
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f S

tr
uc

tu
ra

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Emil Neby

Automatic Operational Modal
Analysis of a Long-Span Suspension
Bridge

Master’s thesis in Engineering and ICT
Supervisor: Øyvind Wiig Petersen
Co-supervisor: Ole Andre Øiseth
June 2023

Emil Neby

Automatic Operational Modal Analysis
of a Long-Span Suspension Bridge

Master’s thesis in Engineering and ICT
Supervisor: Øyvind Wiig Petersen
Co-supervisor: Ole Andre Øiseth
June 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Structural Engineering

Department of Structural Engineering
Faculty of Engineering
NTNU- Norwegian University of Science and Technology

MASTER THESIS 2023

SUBJECT AREA:

Structural Dynamics

DATE:

June 11, 2023

NO. OF PAGES:

66 + 31

TITLE:
Automatic Operational Modal Analysis of a Long-Span Suspension Bridge

 Automatisk operasjonell modalanalyse av en hengebru med langt spenn

BY:

Emil Neby

SUMMARY:
Monitoring of structures is an important task to ensure safety in maintenance and operations,
alongside verification of numerical models. Automatic operational modal analysis (AOMA) aims
to identify modal parameters, providing the most important information about the global dynamic
behaviour of a structure. The Hålogaland bridge is a relatively newly built long-span suspension
bridge situated outside Narvik in northern Norway, with a monitoring system recording the motions of the bridge. The main
objective of this thesis is to perform AOMA on vibration data from the Hålogaland bridge and investigate how modal parameters
are influenced by environmental factors.

First, a framework for AOMA is implemented and assembled of already existing software com-
ponents. Verification on a numerical example is carried out in order to assess the accuracy of the framework. The verification
provided an overall detection rate of 96.4% and an average difference in natural frequency of 0.03%, compared to a numerical
model of the example. The results made the framework suitable for further use.

The frequency content of the vibration data from the Hålogaland bridge is investigated in order to make proper adjustments of
parameters in the framework. Furthermore, necessary preprocessing is done to prepare the data for modal analysis. AOMA is
repeatedly performed on 30-minute time series of vibration data, from a total of one month from February 2022. Modal
parameters obtained from a numerical model of the bridge is utilized as comparison to assess the results from the modal
analysis. Finally, wind and temperature data from the given period, also recorded by the monitoring system, is analysed to
examine if environmental factors influence the modal parameters.

In the frequency range of 0-1 Hz, AOMA is able to repeatedly detect a total of 24 modes of vibration from the bridge deck of the
Hålogaland bridge. The framework provided an overall detection rate of 80.2% of the reference modes chosen from the
numerical model, with a 2.2% average difference in natural frequency. The average computational time of each time series under
investigation was 4.9 seconds. Mode shapes of all the detected modes coincided well with mode shapes obtained from the
numerical model. Evidence of dynamic coupling between two modes closely spaced in the frequency domain is present and is
most likely the reason for low detection rate of one of these modes.

Negative correlation between temperature and frequency is present for higher order modes, and the correlation is stronger the
higher the order. This is indicating that the structure becomes stiffer at lower temperatures and the higher order modes vibrates
at higher frequencies. Furthermore, the results show positive correlation between wind speed and estimated damping in the
structure, in agreement with buffeting theory. Lower wind speeds reduces the excitation of the bridge, causing more scatter to
appear amongst estimated modes located in the lowest frequency.

Finally, AOMA is able to identify more modes of vibrations on the Hålogaland bridge, compared
to previously used methods for modal analysis, which supports the further use of AOMA.

RESPONSIBLE TEACHER: Øyvind Wiig Petersen
SUPERVISOR(S): Øyvind Wiig Petersen, Ole Andre Øiseth
CARRIED OUT AT: Department of Structural Engineering, NTNU

ACCESSIBILITY

OPEN

Abstract

Monitoring of structures is an important task to ensure safety in maintenance and operations,

alongside verification of numerical models. Automatic operational modal analysis (AOMA) aims

to identify modal parameters, providing the most important information about the global dynamic

behaviour of a structure. The H̊alogaland bridge is a relatively newly built long-span suspension

bridge situated outside Narvik in northern Norway, with a monitoring system recording the motions

of the bridge. The main objective of this thesis is to perform AOMA on vibration data from the

H̊alogaland bridge and investigate how modal parameters are influenced by environmental factors.

First, a framework for AOMA is implemented and assembled of already existing software com-

ponents. Verification on a numerical example is carried out in order to assess the accuracy of the

framework. The verification provided an overall detection rate of 96.4% and an average di↵erence

in natural frequency of 0.03%, compared to a numerical model of the example. The results made

the framework suitable for further use.

The frequency content of the vibration data from the H̊alogaland bridge is investigated in order to

make proper adjustments of parameters in the framework. Furthermore, necessary preprocessing

is done to prepare the data for modal analysis. AOMA is repeatedly performed on 30 minute

time series of vibration data, from a total of one month from February, 2022. Modal parameters

obtained from a numerical model of the bridge is utilized as comparison to assess the results from

the modal analysis. Finally, wind and temperature data from the given period, also recorded

by the monitoring system, is analysed to examine if environmental factors influence the modal

parameters.

In the frequency range of 0-1 Hz, AOMA is able to repeatedly detect a total of 24 modes of vibration

from the bridge deck of the H̊alogaland bridge. The framework provided an overall detection rate

of 80.2% of the reference modes chosen from the numerical model, with a 2.2% average di↵erence

in natural frequency. The average computational time of each time series under investigation was

4.9 seconds. Mode shapes of all the detected modes coincided well with mode shapes obtained

from the numerical model. Evidence of dynamic coupling between two modes closely spaced in

the frequency domain is present and is most likely the reason for low detection rate of one of these

modes.

Negative correlation between temperature and frequency is present for higher order modes, and the

correlation is stronger the higher the order. This is indicating that the structure becomes sti↵er at

lower temperatures and the higher order modes vibrates at higher frequencies. Furthermore, the

results show positive correlation between wind speed and estimated damping in the structure, in

agreement with bu↵eting theory. Lower wind speeds reduces the excitation of the bridge, causing

more scatter to appear amongst estimated modes located in the lowest frequency.

Finally, AOMA is able to identify more modes of vibrations on the H̊alogaland bridge, compared

to previously used methods for modal analysis, which supports the further use of AOMA.

i

ii

Sammendrag

Overv̊akning av konstruksjoner er viktig for sikker vedlikehold og drift, samt verifikasjon av nu-

meriske modeller. Automatisk operasjonell modalanalyse (AOMA) har som mål å identifisere

modale parametere som gir den viktigste informasjonen om den globale dynamiske oppførselen

til en konstruksjon. H̊alogalandsbrua er en relativt ny hengebru med langt spenn utenfor Narvik

i Nord-Norge, med et overv̊akningssystem som registrerer bevegelsene til brua. Målet til denne

avhandlingen er å utføre AOMA p̊a vibrasjonsdata fra H̊alogalandsbrua og undersøke hvordan

miljøfaktorer p̊avirker modale parametere.

Først implementeres et rammeverk for AOMA ved å bruke allerede eksisterende komponenter med

programvare. Verifisering p̊a et numerisk eksempel gjennomføres for å vurdere nøyaktigheten til

rammeverket. Verifiseringen gir en total deteksjonsrate p̊a 96,4% og en gjennomsnittlig di↵eranse

i egenfrekvens p̊a 0,03% sammenlignet med en numerisk modell av eksempelet. Resultatene viser

at rammeverket er egnet til videre bruk.

Frekvensinnholdet i vibrasjonsdataene fra H̊alogalandsbrua undersøkes for å gjøre korrekte jus-

teringer av parametere i rammeverket. Videre blir nødvendig prosessering utført for å klargjøre

dataene for modalanalyse. AOMA gjennomføres gjentatte ganger p̊a 30 minutters tidsserier av

vibrasjonsdata fra totalt en måned, fra februar 2022. Modale parametere hentes fra en numerisk

modell av brua og brukes som sammenlikningsgrunnlag for å vurdere resultatene fra modalana-

lysen. Til slutt analyseres vind- og temperaturdata fra den gitte perioden, ogs̊a registrert av

overv̊akingssystemet, for å undersøke om miljøfaktorer p̊avirker de modale parametrene.

I frekvensomr̊adet 0-1 Hz klarer AOMA gjentatte ganger å oppdage totalt 24 bevegelsesmoder fra

brudekket p̊a H̊alogalandsbrua. Rammeverket ga en total deteksjonsrate p̊a 80,2% av referanse-

modene fra den numeriske modellen, med en gjennomsnittlig di↵eranse p̊a 2,2% i egenfrekvens.

Gjennomsnittlig beregningstid for hver tidsserie var 4,9 sekunder. Modeformer for alle de opp-

dagede modene stemte godt overens med modeformer fra den numeriske modellen. Indikasjoner

p̊a dynamisk kobling mellom to moder som er tett plassert i frekvensdomenet, er til stede og er

sannsynligvis årsaken til d̊arlig deteksjonsrate for en av disse modene.

Det er en negativ korrelasjon mellom temperatur og frekvens for høyere ordens moder, og korrelas-

jonen blir sterkere jo høyere orden det er snakk om. Dette indikerer at konstruksjonen blir stivere

ved lavere temperaturer, og de høyere ordens modene vibrerer med høyere frekvenser. Videre viser

resultatene en positiv korrelasjon mellom vindhastighet og estimert demping i konstruksjonen,

noe som samsvarer med bu↵eting-teorien. Lavere vindhastigheter reduserer eksitasjonen av brua,

noe som fører til at det oppst̊ar større spredning blant estimerte moder som ligger i den laveste

frekvensen.

AOMA identifiserer flere bevegelsesmoder p̊a H̊alogalandsbrua sammenlignet med tidligere an-

vendte metoder for modalanalyse, noe som støtter videre bruk av AOMA.

iii

iv

Preface

This thesis finalizes the Master of Science degree in Engineering and ICT at the Department of

Structural Engineering, Norwegian University of Science and Technology (NTNU), in Trondheim.

The thesis was written in the spring of 2023.

The work of this thesis has been done under supervision of Ph.D. Øyvind Wiig Petersen at the

Department of Structural Engineering. Thank you for the help, I highly appreciate the support

I have received during the process of writing this thesis. Also, I would like to thank Øyvind for

providing a numerical model of the H̊alogaland bridge, which gave valuable contributions to this

thesis. Furthermore, I would like to thank Professor Ole Andre Øiseth for co-supervision and for

providing time-synchronized data from the monitoring system of the H̊alogaland bridge. Also,

I would like to thank Ph.D. candidate Anno Christian Dederichs for evaluating my work and

providing valuable feedback.

To my close friends and roomates Johan Grøgaard and Niels Semb. Thank you for making a loving

home this last year in Trondheim. I appreciate the care and support you have shown me. A special

thank you to Johan for reading through my thesis and providing valuable feedback.

I would like to thank my fellow students at the o�ce at Materialteknisk for exchanging knowledge

and creating a good social environment during the last year at NTNU.

To all the friends I have met throughout the journey to accomplish my degree, I truly cherish the

friendships we have formed. Your presence has undeniably made this period memorable for me.

Lastly, I would like to thank my beloved family for always supporting me.

v

vi

Table of Contents

Abstract . i

Sammendrag . iii

Preface . v

List of symbols . ix

List of Abbreviations . xii

1 Introduction 1

1.1 Background . 1

1.2 Problem Formulation . 2

1.3 Limitations . 3

1.4 Structure of the thesis . 3

2 Theory 5

2.1 Signal processing . 5

2.1.1 Correlation and spectral density . 5

2.1.2 Welch’s method . 7

2.1.3 Low Pass Filtering . 8

2.1.4 Downsampling . 8

2.2 Structural Dynamics . 9

2.2.1 Modal analysis . 9

2.3 State-space models . 10

2.3.1 Continuous-time state-space model . 10

2.3.2 Discrete-time state-space model . 12

2.3.3 Discrete-time stochastic state-space model 12

2.4 Operational Modal Analysis . 14

2.4.1 Covariance-driven Stochastic Subspace Identification 14

2.4.2 Reference-based stochastic subspace identification 17

2.5 Clustering Algorithms . 18

2.5.1 HDBSCAN . 19

2.6 Automatic Operational Modal Analysis . 23

2.6.1 Cov-SSI . 23

2.6.2 Stabilization analysis . 25

2.6.3 HDBSCAN . 26

3 Numerical example 29

3.1 Method . 29

3.2 Results . 30

3.3 Discussion . 31

vii

4 The H̊alogaland bridge 33

4.1 Method . 33

4.1.1 Monitoring system . 35

4.1.2 Finite element model . 36

4.1.3 Data exploration and processing . 38

4.1.4 Application of AOMA . 41

4.2 Results . 43

4.2.1 Results from FEM . 43

4.2.2 Results for AOMA . 45

4.2.3 Comparison of AOMA and FEM . 51

4.2.4 Environmental factors influence on modal parameters 52

4.3 Discussion . 57

4.3.1 Automatic Operational Modal Analysis . 57

4.3.2 Comparison of AOMA and FEM . 60

4.3.3 Environmental e↵ects . 61

4.3.4 Comparison with OMA . 61

5 Conclusion and Further work 63

5.1 Conclusion . 63

5.2 Further work . 64

References 65

Appendix 67

viii

List of Symbols

Latin

Symbols Explanation

A,Ac discrete and continuous time state matrix

B,Bc discrete and continuous time input influence matrix

B̄ component of the load vector containing input locations

B width of bridge deck

C damping matrix

Ca acceleration output location matrix

C,Cc discrete and continuous time output influence matrix

Cd displacement output location matrix

Cv velocity output location matrix

C̃ modal damping matrix

D,Dc discrete and continuous time direct transmission matrix

f frequency in Hz

fN Nyquist frequency

fs sampling frequency

G next state-output covariance matrix

Gxx one-sided auto spectral density function of x

Ĝxx estimate of the one-sided auto spectral density function of x

I identity matrix

i number of block rows

K sti↵ness matrix

K̃ modal sti↵ness matrix

l number of sensor locations at the structure

M mass matrix

M̃ modal mass matrix

Nmod number of modes

n order of Butterworth filter

nd number of segments in Welch’s method

Oi observability matrix at time lag i

p load vector

p̃ modal load vector

qi modal coordinates of mode i

q modal coordinate vector

Ri output correlation matrix at time lag i

R̂i estimate of the output correlation matrix at time lag i

Rxx auto correlation function of x

Rxy cross-correlation function between x and y

r detection rate

r Pearson correlation factor

S stability of a cluster

Sxx auto spectral density of x

Sxy cross-spectral density between x and y

s state vector

ix

Symbols Explanation

sk discrete time state vector

T1|i block-Toeplitz matrix with i rows and columns

T period of a time series

t time

u component of the load vector describing the time variation of the load

uk sampled input vector

uHanning the Hanning window

vk process noise

wk measurement noise

X the Fourier transform of x

Y output matrix

y displacement vector

yi modal displacement vector

yk sampled output vector

x

Greek

Symbols Explanation

↵� scaling factor for eigenvalues

↵m scaling factor for modal assurance criterion

�i reversed controllability matrix at time lag i

�t time interval between two samples in a record

⇤ diagonal matrix containing discrete time eigenvalues

� continuous time eigenvalue vector

� persistence of a cluster

�i continuous time eigenvalue of mode i

⇠ damping ratio

⌧ time lag

� mode shape matrix

�i mode shape vector of mode i

 matrix containing eigenvectors

! frequency in rad/s

!c cut-o↵ frequency

!i natural frequency of mode i

xi

List of Abbreviations

Abbreviations Explanation

AOMA Automatic Operational Modal Analysis

API Application Programming Interface

Cov-SSI Covariance-driven Stochastic Subspace Identification

DOF Degree of Freedom

FE Finite Element

FEM Finite Element Method

FFT Fast Fourier Transform

GPS Global Positioning System

HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with Noise

HDF5 Hierarchical Data Format 5

OMA Operational Modal Analysis

MAC Modal Assurance Criterion

MDOF Multiple Degrees of Freedom

MST Minimum Spanning Tree

PDF Probability Density Function

PSD Power Spectral Density

SVD Singular Value Decomposition

TDMS Technical Data Management Streaming

ZOH Zero Order Hold

xii

Chapter 1

Introduction

1.1 Background

Increasing populations and global trade continue to put pressure on public infrastructure, leading

to ever-higher demands for better performance. This includes better roads, both for higher volume

of tra�c, but also for shortening traveling distance. An example is the ongoing ferry free E39

project along Norway’s western coast, which yet has several long bridges to be built. Another

example is the newly built H̊alogaland bridge located outside Narvik, in northern Norway. To

ensure the safety of the bridge and to gain knowledge for similar future projects, the bridge has

been equipped with sensors to monitor its behaviour.

There are several reasons for monitoring bridges. One is to validate the numerical models and

estimates of the motion of the bridge carried out in advance of construction. If new discoveries are

made, it would be desirable to make improvements.

Another motivation is to increase the knowledge of slender long span suspension bridges prone to

high wind loading. Long span suspension bridges in foreign countries often have multiple lanes in

each direction because of a higher general tra�c volume. In district Norway tra�c are often of a

more sparse character, making it necessary to only have one lane in each direction. This makes

the bridges slender with di↵erent behaviour, creating a demand for more research.

Still, safety and maintenance may be deemed the most important reasons for monitoring structures.

