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Abstract

In response to the urgent global call for renewable energy alternatives, as dictated
by the Paris Agreement, there is an increasing need to accurately map and monitor
the growth of solar farms around the world. A critical component of achieving net
zero emissions by 2050 is a clear understanding and accurate tracking of photovol-
taic solar energy capacities globally. However, the undocumented nature of many
of these installations presents a serious obstacle.

To address this challenge, this thesis develops Solis-seg, a Deep Neural Net-
work designed to detect and segment solar farms in satellite imagery. The Solis-seg
model pushes the boundaries of current capabilities in photovoltaic detection, at-
taining a mean Intersection over Union (IoU) score of 96.26% on a dataset cover-
ing approximately 30,000 solar farms in Europe. As demonstrated in comparative
experiments as reported and discussed in this work, this performance surpasses
any previous result on a continental-spanning dataset reported in the literature.

As part of this work, we apply Neural Architecture Search (NAS) to the prob-
lem of segmenting solar farms in satellite imagery, thus unveiling significant in-
sights and potential avenues for future exploration. In doing so, it assesses the
practicality of NAS in an important sustainability context. Furthermore, this thesis
offers a critical reassessment of the widely endorsed method of utilizing transfer
learning from classification tasks for semantic segmentation.

Therefore, this research is a meaningful contribution to the field of satellite
imagery analysis, encouraging experimentation with advanced techniques in the
rapidly developing domain of machine learning for earth observation. By under-
scoring the escalating importance of renewable energy resources and offering an
efficient and scalable solution to track global progress towards sustainable en-
ergy goals, this thesis aligns with the broader goal of facilitating the global energy
transition towards sustainable sources.
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Chapter 1

Introduction

1.1 Rationale Behind the Study

With the Paris agreement of 2015, a vast majority of nations globally have commit-
ted to reach net zero emissions by 2050. Achieving this monumental goal requires
a large-scale transition from fossil fuels towards renewable energy alternatives
like solar and wind power. Currently, fossil fuels are responsible for nearly 80%
of the global energy consumption and emit over 14 gigatonnes of CO2, as repor-
ted by the International Energy Agency [1]. The imperative shift towards green
energy sources such as wind, hydro, and solar is fundamental to meet the Paris
agreement’s climate objectives within the prescribed timeline. Non-compliance
with these objectives could lead to catastrophic impacts on human civilization.

Recent geopolitical events, such as Russia’s invasion of Ukraine and the sub-
sequent shutdown of the Nord Stream II pipeline in response to economic sanc-
tions, have underscored the significance of energy self-reliance and spurred the
growth of green energy in European countries [2].

A startup called Enernite1, established at the NTNU School of Entrepreneur-
ship, is contributing to this shift by shortening the time required to identify ideal
locations for green energy projects. They facilitate quick site evaluation by gen-
erating and utilizing global datasets on variables that determine the suitability of
a location to host a power plant. One of Enernite’s offerings, Solis Oculus (Solis),
employs an ML model to identify existing Photo Voltaic (PV) energy facilities glob-
ally on remote sensing imagery.

Understanding the location and configuration of PV plants globally assists in:

1. Evaluating current worldwide and regional solar capacities
2. Estimating worldwide and regional investments in renewables
3. Identifying characteristics that contribute to an ideal PV facility site
4. Understanding the types of lands that are being replaced for solar energy

plant constructions [3]
5. Monitoring worldwide and regional development of solar energy over time

1https://www.enernite.com/

1
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However, Enernite is not the pioneer in creating such a dataset. Several re-
search papers have published solar farm datasets for multiple countries, collected
using machine learning algorithms on satellite images [3–7]. These studies will be
analyzed in more detail in section 2.6. Even though these papers contribute sig-
nificantly to the cause, none, to our understanding, have endeavored to employ
Neural Architecture Search (refer to section 2.7) to fine-tune a neural network
architecture aimed at identifying solar farms on satellite imagery.

1.2 Study Objectives

Despite the demonstrated prowess of Neural Architecture Search (NAS) in sur-
passing human-designed architectures in image classification competition data-
sets [8], its application in the field of solar farm identification on satellite imagery
remains uncharted territory. Furthermore, while NAS has seen extensive use in
well-established benchmarks, its practical application for novel datasets is still
under-researched [9]. Recognizing these gaps, our study embarks on a multifa-
ceted mission. Building upon previous research [5, 10], which investigates differ-
ent architecture performances but does not explore NAS-derived solutions, we aim
to harness NAS optimization for the real-world task of semantic segmentation of
solar farms and assess its broader performance beyond established benchmarks. In
the process, we critically re-evaluate the strategy employed by Enernite’s current
leading model, which is based on transfer learning from classifying solar farms to
segmenting them. Our research, therefore, aims to make significant contributions
to both the task of solar farm segmentation and the wider application of NAS.

Consequently, we formulate the following central goal for our research:

Research Goal: To advance the state-of-the-art in detecting and segmenting
solar farms in satellite imagery by examining the practical utility of NAS for archi-
tecture optimization and critically reassessing the applicability of transfer learning
from classification to segmentation tasks.

In alignment with this overarching goal, we define the following study objectives:

SO1 Evaluating the effectiveness of Transfer Learning: Determine whether
using the backbone of a model trained on a classification task can deliver
performance equivalent to a model entirely trained on segmentation.

SO2 Investigating the Robustness of NAS in Satellite Image Segmentation:

SO2.1 Understand the influence of various factors on NAS including the im-
pact of dataset sizes, different data subsets, and special features of
satellite imagery

SO2.2 Evaluate the robustness of the relative ranking produced by NAS and
the risk of overfitting to a specific dataset during architecture search

SO3 Assessing Computational Trade-offs in NAS Application: Assess the com-
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putational cost implications of employing NAS for a practical application on
a novel dataset and determine the potential benefits when contrasted with
the usage of a pre-existing off-the-shelf architecture.

1.3 Research Method

This study aims to address the research objectives outlined in section 1.2 by con-
ducting a series of Neural Architecture Searches on a comprehensive dataset en-
compassing all solar farms in Europe known to Enernite as of 01.03.2023. The
performance of the resulting models will be benchmarked against other high-
performing segmentation models and baseline models. An in-depth account of the
experiments conducted and their results can be found in Chapter 4. These exper-
iments have been strategically designed leveraging the insights gleaned from an
extensive literature study pertaining to Artificial Neural Networks (ANN), Com-
puter Vision (CV), Neural Architecture Search, and Geographic Informatic Sys-
tems (GIS), by Olweus, E [11] as well as existing literature.

1.4 Thesis Structure

The subsequent chapters of this thesis are organized as follows:

• Chapter 2: Background Theory and Related Work Delves into the core
theories and concepts essential for understanding the research undertaken
in this thesis, while also highlighting significant scholarly works in the fields
that inform our study.
• Chapter 3: Methodology Articulates the methodologies and techniques em-

ployed in our experiments as detailed in Chapter 4, explaining the rationale
behind these selected methods.
• Chapter 4: Experiments and Results Provides an exhaustive description

of the experiments executed in pursuit of the research objectives listed in
Section 1.2, accompanied by an analysis and commentary on the results
obtained.
• Chapter 5: Discussion Expands on the implications, interpretations, and

limitations of our findings, further deliberating the outcomes from the con-
ducted experiments and suggesting potential avenues for future research
that could extend and build upon this thesis.
• Chapter 6: Conclusion Summarizes the study’s key findings and contribu-

tions.





Chapter 2

Background Theory and Related
Work

This chapter draws heavily from and extends the literary review by Olweus, E
[11]. It delves into the theoretical foundations and relevant previous studies that
underpin the practical work detailed in chapters 3 and 4. The insights derived from
this theoretical grounding will be further elaborated and discussed in chapter 5,
providing the reader with a comprehensive understanding of the broader context
within which our research is positioned.

2.1 Artificial Neural Networks

Artificial Neural Networks, machine learning algorithms designed to mimic hu-
man brain neuron behavior, constitute an integral part of advanced computational
studies. These networks comprise numerous interconnected processing units or
"neurons", systematically arranged into layers, each executing a distinct computa-
tion on the input data. A standard and elementary form of a neural network is the
feedforward neural network, which features an input layer, one or more hidden
layers, and an output layer[12].

Raw input data is received by the input layer and subsequently processed
through the hidden layers. Every hidden layer executes a non-linear transforma-
tion on the data using a set of weights that are refined during training. The output
layer generates the final predictions or outcomes of the neural network. Modern
networks incorporate varying types of hidden layers, with the convolutional layer
being a prominent example [13].

Activation functions are another significant component of a neural network.
They define the output of a neuron based on its input [12]. Popular activation
functions comprise the sigmoid function, the rectified linear unit (ReLU)[14], and
the hyperbolic tangent (tanh) function [12].

Beyond layers and activation functions, a neural network employs a loss func-
tion to evaluate the discrepancy between the predicted and actual outputs. The

5
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neural network computes the gradient of the loss function, which aids in updat-
ing its weights during training. The objective is to minimize loss and enhance the
model’s accuracy. This process, commonly termed backpropagation, involves er-
ror propagation starting from the output layer and moving backward through the
hidden layers. At each layer, the error informs the calculation of the loss gradi-
ent with respect to that layer’s weights. These gradients subsequently update the
weights, aiming to reduce the loss. This procedure persists until the gradients have
been determined for all weights within the network [15].

The backpropagation algorithm offers an efficient methodology to compute
gradients in a neural network, forming the backbone of several neural network
training algorithms. It empowers the network to learn from the data and enhances
its performance iteratively [15].

A noteworthy feature of neural networks is their ability to perform well on
data unseen during training. Achieving this characteristic requires extensive ex-
ample data, assisting the network to learn generalized weights rather than those
applicable solely to specific training examples.

When a network significantly outperforms on training data compared to sim-
ilar, unseen data, the model is deemed "overfitted" to the training data [12].

Artificial Neural Networks have demonstrated high performance across a mul-
titude of tasks and disciplines, particularly in computer vision tasks such as image
classification [13], object detection [16], and semantic segmentation [17].

2.1.1 Transfer Learning

Transfer learning is a potent technique in machine learning where the knowledge
from a pre-trained model, specialized in a particular task, is used as a starting
point to develop a new model. This process, when applied to artificial neural net-
works (ANNs), involves using the weights from the previous model as the ini-
tial weights for the new one, effectively transferring what the original model has
learned to the new one.

The portion of the pre-trained model that is used as a basis for the new model
is often referred to as the ’backbone’. This backbone typically comes from general
networks that have shown strong performance across multiple tasks. A more task-
specific component, known as the ’head’, is then added to the end of the backbone
to tailor the new model to its specific task [18].

The rationale behind transfer learning is to harness the lower-level features
learned by the initial model as the base for the new model. The new model is then
fine-tuned on the novel task using the fresh data. This technique can significantly
conserve time and computational resources since training a model from scratch on
an expansive dataset can be labor-intensive. Moreover, transfer learning has the
potential to enhance the performance of the secondary model, as the pre-trained
weights offer a robust base for learning the new task [19].

As elaborated in section 2.6, transfer learning is a prevalent strategy, particu-
larly when repurposing the learning from a classification model for a segmentation
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task.

2.2 Image Classification

As previously discussed, image classification stands as a significant domain of re-
search involving Artificial Neural Networks (ANNs), particularly in recent years.
Several prominent annual competitions, such as the ImageNet Large Scale Visual
Recognition Challenge1, fuel this field. These competitions have incited substan-
tial scientific advancements, including the popularization of Convolutional Neural
Networks (CNNs) via AlexNet [13] in 2012 and residual blocks coupled with short-
cut connections via ResNet in 2015 [20].

Convolutional Neural Networks constitute a class of NNs that incorporate
convolutional kernel layers in addition to the standard fully connected layers.
These networks enable the learning of specific image features, rather than com-
prehending the image as a whole. Generally, a fully connected layer is appended
to the network’s end to generate an outcome based on the collective feature ex-
tractors in the network.

Until 2015, a prevalent challenge in neural networks was the diminishing re-
turns in learning when increasing the layers beyond a certain threshold. Post this
threshold, deepening the networks paradoxically yielded deteriorating results,
observable not just during validation but training as well. The decline in train-
ing performance indicated a problem with more complex NNs not attributable to
overfitting. ResNet [20] addressed this issue via a network with residual blocks
and shortcut connections between them. In a residual block, the input data goes
through a function F consisting of normal neural network operators like convolu-
tional filters, activation functions, and pooling, but there is an additional "short-
cut" path where the input bypasses F and is added to the block output directly. The
crucial point here is that function F is now trying to learn the ’residual’ or the dif-
ference between the input and the desired output, rather than trying to learn the
output directly. These blocks make ResNet-inspired architectures generally easier
to optimize than networks not using them, especially in very deep networks. This
innovation led to a surge in accuracy on visual tasks with networks as deep as 1000
layers. Additionally, it was discovered that the residual architecture was general,
making it applicable to a plethora of tasks. Beyond triumphing in several ILSVRC
categories, ResNet also secured the top position in the COCO challenge2 that year

2.2.1 Performance Metrics for Image Classification

Precision and recall are commonly used measures for evaluating the performance
of classification models, each providing distinct perspectives on a model’s effect-
iveness.

1https://www.image-net.org/
2https://cocodataset.org/#home

https://www.image-net.org/
https://cocodataset.org/#home
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In this context, four categories of prediction outcomes from the model are
defined:

• True Positives (TP): Instances where the model correctly identifies a positive
case.
• False Positives (FP): Instances where the model incorrectly identifies a neg-

ative case as positive.
• True Negatives (TN): Instances where the model correctly identifies a negat-

ive case.
• False Negatives (FN): Instances where the model incorrectly identifies a pos-

itive case as negative.

Recall calculates the proportion of actual positive cases that the model cor-
rectly identifies. It is computed as the ratio of True Positives to the sum of True
Positives and False Negatives (Equation 2.1). Essentially, it assesses the model’s
capability to correctly identify all positive cases.

On the other hand, precision determines the proportion of predicted positive
cases that are indeed correct. It is computed as the ratio of True Positives to the
sum of True Positives and False Positives (Equation 2.2). This metric evaluates the
model’s accuracy in its positive predictions.

Recall=
T P

T P + FN
(2.1)

Precision=
T P

T P + F P
(2.2)

For a dataset comprised of images, some with and others without solar farms,
recall represents the proportion of actual solar farm images that are correctly
labeled, whereas precision illustrates the fraction of the images labeled by the
model that does in fact contain solar farms.

F1 score, another popular metric, combines both precision and recall. It cal-
culates the harmonic mean of the two metrics, as illustrated in equation 2.3.

