0 100 200 300
0

1

2

3

t [s]

∥z
2
,k
∥

[m
/s

]

Velocity errors
e1 e2
e3 e4
e5 e0

(c) Norms of the velocity errors z2,k and z2,o.

0 100 200 300
0

20

40

t [s]

∥z
2
,k
∥

[m
]

Inter-vehicle distances
e1 e2
e3 e4
e5

(d) Inter-vehicle distances
∥∥z1,k∥∥. The

dashed lines represent the limits δk and ∆k.

0 100 200 300
−1

0

1

2

t [s]

u
r,
i

[m
/s

]

Surge velocities

(e) Surge velocities of the AUVs.

Figure 10.3: Results of numerical simulations in DUNE.
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Chapter 11

Combining NSB with the Hand Posi-
tion Approach

This chapter presents an extended null-space-behavioral (NSB) algorithm for the
formation control of fleets of underactuated autonomous underwater vehicles. The
NSB controller is developed to work directly with second-order integrator systems,
handling the double integrator dynamics in task space. The method is applied
to the formation path-following problem of a fleet of underactuated autonomous
underwater vehicles. The nonlinear six-degrees-of-freedom models of the vehicles
are transformed into second-order integrator systems using the 3D hand position
output linearizing approach presented in Chapter 7. The behavioral controller im-
plements a hierarchy of path-following, formation-keeping, and collision-avoidance
tasks. The closed-loop system is proven uniformly globally asymptotically stable,
and the proposed method is validated through numerical simulations. The contents
of this chapter are based on [85].

This chapter is organized as follows. Section 11.1 presents the extended NSB
algorithm which is applicable for general double-integrator systems. Section 11.2
presents a case study of this NSB algorithm applied to a fleet of AUVs.

11.1 The NSB Algorithm for Double Integrators

The NSB method enables the creation of multiple tasks in a hierarchical manner,
ensuring that low-priority tasks do not interfere with high-priority ones. In this
section, we extend this method to second-order systems with double integrator
dynamics. This modified NSB algorithm provides the acceleration input µ to the
following system

ṗ = v, (11.1a)
v̇ = µ. (11.1b)

For each task, we design a task variable σm ∈ Rnm as a function of p

σm = fm(p). (11.2)
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11. Combining NSB with the Hand Position Approach

The first and second time-derivatives of σi are

σ̇m = Jm(p)v, (11.3a)

σ̈m = Jm(p)v̇ + J̇mv, (11.3b)

where Jm = ∂fm/∂p is the task Jacobian. We denote the desired value of the task
variable by σd,m.

In Section 2.5, we introduced the closed-loop inverse kinematics (CLIK) equa-
tion as a method for finding the desired velocity associtated with a given task.
Recalling (2.77), the desired velocity of task m, vm, is given by

vm = J†
m

(
σ̇d,m −Λmσ̃m

)
, (11.4)

where Λm is a positive definite gain matrix, σ̃m = σm − σd,i is the task error,
and J†

m is the pseudo-inverse of the task Jacobian. To achieve second-order differ-
ential control, we instead propose the second-order closed-loop inverse kinematics
(SOCLIK) equation inspired by robotic manipulators [135]

v̇m = J†
m

(
σ̈d,m −Λp,mσ̃m −Λd,m

˙̃σm − J̇mv
)
, (11.5)

where Λp,m and Λd,m are positive definite gain matrices.
In first-order systems, there exists a subspace of velocities that do not conflict

with a given task. Similarly, in second-order systems, there exists a subspace of
non-conflicting accelerations. Let v̇m be the SOCLIK solution to task m, and let
v̇add be some additional desired acceleration. Then, the following control input

v̇ = v̇m +Nmv̇add, (11.6)

where Nm is the null space projector of the task, guarantees the desired behavior
of the task.

Similarly to first-order NSB methods, we can combine the tasks by projecting
the inputs from the lower-priority tasks onto the null space of the higher-priority
tasks. The desired acceleration is then given by

µ = v̇1 +

M∑
m=2

N̄m−1v̇m, (11.7)

whereM is the number of tasks and N̄m is the null space projector of the augmented
Jacobian (2.80). With this choice of acceleration, the highest-priority task is always
fulfilled, whereas the lower-priority tasks are fulfilled as well as possible in the
subspace that does not conflict with higher-priority tasks.

11.1.1 Stability Analysis

In this section, we investigate the stability of an NSB algorithm consisting of two
tasks. The proof is based on [103], but extended to a double integrator system.
The proof utilizes the concepts of independence and orthogonality defined in Sec-
tion 2.5.1.
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Lemma 11.1. Consider two independent and orthogonal tasks labeled 1 and 2. Let
X̃T =

[
σ̃T
1 , σ̃

T
2 , ˙̃σ

T
1 , ˙̃σ

T
2

]
be the stacked error vector (σ̃m = σm − σd,m).

The control input defined in (11.7) ensures that X̃ = 0 is a globally exponentially
stable (GES) equilibrium point.

Proof. First, let us find the closed-loop expressions for ¨̃σ1 and ¨̃σ2. From (11.3b)
and (11.7), we get

¨̃σ1 = J1v̇1 + J1N1v̇2 + J̇1v − σ̈d,1, (11.8a)
¨̃σ2 = J2v̇1 + J2N1v̇2 + J̇2v − σ̈d,2, (11.8b)

Note that thanks to the independence and orthogonality assumptions, it follows
that J2N1J

†
2 = I. Consequently, substituting (11.5) into (11.8) and using (11.3),

the time-derivative of X̃ is given by

˙̃X = MX̃, M =


O O I O
O O O I
−Λp,1 O −Λd,1 O
O −Λp,2 O −Λd,2

 . (11.9)

Since the gain matrices are positive definite by design, the matrix M is Hurwitz,
and the closed-loop system is GES.

11.2 Case Study: Formation Path Following of AUVs

The following sections present a case study of the proposed second-order NSB algo-
rithm applied to a fleet of underactuated AUVs equipped with the hand-position-
based controller defined in Chapter 7. The control objective of the fleet is to follow
a predefined path while keeping formation and avoiding obstacles.

The vehicle model under the hand position controller is presented in Section
11.2.1 and the formation path following problem is formulated in Section 11.2.2.
The NSB tasks are detailed in Section 11.2.3, Section 11.2.3 details the obstacle
avoidance method, Section 11.2.4 analyzes the stability properites, and Section
11.2.5 presents a simulation study.

11.2.1 AUV Model

We consider a 6DOF model of an AUV exposed to an unknown constant irrotational
ocean current, and apply the 3D hand position transform from Chapter 7. Recalling
(7.11), the transformed dynamics of the AUV are

ẋ1 = x2 +Vc, (11.10a)
ẋ2 = µ, (11.10b)

Ṙ = RS(ω), (11.10c)

ω̇ = ℓ̄×
(
RTµ+Dυ(ν) + Cυ(ν)− ω ×RTx2

)
(11.10d)

−
(
ℓ̄ℓT
) (
Dω(ν) +M′

22

(
Wzgbe3 ×RTe3

))
.
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11.2.2 Formation Path Following

The formation path-following problem considered in this chapter is analogous to
the one defined in Section 2.3. We consider a fleet ofN AUVs and define the stacked
position and velocity vectors x1 = [xT

1,1, . . . , x
T
1,N ]T and x2 = [xT

2,1, . . . , x
T
2,N ]T,

respectively. We also define the stacked ocean current vector Vc = 1N ⊗Vc.
The desired path is parametrized by a smooth function pp : R 7→ R3 that is

assumed to be C∞ and regular. For every point pp(s), there exists a path-tangential
coordinate frame with a corresponding rotation matrix Rp (see Section 2.2). The
path-following error ppb is defined in terms of the barycenter of the fleet in the
path-tangential coordinate frame

ppb = RT
p (pb − pp(s)) , pb =

1

N

N∑
i=1

x1,i. (11.11)

The goal of path following is to control the vehicles so that ppb → 03.
The vehicles should converge to a dynamic formation that rotates with the

desired path (see Section 2.3.2 for details). Let pff,1, . . . ,p
f
f,N be the position

vectors that represent the desired formation. The objective is to control the vehicles
so that

x1,i − pb → Rpp
f
f,i, ∀i ∈ {1, . . . , N} . (11.12)

11.2.3 NSB Controller

We let the control system consist of three tasks in decreasing order of priority: inter-
vehicle collision avoidance, formation keeping, and path following. The following
sections will detail the chosen task variables and SOCLIK solution for each task.

Inter-Vehicle Collision Avoidance

The highest-priority task is inter-vehicle collision avoidance (COLAV). The task
variable is given by a stacked vector σ1 = [σT

1,1, . . . , σ
T
1,l]

T of relative distances
between vehicles closer than the activation distance dCOLAV :

σ1,k = ∥x1,i − x1,j∥, ∀i, j ∈ {1, . . . , N} : j > i,

∥x1,i − x1,j∥ < dCOLAV .
(11.13)

The task size varies depending on the number of vehicles that are within the acti-
vation distance, and it is empty under nominal conditions. The desired values of
the task are given by

σd,1 = dCOLAV 1l. (11.14)

We note that σ̈d,1 = σ̇d,1 = 0.
The task Jacobian is given by the stacked partial derivatives for each active

156



11.2. Case Study: Formation Path Following of AUVs

collision

J1 =

[(
∂σ1,1
∂x1

)T

, . . . ,

(
∂σ1,l
∂x1

)T
]T

, (11.15a)

∂σ1,k
∂x1,i

=
(x1,i − x1,j)

T

∥x1,i − x1,j∥
,

∂σ1,k
∂x1,j

= − (x1,i − x1,j)
T

∥x1,i − x1,j∥
. (11.15b)

The derivative of the task Jacobian is given by

J̇1 =

[(
d

dt

∂σ1,1
∂x1

)T

, . . . ,

(
d

dt

∂σ1,l
∂x1

)T
]T

, (11.16a)

d

dt

∂σ1,k
∂x1,i

=

(
I3

∥x1,i − x1,j∥
−
(
x1,i − x1,j

)(
x1,i − x1,j

)T
∥x1,i − x1,j∥3

)(
x2,i − x2,j

)
, (11.16b)

The resulting SOCLIK equation for the task is

v̇1 = −J†
1

(
Λp,1σ̃1 +Λd,1σ̇1 + J̇1(x2 + Vc)

)
, (11.17)

with σ̇1 = J1(x2+Vc). Note that due to the structure of the task Jacobian, it
follows that J1Vc= J̇1Vc= 0. Consequently, v̇1 is independent of the ocean current
velocity.

