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Abstract The recognition of different activities in sports has gained attention in recent years for its

applications in various athletic events, including soccer and cricket. Cricket, in particular, presents a

challenging task for automatic activity recognition methods due to its closely overlapped activities

such as cover drive, and pull short, to name a few. Existing methods often rely on hand-crafted fea-

tures as the limited availability of public data has restricted the scope of research to only the signif-

icant categories of cricket activities. To this end, we proposed a cricket activities dataset and an

intuitive end-to-end deep learning model for cricket activity recognition. The data is collected from

online sources and pre-processed through cleaning, resizing, and organizing. Similarly, an intuitive

deep model is designed with a combination of time-distributed 2D CNN layers and LSTM cells for

extracting and learning the spatiotemporal information from the input sequences. For benchmark-

ing, we evaluated the model on our cricket datasets and four standard datasets namely UCF101,

HMDB51, YouTube action, and Kinetics. The quantitative results show that the proposed model

outperforms different variants of recurrent neural networks and achieved an accuracy of 92%,

recall of 91%, and F1 score of 91%. Our code and dataset is publicly available for further research

on https://drive.google.com/file/d/1c9qcAz4q00qvx4yFA3pSudWFczm1cWUL/view?usp=sharing.
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1. Introduction

In sports, activity recognition plays a significant role to track
the performance of the individual player as well as the entire

team [1–4]. Activity recognition can be applied to a wide range
of athletic events. Each event has its own distinct dynamics,
which may differ according to various circumstances. Some

sports are driven by simple activities such as walking and sit-
ting, while others are driven by complex activities like an over-
head smash in Tennis [5]. Event detection in sports videos is a
very challenging and difficult task because of abrupt motion,

similar outfits of the players, varied viewpoints, and camera
movement [6]. In sports videos, the player’s posture changes
from moment to moment [7]. For example, physical movement

is a simple process of hitting the ball in baseball and cricket.
The complete shot of a player is made up of the movements
of various body parts, including the legs, arms, head, and

entire body working together in coordination. Therefore, an
event is a combination of multiple activities that can be catego-
rized into low, medium, and high-level activities or complex

activities as shown in Fig. 1.
Various researchers have been contributing towards activity

recognition in various sports including but not limited to
cricket, badminton, volleyball, and football. A number of

paradigms are proposed to efficiently classify the activities
[8]. In a nutshell, it can be divided into two groups namely tra-
ditional machine learning (ML) [9] and advanced deep learning

(DL) activity recognition methods. ML techniques are based
on two main steps i.e., (i) feature embedding - feature descrip-
tors selection (ii) and an appropriate classification algorithm

for classifying the underlying activity. For the feature descrip-
tor, the local and global features can be used to extract spatial
and temporal information for the input sequences [10]. Hand-

crafted feature extractors are most of the time domain-specific
and specifically designed for specific types of tasks. For exam-
ple, Zhao et al.[11] proposed a key frames-based descriptor
that extracts key points. In some cases, these extractors gener-

ate similar feature maps for two different activities, making the
representation of various activities difficult. To process com-
plicated datasets, hybrid techniques combine various features

such as motion, background, and histogram of oriented
(HOG) and pass them to the prediction module. However,
Fig. 1 Levels of Recognition. Different levels of activity recogni
the high computational complexity in terms of long-time
videos and real-time response in continuous video streaming
is challenging. To target specifically cricket activities Kar-

maker et. al. [12] introduced a strategy that predicts the shot
type played by players. They used camera motion parameters
for calculating the trajectories and then used these calculated

trajectories to classify the performed shot into two classes
including cover drive and pull shot. In addition, they used a
3D MACH kernel to train a model to recognize four types

of shots based on including square-cut, flick, off-drive, and
hook. Angle ranges for the final prediction were calculated
by utilizing an optical flow features vector by looking for var-
ious thresholds for a shot. Noorbhai et. al. [13] analyzed the

back lift of the batsmen, helps in the categorization of the posi-
tion of the bat and helps in player performance analysis. Sim-
ilarly, Arora et al. [14] proposed an algorithm for ball