F1= 2 ∗
precision ∗ recal l
precision+ recal l

(2.3)

2.3 Semantic Segmentation

Semantic Segmentation, in contrast to image classification, involves categorizing
the contents of an image at the pixel level. Rather than merely assigning labels
to an entire image based on its overall content, this approach assigns labels to
each individual pixel in accordance with the specific object or class that the pixel
represents. As such, semantic segmentation allows for granular analysis of an im-
age’s composition. In the context of our work with Solis Oculus, for instance, the
objective is to identify those pixels in an image that are part of a solar farm.
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Semantic segmentation has a wide range of applications, including autonom-
ous driving, medical diagnostics, and land cover analysis, to name a few [17].
A typical semantic segmentation dataset comprises images and corresponding
masks, which depict pixel-level labels. An example of this structure from the Solis
dataset is illustrated in figure 2.1. The output of a semantic segmentation al-
gorithm mirrors the structure of these masks, allowing us to compute evaluation
metrics such as Intersection over Union, detailed further in section 2.3.2.

The field of Semantic Segmentation, along with Neural Architecture Search
(see section 2.7), constitutes the primary focus of the research presented in this
work.

(a) Image from the Solis dataset (b) Mask from the Solis dataset.

Figure 2.1: Examples from the Solis dataset of the parts of a semantic segment-
ation dataset. White pixels in the mask represent the solar farm class.

2.3.1 Advancements in Semantic Segmentation

Semantic segmentation is an area where CNNs have exhibited substantial success,
highlighted by the victory of the Fully Convolutional Network (FCN) [21] in the
COCO segmentation task in 2014. This achievement was credited to replacing
the fully connected layers at the end of popular networks like AlexNet, VGG, and
GoogLeNet with convolutional layers. This modification led to significant speed
increases during both forward and backward passes in training [21]. The method
employs upsampling techniques to restore the output feature map of the image to
its original size for pixel-by-pixel predictions.

U-Net

U-Net further improved this process in 2017 by incorporating the output before
each subsampling stage as input during the upsampling phase. This enhancement



10 Olweus, E.: DNN Architectures for Segmentation of Solar Farms

aids in more accurately mapping recognized features back to the original image
size [22]. As per [23], U-Net is particularly effective for semantic segmentation
on remote sensing imagery in a lot of cases due to its superior performance with
less training data in comparison to other algorithms. This can be an advantage if
the original dataset is very small. Hou et al. [6] and Kruitwagen et al. [3] both
use a U-Net for semantic segmentation of solar farms.

Dilated Convolutions

Dilated convolutions, also referred to as "atrous" convolutions, are a variant of
convolutional neural network (CNN) layers that utilize dilated kernels to enlarge
the receptive field of a layer without augmenting the number of parameters [24].
Traditional CNNs determine the receptive field of a layer based on its filter size
and stride. However, dilated convolutions employ filters with gaps or "dilations,"
the size of which is decided by the dilation rate, enabling the filters to cover a
larger input area without augmenting the number of parameters or computational
complexity. This characteristic is particularly beneficial for semantic segmentation,
where maintaining spatial resolution while increasing receptive field to capture
long-range dependencies in data is crucial [17].

Figure 2.2: Left: A dilated/atrous convolution filter. Right: A normal convolution
filter

DeepLab

DeepLab [24] is a state-of-the-art semantic image segmentation model, known
for its effectiveness in tasks requiring understanding at the pixel level. The core
idea behind DeepLab is to apply dilated convolutions to enlarge the field of view
in convolutional neural networks, thereby capturing more contextual information
without losing resolution. Additionally the head

An integral part of the DeepLab architecture is the Atrous Spatial Pyramid
Pooling (ASPP) module [24]. This module applies several parallel dilated con-
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volutions with different dilation rates to the input feature map. By doing so, it
effectively captures the context of objects at different scales. The outputs are then
concatenated and passed through a 1x1 convolution for dimension reduction be-
fore being fed into the next layers or being upsampled for pixel-wise prediction.
This way it enhances the model’s capability to handle objects of different sizes and
maintain precise boundaries.

Figure 2.3: Figure of an ASPP module

Segment Anything Model

A very recent, yet very impressive, contribution to the semantic segmentation field
is Meta’s Segment Anything (SA) project and the corresponding SA Model (SAM)
[25]. The project contains the largest segmentation dataset in the world as of
April 2023 boasting more than 11 million images with 1 billion corresponding
masks. SAM is a ’zero-shot’ model that can easily be adapted to any task, and
the demo available at https://segment-anything.com/demo provides some very
convincing demonstrations, some of which can be seen in Figure 2.4.

An additional project by Wu and Osco [26] provides open software3 to use
SAM for segmenting geospatial data.

3https://samgeo.gishub.org/

https://segment-anything.com/demo
https://samgeo.gishub.org/
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Figure 2.4: Left: Example images from the SAM demo. Right: SAM’s segmenta-
tion predictions

2.3.2 Performance Metrics for Semantic Segmentation

Despite semantic segmentation essentially being pixel-wise classification, using
pixel-wise accuracy as a performance metric may not always yield accurate in-
sights. As Thoma [27] indicates, one major issue arises when parts of an image
predominantly exhibit the same class. For instance, in our case of solar farm de-
tection, our interest lies in the binary separation of pixels into two classes: solar
farm and non-solar farm. However, even in images containing solar farms, the vast
majority of pixels are classified as non-solar farm. This imbalance can potentially
inflate the perceived accuracy of a model that simply predicts every pixel as not
being a part of a solar farm, thereby yielding an artificially high accuracy score.

The Intersection over Union (IoU) seen in equation 2.4, also known as the
Jaccard Index, and the Dice score or F1-score seen in equation 2.3 are among the
most widely used metrics for semantic segmentation in 2D images that help to
address this shortcoming. IoU is also visually represented in Figure 2.5.

The F1-score, still calculated by equation 2.3, is particularly suitable for binary
classification tasks according to Thoma et al. [27].

IoU =
T P

T P ∪ F P ∪ FN
(2.4)

2.4 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a class of computational models inspired by
biological evolution’s principles and mechanisms. These stochastic optimization
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Figure 2.5: Visual representation of Intersection over Union

algorithms function on the idea of survival of the fittest. They operate by rep-
resenting possible solutions as genotypes, evaluating their fitness with a function
reflective of the problem at hand, and then applying evolutionary operators such
as selection, crossover, and mutation. The fittest individuals are selected for re-
production to produce offspring of the next generation. The algorithms then eval-
uate the new generation, and this process repeats until a satisfactory solution is
reached, or until a given termination criterion is met [28].

EAs find extensive application in solving complex optimization problems, par-
ticularly those with no direct analytical solutions or large solution spaces that are
computationally expensive to explore exhaustively. One notable application area
is Neural Architecture Search (NAS), where EAs are used to discover optimized
neural network architectures with little human intervention [29].

The basic process of an EA involves three primary components: solution rep-
resentation, fitness evaluation, and evolutionary operators [28].

Solution Representation: The core of an EA is the encoded representation
of potential solutions, often termed as ’individuals’ or ’chromosomes.’ These chro-
mosomes embody the ’genotype’, the encoded solution to the problem under con-
sideration.

Fitness Evaluation: To estimate the quality or effectiveness of a given solu-
tion, a fitness function is employed. This function assesses each solution’s ’fitness’
in the population, reflecting the problem’s particular objectives and constraints.

Evolutionary Operators: Evolutionary operators are responsible for generat-
ing new solutions from the existing population. Typical operators include selec-
tion, crossover, and mutation. The selection operator chooses the fittest solutions
to be the parents of the next generation. The crossover operator combines the
selected parent solutions to produce offspring. The mutation operator introduces
small, random changes into a solution to maintain diversity in the population and
avoid premature convergence.
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2.5 Computer Vision Challenges in Remote Sensing Im-
agery

Applying computer vision techniques to remote sensing imagery presents a unique
set of challenges. One of the primary issues stems from the varying characteristics
of satellite images depending on their sources. These images often span vast geo-
graphical areas, representing substantial chunks of countries, which means they
also comprise volumes of data in the magnitude of gigabytes. The sheer size of
these images makes them computationally demanding to process.

The resolution of the satellite cameras also presents a particular dilemma –
a tradeoff between higher resolution and more frequent image capture. High-
resolution images, while facilitating more detailed analysis, come with their own
set of complications. They are not only expensive to acquire but also captured
infrequently due to the increased data demands and limited satellite resources.
On the other hand, lower-resolution images can be captured more often but may
not provide the level of detail necessary for some use cases.

The annotation or labeling process for these images is another laborious task,
particularly when dealing with objects not present in public databases. This pro-
cess demands significant time investment and specific knowledge about the ob-
jects’ locations. Moreover, many objects in these images share similar visual char-
acteristics as shown in figure 2.6, making differentiation challenging for both hu-
mans and algorithms.

2.5.1 Sources of Satellite Imagery

Satellite imagery comes from a myriad of sources, each varying in their unique
traits and levels of accessibility. One of the most notable sources is the European
Space Agency’s Sentinel project4. This project comprises numerous missions, each
catering to different aspects of Earth observation. Among these, the Sentinel-1 and
Sentinel-2 missions provide invaluable data for terrestrial visual tasks.

Sentinel-1 utilizes a C-band synthetic aperture radar (SAR) for image capture.
This technology allows it to take clear images regardless of weather conditions or
cloud cover, providing reliable imaging data under all circumstances. On the other
hand, Sentinel-2, launched in 2015, focuses on tracking changes on the Earth’s
surface. It uses a multispectral camera, which captures images across 13 spectral
bands.

The resolutions provided by Sentinel-1 and Sentinel-2 are 5m2 and 10m2 per
pixel, respectively. While this level of resolution could pose constraints for cer-
tain tasks, for large structures such as grid-connected photovoltaic (PV) plants,
it tends to be sufficient. As pointed out by Kruitwagen et al. [3], these facilities
are often larger than 10 000 m2, which makes them distinguishable even at these
resolutions. That said, there can still be challenges in discerning similar-looking
structures, such as rice paddies, greenhouses, parking lots, and lakes from solar

4https://sentinels.copernicus.eu/web/sentinel/home
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(a) Google Maps (b) Sentinel-2

(c) Solar farm reflecting sunlight (d) Solar farm and building

Figure 2.6: Images highlighting the challenge of discerning solar farms in
Sentinel-2 imagery

farms. Sentinel-2’s multispectral camera can partially mitigate this issue by utiliz-
ing the unique spectral profile solar farms possess [3, 4, 6].

There are alternative sources, such as Planet5, offering higher-resolution im-
agery. However, the high cost associated with these images often makes them
unsuitable for large-scale projects requiring global coverage.

2.5.2 Data Related Challenges

Deep learning models, especially convolutional neural networks (CNNs), heavily
rely on ample quantities of accurately annotated data for effective training. While
automatic labeling methods can expedite this process, manual annotation remains
the gold standard for ensuring label accuracy, albeit at the cost of substantial time
and effort.

Data collection at a large scale, such as imaging an entire country or contin-
ent, presents further challenges. The exhaustive review of each image for quality
is impractical in such a vast dataset. The Solis project operates with 224x224 pixel

5https://www.planet.com/

https://www.planet.com/
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chips, which are subsets of larger Sentinel-2 tiles. Given that each pixel represents
a 10x10 meter area, each chip covers approximately 5 square kilometers. Consid-
ering the area of Europe is around 10.18 million km2, approximately 2 million
such chips would be needed to comprehensively cover it.

Cloud cover in Sentinel images adds another layer of complexity, despite at-
tempts to mitigate its effects through techniques like mosaicing or cloud cover
filtering. Services such as Sentinel Hub provide an option to specify a maximum
permissible cloud coverage, yet this percentage is calculated for tiles spanning
12,000 km2 6. As a result, it is entirely feasible for a 224x224 chip derived from
such a larger tile to be completely shrouded by clouds, even if the parent tile meets
the cloud cover threshold.

2.6 Previous Work on Solar Farm Detection

Several studies have explored the detection of solar panels on satellite imagery,
utilizing both ANNs and other methods. For instance, a random forest model
was employed by Plakman et al. [4] to detect solar panels, and this model was
trained and evaluated using a publicly accessible dataset from the Netherlands.
Hou et al. developed SolarNet, a system that integrates the merits of Expectation-
Maximization Attention Networks and a U-Net architecture, to uncover new photo-
voltaic (PV) systems in China [6]. Meanwhile, in Brazil, a study used high-performing
segmentation models with different pre-trained backbones [5].

A group from Stanford has identified and compiled large-scale solar platforms
and rooftop solar installations in the US into the publicly accessible DeepSolar
database [7]7. Astraea Earth trained a Deep Convolutional Neural Network in the
US and utilized it to identify new solar farms in China [10].

One particularly significant contribution is the paper by Kruitwagen et al. in
2019 [3]. Along with the paper, they released a global dataset of solar energy fa-
cilities, which expanded the existing asset-level data by an impressive 432%. This
work represents the most substantial single contribution to this field to date, meas-
ured purely by the number of previously unknown facilities discovered and added
to public datasets. Focusing on PV platforms larger than 10 000 m2, they achieved
a precision of 98.6%, a recall of 90%, and an Intersection over Union (IoU) of 90%
for the segmentation task on their test set. They employed a U-Net-based CNN
model and used two sources of remote sensing imagery to achieve these results.
Importantly, they leveraged the non-visible bands of Sentinel-2, demonstrating
their significant role in the model’s solar panel recognition.

2.6.1 Established Methodology for Detecting Solar Farms

In the realm of discovering solar farms on remote sensing imagery, a specific set
of processes emerges as a common factor across various studies [3, 6, 7, 10].

6According to https://docs.sentinel-hub.com/api/latest/data/sentinel-2-l2a/
7https://deepsolar.web.app/

https://docs.sentinel-hub.com/api/latest/data/sentinel-2-l2a/
https://deepsolar.web.app/
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These works typically employ a complex, sophisticated pipeline for both training
the model and deploying it in real-world scenarios. Although there are slight vari-
ations, the core steps remain largely consistent across these studies. Figure 2.7
provides an illustration of this process.

The process commences with the identification and labeling of known solar
farms on satellite images as georeferenced polygons, often using a GIS tool such
as QGIS8. These images then go through a series of preprocessing operations,
including cloud removal, image standardization, and chipping or subdividing the
images into smaller segments that can be efficiently processed by the network.
These chips9 become our dataset.

The subsequent phase involves training a classification model using a dataset
of chips, with and without solar farms. Once trained, a segmentation head (see
2.1.1) is attached to the model and this amalgamated network is further fine-
tuned for segmentation tasks. Approaches differ in whether they completely freeze
the weights of the backbone, or allow the weights to be modified in the training
of the segmentation model. It’s noteworthy that slight modifications are usually
introduced to the backbone to preserve spatial information during its application
for segmentation tasks [17].

As per the findings presented by Hou et al. the success of this approach is
largely credited to the activation mapping for the classification model, which re-
sembles a dense prediction or segmentation [6]. This assertion is intuitively plaus-
ible as the model would necessitate learning the unique features of solar farms to
correctly predict their presence in an image. A notable advantage of this strategy
is the time efficiency it offers compared to training an entirely new network from
scratch.

Lastly, the trained models are deployed over extensive geographical areas (rep-
resented by the globe in Figure 2.7). The images of these areas undergo the same
preprocessing steps, without prior manual identification and labeling of solar
farms. Following this process, the models’ findings are manually inspected, and
confirmed solar farms are added to our dataset. Now we can repeat the cycle with
the new dataset.