Operational modal analysis (OMA) aims to identify modal parameters of a structure during op-

eration. In this context, modal parameters refers to natural frequency, damping ratio and mode

shape. These parameters provides the most important information about the global dynamic be-

haviour of a structure. OMA entails to perform system identification on vibration data measured

by accelerometers on multiple locations on the structure. Covariance-driven stochastic subspace

identification (Cov-SSI) is a system identification method relying on a known number of modes to

detect in advance. In general, this information is unavailable for big and complex structures. To

overcome the problem, Cov-SSI is performed for a range of model orders. Finally, modal estimates

are extracted from a stabilization diagram which traditionally is a manual interpretation task done

by engineers.

Automatic operational modal analysis (AOMA) is a set of algorithms capable of automatic extract-

1

ing the modal estimates from the output of Cov-SSI over a range of orders, substituting the last

manual interpretation stage of traditional OMA. AOMA relies on di↵erent clustering algorithms

to identify the desired data points from the stabilization diagram. Motivations behind AOMA is

to exclude human error, increase accuracy of the modal analysis and reduce cost by saving time.

AOMA has never before been applied on vibration data from the H̊alogaland bridge. Solstad and

Onstad [1] performed OMA as a sub task in their thesis, but data from only one period of 30

minutes was utilized for the purpose.

1.2 Problem Formulation

The goal of this study is to perform AOMA on long-term vibration data from the H̊alogaland

bridge to repeatedly identify its modal parameters. Measurement data from the H̊alogaland bridge

is provided by the Department of Structural Engineering at NTNU. Two software packages named

STRID [2] and KOMA [3] will be utilized to perform the AOMA. The STRID package uses Cov-SSI

for system identification and the KOMA package uses hierarchical density-based spatial clustering

of applications with noise (HDBSCAN) for clustering and extraction of modal features. Prior to

the main analysis of the vibration data from the bridge, a numerical example of a shear frame

is generated to verify the accuracy of the framework for AOMA. Furthermore, data from the

monitoring system of the bridge is extracted and preprocessed before it will be fed into the AOMA

implementation of STRID and KOMA. The results are extracted, post-processed, and visualized

for interpretation. Comparison with modal parameters obtained from a finite element (FE) model

of the H̊alogaland bridge is carried out in order to assess the accuracy of the AOMA framework.

Wind and temperature data from the monitoring system of the bridge is also analysed in order to

gain knowledge in how these factors influence the AOMA.

To summarize, the main objectives of this thesis are:

• Implementation and numerical verification of an AOMA framework.

Utilize previously developed algorithms implemented in Python [4] to assemble a framework

for AOMA. Verify the framework on a numerical example by multiple realizations of vibration

data on a shear frame.

• Apply AOMA on vibration data from the H̊alogaland bridge.

This includes data exploration and preprocessing before application of AOMA on long-term

vibration data from the bridge deck of the H̊alogaland bridge to achieve quantitative res-

ults. Following comes an evaluation of performance by comparison with modal parameters

obtained from a FE-model of the bridge. Finally, there will be a discussion of factors leading

to uncertainty in the analysis.

• Investigate how modal parameters are influenced by environmental factors.

Exploration of wind and temperature data and investigate if these environmental factors

a↵ects the ability to identify modes. Examine if change in weather patterns influence modal

parameters behaviour.

2

1.3 Limitations

The main limitations of this thesis are:

• The assumption of stationarity applies to the response output in an AOMA context. The

stationarity of the vibration data is not explored in detail in this study.

• Usage of FE-model from Abaqus as reference to find mode traces will a↵ect the selection.

Still-air modes obtained from the FE-model may deviate from the in-wind modes captured

by the monitoring system on the bridge.

• Only one sensor is picked for wind and temperature recordings, respectively. This makes the

weather data analysis less robust as one could have extracted averages over multiple sensors

along the bridge span.

1.4 Structure of the thesis

The theory related to the algorithms and the general framework for AOMA is applicable for

both cases in this thesis, and is therefore presented in one chapter. The numerical example and

the H̊alogaland bridge are presented in separate chapters, each with its own method, result and

discussion part. Thus, the structure of the thesis becomes:

Chapter 2 presents the relevant theory for this thesis. First, theory related to signal processing

is presented. Furthermore, theory related structural dynamics, state-space models and system

identification is presented. Then the theory behind the chosen clustering algorithm is explained.

Finally, a description of the framework for AOMA and the utilized software is given.

Chapter 3 is about the numerical example. First, the methodology is presented in addition to

case specific parameters. The results from the simulation is presented before a discussion is given.

Chapter 4 is about the H̊alogaland bridge. The methodology is presented, which starts with an

introduction of the bridge and a description of the monitoring system. Furthermore, the FE-model

of the bridge is presented, before data exploration, preprocessing and application of AOMA is

described. The results are presented and finally a discussion is given.

Chapter 5 summarize the thesis with a conclusion and recommendation for further work.

3

Chapter 2

Theory

2.1 Signal processing

Time series data from sensors requires some techniques for exploration and preprocessing, in order

to be suitable for AOMA. This section introduces the main methods utilized for data exploration

and preprocessing.

2.1.1 Correlation and spectral density

Wind is considered the main loading of the H̊alogaland bridge and can be assumed as a stationary

and random process. The assumption of stationarity implies that all the statistical properties of

the signal are independent of time [5]. It is important for further analysis to know how a time

series correlates, both with itself and with other time series.

The auto correlation function Rxx(⌧) of a random process x(t) is defined as:

Rxx(⌧) = E[x(t)x(t+ ⌧)] (2.1)

The cross-correlation functions, Rxy(⌧) and Ryx(⌧), between two di↵erent stationary random pro-

cesses x(t) and y(t) are defined as:

Rxy(⌧) = E[x(t)y(t+ ⌧)] (2.2)

Ryx(⌧) = E[y(t)x(t+ ⌧)] (2.3)

where t is time, ⌧ is the time lag and E[*] is the expected value operator.

Spectral density functions are utilized to investigate the frequency content of a time series. If the

zero value of a random process is normalized so that the mean value of the process is zero, the

auto spectral density Sxx(!) of the process can be obtained by the Fourier transform of its auto

correlation function:

5

Sxx(!) =
1

2⇡

Z 1

�1
Rxx(⌧)e

�i!⌧
d⌧ (2.4)

where ! is the angular frequency. Accordingly, the cross-spectral densities, Sxy(!) and Syx(!), of

a pair of random processes are defined as the Fourier transforms of their cross-correlation functions

respectively:

Sxy(!) =
1

2⇡

Z 1

�1
Rxy(⌧)e

�i!⌧
d⌧ (2.5)

Syx(!) =
1

2⇡

Z 1

�1
Ryx(⌧)e

�i!⌧
d⌧ (2.6)

The auto correlation function can be found by averaging over an infinitely long time series:

Rxx(⌧) = E[x(t)x(t+ ⌧)] =
1

T

Z T/2

�T/2
x(t)x(t+ ⌧)dt, T ! 1 (2.7)

Inserting the expression into the auto spectral density yields:

Sxx(!) =
1

2⇡

1

T

Z 1

�1

Z T/2

�T/2
x(t)x(t+ ⌧)e�i!⌧

dtd⌧ (2.8)

The variable substitution ↵ = t,� = t + ⌧ is utilized so that the integration variables becomes

d↵ = dt, d� = d⌧ and ⌧ = � � ↵ in the exponent of Euler’s number e. The double integral can be

split into two single integrals:

Sxx(!) =
1

2⇡

1

T

Z 1

�1

Z 1

�1
x(↵)x(�)ei!↵

e
�i!�

d↵d�

=
1

2⇡

1

T
(2⇡)2

� 1

2⇡

Z 1

�1
x(↵)ei!↵

d↵
�

| {z }
X̄(!)

� 1

2⇡

Z 1

�1
x(�)e�i!�

d�
�

| {z }
X(!)

=
2⇡

T
X(!)X̄(!) (2.9)

where X(!) is the Fourier transform of x(t), and X̄(!) is its complex conjugate. To convert from

rad/sec to Hz one can insert ! = f
2⇡ to obtain:

Sxx(f) =
1

T
X(f)X̄(f) (2.10)

The one-sided autospectral density functions Gxx(f) and Gyy(f), where f varies over (0,1) only,

are defined by:

Gxx(f) = 2Sxx(f) 0 < f < 1 otherwise zero

Gyy(f) = 2Syy(f) 0 < f < 1 otherwise zero
(2.11)

6

The one-sided autospectral density function expressed by Fourier transforms is obtained by:

Gxx(f) =
2

T
|X(f)|2 (2.12)

For practical applications the term power spectral density (PSD) is used for the magnitude of the

one-sided spectrum normalized by the frequency resolution.

2.1.2 Welch’s method

It is desirable to compute the PSD of the time series to investigate the frequency content of the

signal. To compute the exact spectrum is practically impossible since it would require an infinitely

long time series without measurement noise. Welch’s method is a method to estimate the PSD of

a signal.

Welch’s method [6] is based on the fast Fourier transform (FFT) [5] of the time series signal.

Instead of taking the FFT of a single finite time signal, the signal is partitioned into nd segments.

The segments are partly overlapping with the neighbouring segments. The idea is then to take the

FFT of each segment respectively and take the average over all the generated power spectrums to

obtain an estimate of the PSD. Welch’s method for estimating the PSD, Ĝxx(f), is given by:

Ĝxx(f) =
2

ndN�t

ndX

i=1

|Xi(f)|2 (2.13)

where N is the number of records in each segment, �t is the time between each record and Xi(f)

is the FFT of a segment as a function of frequency f , measured in Hz.

A problem arises when taking the FFT of a time series of finite length where the period of the

signal does not coincide with the record length. Discontinuities in frequency content in the borders

of the segment allows energy at certain frequencies to spread to nearby frequencies, causing large

amplitude errors. This phenomenon is known as leakage [6] and can introduce significant errors in

the estimated spectra. To overcome this problem, the data is made periodic by tapering them by

an appropriate time window. This suppresses the data in the beginning and end of the segment

and removes the discontinuities between the segments. The most commonly used window is the

Hanning window [6], which is given by:

uHanning(t) =

8
<

:
1� cos2(⇡tT) 0  t  T

0 elsewhere
(2.14)

Because of the suppression in the beginning and the end of a segment, the use of the Hanning

window introduces a loss factor of 3/8 which needs to be rescaled in order to obtain a PSD

estimate with correct magnitude.

7

2.1.3 Low Pass Filtering

When the PSD of the signal is produced, one can investigate the frequency content of the time

series and detect the frequency range of interest. It is desirable to remove the frequency content

that is not interesting because it could potentially disturb the outcome of the analysis.

The Butterworth [7] filter is a frequently used low pass filter and is given by the amplitude response

function:

|H(iw)|2 =
1

1 + (!
!c
)2n

(2.15)

where n is the filter order, !c is the cut o↵ frequency and i is the imaginary unit. Figure 2.1 shows

the amplitude response function over a range of filter orders with normalized cut-o↵ frequency !c =

1 rad/sec. The figure visualizes how amplitudes at lower frequencies are preserved and amplitudes

of higher frequencies are removed. The higher the order of the filter, the more significantly the cut

o↵.

Figure 2.1: Amplitude response function for a set of order numbers.

2.1.4 Downsampling

When excess frequency content is removed by the appropriate low pass filter it is desirable to re-

sample the signal to a suitable sampling rate for the analysis. The reason is to reduce the amount

of data to analyze, while still being able to preserve the frequency content of interest. Too high of

a sampling rate would simply lead to redundant data and increase computational time. Too low

sampling rate can introduce aliasing, which can lead to misinterpretation of the frequency content

of the signal. Figure 2.2 shows a simple example of aliasing.

8

Figure 2.2: Illustration of aliasing. Original signal of 3 Hz recorded with a sampling frequency of 2 Hz is only able
to reproduce a 1 Hz signal.

In order to avoid aliasing it is necessary to record the signal at a sampling rate of at least twice

the highest frequency content of the original signal. This is also known as the Nyquist frequency

[6]:

fN =
fs

2
(2.16)

where fs is the sampling frequency and fN is the highest obtainable frequency in the recorded

signal.

The Nyquist frequency sets the boundary for the lowest sampling rate to downsample a signal to,

i.e. twice the rate of the highest frequency content of interest. The easiest way to downsample a

signal is to create a new signal by picking selected samples with even distribution. For exemple,

when downsampling a signal to half the sampling frequency, just pick every other sample in the

original sample.

2.2 Structural Dynamics

2.2.1 Modal analysis

The H̊alogaland bridge is a complex structure with multiple degrees of freedom (MDOF). For a

MDOF system the the second order di↵erential equation of motion in matrix notation is given by:

Mÿ+Cẏ+Ky = p(t) (2.17)

where M, C and K denotes mass, damping and sti↵ness matrices respectively and p is the load

vector. y, ẏ and ÿ denotes displacement, velocity and acceleration vectors respectively, containing

9

all degrees of freedom.

A MDOF system contains Nmod modes corresponding to the number of degrees of freedom (DOF).

A modal expansion of the displacement vector y can be written on the form

y(x, t) =
NmodX

i=1

yi(x, t) =
NmodX

i=1

�i(x)qi(t) = �(x)q(t) (2.18)

where qi are modal coordinates and �i are the mode shape vectors assembled in the mode shape

matrix �. Equation (2.18) expresses the classical mode displacement superposition method [8]

because the total response of the system y is the sum of the modal responses yi.

The undamped natural frequencies and mode shapes of the system can be found by solving the

eigenvalue problem:

(K� !
2
iM)�i = 0 (2.19)

where !i is the natural frequency corresponding to mode shape �i.

Substituting equation (2.18) for y into equation (2.17) and pre-multiplying with �T leads to the

uncoupled modal equation of motion:

M̃q̈+ C̃q̇+ K̃q = p̃(t) (2.20)

where M̃, C̃ and K̃ denotes the modal mass, damping and sti↵ness matrices respectively, and p̃ is

the modal load vector. The equations are uncoupled given the assumption of classical damping [8],

where the natural modes of vibration are identical to those of the associated undamped system,

and can be solved separately for each mode.

2.3 State-space models

2.3.1 Continuous-time state-space model

The second order di↵erential equation given in equation (2.17) can be converted into a set of first

order di↵erential equations by the use of state-space models, which defines the state equation and

the observation equation.

The state equation is derived from equation (2.17) by factorizing the load vector p(t) into the

matrix B̄ containing the input locations of the load, and the vector u(t) describing the time

variation of the load. Inserting into (2.17) the equation writes:

Mÿ+Cẏ+Ky = B̄u(t) (2.21)

which divided by the mass matrix, can be rewritten to

10

ÿ+M�1Cẏ+M�1Ky = M�1B̄u(t) (2.22)

The state vector is defined:

s(t) =

"
y(t)

ẏ(t)

#
(2.23)

By use of the identity Mẏ(t) = Mẏ(t) and substituting the state vector into equation (2.22) to

obtain the first order system of equations:

ṡ(t) =

"
�M�1K �M�1C

0 I

#
s(t) +

"
�M�1B̄

0

#
u(t) (2.24)

where I is the identity matrix, which all elements of the diagonal reads one and zero elsewhere.

The state matrix Ac and the input influence matrix Bc are defined as:

Ac =

"
�M�1C �M�1K

I 0

#
(2.25)

Bc =

"
�M�1B̄

0

#
(2.26)

where the subscript c denotes continuous time. The state equation becomes:

ṡ(t) = Acs(t) +Bcu(t) (2.27)

Assuming that the response of the structure are measured at l sensor locations, the observation

equation can be written as:

yl(t) = Caÿ(t) +Cvẏ(t) +Cdy(t) (2.28)

where C is the output location matrix, subscript a, v and d denotes acceleration, velocity and

displacement respectively. Substituting equation (2.22) into (2.28) gives:

yl(t) = (Cv �CaM
�1C)ẏ(t) + (Cd �CaM

�1K)y(t) + (CaM
�1B̄)u(t) (2.29)

By introducing the output influence matrix Cc and the direct transmission matrix Dc defined as:

Cc =
h
Cd �CaM

�1K Cv �CaM
�1C

i
(2.30)

Dc =
h
CaM

�1B̄
i

(2.31)

11

the observation equation is rewritten to:

yl(t) = Ccs(t) +Dcu(t) (2.32)

The state equation (2.27) and observation equation (2.32) defines the continuous-time state-space

model.

2.3.2 Discrete-time state-space model

Real measurements on structures provide data measured in discrete time, hence a conversion to

discrete time is necessary. A question arises on how to handle the data in between two timestamps,

as a discrete model can not capture the continuity between two samples. The assumption of Zero

Order Hold (ZOH) [6] states that the input is piece-wise constant over the sampling period. This

assumption leads to the following relation between continuous-time matrices and discrete-time

matrices:

A = e
Ac�t (2.33)

B = (A� I)A�1
c Bc (2.34)

C = Cc (2.35)

D = Dc (2.36)

The discrete-time state-space model then becomes:

sk+1 = Ask +Buk (2.37)

yk = Csk +Duk (2.38)

where A is the discrete state matrix, B is the discrete input matrix, C is the discrete output

influence matrix and D is the direct transmission matrix. sk is the discrete-time state vector, uk

and yk are sampled input and sampled output respectively.

2.3.3 Discrete-time stochastic state-space model

The input vector uk in equation (2.37) and (2.38) is deterministic, which entails the discrete-time

state-space model being deterministic. To account for the random characteristic of experimental

input data, stochastic components needs to be included. When including stochastic components,

wk and vk, we obtain the discrete-time combined deterministic-stochastic state-space model:

sk+1 = Ask +Buk +wk (2.39)

yk = Csk +Duk + vk (2.40)

12

where wk and vk is process noise and measurement noise due to model inaccuracies and sensor

inaccuracies, respectively.