detection and tracking based on the histogram of gradients
(HOG) and support vector machine for classification. Yeole
et al. [15] created a strategy for monitoring wickets in order

to assist the third umpire in making a run-out decision. Fur-
ther, Chowdhury et al. [16] come up with a strategy for diving
the bowling crease into two sections. They used the image sub-

traction method to differentiate between a legal ball and a no-
ball. Irrespective of the moderate success of traditional
approaches, they have several drawbacks like high time com-
plexity and being sensitive towards changes in data such as ori-

entation, illumination, and position of the objects [17].
To handle the limitations and challenges of traditional

methods, researchers developed DL-based methods [18–20].

The DL techniques are able to learn effectively and represent
high-level visual features and then classify videos [21,20] in
an end-to-end fashion. Convolutional Neural Network

(CNN) is a popular architecture that often alters the parame-
ters based on the information and uses convolutional opera-
tions to learn the best features [22–24]. In the realm of DL,

Feichtenhofer et al. [25] proposed simple CNN features and
fused temporal and spatial features to recognize activities. Sim-
ilarly, Tu et al. [26] developed a CNN model consisting of
multi streams that are able to learn human-related features

for recognizing various activities. Ijjina and Mohan [27]
developed a hybrid strategy for learning multiple features for
activity recognition by fusing various features [28]. However
tion are presented namely, low-level, mid-level, and high-level.
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one of the basic limitations of this technique is that they are
only able to extract short-term information. To extract long-
term spatiotemporal cues from video sequences Dai et al.

[29] and Gammulle et al. [30] used a two-stream network. Fur-
thermore, Tsunoda et al. [31] presented a centralized deep neu-
ral network to classify player activities in sports based on the

player’s location in the frames. They categorized the sports
activity recognition framework into three stages including fea-
ture extraction, dictionary learning, and video classification.

Most of the contemporary methods achieved better perfor-
mance. However, they relied on limited data and used hand-
crafted descriptors or a separate feature extraction module
that has high computational complexity. Due to the unavail-

ability of a public dataset in cricket, less attention has been
given to recognizing different activities like batting (hitting a
ball with a cricket bat). To this end, we proposed a dataset that

is publicly accessible to researchers consisting of complex
cricket activities. We also proposed an intuitive deep model
that consists of three stages, namely pre-processing, feature

extraction, and classification. In the first step, keyframes are
selected and resized to the standard size of 100 � 100 for effec-
tive model training. In the second step, the resized key-frames

are used as input to the CNN, and the CNN extracts spatial
features using distributed CNN layers. Each convolutional
layer applies a set of learned filters to the input key-frame to
capture specific patterns, and the resulting feature maps are

passed to the next layer for further processing. The output of
the CNN is a set of high-level features represented in a way
that is useful for activity recognition. Afterwards, the extracted

features vector is fed to a long short-term memory (LSTM) to
effectively classify the sports activity from a video sequence. In
a nutshell, the contributions of this study are summarized as

follows.

� We have compiled a comprehensive cricket dataset encom-

passing five complex activities. The dataset is fully anno-
tated and is available to the research community.

� We have designed an intuitive CNN-LSTM time-
distributed model for the recognition of complex cricket

activities, specifically batting.
� An extensive experiment has been performed with our data-
set and four benchmark datasets. Our model was evaluated

against existing variants of recurrent neural networks
(RNNs) using accuracy, recall, and F1 score as metrics.
The quantitative results indicate that our model achieves

superior results.

The rest of the paper is structured in the following order.
Section 2 provides a detailed description of the proposed

method. The dataset description, experimental results, and dis-
cussion are given in Section 3. Section 4 gives future directions
and final remarks that conclude the paper.

