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Abstract
As one of the most important assets in the transportation of oil and gas products, subsea pipelines are susceptible to 
various environmental hazards, such as mechanical damage and corrosion, that can compromise their structural integrity 
and cause catastrophic environmental and financial damage. Autonomous underwater systems (AUS) are expected to 
assist offshore operations personnel and contribute to subsea pipeline inspection, maintenance, and damage detection 
tasks. Despite the promise of increased safety, AUS technology needs to mature, especially for image-based inspections 
with computer vision methods that analyze incoming images and detect potential pipeline damage through anomaly 
detection. Recent research addresses some of the most significant computer vision challenges for subsea environments, 
including visibility, color, and shape reconstruction. However, despite the high quality of subsea images, the lack of train-
ing data for reliable image analysis and the difficulty of incorporating risk-based knowledge into existing approaches 
continue to be significant obstacles. In this paper, we analyze industry-provided images of subsea pipelines and propose 
a methodology to address the challenges faced by popular computer vision methods. We focus on the difficulty posed 
by a lack of training data and the opportunities of creating synthetic data using risk analysis insights. We gather informa-
tion on subsea pipeline anomalies, evaluate the general computer vision approaches, and generate synthetic data to 
compensate for the challenges that result from lacking training data, and evidence of pipeline damage in data, thereby 
increasing the likelihood of a more reliable AUS subsea pipeline inspection for damage detection.

Keywords  Pipeline inspection · Anomaly detection · Damage detection · Risk analysis · Pattern recognition

1  Introduction

Monitoring and inspection are essential for operational subsea oil and gas pipelines. However, subsea oil and gas opera-
tions are complex, with a range of structures and systems, in complex and harsh subsea environment. As a critical asset 
for transporting oil and gas products over vast distances, subsea pipelines are exposed to a variety of environmental 
hazards. Hazard is defined as the source of harm [1]. Exposure to environmental hazards can damage the pipelines and 
cause severe personnel, environmental, and financial damage [2]. Therefore, proper inspection and maintenance of sub-
sea pipelines are essential tasks for their safe and reliable functioning and operations. In case of an unexpected event, 
continuous monitoring (i.e., pressure drop monitoring for leak detection) notifies the pipeline shutdown system with 
the supervisory role of an operator [3]. Despite the worldwide safety record of subsea pipelines, comprehending and 
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responding appropriately to complex situations as well as anticipating their consequences are crucial for the safety of 
offshore operations [4]. Since sending human operators offshore can be dangerous and expensive, autonomous under-
water systems (AUS) are intended to assist human operators in inspecting offshore structures, especially long and vast 
subsea pipelines. With the development of subsea docking stations that allow AUS to reside on the seabed for months, 
trained operators have the flexibility and opportunity to use AUS to inspect pipelines when the situation calls for it [5].

Autonomy, as described by [6], is the capacity to act and make decisions without external assistance. For AUS, auton-
omy is typically achieved through artificial intelligence (AI) systems, the computer systems designed to mimic intelligent 
human behavior [6], by analyzing large amounts of incoming data collected in near-real-time or real-time by sensors and 
cameras attached to the AUS. For damage detection scenarios, the dominant AI approaches include [7, 8]:

•	 Computer vision methods for analyzing image data,
•	 Machine learning methods that learn from large amounts of data to find patterns, and
•	 Anomaly detection methods that identify and report irregularities, or anomalies, in data patterns.

In addition, risk assessment and analysis are common and well-established approaches for identifying what can go wrong 
in operations and offering a list of hazards, as potential sources of harm, the likelihood, sequence of events and conse-
quences of hazards [9].

In recent years, due to the success of remotely operated vehicles (ROVs) that are manually controlled, pipeline inspec-
tion research has considered the potentials of AI technologies employed by AUS, such as underwater drones. Therefore, 
there is an increase in interest for the potential of image-based inspection by computer vision techniques through 
cameras attached to AUS, such as image classification, object detection, and image segmentation [2, 10–16]. However, 
the existing research for image-based inspections with AUS is particularly oriented toward image color and shape recon-
struction and unsupervised methods due to the complexity of underwater conditions, poor visibility, and a significant 
lack of training data.