In the application of OMA, the deterministic input loads are unknown since they are not measured.

Thus, measured system response is assumed generated by the stochastic processes only, which

causes products of the deterministic input load uk to be cancelled out. The following discrete-time

stochastic state-space model is obtained:

sk+1 = Ask +wk (2.41)

yk = Csk + vk (2.42)

The next state of the system sk+1 is related to the current state sk through the state matrix A

and process noise wk. The output yk of the system is related to the current state sk through the

output influence matrix C and the measurement noise vk.

The objective of a stochastic state-space model is to determine the order n (number of DOFs) of

the unknown system and a realization of A and C from a large number of measurements from the

output yk. The process noise wk and measurement noise vk are both immeasurable, so they are

assumed to be stationary white noise processes with zero mean and covariance matrices given by:

E

"(
wp

vp

)n
wT

q vT
q

o#
=

8
>>><

>>>:

2

4 Qww Swv

(Swv)T Rvv

3

5 p = q

0 p 6= q

(2.43)

where p and q are two arbitrary time instants. The output response yk in the state-space model

consequently becomes a zero mean Gaussian process, which output covariance matrices is given

by:

Ri = E[yk+iy
T
k] (2.44)

Ri contains all the information to describe the process. An estimated state-space model charac-

terized by correct covariance may be defined, that is able to describe the statistical properties of

the system response. Such a model is called a covariance equivalent model.

The state sk is also a zero mean Gaussian process with covariance given by:

⌃ = E[sks
T
k] (2.45)

where ⌃ is the large Greek letter sigma and must not be confused by the summation operator
P

.

The current state sk is uncorrelated with both process noise wk and measurement noise vk:

E[skw
T
k] = 0 (2.46)

E[skv
T
k] = 0 (2.47)

13

It may be shown that the previous stated assumptions about noise terms, system state and re-

sponse, leads to the following relations:

⌃ = A⌃AT +Qww (2.48)

R0 = C⌃CT +Rvv (2.49)

G = A⌃CT + Swv (2.50)

Ri = CAi�1G (2.51)

Where G is the next state-output covariance matrix defined as:

G = E[sk+1y
T
k] (2.52)

which is describing the covariance between the response of the system yk and the next state

sk+1. The property of the output covariance sequence Ri is important because it can be directly

estimated from measured data. Its decomposition allows estimation of the state-space matrices

and the solution of the system identification problem. There are several methods available to

perform such estimations, this thesis utilizes Covariance-driven Stochastic Subspace Identification

(Cov-SSI).

2.4 Operational Modal Analysis

2.4.1 Covariance-driven Stochastic Subspace Identification

Cov-SSI aims to solve the problem of identifying a stochastic state-space model from output-only

data. The output from l di↵erent channels, or sensors, can be collected in a matrix:

Y =

2

66664

yT
0

yT
1
...

yT
l

3

77775
(2.53)

where yj , j 2 (0, l) has the length N , which is number of samples in each channel. The estimate

of the output correlation matrix at time lag i of a finite number of data records are given by:

R̂i =
1

N � i
Y(1:N�i)Y

T
(i:N) (2.54)

The estimated correlations at di↵erent time lags can be collected into the block-Toeplitz matrix:

14

T1|i =

2

66664

R̂i R̂i�1 . . . R̂1

R̂i+1 R̂i . . . R̂2

...
...

. . .
...

R̂2i�1 R̂2i�2 . . . R̂i

3

77775
(2.55)

Where the maximum number of block rows i in the matrix is limited by the system order n and

the size l ⇥ l of the correlation matrix R̂i:

i⇥ l � n (2.56)

By utilizing the relation in equation (2.51) one can create a decomposition of the block-Toeplitz

matrix:

T1|i = Oi�i (2.57)

where the Oi is the observability matrix:

Oi =

2

66666664

C

CA

CA2

...

CAi�1

3

77777775

(2.58)

and �i is the reversed controllability matrix:

�i =
h
Ai�1G . . . AG G

i
(2.59)

Performing a Singular Value Decomposition (SVD) [9] on the block-Toepltiz matrix leads to:

T1|i =
h
U1 U2

i "⌃1 0

0 0

#"
VT

1

VT
2

#
= U1⌃1V

T
1 (2.60)

were ⌃1 holds the non-zero singular values in decreasing order. It can be shown that from equation

(2.60) one can obtain a new expression for the observability matrix and the reversed controllability

matrix:

Oi = U1⌃
1/2
1 (2.61)

�i = ⌃
1/2
1 VT

1 (2.62)

It can be seen from equation (2.58) that the output influence matrixC corresponds to the first block

row of Oi and from equation (2.59) that the next state-output covariance matrix G corresponds to

the last column of �i. The state matrix A can be computed based on the decomposition property

15

of the one-lag shifted block-Toeplitz matrix:

T2|i+1 =

2

66664

R̂i+1 R̂i . . . R̂2

R̂i+2 R̂i+1 . . . R̂3

...
...

. . .
...

R̂2i R̂2i�1 . . . R̂i+1

3

77775
= OiA�i (2.63)

Inserting equation (2.61) and (2.62) into (2.63), and solving for A, one obtains the following

expression for the state matrix:

A = O+
i T2|i+1�

+
i = ⌃�1/2

1 UT
1 T2|i+1V1⌃

�1/2
1 (2.64)

where the + operator denotes the pseudo-inverse of a matrix.

Modal parameters can be found by an eigenvalue decomposition [6] of the state matrix A:

A = ⇤ �1 (2.65)

where contains the eigenvectors of A, and ⇤ is a diagonal matrix containing the eigenvalues in

the discrete time domain. Using equation (2.33) to obtain the continuous time eigenvalue vector

�:

� =
1

�t
ln(⇤) (2.66)

Utilizing the assumption for underdamped systems [8] that ⇠ < 1, let �i, i 2 (0, n) be the eigenvalue

of mode i where n is the system order, then �i is given by:

�i = !i

✓
�⇠i ± i

q
1� ⇠i

2

◆
(2.67)

which comes as complex conjugate pairs and leads to the well known dynamic properties [10]:

!i = |�i| (2.68)

fi =
!i

2⇡
(2.69)

⇠i =
Re(�i)

|�i|
(2.70)

where !i is the natural frequency of mode i in rad/sec, fi is the natural frequency of mode i in

Hz and ⇠i is the damping ratio of mode i. The operator Re(*) obtains the real part of a complex

number. The mode shape matrix � is found from:

� = C (2.71)

16

2.4.2 Reference-based stochastic subspace identification

For complex structures with extensive monitoring systems and many sensors, the output vector

yk can quickly become large. Since the output correlation matrix R̂i is a quadratic function of

the output vector, the computational cost becomes high. Reference-based stochastic subspace

identification avoids computation of all covariances, where the key is the projection of the row

space of the future outputs into the row space of the past outputs. Reference sensors are chosen

among the already existing sensors, so that they are able to capture global mode shapes of the

structure. That is, candidates for the reference outputs are these sensors where it is expected that

all modes of vibration are present in the measured data [11].

Now, let there be a set of reference outputs yref
k that is a subset of yk:

yk =

"
yref
k

y⇠ref
k

#
(2.72)

where y⇠ref
k is the non-reference outputs. The output covariance matrices between all outputs and

the references becomes:

Rref
i = E[yk+iy

ref
k

T
] (2.73)

and the next state-reference output covariance matrix becomes:

Gref
i = E[sk+iy

ref
k

T
] (2.74)

Equation (2.51) leads to:

Rref
i = CAi�1Gref (2.75)

It can be shown that the observability matrix (2.58) becomes unchanged and that the reference

reversed controllability matrix becomes:

�ref
i =

h
Ai�1Gref

. . . AG Gref
i

(2.76)

Inserting all the estimated reference covariances into the block-Toeplitz matrix (2.55) yields the

following decomposition:

Tref
i = Oi�

ref
i (2.77)

It can be shown that by applying a SVD equivalent to (2.60) to (2.77), the observability matrix

Oi in (2.61) becomes unchanged and the referenced reversed controllability matrix becomes:

�ref
i = ⌃1/2

1 VT
1 (2.78)

17

Once Oi and �
ref
i are known, it is possible to obtain a solution to the system identification problem.

The state matrix A is once again computed from a decomposition of the shifted block-Toeplitz

matrix:

Tref
2|i+1 = OiA�

ref
i (2.79)

solving for A and inserting equation (2.61) and (2.78):

A = O+
i T

ref
2|i+1�

ref+

i = ⌃�1/2
1 UT

1 T
ref
2|i+1V1⌃

�1/2
1 (2.80)

Modal parameters are found by equation (2.65) and dynamic properties according to the procedures

described in the end of section 2.4.1.

As mentioned in the introduction, system identification is in general performed for a range of model

orders, establishing a large set of poles. These poles can either be pure mathematical solutions to

the eigenvalue problem, represent noise in the system or be actual physical modes of the system.

Techniques to distinguish between physical modes and spurious poles will be presented in the next

section.

2.5 Clustering Algorithms

Clustering is the task of grouping similar objects together into clusters, based on information

only found in the data [12]. Hence, clustering is a subset of unsupervised machine learning al-

gorithms which do not rely on labeled data. There are many categories of clustering algorithms,

the most important are hierarchical clustering, centroid-based clustering, distribution-based clus-

tering, density-based clustering and grid-based clustering. HDBSCAN is a newer development

that combines algorithms from multiple categories. In an AOMA context, HDBSCAN is util-

ized to distinguish between physical modes and spurious poles established by system identification

methods.

Before the algorithm is explained, it will be useful to establish some basic terms from graph

theory. A graph consists of a set of vertices that may be connected together by a set of edges. In

an undirected graph, the set of edges does not have any direction. A weighted graph is a graph

for which each edge has an associated weight. An undirected graph is connected if every vertex is

reachable from all other vertices. Connected components is a set of vertices in a graph that are

linked to each other by edges. A graph with no simple cycles is acyclic. A free tree is a connected,

acyclic, undirected graph. A rooted tree is a free tree in which one of the vertices is distinguished

from the others, and this vertex is the root. Vertices of a rooted tree is often referred to as nodes.

Consider a node x in a rooted tree. Any node y on the unique simple path from the root node to

x is an ancestor of x. If y is an ancestor of x, then x is a descendant of y. If the last edge on a

simple path from the root node to x is the edge between x and y, then y is the parent of x, and

x is the child of y. A node with no children is a leaf node [13]. Figure 2.3 shows an example of a

weighted rooted tree.

18

Figure 2.3: A weighted rooted tree. Node A is the root, node D, E and F are leaf nodes. Node B is a child of A
and the parent of D. A is the ancestor of all the other nodes. F is a descendant of A and C. The weight of the edge
between A and B is 2.

2.5.1 HDBSCAN

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) is a clus-

tering algorithm developed by Campello, Moulavi and Sander, of which original paper [14] was

published in 2015. The HDBSCAN is an assembly of many well known algorithms in the world of

data science and is quite comprehensive in its entirety. This section only gives a brief overview of

how the algorithm works and is inspired by the hdbscan python implementation documentation

[15]. For a more thorough explanation, see the original paper [14].

The HDBSCAN algorithm can be broken into a series of 5 main steps:

1. Local density approximation

2. Build a Minimum spanning tree

3. Construct a cluster hierarchy

4. Condense the cluster hierarchy

5. Extract stable clusters

Local density approximation

The basic intuition when detecting clusters is to find the islands of higher density in a ”sea” of

sparser noise. The assumption of noise is important because real data is messy and has outliers,

which also applies for the poles produced from system identification methods. A single noise data

point can act as a bridge between two high density islands, which would be unfortunate. It is

desirable to have an algorithm that is robust against noise, so it will only connect dense areas.

To be able to connect dense points into clusters, an estimate of density is necessary to distinguish

high density points from sparse points. The core distance corek(x) of point x is defined as the

distance from x to its k-th nearest neighbour in euclidean space. The mutual reachability distance

is defined as:

dmreach�k(a, b) = max{corek(a), corek(b), d(a, b)} (2.81)

19

where d(a, b) is the euclidean distance between a and b. According to this metric, points that

are dense (with a low core distance) maintain their relative distance, while points that are more

sparse are repelled and must remain a least their core distance away from any other point. The

mutual reachability distance states that in order to connect two points together, they do not only

have to be close in euclidean space, the two points also have to be dense. The mutual reachability

distance is dependent on the parameter k, which means that a larger value of k causes more points

becoming sparse.

Build a minimum spanning tree

After having defined the density of each point in the data set, the next stage is to find the islands

of dense data. Density is relative, so it will vary across di↵erent islands. Conceptually, the data

can be viewed as a weighted graph, where the vertices represent the data points and the edges

represent the mutual reachability distance between pairs of points, with the weight of each edge

being equal to this distance.

Consider a high threshold value that is gradually being decreased. As edges with weights above

the threshold are eliminated, the graph will progressively break down into connected components.

At di↵erent threshold levels, there will be a hierarchy of connected components ranging from fully

connected to fully disconnected.

In order to obtain such a concept at a computational feasible cost, HDBSCAN creates a minimum

spanning tree (MST) e�ciently by Prim’s algorithm [13]. This involves creating a weighted rooted

tree by adding one edge at the time, always adding the lowest remaining edge that connects the

tree to a vertex not yet included. Figure 2.4 shows the MST of a spatial data set, based on the

mutual reachability distance of the data.

(a) Spatial data (b) Minimum Spanning Tree

Figure 2.4: Spatial data plot and corresponding MST based on mutual reachability distance.

Construct a cluster hierarchy

To obtain a hierarchy of connected components from the MST, a single linkage clustering [12] is

performed. The essence of this stage is to sort the edges of the tree by distance in ascending order

and iterate through, for each edge, create a new merged cluster. The result can be visualized as a

dendogram shown in figure 2.5.

20

Figure 2.5: Dendogram

A flat cluster is traditionally obtained by drawing a horizontal line through the dendogram, se-

lecting the clusters that the line cuts through. The level at which the line cuts the dendogram

corresponds to a mutual reachability distance, i.e. a single density level that is fixed for all clusters.

In practice, it would be more reasonable to have di↵erent density levels for each cluster, generalized

as variable density clusters.

Condense the cluster hierarchy

The dendogram in figure 2.5 quickly becomes complicated and di�cult to manage, especially when

applied on large amounts of data. Thus, selecting variable level cuts through a dendogram becomes

rather unpractical. As a next step in the procedure, HDBSCAN creates a condensed tree with more

data attached to each node. The width of each column in the new tree represents the number of

data points that is included in the cluster. The algorithm takes the parameter ”minimum cluster

size” as input. When a split in the dendogram corresponds to less than minimum cluster size

number of points falling out of the cluster, the column in the condensed tree simply becomes

narrower. On the other hand, when a split occurs where at least minimum cluster size number of

points fall out of the cluster, a true split happens in the condensed tree. The result becomes more

clear and easier to handle, visualized in figure 2.6.

21

Figure 2.6: Condensed tree

Extract stable clusters

The remaining task is to select clusters for the final flat clustering. HDBSCAN picks the columns

with the largest area, bound by the criteria that it is illegal to select a cluster that is a descendant

of a cluster already selected. This is formalized as follows.

The persistence of a cluster is given by the value lambda defined as:

� =
1

distance
(2.82)

For each cluster, let �0 and �1 be the lambda value when the parent cluster divides and the cluster

becomes its own cluster, and the lambda value when the cluster splits into smaller clusters. For

each point in a given cluster, let �p 2 [�0,�1] be the value at which the point falls out of the

cluster. The stability S of a cluster Ci is given as:

S(Ci) =
X

p2Ci

(�p � �0) (2.83)

In order to select a cluster, first declare all leaf nodes as clusters. Next, traverse the tree in reverse

topological order, that is starting at the leaf nodes and move towards the root node. If the sum

of the stabilities of the child clusters exceeds the stability of the current cluster, set the cluster’s

stability to be the sum of the child stabilities. Conversely, if the cluster’s stability is higher than

the sum of its children, declare it a selected cluster and deselect all of its descendants. Upon

reaching the root node, the set of currently selected clusters is considered the flat clustering.

The selected clusters and the resulting labeled data set is visualized in figure 2.7.

22

(a) Selected clusters in a condensed tree (b) Clustered spatial data

Figure 2.7: Selected clusters in a condensed tree (a), and corresponding labeled data (b).

2.6 Automatic Operational Modal Analysis

The procedures outlined in this section is an assembly of the previous presented theory and is tested

on a numerical example before applied on real measurement data from the H̊alogaland bridge. A

general description is given in this section and case specific details are given in section 3.1 and 4.1,

respectively.

The automatic operational modal analysis can be broken down to three main steps for each time

series under investigation:

1. OMA algorithm by Cov-SSI

2. Stabilization analysis

3. Clustering analysis by HDBSCAN

As convention, poles are all mathematical eigenvalues and modes are considered the true modes of

the system. All calculations in this section and application in section 3.1 and 4.1 are conducted in

Python version 3.10.8 [4], for details see Appendix.

2.6.1 Cov-SSI

Reference-based Covariance-driven Stochastic Subspace Identification, which underlying theory is

described in section 2.4, is conducted using the STRID [2] package developed by Frøseth and

Guddal. The implementation is based on Peeters and De Roeck [11] and Van Overschee and De

Moor [16].