2. Methodology

The graphical representation of the proposed model is given in

Fig. 2. The complete information on the model is tabulated in
Table 1. The proposed model architecture consists of various
layers including Time distributed 2D-CNN, Max pooling

(MP), and fully connected layers. The model accepts a sequence
of frames and is analyzed by the CNN network that extracts
spatial features from the input frames. The LSTM layers are
utilized to capture the temporal features and dependencies
between the frames. The model includes multiple convolutional

layers with 64 feature maps each. An activation function,
specifically the rectified linear unit (ReLU) function, is used
in each convolutional layer to introduce non-linearity to the

output of each layer. The outputs of the last max-pooling layer
in the CNN are flattened and fed to the LSTM layers, which
capture the temporal dependencies in the sequence of frames.

Flattening the output of the max-pooling layer means that
the spatial dimensions are reduced, resulting in a 1-
dimensional vector that can be fed to the LSTM layer. The layer
uses a kernel size of 3 � 3 to perform convolution on the input

frames. The 2 � 2 jump refers to the stride length or step size of
the convolutional kernel, which determines how many pixels
the kernel moves between each convolution operation. To pre-

vent the loss of information at the boundaries of the input
frames, the layer uses the same padding technique. Padding
involves adding extra pixels around the edges of the input

frames to create a larger frame before performing the convolu-
tion. This ensures that the convolutional kernel can process the
pixels at the edges of the frames without missing any informa-

tion. To reduce the size of the feature maps, each max-
pooling layer contains a kernel size of 4 � 4, meaning it takes
a sub-region of 4 � 4 pixels from the input feature map along
with a filter jump or stride length of 2 � 2 means that the

sub-region moves 2 pixels in both the horizontal and vertical
directions between each pooling operation and as above the
same padding strategy is utilized. As shown in Table 1, the sec-

ond convolutional layer produces 32 feature maps as output by
3 � 3 kernel size, 2 by 2 stride, and a ReLU function as activa-
tion for each kernel. The technique is replicated on the feature

maps created by the first layer by the second layer and the 2D
max-pooling layer with a distinguishing filter size of 4 � 4
and a stride size of 2 � 2 considered. In addition, the third

CNN layer in the model has 64 feature maps, which are similar
to the previous two CNN layers. This layer also uses the same
padding technique to prevent the information from being
skipped at the input frame boundaries while convolution

through a kernel size of 3x3 along with a stride size of 2x2. After
the convolution, the output feature maps are passed through a
max-pooling layer with a filter size of 2� 2 and a stride of 2� 2

to reduce their size. The same padding strategy is utilized in
this max-pooling layer as well. These strategies are repeated
in the third layer to enhance the useful features in the video

sequence.

3. Experimental analysis and results

All the experiments were carried out in a python virtual envi-
ronment consisting of Keras along the back-end of
TensorFlow-GPU installed on the personal computer. The
computer is equipped with an NVIDIA GeForce GTX 3060

GPU and 12 GB of RAM. Further, we used CUDA toolkit
9.2 and cuDNN v7.0. Details of the environment specification
are presented in Table 2. The categorical cross-entropy loss

function is used to measure the error between the predicted
values and actual values. During the training phase, the Adam
optimizer is used to optimize the weights and biases of the neu-

ral network model. The batch size is set to 16, and the number
of epochs is set to 60.



Fig. 2 An overall structure of the proposed model. Firstly, the keyframes are extracted from the sports videos and fed to the CNNmodel

for features extraction. Then, the extracted features are fed to the LSTM model for effective sports activity recognition.

Table 1 Details of the CNN-LSTM model.

Layer Kernels Size Padding Jump A-Function Output Maps

TD (Con2D)1 16 3�3 same 2�2 Relu 10, 100, 100, 16

TD (Max-Pooling2D)1 1 4�4 - 2�2 - 10, 25, 25, 16

TD (Con2D)2 32 3�3 same 2�2 Relu 10, 25, 25, 32

TD (Max-Pooling2D)2 1 4�4 - 2�2 - 10, 25, 25, 16

TD (Con2D)3 64 3�3 same 2�2 Relu 10, 6, 6, 64

TD (Max-Pooling2D)3 1 2�2 - 2�2 - 10, 3, 3, 64

TD (Con2D)4 128 3�3 same 2�2 Relu 10, 3, 3, 128

Time-Distributed (Max-Pooling2D)4 1 2�2 - 2�2 - 10, 1, 1, 128

LSTM - - - - - None, 10, 128

Time-Distributed (Flatten) - - - - - 49408

Table 2 System specifications and hardware/software configurations for developing the proposed method.