Despite the abundance of available research, the remaining obstacles to reliable operations with AUS stem from the 
underrepresentation of evidence of pipeline damage in data, which contributes to data imbalances that can lead to inac-
curate data analysis results and misleading data pattern findings. In addition, there is a significant lack of training data for 
computer vision and data-driven methods to learn the patterns of potential dangers in order to detect them efficiently 
and reliably. Unfortunately, a significant number of the detected anomalies represent insignificant data, also known 
as noise, which further mislead the data analysis conclusions and disrupt the AUS operations decision-making system.

In this paper, we focus on analyzing industry-provided subsea pipeline images captured by underwater drones for 
external damage detection, introducing risk-informed training processes for the anomaly detection methods and evalu-
ating the detected anomalies by isolating potential the anomalies that represent pipeline damage. The focus of this 
research paper is on utilizing risk analysis knowledge and semi-supervising computer vision methods for subsea pipeline 
images for early identification of pipeline damage while separating them from insignificant anomalies (noise and false 
alarms). The objective is to provide the missing training data while limiting the amount of manual labor to annotate the 
training images, and therefore to limit the frequency of false alarms generated by autonomous systems and to identify 
pipeline damage as early as feasible while increasing the scope of anomaly detection capabilities during visual monitor-
ing and inspection. Therefore, the contributions of this paper can be summarized as:

•	 Analysis of external damage on subsea pipelines on raw, industry-provided data.
•	 Generation of synthetic data through a seamless blending of known anomalies, as defined by risk assessment and 

analysis methods, for a more reliable computer vision and anomaly detection.
•	 Review of computer vision challenges, such as monochromatic images and large images that necessitate extensive 

computational power to analyze.
•	 Proposal of a methodology to address the lack of training data, imbalanced data, and data quality for image-based 

subsea pipeline damage detection.

This paper consists of eight sections. Section 1 reviews related work on image-based subsea pipeline analysis. Sec-
tion 2 describes the key problems with the general computer vision methods for subsea pipeline analysis. Section 3 
describes the challenges of underwater computer vision for offshore inspections. Section 4 describes the anomalies 
identified by risk assessment and analysis experts from the oil and gas industry, describes expectations on what 
types of anomalies can occur, their damage potential, and the likelihood of occurrence. Section 5 presents the 
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data, methods, evaluation metrics, and the case study. The resulting methodology is summarized and illustrated 
in Sect. 6. Section 7 discusses the results and observations from the case study. Finally, Sect. 8 concludes the work 
and presents future research directions.

2 � Related work

The efficiency and reliability of damage detection are vastly enhanced by computer vision. During visual inspection, 
environmental conditions and appropriate image collection are essential for obtaining high-quality images for image 
analysis [17]. Computer vision is a type of real-time, in-line detection that requires the analysis of vast quantities of 
data, often including redundant information, and a high-dimensional feature space. The primary obstacles of general 
computer vision applications are the computation speed required for real-time operations and the detection intel-
ligence required to differentiate between significant and redundant information [17]. Recent efforts in computer 
vision have centered on general algorithms for the efficacy and precision of visual inspections [17, 18], the neces-
sity of integrating multiple detection technologies [19], and the improvement of real-time performance with less 
computational power [18, 20]. The restrictions of computational power are particularly critical in applications with 
autonomous systems, such as underwater drones and other mobile vehicles [21]. However, underwater computer 
vision for subsea structures inspection is facing additional challenges, such as poor visibility, and lack of training 
data [21, 22]. Subsea pipelines are exposed to various environmental factors that can compromise their integrity and 
contribute to various types of damage. Due to this, substantial research has been conducted on inspecting subsea 
pipelines to look for damage.

Zhou et al. [7] described the challenge of locating anomalies during subsea exploration. Using a context-enhanced 
autoregressive network that learns semantic dependence based on conditional probability to identify the anomaly 
in low-visibility underwater images weighted by both image reconstruction loss and feature similarity loss, they 
proposed a deep-learning-based anomaly detection framework to identify unknowns in a complex underwater 
environments for autonomous robots. With sufficient training data with images of marine animals, they successfully 
demonstrated their method for detecting marine animals as anomalies on a large, imbalanced dataset.