A two dimensional matrix of acceleration data with size [number of channels x number of records]

and its sampling rate is passed along into the function for system identification. Reference indexes

is also passed in, which is the index of the reference channels, corresponding to indices of the rows

in the acceleration matrix.

Hyperparameters for the algorithm is the number of block rows i and the number of orders to

perform the system identification for. Yang et al. [17] proposes as a rule of thumb, that the

number of block rows i in the Block-Toeplitz matrix has a lower limit according to:

23

i � fs

fmin
(2.84)

where fs is the sampling rate of the signal and fmin is the assumed lowest natural frequency

of the system. The vibration mode of the lowest natural frequency of the H̊alogaland bridge is

approximately at 0.05 Hz, which yields i � 40 according to equation (2.84). The interpretation

of this relation is that the block-Toeplitz matrix should be able to capture at least one period of

the auto correlation function of the lowest order mode, i.e. the mode with the longest natural

period. To ensure this is achieved, the number of block rows is set to i = 50. The number of

orders to perform system identification for needs to be at least the number of DOFs of the system,

hereby overestimating the order of the system is common. Still, too many orders will create more

mathematical poles to assess subsequently and increase the computational time of the system

identification itself. Since model order is generally unknown, common practice is to do a heavy

overestimation.

Lastly, one has to decide on the length of the time series passed into the system identification. An

underlying assumption for the theory is that the system is excited by a stationary, stochastic white

noise loading process. Under this assumption, an infinitely long time series would be the optimal

choice to make a better representation of the stochastic process. In practice this is impossible, but

there appear to be other arguments for further limiting the time series. The main loading of the

H̊alogaland bridge is wind, which surely is not stationary. It turns out that slow changes from one

type of weather to another can, by a long time series, be captured as very low frequent dynamics

in the system. Hence, moving averages can appear in the recorded signal. The goal becomes to

have a time series long enough to create a good statistical foundation for the system identification,

but at the same time avoid change in weather systems to be captured. Previous experience and

advice from supervisor suggest to have time series length between 10 and 30 minutes.

Cov-SSI establishes a large set of poles over the model orders which the algorithm is run for.

That is, for each order, the solution to the system identification problem is found and poles are

established from an eigenvalue decomposition of the state matrix A as in equation (2.65). The

output can be visualized in a stabilization diagram shown in figure 2.8.

Figure 2.8: Stabilization diagram created by Cov-SSI

Two types of patterns are observable in the stabilization diagram. Clean vertical lines are assumed

to represent physical system poles. Scattered and messy poles represents spurious mathematical

poles.

24

2.6.2 Stabilization analysis

After Cov-SSI has established poles for various orders, a stabilization analysis is performed in

order to reduce the number of spurious poles, thus cleaning the stabilization diagram. Stabilization

analysis is conducted using the KOMA [3] package developed by Kv̊ale and the relevant function

is based on Kv̊ale et al. [18] and Kv̊ale and Øiseth [19]. Poles obtained for a particular order

are compared to the nearest pole from lower orders, using a modal indicator. For this study, the

modal indicator is the relative di↵erence in natural frequency. Afterwards, poles that meet the

specified stability criterion are considered stable and preserved, while those that do not meet the

criterion are discarded. Additionally, these criteria may also need to be met for a certain number of

preceding orders s (referred to as the stability level) prior to the current order under investigation,

thereby further promoting pole stability.

The stability criterion utilized in this study, is the relative di↵erence in frequency, the relative

di↵erence in damping and the modal assurance criterion (MAC) [6], which is a measure of similarity

between two mode shapes and is defined as:

MACi,j =
|�T

i �
⇤
j |2

(�T
i �

⇤
i)(�

T
j �

⇤
j)

(2.85)

where � is the eigenvector of a mode. It is defined such that MAC = 1 indicates two perfectly

equal mode shapes, while MAC = 0 is as di↵erent as it gets, that is, the two mode shapes are

orthogonal to each other. The values of the stability criterion for this study is presented in table

2.1.

Table 2.1: Stabilization criterion

Parameter Value

Frequency 0.2
Damping 0.2
MAC 0.5
s 1

The result after the stabilization analysis is a more cleaned stabilization diagram shown in figure

2.9. Preserved poles are labeled in blue, while discarded poles are grey.

25

Figure 2.9: Stabilization diagram after stabilization analysis. Preserved poles are labeled in blue, while discarded
poles are grey.

2.6.3 HDBSCAN

The remaining task of the modal analysis is the automatic selection of poles for modal feature

extraction. The HDBSCAN algorithm, described in section 2.5.1, is utilized for the purpose,

conducted by the KOMA package where relevant functions relies on the hdbscan library [20] for

Python.

The HDBSCAN algorithm requires a spatial representation of the data to cluster. The poles

created from Cov-SSI has three attributes; natural frequency, damping ratio and mode shapes.

These attributes, or features, are utilized to design a spatial distance measure between the points.

The distance dij between two points i and j is defined from paper of Kv̊ale and Øiseth [19] as:

dij =
q
↵
2
�(d

2
ij,Re(�) + d

2
ij,Im(�)) + (↵mdij,m)2 + dij,1 (2.86)

where dij,Re(�) and dij,Im(�) is the di↵erence between the real and imaginary part of the eigenvalues,

respectively, and dij,m = 1�MAC(�i,�j). ↵� and ↵m are scaling factors for eigenvalues and MAC

respectively, enabling di↵erent weighting of the two parameters. dij,1 is the hard stop distance,

which normally takes the value of zero, but is designed to have infinite value if two points have

the same order o and therefore should not be clustered together. The construction of the distance

matrix is also implemented in the KOMA package.

The most important parameters for HDBSCAN is minimum cluster size and minimum samlpes.

Minimum cluster size is simply the smallest size grouping to be considered a cluster. Increasing

this parameter will have the e↵ect of increasing the cluster size and reducing the total number of

clusters, merging some together. Minimum samples can be understood as a way to control how

conservative the clustering is going to be. Increasing this parameter leads to more conservative

clustering, where more poles are declared as noise and clusters are confined to increasingly denser

regions. Both parameters are dependent on the size of the candidates for each cluster, which in

a modal analysis context will be dependent on the number of orders the system identification is

run for. In practice, the number of orders decides how tall the stabilization diagram will be, and

consequently how many poles that may be stacked on top of each other. The latter decides the

number of candidates for a cluster. Hence, the number of orders the system identification is run

for should be taken in consideration when deciding minimum cluster size and minimum samples.

26

HDBSCAN provides a a probability p of each pole belonging to its designated cluster, simply a

normalization of �p given in section 2.5.1. KOMA enables the user to set a probability threshold

that the poles needs to surpass in order to belong to a cluster when extracting the clusters. The

hyperparameters utilized for HDBSCAN is summarized in table 2.2.

Table 2.2: Hyperparameters HDBSCAN

Parameter Value

Minimum cluster size 50*, 25**

Minimum samples 20*, 10**

Probability threshold 0.99
↵� 1.0
↵m 1.0
* For H̊alogaland bridge only.
** For numerical example only.

The output of HDBSCAN and the identified clusters among the stable poles are visualized in a

stabilization diagram in figure 2.10, each cluster with its own color labeling. Each cluster represents

a physical mode in the system and modal features (natural frequency, damping and mode shape)

are extracted as the median value of the participants within a cluster.

Figure 2.10: Stabilization diagram with a separate color for each cluster. Grey poles are remainders from the
stabilization analysis considered noise by HDBSCAN.

27

Chapter 3

Numerical example

3.1 Method

Figure 3.1: Illustration of a 9 storey
planar shear frame.

In order to assure the accuracy and verify the framework for

AOMA, a numerical example is carried out. The goal of

the numerical example is not to mimic the dynamics of the

H̊alogaland bridge in order to find the best parameters for

the algorithms, but rather to ensure that the framework for

AOMA provides credible results in general. Random vibration

data for a 9 storey planar share frame, visualized in figure 3.1,

is generated with python code from the STRID package. The

shear frame is designed to have vibration modes in the range

0-1 Hz, with the lowest order mode at approximately 0.08 Hz.

100 realizations are created in order to give a trace of the dif-

ferent modes. The AOMA procedure outlined in section 2.6

with the same hyperparameters, is carried out for each realiz-

ation of vibration data to obtain modal features. The number

of block rows is set to the same as the H̊alogaland bridge,

i = 50. The number of DOFs is severely reduced from the

H̊alogaland bridge, thus the number of orders for Cov-SSI to

be performed for can also be reduced, and is set to 50. That

is, system identification is run for every order from 1 to 50

inclusive. Length of the time series passed into Cov-SSI was

set to 100 times the length of the longest natural period in order to meet the time series length

indicated in section 2.6.1, which corresponds to approximately 20 minutes. An example of time

series data from one channel of a typical realization is shown in figure 3.2.

29

Figure 3.2: Acceleration data from one channel of a randomly picked realization.

In order to make traces from the result, a FEM model of the shear frame is used as a reference. For

each realization, AOMA creates a set of modes, which may vary in size, which all are candidates to

be assigned to the reference modes. In order to assign an estimated mode to to a reference mode,

a simple comparison routine is carried out. The routine includes finding the estimated mode that

is closest to the reference mode in the frequency domain, and the estimated mode has to satisfy a

certain tolerance as well to be assigned. The tolerance is the di↵erence in frequency �f between

the reference mode and the estimated mode, and is set to �f = 0.025 Hz. After the comparison

routine is carried out, there may still exist estimated modes that is not assigned to a reference

mode because they are not similar enough and interpreted as false detections.

3.2 Results

Results for the numerical example is presented in this section. Figure 3.3 displays the trace of

modes detected by AOMA. Table 3.1 compares the results from FEM to AOMA. Frequencies

from the estimated modes from AOMA is extracted as the mean frequency of the trace. In total,

there were 868 modes estimated by AOMA and by criteria presented in section 3.1, 862 of the

estimated modes were matched to a reference mode from FEM, that is 99.3% of the estimated

modes were correctly estimated by AOMA and it achieved a 96.4% overall detection rate. During

the 100 analyzed time series, there was an average of 8.7 estimated modes for each analysis, with

a standard deviation of 0.55.

Figure 3.3: Mode trace of a numerical example. Noise modes labeled in grey.

30

Table 3.1: Results from the numerical example.

Mode # fFEM [Hz] fAOMA [Hz] �frel =
|fFEM�f

AOMA
|

fFEM

· 100[%] Detection rate [%]

1 0.083 0.083 0.096 93
2 0.247 0.247 0.020 100
3 0.404 0.404 0.010 100
4 0.551 0.550 0.011 100
5 0.682 0.681 0.035 100
6 0.794 0.794 0.020 100
7 0.885 0.885 0.016 100
8 0.952 0.952 0.033 78
9 0.993 0.993 0.048 91

3.3 Discussion

On average, the algorithm for AOMA underestimates the number of modes for the analyzed time

series. Nevertheless, the standard deviation is low and several of the mode traces have a 100%

detection rate. Where discrepancies exists, they are not large and relative di↵erence in frequency

between estimates and references never exceeds 0.1%. The framework for AOMA gives overall good

results on the numerical example, which proves a good foundation for application on experimental

data from the H̊alogaland bridge.

When performing AOMA, it is desirable to averagely hit the number of modes in the system with as

low standard deviation as possible. Hyperparameter selection for AOMA algorithms still remains

a big challenge and has to be carefully adapted to the specific application. Tuning the parameters

further for the shear frame, in order to approve accuracy, would most likely not pay dividends on

the application of the H̊alogaland bridge. The shear frame can not mimic the dynamics of the

bridge anyways. Hence, optimizing the numerical example is out of the scope of this study and

the example is utilized for verification purposes, only.

There are several factors contributing to the expectation that the algorithm will not perform as

good on the experimental data from the H̊alogaland bridge. Firstly, the loading of the shear

frame is stationary white noise loading. This will, as previously indicated, not be the case for the

H̊alogaland bridge. The frequency content of the loading will not be evenly distributed through

the domain, hence not perfectly white noise. The loading will neither be stationary as the wind

experiences moving averages, observable in figure 4.26. Furthermore, the H̊alogaland bridge is a

much more complex structure than the planar shear frame with a great number of modes, some

easily detected, some not. This makes the task of AOMA much harder since the modes may be

particular di�cult to distinguish from each other. Sensor recording, drift in local timestamp and

GPS systems are all sources that may introduce errors in an operational application of modal

analysis.

31

Chapter 4

The H̊alogaland bridge

4.1 Method

The H̊alogaland bridge is a suspension bridge located 6 kilometers outside Narvik in norhtern

Norway. The bridge is part of the E6 road and crosses the Rombak fjord, which is a part of the

Ofotfjord. It goes from Karistranda in the south to Øyjord in the north. Figure 4.1 shows a picture

of the bridge seen from Øyjord and figure 4.2 shows the bridge location on the map.

Figure 4.1: Picture of the H̊alogaland bridge.

Source: Øyvind Wiig Petersen, ©NTNU

33

(a) National map view (b) Regional map view

(c) Local map view

Figure 4.2: Location of H̊alogaland bridge in national, regional and local map view respectively.

Source: ©norgeskart.no

The construction started in 2013 and was completed in December 2018. It was part of a larger

infrastructure project at a cost of 3,8 billion NOK according to Norwegian Road Administration

[21]. The construction of the bridge made the E6 road 18 kilometers shorter and reduced travel

time by 15-20 minutes. The arrival of the bridge also made traveling safer, because it circumvents

the old avalanche prone road. The H̊alogaland bridge has a main span of 1145 meters, making it

the second longest suspension bridge in Norway. Two reinforced concrete towers at approximately

180 meters height is supporting the two air-spun steel main cables, which again has 110 locked coil

steel hangers vertically connected to them. The hangers carry the bridge deck, which is a 3 meters

high and 18.6 meters wide steel box girder.

The slender design of the bridge, resulting from its long span and relatively small cross section,

causes it to exhibit low natural frequencies. Additionally, the bridge is susceptible to wind loading,

which primarily occurs within the same frequency range. Consequently, the bridge is particularly

subjected to wind-induced response. To enhance knowledge of the impact of environmental loading

on the behavior of long-span suspension bridges, a monitoring system has been implemented on

the H̊alogaland Bridge.

34

4.1.1 Monitoring system

The monitoring system of the H̊alogaland bridge was in operation from May 2021. The system

is comprehensive with ability to measure structural response of the deck, wind, temperature and

vibrations of the hangers. Structural response measurements includes acceleration data measured

by 22 tri-axial force balance accelerometers and strain measured by 36 strain gauges. Wind is

measured by 10 sonic anemometers, temperature by 22 thermometers and vortex-induced vibration

on hangers are measured by three piezoelectric accelerometers. The monitoring system is equipped

with 11 logger boxes in total, one in top of each tower and the remaining 9 are distributed along

the bridge span. All previously mentioned sensors are wired to the closest logger box. The main

hardware unit of the logger is a NI CompactRIO controller with custom software responsible for

sampling and filtering the measured data before it is saved locally on hard drives. Additionally

each controller has a Trimble Bullet GPS antenna connected for accurate time stamping of recorded

data. The controller has internet connection, so it is able to push the data to a server at regular

intervals. The locations of the di↵erent sensors and components of the monitoring system relative

to the geometry of the bridge is illustrated in figure 4.3.

Figure 4.3: Monitoring system of the H̊alogaland Bridge

Source: Petersen et al. [22]

The main objective of this study is to perform AOMA on acceleration data, hereby the data

from the force-balance accelerometers are studied. There is one accelerometer in top of each

tower, 16 sensors located inside the girder and 4 sensors on the hangers. The logger boxes are

named with numbers in chronological order from left to right relative to figure 4.3. The sensors

connected to a given logger box inherits the number of the box in addition to its own labeling.

The accelerometers inside the girder are connected to logger boxes 3-10, and there are two sensors

connected to each box, one at each lateral end respectively, to be able to capture torsional motion.

Location of accelerometers in the girder along the bridge span is illustrated in figure 4.4 and

associated coordinates of the sensors are found in table 4.1.

35

Figure 4.4: Overview of accelerometers in the bridge deck.

Table 4.1: Longitudinal coordinates of acceleration sensor location along the bridge span.

Sensor name
A03-1/
A03-2

A04-1/
A04-2

A05-1/
A05-2

A06-1/
A06-2

A07-1/
A07-2

A08-1/
A08-2

A09-1/
A09-2

A10-1/
A10-2

x-coordinate [m] -420 -300 -180 -100 0 100 260 420

This study has chosen to focus of the motion on the bridge deck only, therefore data from the

sensors in figure 4.4 and table 4.1 are the ones considered in the AOMA.

A research question of interest is how the identification of modal parameters is a↵ected by envir-

onmental factors, namely wind and temperature [22]. For that purpose, one temperature sensor

in the mid span of the bridge is selected for calculation of temperature statistics. Similarly, one

anemometer in the mid span of the bridge is selected for wind statistics.

For a complete description of the monitoring system, the reader is referred to Petersen et al. [22].

4.1.2 Finite element model

A finite element (FE) model of the bridge made in Abaqus [23], and exported modal parameters,

has been provided by Øyvind Wiig Petersen as a odb file and a h5 file, respectively. The two

resources are used in combination to obtain the relevant modal parameters for the bridge deck,

utilized for comparison with the AOMA. Only a short description of the model based on Solstad

and Onstad [1] is given here.