Hardware Model (version)

PC Type i5-10400 CPU@2.90 GHz

Processor NVIDIA Ge-Force GTX 3060

Operating system Windows 10 Pro

RAM 16 GB

CUDA toolkit 11.3

CUDNN v7.0

Python version 3.7

TensorFlow 2.8.0

774 W. Ahmad et al.
3.1. Datasets

3.1.1. Our Cricket Dataset

The cricket video dataset is collected from YouTube and

cricket-info websites. The dataset includes 722 videos that rep-
resent different classes of batting activities, including pull shot,
bowled, reverse sweep, defence, and cover drive as shown in
Fig. 3. We present the details of our dataset in Table 3. The
videos were all recorded at the same frame rate of 30 and

had the same background, ground, pitch, and spectator
accommodation. Each class contains 150 videos, and the
shortest video in the dataset has 56 frames. The dimensions

of each frame are 840 x 480. We used five different classes from
each video. The video editor tool was used to extract short



Table 3 Our cricket dataset, which consists of 723 videos

divided into five classes. We also provide the number of videos

for each class.

Classes No. of Videos Duration (s) Frame/s

Bowled 150 3:00 30.57

Cover Drive 150 3:00 30.82

Defence 150 3:00 30.97

Pull Shot 150 3:00 30.50

Reverse Sweep 122 3:00 30.91

Table 4 UCF101 Dataset. We provide the details in terms of

classes, number of videos, and frame rate.

Classes No. of Videos Frame/s

Basketball Dunk 131 25.00

Cricket Bowling 139 26.33

Table Tennis Shot 140 25.00

Tennis Swing 166 29.70

Volleyball Spiking 116 27.00
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video clips of 1 to 3 s in duration for each of these categories.
This process was repeated for each video, resulting in a dataset
of short video clips that can be used for various purposes such

as recognition, analysis, etc. This approach of creating a data-
set of short video clips is common in ML tasks such as action
recognition or gesture recognition. By using short video clips,

the amount of data required for recognition is reduced, and it
becomes easier to train ML models. The resulting dataset can
be used for a range of applications such as sports analysis,

surveillance, or human–computer interaction. The action tags
in the dataset are not in a numerical format. We used one hot
encoding as the encoding method. This is because there were
very few zero values in the dataset, and hot-encoding encoding

is a suitable technique for converting categorical variables into
numerical values when there are few unique categories. Next,
frames were extracted from videos in the dataset, and these

frames were split into training and validation sets. The split
was made in such a way that 75% of the frames were used
for training the DL model, while the remaining 25% were used

for validation or testing.

3.1.2. UCF101 Dataset

UCF101 is a challenging dataset representing realistic activities

performed in real life and is unique compared to other datasets
depicting activities performed by actors. UCF101 is a data col-
lection of realistic activities in videos taken from YouTube

with 101 activity categories. UCF101 is the most complex data
set to present, with 13320 videos from 101 activity classes and
huge variations in camera motion, object appearances and

position, object scale, perspective, background clutter, illumi-
nation variation, and so on. Because the majority of available
activity recognition data sets are not realistic and are per-
formed by performers, UCF101 intends to inspire further

activity recognition research by learning and exploring new
realistic activity categories. We only consider videos from this
dataset that resemble cricket activities. These are basketball

dunk, cricket bowling, table tennis shot, tennis swing, and vol-
leyball spiking. Some of the videos present different illumina-
Fig. 3 Our cricket dataset, consisting of five classes: bow
tion conditions, viewpoints, and poses. We present the

details in Table 4.