Samnejad et al. [23] explored ways to reduce the time-to-value and overall cost of the subsea pipeline inspection 
by replacing the laborious task of manually searching for anomalies through unorganized data with an efficient 
workflow through a set of neural network methods and substantial computational power from cloud-based services. 
The authors [23] presented a digital solution that integrates the value of visual data collected and aggregated over 
decades of inspection campaigns with computer vision technologies to detect and classify structure and equipment 
anomalies autonomously. However, the 20,000 images for the training dataset were annotated manually, requiring 
intense labor.

Bastian et al. [24] visually inspected and characterized external corrosion in pipelines located on land using a convo-
lutional neural network (CNN). They proposed a CNN for detecting and classifying corrosion on four levels: no corrosion, 
low, medium, and high corrosion. Despite high accuracy and promising results, the authors [24] encountered several 
issues that made CNN misclassify corrosion, such as leaves, deposits on the pipeline, and the corrosion-like landscape sur-
rounding the pipelines. They highlighted the need for pipeline images to contain background information, or context, for 
training. Among the classified corroded pipelines, there were images with background clutter that the CNN model could 
not distinguish. They emphasized the importance of pipeline images containing context or background information for 
training purposes a recommended a more localized pipeline inspection approach for more reliable results in differen-
tiating corrosion levels. On land pipelines, however, image-based damage detection encounters fewer challenges with 
hazy, monochromatic images than on subsea pipelines, making the subsea pipeline inspection task more challenging.

Khan et al. [25] investigated methods for estimating subsea pipeline corrosion based on the color of the corroded 
pipeline. The authors [25] encouraged incorporating the color correction methods into a robotic system for subsea pipe-
line corrosion inspection, even in real-time to address the visibility challenges for underwater images. They proposed 
an algorithm for image restoration and enhancement to reduce blur and improve the color and contrast of underwater 
images that were tested on experimentally collected and publicly available hazy underwater images.
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3 � Problem description

Underwater computer vision for offshore inspections with autonomous systems is receiving greater attention and 
the methods need to mature for reliable and safe anomaly detection operations. The primary challenges that pique 
the interest of both the research community and the industry are:

•	 Imbalanced data is a frequent obstacle in data-driven analysis, such as with most machine learning and anomaly 
detection techniques. The difficulty is most apparent in anomaly detection applications where anomalies may 
reflect important information, such as potential pipeline damage. Due to the scarcity of damage evidence in 
everyday operations, the collected data consists of the vast majority of non-anomalous situations, making it dif-
ficult for algorithms to learn patterns about anomalies, report them, and not eliminate them as noise, which is 
the information that misleads data analysis [26].

•	 Training data is generally sparse in AI-based data-driven approaches. There is a saturation of applications tested 
with accessible training data; nevertheless, unsupervised algorithms that do not require annotated data are 
becoming increasingly popular as more data becomes available [27]. Yet, due to the complexity and inexplicability 
of these techniques, there is a growing interest in discovering automated methods to annotate massive amounts 
of data and save laborious manual effort. Creating training data is being explored from different perspectives, 
among others, generating data from simulations, using AI tools for automatic annotation, or through transfer 
learning where data is learned from one application and tested on a different one.

•	 Image quality and visibility are computer vision applications’ most persistent and obvious obstacles. Due to the 
nature of water as a medium, underwater photos frequently need to be corrected to avoid incorrect lighting and 
color, causing them to appear predominantly blue or green. In addition, seawater may include a high concentra-
tion of plankton and other marine organisms that can obscure photographs. For subsea pipelines, layers of mate-
rial such as sand and biological deposits referred to as fouling and biofouling, limit the view of the pipeline surface, 
and inhibit inspection. Hence, many underwater computer vision applications concentrate on reconstructing the 
image’s color, shape, and overall item visibility.

•	 Computing power is another challenge for computer vision applications, because images are often very large and 
need substantial computing power and processing time. A weakness of prominent neural network algorithms is 
the necessity to resize or downscale images to improve processing speed, which may result in a substantial loss 
of information from the resized images. Sliding-window approaches are used in applications where the larger 
regions of image need analysis without substantial resizing or in case of substantial information loss due to resiz-
ing [28].