The FE-model consists of the main parts of the bridge, namely; two towers, two main cables,

hangers and bridge deck, shown in figure 4.5. The model geometry is based on as-built geometry

and the main parts are modelled using beam elements. Consequently, three-dimensional parts are

modelled as one-dimensional. Since the cross section of all parts are small compared to the global

dimensions along the beam axes, the one-dimensional simplification is assumed to be a su�cient

approximation. B31 and B32 elements are utilized, which are 2-node linear and 3-node quadratic

beam elements in space. All DOFs, that is, 3 translational and 3 rotational DOFs for each node,

are active for these beam elements. A lumped mass formulation is used for dynamic calculations.

36

Modal analysis by Lanczos eigensolver, which means that Abaqus solves the eigenvalue problem

by equation (2.19), was already carried out in the provided odb file and the results was ready for

inspection.

Figure 4.5: A FE-model of the H̊alogaland Bridge from Abaqus.

The odb file contains all global modes for the FE-model of the H̊alogaland bridge. Since this study

focuses on modal analysis of the bridge deck, it is desirable to select the bridge deck modes from

the FE-model for comparison with the AOMA. By visual inspection and animation in Abaqus it is

possible to distinguish di↵erent mode types from each other, visualized in figure 4.6. Horizontal-,

vertical- and torsional bridge deck modes are selected, while cable modes are generally discarded.

When analysing the results of the AOMA, evidence of additional modes was apparent beyond those

already selected from Abaqus. Therefore, cable modes was reviewed in order to find references of

the additional modes and three cable modes were selected. After identifying the relevant modes, the

modal parameters of these modes was accessed from the h5 file in Python. Natural frequency and

mode shapes were extracted. Note that for comparison purposes, only nodes from the FE-model

that corresponds to sensor location on the bridge deck was extracted in order to obtain eigenvectors

of the same size, hence making the mode shapes comparable. For visualization purposes the

complete eigenvectors including all bridge deck nodes in the FE-model was utilized. Results are

presented in section 4.2.1.

37

(a) Vertical mode (b) Horizontal mode

(c) Torsional mode (c) Cable mode

Figure 4.6: Di↵erent mode types identified by visual inspection in Abaqus.

4.1.3 Data exploration and processing

The recorded data is stored in a TDMS file format, one file for each 8 hour period of data. Data

in a TDMS file is slowly read to memory and significant amounts of data is required for long term

analysis. In addition, time synchronization of data from di↵erent channels are also required. Time

synchronized data stored in a HDF5 file format to use for this study was provided by Ole Andre

Øiseth, from the Department of Structural Engineering at NTNU.

HDF5 is a hierarchical data format for storing and managing large and complex data [24]. It

supports n-dimensional datasets and each element may itself be a complex object. There are no

limitations on the HDF5 file size giving great flexibility for big data. It can be run on distributed

systems and provides high level APIs for multiple platforms. The data is self contained, meaning

metadata is kept with the data and a single HDF5 file gives context to itself. HDF5 supports high

performance, parallel I/O, making it powerful and robust for big data analysis.

There are three main levels in the hierarchy of a HDF5 file, starting with the file itself. Secondly

there are groups, which are folder-like containers, which may contain subgroups. Lastly there are

datasets, which are array-like collections of data that is contained within the groups. One of the

main advantages of the HDF5 format is that it enables a gateway where the user can request and

read specific parts of the file, without requiring all the data of the file to be loaded to volatile

memory, which can easily be exceeded when handling large amounts of data. The HDF5 file from

NTNU contains one month of data recorded from the monitoring system and an illustration of the

relevant parts of the hierarchy is shown in figure 4.7. Labeling of periods and sensors are just to

exemplify.

38

halogaland.hdf5

period 3period 2period 1

force balance accelerometer wind temperature

sensor 1

sensor 2

sensor 3

x

y

z

sensor 1

sensor 2

sensor 3

sensor 1

sensor 2

sensor 3

direction

magnitude

vertical velocity

x

HDF5 file

group

dataset

Figure 4.7: Hierarchical overview of structure of a hdf5 file.

The first group in the hierarchy is periods of 8 hours of data, each labeled [YYYY-MM-DD-hh-mm-ss].

The next subgroup is the sensor type, which again contains a subgroup of the sensors distributed on

the bridge. Sensor labeling is according to procedure described earlier with inheriting the number

of the closest logger box in addition to own number. Each sensor contains channels of recorded

data, which corresponds to the dataset. For force-balance accelerometers, all channels from the

sensors shown in figure 4.4 are utilized. Magnitude and direction is picked for a wind sensor in the

mid span of the bridge, the same applies for the temperature which only has one channel.

Further discussion on data exploration and processing applies to the acceleration data only, which

is the data used in the AOMA procedure. The HDF5 file is accessed and read to Python through

the h5py [25] library.

The acceleration data from the HDF5 file is provided at a 16 Hz sampling rate. A typical 30 minute

time series from the x channel of the A03-1 sensor is shown in figure 4.8. The first step in the

data exploration is to investigate the frequency content of the signal, which will a↵ect parameter

selection at later stages. For this purpose, the PSD of the signal for each channel respectively is

obtained by Welch’s method. An arbitrary 8 hour period is chosen, then the PSD for each sensor

in x, y and z direction respectively is computed. The average PSD in each direction is shown in

figure 4.9 as solid lines, min and max respectively is shown as transparent lines.

39

Figure 4.8: A typical 30 minute time series from the x channel of the A03-1 sensor, starting mid night of February
the 4th, 2022.

Figure 4.9: PSD by Welch’s method of 16 Hz acceleration data in x, y and z direction respectively. Filled line
represents mean PSD o↵ all channels in given direction. Transparent area represents max and min PSD, respectively.

From figure 4.9 one can see that the majority of the energy in the system is situated in the range

from 0 to 1 Hz. Hence, this becomes the main frequency range of interest. This finding o↵ers the

opportunity to down-sample the signal in order to reduce the amount of recordings and hereby

reduce computational cost. The Nyquist rule described by equation (2.16) requires the new signal

to have a sampling rate of 2 Hz. Before downsampling is performed, a low pass filter of the type

Butterworth [7] by equation 2.15 is applied with filter order n = 10 and cuto↵ frequency fc = 1

Hz. Section 2.3.3 stated that a fundamental assumption for the discrete-time stochastic state space

model is that the process noise wk and measurement noise vk are zero mean Gaussian processes,

which implies that the output of the system yk also becomes a zero mean Gaussian process. From

figure 4.8 it is clearly vissible that the output response from the H̊alogaland bridge does not have

a zero mean. In order to obtain a zero mean process the, the mean of each 8 hour period is

subtracted from the signal. All these procedures were implemented in the loading process of the

data from the HDF5 file in a custom dataloader, for details see Appendix.

40

4.1.4 Application of AOMA

After the acceleration data has been loaded and pre-processed, it is structured as a two dimensional

matrix with size [number of channels x number of records]. The 8 hour period in the HDF5

file is dived into time series of 30 minutes each, yielding the number of records to be 30min ⇥
60sek ⇥ 2Hz = 3600. There are 16 sensors located in the bridge deck, each with channels in x, y

and z direction respectively, leading to 48 channels in total. Reference channels are picked among

the sensors on the bridge deck that are assumed to capture global mode shapes of the bridge.

The reference channels were chosen to be y- and z-channels of sensors at one side of the bridge,

specifically the west side of the bridge, giving a total of 16 reference channels. The stages of the

AOMA outlined in section 2.6 is then carried out. The process is repeated for each time series

within each 8 hour period and results are written to file for each time series under investigation.

There are a total of 73 periods of 8 hours within February 2022 on which analysis has been

conducted, yielding a total of 1168 analyzed time series. Criteria for a given period to undergo

analysis is that all relevant channels are present in the logged data.

The number of DOFs for the H̊alogaland bridge is unknown in a system identification context.

Previously studies [18] [19] [1] [26] with application of both OMA and AOMA utilizes a maximum

modal order between 200 and 250. Based on this experience, the number of orders to perform

system identification has for this study been chosen to 200, with a step of two. That is, system

identification is run for every other order from 2 to 200 inclusively. This yields the potential of twice

the amount of poles as the numerical example in section 3.1. This is the reason why ”minimum

cluster size” and ”minimum samples” is twice as big for the H̊alogaland bridge as the numerical

example in table 2.2.

The results from the AOMA gives a large set of estimated modes over the frequency range of

interest, but the number of estimated modes for each time series may vary. It is desirable to

investigate how the modal parameters of a given mode develops over time, to potentially see the

e↵ects of environmental factors. Modal tracking algorithms can be used for such a purpose, but is

not within the objective of this study. This study uses the modes obtained from the FE-model as

reference modes. In order to obtain a trace of each mode, a comparison and sorting routine has

been carried out that is further described here. For each time series analyzed, AOMA has created

a set of estimated modes, which is referred to as candidates. For each reference mode, find the

candidate that is most similar to the reference mode and in addition satisfy a tolerance in di↵erence

from the reference mode. There will be at most one candidate matched to each reference mode per

time series. All the modes estimated by AOMA that is matched to the same reference mode over

the total analysed period, constitutes the mode trace. For similarity and di↵erence measurement,

relative di↵erence in frequency �fi and di↵erence in mode shape drefi,m = 1 � MAC(�ref ,�i) is

used. For the latter, �ref is the mode shape of the reference mode and �i is the mode shape of the

candidate mode. Relative di↵erence in frequency �fi is defined as:

�fi =
|fref � fi|

max(fref , fi)
(4.1)

where fref is the natural frequency of the reference mode and fi is the natural frequency of the

candidate mode. Tolerances were set to �fi = 0.1 and drefi,m = 0.2, relatively large tolerances with

the objective to not discard too many candidates. Naturally, some traces have a good detection

rate, while other have worse. Results are presented in chapter 4.2.

41

In order to obtain the mode shapes of the bridge girder in the horizontal, vertical, and torsional

directions, the following matrix is utilized to convert the horizontal and vertical mode shape values

on either side of the bridge into corresponding horizontal, vertical, and torsional values at the

midspan. The transformation matrix is based on Solstad and Onstad [1] and is defined as:

2

64
y

z

✓

3

75 =

2

64

1
2

1
2 0 0

0 0 1
2

1
2

0 0 �1
B

�1
B

3

75

2

66664

y1

y2

z1

z2

3

77775
(4.2)

where y, z and ✓ are the new mode shape values at the midspan of the bridge, B is the width of

the bridge and y1,2 and z1,2 are the initial mode shape values of each side of the girder.

Because of damping in the structure, the mode shape components are represented as complex

numbers, introducing a phase shift between them. Consequently, the maximum amplitudes of

these components do not align simultaneously [18]. To address this, a function from the KOMA

package is employed to obtain the modes shapes, where the mode shape vectors are rotated in

the complex plane such that the absolute value of the real part is maximized. Finally, the mode

shapes are plotted as the real parts of the components, one for each mode in the trace. Results

are presented in section 4.2.2.

42

4.2 Results

4.2.1 Results from FEM

The horizontal, torsional and vertical bridge deck modes found from the FE-model in Abaqus,

with natural frequency lower than 1 Hz, are presented in figure 4.10, 4.11 and 4.12, respectively.

Figure 4.13 shows three selected cable modes assumed to appear in the modal analysis. There are

a total of 24 relevant modes selected as references from Abaqus.

Figure 4.10: Mode shapes of horizontal modes from the FE-model, with corresponding natural frequencies.

Figure 4.11: Mode shapes of torsional modes from the FE-model, with corresponding natural frequencies.

43

Figure 4.12: Mode shapes of vertical modes from the FE-model, with corresponding natural frequencies.

Figure 4.13: Mode shapes of three cable modes from the FE-model, with corresponding natural frequencies. The
figure shows the horizontal component of the bridge deck, excited by the cable modes.

44

4.2.2 Results for AOMA

The results for the AOMA is presented in this section, along with mode traces found by reference

to FEM results. Figure 4.14 displays all modes estimated by AOMA as blue dots, plotted by

frequency and time series number. Frequencies from Abaqus is plotted as red, horizontal dashed

lines. During the 1168 analyzed time series, there was an average of 20.7 estimated modes for

each analysis, with a standard deviation of 2.04. The smallest number of estimated modes from

an analysis was 14 and the largest number was 33. The distribution of the number of estimated

modes for each time series is visualized in figure 4.15 as a histogram. The average execution time

for analyzing a time series was 4.9 seconds.

Figure 4.14: All estimated modes from AOMA, plotted by its frequency vs. time. Frequencies from Abaqus model
is plotted as horizontal dashed lines, labeled FEM.

Figure 4.15: Distribution of number of estim-
ated modes for each time series.

The total number of estimated modes over the whole

period, is 24 126. Figure 4.16 displays modes estimated

by AOMA after mode traces are found by reference to

FEM results. Modes matched to references are labeled

blue, while un-matched modes are labeled orange. The

number of matched modes is 22 478, while the number of

un-matched modes is 1 648, that is 93.2% of the estim-

ated modes were matched to a reference mode from FEM,

achieving a 80.2% overall detection rate. All estimated

modes matched to the same reference, constitutes the

trace of the mode. Each mode trace with its own color

labeling is displayed in figure 4.17.

45

Figure 4.16: All estimated modes from AOMA, plotted by its frequency vs time. Modes matched to a reference
mode from Abaqus is labeled blue, while un-matched modes are orange. Frequencies from Abaqus model is plotted
as horizontal dashed lines, labeled FEM.

Observe in figure 4.16 the occasional appearance of orange scatter for the lowest order mode

trace at approximately 0.05 Hz. Because of this finding specifically, a thorough investigation of

environmental factors influence on identification of mode 1 will be carried out in section 4.2.4.

Figure 4.17: Modes assigned to a reference mode from Abaqus, plotted by its frequency vs. time. All modes within
each color belongs to the same trace. Frequencies from Abaqus model is plotted as horizontal dashed lines, labeled
FEM.

46

Figure 4.18 displays the frequency distributions within each mode trace. Here ”n” is the number

of detections within each trace and ”r” is the detection rate. Both varies greatly over the di↵erent

mode traces, from several traces accomplishing a detection rate of 100%, to mode 3, achieving a

detection rate of only 9.7%. Comparing the average detection rate across the di↵erent mode types

reveals a clear pattern. The vertical modes are the most easily detectable with a average detection

rate of 99.7% and the torsional comes second with an average 98.6%. Then there is a huge gap

down to the horizontal modes with an average of 50.8%. Not surprisingly, the cable modes are the

most di�cult to detect with an average detection rate at 26.2%. ”Head and shoulder” pattern in

the histogram, clearly visible for mode 15 and 18, may indicate that some modes has been wrongly

matched to the reference mode and should belong somewhere else (either another reference mode

or a mode not considered in the analysis). Further findings from figure 4.18 will be discussed

section 4.3.

Figure 4.18: Frequency distributions among assigned modes. Here ”n” is the number of detections and ”r” is the
detection rate.

47

Mode shapes with corresponding mean frequency and mean damping for all horizontal, torsional,

vertical and cable modes found by AOMA are visualized in figure 4.19, 4.20, 4.21 and 4.22, re-

spectively. Mode shapes of reference modes from the FE-model is drawn as a black line in the

background and sensor locations at the bridge are marked grey, dashed vertical lines. As for the

mode shapes found by AOMA, one line is drawn for each detection assigned to the trace. The

stronger the opacity, the more mode shapes lie on top of each other. Discrepancies by thinner lines

is clearly visible in several plots.

Figure 4.19: Mode shapes of horizontal modes from AOMA, with corresponding mean natural frequencies and mean
damping ratios.

Figure 4.20: Mode shapes of torsional modes from AOMA, with corresponding mean natural frequencies and mean
damping ratios.

As for the vertical mode shapes shown in figure 4.21, for mode 12 and remaining higher order

modes, the amount of sensors on the bridge deck limits the ability of AOMA to reproduce the

mode shapes correctly. For these higher order modes, AOMA will interpolate the mode shape in

the areas between the sensor locations. There are still valuable information in the plots as it is

of interest to observe the consistency of the mode shapes. The points of intersection between the

mode shapes from Abaqus and the ones estimated by AOMA may also say something about the

accuracy of the estimations by AOMA.

48

Figure 4.21: Mode shapes of vertical modes from AOMA, with corresponding mean natural frequencies and mean
damping ratios.

Figure 4.22: Mode shapes of cable modes from AOMA, with corresponding mean natural frequencies and mean
damping ratios. The figure shows the horizontal component of the bridge deck, excited by the cable modes.

49

Mode 2 and 3, which is vertical and horizontal modes respectively, is closely spaced in the frequency

domain with similar mode shapes in each respective component. Because of the bad detection

rate of mode 3, suspicion about dynamic coupling in between the modes was raised. To further

investigate this suspicion, the di↵erent components of the two mode shapes is visualized in figure

4.23.

(a) Mode 2 (b) Mode 3

Figure 4.23: Mode shape plot with horizontal, vertical and torsional components of mode 2 and 3.

50

4.2.3 Comparison of AOMA and FEM

A comparison of the results from AOMA and FEM is presented in this section. Comparison

of mode shapes is already presented in section 4.2.2. Table 4.2 presents natural frequency and

damping ratios of all modes that is member of a trace. Both natural frequency and damping

ratios are extracted as the mean over all members within each trace. The table also shows the

natural frequency of modes from FE-model and their relative di↵erence to the modes from AOMA.

Detection rate is also presented and type H, V, T and C denotes horizontal, vertical, torsional and

cable modes, respectively.

Table 4.2: Comparative results between FEM and AOMA.