3.1.3. HMDB51 dataset

The HMDB51 dataset represents human interactions with var-

ious physical interactions, facial movements, and body move-
ments. This dataset is significantly challenging because the
clips in each category are grouped with different lights for dif-

ferent topics, with 4–6 clips per item performing the same pro-
cess in different poses and contexts. This HMDB51 dataset
includes realistic videos from many sources, like movies and

YouTube videos. The dataset contains 6,849 short videos from
51 activity classes (such as ”jump,” ”kickball,” ”laugh,” and
golf”), with at least 101 clips in each category. We only con-
led, cover drive, defence, pull shot, and reverse sweep.



Table 5 HMDB51 dataset. We provide the details regarding

classes, the number of videos, and the frame rate.

Classes No. of Videos Frame/s

Ball-dribble 145 30.00

Golf 105 30.00

Kickball 128 30.00

Swing baseball 143 30.00

Throw 102 30.00

Table 6 Kinetics dataset. We provide the details regarding

classes, the number of videos, and the frame rate.

Classes No. of Videos Frame/s

HorseRace 127 27.00

Fencing 111 28.33

Punch 105 27.00

PushUps 106 29.70

BaseballPitch 123 29.00
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sider the classes: ball-dribble, golf, kickball, swing-baseball,

and throw. The original-evaluation scheme uses two different
training/test splits. We provide the details of the selected
classes in Table 5.

3.1.4. Kinetics dataset

The Kinetics dataset is a high-quality, large-scale dataset for
detecting human behavior in videos. This dataset comprises

400 human activity classes each with at least 400 short video
clips. Each clip is about 10 s long and is labeled with a corre-
sponding activity class. The activities are human-centered and

include a variety of classes, including human-object interac-
tions like playing an instrument and interactions between peo-
ple like shaking hands. We consider the five sports classes:
horse race, fencing, punch, pushUps, and baseball pitch. The

dataset details are in Table 6.

3.1.5. YouTube dataset

The YouTube dataset, which encompasses 11 activity classes,
is highly demanding, as it exhibitswide variability in camera
movement, object appearance, pose, object scaling, perspec-
tive, background noise, and lighting conditions. Videos within

each group have certain features in common. We only consider
classes representing biking, diving, trampoline-jumping, soccer
juggling, and swing, as listed in Table 8.

3.2. Performance Evaluation

We used the F1-score, recall, precision, accuracy, and confu-

sion matrix to analyze the proposed model’s performance.
Mathematically, the performance metrics are defined as:

Accuracy ¼ TPþ TN

TPþ FPþ FNþ TN
ð1Þ

Precision ¼ TP

TPþ FP
ð2Þ

Recall ¼ TP

TPþ FN
ð3Þ
F� Score ¼ 2 � Recall � Precision
Recallþ Precision

ð4Þ

Accuracy refers to the proportion of samples that are classified
correctly out of the total number of samples. Fig. 4 reports
accuracy and loss during training and validation stages using
the cricket dataset. The specific choice of 60 epochs for train-

ing the network is based on experimentation with the dataset
and model, where the number of epochs was adjusted to
achieve the best balance between training time and model

accuracy. Furthermore, the choice of 60 epochs was based
on prior experience with similar tasks or datasets. However,
it is important to note that the optimal number of epochs

can vary depending on the complexity of the model, the size
of the dataset, and other factors. Therefore, it is often neces-
sary to experiment with different numbers of epochs to find

the best choice for a particular task. As can be seen, our
CNN-LSTM model learns the motion patterns efficiently with-
out facing overfitting and underfitting.

The dataset’s confusion matrix, shown in Fig. 5, reflects dif-

ferences between actual and predicted labels. Three activities –
bowled, cover drive, and pull shot – show an accuracy of 97%.
The reverse sweep class shows lower accuracy equal to 79%

due to its complex nature. Precision (Eq. (2)) is the number
of accurate outputs generated by the model. We present preci-
sion, recall, and f1-score in Table 7 considering the cricket

dataset. The recall (Eq. (3)) is the percentage of positive classes
predicted correctly by our model out of all positive classes.
Because it may be difficult to compare two models that have

low precision and high recall, we utilized the F1 score (Eq.
(4)) to assess the two measures simultaneously. If the recall
equals the accuracy, the F-score is maximized. As can be seen,
the higher values for all metrics indicate the effectiveness of the