Formation-Keeping Task

The formation-keeping task moves the vehicles into a predefined formation in the
formation-centered frame. The task variable is given by

σT
2 =

[
σT
2,1, ...,σ

T
2,N−1

]
, σ2,i = x1,i − pb. (11.18)

The desired values are

σT
d,2 =

[(
Rpp

f
f,1

)T
, ...,

(
Rpp

f
f,N−1

)T]
. (11.19)

The Jacobian is given by

J2 =

([
IN−1 0N−1

]
−

1(N−1)×N

N

)
⊗ I3. (11.20)

Because J̇2 = 0, the SOCLIK equation reduces to

v̇2 = J†
2

(
σ̈d,2 −Λp,2σ̃2 −Λd,2

˙̃σ2

)
. (11.21)

The nominal task acceleration (11.21) may saturate the actuators if the forma-
tion error is large. The NSB controller may also lead to a loss of controllability
if the formation-keeping velocities exactly cancel out the path-following velocities.
Therefore, similarly to Chapter 5, we introduce saturated task acceleration

v̇2 = J†
2

(
σ̈d,2 − v2max

sat
(
Λp,2σ̃2

)
−Λd,2

˙̃σ2

)
, (11.22)

157



11. Combining NSB with the Hand Position Approach

where v2max
is a positive constant and sat is a saturation function given by

sat
(
x
)
= x

tanh ∥x∥
∥x∥

. (11.23)

With the saturated task acceleration, we further require that the product of the
gain matrices Λp,2Λd,2 is symmetric positive definite. Similarly to the inter-vehicle
collision avoidance task, this task is independent of the ocean current.

Path-Following Task

The path following task concerns moving the barycenter along the predefined path.
Moreover, we want the formation to move at a desired constant path-following speed
ULOS. We apply the same acceleration to all vehicles to ensure that the barycenter
moves without changing the relative formation.

We apply the coupled line-of-sight (LOS) guidance algorithm defined in Sec-
tion 2.4, and modify it to work with double-integrator systems. We denote the
components of the path following error ppb as xpb , y

p
b , and zpb . Similarly to Chap-

ter 5, we let ∆(ppb) be the error-dependent look-ahead distance of the LOS guidance
law given by

∆(ppb) =
√
∆2

0 + (xpb)
2 + (ypb )

2 + (zpb )
2, (11.24)

where ∆0 is a positive constant. The LOS velocity is then given by

vLOS,d = Rp [∆(ppb),−y
p
b ,−z

p
b ]

T ULOS

D
, (11.25)

where D =
√
∆(·)2 + (ypb )

2 + (zpb )
2 is a normalization term.

Since the second-order NSB algorithm requires the desired acceleration, we need
to find the time-derivative of the line-of-sight velocity (11.25)

v̇LOS,d = Ṙp [∆(ppb),−y
p
b ,−z

p
b ]

T ULOS

D

+Rp

[
∆̇(ppb , ṗ

p
b),−ẏ

p
b ,−ż

p
b

]T ULOS

D

−Rp [∆(ppb),−y
p
b ,−z

p
b ]

T ULOS

D2
Ḋ.

(11.26)

We want to eliminate the error caused by the constant unknown ocean current
at this stage of the control hierarchy, as all higher-priority tasks are independent
of it. To this end, we introduce the virtual integral state pv defined by

ṗv = vLOS,d, (11.27)

and define the following task acceleration

v̇LOS = v̇LOS,d +Λp,3(vLOS,d − vb) +Λi,3(pv − pb), (11.28)

where vb =
1
N

∑N
i=1 x2,i.
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11.2. Case Study: Formation Path Following of AUVs

Lemma 11.2. Let Λp,3 and Λi,3 be two symmetric positive definite matrices. The
relative barycenter velocity vb converges exponentially to the relative LOS velocity
vLOS,d−Vc under controller (11.7), with the path-following task-acceleration given
by (11.28).

Proof. We define the following error variables

p̃LOS = pb − pv −Λ−1
i,3Λp,3Vc, (11.29a)

ṽLOS = vb +Vc − vLOS,d. (11.29b)

The time-derivatives of these variables are[
˙̃pLOS

˙̃vLOS

]
= MLOS

[
p̃LOS

ṽLOS

]
, MLOS =

[
O I
−Λi,3 −Λp,3

]
(11.30)

The matrices Λi,3 and Λp,3 are positive definite by design. Consequently, the
matrix MLOS is Hurwitz, and

[
p̃T
LOS, ṽ

T
LOS

]
= 0T is a GES equilibrium of (11.30).

From (11.29), we conclude that if ṽLOS exponentially converges to zero, then vb
exponentially converges to vLOS,d −Vc.

The desired acceleration of the path-following task is then given by

v̇3 = 1N ⊗ v̇LOS. (11.31)

Similarly to Chapter 5, the update of the path-parameter s is used as an extra
degree of freedom to stability of the along-track error

ṡ = ULOS

∥∥∥∥∂pp(s)∂s

∥∥∥∥−1
(
∆(ppb)

D
+ ks

xpb√
1 + (xpb)

2

)
. (11.32)

In Section 5.3, we showed that the LOS guidance law (11.25) guarantees uniform
semiglobal exponential stability (USGES) of the path-following task.

Obstacle Avoidance

We implement an obstacle avoidance method that enables the fleet to avoid ex-
ternal obstacles while keeping the formation. This approach mitigates the issue of
vehicles straying out of communication range while evading obstacles. We modify
the collision cones method from Chapter 5 to be compatible with double integrator
dynamics and focus on obstacle avoidance in the xy-plane.

We assume a constant velocity model for the obstacle. Its position and velocity
vectors are denoted by po = [xo, yo, zo]

T and vo = [ẋo, ẏo, żo]
T. We define an

obstacle avoidance radius ro that is large enough to account for both the size
of the obstacle and the AUV. The formation radius rf is defined as the maximum
distance between any vehicle in the fleet and the formation center, and it is assumed
to be constant throughout the avoidance maneuver. We further define prel =
[xb − xo, yb − yo]T, vrel = [ẋLOS,d − ẋo, ẏLOS,d − ẏo]T, and v̇rel = [ẍLOS,d, ÿLOS,d]

T.
Note that vrel is defined in terms of the desired LOS velocity (11.25), so ṗrel ̸= vrel.
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11. Combining NSB with the Hand Position Approach

Obstacle avoidance is guaranteed if we ensure that

∥prel∥ ≥ ro + rf (11.33)

throughout the avoidance maneuver (see Section 5.2.5). A conflict between the
AUVs and the obstacle arises if vrel lies in the collision cone, i.e., if

|∠(prel,−vrel)| ≤ α, α = arcsin

(
ro + rf
∥prel∥

)
. (11.34)

The obstacle avoidance task is activated if the cone angle satisfies α > αmin. When
the task is active, the x- and y-components of vLOS,d and v̇LOS,d given by (11.25)
and (11.26) are replaced with vOA,d and v̇OA,d, given by

vOA,d = ∥vrel∥ [cos (ψOA), sin (ψOA)]T+[ẋo, ẏo]
T
, (11.35)

v̇OA,d =
(

d
dt∥vrel∥

)
[cos (ψOA), sin (ψOA)]

T

+∥vrel∥
[
− sin (ψOA)ψ̇OA, cos (ψOA)ψ̇OA

]
T,

(11.36)

where

ψOA = arctan2 (yo − yb, xo − xb)± α, (11.37)

ψ̇OA =
det
(
[prel ṗrel]

)
∥prel∥2

± α̇, (11.38)

α̇ =
ro + rf

∥prel∥2
√
∥prel∥2 − (ro + rf )2

pT
relṗrel, (11.39)

before entering into (11.27) and (11.28).

11.2.4 Closed-Loop Analysis

In this section, we analyze the closed-loop stability of the external states and the
boundedness of the internal states. We assume that the inter-vehicle collision
avoidance task is inactive for the analysis. As discussed in Section 2.3, the path-
following and formation-keeping tasks are orthogonal. Therefore, the null-space
projection N2 from the formation-keeping task will not affect the path-following
acceleration v3

v̇ = v̇2 + v̇3. (11.40)

Let v̇2,i and v̇3,i denote the desired accelerations for the individual vehicles, i.e.,

v̇T
2 =

[
v̇T
2,1, . . . , v̇

T
2,N

]
, v̇T

3 =
[
v̇T
3,1, . . . , v̇

T
3,N

]
. (11.41)

Because the tasks are independent, the following two relations hold

σ̈2 = J2v̇2 + J2v̇3 = J2v̇2, (11.42)

v̇b =
1

N

N∑
i=1

(v̇2,i + v̇3,i) =
1

N

N∑
i=1

v̇3,i, (11.43)

and the closed-loop properties of each task can thus be analyzed separately.
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Stability of the Formation-Keeping Task

The closed-loop dynamics of the formation-keeping error σ̃2 under the saturated
formation-keeping acceleration, (11.22), are given by the system

¨̃σ2 = −v2max
sat
(
Λp,2σ̃2

)
−Λd,2

˙̃σ2. (11.44)

Theorem 11.1. Let Λp,2, Λd,2 be two symmetric positive definite matrices so that
the product Λp,2Λd,2 is symmetric positive definite. Then, the point

[
˙̃σT
2 , σ̃

T
2

]
= 0T

is a uniformly globally asymptotically stable (UGAS) equilibrium of the closed-loop
system (11.44).

Proof. Consider the Lyapunov function

V (σ̃2, ˙̃σ2)=v2,max log (cosh ∥Λp,2σ̃2∥) +
1

2
˙̃σT
2 Λp,2

˙̃σ2. (11.45)

Substituting (11.44), the time-derivative of V is given by

V̇ = v2,maxsat (Λp,2σ̃2)
T
Λp,2

˙̃σ2 − ˙̃σT
2 Λp,2

(
v2,maxsat (Λp,2σ̃2) +Λd,2

˙̃σ2

)
,

= − ˙̃σT
2 Λp,2Λd,2

˙̃σ2. (11.46)

Let S = {
[
˙̃σT
2 , σ̃

T
2

]T ∈ R6(N−1)|V̇ = 0}. Because of the dynamics (11.44), no other
solution can stay identically in S, other than the trivial solution

[
˙̃σT
2 , σ̃

T
2

]T ≡ 0.
Thus, the origin is globally asymptotically stable according to [120, Corollary 4.2].
Furthermore, because (11.44) is time-invariant, the equilibrium is UGAS.