2.6.2 The Solis Oculus Project

The Solis Oculus (Solis) project, launched by Enernite, aspires to construct a com-
prehensive database of all solar farms worldwide, with the motivations for this
endeavor explained in 1.1. We’ve adopted the pipeline illustrated in figure 2.7 to
develop two proficient models.

Firstly, for the classification task, we employ the ResNet50 model, with a binary
classifier implemented as the head. Secondly, for the semantic segmentation task,

8https://qgis.org/en/site/
9The chipped images derive their ground truth from the labeled polygons. If any segment of the

image overlaps with a part of the polygon, it is labeled as a "solar farm". For classification purposes,
any chip encompassing a portion of a solar farm is labeled as "solar farm".

https://qgis.org/en/site/
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Figure 2.7: A typical machine learning pipeline for discovering new solar farms
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we amend the trained ResNet by substituting the strided convolutions with dilated
convolutions, a common practice for using classification backbones in segment-
ation [24], and attach DeepLabV3 as a segmentation head. During the training
process, the ResNet weights are fine-tuned for segmentation.

This implementation of transfer learning significantly reduces the time it takes
for the segmentation model to converge. In the context of this study, we will refer
to this ResNet50-DeepLab composite pre-trained on classification as the Solis-
transfer model. This model serves as the most important baseline for comparing
the architectures produced via neural architecture search.

2.6.3 Potential Enhancements for Solar Farm Detection Techniques

As we strive to improve the accuracy and efficiency of solar farm detection meth-
ods, several promising avenues appear ripe for exploration. Among the most im-
pactful of these, amplifying the volume of training data takes precedence. Astraea
Earth reports that augmenting training data significantly outperformed other meas-
ures such as hyperparameter tuning or swapping CNNs in terms of improving
network performance [10].

Incorporating more spectral bands from Sentinel imagery into the mix presents
another intriguing possibility. A study by Plakman et al. [4] suggests that Syn-
thetic Aperture Radar (SAR) products from Sentinel could enhance detection tech-
niques. However, the utilization of this data can be challenging if leveraging trans-
fer learning, given that publicly available pre-trained networks typically used as
backbones, like ResNet, primarily are trained on RGB images. Direct addition of
new input channels might inadvertently degrade the performance of feature ex-
tractors, a phenomenon thoroughly explained by Zhang et al. [23]. Nonetheless,
Zhang et al. offer a potential workaround with their proposed MSNet architec-
ture, which separately encodes RGB and other bands and later combines them
during decoding. This is not an issue if the backbone is also trained with the same
spectral data.

On the other hand, one could also consider deploying a hybrid model to con-
serve computational and financial resources during model application over vast
territories like countries. This could involve a two-step process, where an initial
model (which could be something less computationally expensive, such as a Ran-
dom Forest algorithm), eliminates areas unlikely to feature photovoltaic (PV) plat-
forms on low-resolution imagery, leaving the more computationally demanding
model to handle only the remaining potentially relevant locations with higher
resolution images.

Lastly, and significantly for the focus of this thesis, we have the prospect of
refining the neural network’s architecture. This proposition is especially pertinent
given the proven effectiveness provided by additional spectral bands’ and the fact
that most popular ANNs are designed with RGB images in mind. Designing effect-
ive neural networks, however, is a complex task demanding substantial expertise.
Therefore, in the subsequent section, we turn our attention to an approach that
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automates the design of neural network architectures.

2.7 Introduction to Neural Architecture Search

Neural Architecture Search (NAS) constitutes a specialized research domain fo-
cused on the automated creation of optimal Neural Network configurations for
specific tasks. Demonstrating its capability to outperform conventional networks
on diverse tasks such as image classification and semantic segmentation, NAS is
swiftly gaining traction in the AI community [8].

According to White et al. [9] NAS is a process that can be mathematically
expressed as below in equation 2.5. The goal of NAS is to minimize the validation
loss by finding the optimal weight w∗(a) for each possible input a within a certain
time limit t.

min
a∈A

Lval(w
∗(a), a) s.t. w∗(a) = arg min

w
Ltrain(w, a) (2.5)

In this equation, Lval represents the validation loss and Ltrain represents the
training loss. w∗(a) denotes the optimal weight corresponding to an architecture
a, and A represents the set of all possible architectures.

According to Elsken et al., NAS can be dissected into three primary dimen-
sions: the defined search space, the performance evaluation technique applied to
assess the networks, and the search strategy adopted to explore the architectures
in the search space. [8].

The Search Space sets the bounds for the possible network configurations that
a NAS algorithm can generate. The size of these spaces can vary significantly, ran-
ging from a few thousand potential architectures to exceptionally vast, sometimes
approaching infinite.

The Performance Evaluation Strategy (PES) is the metric used to measure
the effectiveness of a neural network within the search space.

The Search Strategy is the algorithmic process used to navigate through the
search space in order to optimize the neural network as per the PES.

While the components mentioned above form the foundation of NAS, the par-
ticular focus of this thesis necessitates a more in-depth exploration of two pivotal
developments in the field: Auto-DeepLab [30] and, by extension, Differentiable
Architecture Search (DARTS) [31] - the foundation upon which Auto-DeepLab is
built.

DARTS as a gradient-based method, marks a significant milestone in architec-
ture search by pioneering an approach that simplifies the management of extens-
ive search spaces and complex network configurations [31]. Meanwhile, where
most NAS strategies have primarily been investigated in the context of classi-
fication tasks [9], Auto-DeepLab expands upon DARTS’ principles, tailoring this
methodology for segmentation tasks, thus amplifying the scope and applicability
of NAS [30].
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Figure 2.8: Illustration of a Directed Acyclic Graph (DAG) where each edge sig-
nifies a distinct operation. This figure represents merely one example; in reality,
the characteristics of the edges are determined through an optimization process.

In the ultimate subsections, we delve into a comprehensive analysis of DARTS
(Section 2.7.4) and Auto-DeepLab (Section 2.7.5). Through these in-depth ex-
plorations, we aim to shed light on the core principles, features, and potential
benefits offered by these methods, setting the stage for their application in the
experiments conducted in this thesis.

2.7.1 Search Space

The NAS search space embodies a set of parameters that outline potential neural
network architectures. These parameters can span the number and nature of lay-
ers, connection types between layers, and the number of neurons per layer. Essen-
tially, the search space specifies the potential neural network architectures that the
search strategy algorithm can traverse [8].

One prevalent category within search spaces is cell-based search spaces [9].
Here, potential neural network architectures are outlined by a series of "cells" -
modular units that combine to form more extensive neural networks [32]. Each
cell symbolizes a specific configuration of layers and connections and can be com-
bined and reiterated with other cells to manifest a broad spectrum of potential
network architectures [31, 33].

The cell-based search space is generally characterized by a set of parameters
specifying the potential configurations for each cell, including the number and
types of layers and the possible connections between different layers. This struc-
ture is frequently illustrated as a Directed Acyclic Graph (DAG) [33, 34] where
the edges are layers/operations as in figure 2.8.

The allure of using a cell-based search space in NAS lies in its capacity to facil-
itate the representation of relatively complex architectures in a compact form, es-
pecially if the cells recur in a predefined macro architecture like in NAS-Bench-201
[32] as illustrated in figure 2.9. This results in a compact yet diverse search space,
simplifying the quest for the optimal architecture for a particular task while en-
abling the discovery of innovative architectures that might have been overlooked
with traditional hand-designed methods[9].

Cell-based search spaces, much like their counterparts, are typically defined
by a single level of topology, primarily focusing on optimizing one architectural di-
mension, namely, the recurrent cell. This stands in contrast to hierarchical search
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Figure 2.9: Depiction of the fixed macro architecture specific to NAS-Bench-201.
The quantity of cells, denoted by N, along with the characteristics of the cells
themselves, are variables subject to change

spaces that expand the optimization process beyond a single axis. Such spaces
typically integrate macro-architectural parameters into the optimization process,
thereby adding a layer of complexity [9]. In section 2.7.5, we will delve deeper
into the intricacies of hierarchical search spaces, taking Auto-DeepLab [30] as a
primary case study.

2.7.2 Performance Evaluation in NAS

While Neural Architecture Search (NAS) is known to enhance the efficacy of Deep
Neural Networks (DNNs) across a range of tasks, it also presents certain chal-
lenges. A particularly important challenge stems from the extensive computational
resources required to evaluate the performance of architectures within the search
space during the search [8, 9]. While the straightforward method involves train-
ing every network to convergence on the task and employing loss or task-specific
metrics for performance measurement, this can be extremely computationally in-
tensive and time-consuming given the sheer size of some search spaces. A signi-
ficant body of research thus aims at refining the efficiency of the evaluation phase
of the search, proposing several innovative strategies for achieving this [35–37].

Low Fidelity Estimates

Low fidelity estimates comprise one category of solutions, aiming to predict final
network performance based on a "reduced" training process. Experiments in this
domain have reduced various aspects of the process, including training the entire
network for fewer epochs, diminishing the number of filters in the layers, or redu-
cing the resolution of training set images, among others. Zhou et al. [38] take a
comprehensive approach with their EcoNAS, reducing multiple aspects simultan-
eously. While these methods significantly curtail the computational cost of evalu-
ation, they introduce biases. Initial observations suggest that the relative ranking
of architectures can substantially fluctuate if the disparity between reduced and
full training is considerable [8].

Learning Curve Extrapolation

Another tactic involves the estimation of the architecture’s future performance
based on the learning curve after a fixed number of epochs. This technique is
known as learning curve extrapolation [8].
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Weight Inheritance

Weight inheritance offers a method to expedite the initialization of an architec-
ture’s weights by leveraging the data from a previously trained network. This
process employs a technique known as network morphisms. These mathemat-
ical constructs enable modifications to a neural network’s architecture, such as
layer addition, removal, or duplication, while preserving the learned function,
thereby eliminating the need to retrain every network from scratch. This prac-
tice significantly accelerates evaluations by allowing a network’s capacity to grow
incrementally without compromising the existing high-performance level [39].

One-Shot Models

One-shot models, in contrast to weight inheritance, allow many networks to share
the same weights. They achieve this by training a large supernet (sometimes called
hypernet) and subsequently applying the supernet’s weights to multiple archi-
tectures that are sub-graphs of the supernet. This approach creates an inherent
copulation between the PES and the Search Strategy (see section 2.7.3) as the
method simultaneously learns the model weights and architecture [9]. The main
advantage of one-shot methods is that they drastically reduce the training time
and computational resources required as they train one large model continuously
rather than retraining every new architecture it explores from scratch. However,
one notable disadvantage of this approach is the requirement for all of the super-
net’s weights to be in memory, setting a strict limit on the size of the networks. As
a result, one-shot models are often employed with cell-based approaches, where
the same cell is used multiple times successively with a fixed macro architecture
[8]. Efforts are being made to address the memory issue where DCNAS by Zhang
et al. [40] is a good example. We further discuss the search aspect of one-shot
models in section 2.7.3

Zero Cost Proxies

Zero-cost proxies, a relatively new development in NAS evaluation, offer rapid
evaluations based on easy-to-calculate metrics such as a single mini-batch of train-
ing or the number of parameters in the network, thereby adding virtually no cost
to the search [35]. According to Mellor et al. [41], these proxies can evaluate
an architecture in just a few seconds. Yet, as White et al. [36] note, while they
are extremely fast, they can be unreliable predictors in isolation. However, they
can be combined with other predictors to enhance overall performance [37]. For
example, the OMNI method presented by White et al. [37] integrates a learning
curve method (SoTL-E [42]), a zero-cost method (Jacobian covariance [35]), and
a model-based method (SemiNAS [43] or NGBoost [44]), and generally outper-
forms any single method alone.
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Tabular NAS Benchmarks

Tabular NAS Benchmarks, a groundbreaking development in the field of neural ar-
chitecture search (NAS), denote an exhaustive procedure of training and apprais-
ing all architectures within a defined search space using one or multiple datasets.
They were introduced to address the reproducibility concerns prevalent in the
NAS research community [45]. Ying and Klein et al. [45] took the initiative to
publish NAS-Bench-101, which cataloged the training and validation results for
approximately 423k architectures within a large cell-based search space across
several widely-used datasets, including CIFAR datasets [46] and ImageNet. The
intent was to completely remove the evaluation cost associated with executing a
NAS within these parameters, hence fostering more research into NAS and sig-
nificantly reducing the requirement for computational resources. This, in turn,
simplified the comparison of different search algorithms within the search space
encompassed by the table. In the ensuing years, numerous papers have been re-
leased featuring tables presenting evaluation data for alternate search spaces and
for various datasets and ML tasks [32, 47, 48].

By nature, NAS research is extremely sensitive to minor changes in random
seeds, hyperparameters, and training pipelines, and Tabular NAS Benchmarks
have revolutionized its reproducibility [49].

Model-based Predictors and Surrogate NAS Benchmarks

Model-based predictors, which employ a machine learning model to map an ar-
chitecture to a fitness score, have been demonstrated to be particularly efficient
according to White et al. [37]. These predictors come to the fore in the creation of
Surrogate NAS Benchmarks, a solution proposed to overcome the size limitations
of Tabular Benchmarks.

While Tabular Benchmarks are often extensive, typically incorporating between
6k-423k architectures, they pale in comparison to the search spaces usually con-
templated in NAS literature, such as DARTS [31], which can include as many as
1018 or more architectures depending on the choice of parameters. This disparity
could result in findings on benchmarks not being transferrable to a more expans-
ive search space [49].

Surrogate NAS Benchmarks address this issue by evaluating fewer architec-
tures within larger search spaces, then training a regression model to map an
architecture to a fitness score, typically a validation score on some task [49]. Ac-
cording to Siems et al., surrogate benchmarks can offer more realistic loss scores
than single tabular entry benchmarks10, as the surrogate model ameliorates the
noise typically found in benchmark tables due to the stochasticity of mini-batch
training of Neural networks. This method has been used to create the NAS-Bench-
301, a surrogate benchmark boasting a search space with 1021 potential architec-
tures [49].

10Benchmark tables trained with only one random seed. It is common however to use 3 random
seeds like in NAS-Bench-101 [45]
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2.7.3 Prominent NAS Search Strategies

The roots of Neural Architecture Search (NAS) can be traced back to 1989, when
an evolutionary algorithm was first applied by Miller et al. [50] to optimize neural
network architectures. Since that seminal work, an array of diverse algorithms has
been introduced to enhance the efficiency and robustness of neural architecture
generation.

As we survey the landscape of NAS in 2023, search strategies predominantly
fall into two main categories: One-Shot methods and black-box methods. It’s note-
worthy that these categories are not mutually exclusive, and a particular strategy
may not fall squarely into either category or may straddle both [9].

Black-box methods have been notable for their frequent use in the field. Con-
ceptually straightforward, these strategies, including Bayesian optimization, evol-
utionary algorithms, and reinforcement learning, have been widely adopted [51].
However, one downside of these techniques is their significant computational cost,
with some studies reporting the use of thousands of GPU days for their experi-
ments [8, 9].