Autonomous systems powered by computer vision have great potential to detect subsea pipeline damage. However, 
as offshore operations prioritize the reliability and maturity of emerging technologies, it is necessary to investigate 
options for generating more training data and reducing the need for Black-box algorithms to be closer to permanently 
employing autonomous underwater systems for remote operations. It is also important to determine if the image 
resizing, which is often required to reduce needed computational power during image analysis poses a considerable 
information loss and reduces the chances of reliable anomaly detection.

4 � Anomalies as risk factors

General visual inspection of subsea pipelines, traditionally performed by ROVs is one of the most common inspec-
tion methods for determining the pipeline’s integrity and identifying areas of increased risk [29]. The operators who 
manually control the ROV during the pipeline inspection are trained and experienced in detecting anomalies on 
and around pipelines. The following is a set of the common anomaly criteria for general visual inspection of subsea 
pipelines established by the best practices in industry [29]: 

1.	 Any evidence of fluid leakage.
2.	 Any external corrosion on the exposed metal or outer sheath.
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3.	 Any external damage, deformation, and bending on the pipe surface, anodes or other components.
4.	 Any debris blocking the visibility of the pipeline, including litter and other seabed debris, and sediments, is known 

as fouling. The visibility is also impeded by an abundance of marine growth, known as marine fouling or biofouling. 
The anomaly is considered if more than 50% of the surface is covered within 10 ms. Additionally, debris considered 
an anomaly are objects in the nearby vicinity, up to 1 m, of a pipeline that can cause damage or obstruct visibility, 
such as large boulders.

5.	 Ineffective pipeline support, including ineffective seabed support.

Accordingly, Table 1 shows a summary of anomalies as risk factors that can contribute to pipeline failure. Table 1 illustrates 
each risk factor’s potential damage analyzed, from extensive to minor damage, and compared to its expected occurrence 
probability, from most probable to least probable occurrence of damage [30].

Table 1 shows the general representation of anomalies and the expectation of their occurrence probability, However, 
the exact probability and anomalies that are identified as damage are typically calculated within a specific operation 
context. It is crucial for the UAS that detects anomalies to have information or knowledge of the major risk contributing 
factors associated with the subsea pipelines to adjust expectations and reporting in regions where the likelihood of the 
most extensive damage potential is higher.

5 � Case study

5.1 � Data description

The dataset for this case study consists of an imbalanced set of 166 subsea pipeline images captured with an autonomous 
underwater drone, provided by domain experts from the oil and gas industry. There are 126 images without anomalies 
and 38 images with anomalies or mechanical damage on the surface of the pipeline. We used 35 additional images 
without anomalies to generate synthetic mechanical damage images. This was done to balance out the anomalous and 
non-anomalous images and test if the synthetic data is sufficiently realistic to improve the network learning process. The 
images are in high resolution and do not require shape or color recovery. However, the nature of the mechanical damage 
makes it difficult to distinguish the damage from marine growth on the pipeline surface, as both share irregular patterns 
and similar colors, posing a challenge to distinguish between small-scale damage and marine growth. The original size of 

Table 1   Risk factors contributing to pipeline failure, adapted from [30]
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each image was 4096 x 2304 pixels, however, due to computational resources required during CNN training, the images 
were reduced to 224 x 224 pixels where mechanical damage is still visible on the pipeline.

5.2 � Image classification with neural networks

One of the elements of data analysis through machine learning is the discovery of discriminant data features. Discovering 
discriminant data features in images can be particularly challenging and requires complex methods inspired by visual 
cortex processing in the brain that are capable of learning a substantial number of features and extracting patterns [31]. 
We will focus on a deep learning method CNN or convolutional neural networks. The CNN model consists of convolutional 
layers whose primary function is to learn and extract the features required for efficient image comprehension [31]. The 
objective of the convolutional layer, modeled over neuronal cells, is to extract features such as edges, colors, texture, 
and gradient orientation. Convolutional layers, see Fig. 1, are composed of convolutional filters or kernels. The kernels 
are convolved across the width and height of the input image. CNN intuitively learns filters that are activated upon 
encountering edges, colors, textures, and other image properties. The pooling layer performs nonlinear downsampling 
of convolved features and reduces the computational power necessary to process the data by reducing dimensionality 
[31]. The output of pooling is the subdivision of its input into a collection of rectangle patches. Depending on the pool-
ing method selected, each patch is replaced with a single value [31]. There are two main types of pooling, maximum 
and global average pooling. Global average pooling is the more interpretable of the two types because it enforces cor-
respondence between feature maps and categories through the creation of micro-networks [32]. Global average pooling 
is a structural regularizer that prevents overfitting, a phenomenon in which the CNN model provides accurate predic-
tions for training data but not test data. Maximum pooling, or Max pooling performs linear separation, and provides a 
maximum network that is more potent and achieves higher performance with less computational power by assuming 
that instances of latent concept lie within a convex set [32].