proposed method. We also present the performance in terms of
validation accuracy for the UCF101, the HMDB51, the
Kinetic, and the Youtube action datasets in Table 9. Our pro-

posed method achieves a validation accuracy equal to 90.03%
on the UCF101 dataset. Considering the HMDB51 dataset, we
achieve a validation accuracy equal to 89.10%. In fact, our

method can learn frame-by-frame changes regardless of view-
point, pose, and subject. We achieve 86% accuracy and
71.10% accuracy on the kinetic dataset and the Youtube data-
set, respectively. In order to demonstrate the robustness of the

proposed method using the cricket dataset, we compare the
results of our method with reference methods in the literature.
The methods are: SimpleRNN [32], Con3D [33], ConLSTM2D

[34], Bi-directional LSTM [35], and Gated Recurrent Unit [36].
We present the validation accuracy in Table 10 for the refer-
ence methods and our proposed method. Our method outper-

forms all the reference methods by achieving an accuracy equal
to 92.65% considering the cricket activity recognition videos.

4. Conclusion and future scope

In this work, we proposed a cricket activities dataset consisting
of five classes (Bowled, cover drive, defence, pull shot, and

reverse sweep). The data was pre-processed via cropping and
resizing and then organized in relevant classes. Further, an
end-to-end time-distributed CNN-LSTM model is developed,
where the time-distributed CNN is used for frame-level feature

extraction and processed with LSTM layers to learn sequence
patterns and make ultimate predictions in the final stage.



Fig. 4 The CNN-LSTM model. The left graphs show training and validation accuracy highlighted in orange and blue, respectively. The

right graphs show training and validation losses highlighted in orange and blue, respectively. We set the batch size equal to 16 and the

number of epochs equal to 60.

Fig. 5 Confusion matrix. The matrix shows the difference between the actual and predicted labels considering bowled, cover drive,

defence, pull shot, and reverse sweep activities. We achieve higher performances for bowled, cover drive, and pull shot activities.
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Experiments are performed both on our collected dataset and
publicly available datasets. The results showed promising per-

formance of our model in terms of accuracy, recall, precision,
and F1 score in comparison with many references as well as
baseline techniques used for similar problem-solving. In the
future, we would like to extend this work by adding more
classes to the current dataset such as fast bowling (fast and

spin bowling), Fielder catches, and spin bowling. To achieve
better real-time performance, we will conduct experiments by
using various attention mechanisms to consider the most



Table 7 Performance of CNN-LSTM. We present the

performances in terms of precision, recall, and f1-score using

the cricket dataset.

Activities Precision (%) Recall (%) F1-score (%)

Bowled 94 97 96

Cover dive 100 97 99

Defence 84 82 83

Pull shot 89 97 93

Reverse sweep 84 79 82

Table 8 YouTube-Action dataset. We provide the details

regarding classes, number of videos, and frame rate.

Classes No. of Videos Frame/s

Trampoline-jumping 118 29.00

Soccer-juggling 156 30.00

Biking 145 30.00

Diving 156 29.97

Swing 137 29.40

Table 9 Results of CNN-LSTM under consideration of

different datasets.

Datasets Proposed Method Accuracy (%)

UCF101 CNN-LSTM 90

HMDB51 - 89

Kinetics - 86

YouTube-Action - 71

Cricket - 92

Table 10 Comparison results with the reference methods

considering the cricket Dataset.

Year Methods Dataset Accuracy (%)

2021 SimpleRNN [32] Cricket 84.71

2022 Con3D [33] - 86.34

2022 ConLSTM2D [34] - 73.26

2022 Bi-directional LSTM [35] - 90.00

2022 Gated Recurrent Unit [36] - 87.67

2023 Proposed CNN-LSTM model - 92.65
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significant and conspicuous portions of the frame instead pro-
cessing the whole frame at the later stage of the activity recog-

nition model. Further, to intelligently assess crowd behaviour
and dense situations in a stadium, we will combine our pro-
posed method with people counting techniques.
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