In contrast, one-shot methods have gained traction due to their consider-
able efficiency. These methods manage to generate promising results within a far
shorter time span - typically a few GPU days, and in some cases, as reported by
Dong et al. [52], even within a span of just a couple of hours.

In the ensuing discussion, we will delve into some of the most prevalent strategies
in current NAS research. Our exposition will heavily draw upon comprehensive
surveys by prominent researchers in the field, notably, Elsken et al. [8] and White
et al. [9].

Random Search

Random Search is a basic yet invaluable algorithm that indiscriminately generates
architectures, returning the best one encountered within a specific time limit. Its
primary utility in NAS research stems from its unguided nature, making it an ideal
benchmark for other algorithms. While it may not consistently deliver the most
robust performance, its value lies in its unpredictability. Both Zoph et al. [53] and
Ochoa et al. [33] state that Random Search sets a significant challenge, as many
cutting-edge strategies find it hard to outperform.

Reinforcement Learning

Reinforcement Learning is another commonly employed technique in NAS. This
approach, initiated by Zoph et al. [54], treats the NAS problem as a Reinforcement
Learning task and has contributed significantly to the mainstreaming of NAS re-
search [8]. In this setup, the search space is regarded as the action space of the RL
agent. The actions taken by the agent, or the architectures it generates, are then
evaluated [8].
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Evolutionary Computation

Early in the history of Evolutionary NAS (ENAS), the approach was heavily reliant
on neuroevolution, a technique that employs evolutionary algorithms to optimize
both the architecture and weights of the networks [55]. However, with the evol-
ution of Deep Neural Networks, gradient-descent methods have proven more ef-
fective for weight optimization [8], leading contemporary ENAS research to focus
on using evolutionary algorithms primarily for architectural optimization. This
approach entails initializing a population within a predetermined search space,
with each individual serving as a coded solution or architecture. The fitness of the
initial population, indicative of the expected performance of the architectures, is
then evaluated. This is followed by the evolutionary process, where architectures
are selected, crossed over, and mutated to create novel solutions until a predefined
stopping criterion is met [51].

Local Search

Local Search is an approach that has recently gained significant popularity. Mul-
tiple experiments on NAS-Benchmarks have demonstrated that Local Search can
deliver state-of-the-art performance, particularly when the search space has min-
imal noise [33, 56, 57]. It encompasses three primary components:

1. A search space S where a valid solution/architecture s belongs, i.e., sεS
2. A neighborhood function N such that N(s) denotes the set of neighbors for

a specific solution
3. A fitness/PES function (see section 2.7.2) f (s) to assess the capability of an

architecture

To illustrate, the paper [33] utilizes a straightforward encoding with a Directed
Acyclic Graph (DAG) representing the search space of NAS-Bench-201 [32]. The
search space is a cell-based structure with six nodes each having five different
options, where N(s) are the set of solutions such that the hamming distance from
s is equal to one. This is the algorithm in broad terms:

Algorithm 1 Local Search(s)

Find neighbors N(s)
for n in N(s) do

if f (n)< f (s) then
Local Search(n)

end if
end for
return s

This algorithm starts by randomly picking a solution within the search space
and then recursively applies Local Search until it cannot find a better neighbor.
When the algorithm returns, it attempts to escape from what could potentially
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be a local optimum by introducing small perturbations and then reruns the Local
Search algorithm. Please note that other implementations evaluate all neighbors
before taking the recursive step [33] or employ other strategies to escape from
local minima.

Gradient-based NAS Algorithms

A key focus of this thesis is gradient-based NAS algorithms and especially in the
context of one-shot models. These algorithms leverage the power of gradient-
based optimization to explore the search space, often augmenting the traditional
loss function to allow for this integration [8, 30, 31]. A significant advantage of
many gradient-based methods is their ability to simultaneously tune a model’s ar-
chitecture and weights, which potentially mitigates the risk of falling into local
minima due to the premature exclusion of beneficial architectural components
that may not exhibit promising performance during the nascent stages of model
training. However, it is important to note that not all gradient-based NAS al-
gorithms follow this simultaneous optimization approach. Section 2.7.4 will delve
deeper into Differentiable Architecture Search (DARTS) which is a popular strategy
that exemplifies many aspects of gradient-based NAS algorithms [31].

2.7.4 DARTS: Differentiable ArchiTecture Search

The Differentiable Architecture Search (DARTS) paradigm, proposed by Liu et al.
in 2019, presents a novel approach to the automation of network architecture
search [31]. DARTS utilizes a unique combination of a cell-based search space
and a gradient-based one-shot model, facilitating efficient exploration and eval-
uation of architectures. The search space in this context is realized as a Directed
Acyclic Graph (DAG) where each edge of which can perform one out of 8 potential
operations as shown in figure 2.10.

The DARTS Search Space

A cell, in the DARTS methodology, is essentially a DAG constructed from B blocks.
Here, the ’ith’ block within the ’lth’ cell is defined using a 5-tuple (I1, I2, O1, O2, C),
where:

• I l
i encompasses the potential input tensors for the ’lth’ block. This set in-

cludes the output from the preceding cell H l−1, the output from the cell
two steps prior H i−2, and the output from earlier blocks within the current
cell H l

1, ..., H l
i .

• C signifies the approach used for integrating the outputs from the two branches
to generate the output tensor of this block. In this model, the only available
choice for the set of possible combination operators ’C’ is element-wise ad-
dition.
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• H l
i corresponds to the blocks’ output tensors. The output tensor for the cell is

derived by concatenating these block output tensors H l
1, ..., H l

B sequentially.
• O denotes the possible layers applicable to the corresponding input tensor.

The operator pool consist of:

◦ 3 x 3 Depthwise-separable convolution
◦ 5 x 5 Depthwise-separable convolution
◦ 3 × 3 Atrous convolutions with rate 2
◦ 5 × 5 Atrous convolutions with rate 2
◦ 3 x 3 Average pooling
◦ 3 x 3 Max pooling
◦ Skip connection
◦ Null (zero) operation

They apply a ReLU activation function before and batch normalization after
every convolutional operator and separable convolutions are applied twice
[31]

Despite the search space being derived from a discrete set of operations, DARTS
introduces continuity by allowing the softmax over all possible operations to re-
place the categorical selection of a particular operation, as indicated by equation
2.6

o−(i, j)(x) =
∑

o∈O

exp(α(i, j)o )
∑

o′∈O exp(α(i, j)o′ )
o(x) (2.6)

The mixing weights for operations between a pair of nodes (i, j) are charac-
terized by a vector α(i, j), the dimension of which equals |O|. The architecture
search process in DARTS is thus translated into the learning of continuous vari-
ables α= α(i, j).

Post the search process, a discrete architecture is retrieved by substituting each
mixed operation o−(i, j) with the operation of highest probability, expressed as
o(i, j) = ar gmaxoεOα

(i, j)
o . In this context, α serves as the encoding of the archi-

tecture, its cardinality (length) being equivalent to the number of operators O.
At the conclusion of the search, a discrete architecture can be derived by re-

placing each mixed operation ō(i, j) with the most probable operation, providing a
link back to the original discrete search space [31]. This process results in a final
architecture that can be efficiently re-trained from scratch.

Architecture Search with DARTS

The DARTS search process integrates the learning of the operations α and the
network weights w in a bi-level optimization framework, which can be formulated
as:

min
α∈A

Lval(w
∗(α),α) (2.7)
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Figure 2.10: The DARTS search cell. Each red line represents the operations that
can be assigned to the edge.

such that w∗(α) = arg min
w

Lt rain(w,α) (2.8)

where Lt rain and Lval denote the training and validation loss, respectively.
The operator weights α are updated using the validation set while the weights of
the network w are updated using the training set.

The gradient-based one-shot model employed by DARTS enables efficient ar-
chitecture search. Like other NAS methods in the one-shot category, model weights
do not need to be trained from scratch for every new architecture but are drawn
from a supernet encompassing all possible architectures in the search space. The
architectural parameters of this supernet can then be efficiently optimized using
gradient-based methods. As evaluating the gradient for α is very expensive due to
the inner optimization, the algorithm employs the following scheme to approxim-
ate w∗(α) in a single training step:

∇αLval(w
∗(α),α)≈∇αLval(w− ξ∇wLt rain(w,α),α) (2.9)

The algorithm proceeds as follows:

Algorithm 2 DARTS Algorithm

Initialize weights w and architecture parameters α
repeat

Update weights w by optimizing Lt rain(w,α) with respect to w
Update architecture parameters α by optimizing Lval(w,α) with respect to α

until convergence or stop criterion is reached
Derive the final architecture by selecting the operation with the highest weight
for each edge in the DAG.

This approach dramatically reduces the computational cost of the architecture
search process, making it feasible to perform NAS on tasks with larger datasets
and more complex architectures.
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Results from DARTS

In the original DARTS paper [31], Liu et al. provided empirical evidence of DARTS’s
efficiency and effectiveness. They conducted experiments on CIFAR-10, Penn Tree-
bank (PTB) [58], and ImageNet datasets, comparing the performance of the ar-
chitectures found by DARTS with other state-of-the-art models. The architectures
obtained using DARTS achieved competitive performance, often exceeding the
performance of human-designed architectures.

Compared to other NAS methods, DARTS stands out regarding the computa-
tional cost. While conventional NAS algorithms often require thousands of GPU
days to complete the architecture search [29, 59]DARTS achieves similar perform-
ance levels with only a fraction of the computational resources. This methodology
has inspired a whole suite of follow-up work and made one-shot methods one of
the most popular families of NAS search strategies [9].

2.7.5 Auto-DeepLab

Auto-DeepLab (ADL) is a tailored application of differentiable Neural Architecture
Search (NAS) designed to effectively generate architectures for semantic segment-
ation tasks with the DeepLab framework [30]. Proposed by Liu et al., it signific-
antly extends the cell-based search space of DARTS [31] by introducing a hier-
archical spatial resolution component into the architecture search process [60].
As a hallmark of the DeepLab family, the architecture search ends with an At-
rous Spatial Pyramid Pooling (ASPP) module [24], though it only uses 3 branches
instead of 5 [30]. Given the prominence of ADL in the experiments detailed in
Chapter 4, understanding its structure and operation is crucial for this thesis.

The Search Space

The search space of ADL is characterized by two major components:

• Micro-level: Inner cell-based search space, inherited from DARTS
• Macro-level: Outer spatial search space, unique to ADL

For the micro-level, ADL employs the same gradient-based search method-
ology as DARTS to select suitable operators within the Directed Acyclic Graph
(DAG) of a cell. The operator pool is the same as for DARTS. Refer to section
2.7.4 for a thorough description of the cell-based architecture search.

At the macro level, ADL consists of L cells, also called layers, that can have
four different levels of depth s ∈ S where S = 4,8, 16,32 depending on how much
we downsample the original image (See Figure 2.11). It incorporates the spatial
resolution of cell inputs into the optimization process. Each cell with an output
tensor of spatial resolution s can receive an input tensor of resolution s, 2s, or
s/2. The selection is controlled by a parameter β , which smoothly interpolates
the discrete choices, akin to the role of α in the micro search space. Consequently,
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Figure 2.11: A visual representation of Auto-DeepLab’s macro and cell level
search space. This figure is inspired by a similar one made by Liu et al. [30]

both parameters are utilized in a unified continuous relaxation scheme as shown
in Equation 2.10:

sHl =β
l
s/2s→sCell(s/2Hl−1,s Hl−2;α)

+ β l
s→sCell(sHl−1,s Hl−2;α)

+ β l
2s→sCell(2sHl−1,s Hl−2;α)

(2.10)

The number of filters per layer is given by BxF xs/4 where the filter multiplier
F is a constant set at the beginning of the search and retraining. Liu et al. use
F = 8 in the search process.

Architecture Search with Auto-DeepLab

To avoid overfitting the architecture to the training data, the original paper di-
vides the training data into two separate datasets, trainA and trainB. trainA is
employed to optimize the weights, while trainB is used for fine tuning the archi-
tecture parameters α and scaling parameters β . Furthermore, they recommend
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training the weights for 20 epochs before initiating the optimization of α and β .
The overarching steps of the Auto-DeepLab algorithm are encapsulated as follows:

Algorithm 3 Auto-DeepLab Algorithm

Initialize weights w, architecture parameters α, and scaling parameters β
repeat

Update weights w by minimizing Lt rainA(w,α,β)
Update architecture parameters α and scaling parameters β by minimizing
Lt rainB(w,α,β)

until convergence or a predetermined stop criterion is met
Derive the final architecture by selecting the operation with the highest weight
for each edge in the DAG. And derive the final macro architecture using the
Viterbi algorithm.

Retraining Auto-DeepLab

The architecture exploration phase with Auto-DeepLab is a proxy task, given that
it generally utilizes fewer convolutional filters per layer during this search process
compared to the subsequent retraining of the derived architecture [60]. Once the
search concludes the final architecture is decoded. The cell is decoded the same
way as described in section 2.7.4 and the macro architecture is decoded using
the Viterbi algorithm. the model parameters are reset and the process of retrain-
ing begins anew. Liu et al. differentiate between Auto-DeepLab-S, M, or L in the
retraining phase depending on the increase of F to 20, 32, or 48 respectively.



Chapter 3

Methodology

This chapter meticulously delineates the methodology and the suite of technolo-
gical assets that underpin the experiments presented in this thesis. It aims to shed
light on the rationale behind specific technological decisions, grounded in the
context of contemporary leading-edge research, the available resources of Enern-
ite, and learnings drawn from both our prior research endeavors and challenges
identified within the broader scholarly community.

3.1 Selecting NAS Methodology

Determining the appropriate Neural Architecture Search (NAS) methodology, as
discussed in section 2.7, hinges on several factors. For our purposes, four criteria
emerged as critical: the computational expense associated with the search, the
task specificity, the documented performance of the algorithm, and the availability
of source code or libraries for implementing the chosen method.

Our analysis led us towards one-shot models, primarily due to their pronounced
computational efficiency [9]. Within the spectrum of one-shot methodologies out-
lined in the comprehensive NAS surveys by White et al. [9] and Elsken et al. [60],
Auto-DeepLab (ADL) appeared as the optimal choice. Its specialization for se-
mantic segmentation, coupled with our prior successful experiences with DeepLab
models contribute to the validation of this selection.

Although AutoDeepLab was introduced in 2019, various works have since
emerged to expand upon it, with alterations to the search space or specific tail-
oring for tasks such as real-time video segmentation [18, 61, 62]. Among these,
DCNAS by Zhang et al. [40] is the sole methodology that directly enhances the
performance on inference measured in mIoU of ADL as shown in table 3.1. Re-
grettably, the lack of public access to the DCNAS code impedes its experimental
usage. It also has almost double the search time, which would make it challenging
to use with our dataset

Given these limitations and considering that inference latency is not a signific-
ant metric for our work, we opted for the highest-performing model akin to ADL,

33
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as of February 2023, which happens to be the original. The selection of this model
was also influenced by the availability of source code, simplifying its integration
into our experimentation process.