Although CNN is considered a less explainable approach in image analysis applications, numerous efforts have been 
made to enhance its explainability. Particularly for image classification and object detection tasks, localized anomaly 
detection is one of the most effective methods for explaining which local regions of an image have been selected for 
classification. Typically, local regions are depicted using attention maps, which highlight feature regions deemed (by 
the trained model) crucial for satisfying the training criteria [33]. An example of an attention mask is a highlighted class 
region on the image, such as mechanical damage, which helps to explain why this image has been classified by CNN 
as mechanical damage or anomaly. Localized anomaly detection is crucial not only for determining if the classification 
occurred for the correct reason but also for understanding CNN’s learning patterns and identifying noise during clas-
sification (i.e., analyzing highlighted regions that do not represent the accurate class).

5.2.1 � Evaluation metrics

The evaluation metrics are used to assess the general performance of a trained method, such as a classifier that classifies 
two or more classes from a given set of data [34]. Various metrics can be evaluated based on the application’s requirements. 

Fig. 1   Building blocks of CNN, 
adapted from [31]

Table 2   Confusion Matrix for 
Binary Classification, adapted 
from [34]

Confusion matrix Actual positive class Actual negative class

Predicted positive class True Positive (TP) False Negative (FP)
Predicted negative class False Positive (FP) True Negative (TN)
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Accuracy is one of the most common metrics that counts the total amount of correct classifications on the unseen data. The 
correct and incorrect classification results can also be illustrated with a confusion matrix, such as in Table 2.

The confusion matrix consists of the total numbers of correctly and incorrectly predicted classes, and the numbers of 
actual classes, to determine true and false positive and negative predictions [34]. True positive (TP) and true negative (NP) 
represent the total number of accurately predicted classes, where the predictive method (i.e., classifier) accurately predicted 
the instances of a positive class and the instances of a negative class. Alternatively, a false positive (FP) and false negative (FN) 
represent the total numbers of incorrectly predicted positive and negative classes. Typical evaluation metrics that are calcu-
lated through a confusion matrix are accuracy, error rate, sensitivity, specificity, precision, recall, F-measure, and averaged 
measures of each of these metrics [34].

Accuracy, calculated with Eq. 1, measures the ratio of correct predictions from the total number of predicted instances 
[34]. However, accuracy does not represent a reliable evaluation metric when the dataset is imbalanced. Due to the low 
representation of certain classes, many predictive models are unable to learn the patterns of poorly represented data 
and the inaccurate prediction becomes nearly invisible as compared to the prevalent number of highly represented 
classes. The accuracy of a predictive model can be high even when all of the underrepresented classes are predicted 
incorrectly. Depending on the needs of an application, other evaluation metrics are measured to determine the reliability 
of the model. Error rate measures the ratio of incorrect predictions from a total number of evaluated instances and it is 
calculated with Eq. 2. Sensitivity or Recall, calculated with Eq. 3, measures the proportion of correctly classified positive 
patterns, whereas Specificity (see Eq. 4) measures the proportion of correctly classified negative patterns [34]. With Eq. 5, 
Precision determines correctly classified positive patterns from the total predicted patterns of a positive class. Finally, 
F-Measure, calculated with Eq. 6, measures the harmonic mean between recall and precision [34].

5.3 � Generating synthetic anomalies

Global image editing, such as resizing, shape reconstruction, and color correction, is a typical preprocessing step for image 
analysis tasks. However, achieving local changes that are restricted to a region of an image, such as object replacement, dis-
tortion, blending, cloning, and texture changes, can provide opportunities to manipulate images and create new, seamless, 
and realistic images. To balance the dataset and provide additional training data for image analysis, we generate synthetic 
anomalies, mechanical damage on pipeline surface, using the computationally efficient Poisson equation for local seamless 
blending. With the Poisson equation, we blend an extracted anomaly from anomalous images and seamlessly blend it into 
another image without anomalies.