Mode # Type fFEM fAOMA �frel =
|fFEM�f

AOMA
|

fFEM

· 100 ⇠AOMA Detection rate
[Hz] [Hz] [%] [%] [%]

1 H 0.054 0.055 1.52 1.69 75.3
2 V 0.116 0.118 2.16 2.30 100.0
3 H 0.120 0.124 3.57 1.60 9.7
4 V 0.144 0.144 0.12 1.61 100.0
5 V 0.206 0.204 0.66 1.16 99.7
6 V 0.218 0.219 0.63 1.06 100.0
7 H 0.228 0.237 3.89 1.30 67.3
8 C 0.284 0.296 4.52 0.11 13.0
9 V 0.286 0.287 0.38 0.84 100.0
10 V 0.348 0.352 1.05 0.77 100.0
11 H 0.397 0.412 3.53 0.97 69.1
12 V 0.424 0.427 0.73 0.68 100.0
13 T 0.438 0.450 2.71 0.56 99.3
14 C 0.463 0.478 3.23 0.24 33.7
15 C 0.483 0.497 2.88 0.20 32.0
16 V 0.499 0.507 1.63 0.71 100.0
17 T 0.585 0.618 5.63 0.71 98.0
18 H 0.586 0.615 4.82 0.52 32.4
19 V 0.591 0.595 0.61 0.64 100.0
20 V 0.690 0.689 0.16 0.64 99.9
21 V 0.789 0.791 0.30 0.69 100.0
22 T 0.883 0.929 5.19 0.64 98.5
23 V 0.903 0.898 0.61 0.75 99.9
24 V 1.018 0.987 3.10 0.66 96.6

51

Natural frequencies from AOMA and FEM is plotted against each other in figure 4.24, one subplot

for horizontal, vertical, torsional and cable modes respectively.

Figure 4.24: Natural frequencies from FEM plotted against natural frequencies from AOMA for horizontal, vertical,
torsional and cable modes, respectively.

4.2.4 Environmental factors influence on modal parameters

Figure 4.25: Wind-rose of wind at the
H̊alogaland bridge for the analyzed period.

This section presents result of the modal analysis in con-

text with weather data recorded by the monitoring sys-

tem, described in section 4.1.1. The weather data is

extracted as the average over the corresponding period

passed into the AOMA. Figure 4.25 shows a wind-rose

over the wind direction and magnitude at the mid-span

of the H̊alogaland bridge for the recorded period. The

wind magnitude is given in meters per second (m/s) and

is divided into five buckets with interval of 5 m/s each.

Observe that the predominating wind direction is from

the east, hence hitting perpendicular on the longitudinal

axis of the H̊alogaland bridge. Specifically, mean wind

direction is 121.5 degrees, mean wind speed is 8.5 m/s

and max wind speed is 30 m/s.

52

Figure 4.26 displays the modes matched to references in Abaqus, in addition, temperature, mean

wind speed and mean wind direction is included as subplots. Temperatures alternates from �9.1�C

to 3.0�C, with a mean temperature of �4.1�C. Small changes in the mode traces, especially for

higher order modes, is observable and it is desirable to investigate potential correlation between

weather patterns and change in mode trace development.

Figure 4.26: Modes detected by AOMA matched to reference mode in Abaqus, plotted by frequency vs. time.
Temperature, mean wind speed, and mean wind direction vs. time is added as subplots.

53

Figure 4.27 shows frequency vs. temperature correlation plot for each mode trace. Note that for

mode 8, the pronounced incline on the red regression line is caused by outliers not visible in the

plot, disturbing the regression. Multiple vertical lines are visible for mode 15 and 18, indicating

that some modes has been wrongly matched to the reference, which agrees with figure 4.18.

Figure 4.27: Frequency vs. temperature correlation plot. Pearson correlation coe�cient r between the two variables
is displayed in the top right corner of each subplot and plotted as a red solid line.

54

Figure 4.28 shows damping vs. time of all mode traces superimposed on each other, in addition to

mean wind speed as subplot below.

Figure 4.28: Damping vs. time plot of all mode traces and mean wind speed is added as subplot.

55

Figure 4.29 shows damping vs. wind speed correlation plot for each mode trace.

Figure 4.29: Damping vs. wind correlation plot. Pearson correlation coe�cient r between the two variables is
displayed in the top right corner of each subplot and plotted as a red solid line.

56

As mentioned in section 4.2.2, it was desirable to make a more thorough investigation in the

detection pattern of mode 1 due to discrepancies compared to the other mode traces in figure 4.16.

Figure 4.30 shows the trace of mode 1 with a plot of the mean wind speed, where the mean wind is

labeled red at time instances where no detection of mode 1 exists, orange where detection exists.

The figure shows that missed detections mostly occurs at lower wind speeds. The mean wind speed

of the periods where mode 1 is detected is 10.2 m/s and the mean wind speed of periods where

the mode is not detected is 3.2 m/s.

Figure 4.30: Frequency trace of mode 1 with mean wind speed.

4.3 Discussion

4.3.1 Automatic Operational Modal Analysis

Results from AOMA on the H̊alogaland bridge is presented in section 4.2.2. As previously men-

tioned, all modes up to 1 Hz are considered from the modal analysis. On average, the algorithm

underestimates the number of modes for the analyzed time series. Comparing the standard devi-

ation to the numerical example, taking the number of reference modes in account, one achieves

2.04/24 = 0.09 for AOMA against 0.55/9 = 0.06 for the numerical example.

It is pointed out that there has been an iterative process to arrive at the results presented in section

4.2. Important decisions has been made and it is desirable to explain the background for some of

them in the following sections.

Cov-SSI

Cov-SSI as outlined in section 2.4.1 was first carried out, that is covariances between all input

channels were computed as in equation 2.44. The result was an expensive calculation cost with

long run times at first. This made iterative work impractical as di↵erent configurations had to

be tested on the data set. Connecting to a data cluster possessed by the university would be a

potential solution, but it would not reduce the computational cost and later applications would

also have a demand for powerful computers. Therefore, reference-based Cov-SSI, as outlined in

section 2.4.2, was considered an alternative to reduce computational cost, enabling execution on

local computers and making it convenient for everyone to carry out. Here, covariances between all

channels and reference channels only, as in equation 2.75, had to be carried out. Theoretically, this

should reduce computational cost by 1� 48·16
482 = 67%. The implementation of reference-based Cov-

SSI reduced the experimental computational cost by roughly 50%. It is important to emphasize

57

that other adjustments also made important contributions to arrive at the final run time. Still,

Cov-SSI was deemed, by far, the most expensive sub routine in the framework, so the introduction

of reference-based Cov-SSI was of great importance.

Comparison of accuracy in between reference-based Cov-SSI and traditional Cov-SSI was not car-

ried out in his study, nor was it an objective. Peeters and De Roeck [11] performed experimental

testing on a steel mast and found that reference-based SSI was considerably faster than SSI.

Concluding remarks was that the natural frequencies and damping ratios was determined with

low uncertainties for both methods, the same applies for mode shapes. The study found that

reference-based SSI prediction errors are higher for channels that do not belong to the reference

channels. The practical significance of this finding for the H̊alogaland bridge is that the torsional

modes may su↵er a higher prediction error, since all y and z channels on the sensors on the west

side of the bridge was chosen as reference channels.

Selection of hyperparameters

Hyperparameter selection for AOMA algorithms remains one of the most di�cult topics when

applied on operating structures. The variety in structure complexity and load characteristics

has prevented the algorithms to be o↵ the shelf items where one size fits all. Once again, it is

emphasized that this study’s main objective is data analysis of the recordings from the H̊alogaland

bridge, not algorithm optimization or hyperparameter search. Still, some experiences has been

made that can contribute against generalizing the choices for later usage.

Selection of the number of block-rows i according to equation 2.84 seems to be su�cient for

practical applications. Yang et al. [17] states that i can be chosen as large as possible within

practical limitations, at the cost of computational expenses. As Cov-SSI is found to be the most

expensive routine of AOMA, it is suggested to take every possible action to reduce computational

time. Keeping i close to equation 2.84 by adding only 25%, is found su�cient.

The length of the time series was chosen to 30 minutes after recommendations from supervisor

without further exploration. This leaves a room for more investigations and potential improvements

of the study. The essence of choosing the length, is as previously mentioned, the compromise of

obtaining a good statistical representation of the signal without experiencing moving averages. In

order to improve the latter, it is possible to subtract the mean of the signal for every time series

passed into Cov-SSI, i.e. every 30 minutes, instead of every 8 hour as performed in this study.

The model orders to perform system identification for, is as common, heavily overestimated at the

cost of increased computational time. Still, it is considered useful for reasons explained later as it

should be seen in context with HDBSCAN.

Stabilization analysis is a relatively simple assessment routine utilized in previously automated [19]

and non-automated [1] [18] applications of OMA. The intention is to discard mathematical poles

from a stabilization diagram. It is important to note that in an AOMA context, such a routine

should be less rigorous than in traditional OMA, just as in the previously cited studies. The

reason is that it is important to preserve all potential physical poles and some mathematical poles

representing noise for the later applied HDBSCAN, which is designed to be applied on data with

noise. Hence, preservation of mathematical poles is important for the algorithm to perform well.

Manual inspection of several stabilization diagrams equivalent to figure 2.9 was done iteratively

58

in order to obtain parameters for the stabilization analysis, such that as much as possible of

the consistent clear vertical lines was preserved for later analysis. Resulting outcome was that

parameters for stabilization analysis were set relatively generous.

HDBSCAN is the most powerful tool for data pattern recognition and outlier detection amongst

the routines in the AOMA framework presented in this study. The parameters ”minimum cluster

size” and ”minimum samples” are, as previously indicated, closely linked to the number of orders

system identification is performed for. The more order the system identification is performed

for, the more mathematical poles will appear in the stabilization diagram, but the vertical lines

of assumed physical poles will also grow taller. The mathematical poles will, even though the

order is increased, have a scattered and messy pattern, while the physical poles will continue to

stack vertically. While increasing the noise in the data set, the size of the consistent clusters will

also increase and a better statistical foundation for HDBSCAN is created. When increasing the

cluster size and the amount of noise, HDBSCAN will acquire a better understanding of what is

dense areas and what is scattered areas among the data. Setting the number of orders su�ciently

high and setting less rigorous stabilization criterion in the stabilization analysis, will enable good

working conditions for HDBSCAN. It is then possible to increase the ”minimum cluster size”

so that HDBSCAN looks for larger consistent clusters and at the same time increase ”minimum

samples” such that more points are declared noise and clustering is confined to denser areas.

Manual inspection of several stabilization diagrams equivalent to figure 2.10 was done iteratively

in order to obtain values for ”minimum cluster size” and ”minimum samples”. It should be noted

that this was a trial and error process, as tuning two dependant parameters simultaneously is a

complex exercise that would have deserved more attention. The optimal outcome of figure 2.10 is

to obtain the same number of clusters each time with as low standard deviation as possible. In

practice this is a hard problem and wrongly detected clusters are inevitable as excitation of the

bridge varies greatly according to wind magnitude.

Traces and references

Figure 4.14 is the pure output of the AOMA and reveals traces of how the modes develops over

time. A challenging question concerning mode traces is how to decide which trace a mode belongs

to. For that purpose, reference modes from Abaqus was utilized to match the estimated modes

from AOMA to, where measures of mode shape similarity and di↵erence in frequency described in

section 4.1.4 was used. The task of picking the right reference modes from Abaqus was not straight

forward. There are about 50 modes of vibration from the Abaqus model in the frequency range

between 0 and 1 Hz. Several of those modes are cable modes or tower modes that is not expected

to be well captured by the monitoring system with limited amounts of sensors located on those

components of the bridge. Nevertheless, some of the cable modes of the main cables, seems to

excite the bridge deck, so the question arose if they would appear in the mode trace plot. To begin

with, all horizontal, vertical and torsional modes were chosen as reference modes. Two horizontal

modes from Abaqus, specifically number 46 and 49 amongst all modes, at natural frequency 0.86

Hz and 0.89 Hz respectively, did not show any evidence to appear in the mode trace plot of figure

4.14 by manual inspection and was for that reason removed for further analysis. Also, the second

horizontal mode, mode 3, showed little sign of appearance, but because of its significance it was

still kept. However, there appeared to be evidence of a couple of traces on other frequencies, firstly

labeled orange in figure 4.16 that were assumed to be horizontal bridge deck motions excited by

59

cable modes. Assessment of cable modes in the relevant frequency range was therefore executed in

order to find references for the appearing excessive traces. References was successfully identified,

even though the detection rate of the cable modes by AOMA was not particularly impressive as

shown in figure 4.18. It is still an interesting finding that AOMA, under the right circumstances,

is able to detect cable modes of the bridge.

A consideration was made on whether to include the channels of the cable sensors in the modal

analysis, to better capture the motions of the cable modes. An attempt was made that appeared

to provide a better detection rate of the cable modes, but unfortunately led to worse detection rate

for some other horizontal modes. As modal analysis of the bridge deck has been the main focus of

this study, the cable sensors was discarded and the original set up was kept.

The mode shapes in figure 4.19, 4.20, 4.21 and 4.22 seems to coincide well with the reference mode

shapes from Abaqus, except from mode 12 and remaining higher order vertical modes. This is

expected an mentioned earlier. Evidence of good consistency in the plots appears for almost all

modes, with exception for mode 15, 18 and 24 that has some discrepancies. Since three di↵erent

types of modes, that is horizontal, vertical and cable, are experiencing discrepancies, no further

conclusion is to be drawn on the ability to describe mode shapes of a certain type over others.

It still remains unknown why mode 3 had such a bad detection rate of only 9.7% (see figure

4.18). It is a low order mode with a well characterized mode shape, expected to give significant

contribution to the global displacement of the bridge deck. Observed in figure 4.17 as green dots

between 0.10 and 0.15 Hz, it is situated right next to mode 2 in the frequency domain. Even

though mode 2 is a vertical mode, it should be able to distinguish between them by assessment of

mode shape. Nevertheless, it may still happen that the described framework for AOMA struggles

to distinguish between modes that is close by frequency. After all, the di↵erence in frequency

between the two modes is only 0.004 Hz. The most plausible explanation though, may be found in

3D flutter analysis [27] which states that dynamic coupling between natural modes closely spaced

in the frequency domain, takes place because of self-exciting aerodynamic forces. Hence, mode 2

and 3 may become coupled during adequate wind loading and therefore only be detected as one

mode by AOMA. This assumption is confirmed by figure 4.23 where the mode shape of mode 3 is

recognized in the horizontal component of mode 2 and the mode shape of mode 2 is recognized in

the vertical component of mode 3.

Lastly, it is important to emphasize that orange dots in figure 4.16 labeled un-matched, may not

be actual noise or clusters represented by spurious poles. They might as well be physical modes

representing other vibration modes of the bridge than the ones undertaken in this study.

4.3.2 Comparison of AOMA and FEM

Comparison of modal parameters from the Abaqus model and AOMA is presented in section 4.2.3.

Modal parameters estimated by AOMA seems to confirm the modal parameters obtained from the

Abaqus model. Relative di↵erence in between the two methods are presented in table 4.2 and the

largest relative di↵erence is 5.63%. Vertical mode shapes seems to be the mode type lying closest

to the Abaqus model, averaging at a relative di↵erence at 0.93%, with only mode 24 contributing

with a significant large deviation of 3.10%. Torsional modes is the type that deviates the most

from the Abaqus model with an average relative di↵erence of 4.51%.

60

4.3.3 Environmental e↵ects

Results from the modal analysis in context of environmental e↵ects, specifically wind and temper-

ature, is presented in section 4.2.4. Observe from figure 4.26 that several traces undergoes slightly

changes over time. These changes in modal features are expected as circumstances, namely en-

vironmental factors, are also changing. An interesting observation is that some traces seems to

respond more to certain factors than other. It was desirable to carry out a more thorough in-

vestigation of how environmental factors influence specific modes. Two relationships in particular

were interesting to explore; relationship between temperature and frequency, and the relationship

between wind and damping. For this purpose, correlation plots in figure 4.27 and 4.29 were made

for frequency vs. temperature and damping vs. wind, respectively.

Correlation between frequency and temperature is weak for lower order modes and there is an

increasing trend for correlation for higher order modes. Seven of the nine highest order modes has

a correlation coe�cient, either positive of negative, of above 0.6. The overall trend is that there

is a negative correlation for higher order modes between frequency and temperature, indicating

that the structure becomes sti↵er at lower temperatures and vibrates at higher frequencies. The

highest negative correlation coe�cient is obtained from mode 22, a torsional mode, at -0.91, which

is a strong negative correlation. There is a clear exception in mode 24 that experiences a positive

correlation of 0.72

Aerodynamic damping is a well known phenomenon for wind exposed structures [27]. Figure 4.28

indicates that damping increases when wind magnitude increases, and this is further explored in

figure 4.29. Consider well detected modes to obtain a good statistical foundation for correlation

calculations and let a well detected mode have a detection rate of 80% or higher. Thus 16 modes

becomes well detected and 75% of the well detected modes have a Pearson correlation coe�cient of

higher than 0.5. The correlation is strongest for the lower order vertical modes with a correlation

coe�cient of 0.82 for mode 4 and 5. The results provides good indications that aerodynamic

damping, or wind induced damping, is present in the H̊alogaland bridge.