Table 3.1: Comparison of one-shot NAS methods specializing in segmentation on
the Cityscapes test set

Architecture GPU Days (search) mIoU

Auto-DeepLab [30] 3 82.1
DCNAS [40] 5.6 84.3
GAS [61] 6.7 73.5
SqueezeNAS [18] 14.6 75.54
FasterSeg [62] 2 71.5

3.2 Training Environment Description

3.2.1 Hardware Limitations

The majority of the experiments, which will be detailed in chapter 4, were conduc-
ted using hardware from the NTNU IDUN High-Performance Computing Cluster
[63]. This included either an NVIDIA A100 GPU equipped with 40/80GB memory
or an NVIDIA V100 GPU with 32GB memory. An NVIDIA RTX 3090 GPU1 was also
used for some tests.

3.2.2 Data Selection

The empirical foundation of this project is based on a proprietary dataset of En-
ernite, encompassing solar farms situated across Europe. This expansive dataset,
consisting of 224x224 pixel chips from 12-band Sentinel-2 level-2A (l2a) images2,
contains more than 200,000 images with about a 50/50 split between positives
(containing solar farms) and negatives. All the positives additionally have masks.
A couple of thousand are manually drawn and the rest are sourced from previous
Solis deployments, OpenStreetMap3, or other sources with free available masks
for solar farms. Note that while Sentinel-2 captures 13 bands as mentioned in sec-
tion 2.5.1, band B10 is excluded from l2a as it is used to monitor the atmosphere
rather than the ground. Some examples of Solis images can be seen in figure 3.1

Given the resource-intensive nature of architecture search and practical con-
siderations concerning time, representative subsets of this dataset are employed
during the architecture search process. Comprehensive details about dataset sizes

1https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
2https://sentinels.copernicus.eu/web/sentinel/sentinel-data-access/

sentinel-products/sentinel-2-data-products/collection-1-level-2a
3https://wiki.openstreetmap.org/wiki/Tag:generator:source%3Dsolar

https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3090-3090ti/
https://sentinels.copernicus.eu/web/sentinel/sentinel-data-access/sentinel-products/sentinel-2-data-products/collection-1-level-2a
https://sentinels.copernicus.eu/web/sentinel/sentinel-data-access/sentinel-products/sentinel-2-data-products/collection-1-level-2a
https://wiki.openstreetmap.org/wiki/Tag:generator:source%3Dsolar
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are expanded upon in chapter 4. It is worth noting that while the dataset is pro-
prietary and cannot be shared in its entirety due to business considerations, the
framework presented is agnostic to the dataset and could potentially be employed
with a similar dataset. One such dataset is that collated and shared by Kruitwagen
et al.4.

As highlighted by Elsken et al. [8], the scale of disparity between the sampled
and full dataset size can influence the relative ranking of architectures. This presents
a potential concern, given that our final objective is optimizing the validation score
on the larger dataset, not the subset. Nonetheless, the two tasks are indisputably
closely related, and we believe that a random selection of images from a wide
geographic coverage incorporating diverse geographical features will mitigate po-
tential biases.

Furthermore, it is worth noting the successful model performances achieved
on relatively smaller datasets ( 1000-2000 images) as reported by Hou et al. [6]
and Plakman et al. [4]. While this doesn’t directly speak to the relative ranking
among models, it suggests that good results can be obtained even with smaller
datasets, which may result in lesser impact from a reduced training set. This ob-
servation is particularly pertinent for SolarNet [6], considering China’s diverse
landscape.

To further diversify the training process, both during the search and retrain-
ing phases, we implement data augmentation. Specifically, images are subjected
to horizontal and vertical flips with a 50% probability each before being fed into
the model within the training loop. This data augmentation strategy makes for a
robust and varied training dataset, enhancing the model’s generalization capabil-
ities even with smaller dataset sizes.

3.3 AutoDeepLab Search Implementation Details

This study closely aligns with the methodologies outlined in AutoDeepLab con-
cerning the search space, strategy, and performance evaluation [30]. Notably,
the original model of the paper is written in TensorFlow5, while Enernite’s Solis
Oculus is developed using PyTorch6. Consequently, our implementation is based
on the open-source PyTorch AutoDeepLab repository maintained by GitHub user
NoamRosenberg7.

We have integrated the Solis data loaders and pre-processing into this reposit-
ory, further optimizing the training pipeline with enhancements to memory usage,
code readability, checkpointing, and model monitoring. The code is available at
https://github.com/eolweus/autodeeplab.

4https://zenodo.org/record/5005868
5https://www.tensorflow.org/
6https://pytorch.org/
7https://github.com/NoamRosenberg/autodeeplab

https://github.com/eolweus/autodeeplab
https://zenodo.org/record/5005868
https://www.tensorflow.org/
https://pytorch.org/
https://github.com/NoamRosenberg/autodeeplab


36 Olweus, E.: DNN Architectures for Segmentation of Solar Farms

Figure 3.1: Some examples of images from the Solis dataset
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3.3.1 Parameter Selection Details

Our experimental setup closely follows the methodology employed by Liu et al.
[30], based on their thorough testing. We adopted their parameter settings, in-
cluding:

• Layers L= 12
• Blocks per cell B = 5
• Filter multiplier F = 8
• Epoch count during the search phase = 40
• Number of epochs allocated for weights w optimization before initiating
α,β optimization = 20
• Utilization of ASPP modules, with a modification to use 3 branches instead

of the usual 5 during the search phase
• Hyperparameters pertaining to the optimizers of w,α,β

Nevertheless, given our access to A100 GPUs via the IDUN cluster [63], we em-
ployed batch sizes of 22 or 12, dictated by the available memory capacity (80 or
40 GB). The Solis dataset, which is purposed for both classification and segment-
ation, maintains a standard image resolution of 224x224—a common format for
classification input [18].

The Solis dataset subsets, as detailed in Section 3.2.2, were used during the
architecture search. These subsets were divided into two equally sized training
sets, trainA and trainB, along with a validation set comprising 20% of each training
set’s size, following the procedure in Section 2.7.5.

The retraining process for the discovered architectures remained consistent
across all experiments. We applied the Auto-DeepLab-M configuration (F = 32,
see Section 2.7.5) and used the entire Solis dataset with an 80/20 train-test split,
incorporating 12 out of the 13 available spectral bands.

The only exception was the best-performing model identified via NAS, termed
10k (refer to Section 4.3), which was retrained with a filter multiplier of F = 48,
representing the Auto-DeepLab-L configuration. To avert confusion, we refer to
this model as 10k-L.

For retraining, we opted for a 100-epoch duration as prior experimentation
with the Solis-transfer model indicated that the model performance plateaued
after this point and was more prone to overfitting. Training for extended periods
would not only increase the likelihood of overfitting but also limit our capacity
to conduct diverse parameter experiments. This epoch count aligns with the ap-
proach adopted by Liu et al. [30], further validating our choice.

3.4 Comparing NAS Results

In this research, we embark on a journey to critically evaluate and compare the
outcomes of Neural Architecture Search (NAS) experiments. Our focus will be on
the differences in the architectures generated using the Auto-DeepLab method,
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particularly on how well the search performs or the same task with varying input
data and thus also how these variations to input impact the search. Additionally,
we aim to investigate the trade-offs of using NAS versus an off-the-shelf model
like ResNet.

To unravel the intricacies of the generated architectures and facilitate a com-
prehensive comparison, we will adopt a two-pronged approach encompassing
both hierarchical and cell-level analysis. The hierarchical perspective will com-
pare the macro-architectural organization of the networks, whereas the cell-level
scrutiny will focus on the finer cell-level structure.

In our quest to answer these questions, we will probe into various dimensions
of the architectures, including:

• The Performance During Search: Can we see a difference as to how well
Auto-DeepLab performs during search depending on the input data?
• The Chosen Operations: Is there a pattern in the operators chosen during

the different searches?
• Macro Architecture: Does the down and up-sampling differ significantly

with various run configurations?

Ultimately, through this examination, we aim to cultivate a better understand-
ing of the architectural nuances that emerge from NAS experimentation. This un-
derstanding will, in turn, inform our perspective on the robustness and flexibility
of NAS, and most of all how consistent the results of NAS are across slight vari-
ations of parameters and inputs.

3.5 Performance Evaluation of the Final Models

The assessment of the final models’ performance is more straightforward than
evaluating the outcomes of the architecture search. For this comparison, we train
the chosen models on the complete Solis dataset, adhering to an 80/20 train-test
split. We then compare their performance based on F-score, mIoU, and the rate of
convergence. Additionally, we juxtapose these models with several benchmarks:

• The existing Solis Oculus model (Solis-transfer)
• The new Solis Oculus model, Solis-seg (see 4.2)
• The best-performing model identified by Liu et al. [30] during their City-

scapes search. We refer to this model as ADL-cs
• A model randomly generated with the help of ChatGPT8 within our search

space. We refer to this model as chatgpt. A detailed description of how it
was generated can be found in Appendix C.

It is crucial to note that our primary performance metric is the validation set
mIoU (mean intersection over union, section 2.3.2). Owing to its widespread ad-
option and intuitiveness, it is an effective tool for evaluation. However, an excep-

8https://openai.com/blog/chatgpt
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tion is made when contrasting with the Solis-transfer model, for which we employ
the F1-score, given that mIoU was not captured during its training.

As a final evaluation, we will deploy the best-performing model on an area it
has not been trained on: the state of New York in the US, and see if it is able to
detect any new solar farms. This will also provide valuable insight into how the
model performs on a continent it has not been trained on.





Chapter 4

Experiments and Results

This chapter forms the core of our research, presenting the comprehensive suite of
experiments conducted to address our research goal and study objectives (section
1.2). Each experiment is designed to directly interrogate a facet of the research
goal. Our experimental design was driven by the intention of not only refining
our understanding of the architecture search process, but also to evaluate the
performance of the resulting architectures and, ultimately, to unearth a model
that outperforms the Solis-transfer model.

This chapter contains figures of some of the cells discovered through NAS. All
the cells can be found in Appendix B.

4.1 Experimental Plan

Our experimental design directly corresponds to our study objectives, with each
experiment intended to provide insights that contribute towards our overarching
research goal and the study objectives. The experiments are structured as follows:

• Experiment 1: Evaluating the Effectiveness of Transfer Learning (SO1
and SO3) This experiment targets our first study objective, seeking to eval-
uate whether a model trained purely for semantic segmentation will out-
perform a model with a backbone trained on classification tasks. This evalu-
ation also provides an additional benchmark against which the performance
of NAS-derived architectures can be compared.
• Experiment 2: Assessing the Impact of Dataset Size on NAS (SO2.1)

Recognizing the constraints of computational resources and the necessity to
work with subsets of our dataset, this experiment seeks to understand how
varying dataset sizes influence the NAS process.
• Experiment 3: Robustness of Relative Rankings in NAS (SO2.2)

Conducting searches on a reduced dataset could potentially distort the re-
lative ranking of architectures determined by the search algorithm. This
experiment aims to evaluate this potential distortion by comparing high-
ranked architectures with those presumed to be inferior on the subset using

41
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the full dataset.
• Experiment 4: Influence of Spectral Bands on NAS (SO2.1)

While it is desirable that NAS methods generalize well across different data-
sets and tasks, it isn’t guaranteed. As the Solis project currently benefits from
the usage of spectral bands, we were interested in evaluating how the in-
corporation of this additional data might influence the search process.
• Experiment 5: Overfitting Risk with Auto-DeepLab (SO2.2)

In line with Liu et al.’s recommendation [30] we use a split training set to
reduce the risk of overfitting to the training dataset. With this experiment
we seek to measure the extent of overfitting risk by deliberately deviating
from this split-training approach, allowing us to assess the repercussions of
not adopting such preventative measures in NAS.
• Experiment 6: Sensitivity of NAS to Different Data Subsets (SO2.1)

This experiment probes the robustness of our searches to changes in the data
subset used, providing further insights into the generalization capabilities
of NAS.
• Experiment 7: Comparative Evaluation against a Broadly Applicable

State-of-the-art Model (SO3)
This experiment juxtaposes our best model against SAM (see section 2.3.1),
a state-of-the-art segmentation model designed with a broad focus, aiming
to excel across a wide array of tasks. This comparison allows us to better un-
derstand the trade-offs between specifically optimized models as opposed
to the novel approach of designing models for broad, generalized perform-
ance.
• Deploying the Best Model to Find New Solar Farms

As a final experiment, we planned to test the ability of our best model to
augment our existing Solis dataset by deploying it in a real-world context
for the discovery of new solar farms.

The subsequent sections provide a detailed description of each experiment
and present their respective results.

4.2 Experiment 1: Evaluating the Effectiveness of Trans-
fer Learning (SO1)

As outlined in our study objectives, the purpose of this experiment is to evaluate
the effectiveness of transfer learning, particularly as employed by the current Solis
model, Solis-transfer, discussed in Section 2.6.2. Our intention is to investigate if
the prevalent approach of transfer learning from classification tasks remains the
optimal strategy or if training directly on segmentation tasks from the outset can
produce improved outcomes. To facilitate this analysis, we implemented a variant
of the Solis model, Solis-seg, trained exclusively on segmentation.

Contrary to our expectations, not only did the Solis-seg model exhibit a marked
performance improvement compared to Solis-transfer by increasing the best F1-



Chapter 4: Experiments and Results 43

score from 0.89 to 0.9621, it even ascended to the position of the highest-performing
model. With an impressive final validation mIoU of 0.9629, it surpassed all the
models obtained through our NAS experiments, emerging as the only model breach-
ing the 0.96 threshold.

Table 4.1 provides a summary of the top five models, ranked based on the
mIoU scores achieved during the retraining phase. It underscores the dominance
of Solis-seg in this experiment.

Name mIoU F1-score
Solis-seg 0.9629 0.9621
10k-L 0.9593 0.9582
ADL-cs 0.9586 0.9575
10k 0.9567 0.9555
chatgpt 0.9565 0.9552
Solis-transfer N/A 0.89

Table 4.1: Top 5 models ranked by validation mIoU achieved during retraining

4.3 Experiment 2: Assessing the Impact of Dataset Size
on NAS (SO2.1)

One of the constraints that arose from the extensive computational demands of
NAS was the necessity to reduce the number of images employed during the search
process. This constraint led us to an essential research question: How would con-
ducting a search on a subset of the data influence the architecture outcome? Al-
though running the algorithm on both a subset and the full dataset would be
the optimal way to investigate this, practical constraints of time and resources
rendered this approach impossible.