(1)Accuracy(acc) =
tp + tn

tp + fp + tn + fn

(2)ErrorRate(err) =
fp + fn

tp + fp + tn + fn

(3)Sensitivity(sn)orRecall(r) =
tp

tp + fn

(4)Specificity(sp) =
tn

tn + fp

(5)Precision(p) =
tp

tp + fp

(6)F −Measure(FM) =
2 ∗ p ∗ r

p + r

(7)v =∇g
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Perez et al. [35] described and proposed a method for seamless object blending. The seamless blending method 
is based on a Poisson partial differential equation with Dirichlet boundary conditions that specify the Laplacian of an 
unknown function over the domain of interest and the unknown function values at the domain’s boundary. This allows 
an object to be seamlessly interpolated onto another object. Figure 2, described by Eqs. 7 and 8, illustrates a guided 
interpolation in terms of a function f that interpolates in domain Ω the destination function f* within a closed subset S 
with boundary �Ω , guided by vector v, as a gradient field of a source function g [35].

A detailed mathematical description of the process is offered in [35]. Seamless cloning and insertion of an object 
relies on importing the gradients where the most common option for the guidance field v is a gradient field extracted 
directly from the image source (i.e, color information from the source image). Gradient field performs non-linear mixing or 
seamless blending, between source and destination images and selects the more dominant features for blending (color, 
texture, etc.). Equation 7 is used to guide the interpolation of this source image, which is denoted by g, after which the 
final reading for the function f is described by Eq. 8.

Figure 3 shows the process of seamless blending on an image of a subsea pipeline. A source image (Fig. 3a) has a 
mechanical damage anomaly on the pipeline that is masked off using an open-source annotation tool for machine 
learning and image analysis applications. We used Label Studio [36] for this purpose to achieve a precise mask image as 
shown in Fig. 3b. Annotation or labeling of images with Label Studio [36] was performed by marking a local region on 
the image. The marked region contains the bounding box and is assigned a label. Exported labels of the labeled regions 
are then exported as mask images. The source and mask, along with the position of the local region (i.e. position on the 
pipeline surface) on the destination image (Fig. 3c) where the blending will occur (other changes such as resizing and 
reshaping of source/mask object can be made at this point) are provided for seamless blending. Finally, the resulting 
image is obtained as a synthetic anomaly, as depicted in Fig. 3d. Figure 4 shows other images with synthetic anomalies. 

(8)△f =△ g overΩ, with f | �Ω = f ∗ |
�Ω

Fig. 2   Guided image interpo-
lation, adapted from [35]

Fig. 3   Seamless blending of 
mechanical damage on a sub-
sea pipeline: a Source image 
with an anomaly from which 
a mask b and seamlessly 
interpolated onto destination 
image c, resulting in d 
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Obtaining the mask images, which requires hand-labeling of anomalies with the knowledge of anomalies as risk factors, 
is the most labor-intensive aspect of creating synthetic anomaly images. However, once the masks have been obtained, 
the remaining steps are automated to produce batches of synthetic images. The reshaping and placement of the anoma-
lies are randomized so that they do not appear in identical or similar forms. Nonetheless, generated synthetic anomaly 
images are manually inspected to identify any unrealistic or incorrect results.

5.4 � Image classification without synthetic training data

CNN Global Average Pooling and Maximum Pooling on two-dimensional images have been implemented through 
Keras, a Python-based application programming interface for deep learning that runs on the machine learning platform 
TensorFlow [37, 38].