Stability of the Path-Following Task

Let p̃LOS and ṽLOS be given by (11.29). Using the definition

ppb = RT
p (pb − pp), (11.47)

we get the following error system

˙̃pLOS = ṽLOS,

˙̃vLOS = −Λp,3ṽLOS −Λi,3p̃LOS,
(11.48a)

ṗpb = RT
p (vb+Vc−ṗp) +

(
S(ωpṡ)

)T
RT
p (pb − pp),

= RT
p (vLOS,d − ṗp)− S(ωpṡ)p

p
b +RT

p ṽLOS.
(11.48b)

Theorem 11.2. Let Λp,3, Λi,3 be positive definite matrices. Then, the point[
p̃T
LOS, ṽ

T
LOS, (p

p
b)

T
]
= 0T is a USGES equilibrium of the system (11.48a)-(11.48b).

Proof. Note that the error system is in a cascaded form where the velocity error
ṽLOS from (11.48a) perturbs the system (11.48b). The dynamics of the perturbing
system (11.48a) are GES according to Lemma 11.2. The nominal system (11.48b)
with ṽLOS = 0 was proved to be USGES in Section 5.3 using the following Lyapunov
function

V (ppb) =
1

2
(ppb)

T
ppb . (11.49)
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11. Combining NSB with the Hand Position Approach

Therefore, if the two assumptions of Proposition 2.2 ([70, Proposition 9]) hold, the
origin of the cascade is USGES.

Because ∥∂V/∂ppb∥ = ∥p
p
b∥, the first assumption (2.111) is satisfied with c1 =

2, c2 = η for any η ∈ R≥0.
The second assumption (2.112) holds with α1(∥ṽLOS∥) = ∥ṽLOS∥, α2(∥ṽLOS∥) =

0, because the norm of the perturbing term is given by ∥RT
p ṽLOS∥ = ∥ṽLOS∥. As

a result, all assumptions of [70, Proposition 9] are satisfied, and the origin of the
closed-loop path-following system (11.48a)-(11.48b) is USGES.

Boundedness of Internal States

Let pd,i = pp(s) + Rpp
f
f,i denote the desired position of vehicle i. Note that

because the path function is C∞ and thanks to the choice of the path parameter
update law (11.32), the time-derivative of pd,i is bounded. In the previous section,
we proved the stability of the external dynamics. Consequently, the hand position
of vehicle i, x1,i, converges to pd,i, and the relative hand velocity of vehicle i, x2,i,
converges to ṗd,i −Vc.

Proposition 11.1. Let us define x2,d,i = ṗd,i −Vc, and ax,i, ᾱy,i, and ᾱz,i for
each vehicle i = 1, . . . , N in accordance with (7.27). The internal dynamics of the
vehicles are ultimately bounded if ax,i, ᾱy,i, ᾱz,i > 0 for all i ∈ {1, . . . , N}.

Proof. In the previous sections, we showed that in the nominal case, the external
dynamics are UGAS. Moreover, for a given set of initial conditions, the control
input µ defined in (11.7) is bounded. Consequently, if ax,i, ᾱy,i, ᾱz,i > 0 for all
i ∈ {1, . . . , N}, then all assumptions of Lemma 7.2 are satisfied, and the angular
rate dynamics are ultimately bounded.

11.2.5 Simulation Results

To validate the theoretical results, we perform simulations where the proposed algo-
rithm is applied to a fleet of three light autonomous underwater vehicles (LAUVs)
[12]. In the simulated scenario, the barycenter should follow a spiral path while
avoiding collision with a stationary cylindrical-shaped obstacle with radius 10m,
located at [xo, yo] = [100,−10]. All position variables are here given in meters.
The spiral is given by

pp(s) = pp,0 +
[
s,−40 cos( π

100s), 20 sin(
π

100s)
]T
, (11.50)

where
pp,0 =

[
0,−40, 35

]T
. (11.51)

The barycenter relative formation is given by

pff,1 =

 0
10
5

 , pff,2 =

 0
−10
5

 , pff,3 =

 0
0
−10

 , (11.52)
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11.2. Case Study: Formation Path Following of AUVs

(a) The trajectory of the vehicles. The markers represent the vehicle positions every
50 seconds.
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(b) The angular velocities of the vehicles.
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Figure 11.1: Simulation results of the path-following algorithm proposed in
Section 11.2. The full, dashed, and dotted lines correspond to the three different
vehicles. The green and red rectangles represent when obstacle avoidance and
inter-vehicle COLAV is active.
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11. Combining NSB with the Hand Position Approach

and we want the collision avoidance task to ensure a safe distance of 10m, both
between vehicles in the fleet and external obstacles. Therefore, the avoidance radius
of the cylinder, ro, is 20m. The vehicles are subject to an ocean current

Vc =
[
0 0.25 0.05

]T
m/s. (11.53)

The resulting trajectory of the mission is shown in Figure 11.1a. The vehicles
avoid the obstacle with a margin and return to the desired path. Figure 11.1b
shows that the angular velocities remain bounded, in accordance with Proposi-
tion 11.1. Figure 11.1c shows that the fleet converges to the desired formation
while the obstacle avoidance mode is active. Except for during the inter-vehicle
collision avoidance, the convergence seems linear, which can be expected because
the task velocity is saturated by v2,max. Figure 11.1d shows that the inter-vehicle
COLAV task activates when the distance between vehicles is below dCOLAV , and
the distance does not decrease further. Because the obstacle avoidance radius ro
was chosen 10m wider than the obstacle, the obstacle is avoided with a 10m mar-
gin. Figure 11.1e shows that the path-following error initially increases as the fleet
avoids the obstacle because the x- and y-components of vLOS,d and v̇LOS,d are
replaced with vOA,d and v̇OA,d given by (11.35), (11.36). As expected from The-
orem 11.2, the error converges to zero after the obstacle is passed when the LOS
task is activated again.
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Chapter 12

Conclusions and Future Work

We know everything, that is,
that we know nothing.

L. Smoljak, “Vyšetřování ztráty třídní
knihy,” 1967 (translated from Czech).

In this thesis, we presented and analyzed multiple control algorithms. In Chap-
ter 3, we proposed a method that unifies reactive collision avoidance and control
allocation. Then, in Part I (Chapters 4–6), we presented three different types of
null-space-behavioral algorithms. Finally, in Part II (Chapters 7–11), we intro-
duced the hand position concept to underactuated underwater vehicles and pre-
sented four applications. We conclude the thesis by presenting some remarks for
each chapter and suggestions for future work.

Chapter 3: Unifying Reactive Collision Avoidance and Control Alloca-
tion

In Chapter 3, we proposed a method for integrating a collision avoidance (COLAV)
scheme into control allocation through the use of control barrier functions (CBFs).
We demonstrated its effectiveness on two models of autonomous surface vehicles
(ASVs), where it significantly improved the safety. The proposed method can
be readily implemented on vehicles that already use optimization-based control
allocation by simply including the constraints given by the control barrier functions
(CBFs) in the optimization.

We note that the performance of the proposed scheme depends on the choice
of the parameters, such as the class-K∞ function γ, and the weight matrices Q,
Rabs, and Rrel. Finding a systematic method for choosing the parameter values
that guarantee safety for a given vehicle model is a topic for future work.

Chapter 4: Formation Path-Following Control of 5DOF Underactuated
AUVs

In Chapter 4, we proposed a formation path-following method for an arbitrary
number of AUVs, proved the stability of the path-following part, and verified its
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12. Conclusions and Future Work

effectiveness in simulations.
Because the proposed algorithm is centralized, our method can only be used in

scenarios where all the vehicles can communicate with each other. A distributed
version of the algorithm is introduced later in Chapter 6.

In the simulations, the formation-keeping error shows exponential convergence
to zero. However, the stability of the formation-keeping task has not been theo-
retically proven. A modified version of the algorithm with provable stability of the
formation-keeping task is presented in Chapter 5.

Chapter 5: Formation Path-Following Control of 6DOF Underactuated
AUVs

This chapter extended the formation path-following NSB algorithm to underac-
tuated 6DOF vehicles while adding obstacle avoidance and depth-limiting capa-
bilities. Both the path-following and formation-keeping parts were proven to be
stable. In the proofs, we assumed that the avoidance and depth-limiting tasks
are not active. An analysis of the closed-loop system with active avoidance and
depth-limiting tasks is left for future work.

Chapter 6: A Distributed NSB Algorithm for Formation Path Following

In Chapter 6, we discussed how to combine null-space-behavioral control with con-
sensus, and in this way solve the formation path-following problem in a fully dis-
tributed fashion. We also found that it is possible to implement this concept in
two different ways; using a continuous-time consensus algorithm, or a discrete-time
one (the latter being more suitable for real-life implementations). Using Lyapunov
analysis, we showed that in the special case of straight-line paths, the continuous-
time version achieves uniform semiglobal exponential stability. The discrete-time
version is based on event-triggered paradigms, to account for practical limitations
in the way agents exchange information.

Both versions were then verified in simulations. Comparing the discrete-time
version to a similar cooperative path-following algorithm presented in [25], we found
that the proposed algorithm requires fewer transmissions between the vehicles,
while having similar steady-state error. Finally, we demonstrated the real-life ef-
fectiveness of the discrete-time algorithm in field experiments with a fleet of light
autonomous underwater vehicles.

Future work includes extending the stability proofs to the more general case of
curved paths and more complex vehicle dynamics, as well as investigating the effects
of the event-triggered scheme on the performance of the algorithm. In addition,
we plan to perform additional experiments with more vehicles and underwater
communications.

Chapter 7: Hand Position for Underactuated Underwater Vehicles

In this section, we extended the hand position concept to 6DOF underactuated
underwater vehicles. By choosing the hand position as the output of our sys-
tem, we could apply output feedback linearization to simplify the underactuated
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6DOF vehicle dynamics to a double integrator without introducing any singular-
ities. Then, we derived sufficient conditions under which the internal states are
ultimately bounded.

As mentioned in the Introduction, the hand position concept and its ability
to transform a nonlinear underactuated model to a double integrator without sin-
gularities present an opportunity to utilize numerous control strategies that could
otherwise not be used on nonholonomic or underactuated vehicles. Examples of
such controllers were presented in Chapters 8–11.