Consequently, we decided to experiment with data subsets of varying sizes,
specifically 2,000, 5,000, 10,000, and 20,000 images, comparing the search pro-
cesses and the resulting architectures. We subsequently refer to these searches
and the resulting architectures as 2k, 5k, 10k, and 20k respectively. We hypothes-
ized that these subsets would serve as satisfactory proxies for the full dataset,
given the problem’s inherent similarity across different scales. Our anticipation
was that the architectures discovered with various dataset sizes would demon-
strate consistency in both their structural configuration and performance. The
numbers specified denote the combined count of training and testing images.
Thus, the experiments conducted with 10,000 images, for instance, had training
sets of 8,000 images (meaning trainA and trainB had 8000 each) and a test set
comprising 2,000 images. We chose this configuration because both the architec-
tural parameters and the weights are then trained and tested on a total of 10,000
images respectively. Detailed specifications of the dataset sizes used are available
in appendix A.
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Figure 4.1: The mIoU on the validation sets for the different dataset sizes during
search

4.3.1 Search Results

As anticipated, there is a direct correlation between the size of the dataset and the
resultant validation mIoU. While the performance difference during the search
across the three largest datasets is marginal, using only 2000 images presented a
broader range of results. Specifically, the results of the searches conducted with
this small dataset appear to exhibit more sensitivity to randomness and possibly
data selection during the search phase as we will see in section 4.7.

Interestingly, almost all the searches reached their peak performance shortly
after the commencement of architectural parameter optimization, which began
following the initial 20 epochs of training. This pattern led us to further invest-
igate by comparing some of the top-performing architectures with the final ones
discovered during the search, as detailed in Section 4.4.

Figure 4.2 showcases a selection of architectures identified during various
search processes. It’s important to clarify that l-1 and l-2 represent the outputs
from the immediate preceding cell and the one prior to it, respectively. For a more
detailed interpretation of this configuration, readers are advised to refer to Section
2.7.4. Upon examination of Figures 4.2 and B, one can observe a marked variance
in cell structures, despite them yielding similar results on the extensive dataset.
This observation contradicts our initial presumption that the optimally identified
architectures in the search processes would exhibit structural similarities.

4.3.2 Retraining Results

As might be anticipated, models trained with smaller datasets manifested lower
performance on unobserved data during the search phase. However, as presen-
ted in Table 4.2, this performance discrepancy does not translate directly to the
performance of the architecture when implemented on the full dataset. This di-
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(a) 20k cell

(b) 20k Macro Path

(c) 10k cell

(d) 10k Macro Path

Figure 4.2: Some of the architectures produced by searching different dataset
sizes
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vergence occurs because, during the search, the models are ranked relative to the
data they are trained on, as opposed to any absolute scale.

In a fascinating turn of events, the model trained on the most extensive data-
set demonstrated the lowest performance. Our results didn’t indicate a discernible
correlation between the size of the subset and the final dataset performance, with
all scores in close proximity. Furthermore, none of the models displayed signific-
ant overfitting, with the training mIoUs marginally exceeding those on validation.
This outcome could be attributed to the element of randomness due to the restric-
ted number of searches conducted. Conversely, it could signify that the dataset is
quite homogeneous, and even the smaller subsets accurately represent the larger
dataset. As explored in section 2.5.1, working with satellite imagery presents its
unique challenges. Thus, it’s plausible that the 20k dataset, due to some unfortu-
nate circumstances, contains flawed data that impedes the optimization process.

Name val mIoU (search) val mIoU (retrain) train mIoU (retrain)
10k 0.741 0.9567 0.9653
2k 0.536 0.9563 0.9637
5k 0.733 0.9550 0.9630
20k 0.785 0.9531 0.9607

Table 4.2: mIoU Results for Different Dataset Sizes

4.4 Experiment 3: Robustness of Relative Rankings in NAS
(SO2.2)

A primary concern when utilizing a subset of a dataset for the purpose of archi-
tecture search is the risk that this subset may not adequately represent the full
dataset. This concern hinges on the potential alteration in the relative ranking of
architectures when moving from the subset to the full dataset [8]. Although thor-
oughly assessing this mismatch in rankings would necessitate a comprehensive
evaluation of all or a significant number of architectures on both the subset and
full dataset, we can gauge the severity of this issue by contrasting some of the ar-
chitectures evaluated during the searches. Consequently, we focus on comparing
the top-performing results for three dataset sizes against the final models—or the
second-best models in the case of 20k—derived from the same search.

4.4.1 Search Results

A key observation during training is that most architectures maintain relative
similarity across different stages. For instance, the second-best model identified
within the 20k subset (see Figure 4.3) exhibits strong resemblances with the top
model (see Figure 4.2a).
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Figure 4.3: The second-best cell identified in the 20k subset

4.4.2 Retraining Results

As delineated in Table 4.3, in all instances we scrutinized, the top-performing
model demonstrated at least marginal superiority over the final or second-best
models. It is noteworthy that the size of the mIoU gap in the final results appears
to have a loose correlation with the difference in mIoU during the search phase.

Model mIoU (search) mIoU (retrain)

20k best 0.7848 0.953
20k second best 0.781 0.9525
Difference 0.0038 0.0005

10k best 0.741 0.9567
10k final 0.7381 0.9553
Difference 0.0029 0.0014

5k best 0.733 0.955
5k final 0.7056 0.9394
Difference 0.0274 0.0156

Table 4.3: omparison of mIoU of the top-performing model and another model
during search and retraining across three different dataset sizes

4.5 Experiment 4: Influence of Spectral Bands on NAS
(SO2.1)

Historically, research initiatives [3, 4] as well as our hands-on experience with
training the Solis model have suggested that leveraging the spectral bands avail-
able in Sentinel-2 imagery has the potential to significantly bolster the perform-
ance of visual tasks. Nevertheless, the influence of integrating additional spectral
bands on the performance of NAS models, which are typically oriented around
RGB images, remains inadequately explored.
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To bridge this knowledge gap, we undertook a study to ascertain the potential
influence of utilizing a wider spectrum of bands on the performance of the derived
models. This involved comparing the performance of a model derived using the
12 bands available in the Sentinel-2 l2a imagery with a model trained solely on
RGB bands. In both cases, a dataset comprising 10,000 images was utilized. A
future investigation could examine the impact of different combinations of bands
on the search, although such an approach was beyond the scope of this study. The
insights from this exploration will help clarify the effect of spectral bands on the
performance and utility of the resultant models.

4.5.1 Search Results

Predictably, the model trained with more data—comprising 12 bands versus 3—demon-
strated superior performance on the validation set during the search. This out-
come aligns with previous research underscoring the benefits of integrating the
bands in the training process. It also intuitively supports the assumption that a
greater volume of relevant data should yield superior results. The cells generated
by the searches are quite distinct, as illustrated in Figure 4.5 and Figure 4.2c.

Figure 4.4: Comparative mIoU on the validation set for the search utilizing only
RGB and 12 spectral bands respectively

4.5.2 Retraining Results

The retraining results, as depicted in Figure 4.6, provide compelling evidence that
the architecture identified using all bands outperforms the one developed using
only RGB. This outcome suggests that Auto-DeepLab is capable of effectively util-
izing the additional data present in the extra bands to fine-tune the architecture
to the dataset, further reinforcing the value of incorporating broader spectral in-
formation.
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Figure 4.5: The cell resulting from the architecture search using 10k images and
only the RGB bands of the images

Figure 4.6: Comparative mIoU on the validation set for the architectures found
searching with RGB and 12 spectral bands respectively
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In summary, these results underscore the significant role that the integration
of additional spectral bands, and likely other relevant data, can play in improv-
ing the performance of NAS models. This is particularly evident when models are
trained with larger datasets that incorporate more diverse and richer spectral in-
formation. This finding could have profound implications for the development of
future models, particularly those designed for tasks involving satellite imagery or
other data sources that provide a broad range of spectral data.

4.6 Experiment 5: Overfitting Risk with Auto-DeepLab (SO2.2)

In the initial phase of our experimentation, an oversight led us to run the initial
experiments using identical images to optimize both the weights and architec-
tural parameters. Recognizing the potential for learning from this discrepancy,
we chose to preserve these results to draw comparisons with the corrected im-
plementation of the training set split. We envisaged this could provide meaning-
ful insights into the hypothesized overfitting phenomenon associated with Auto-
DeepLab [30]. The dataset sizes investigated in this experiment comprised 10k
and 2k. The searches and subsequent models without an A/B training set split
will henceforth be referred to as 10k-no-ab and 2k-no-ab.

4.6.1 Search Results

Although it’s challenging to pinpoint the exact cause, the best model of 10k-no-
ab (Figure 4.8) exhibited a heavy reliance on skip connections, a problem that is
prevalent with DARTS [64].

Figure 4.7: The mIoU on the validation sets for the various architectures

4.6.2 Retraining Results

Interestingly, as evidenced in Table 4.4, models trained on individual datasets per-
formed better on the validation set during the search phase. However, these mod-
els displayed slightly lower performance during the retraining phase. Although
these variations are minimal, they could potentially be ascribed to the inherent
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Figure 4.8: The cell discovered in 10k-no-ab

randomness in the search process, rather than indicative of a general trend. It’s
worth mentioning, however, that in instances with a smaller dataset where the
alternative is to split it in two to circumvent this issue, it may be beneficial to
evaluate the merits of utilizing the entire dataset during both optimization pro-
cesses.

Model mIoU (search) mIoU (retrain)
10k 0.741 0.9567
10k-no-ab 0.759 0.9537

2k 0.536 0.9563
2k-no-ab 0.626 0.9547

Table 4.4: Comparison of mIoU for models found using one and two training
datasets

4.7 Experiment 6: Sensitivity of NAS to Different Data
Subsets (SO2.1)

For a more comprehensive understanding, we incorporated an additional subset
for dataset sizes of 2k and 5k. This approach was taken to examine the influence of
random subset selection on the performance of the discovered architectures when
applied to the larger dataset. We selected the smallest dataset sizes of 2k and 5k
under the assumption that these would be the most susceptible to potentially det-
rimental data that could undermine the search. The newly trained architectures,
derived from differing subsets of data, are designated as 2k-dif and 5k-dif.
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In terms of performance during the search, 2k-dif significantly outshone its
counterpart, 2k. Conversely, the performance difference between 5k and 5k-dif
was minimal and tipped in favor of 5k. However, the performance results upon
retraining were strikingly similar for both pairings. These results, illustrated in
Table 4.5, combined with the findings from Section 4.3, suggest that the data is
relatively uniform. This implies the existence of numerous viable proxy subsets.

Model mIoU (Search) mIoU (Retraining)
5k 0.733 0.955
5k-dif 0.701 0.9559
2k 0.536 0.9563
2k-dif 0.6321 0.9548

Table 4.5: Comparative Assessment of Results from Searches using Diverse Data
Subsets

4.8 Experiment 7: Comparative Evaluation against a Broadly
Applicable State-of-the-art Model (SO3)

With the launch of Meta’s remarkable Segment Anything Model (SAM) [25], we
were intrigued to measure its performance against our best model, Solis-seg.
Ideally, we would fine-tune SAM and compare the metrics with those of Solis-
seg. However, as this exceeds the scope of our current study, we instead made use
of the publicly accessible demo online1.

For our comparison, we uploaded RGB images from the validation set, on
which Solis-seg has not been trained, to SAM. We used the "segment everything"
function to scrutinize the entire image for coherent structures. It’s important to
note that we have not provided SAM with any specifics about what it should
identify, nor have we fed it any images for training. These results are purely zero-
shot, with SAM, as its name suggests, striving to segment any identifiable unified
structure in the image.

Three distinct outcomes emerge from this analysis. Notably, SAM’s perform-
ance varies significantly across different images. In image A, where the solar farm
is almost invisible to the naked eye, Solis-seg presumably gains an advantage
through the use of spectral bands, as SAM fails to detect it entirely. In image B,
SAM clearly distinguishes the solar farm from its surroundings, arguably drawing
a more refined boundary than the ground truth. For image C, it not only identi-
fies the solar farm but also segregates the various racks into individual partitions.
However, these solar farms are relatively large, and many images depict smal-
ler solar farms that blend into the environment and are very challenging to detect
with the human eye. We suspect that a model trained solely on RGB might face in-
creased difficulties with such images given Sentinel’s resolution. While it might be

1https://segment-anything.com/demo

https://segment-anything.com/demo


Chapter 4: Experiments and Results 53

Figure 4.9: A side-by-side comparison of Solis-seg vs SAM
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possible to fine-tune SAM with spectral bands, it is uncertain whether this would
enhance its accuracy [23]. Therefore, despite the highly impressive performance
on some of the images, this scenario might still favor a specialized model over
a generalized zero-shot model in terms of discovering new facilities. An interest-
ing approach for further work would be to combine SAM with a more specialized
model to both optimize detection and obtain finer segmentations.

4.9 Experiment 8: Deploying the Best Model to Find New
Solar Farms

In our concluding experiment, we deployed our best model, Solis-seg in a real-
world scenario detecting new solar farms on satellite imagery. While not directly
tied to any Study Objective, this experiment is an essential step in proving that
our solution works on unseen data. We applied the model to Sentinel images of
New York from 2022, where it identified 874 polygons, potentially indicating solar
farm locations.

Since multiple polygons often constitute single facilities, we analyzed a ran-
dom sample of 50 facilities. From this analysis, we estimated that each facility
is composed of approximately 1.5 polygons on average, suggesting that we have
identified around 583 potential solar farms. Notably, several of these do not fea-
ture in widely available datasets such as OpenStreetMap.

Figure 4.10 presents examples of detected solar farms and an overview of
some of the detected facilities. While our sample review indicated minimal false
positives, it should be noted that not all predictions may accurately represent solar
farms, an issue we will revisit later.

Despite the model’s effectiveness in detecting a significant number of solar
farms, its performance was notably weaker on the New York imagery compared
to the validation set’s solar farms. A recurring pattern was the model only detect-
ing partial solar farms in several images (figure 4.11a), and entirely overlooking
some2 (figure 4.11b). This discrepancy suggests the presence of unfamiliar ele-
ments or inherent differences in the data or landscape that the model has not
previously encountered.

This highlights the critical role of diversity in training data for enhancing a
model’s ability to generalize. Although our model was trained using data from
European solar farms, the landscapes, architectural styles, and environmental in-
fluences can vastly differ between regions and continents. These discrepancies can
significantly impact the model’s proficiency in accurately identifying solar farms
in satellite images from different parts of the world, such as New York. This ob-
servation is congruent with the conclusions drawn by Layman et al. [10], further
emphasizing the importance of data diversity for robust model performance.

Hence, to enhance the model’s generalizability and adaptability to new contin-
ents and landscapes, it would likely be necessary to incorporate training data from

2We found some manually where they were close to a facility the model did detect
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(a) An overview of an area in the state of
New York where solar farms were detected

(b) Detection of a large rooftop solar in-
stallation

(c) Solar farm example 1 (d) Solar farm example 2

Figure 4.10: Examples of solar farms found by Solis-seg in New York State on
higher resolution imagery from Maxar



56 Olweus, E.: DNN Architectures for Segmentation of Solar Farms

(a) A solar farm the model only detected
a very small part of (b) A solar farm the model didn’t detect

Figure 4.11: Examples of solar farms in New York Solis-seg struggled to detect
shown on higher resolution imagery from Maxar

various geographic locations globally. This broader training scope would help the
model adapt to diverse scenarios, improving its performance on unfamiliar land-
scapes and potentially uncovering new solar farms with higher precision.