We analyzed the available data without added synthetic anomaly images to test the level at which CNN can classify 
the normal from anomalous images. The total number of images in the dataset without added synthetic mechanical 
damage is 164, out of which there are 126 normal images, and 38 of anomalous images with mechanical damage. We 
split the dataset into 80% for training, and 20% for testing. For the training, we have set the CNN to train over 30 epochs. 
During each epoch, one cycle of CNN training, all images are processed forward and backward to the CNN. Figure 5 shows 
the training and validation losses. Training loss measures how well the model fits the training data, while validation loss 

Fig. 4   Other examples of 
synthetic anomalies

Fig. 5   Training and validation loss by global average and max pooling, without synthetic training data
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measures how well the model fits new data. The left graph in Fig. 5 shows the training and validation loss lowering with 
the epochs, indicating that the model is getting better with learning. However, the graph on the right in Fig. 5, display-
ing losses for The Maximum Pooling model, shows a mismatched pattern for training and validation, indicating that as 
the model is struggling to learn the pattern with epochs. These trends are also visible through the accuracy, Fig. 6, and 
particularly when observed in the resulting confusion matrix, Fig. 7. The confusion matrix in Fig. 7 shows that Global 
Average Pooling resulted in four incorrectly classified anomalies and only one correctly classified anomaly. Maximum 
Pooling, however, was not able to learn the trends of anomalous class and did not classify any images as anomalies.

5.5 � Image classification with synthetic training data

This section describes the results achieved with added synthetic anomalies through analysis with CNN Global Average 
Pooling and Maximum Pooling on two-dimensional images [37, 38].

Total number of images in the dataset with added synthetic mechanical damage, is 199, out of which there are 126 
normal images and 73 anomalous images with mechanical damage where original and synthetic images are mixed. We 
split the dataset into 80% for training, and 20% for testing and set the CNN to train over 30 epochs. Figure 8 shows the 
training and validation loss for Global Average Pooling, and Maximum Pooling, with added synthetic data. Unlike Maxi-
mum Pooling the loss for Global Average Pooling shows a good result, with a promising learning trend with the epochs. 
This is also observed in Figs. 9 and 10 where the accuracy improves for both, training and validation over the epochs, in 

Fig. 6   Training and validation accuracy by global average and max pooling, without synthetic training data

Fig. 7   Confusion matrix by 
global average and max pool-
ing, without synthetic training 
data
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Fig. 8   Training and validation loss by global average and max pooling, with added synthetic training data

Fig. 9   Training and validation accuracy by global average and max pooling, with added synthetic training data

Fig. 10   Confusion matrix 
by global average and max 
pooling, with added synthetic 
training data
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both cases Global Average, and Maximum Pooling CNN. In the confusion matrices, Fig. 10, both approaches show that 
the network was able to learn patterns of anomalous images. With additional synthetic training data, the CNN model 
has learned the pattern of anomalies more successfully, which is the most optimistic result. In the case of Global Average 
Pooling, eight anomalies were classified correctly, and six incorrectly. For Maximum Pooling, four anomalies were clas-
sified correctly, and nine incorrectly. Maximum Pooling showed difficulty to classify small-sized anomalies (such as the 
anomaly in Fig. 12). In both cases, there is a high accuracy rate for classifying images without anomalies. When synthetic 
anomalies are added to the training data, the normal and anomaly classes become more balanced, and the CNN model 
has more anomaly data to learn from.

5.6 � Localized anomaly detection

Localized anomaly detection highlights the anomaly on the evaluated image. The highlighted part of the image illus-
trates how CNN classified the image into noromal and anomalous regions. Figure 11 illustrates the examples of localized 
mechanical damage on accurately classified subsea pipeline anomalies, we see three different regions highlighted with 
red boxes: 

(a)	 Localized damage on the pipeline without any noise.
(b)	 Localized damage on the pipeline surface, and dislocated anode cover on the sides of the pipeline.
(c)	 Localized damage on the pipeline surface, and noise in the corner of the image.

Figure 11a shows a clean image of highlighted damage as the most desirable outcome. However, two cases Fig. 11b 
and c have resulted in additional highlighted regions that do not represent mechanical damage. The highlighted regions 

Fig. 11   Localized mechanical damage

Fig. 12   Inaccurate classifica-
tion of undersized anoma-
lies. True label: Anomaly; 
Predicted: Non-anomalous 
(normal)
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give insight into possible noise levels that result in inaccurately classified anomalies. Similarly, Fig. 12 shows one of the 
inaccurately classified images where an undersized anomaly is not recognized and captured by CNN.