Chapter 8: Trajectory Tracking and Path Following using the Hand
Position Concept

In this chapter, we showed how the hand position transformation combined with
a simple PID-based controller can be used to solve both the trajectory-tracking
and path-following control problems. Using Lyapunov analysis, we proved the
exponential stability of the external dynamics. Moreover, in the special case of
straight-line trajectories and paths, we could modify the controllers and prove the
exponential stability of the total system. The proposed controllers were tested both
in numerical simulations and experiments.

Chapter 9: Distributed MPC for Formation Path-Following of Multi-
Vehicle Systems

In this chapter, we proposed a distributed spline-based MPC scheme for the forma-
tion path-following problem. We showed that using splines makes the distributed
control problem computationally tractable. Compared to collocation, the spline
parametrization allows us to represent a longer prediction horizon using fewer vari-
ables. This is also beneficial for the communication, and thus makes it easier to do
distributed control in environments where the communication bandwidth is limited
(e.g., underwater).

One might argue that restricting the output to splines limits the subspace of
feasible trajectories. However, simulation results show that cubic splines provide
a good approximation of many curves. Another limiting factor is the need for
differential flatness. However, it is often possible to simplify the structure of the
model to guarantee differential flatness. The proposed spline-based MPC scheme
can thus be seen as a trade-off between lower computational requirements and more
restrictive assumptions on the model.

Chapter 10: Control of AUVs Under Hard and Soft Constraints

In this chapter, we addressed the tracking-in-formation control problem of co-
operative autonomous underwater vehicles interacting over directed graphs and
under hard inter-agent constraints (proximity and collision avoidance) and soft
constraints (positive surge velocity). We proposed a distributed control law that
solves this problem and that guarantees, simultaneously, connectivity preservation
and inter-agent collision avoidance. With respect to the stability analysis, it is
important to emphasize that, beyond mere convergence properties as usually es-
tablished in the literature of multi-agent systems, we establish almost-everywhere
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uniform asymptotic stability with exponential convergence of the tracking errors.
Current research focuses on validating the results experimentally.

Chapter 11: Combining NSB with the Hand Position Approach

In this chapter, we proposed an extended NSB method for double-integrator sys-
tems. The method was proved to provide globally exponentially stable task er-
ror dynamics. The method was demonstrated in a case study of formation path-
following with underactuated AUVs. We defined the second-order kinematic tasks
for collision avoidance, formation-keeping, and path-following. Compared to the
methods proposed in Chapters 4–6 where the NSB algorithm is perturbed by the
low-level controller, the second-order NSB method handles vehicle dynamics di-
rectly in the task space. The closed-loop behavior of the task variables can be
interpreted as a mass-spring-damper system. Consequently, the control gains can
be chosen such that the closed-loop system is critically damped.

To guarantee a bounded velocity, we introduced a saturation term to the accel-
eration of the formation-keeping task. The closed-loop formation-error system with
the reformulated formation-keeping acceleration was proved to be uniformly glob-
ally asymptotically stable, and the closed-loop path-following system was proved to
be uniformly semiglobally exponentially stable. Simulation results demonstrate the
effectiveness of our approach. Possible future work includes verifying the presented
results through experiments.
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Appendix A

AUV Model

This appendix lists the equations that are too extensive to be included in the main
body of the thesis.

A.1 The Component Form

A.1.1 6DOF Model

The functions Fu, Xv, Yv, Zv, Xw, Yw, Zw, G, Fp, Fq, and Fr in (2.22) in Sec-
tion 2.1.5 are given by

Fu(·) = −
m35q

2 +m33wrq −m26r
2 −m22vrr + d11ur

m11
, (A.1a)

Xv(·) = −
d26m66 − d66m26 + ur

(
m11m66 −m2

26

)
m22m66 −m2

26

, (A.1b)

Yv(·) = −
d22m66 − d62m26 + ur (m11m26 −m22m26)

m22m66 −m2
26

, (A.1c)

Zv(·) =
p (m26m35 +m33m66)

m22m66 −m2
26

, (A.1d)

Xw(·) = −
d35m55 − d55m35 − ur

(
m11m55 −m2

36

)
m33m55 −m2

35

, (A.1e)

Yw(·) = −
d33m55 − d53m35 − ur (m11m35 −m33m35)

m33m55 −m2
35

, (A.1f)

Zw(·) = −
p (m26m35 +m22m55)

m33m55 −m2
35

, (A.1g)

G(·) = − m35

m33m55 −m2
35

Wzgb [0, 1, 0]
(
e3 ×RTe3

)
(A.1h)

Fp(·) = −
d44p−m55qr +m66qr +m26qvr +m35qvr −m26rwr

m44
(A.1i)

+
m35rwr +m22vrwr −m33vrwr +Wzgb [1, 0, 0]

(
e3 ×RTe3

)
m44

,

169



A. AUV Model

Fq(·) =
m2

33urwr + d35m35q − d55m33q + d33m35wr − d53m33wr
m33m55 −m35

2
(A.1j)

+
m26m35pr −m33m44pr +m33m66pr −m11m35qur

m33m55 −m35
2

+
m22m35pvr +m26m33pvr +m33m35qur

m33m55 −m35
2

+
m11m33urwr +m33Wzgb [0, 1, 0]

(
e3 ×RTe3

)
m33m55 −m35

2
,

Fr(·) = −
m2

22urvr − d26m26r + d66m22r − d22m26vr
m22m66 −m26

2
(A.1k)

− d62m22vr +m26m35pq −m22m44pq +m22m55pq

m22m66 −m26
2

− m22m26rur −m11m26rur +m22m35pwr
m22m66 −m26

2

− m26m33pwr −m11m22urvr
m22m66 −m26

2
.

A.1.2 3DOF Model

The functions Fu, Xv, Yv, and Fr in (2.43) are given by

Fu(·) =
m23r

2 +m22vrr − d11ur
m11

, (A.2a)

Xv(·) =
(m2

23 +m11m33)ur + d33m23 − d23m33

m22m33 −m2
23

, (A.2b)

Yv(·) =
d22m33 − d32m23 + (m11m23 −m22m23)ur

m22m33 −m2
23

, (A.2c)

Fr(·) = −
m2

22urvr − d23m23r + d33m22r − d22m23vr + d32m22vr
m22m33 −m2

23

(A.2d)

− m22m23rur −m11m23rur −m11m22urvr
m22m33 −m2

23

.
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Appendix B

Proofs of Lemmas from Chapter 4

B.1 Derivation of Closed-Loop Barycenter Kinematics

We begin by taking ẏpb from (4.31b).

ẏpb =
1

n

n∑
i=1

Ui cos (γi) sin (χi − ψp)− ξ̇ ι xpb . (B.1)

Now, consider the term sin (χi − ψp). The course of the vessel is given by

χi = ψi + βi, βi = arcsin

(
vi
Ui

)
. (B.2)

After substituting and applying some trigonometric identities, we get

sin (χi − ψp) = sin (ψi + βi − ψp) (B.3a)
= cos (ψi − ψp) sin (βi) + sin (ψi − ψp) cos (βi) (B.3b)

= cos (ψi − ψp)
vi
Ui

+ sin (ψi − ψp)
√
u2i + w2

i

Ui
. (B.3c)

Consequently, the term Ui cos (γi) sin (χi − ψp) is equivalent to

Ui cos (γi) sin (χi − ψp) = cos (γi)

(
cos (ψi − ψp) vi

+ sin (ψi − ψp)
√
u2i + w2

i

)
.

(B.4)

Now, consider a term sin (ψi + βd,i − ψp). Using a similar procedure, we get

sin (ψi + βd,i − ψp) = cos (ψi − ψp)
vi
Ud,i

+ sin (ψi − ψp)

√
u2d,i + w2

i

Ud,i
. (B.5)

Combining (B.4) and (B.5), we get

Ui cos (γi) sin (χi − ψp) = Ud,i cos (γi) sin (ψi + βd,i − ψp)

+cos (γi) sin (ψi− ψp)
(√

u2i+w
2
i −
√
u2d,i+ w2

i

)
.

(B.6)
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Note that the following holds for the angles

ψi + βd,i − ψp = ψd,i + ψ̃i + βd,i − (ψd,i + βd,i + βLOS) = ψ̃i − βLOS,

βLOS = arctan

(
ypb

∆(pp
b)

)
.

(B.7)

Therefore, their sine is given by

sin (ψi + βd,i − ψp) = sin
(
ψ̃i

)
∆(pp

b)√
∆(pp

b)
2
+(ypb )

2
− cos

(
ψ̃i

)
ypb√

∆(pp
b)

2
+(ypb )

2
. (B.8)

Furthermore, note that the following holds for the flight-path angle

γi = θi − αi = θ̃i + θd,i − αi = θ̃i + γLOS + αd,i − αi. (B.9)

Consequently, the cosine of the flight-path angle is equal to

cos (γi) = cos (γLOS) cos
(
θ̃i

)
cos (αd,i − αi)

− cos (γLOS) sin
(
θ̃i

)
sin (αd,i − αi)

− sin (γLOS) cos
(
θ̃i

)
sin (αd,i − αi)

− sin (γLOS) sin
(
θ̃i

)
cos (αd,i − αi)

(B.10)

Using the equalities (B.8), (B.10), we can rewrite (B.6) as

Ui cos (γi) sin (χi − ψp) = −Ud,i cos (γLOS)
ypb√

∆(pp
b)

2
+(ypb )

2

+Gy,i

(
ũi, ψ̃i, γi, ud,i, vi, wi,p

p
b , ψp

)
,

(B.11)

where

Gy,i(·) = cos (γi) sin (ψi − ψp)
(√

u2i + w2
i −

√
u2d,i + w2

i

)
− Ud,i cos (γi) sin

(
ψ̃i

)
∆(pp

b)√
∆(pp

b)
2
+(ypb )

2

+ Ud,i

[
sin(γLOS)

(
cos
(
θ̃i

)
sin(αd,i − αi) + sin

(
θ̃i

)
cos(αd,i − αi)

)
− cos (γLOS)

(
cos
(
θ̃i

)
cos (αd,i − αi)− 1

)]
ypb√

∆(pp
b)

2
+(ypb )

2

(B.12)

Substituting (B.11) into (B.1), we get the following

ẏpb = − 1

n

n∑
i=1

Ud,i cos (γLOS)
ypb√

∆(pp
b)

2
+(ypb )

2
− ξ̇ ι xpb

+Gy

(
ũ1, . . . , ũn, ψ̃1, . . . , ψ̃n, γ1, . . . , γn, ud,1, . . . , ud,n,

v1, . . . , vn, w1, . . . , wn,p
p
b , ψp

)
,

(B.13)
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where

Gy(·) =
1

n

n∑
i=1

Gy,i

(
ũi, ψ̃i, γi, ud,i, vi, wi,p

p
b , ψp

)
. (B.14)

Now, we demonstrate a similar procedure for żpb . From (4.31b), we get

żpb =
1

n

n∑
i=1

Ui (− cos (θp) sin (γi) + cos (γi) sin(θp) cos (ψp − χi)) + ξ̇ κ xpb

=
1

n

n∑
i=1

Ui (− sin (γi − θp)− (1− cos (χi − ψp)) cos (γi) sin(θp)) + ξ̇ κ xpb .