4.3.4 Comparison with OMA

There is a previous study [1] that applied OMA on the vibration data from the bridge deck of

the H̊alogaland bridge. Modes in the frequency range from 0 - 1 Hz was considered and manually

picked from a stabilization diagram produced by Cov-SSI. The study found 4 horizontal modes, 13

vertical modes and 3 torsional modes, all present in the FE-model of the bridge. In comparison, the

application of AOMA in this thesis found 5 horizontal modes, 13 vertical modes, 3 torsional modes

and 3 cable modes exciting the bridge deck in horizontal direction, all modes present in the FE-

model of the bridge. In comparison with the FE-model, OMA had an average di↵erence in natural

frequency of 2.3% while AOMA in this study has an average di↵erence in natural frequency of 2.2%.

That is, AOMA finds more modes than OMA with about the same accuracy. It is important to

mention that OMA was only applied on one single 30 minute period of vibration data from the

bridge deck, assumed to have su�cient excitation of the bridge deck. The generalizability of a

single experiment will be somewhat limited, but it would be extremely time consuming to perform

manual interpretation of 1168 stabilization diagrams. These facts supports the use of AOMA over

the use of traditional OMA.

61

Chapter 5

Conclusion and Further work

This chapter presents the most important findings from the results and proposal for further work.

The main objectives of this study was to implement a framework for AOMA, verification of the

framework on a numerical example, application of AOMA on long term vibration data from the

H̊alogaland bridge, comparison of modal parameters from AOMA with results from a FE-model

and investigate the influence on modal parameters by environmental factors.

5.1 Conclusion

AOMA on the numerical example provided an overall detection rate of 96.4% and an average

di↵erence in natural frequency of 0.03% compared to results from a FE-model of the shear frame.

This was promising results for application on the vibration data on the H̊alogaland bridge.

AOMA on the vibration data from the bridge deck of the H̊alogaland bridge provided an overall

detection rate of 80.2% of the reference modes from the FE-model with a 2.2% average di↵erence

in natural frequency. The average computational time of each 30 minute time series under invest-

igation was 4.9 seconds. In the frequency range of 0-1 Hz, all vertical modes of the bridge deck

was estimated with a detection rate of 99.7% and an average di↵erence in natural frequency of

0.93% compared to the FE-model. 5 horizontal modes of the bridge deck was estimated with a

detection rate of 50.8% and an average di↵erence in natural frequency of 3.6%. All torsional modes

of the bridge deck was estimated with a detection rate 98.6% and an average di↵erence in natural

frequency of 4.5%. 3 cable modes exciting the bridge deck was estimated with a detection rate

of 26.2% and an average di↵erence in natural frequency of 3.5%. Mode shapes of all the detected

modes coincided well with mode shapes obtain from the FE-model. A possible reason for reduced

consistency in the detection of mode 3 (the second horizontal mode) specifically, may be dynamic

coupling to a vertical mode closely spaced in the frequency domain, because of self-exciting aero-

dynamic forces. A general source of uncertainty in this study is to what extent the vibration data

is stationary.

Environmental data analysis, specifically wind and temperature, showed that the dominating wind

direction in the analysis period was from the east. Investigation of the modal analysis in context

with environmental data revealed some interesting correlations. Negative correlation between

temperature and frequency turns out to be present for higher order modes, and the correlation is

63

stronger the higher the order. This finding indicates that the structure becomes sti↵er at lower

temperatures and higher order modes vibrates at higher frequencies. Wind speeds lower than 4-5

m/s reduces the excitation of the bridge, causing AOMA to generate more false estimations in

the low frequency range, which makes detection of the first natural mode of vibration, specifically,

more di�cult. The results also shows positive correlation between wind speed and damping in the

structure, in agreement with bu↵eting theory.

Thus, a final conclusion is that AOMA is able to provide repeatedly good accuracy estimations

of modal parameters from the bridge deck of the H̊alogaland bridge. Dynamic coupling between

closely spaced modes in the frequency domain may cause di�culties to distinguish between still-

air-modes in an AOMA context. AOMA is able to identify more modes than traditional OMA

on the same structure, supporting the use of AOMA over OMA. The results proves good for

future evolution of structural health monitoring, damage detection and digital twins of critical

infrastructure.

5.2 Further work

The following topics are recommended for further work:

• A thorough investigation of the bad detection rate of mode 3 should be carried out. The

research should consider multimode bu↵eting theory and other relevant theory in order to

determine if the potential dynamic coupling and response is expected behaviour.

• The potential false detections in the vicinity of mode 1, visualized as orange scattered dots

in figure 4.16 should be reviewed more closely. It should be investigated if the findings can

confirm lower credibility of AOMA at lower wind speeds.

• Furthermore, to carry out an even more comprehensive modal analysis of the H̊alogaland

bridge, sensors from cable hangers and towers should be included in addition to the corres-

ponding nodes from the FE-model to obtain references.

• The e↵ect of stationarity as source of uncertainty in the vibration data should be investigated

thoroughly.

• Data from even longer periods, in terms of a year, should be analysed to provide better

knowledge of how environmental factors influence the dynamics of the structure.

• The framework for AOMA should be tested on di↵erent structures.

64

References

[1] A. A. Solstad and E. L. Onstad, Comparison of Measured and Predicted Bu↵eting Response

of the H̊alogaland Bridge Using a Probabilistic Description of the Wind Field, 2022. [Online].

Available: https://hdl.handle.net/11250/3020477.

[2] G. T. Frøseth and O. Guddal, ‘Gunnstein/strid: strid - v0.4.3’, May 2022. doi: 10.5281/

ZENODO.6540518. [Online]. Available: https://zenodo.org/record/6540518.

[3] K. A. Kv̊ale, ‘knutankv/koma: Minor fixes’, Jan. 2022. doi: 10.5281/ZENODO.5881841.

[Online]. Available: https://zenodo.org/record/5881841.

[4] Python 3.10.8 Documentation. [Online]. Available: https://docs.python.org/release/3.10.8/.

[5] D. E. Newland, Random Vibrations, Spectral & Wavelet Analysis, Third Edition. 2005.

[6] C. Rainieri and G. Fabbrocino, Operational Modal Analysis of Civil Engineering Structures.

New York, NY: Springer New York, 2014, isbn: 978-1-4939-0766-3. doi: 10.1007/978-1-4939-

0767-0.

[7] C. C. Tseng and S. L. Lee, ‘Closed-form designs of digital fractional order Butterworth filters

using discrete transforms’, Signal Processing, vol. 137, pp. 80–97, Aug. 2017, issn: 0165-1684.

doi: 10.1016/J.SIGPRO.2017.01.015.

[8] A. K. Chopra, Dynamics of Structures, Fourth Edition. 2012.

[9] L. Hermans and H. d. Van Auweraer, ‘MODAL TESTING AND ANALYSIS OF STRUC-

TURES UNDER OPERATIONAL CONDITIONS: INDUSTRIAL APPLICATIONS’,Mech-

anical Systems and Signal Processing, vol. 13, no. 2, pp. 193–216, Mar. 1999, issn: 0888-3270.

doi: 10.1006/MSSP.1998.1211.

[10] R. Brincker and P. Andersen, ‘Understanding Stochastic Subspace Identification’, vol. 18,

2006, p. 2023.

[11] B. Peeters and G. De Roeck, ‘REFERENCE-BASED STOCHASTIC SUBSPACE IDENTI-

FICATION FOR OUTPUT-ONLY MODAL ANALYSIS’, Mechanical Systems and Signal

Processing, vol. 13, no. 6, pp. 855–878, Nov. 1999, issn: 0888-3270. doi: 10.1006/MSSP.1999.

1249.

[12] P.-N. Tan, M. Steinbach, A. Karpatne and V. Kumar, Introduction to Data Mining, Second

Edition. 2020.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms. MIT

press, 2022.

[14] R. J. Campello, D. Moulavi, A. Zimek and J. Sander, ‘Hierarchical density estimates for data

clustering, visualization, and outlier detection’, ACM Transactions on Knowledge Discovery

from Data, vol. 10, no. 1, Jul. 2015, issn: 1556472X. doi: 10.1145/2733381.

65

https://hdl.handle.net/11250/3020477
https://doi.org/10.5281/ZENODO.6540518
https://doi.org/10.5281/ZENODO.6540518
https://zenodo.org/record/6540518
https://doi.org/10.5281/ZENODO.5881841
https://zenodo.org/record/5881841
https://docs.python.org/release/3.10.8/
https://doi.org/10.1007/978-1-4939-0767-0
https://doi.org/10.1007/978-1-4939-0767-0
https://doi.org/10.1016/J.SIGPRO.2017.01.015
https://doi.org/10.1006/MSSP.1998.1211
https://doi.org/10.1006/MSSP.1999.1249
https://doi.org/10.1006/MSSP.1999.1249
https://doi.org/10.1145/2733381

[15] How HDBSCAN Works. [Online]. Available: https : / /hdbscan . readthedocs . io / en/ latest /

how hdbscan works.html.

[16] P. Van Overschee and B. De Moor, Subspace Identification for Linear Systems. Boston, MA:

Springer US, 1996, isbn: 978-1-4613-8061-0. doi: 10.1007/978-1-4613-0465-4.

[17] X.-M. Yang, T.-H. Yi, C.-X. Qu, H.-N. Li and H. Liu, ‘Automated Eigensystem Realization

Algorithm for Operational Modal Identification of Bridge Structures’, Journal of Aerospace

Engineering, vol. 32, no. 2, Mar. 2019, issn: 0893-1321. doi: 10 . 1061/ (ASCE)AS .1943 -

5525.0000984.

[18] K. A. Kv̊ale, O. Øiseth and A. Rønnquist, ‘Operational modal analysis of an end-supported

pontoon bridge’, Engineering Structures, vol. 148, pp. 410–423, Oct. 2017, issn: 18737323.

doi: 10.1016/j.engstruct.2017.06.069.

[19] K. A. Kv̊ale and O. Øiseth, ‘Automated operational modal analysis of an end-supported

pontoon bridge using covariance-driven stochastic subspace identification and a density-based

hierarchical clustering algorithm’, 2020.

[20] The hdbscan Clustering Library — hdbscan 0.8.1 documentation. [Online]. Available: https:

//hdbscan.readthedocs.io/en/latest/index.html#.

[21] E6 H̊alogalandsbrua — Statens vegvesen. [Online]. Available: https : //www.vegvesen .no/

vegprosjekter/europaveg/e6halogalandsbrua/.

[22] Ø. W. Petersen, G. T. Frøseth and O. Øiseth, ‘Design and deployment of a monitoring system

on a long-span suspension bridge’, 2021.

[23] Abaqus - SIMULIA User Assistance 2022. [Online]. Available: https://help.3ds.com/2022/

English/DSSIMULIA Established/SIMULIA Established FrontmatterMap/sim-r-DSDocAbaqus.

htm?contextscope=all&id=ec01bc8c83d743a6a30123c5a034edca&fbclid=IwAR3b sxY8FiSW-

2E oGMyZCPnPYOxtVBjnOv-DEgKqjci3kQQCdM39O4 M4.

[24] The HDF5® Library & File Format - The HDF Group. [Online]. Available: https://www.

hdfgroup.org/solutions/hdf5/.

[25] HDF5 for Python — h5py 3.8.0 documentation. [Online]. Available: https://docs.h5py.org/

en/stable/index.html.

[26] O. Guddal, Comparison of methods for automatic modal analysis, 2022. [Online]. Available:

https://hdl.handle.net/11250/3026223.

[27] Y. Tamura and A. Kareem, Eds., Advanced Structural Wind Engineering. Tokyo: Springer

Japan, 2013, isbn: 978-4-431-54336-7. doi: 10.1007/978-4-431-54337-4.

[28] GitHub - emilnebb/AOMA Halogaland. [Online]. Available: https://github.com/emilnebb/

AOMA Halogaland.

All web pages accessed at 7th of June, 2023.

66

https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://doi.org/10.1007/978-1-4613-0465-4
https://doi.org/10.1061/(ASCE)AS.1943-5525.0000984
https://doi.org/10.1061/(ASCE)AS.1943-5525.0000984
https://doi.org/10.1016/j.engstruct.2017.06.069
https://hdbscan.readthedocs.io/en/latest/index.html#
https://hdbscan.readthedocs.io/en/latest/index.html#
https://www.vegvesen.no/vegprosjekter/europaveg/e6halogalandsbrua/
https://www.vegvesen.no/vegprosjekter/europaveg/e6halogalandsbrua/
https://help.3ds.com/2022/English/DSSIMULIA_Established/SIMULIA_Established_FrontmatterMap/sim-r-DSDocAbaqus.htm?contextscope=all&id=ec01bc8c83d743a6a30123c5a034edca&fbclid=IwAR3b_sxY8FiSW-2E_oGMyZCPnPYOxtVBjnOv-DEgKqjci3kQQCdM39O4_M4
https://help.3ds.com/2022/English/DSSIMULIA_Established/SIMULIA_Established_FrontmatterMap/sim-r-DSDocAbaqus.htm?contextscope=all&id=ec01bc8c83d743a6a30123c5a034edca&fbclid=IwAR3b_sxY8FiSW-2E_oGMyZCPnPYOxtVBjnOv-DEgKqjci3kQQCdM39O4_M4
https://help.3ds.com/2022/English/DSSIMULIA_Established/SIMULIA_Established_FrontmatterMap/sim-r-DSDocAbaqus.htm?contextscope=all&id=ec01bc8c83d743a6a30123c5a034edca&fbclid=IwAR3b_sxY8FiSW-2E_oGMyZCPnPYOxtVBjnOv-DEgKqjci3kQQCdM39O4_M4
https://help.3ds.com/2022/English/DSSIMULIA_Established/SIMULIA_Established_FrontmatterMap/sim-r-DSDocAbaqus.htm?contextscope=all&id=ec01bc8c83d743a6a30123c5a034edca&fbclid=IwAR3b_sxY8FiSW-2E_oGMyZCPnPYOxtVBjnOv-DEgKqjci3kQQCdM39O4_M4
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://docs.h5py.org/en/stable/index.html
https://docs.h5py.org/en/stable/index.html
https://hdl.handle.net/11250/3026223
https://doi.org/10.1007/978-4-431-54337-4
https://github.com/emilnebb/AOMA_Halogaland
https://github.com/emilnebb/AOMA_Halogaland

Appendix

The most important python code is included in this appendix. For complete source code, see the

GitHub repository of the author[28].

generate vibration data.py

import numpy as np

import strid

def generate_data(num_stories: int, path: str):

"""

Generate simulated data for a shear frame system and save it to a file.

Args:

num_stories (int): The number of stories in the shear frame system.

path (str): The path where the generated data will be saved.

Returns:

None

"""

Create a shear frame

sf = strid.utils.ShearFrame(num_stories, 1e3, 1e4)

sf.set_rayleigh_damping_matrix([sf.get_natural_frequency(1), sf.get_natural_frequency(sf.n)], [.05] * 2)

Determine the time discretization and period

Tmax = 1. / strid.w2f(sf.get_natural_frequency(1))

fmax = strid.w2f(sf.get_natural_frequency(sf.n))

T = 100 * Tmax

fs = 5 * fmax

t = np.arange(0., T, 1 / fs)

Define loads on system

Unmeasureable: Stochastic loads on all floors (Process noise)

w = np.random.normal(size=(sf.n, t.size)) * 1e-1

Load matrix, f

F = w.copy()

Simulate response, accelerations at each floor measured

y0, _, _ = sf.simulate(t, F)

noise_std = y0.std()

Add measurement noise

v = np.random.normal(size=y0.shape) * noise_std

y = y0 + v

true_frequencies = np.array([sf.get_natural_frequency(i) / (2 * np.pi) for i in range(1, sf.n + 1)])

true_damping = np.array([sf.get_rayleigh_damping_ratio(i) for i in range(1, sf.n + 1)])

67

true_modeshapes = np.array([sf.get_mode_shape(i) for i in range(1, sf.n + 1)])

Saving the data

np.savez(path,

y=y, fs=fs,

true_frequencies=true_frequencies,

true_damping=true_damping,

true_modeshapes=true_modeshapes

)

68

numerical example.py

import koma.oma

import numpy as np

import matplotlib.pyplot as plt

import koma.clustering

import geneate_vibration_data

import strid

import copy

Main script for numerical example

path = "/../../data/vibration_data/data_stochastic_3_floor_"

number_of_realizations = 100

Data generation

for i in range(number_of_realizations):

geneate_vibration_data.generate_data(9, path + str(i) + ".npz")

Define SSI parameters

i = 50

s = 1

orders = np.arange(1, 50, 1)

stabcrit = {'freq': 0.2, 'damping': 0.2, 'mac': 0.5 }

Cov-SSI call and pole clustering

freq_modes = []

for j in range(number_of_realizations):

data = np.load(path + str(j) + ".npz")

y = data["y"]

fs = data["fs"]

true_f = data["true_frequencies"].transpose()

true_xi = data["true_damping"].transpose()

true_modeshapes = data["true_modeshapes"].transpose()

Cov-SSI

ssid = strid.CovarianceDrivenStochasticSID(y, fs) #, ix_references)

modes = {}

for order in orders:

A, C, G, R0 = ssid.perform(order, i)

modes[order] = strid.Mode.find_modes_from_ss(A, C, ssid.fs)

Sorting routine

lambdas = []

phis = []

for order in modes.keys():

modes_in_order = modes[order]

lambdas_in_order = []

phis_in_order = []

for mode in modes_in_order:

lambdas_in_order.append(mode.eigenvalue)

phis_in_order.append(mode.eigenvector)

lambdas.append(np.array(lambdas_in_order))

phis.append(np.array(phis_in_order).transpose())

lambd_stab, phi_stab, orders_stab, ix_stab = koma.oma.find_stable_poles(lambdas, phis, orders, s,

stabcrit=stabcrit, valid_range={'freq': [0, np.inf], 'damping':[0, 0.2]},

indicator='freq', return_both_conjugates=False)

#Pole clustering

pole_clusterer = koma.clustering.PoleClusterer(lambd_stab, phi_stab, orders_stab, min_cluster_size=25,

min_samples=10, scaling={'mac':1.0, 'lambda_real':1.0, 'lambda_imag': 1.0})

prob_threshold = 0.99 #probability of pole to belong to cluster,

69

based on estimated "probability" density function

args = pole_clusterer.postprocess(prob_threshold=prob_threshold, normalize_and_maxreal=True)

xi_auto, omega_n_auto, phi_auto, order_auto, probs_auto, ixs_auto = koma.clustering.group_clusters(*args)

xi_mean = np.array([np.mean(xi_i) for xi_i in xi_auto])

fn_mean = np.array([np.mean(om_i) for om_i in omega_n_auto])/2/np.pi

xi_std = np.array([np.std(xi_i) for xi_i in xi_auto])

fn_std = np.array([np.std(om_i) for om_i in omega_n_auto])/2/np.pi

freq_modes.append([freq for freq in fn_mean])

new_freqs = np.empty(shape=[number_of_realizations, len(true_f)], dtype=object)

def remove_and_return_min_distance(lst, reference):

"""

Removes and returns the element in the list `lst` that has the minimum absolute difference with `reference`.