6 � Resulting methodology

The case study and its objectives are summarized in the proposed resulting methodology presented in Fig. 13.
The resulting methodology proposes the eight-task data analysis lifecycle for pipeline damage detection on images 

of imbalanced subsea pipelines. Tasks 3, 4, and 8 are the most novel contributions to a traditional data analysis lifecycle: 

1.	 The first task is to understand the objective, the problem and gather the data.
2.	 As the objective is to detect pipeline damage, the second task is to observe the data, identify the anomalies that are 

pipeline damage within the data, and determine the imbalances between the anomaly and no-anomaly data classes.
3.	 Once the anomaly and no-anomaly classes have been determined, the third step is to prepare the data by extracting 

images with pipeline damage from the dataset, masking, and annotating images in preparation for the next step.
4.	 The fourth task is processing the data which entails generating synthetic damage by seamless blending and image 

manipulation. This step allows us to expand the training data with additional evidence of pipeline damage.
5.	 Once the training data is complete, the fifth task consist of training the classification models.
6.	 After the training is complete, the sixth task is testing the classification models.
7.	 Utilizing appropriate evaluation metrics, the seventh task is the validation of classification outcomes.
8.	 Finally, the eighth task is to communicate and interpret the classification results. One of the efforts at interpretation 

is the application of localized anomaly detection that provides more precise insight into damage detection and 
possible errors. The last task is particularly important for complex image analysis algorithms that are challenging to 
explain.

The proposed methodology is based on the case study presented in this paper and the primary challenges identified in 
image analysis and damage detection, such as a lack of training data and the difficulty explaining Black-box algorithms.

7 � Discussion

Despite the small data size, the resulting methodology that includes generating synthetic anomalies to balance the 
heavily imbalanced data and employing localized anomaly detection has proven to be a promising strategy for address-
ing the lack of training data, imbalance, and explainability issues that are commonly encountered in image analysis. 
The subsea images present additional difficulties with visibility, color, and resizing which is especially evident in cases 
of small and less evident anomalies that are challenging to detect. The resizing of the images has contributed to loss of 
information resulting in small and less evident anomalies to be less visible. However, resizing of the images is necessary 

Fig. 13   Resulting methodol-
ogy
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because the computational requirement is a critical challenge. Analysis of large, high quality images requires significant 
computational resources. Therefore, resizing of images is necessary and during this process, information may be lost. 
Despite considerable image compression, seamless blending, manipulation, and generation of anomalies allow for the 
realistic and straightforward expansion of data as required. Moreover, since there is a general absence of high-quality 
data on subsea pipelines, this method of creating synthetic images may prove useful in industry for generating new 
data with minimal effort and sharing the data openly and anonymously, while maintaining the realism of the images.

8 � Conclusion and future work

As one of the most important assets in the transportation of oil and gas products, subsea pipelines are vulnerable to 
environmental hazards that can compromise their structural integrity and result in catastrophic environmental dam-
age and financial loss. Autonomous underwater systems (AUS) are expected to assist subsea pipeline inspection and 
enhance damage detection. However, image-based inspections with computer vision and anomaly detection methods 
for detecting anomalies, such as pipeline damage, continue to face numerous obstacles that reduce their reliability. 
These obstacles include visibility, color reconstruction, and shape reconstruction. The lack of training data for image 
analysis impedes reliable subsea pipeline inspection. In this paper, we analyzed images of subsea pipelines provided by 
the industry and generated a set of synthetic images using seamless blending techniques. We compared the outcomes 
of convolutional neural networks trained on data with and without synthetic anomalies. In addition, localized anomaly 
detection during CNN training and validation increases explainability by highlighting regions of classification impact. 
Finally, we demonstrated the potential of our approach of augmenting the data with synthetic anomalies and presented 
the tasks in a new methodology that expands the traditional data analysis lifecycle. The proposed methodology shows 
a potential in training AUS for more reliable damage detection, and assisting pipeline inspection tasks.

We plan to generate additional anomalies as risk factors, such as misplaced objects and boulders, and test multivariate 
classification and semantic segmentation in our future research. With additional data and evidence of pipeline damage, 
we intend to further test the proposed methodology. In addition, we plan to investigate methods that can analyze large 
images without resizing or information loss, such as moving window methods that analyze large images in batches.
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