(B.15)

Once again, we consider the terms

sin (γi − θp) = sin (θi − αi − θp) = sin (θi − θp)
ui
Ui
− cos (θi − θp)

wi
Ui
, (B.16)

and
sin (θi − αd,i − θp) = sin (θi − θp)

ud,i
Ud,i

− cos (θi − θp)
wi
Ud,i

, (B.17)

which give us the following equality

Ui sin (γi − θp) = Ud,i sin (θi − αd,i − θp) + ũi sin (θi − θp) . (B.18)

Using a similar trick, we can write the sine as

sin (θi − αd,i − θp) = sin
(
θ̃i

) ∆(ppb)√
∆(ppb)

2
+(zpb )

2
− cos

(
θ̃i

) (zpb )√
∆(ppb)

2
+(zpb )

2
(B.19)

Consequently, we can rewrite (B.15) as

żpb = − 1

n

n∑
i=1

Ud,i
zpb√

∆(ppb)
2
+ (zpb )

2
+ ξ̇ κ xpb

+Gz

(
ũ1, . . . , ũn, θ̃1, . . . , θ̃n, γ1, . . . , γn, χ1, . . . , χn,

ud,1, . . . , ud,n, v1, . . . , vn, w1, . . . , wn,p
p
b , θp, ψp

)
,

(B.20)

where

Gz(·) =
1

n

n∑
i=1

Gz,i

(
ũi, θ̃i, γi, χi, ud,i, vi, wi,p

p
b , θp, ψp

)
, (B.21)

Gz,i(·) = −Ui ((1− cos (χi − ψp)) cos (γi) sin(θp))− ũi sin (θi − θp)

−
(
1− cos

(
θ̃i

)) (zpb )√
∆(ppb)

2
+(zpb )

2
− Ud,i sin

(
θ̃i

) ∆(ppb)√
∆(ppb)

2
+(zpb )

2
.

(B.22)
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B.2 Desired Pitch and Yaw Rate

For further calculations, we need to evaluate the desired pitch (qd,i) and yaw (rd,i)
rates of the vessels. From (4.2d), we get the following relation between the yaw
rate and the derivative of the yaw angle

qd,i = θ̇d,i. (B.23)

Now, we consider the desired pitch angle from (4.27). Since we are investigating
the path following task, we substitute γLOS from (4.22) for γNSB,i. Differentiating
(4.27) with respect to time yields

qd,i = θ̇p(ξ) +
∆ (ppb) ż

p
b − z

p
b ∆̇ (ppb)

∆ (ppb)
2
+ (zpb )

2 +
ud,i ẇ

u2d,i + w2
i

, (B.24)

which can be expanded to

qd,i = ξ̇ κ(ξ) +

∆ (ppb)

(
1
n

n∑
j=1

Ud,j
(zpb )√

∆(pp
b)

2
+(zpb )

2
+ ξ̇ κ xpb +Gz(·)

)
∆(ppb)

2
+ (zpb )

2

+

zpb

(
−kξ

(xp
b)

2√
1+(xp

b)
2
− 1

n

n∑
j=1

Ud,j

(
cos(γLOS,j)

2(ypb )
2√

∆(pp
b)

2
+(ypb )

2
+

(zpb )
2√

∆(pp
b)

2
+(zpb )

2

))
∆(ppb)

(
∆(ppb)

2
+ (zpb )

2
)

+
zpb (y

p
b Gy(·)+z

p
b Gz(·))

∆(ppb)
(
∆(ppb)

2
+(zpb )

2
)

+ ud,i
Xw(ud,i + ũi, uc)q + Yw(ud,i + ũi, uc)(wi − wc)

u2d,i + w2
i

.

(B.25)

From (4.2e), we get the following relation between the yaw rate and the deriva-
tive of the yaw angle

rd,i = ψ̇d,i cos (θd,i) . (B.26)

Substituting the time-derivative of (4.28), we get

rd,i =

ψ̇p(ξ)− ∆(ppb) ẏ
p
b − y

p
b ∆̇ (ppb)

∆(ppb)
2
+ (ypb )

2 − v̇√
U2
d,i − v2i

 cos (θd,i) (B.27a)
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=

ξ̇ ι(ξ)−
∆(ppb)

(
1
n

n∑
j=1

Ud,i
cos(γLOS)(ypb )√
∆(pp

b)
2
+(ypb )

2
− ξ̇ ι xpb +Gy(·)

)
∆(ppb)

2
+ (ypb )

2

+

ypb

(
−kξ

(xp
b)

2√
1+(xp

b)
2
− 1

n

n∑
j=1

Ud,i

(
cos(γLOS)

2(ypb )
2√

∆(pp
b)

2
+(ypb )

2
+

(zpb )
2√

∆(pp
b)

2
+(zpb )

2

))
∆(ppb)

(
∆(ppb)

2
+ (ypb )

2
)

+
ypb (y

p
b Gy(·) + zpb Gz(·))

∆(ppb)
(
∆(ppb)

2
+ (ypb )

2
)

−X (ud,i + ũi, uc) r + Y (ud,i + ũi, uc) (vi − vc)√
u2d,i + w2

i

 cos (θd,i) .

(B.27b)

B.3 Proof of Lemma 4.1

In [71], it is shown that the error states (4.37a)–(4.37e) are UGES and the ocean
current estimate errors (4.38a)–(4.38c) are bounded, which implies that (4.37a)–
(4.38c) are forward complete. Therefore, we only need to prove that the under-
actuated sway and heave dynamics (4.39), (4.40) and the barycenter dynamics
(4.36a)–(4.36c) are forward complete.

First, let us consider the underactuated sway dynamics. From (4.39), we get

v̇i = Xv (ũi + ud,i, uc) (r̃i + rd,i) + Yv (ũi + ud,i, uc) (vi − vc) , (B.28)

where r̃i = ri − rd,i. Now, let us consider a Lyapunov function candidate

Vv(vi) =
1

2
v2i . (B.29)

Its derivative along the trajectories of vi is

V̇v(vi) = Xv(ũi + ud,i, uc) (r̃i + rd,i) vi + Yv(ũi + ud,i, uc) (vi − vc) vi. (B.30)

From the boudedness of X̃2,i, κ(ξ), ι(ξ), ud,i, uc and vc, we can conclude that there
exists some scalar βv,0 > 0 such that∥∥∥∥[X̃T

2,i, κ(ξ), ι(ξ), ud,i, uc, vc

]T∥∥∥∥ ≤ β0. (B.31)

Moreover, from (B.27), we can conclude that there exist some positive functions
ar(βv,0) and br(βv,0) such that

|rd,i| ≤ ar(βv,0) |vi|+ br(βv,0). (B.32)
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Consequently, we can upper bound V̇v(vi) using the following expression

V̇v(vi) ≤ Xv (ũi + ud,i, uc)
(
r̃i vi + ar(·)v2i + br(·)vi

)
+ Yv (ũi + ud,i, uc)

(
v2i − vc vi

)
.

(B.33)

Using Young’s inequality, we get

V̇v(vi) ≤ (Xv (ũi + ud,i, uc) (2 + ar(·)) + 2Yv (ũi + ud,i, uc)) v
2
i

+Xv (ũi + ud,i, uc)
(
r̃2i + br(·)2

)
+ Yv (ũi + ud,i, uc) v

2
c

(B.34a)

≤ αv Vv(vi) + βv. (B.34b)

Using the comparison lemma, we get

Vv (vi(t)) ≤
(
Vv (vi(t0)) +

βv
αv

)
exp (αv(t− t0))−

βv
αv
. (B.35)

As Vv(vi) is defined for all t > t0, it follows that vi is also defined for all t > t0. The
solutions of (4.39) thus fulfill the definition of forward completeness, as defined in
[110].

Now, let us consider the underactuated heave dynamics. From (4.40), we get

ẇi = Xw(ũi + ud,i, uc) (q̃i + qd,i) + Yw(ũi + ud,i, uc) (wi − wc) +G(θi), (B.36)

where q̃i = qi − qd,i. Similar to the previous paragraph, we consider a Lyapunov
function candidate

Vw(wi) =
1

2
w2
i , (B.37)

whose derivative is

V̇w(wi) = Xw (ũi + ud,i, uc) (q̃i + qd,i) wi

+ Yw (ũi + ud,i, uc) (wi − wc) wi +G(θ)wi.
(B.38)

From the boudedness of X̃2,i, κ(ξ), ι(ξ), ud,i, uc and wc, we can conclude that
there exists some scalar β0 > 0 such that∥∥∥∥[X̃T

2,i, κ(ξ), ι(ξ), ud,i, uc, wc

]T∥∥∥∥ ≤ βw,0. (B.39)

Moreover, from (B.25), we can conclude that there exist some positive functions
aq(βw,0) and bq(βw,0) such that

|qd,i| ≤ aq(βw,0) |wi|+ bq(βw,0). (B.40)

Consequently, we can upper bound V̇w(wi) using the following expression

V̇w(wi) ≤ Xw (ũi + ud,i, uc)
(
q̃i wi + aq(·)w2

i + bq(·)wi
)

+ Yw (ũi + ud,i, uc)
(
w2
i − wc wi

)
+G(θi)wi.

(B.41)
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Using Young’s inequality, we get

V̇w(wi) ≤ (Xw (ũi + ud,i, uc) (2 + aq(·)) + 2Yw (ũi + ud,i, uc) + 1) w2
i

+Xw (ũi + ud,i, uc)
(
q̃2i + bq(·)2

)
+ Yw (ũi + ud,i, uc) w

2
c +G(θ)2

≤ αw Vw(wi) + βw.

(B.42)

Using the comparison lemma, we get

Vw (wi(t)) ≤
(
Vw (wi(t0)) +

βw
αw

)
exp (αw(t− t0))−

βw
αw

. (B.43)

Using the same arguments as in the previous paragraph, we conclude that the
solutions of (4.40) are forward complete.