Another significant insight from this experiment pertains to the trade-offs dis-
cussed in section 2.5. It often proves challenging to validate if a model’s predic-
tion in some Sentinel images actually represents a solar farm or a false posit-
ive, prompting us to resort to higher-resolution sources for manual verification.
However, an accompanying issue is that higher-resolution images are often not
as recent as the lower-resolution ones used for training. Figure 4.12 illustrates
this discrepancy, where the high zoom level image is outdated and doesn’t re-
flect the newly installed solar farm, while the image at a lower zoom level is
recent enough to show it. Although this issue doesn’t pose a problem in this par-
ticular instance (as the presence of a solar farm is clear), it becomes difficult to
validate cases where the imagery isn’t updated, and the solar installation is re-
cent, as possibly shown in Figure 4.13. There are instances where detections are
verifiable on lower-resolution imagery but are not present in any freely available
high-resolution imagery.

It’s important to note that although it would have been intriguing to compare
the inference results of a greater number of models, the intricacies involved in
creating a pipeline around a single architecture for such operations are quite sub-
stantial. As such, we consider ourselves fortunate that the model showing the best
performance was the one most similar to the one we had previously developed.
Implementing this experimental setup for the other models would have been a
complex and time-consuming task. Nevertheless, exploring this direction remains
a fascinating prospect for future work.

In conclusion, we enrich the publicly accessible body of solar farm datasets
by sharing our dataset detailing solar farm locations detected by our Solis-seg
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Figure 4.12: Demonstration of how more recent lower resolution satellite im-
agery can show new solar farms not present in older high-resolution imagery

model in New York. The information on these geometries can be found in the
us_ny_preds.geojson file hosted on our GitHub repository at https://github.com/eolweus/autodeeplab.
This contribution aids in expanding the existing repository of solar farm data avail-
able online, assisting further research and study in the field.
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(a) The high-resolution image appears to
indicate a false positive for this prediction

(b) Discerning the presence of a PV install-
ation on the low-resolution image is a sig-
nificant challenge

Figure 4.13: A comparison of the same area on high- and low-resolution images
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Discussion

The subsequent discussion delves into the various aspects of our study, providing
an in-depth analysis of our findings and their implications. We begin by examining
the prevailing trends in architectural design that emerged from our research. Next,
we re-evaluate the efficacy of transfer learning, in the light of our findings (SO1).

Further, we assess the robustness of Neural Architecture Search in the context
of satellite image segmentation (SO2), followed by a discussion on the compu-
tational trade-offs involved in the application of NAS (SO3). We then consider
possible improvements to the NAS process we employed that could enhance its
efficiency and performance for future research.

Advancing the discourse, we venture into an engaging comparison between
NAS and massive generalized models, touching upon the trade-offs and the pos-
sible emergent synergies in forthcoming studies. As we approach the conclusion
of this chapter, we recognize the limitations inherent in our study and propose
avenues for further investigation.

5.1 Trends in Architectural Design

The distinct architectures generated through our methodology exhibited remark-
able performance consistency on the complete dataset, regardless of their differ-
ences.

In examining the cell architectures, a few patterns emerged. Operation choices
such as skip-connections and 3x3 separable depth-wise convolutions were pre-
dominantly favored. On the other hand, the two pooling operations were least
preferred, possibly due to the low resolution of the images, combined with the
ability to downsample within the macro architecture.

A distinct trend in operational preferences is also evident, with most models
displaying a propensity towards a particular operation. An overwhelming majority
of architectures analyzed incorporated at least four instances of a single operation,
indicating a certain bias.

Macro architectures exhibited a high degree of variability. Nevertheless, akin
to the findings of Liu et al. [30], we observed that paths tend to deepen in the
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Figure 5.1: Average (and median) downsample level (rounded) for each layer
across the discovered architectures

middle layers and remain shallow at the start. Multiple architectures followed a
form of ’W’ or inverted ’N’ pattern, alternating between descending and ascending
paths. In the concluding layer, most architectures culminate in either the lowest
or highest level. The bulk of the layers are located within the two middle depths,
as illustrated by the rounded average (and median) downsample level for each
layer in Figure 5.1.

A noteworthy observation was the early peak performance achieved by most
searches, soon after the commencement of architectural parameter optimization
in epoch 21. The exact reason for this behavior is uncertain, but it may indicate
potential areas of improvement for the current DARTS and Auto-DeepLab search
strategies, as performance enhancement doesn’t align with each search iteration.
Alternatively, this could be a reflection of the complex search landscape or the
presence of multiple deep local minima as suggested by Chen and Hsieh [65].

Intriguingly, despite the wide disparity in architectures, the performance on
the full dataset was largely congruent. Yang et al. [66] propose that DARTS-based
architectures may achieve superior performance by focusing more on adjusting
macro architectural parameters, such as the number of cells (layers), rather than
investing substantial efforts in refining the cell structure.

5.2 Re-evaluating the Efficacy of Transfer Learning (SO1)

As detailed in Sections 2.6.2 and 4.2, the Solis-seg and Solis-transfer models dif-
fer solely in their training methodology. Solis-seg is dedicated to the exclusive
task of semantic segmentation of solar farms, whereas the ResNet component of
Solis-transfer is initially trained to identify whether an image does or does not
contain a solar farm (classification), and only thereafter it is trained for the task
of segmentation.

Despite numerous trials with Solis-transfer, it has yet to surpass an F1 score
of 0.89. In contrast, the single experiment conducted with Solis-seg yielded a sig-
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nificantly superior F1 score (0.962), clearly highlighting the effectiveness of task-
specific training. The increase in performance is thus evidently attributable to the
switch in training strategy, as no other alterations were made during the training
process.

This surprising outcome suggests that the methods employed by the classi-
fication model to discern the presence of a solar farm differ considerably from
the pixel-wise recognition performed during semantic segmentation. It posits the
idea that the competencies required for these tasks might diverge to an extent that
proficiency in one (classification) could potentially impede the ability to learn the
other (segmentation).

It appears counterintuitive for a model’s performance to be adversely affected
by prior training in classification. However, this unexpected result underscores the
intricacy of these tasks and emphasizes the critical role that appropriate selection
of training strategies plays.

Moreover, this experiment highlights the notion that the benefits of transfer
learning are not universally applicable, but are contingent upon various factors
including the degree of similarity between the source and target tasks, and the
specific nature of these tasks. Our study, for example, points towards instances
where a model specifically trained for a particular task from inception can out-
perform one that capitalizes on transferred knowledge from an ostensibly related
task.

In summarizing our findings, it’s compelling to note that our best-performing
model surpassed the IoU score of 0.9 obtained by Kruitwagen et al. [3]. While an
apples-to-apples comparison isn’t feasible due to their employment of a consid-
erably larger and globally distributed dataset, our results hold significance given
the markedly higher relative score attained on our dataset.

Future research endeavors could uncover further valuable insights by subject-
ing our model to the dataset employed by Kruitwagen et al. This approach would
allow for the performance evaluation of our model in a more expansive and di-
verse setting. However, it’s worth noting that developing a data pipeline, akin
to the one employed by Kruitwagen et al., that synergizes their data with our
trained model is likely a substantial undertaking due to the complex nature of
these pipelines as discussed in section 2.6.1. This complexity is the primary reason
we have not endeavored to attempt this in our current study.

5.3 The Robustness of NAS in Satellite Image Segmenta-
tion (SO2)

Our research offers insights into applying Neural Architecture Search (NAS) for
semantic segmentation of solar farms on Sentinel-2 imagery. The uniformity of
data quality across different dataset sizes and subsets resulted in little variation
in performance among the various NAS-derived models. An exception to this was
the model trained on the 20k dataset, which underperformed unexpectedly. The
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precise reasons for this remain unclear, although disruptive data elements or an
unfortunate random seed choice may be possible causes.

The influence of spectral bands on architecture search emerged as a significant
factor. As per our detailed analysis in Chapter 4, four separate trials were conduc-
ted with architectures identified using a 10,000-image dataset. As demonstrated
in Figure 5.2, the model trained solely with RGB data underperformed compared
to models that utilized additional spectral bands. Despite the need for further tri-
als to conclusively attribute this performance discrepancy to spectral band usage,
our findings hint at Auto-DeepLab’s potential to leverage this extra information
effectively. These results pave the way for intriguing prospects of employing NAS
with more complex features, further discussed in section 5.6.

Figure 5.2: Comparison of the validation mIoU for the last 50 epochs of the mod-
els found with 10,000 images. The models are 10k, 10k-final, 10k-no-ab, and
10k-rgb. The gray line at the bottom is 10k-rgb

An intriguing finding from our experiments was that out of 14 NAS trials, only
a single architecture managed to outperform any of the benchmarks, excluding
Solis-transfer. This raises questions regarding the effectiveness and cost-benefit
value of DARTS and Auto-DeepLab within this particular context, which will be
further elaborated in section 5.4.

Surprisingly, the randomly sampled architecture produced by ChatGPT out-
performed almost all of the architectures identified via the architecture search.
While this might be an outlier event and additional random samples should be
examined for validation, it raises questions about the consistency and effective-
ness of the architecture search process in yielding superior architectures for cer-
tain use-cases even when it has demonstrated the capability to accurately assess
comparative performance, as highlighted in Experiment 2.

Furthermore, it was observed that the performance of most models was closely
aligned with that of the random model. This suggests that the search space may
be densely populated with models that deliver comparable performance, thereby
making it difficult to continually progress toward an optimal solution. This hypo-
thesis is supported by the search graphs outlined in chapter 4, particularly by the
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observation of most searches reaching their peak early. This pervasive challenge is
credited by Chen and Hsieh [65] to DARTS tendency to reach strong local minima
in the search space.

Moreover, the top-performing NAS model, 10k-L, only slightly lagged behind
the best-performing model, Solis-seg. This suggests that under appropriate condi-
tions, NAS has the potential to generate architectures that approach or even match
the state-of-the-art, even in specialized applications such as satellite imagery seg-
mentation. The robustness and adaptability of NAS, despite the complexities and
challenges, underscore its potential as a valuable tool in a researcher’s arsenal.

5.4 Computational Trade-offs in NAS Application (SO3)

NAS is a demanding procedure, introducing substantial overhead to a machine
learning pipeline. Not only does it necessitate training a model, it requires signi-
ficant additional time and resources to discover the model architecture in the first
place. This inherently prompts the question: When is the extra cost of performing
NAS worthwhile?

The answer hinges on the anticipated performance increase and the signific-
ance of optimal performance for the application at hand. In the case of our study,
the findings suggest that NAS might not represent the most effective option. As
evidenced in Tables 5.1 and 5.2, the time required to produce a fully trained work-
ing model is at least doubled in most instances. Paired with the observation that
an off-the-shelf model (ResNet50-DeepLab) yields the best results on the dataset
after 14 NAS trials, underscores a potential doubt regarding the cost-effectiveness
of NAS.

Reflecting on the top five models derived from our study, as shown in Table
5.3, three out of the five top performers are baseline models which we originally
proposed for comparison. Interestingly, even a randomly suggested model outper-
formed all but one model discovered through NAS.

While the search outcomes might not seem particularly outstanding — failing
to surpass a ResNet-based model, marginally exceeding a model found by search-
ing on a different dataset, and the curious case of a random model outperforming
all but one NAS architecture — it is important to recognize that the top model
found through the search, 10k-L, does not lag significantly behind the best model,
Solis-seg.

There are potential improvements to our NAS process that could potentially
enhance the performance of the discovered models, as discussed in Section 5.5.
Though even if we were to conduct additional trials and come across a model that
outperforms Solis-seg, the total cost of the new model would exceed the cost we
incurred by training the off-the-shelf model by magnitude for the sake of a slight
increase in performance1

It’s worth noting that all models outperformed Solis-transfer, implying that the

1Scoring a perfect 1 should be impossible due to data imperfections (refer to section 5.5)
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DARTS search space is replete with viable model architectures. Additionally, given
the low-resolution nature of the images in this study, this presents a relatively un-
conventional segmentation problem. Considering this, the obtained results speak
to the robustness and versatility of the models derived from the DARTS search
space.

The decision of whether or not to use NAS essentially hinges on the import-
ance of incremental performance improvement and the available alternatives to
increase the performance of the model. In our case, however, it might be more pro-
ductive to allocate resources toward enhancing other aspects of the model, such
as augmenting the quality and volume of data [10] or investigating the optimal
combination of spectral bands.

Moreover, the high computational cost of NAS could potentially deter smaller
entities or individual researchers who operate with more constrained resources.
Without access to the IDUN cluster, this research project would have likely spanned
well over a hundred continuous training days on Enernite’s NVIDIA RTX-3090
GPU.

All these considerations should be factored in when deciding whether to em-
ploy NAS, further emphasizing the need for a case-by-case approach to the applic-
ation of this technology.

Finally, it is also crucial to remember that NAS is a relatively nascent field. As
with many emerging technologies, it will likely undergo considerable refinement
and become more efficient and accessible in the coming years. Future advance-
ments might mitigate many of the current limitations, enabling more widespread
and accessible usage. As such, staying up to date on NAS development and its
potential for evolving machine learning models will be critical to continuously
evaluate its applications and benefits in the future.

Dataset size Search time (h)
2k 20
5k 41

10k 62
20k 104

Table 5.1: Dataset Size and Search Time

Model training time (h)
Solis-seg 46

NAS architectures 59

Table 5.2: Model Type and Search Time. The time for NAS architectures is an
average. Note that the time varied quite a bit depending on the hardware used
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Name mIoU F1-score
Solis-seg 0.9629 0.9621
10k-L 0.9593 0.9582
ADL-cs 0.9586 0.9575
chatgpt 0.9565 0.9552
2k 0.9563 0.9550
Solis-transfer N/A 0.89

Table 5.3: The top 5 models ranked by validation mIoU obtained during retrain-
ing. The model 10k has been omitted here as it shares the same architecture as
10k-L. It would have been placed between ADL-cs and chatgpt, as shown in table
4.1.

5.5 Potential Improvements to the Neural Architecture
Search Process

Although our most effective model did not emerge from NAS, there are numerous
instances where NAS has superseded human-engineered models in performance
[8, 9]. This implies that there might exist enhancements that could have been
implemented to boost the effectiveness of our searches.

For example, allowing some models to undergo additional epochs during re-
training could have led to performance improvements. Particularly, the 20k model
does not appear to have fully converged even after 100 epochs as seen in figure
5.3. Extending the retraining process might have allowed this model to improve
at least a bit.

Figure 5.3: Graph showing 20k validation mIoU per epoch of retraining

We could have experimented with the parameters of Auto-DeepLab. Modifying
the number of layers in the network could have led to different performance out-
comes. Given the complex interplay of layers and operations in a neural network,
such architectural adjustments may have unearthed more optimized solutions.
Actually, some research suggests that tuning the hyperparameters of the DARTS
search can yield better results than tuning the architectures themselves [66].