Finally, let us consider the barycenter dynamics. We use a Lyapunov function
candidate

Vb(p
p
b) =

1

2

(
(xpb)

2
+ (ypb )

2
+ (zpb )

2
)
, (B.44)

whose derivative along the solutions of (4.36a)–(4.36c) is

V̇b (p
p
b) = −kξ

(xpb)
2√

1 + (xpb)
2
+Gy(·) ypb +Gz(·) zpb

− 1

n

n∑
i=1

Ud,i

 cos (γLOS)
2
(ypb )

2√
∆(ppb)

2
+ (ypb )

2
+

(zpb )
2√

∆(ppb)
2
+ (zpb )

2


≤ Gy(·) ypb +Gz(·) zpb +

1

2
(xpb)

2
.

(B.45)

Using Young’s inequality, we get

V̇b (p
p
b) ≤

1

2

(
(xpb)

2
+ (ypb )

2
+ (zpb )

2
)
+

1

2

(
Gy(·)2 +Gz(·)2

)
≤ Vb (ppb) +

1

2

(
Gy(·)2 +Gz(·)2

)
.

(B.46)

Note that from (B.12) and (B.22), we can conclude that there exist some positive
function ζy(Ud,1, . . . , Ud,n) and ζz(Ud,1, . . . , Ud,n) such that

|Gy(·)| ≤ ζy(·)
∥∥∥∥[ũ1, . . . , ũn, ψ̃1, . . . , ψ̃n

]T∥∥∥∥ , (B.47)

|Gz(·)| ≤ ζz(·)
∥∥∥∥[ũ1, . . . , ũn, θ̃1, . . . , θ̃n]T∥∥∥∥ . (B.48)

Consequently, there exists a class-K∞ function ζp(·) such that

V̇p (p
p
b) ≤ Vp (p

p
b) + ζp

(
v1, . . . , vn, w1, . . . , wn, ũ1, . . . , ũn,

ψ̃1, . . . , ψ̃n, θ̃1, . . . , θ̃n

)
.

(B.49)
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Since all the arguments of ζp(·) are forward complete, Corollary 2.11 of [110] is
satisfied and the barycenter dynamics is forward complete, thus concluding the
proof of Lemma 4.1.

B.4 Proof of Lemma 4.2

First, we consider the sway dynamics. We take the Lyapunov function candidate
Vv from (B.29) and simplify its derivative by setting

[
X̃T

1 , X̃
T
2

]
= 0T.

V̇v(vi) = Xv (ud,i, uc) rd,i vi + Yv (ud,i, uc) (vi − vc) vi. (B.50)

Next, we find an upper bound on rd,i vi. We substitute from (B.27), set
[
X̃T

1 , X̃
T
2

]
=

0T and collect all terms that grow linearly with vi to obtain the following expression

rd,i vi=

(
vi

(
1+

∆(pp
b ) x

p
b

∆(pp
b )

2+(xp
b)

2

)
ι(s) 1n

n∑
j=1

UjΩx(γj , θp, χj , ψp)+
Yv(ud,i,uc)√
u2
d,i+w

2
i

v2i

)
cos(θd,i)

+Fv(ud,i, uc, vc, vi, wi, ri, θd,i), (B.51)

where
Fv(·) = Xv(ud,i,uc) ri−Yv(ud,i,uc) vc√

u2
d,i+w

2
i

vi cos(θd,i). (B.52)

We can bound this expression as

|rd,i vi| ≤
2

n
|vi| |ι(ξ)|

n∑
j=1

(|uj |+ |vj |+ |wj |) + |Fv(·)|

≤ 2

n
|ι(ξ)| v2i +

2

n
|vi| |ι(ξ)|

∑
j ̸=i

(
|uj |+ |vj |+ |wj |

)
+ |ui|+ |wi|


+ |Fv(ud,i, uc, vc, vi, wi, ri, θd,i)| , (B.53)

which we can substitute to (B.50) to obtain

V̇v(vi) ≤
(
Xv (ud,i, uc)

2

n
|ι(ξ)|+ Yv (ud,i, uc)

)
v2i

+

 2

n
|vi| |ι(ξ)|

∑
j ̸=i

(
|uj |+ |vj |+ |wj |

)
+ |ui|+ |wi|


+ (|Fv(·)| − Yv (ud,i, uc) |vc|) |vi| .

(B.54)

For a sufficiently large vi, the quadratic term will dominate the linear term. There-
fore, we can conclude that vi is bounded if

Xv (ud,i, uc)
2

n
|ι(ξ)|+ Yv (ud,i, uc) < 0. (B.55)
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Since Yv is assumed to be always negative, the inequality is satisfied if

|ι(ξ)| < n

2

∣∣∣∣ Yv (ud,i, uc)Xv (ud,i, uc)

∣∣∣∣ . (B.56)

Now, we perform a similar procedure for the heave dynamics. We take the
Lyapunov function candidate Vw from (B.37) and simplify its derivative by setting[
X̃T

1 , X̃
T
2

]
= 0T.

V̇w(wi) = Xw (ud,i, uc) qd,i wi + Yw (ud,i, uc) (wi − wc) wi +G(θi)wi. (B.57)

Next, we find an upper bound on qd,i wi. We substitute from (B.25), set
[
X̃T

1, X̃
T
2

]
=

0T and collect all terms that grow linearly with wi to obtain the following expression

qd,i wi= wi

(
1 +

∆(pp
b ) x

p
b

∆(pp
b )

2+(xp
b)

2

)
κ(ξ) 1n

n∑
j=1

Uj Ωx(γj , θp, χj , ψp) (B.58)

+ud,i
Yw(ud,i,uc)

u2
d,i+w

2
i
w2
i + Fw(ud,i, uc, wc, wi, qi), (B.59)

where
Fw(·) = ud,i

Xw(ud,i,uc) ri−Yw(ud,i,uc)wc√
u2
d,i+w

2
i

wi. (B.60)

We can bound this expression as

|qd,i wi| ≤
2

n
|κ(ξ)| w2

i +
2

n
|wi| |κ(ξ)|

∑
j ̸=i

(
|uj |+ |vj |+ |wj |

)
+ |ui|+ |vi|


+ |Fw(ud,i, uc, wc, wi, qi)| ,

(B.61)

which we can substitute to (B.57) to obtain

V̇w(wi) ≤
(
Xw (ud,i, uc)

2

n
|κ(ξ)|+ Yw (ud,i, uc)

)
w2
i

+

 2

n
|wi| |κ(ξ)|

∑
j ̸=i

(
|uj |+ |vj |+ |wj |

)
+ |ui|+ |wi|


+ (|F (·)| − Yw (ud,i, uc) |vc|+ |G(θi)|) |wi|+G(θi)wi.

(B.62)

For a sufficiently large wi, the quadratic term will dominate the linear term. There-
fore, we can conclude that wi is bounded if

Xw (ud,i, uc)
2

n
|κ(ξ)|+ Yw (ud,i, uc) < 0. (B.63)

Since Yw is assumed to be always negative, the inequality is satisfied if

|κ(ξ)| < n

2

∣∣∣∣ Yw (ud,i, uc)

Xw (ud,i, uc)

∣∣∣∣ , (B.64)

which concludes the proof of Lemma 4.2.
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B.5 Proof of Lemma 4.3

First, we consider the sway dynamics. We take the Lyapunov function candidate
Vv from (B.29) and simplify its derivative by setting X̃2 = 0.

V̇v(vi) = Xv (ud,i, uc) rd,i vi + Yv (ud,i, uc) (vi − vc) vi. (B.65)

Next, we find an upper bound on rd,i vi. We substitute from (B.27), set X̃2 = 0
and collect all terms that grow linearly with vi to obtain the following expression

rd,i vi =

(
vi

(
1 +

∆(pp
b ) x

p
b

∆(pp
b )

2+(xp
b)

2

)
ι(ξ) 1n

n∑
j=1

Uj Ωx(γj , θp, χj , ψp)

−
ypb vi

n∑
j=1

 cos(γLOS)y
p
b√

∆(pp
b)

2
+(yp

b )
2
+

z
p
b√

∆(pp
b)

2
+(zpb )

2


n∆(pp

b )
(
∆(pp

b )
2+(ypb )

2
)

+

vi∆(ppb)
n∑
j=1

cos(γLOS)y
p
b√

∆(pp
b)

2
+(ypb )

2

n (∆(ppb)
2 + (ypb )

2)
+
Yv(ud,i, uc)√
u2d,i + w2

i

v2i

 cos(θd,i)

+Hv(ud,i, θd,i, uc, vc, vi, wi, ri,p
p
b , ξ),

(B.66)

Hv(·) =

(1 + ∆(ppb)x
p
b

∆(ppb)
2 + (xpb)

2

)
kξ ι(ξ)

xpb√
1 + (xpb)

2

+
Xv(ud,i, uc) ri − Yv(ud,i, uc) vc√

u2d,i + w2
i

−
ypb kξ x

p
b√

1 + (xpb)
2
∆(ppb)

(
∆(ppb)

2 + (ypb )
2
)
 vi cos(θd,i).

(B.67)

We can bound this expression as

|rd,i vi| ≤
(
2

n
|ι(ξ)|+ 3

n∆(ppb)

)
|vi|

n∑
j=1

(|uj |+ |vj |+ |wj |) + |Hv(·)|

≤
(
2

n
|ι(ξ)|+ 3

n∆(ppb)

)
v2i + |Hv(·)|

+

(
2

n
|ι(ξ)|+ 3

n∆(ppb)

)∑
j ̸=i

(
|uj |+ |vj |+ |wj |

)
+ |ui|+ |wi|

 ,

(B.68)
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which we can substitute to (B.65) to obtain

V̇v(vi) ≤
(
Xv (ud,i, uc)

(
2

n
|ι(ξ)|+ 3

n∆(ppb)

)
+ Yv (ud,i, uc)

)
v2i

+

(
2

n
|ι(ξ)|+ 3

n∆(ppb)

)∑
j ̸=i

(
|uj |+ |vj |+ |wj |

)
+ |ui|+ |wi|


+ (|Hv(·)| − Yv (ud,i, uc) |vc|) |vi| .

(B.69)

For a sufficiently large vi, the quadratic term will dominate the linear term. There-
fore, we can conclude that vi is bounded if

Xv (ud,i, uc)

(
2

n
|ι(ξ)|+ 3

n∆(ppb)

)
+ Yv (ud,i, uc) < 0. (B.70)

From the definition of the lookahead distance (4.20), this condition is satisfied if

∆0 >
3

n
∣∣∣ Yv(ud,i,uc)
Xv(ud,i,uc)

∣∣∣− 2 |ι(ξ)|
. (B.71)

Now, we perform a similar procedure for the heave dynamics. We take the
Lyapunov function candidate Vw from (B.37) and simplify its derivative by setting
X̃2 = 0.

V̇w(wi) = Xw (ud,i, uc) qd,i wi + Yw (ud,i, uc) (wi − wc) wi +G(θi)wi. (B.72)

Next, we find an upper bound on qd,i wi. We substitute from (B.25), set X̃2 = 0
and collect all terms that grow linearly with wi to obtain the following expression

qd,i wi = wi

(
1 +

∆(pp
b ) x

p
b

∆(pp
b )

2+(xp
b)

2

)
κ(ξ) 1n

∑n
j=1 Uj Ωx(γj , θp, χj , ψp)

−
zpb wi

∑n
j=1

 cos(γLOS)y
p
b√

∆(pp
b)

2
+(yp

b )
2
+

z
p
b√

∆(pp
b)

2
+(zpb )

2


n∆(pp

b )
(
∆(pp

b )
2+(zpb )

2
)

+

wi∆(ppb)
∑n
j=1

zpb√
∆(pp

b)
2
+(zpb )

2

n (∆(ppb)
2 + (zpb )

2)
+ ud,i

Yw(ud,i, uc)

u2d,i + w2
i

w2
i

+Hw(ud,i, uc, vc, wi, vi, qi,p
p
b , ξ),

(B.73)

where

Hw(·) =

(1 + ∆(ppb)x
p
b

∆(ppb)
2 + (xpb)

2

)
kξ κ(ξ)

xpb√
1 + (xpb)

2

−
ypb kξ x

p
b√

1 + (xpb)
2
∆(ppb)

(
∆(ppb)

2 + (ypb )
2
)

+ud,i
Xw(ud,i, uc) ri − Yw(ud,i, uc) vc

u2d,i + w2
i

)
wi.

(B.74)
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We can bound this expression as

|qd,i wi| ≤
(
2

n
|κ(ξ)|+ 3

n∆(ppb)

)
|wi|

n∑
j=1

(|uj |+ |vj |+ |wj |) + |Hw(·)|

≤
(
2

n
|κ(ξ)|+ 3

n∆(ppb)

)
w2
i + |Hw(·)|

+

(
2

n
|κ(ξ)|+ 3

n∆(ppb)

)∑
j ̸=i

(
|uj |+ |vj |+ |wj |

)
+ |ui|+ |wi|

 ,

(B.75)

which we can substitute to (B.72) to obtain

V̇w(wi) ≤
(
Xw (ud,i, uc)

(
2

n
|κ(ξ)|+ 3

n∆(ppb)

)
+ Yw (ud,i, uc)

)
w2
i

+

(
2

n
|κ(ξ)|+ 3

n∆(ppb)

)∑
j ̸=i

(
|uj |+ |vj |+ |wj |

)
+ |ui|+ |wi|


+ (|Hw(·)| − Yw (ud,i, uc) |vc|) |wi| .

(B.76)

For a sufficiently large wi, the quadratic term will dominate the linear term. There-
fore, we can conclude that wi is bounded if

Xw (ud,i, uc)

(
2

n
|κ(ξ)|+ 3

n∆(ppb)

)
+ Yw (ud,i, uc) < 0. (B.77)

From the definition of the lookahead distance (4.20), this condition is satisfied if

∆0 >
3

n
∣∣∣ Yw(ud,i,uc)
Xw(ud,i,uc)

∣∣∣− 2 |κ(ξ)|
. (B.78)
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Appendix C

Derivations from Chapter 5

C.1 Bounds on the NSB Velocity

Recall the definition of ωvNSB,i in (5.41). Note that by definition, a normalized
vector is always orthogonal to its derivative. Therefore, the following equality
holds: ∥∥ωvNSB,i

∥∥ = ∥vNSB,i∥
∥∥v̇NSB,i

∥∥ =
∥∥v̇NSB,i

∥∥ . (C.1)

Therefore, instead of the pseudo-angular velocity, it is possible to investigate the
derivative of the normalized NSB velocity. Note that according to the assumptions
in Theorem 5.1, the analysis should be performed on the manifold

[
σ̃T, X̃T

]
= 0T.

Substituting σ̃ = 0 to (5.30) yields

vNSB,i = vLOS + Ṙp(ξ)p
f
f,i

= ULOSRp(ξ)
(
e1 + ∥∂pp(ξ)/∂ξ∥−1

ωp(ξ)× pff,i

)
.

(C.2)

For brevity, let us define

κ = ∥∂pp(ξ)/∂ξ∥−1
ωp(ξ), ep = e1 + κ× pff,i (C.3)

The normalized NSB velocity is then given by

vNSB,i =
Rp(ξ)ep
∥ep∥

. (C.4)

Differentiating (C.4) with respect to time yields

v̇NSB,i =
ULOSRp

(
κ× ep + ι× pff,i

)
∥ep∥

−
ULOSRpep

(
eTp

(
ι× pff,i

))
∥ep∥2

, (C.5)

where ι = ∂κ/∂ξ. From (C.5), it follows that

∥∥v̇NSB,i

∥∥ ≤ ULOS

∥κ∥+
∥∥∥ι× pff,i

∥∥∥ (1 + ∥ep∥)
∥ep∥

 . (C.6)
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C. Derivations from Chapter 5

If we assume that the second and third partial derivatives of pp with respect to the
path parameter are bounded, then ι is bounded as well. Let us define

cNSB = max
i,ξ

∥κ∥+
∥∥∥ι× pff,i

∥∥∥ (1 + ∥ep∥)
∥ep∥

 . (C.7)

Substituting (5.37) and (C.7) into (C.6) gives us the following upper bound

∥∥v̇NSB,i

∥∥ ≤ v2,max +
√∑n

i=1 (v
2
i + w2

i ) + u2min

1− kNSB
cNSB. (C.8)

Note that for any two positive numbers a and b, the following inequality holds:√
a+ b ≤

√
a+
√
b. Therefore, we can further upper-bound (C.8) with∥∥v̇NSB,i

∥∥ ≤ cNSB

1− kNSB︸ ︷︷ ︸
aNSB

∥υu∥+
v2,max + umin

1− kNSB
cNSB︸ ︷︷ ︸

bNSB

. (C.9)

We have thus shown that there exist positive constants aNSB and bNSB that satisfy
(5.72).

C.2 Bounds on the Linear Velocity

Note that by the assumptions of Theorem 5.1, the surge velocity of the vehicle
satisfies ui = ud,i, and the linear velocity vector υi thus satisfies

υi = [ud,i, vi, wi]
T
=

[√
∥vNSB,i∥2 − v2i − w2

i , vi, wi

]T
, ∥υi∥ = ∥vNSB,i∥ .

(C.10)

The time-derivative of a normalized vector is given by

υ̇i =
υ̇i
∥υi∥

−
υi

d
dt∥υi∥
∥υi∥2

, (C.11)

and the pseudo-angular velocity is thus given by

ωυi
= υi × υ̇i =

υi
∥υi∥

×

(
υ̇i
∥υi∥

−
υi

d
dt∥υi∥
∥υi∥2

)
=

υi × υ̇i

∥υi∥2
. (C.12)

Now, let us focus on υ̇i. Differentiating (C.10) with respect to time yields

υ̇i =

vT
NSB,iv̇NSB,i−viv̇i−wiẇi

ui

v̇i
ẇi

 . (C.13)

From (5.4b), the underactuated dynamics are given by

v̇i = (Xv0 +Xv1(ui − uc)) ri + (Yv0 + Yv1(ui − uc)) (vi − vc)
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+ (Zv0 + Zv1pi) (wi − wc) + wcpi − ucri, (C.14a)
ẇi = (Xw0 +Xw1(ui − uc)) qi + (Yw0 + Yw1(ui − uc)) (wi − wc)

+ (Zw0 + Zw1pi) (vi − vc) + ucqi − vcpi, (C.14b)

where

Xv(ur) = Xv0 +Xv1ur, Xw(ur) = Xw0 +Xw1ur, (C.15a)
Yv(ur) = Yv0 + Yv1ur, Yw(ur) = Yw0 + Yw1ur, (C.15b)
Zv(p) = Zv0 + Zv1p, Zw(p) = Zw0 + Zw1p. (C.15c)

Substituting (C.14) into (C.13) yields

υ̇i = Aωi
ωi + ω̂0,i, (C.16)

where

Aωi
=

wi (vc−Zw1 vr)−vi (wc+Zv1 wr)
ui

−wi (Xw0+Xw1 ur+uc)
ui

vi (uc−Xv0−Xv1 ur)
ui

wc + Zv1 wr 0 Xv0+Xv1ur− uc
−vc − Zw1 vr Xw0+Xw1ur+ uc 0


ω̂0,i=

vT
NSB,iv̇NSB,i−vi((Yv0+Yv1ur)vr+Zv0wr)−wi((Yw0+Yw1ur)wr+Zw0vr)

ui

(Yv0 + Yv1ur) vr + Zv0wr
(Yw0 + Yw1ur)wr + Zw0vr

 .
(C.17)

Substituting (C.16) into (C.12) yields

ωυi =
υi ×

(
Âωiωi + ω̂0,i

)
∥υi∥2

=
S (υi) Âωi

∥υi∥2︸ ︷︷ ︸
Aωi

ωi +
υi × ω̂0,i

∥υi∥2︸ ︷︷ ︸
ω0,i

. (C.18)

We have thus shown that ωυi is affine in ωi.
Now we investigate the determinant of (I +Aωi

). From the definition of Aωi

in (C.18), we get the following expression

det (I+Aωi
) =

(
ui
(
u2i + v2i + w2

i

)
− uc

(
u2i + v2i + w2

i

)
− (ucui + vcvi + wcwi) (ui − uc) +Xv0

(
u2i + v2i

)
−Xw0

(
u2i + w2

i

)
+ (Xv1 −Xw1)ui (ui − uc)2

+ (Xv1 + Zw1) v
2
i (ui − uc)− (Xw1 + Zv1)w

2
i (ui − uc)

−Xv0Xw0ui −Xv0 (uiuc + vivc) +Xw0 (uiuc + wiwc)