Extending the duration of the search process could also have influenced the
results. Despite Liu et al. [30] not reporting success with this approach in their
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Figure 5.4: Some examples of images from the Solis dataset with clouds

study, it might have been worth exploring in our case.
Conducting a larger number of trials could also have been advantageous. A

significant body of research points to the susceptibility of NAS to randomness [9,
32, 66]. Given the seemingly minor impact of the size or the composition of the
data subset on the results, conducting a series of additional 2k experiments might
have offered a more diverse set of architectural outcomes. These take significantly
less time than the other searches as seen in table 5.1

Lastly, it is worth noting that achieving a perfect mIoU score with this dataset is
not only unlikely but potentially concerning. This is due to the presence of images
obscured by clouds (figure 5.4) and the fact that, given the sheer volume of over
200k images, it is challenging to guarantee a dataset devoid of any mislabeled
images as shown in figure 5.5.

5.6 NAS versus Massive Generalized Models: Trade-offs
and Emerging Synergy

The findings of this study, coupled with recent progress in diverse areas of arti-
ficial intelligence, engender an intriguing question about the future landscape of
model development: Will highly specialized models discovered through Neural
Architecture Search (NAS) dominate, or will we lean toward massive, versatile
models that excel across a multitude of tasks within a domain, like GPT-4 [67]
and SAM [25]?

NAS offers a mechanism to craft models optimized for particular tasks or data-
sets. This specialization, as our Experiment 4 suggested, can exploit additional
image information like spectral bands, which are typically overlooked by broader
models like SAM. This ability to tailor architectures to specific problems pushes
performance boundaries, provides valuable insights into the nature of tasks at
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Figure 5.5: Despite the presence of a mask indicating otherwise, the provided
image in the Solis dataset does not actually contain a solar farm.

hand, and can lead to efficient models adept at solving unique problems. How-
ever, the trade-off here includes a substantial computational cost, and the solu-
tions proposed may lack generalizability across diverse tasks.

On the other hand, generalized models such as GPT-4 and SAM are built to
perform well across a broad range of tasks within a specific domain. These models
benefit from their scale and ability to leverage large amounts of diverse data, be-
coming proficient in multiple areas. They offer a more holistic approach and can
handle a variety of tasks without needing task-specific customization. However,
their vast size may restrict the peak task-specific performance that could be achiev-
able by a NAS-generated model. Furthermore, their colossal size often translates
to high resource requirements and substantial environmental impact and severely
limits who can actually train these new networks. When trained however, many of
these models become openly available and can be used for various tasks through
APIs (GPT4) or through available source code and model weights (SAM).

The balance between specialized and generalized models will likely continue
to shift as technological advances and computational resources evolve. Future
research directions may explore hybrid strategies, blending the customization of
NAS with the broad applicability of large-scale generalized models, or they may
venture into entirely new paradigms as yet unforeseen.

The trade-offs between these two paradigms may even suggest a potential in-
tegration of the two. It is plausible that NAS could be the architect behind the
design of future massive generalized models. As these super-models increase in
size and complexity, the role of NAS in optimizing their structure may become
increasingly valuable. While large models have proven to be proficient, NAS’ abil-
ity to tailor architectures to specific problems could aid in refining these models,
ensuring efficiency and improving performance.

The envisaged role of NAS in shaping future massive models necessitates its
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evolution. Presently, NAS is severely limited by the human-designed constraints
within its search spaces. To truly architect these large-scale, versatile models, NAS
must transcend these constraints [9]. If NAS evolves to autonomously generate not
only novel architectures but completely new building blocks, it could potentially
optimize these super-models more efficiently, driving their performance to new
heights.

5.7 Limitations of this Study And Further Work

Throughout the course of this study, we have encountered and addressed numer-
ous challenges. However, there are certain limitations that remained beyond our
scope due to constraints of time, resources, and the nascent state of NAS meth-
odologies. These limitations, in turn, also reveal compelling directions for future
research.

While we have discussed several limitations in previous sections, such as lim-
itations of our NAS implementation, there are a few notable ones that warrant
further consideration:

• Other NAS methodologies: Our study utilized a specific NAS methodology,
leaving other possibilities unexplored. Future research could examine the
performance of different search methodologies or search spaces to provide
a broader view of NAS applicability in satellite image segmentation.
• Optimal Combination of Spectral Bands: While we found that using all

available spectral bands increased the performance, it remains uncertain
whether all spectral bands are beneficial. Future work could investigate dif-
ferent combinations of spectral bands to find the optimal set for solar farm
detection, in terms of both architecture search efficiency and overall model
performance.
• Random Baseline Performance: Our study would have benefited from a

larger set of randomly sampled models to determine whether the perform-
ance of our randomly sampled model was above average or a typical occur-
rence.
• Consistent data selection: While we made sure to select the same data for

different models with the same dataset size, it would have been interest-
ing to make it so that every dataset also included all the image present in
smaller dataset sizes. This could have made it easier to evaluate the effect
of additional data more thoroughly.
• Enhancing data quality: As deliberated in sections 2.5.2 and 5.5, dealing

with satellite imagery presents its own set of challenges, and the quality of
data in the Solis dataset is not exempt from imperfections. More time could
have been invested in curating the dataset and eliminating detrimental data
that may adversely impact the learning process of the models.

Despite these limitations, we believe that they present exciting opportunities
for future research. Further areas of exploration could include:
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• Detailed Comparison to SAM: A more in-depth comparison and analysis
of SAM [25] could provide valuable insights into differentiating aspects of
segmentation models.
• Further Improvements to Solar Farm Recognition: Additional enhance-

ments to solar farm recognition, as suggested in section 2.6.3, warrant fur-
ther investigation.
• Exploration of NAS Parameters: Modifying the architecture search para-

meters as suggested by Yang et al. [66] could yield different results and
provide a more nuanced understanding of the NAS process.
• Model Testing on Larger Datasets: Our ResNet50-DeepLab model could

be tested with larger datasets, such as the one curated by Kruitwagen et al
[3], to further validate its performance.
• Refinements to Auto-DeepLab: While exploring different NAS methodo-

logies presents one line of inquiry, there is also scope for augmenting our
current approach. White et al. [9] highlight various pioneering works that
rectify certain shortcomings inherent in the DARTS methodology. By asso-
ciation, many of these deficiencies are also evident in Auto-DeepLab. How-
ever, as per our knowledge, few of these enhancements have been imple-
mented and tested with Auto-DeepLab. This provides an intriguing avenue
for future research endeavors.
• Geographic and Temporal Variations: While we did include a test on data

from a different continent, a more detailed analysis of the performance of
our model in different parts of the world and across various seasons could be
insightful. Future research could focus on the model’s robustness in different
geographic contexts.

Despite the limitations, we believe our study provides a solid foundation for
future research on artificial intelligence and machine learning, especially in the
context of solar farm detection. Our findings also offer critical insights into the role
of transfer learning in segmentation tasks, opening doors to further exploration
in this area.
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Conclusion

Throughout the course of our research, we have garnered several key insights with
the potential to influence the future use of machine learning, including Neural
Architecture Search (NAS), for semantic segmentation in satellite imagery and
the detection of solar farms in general. This research contributes to our overall
goals of advancing the state-of-the-art in detecting and segmenting solar farms
in satellite imagery, examining the practical utility of Neural Architecture Search
(NAS) for architecture optimization and critically reassessing the applicability of
transfer learning from classification to segmentation tasks.

Let’s now revisit the specific goals and study objectives set forth at the begin-
ning of this research:

Research Goal: To advance the state-of-the-art in detecting and segmenting
solar farms in satellite imagery by examining the practical utility of NAS for archi-
tecture optimization and critically reassessing the applicability of transfer learning
from classification to segmentation tasks.

SO1 Evaluating the effectiveness of Transfer Learning: Determine whether
using the backbone of a model trained on a classification task can deliver
performance equivalent to a model entirely trained on segmentation.

SO2 Investigating the Robustness of NAS in Satellite Image Segmentation:

SO2.1 Understand the influence of various factors on NAS including the im-
pact of dataset sizes, different data subsets, and special features of
satellite imagery

SO2.2 Evaluate the robustness of the relative ranking produced by NAS and
the risk of overfitting to a specific dataset during architecture search

SO3 Assesing Computational Trade-offs in NAS Application: Assess the com-
putational cost implications of employing NAS for a practical application on
a novel dataset and determine the potential benefits when contrasted with
the usage of a pre-existing off-the-shelf architecture.

We now summarize our most crucial findings and their alignment with our
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study objectives:
Discovery of a Superior Model: Directly addressing our research goal, our

investigation led to the development of Solis-seg, a deep learning model that out-
performs Enernite’s incumbent model, Solis-transfer, by a significant margin. Re-
markably, Solis-seg has attained the highest validation mIoU on a major solar farm
dataset with continental scale coverage known to us, outperforming solarnet [6]
and Kruitwagen et al. [3] on their respective datasets as summarized in table 6.1.

Model Validation mIoU on Own Dataset
Solis-seg (our novel model) 0.9626
Solarnet [6] 0.9421
Kruitwagen et al. [3] 0.9

Table 6.1: Performance Comparison of Models on Their Respective Datasets

Reevaluation of Transfer Learning: Corresponding to our first study object-
ive (SO1), our research has reevaluated the efficacy of transfer learning from clas-
sification in semantic segmentation. In particular, contrary to previous findings
[6], our results suggest that such transfer learning may not work so well. While
transfer learning can economize on time, it may inadvertently substantially com-
promise the final performance when compared to training a model from scratch,
as we did with Solis-seg.

Practical Application of NAS: Reflecting on our second study objective (SO2),
our work serves as a real-world example of NAS application in semantic segment-
ation. While abundant NAS research focuses on classification, especially on Im-
ageNet or the CIFAR datasets, there are few studies on semantic segmentation.
There are even fewer cases of studies of NAS applied to complex problems such
as solar farm detection and segmentation in satellite imagery. We aspire for our
contribution to stimulate more research on practical applications.

Incorporating Additional Image Data: Furthering our exploration on the ro-
bustness of NAS (SO2.1), our research reveals that Auto-DeepLab, and possibly
other NAS methodologies, can effectively utilize additional image data like spec-
tral bands at an architectural level. This finding could spearhead the development
of advanced, data-rich models, which could be particularly advantageous for tasks
that derive substantial benefits from data not typically used in training broad, gen-
eralized models like SAM.

Balancing Efficiency and Resource Allocation: Addressing our third study
objective (SO3), our research underscores the importance of considering time and
resources when evaluating the pros and cons of NAS. For smaller businesses or in-
dividual researchers with limited resources, NAS may not be the most effective or
efficient strategy for enhancing Artificial Neural Network (ANN) models. This is
particularly applicable to Enernite’s situation as a start-up with limited resources.
Despite the potential of NAS, its utility needs to be balanced with practical con-
straints.

Introducing an Open Dataset of New York Solar Farms: A key contribution
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of our research is the provision of an openly accessible dataset comprising loca-
tions of solar farms identified by our Solis-seg model in New York. This adds to the
pool of public solar farm datasets available online, thus enhancing the resources
available for further research and analysis in this field. The geometrical data can
be accessed via the file named us_ny_preds.geojson at our project’s repository on
GitHub, available at https://github.com/eolweus/autodeeplab.

In conclusion, our research findings provide valuable insights and contribute
to the broader understanding and application of advanced methods in the field
of satellite imagery segmentation, as well as the practical application of NAS on
tasks where its potential remains largely untapped [9].
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Appendix A

Dataset sizes

For our experiments, we used precisely 2040, 5000, 10010, and 20000 images,
maintaining an 80/20 split between training and testing datasets. The seemingly
unconventional number of images, particularly for the 2040 and 10010 datasets,
arises from our initial attempt to ensure that both the subsets (training and test-
ing) were divisible by the batch size, thereby achieving exact batches.

In the early stages of our work, we varied the batch sizes frequently due to
ongoing experimentation and fluctuations in hardware availability. For these reas-
ons, we moved away from this divisibility requirement for the 5000 and 20000
image datasets.

However, we decided to keep the original "unusual" dataset sizes of 2040 and
10010 consistent throughout all our experiments. This was to ensure that, when
using a given random seed, the set of images randomly selected would remain
identical, thus preserving experimental consistency and reproducibility.
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Appendix B

Architecture Cells

We provide figures of the cells we discovered through NAS.

Figure B.1: 2k

Figure B.2: 2k-dif
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Figure B.3: 2k-no-ab

Figure B.4: 5k

Figure B.5: 5k-dif
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Figure B.6: 5k-final

Figure B.7: 10k

Figure B.8: 10k-final
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Figure B.9: 10k-no-ab

Figure B.10: 10k-RGB

Figure B.11: 20k
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Figure B.12: 20k-second-best

Figure B.13: The best cell discovered in the original Auto-DeepLab paper when
searching on the Cityscapes dataset

Figure B.14: The random cell created by ChatGPT





Appendix C

Generation of the Random
Architecture

This chapter briefly outlines the way we randomly generated an architecture with
ChatGPT.

C.1 The Architecture Encoding

The encoding for an Auto-DeepLab consists of two arrays. The first array details
the depth level for each layer in the architecture (the macro level). For example,
the Array: [0 1 2 3 2 2 1 0 0 1 2 3] is the encoding for the macro architecture in
figure C.1

Figure C.1: Example of a Macro Architecture

The cell is encoded by an array of 10 pairs where each pair consists of an edge
and an operation. This is the array for the 10k cell:

[[ 1 1] [ 0 6] [ 3 3] [ 4 3] [ 8 7] [ 7 6] [10 1] [ 9 5] [18 6] [17 4]]
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C.2 Conversation with ChatGPT

Our objective was to establish a baseline using a random architecture, and for this
task, we decided to utilize ChatGPT. As the subsequent discussion in this appendix
will demonstrate, the chatbot was not aware of the implications of its suggestions,
thereby ensuring that it didn’t introduce any significant biases, thus serving our
purposes effectively.

The following is a copy of the prompt that lead to the random cell: quote start
give me two random arrays that look kind of like this:
[0 0 0 1 2 1 2 2 3 3 2 1]
[[0 7] [ 1 4] [ 2 4] [ 3 6] [ 5 4] [ 8 4] [ 11 5] [ 13 5] [ 17 5] [ 19 7]]
for the first array, the length should be 12, and the numbers have to be in range

0-3, also, the difference between subsequent numbers cannot be larger than 1.
for the second array, the right number in each instance is between 0-7
the left side is between 0 and 19 quote end
We had to repeat the prompt ChatGPT a few more times with prompts like:

"the first array is not valid" or "make new arrays" until it generated something that
was almost valid:
[0, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 3]
[[0, 6], [1, 4], [2, 6], [3, 3], [4, 7], [6, 2], [9, 5], [11, 4], [14, 3], [17, 6]]
The second array has restrictions on what edges can exist simultaneously due

to the maximum number of edges into a node being two. Thus we had to make
a manual alteration by swapping edge 4 in the encoding to edge 7. The final cell
array was:
[[ 0, 6], [ 1, 4], [ 2, 6], [ 3, 3], [ 6, 2], [ 7, 7], [ 9, 5], [11, 4], [14, 3], [17, 6]]
As we do not have any detailed knowledge of how this minor alteration im-

pacts the architecture’s performance, we consider it a randomly generated model
for all practical purposes even if it was slightly modified by a human.