−Xv0

(
Xw1u

2
i − Zw1v

2
i

)
−Xw0

(
Xv1u

2
i − Zv1w2

i

)
−Xv1Xw1ui (ui − uc)2 − (Xv1 + Zw1) vivc (ui − uc)
+ (Xw1 + Zv1)wiwc (ui − uc) +Xv1Zw1v

2
i (ui − uc)
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+Xw1Zv1w
2
i (ui − uc) +Xv0 (Xw1uiuc − Zw1vivc)

+Xw0 (Xv1uiuc − Zv1wiwc)−Xv1Zw1vivc (ui − uc)

−Xw1Zv1wiwc (ui − uc)
)

1

ui (u2i + v2i + w2
i )
. (C.19)

It can then be shown that the determinant satisfies

det (I+Aωi
) ≤ 1− ka, (C.20)

where

ka =
|uc|
umin

+ 2 |Xv1 −Xw1 −Xv1Xw1|
u2min + u2c
u2min

+
|Xv0|+ |Xw0|

umin

+
(|uc|+ |vc|+ |wc|)(umin + |uc|)

u2min

+max {|Xv0|, |Xw0|}
u2min+ ∥Vc∥2

u3min

+max {|Xv1 + Zw1 +Xv1Zw1| , |Xw1 + Zv1 +Xw1Zv1|}
umin + |uc|

umin

+
|Xv0Xw0|
u2min

+ |Xv1+Zw1−Xv1Zw1|
|vc| (umax + |uc|)

u2max

+
|Xv0|max {|Xw1| , |Zw1|}+ |Xw0|max {|Xv1| , |Zv1|}

umin

+ |Xw1 + Zv1 −Xw1Zv1|
|wc| (umax + |uc|)

u2max

+
|Xv0| (|Xw1uc|+ |Zw1vc|) + |Xw0| (|Xv1uc|+ |Zv1wc|)

u2min

(C.21)

Note that the components of the ocean current, |uc|, |vc|, and |wc|, can be up-
per bounded by ∥Vc∥. We have therefore found a constant upper bound on the
determinant.

Now, let us focus on ω0,i. Recall the definition of ω0,i in (C.18). To find an
upper bound, we will use the following inequality

∥υi × ω̂0,i∥ ≤ ∥υi∥ ∥ω̂0,i∥ , =⇒ ∥ω0,i∥ ≤
∥ω̂0,i∥
∥υi∥

. (C.22)

Recall the definition of ω̂0,i in (C.16). To find an upper bound on this vector, we will

utilize the following inequality: Consider a vector x =
[∑Na

i=1 ai,
∑Nb

i=1 bi,
∑Nc

i=1 ci

]T
,

where ai, bi, ci ∈ R. The following inequality holds for the Euclidean norm of x

∥x∥ ≤
Na∑
i=1

|ai|+
Nb∑
i=1

|bi|+
Nc∑
i=1

|ci| . (C.23)

Therefore, we can find an upper bound on ∥ω̂0,i∥ by analyzing its components.

Let us begin by investigating the term vT
NSB,iv̇NSB,i

ui
. From (C.2), vNSB,i and its

time-derivative are given by

vNSB,i = ULOSRp(ξ)ep, v̇NSB,i = ULOSRp(ξ)
(
κ× ep + ι× pff,i

)
. (C.24)
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For brevity, let us define
ed = κ× ep + ι× pff,i. (C.25)

Then, the following inequality holds for the investigated term∣∣∣∣∣vT
NSB,iv̇NSB,i

ui

∣∣∣∣∣ ≤ ∥vNSB,i∥ ∥v̇NSB,i∥
ui

=
∥υi∥ULOS ∥ed∥

ui

≤ ∥υi∥
∥ed∥
∥ep∥

∥vNSB,i∥
ui

≤ ∥ed∥
∥ep∥

∥υi∥2

umin

(C.26)

We can now expand the remaining terms in ω̂0,i to arrive at the following upper
bound

∥ω̂0,i∥≤
∥ed∥
∥ep∥

∥υi∥2

umin
+

∣∣∣∣Yv1 (ui − uc) + Yv0
ui

∣∣∣∣ v2i + ∣∣∣∣Yw1 (ui − uc) + Yw0

ui

∣∣∣∣w2
i

+

∣∣∣∣Zv0 + Zw0

ui
viwi

∣∣∣∣+ ∣∣∣∣Yv1ucvc − Yv0vc − Zv0wc − Yv1uivcui
vi

∣∣∣∣
+

∣∣∣∣Yw1ucwc − Yw0wc − Zw0vc − Yw1uivc
ui

wi

∣∣∣∣
+ |Yv0 − Yv1uc + Yv1ui| |vi|+ |Zv0wi|+ |Zw0vi|
+ |Yv1ucvc− Zv0wc− Yv0vc− Yv1uivc|+ |Yw0− Yw1uc+ Yw1ui| |wi|
+ |Yw1ucwc − Zw0vc − Yw0wc − Yw1uiwc| .

(C.27)

Next, we use a similar strategy as in the previous section to get the following upper
bound

∥ω̂0,i∥ ≤
∥ed∥
∥ep∥

∥υi∥2

umin
+

1

2

|Zv0 + Zw0|
umin

(
v2i + w2

i

)
+ |Yw1ucwc|

+max

{
|Yv1|(umin+|uc|)+|Yv0|

umin
,
|Yw1|(umin+|uc|)+|Yw0|

umin

}(
v2i +w

2
i

)
+
|Yv1ucvc|+ |Yv0vc|+ |Zv0wc|+ |Yv1umaxvc|

umax
|vi|

+ (|Yv0|+ |Yv1uc|+ |Zw0|) |vi|+ |Yv1uivi|+ |Zw0vc|

+
|Yw1ucwc|+ |Yw0wc|+ |Zw0vc|+ |Yw1umaxwc|

umax
|wi|

+ (|Yw0|+ |Yw1uc|+ |Zv0|) |wi|+ |Yw1uiwi|+ |Yw0wc|
+ (|Yv1vc|+ |Yw1wc|) |ui|+ |Yv1ucvc|+ |Zv0wc|+ |Yv0vc| (C.28)

Note that the norm of υi satisfies

∥υi∥ = ∥vNSB,i∥ = ULOS ∥ep∥ ≤
∥ep∥

1− kNSB
∥υu∥+

v2,max + umin

1− kNSB
∥ep∥ , (C.29)

and the term
(
v2i + w2

i

)
satisfies the following two inequalities

v2i + w2
i ≤ ∥υi∥

2
, v2i + w2

i ≤ ∥υu∥
2
. (C.30)
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We finally arrive at the following upper bound on ∥ω0,i∥

∥ω0,i∥ ≤

(
∥ed∥

umin (1− kNSB)
+

1

2

|Zv0 + Zw0|
umin

+ |Yv1|+ |Yw1|

)
∥υu∥

+max

{
|Yv1|(umin+|uc|) + |Yv0|

umin
,
|Yw1|(umin+|uc|) + |Yw0|

umin

}
∥υu∥

+
∥ed∥(v2,max+umin)

umin (1− kNSB)
+
|Yv1ucvc|+ |Yv0vc|+|Zv0wc|+|Yv1umaxvc|

umax

+ |Yv1uc|+ |Zw0|+
|Yw1ucwc|+ |Yw0wc|+ |Zw0vc|+ |Yw1umaxwc|

umax

+ |Yv0|+ |Yw0|+ |Yw1uc|+ |Zv0|+ |Yv1vc|+ |Yw1wc|

+
|Yv1ucvc|+ |Zv0wc|+ |Yv0vc|+ |Yw1ucwc|+ |Zw0vc|+ |Yw0wc|

umin

≜ av ∥υu∥+ bv
(C.31)

Similarly to the previous section, we can upper-bound |uc|, |vc|, and |wc| with
∥Vc∥. We have thus found positive constants av and bv that satisfy (5.76).
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Appendix D

Hand Position

D.1 The Coefficients in the Lyapunov Analysis

ay =
d35m55 − d55m35 + hd33m55 − hd53m35

h(m33m55 −m2
35)

, (D.1a)

az =
d66m26 − d26m66 + hd22m66 − hd62m26

h(m22m66 −m2
26)

, (D.1b)

axyz =
m35m44 −m26m55 −m35m66 + hm26m35 + hm22m55

h(m33m55 −m2
35)

− m26m55 −m26m44 +m35m66 + hm26m35 + hm33m66

h(m22m66 −m2
26)

,

(D.1c)

axy = −m26m35 +m22m55

h(m33m55 −m2
35)

, (D.1d)

axz = −
m26m35 +m33m66

h(m22m66 −m2
26)

, (D.1e)

aye =
m11m55 −m2

35 + hm11m35 − hm33m35

h(m33m55 −m2
35)

, (D.1f)

aze =
m11m66 −m2

26 − hm11m26 + hm22m26

h(m22m66 −m2
26)

, (D.1g)

aey =
m11m35 −m33m35

h(m33m55 −m2
35)

, (D.1h)

aez =
m11m26 −m22m26

h(m22m66 −m2
26)

, (D.1i)

aley =
d53m35 − d33m55

h(m33m55 −m2
35)

, (D.1j)

alez =
d22m66 − d62m26

h(m22m66 −m2
26)

. (D.1k)
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D. Hand Position

D.2 Components of the Jacobian Matrix

Ξ23=
d53m35 − d33m55 +

∥∥ξ2d,r∥∥m35 (m11 −m33)

h (m33m55 −m35
2)

+
kd
h
, (D.2a)

Ξ32=
d22m66 − d62m26 +

∥∥ξ2d,r∥∥m26 (m11 −m22)

h (m22m66 −m26
2)

+
kd
h
, (D.2b)

∆1=bx, (D.2c)

∆2=

∥∥ξ2d,r∥∥
h

(
ay −

m35

∥∥ξ2d,r∥∥ (m11 −m33)

m33m55 −m35
2

)
, (D.2d)

∆3=

∥∥ξ2d,r∥∥
h

(
az +

m26

∥∥ξ2d,r∥∥ (m11 −m22)

m22m66 −m26
2

)
, (D.2e)

Ω1=ax, (D.2f)

Ω2=ay+
∥∥ξ2d,r∥∥(aye+ 1

h

)
+

d35m55 − d55m35

h(m33m55 −m35
2)
, (D.2g)

Ω3=az+
∥∥ξ2d,r∥∥(aze+ 1

h

)
+

d26m66 − d66m26

h(m22m66 −m26
2)
. (D.2h)
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