Args:

lst (list): A list of elements.

reference (float): The reference value to compare against.

Returns:

The element with the minimum absolute difference with `reference`, if it exists and the absolute difference

is less than 0.03.,!

None, if no such element exists or the absolute difference is greater than or equal to 0.03.

"""

min_element = min(lst, key=lambda x: abs(x - reference), default="EMPTY")

if min_element in lst and abs(min_element-reference)<0.03:

lst.remove(min_element)

return min_element

else:

return None

new_freqs = np.array(np.empty(shape=[number_of_realizations, len(true_f)], dtype=object), dtype=np.float)

candidates = copy.deepcopy(freq_modes)

for i in range(number_of_realizations):

for j in range(len(true_f)):

candidate = remove_and_return_min_distance(candidates[i], true_f[j])

new_freqs[i, j] = candidate

freqs = []

num = []

for i in range(number_of_realizations):

freqs.extend(freq_modes[i])

num.extend(np.ones_like(freq_modes[i])*i)

#Plot

colors =['tab:blue', 'tab:orange', 'tab:green', 'red', 'cyan', 'purple', 'magenta', 'yellow', 'brown']

plt.figure(figsize=(9, 5), dpi=300)

plt.axhline(y = true_f[0], color = 'r', linestyle = '--', label="FEM modes")

plt.scatter(np.array(num), np.array(freqs), marker='.', color='grey')

for i in range(len(true_f)):

if (i<len(true_f)):

plt.axhline(y = true_f[i], color = 'r', linestyle = '--')

plt.plot(np.arange(0, number_of_realizations), new_freqs[:,i], color=colors[i], linestyle="-", marker=".",

label="Est. mode " + str(i+1))

plt.grid()

plt.legend(bbox_to_anchor = (1,1))

plt.xlabel("Realization #")

70

plt.ylabel("f_n [Hz]")

#plt.ylim([0,1.05])

plt.xlim([0,100])

plt.savefig("num_example.jpg", bbox_inches='tight')

plt.show()

print(np.count_nonzero(~np.isnan(new_freqs), axis=0))

print(np.count_nonzero(~np.isnan(new_freqs)))

print(len(freqs))

f_mean = np.nanmean(new_freqs, axis=0)

print(f_mean)

print((true_f))

print(100*np.abs(true_f-f_mean)/true_f)

71

processer.py

import numpy as np

from scipy import signal

def low_pass(old_signal: np.ndarray, sampling_frequency, cutoff_frequency, filter_order) -> np.ndarray:

"""

Apply a low-pass Butterworth filter to the input signal.

Args:

old_signal (np.ndarray): The input signal to be filtered.

sampling_frequency (float): The sampling frequency of the input signal.

cutoff_frequency (float): The cutoff frequency of the low-pass filter.

filter_order (int): The order of the Butterworth filter.

Returns:

np.ndarray: The filtered signal after applying the low-pass filter.

"""

sos = signal.butter(filter_order, cutoff_frequency, btype='lowpass',

fs=sampling_frequency, output='sos')

filtered_signal = signal.sosfilt(sos, old_signal)

return filtered_signal

def downsample(sampling_frequency_old, old_signal: np.ndarray, sampling_frequency_new) -> np.ndarray:

"""

Downsample the input signal by a given factor.

Args:

sampling_frequency_old (float): The original sampling frequency of the input signal.

old_signal (np.ndarray): The input signal to be downsampled.

sampling_frequency_new (float): The desired sampling frequency of the downsampled signal.

Returns:

np.ndarray: The downsampled signal.

"""

factor = int(sampling_frequency_old / sampling_frequency_new)

down_sampled_signal = old_signal[::factor]

return down_sampled_signal

72

dataloader.py

import matplotlib.pyplot as plt

import numpy as np

import h5py

from src.AOMA.processer import low_pass, downsample

class HDF5_dataloader:

"""

A dataloader specified for the data logged at Hålogaland bridge, loaded from HDF5 file format.

"""

def __init__(self, path: str, bridgedeck_only: bool):

"""

Initializes an instance of the class.

Args:

path (str): The path to the HDF5 file.

bridgedeck_only (bool): Specifies whether to consider only bridge deck sensors.

Attributes:

path (str): The path to the HDF5 file.

data_types (list): The list of data types available in the HDF5 file.

hdf5_file (h5py.File): The HDF5 file object.

periods (list): The list of periods in the HDF5 file.

acceleration_sensors (list): The list of acceleration sensors.

wind_sensors (list): The list of wind sensors.

temp_sensors (list): The list of temperature sensors.

"""

self.path = path

self.data_types = None

self.hdf5_file = None

self.hdf5_file = h5py.File(self.path, 'r')

self.periods = list(self.hdf5_file.keys())

self.data_types = list(self.hdf5_file[self.periods[0]].keys())

if bridgedeck_only:

self.acceleration_sensors = ['A03-1', 'A03-2', 'A04-1', 'A04-2', 'A05-1', 'A05-2', 'A06-1', 'A06-2',

'A07-1', 'A07-2', 'A08-1', 'A08-2', 'A09-1',

'A09-2', 'A10-1', 'A10-2'] # bridge deck only

else:

self.acceleration_sensors = ['A03-1', 'A03-2', 'A04-1', 'A04-2', 'A05-1', 'A05-2', 'A06-1',

'A06-2', 'A07-1', 'A07-2', 'A08-1', 'A08-2', 'A09-1', 'A09-2',

'A10-1', 'A10-2', 'A06-3', 'A06-4', 'A08-3', 'A08-4'] # hangers added

self.wind_sensors = ['W03-7-1', 'W04-15-1', 'W05-17-1', 'W05-18-1', 'W05-19-1', 'W05-19-2', 'W07-28-1',

'W10-45-1', 'W10-47-1', 'W10-49-1']

self.temp_sensors = ['T01-1', 'T01-2', 'T02-1', 'T02-2', 'T03-1', 'T03-2', 'T04-1', 'T04-2', 'T05-1',

'T05-2', 'T06-1', 'T06-2', 'T07-1', 'T07-2', 'T08-1', 'T08-2', 'T09-1', 'T09-2',

'T10-1', 'T10-2', 'T11-1', 'T11-2']

def load_acceleration(self, period: str, sensor: str, axis: str, preprosess=False, cutoff_frequency=None,

filter_order=None):

"""

Loads acceleration data from the HDF5 file.

Args:

period (str): The period of data to load.

sensor (str): The sensor from which to load the data.

axis (str): The axis of acceleration data to load.

preprosess (bool, optional): Flag to enable data preprocessing. Defaults to False.

cutoff_frequency (float, optional): The cutoff frequency for low-pass filtering. Defaults to None.

filter_order (int, optional): The order of the filter for low-pass filtering. Defaults to None.

Returns:

np.ndarray: The loaded acceleration data.

73

"""

acc_data = self.hdf5_file[period][self.data_types[0]][sensor][axis]

if preprosess:

sampling_rate = self.hdf5_file[period][self.data_types[0]][sensor].attrs['samplerate']

filtered_acc = low_pass(acc_data - np.mean(acc_data), sampling_rate, cutoff_frequency, filter_order)

acc_data = downsample(sampling_rate, filtered_acc, cutoff_frequency * 2)

return acc_data

def load_all_acceleration_data(self, period: str, preprosess=False, cutoff_frequency=None, filter_order=None):

"""

Loads all acceleration data for a given period.

Args:

period (str): The period of data to load.

preprosess (bool, optional): Flag to enable data preprocessing. Defaults to False.

cutoff_frequency (float, optional): The cutoff frequency for low-pass filtering. Defaults to None.

filter_order (int, optional): The order of the filter for low-pass filtering. Defaults to None.

Returns:

Union[np.ndarray, bool]: The loaded acceleration data as a matrix,

or False if all channels are not included.

"""

Check if all channels are included

if not set(self.acceleration_sensors).issubset(list(self.hdf5_file[period][self.data_types[0]].keys())):

return False

acc_example = self.load_acceleration(self.periods[12], self.acceleration_sensors[0], 'x', preprosess,

cutoff_frequency, filter_order)

acc_x = np.zeros((len(acc_example), len(self.acceleration_sensors)))

acc_y = np.zeros((len(acc_example), len(self.acceleration_sensors)))

acc_z = np.zeros((len(acc_example), len(self.acceleration_sensors)))

counter = 0

for sensor in self.acceleration_sensors:

acc_x[:, counter] = self.load_acceleration(period, sensor, 'x', preprosess, cutoff_frequency,

filter_order),!

acc_y[:, counter] = self.load_acceleration(period, sensor, 'y', preprosess, cutoff_frequency,

filter_order),!

acc_z[:, counter] = self.load_acceleration(period, sensor, 'z', preprosess, cutoff_frequency,

filter_order),!

counter += 1

acc_matrix = np.concatenate((acc_x, acc_y, acc_z), axis=1)

return acc_matrix

def load_wind(self, period: str, sensor: str):

"""

Loads wind measurements for a given period and sensor.

Args:

period (str): The period of data to load.

sensor (str): The sensor from which to load the data.

Returns:

Tuple[np.ndarray, np.ndarray]: Tuple containing wind magnitude and wind direction arrays.

"""

Wind measurements has a 32 Hz sampling rate

wind_magnitude = np.array(self.hdf5_file[period]['wind'][sensor]['magnitude'])

wind_direction = np.array(self.hdf5_file[period]['wind'][sensor]['direction'])

return wind_magnitude, wind_direction

74

def load_wind_stat_data(self, period: str, timeseries_length: int, timeseries_num: int):

"""

Loads wind statistical data for a given period and time series.

Args:

period (str): The period of data to load.

timeseries_length (int): The length of each time series in minutes.

timeseries_num (int): The index of the time series.

Returns:

Union[Tuple[float, float, float], bool]: Tuple containing mean wind speed, max wind speed,

and mean wind direction, or False if all channels are not included.

"""

Check if all channels are included

if not set(self.wind_sensors).issubset(list(self.hdf5_file[period]['wind'].keys())):

return False

wind_magnitude, wind_direction = self.load_wind(period, 'W07-28-1')

fs = self.hdf5_file[period]['wind']['W07-28-1'].attrs['samplerate']

time_series_wind_magnitude = wind_magnitude[timeseries_num * timeseries_length * fs *

60:(timeseries_num + 1) * timeseries_length * fs * 60]

time_series_wind_direction = wind_direction[timeseries_num * timeseries_length * fs *

60:(timeseries_num + 1) * timeseries_length * fs * 60]

mean_wind_speed = np.mean(time_series_wind_magnitude)

max_wind_speed = np.max(time_series_wind_magnitude)

mean_wind_direction = np.mean(time_series_wind_direction)

return mean_wind_speed, max_wind_speed, mean_wind_direction

def load_temp(self, period: str, sensor: str):

"""

Loads temperature measurements for a given period and sensor.

Args:

period (str): The period of data to load.

sensor (str): The sensor from which to load the data.

Returns:

np.ndarray: Array containing temperature data.

"""

Temperature measurements has a 0.25 Hz sampling rate

temp_data = np.array(self.hdf5_file[period]['temperature'][sensor]['x'])

return temp_data

def load_temp_stat_data(self, period: str, timeseries_length: int, timeseries_num: int):

"""

Loads temperature statistical data for a given period and time series.

Args:

period (str): The period of data to load.

timeseries_length (int): The length of each time series in minutes.

timeseries_num (int): The index of the time series.

Returns:

Union[float, bool]: The mean temperature for the specified time series,

or False if all channels are not included.

"""

Check if all channels are included

if not set(self.temp_sensors).issubset(list(self.hdf5_file[period]['temperature'].keys())):

return False

75

Pick one temp sensor to collect data from

all_temp_data = self.load_temp(period, 'T07-1')

fs = self.hdf5_file[period]['temperature']['T07-1'].attrs['samplerate']

time_series_temp_data = all_temp_data[timeseries_num * timeseries_length *

int(fs * 60):(timeseries_num + 1) * timeseries_length * int(fs * 60)]

mean_temp = np.mean(time_series_temp_data)

return mean_temp

class Mode:

"""

Mode class

"""

def __init__(self, frequency, mode_shape, damping=None, mode_type=None):

"""

Initialize a class instance representing a mode.

Args:

frequency (float): The frequency of the mode.

mode_shape (ndarray): The mode shape associated with the mode.

damping (float, optional): The damping ratio of the mode. Defaults to None.

mode_type (str, optional): The type of mode. Defaults to None.

Attributes:

frequency (float): The frequency of the mode.

damping (float or None): The damping ratio of the mode.

mode_shape (ndarray): The mode shape associated with the mode.

mode_type (str or None): The type of mode.

delta_f (None): Placeholder for a calculated value, set to None by default.

mac_1 (None): Placeholder for a calculated value, set to None by default.

"""

self.frequency = frequency

self.damping = damping

self.mode_shape = mode_shape

self.mode_type = mode_type

self.delta_f = None

self.mac_1 = None

class HDF5_result_loader:

"""

A dataloader specified to load logs from AOMA analysis stored in a h5 format.

"""

def __init__(self, path: str):

"""

Initializes an instance of the class.

Args:

path (str): The path to the HDF5 file.

Attributes:

path (str): The path to the HDF5 file.

hdf5_file (h5py.File): The HDF5 file object.

periods (list): The list of periods in the HDF5 file.

features (list): The list of features available in the HDF5 file.

"""

self.path = path

self.hdf5_file = h5py.File(self.path, 'r')

self.periods = list(self.hdf5_file.keys())

self.features = ['Damping', 'Frequencies', 'Modeshape']

def get_modes_in_period(self, period):

"""

Retrieves the modes present in a specific period.

76

Args:

period (str): The period from which to retrieve the modes.

Returns:

List[Mode]: A list of Mode objects representing the modes in the specified period.

"""

freqs = np.array(self.hdf5_file[period]['Frequencies'])

dampings = np.array(self.hdf5_file[period]['Damping'])

mode_shapes = np.array(self.hdf5_file[period]['Modeshape'])

modes_in_period = []

for i in range(len(freqs)):

mode = Mode(freqs[i], mode_shapes[i], dampings[i])

modes_in_period.append(mode)

return modes_in_period

def get_modes_all_periods(self):

"""

Retrieves the modes for all periods.

Returns:

List[List[Mode]]: A nested list of Mode objects representing the modes in each period.

"""

all_modes = []

for period in self.periods:

all_modes.append(self.get_modes_in_period(period))

return all_modes

def get_statistics(self):

"""

Retrieves statistics for each period.

Returns:

Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]:

A tuple containing arrays of temperatures, mean wind speeds, max wind speeds,

mean wind directions, and execution times for each period.

"""

temps = []

mean_wind_speed = []

max_wind_speed = []

mean_wind_direction = []

execution_time = []

for period in self.periods:

temps.append(self.hdf5_file[period].attrs['Mean temp'])

mean_wind_speed.append(self.hdf5_file[period].attrs['Mean wind speed'])

max_wind_speed.append(self.hdf5_file[period].attrs['Max wind speed'])

mean_wind_direction.append(self.hdf5_file[period].attrs['Mean wind direction'])

execution_time.append(self.hdf5_file[period].attrs['Execution time'])

temps = np.array(temps)

mean_wind_speed = np.array(mean_wind_speed)

max_wind_speed = np.array(max_wind_speed)

mean_wind_direction = np.array(mean_wind_direction)

execution_time = np.array(execution_time)

return temps, mean_wind_speed, max_wind_speed, mean_wind_direction, execution_time

def get_detection_statistics(self):

"""

Retrieves detection statistics for the estimated modes in each period.

77

Returns:

Tuple[Dict[str, float], matplotlib.figure.Figure]: A tuple containing a dictionary with average,

standard deviation, maximum, and minimum values of the number of estimated modes,

and the matplotlib Figure object of the histogram.

"""

modes_in_period = []

for period in self.periods:

modes_in_period.append(len(self.get_modes_in_period(period)))

modes_in_period = np.array(modes_in_period)

avg = np.mean(modes_in_period)

max = np.max(modes_in_period)

min = np.min(modes_in_period)

std = np.std(modes_in_period)

fig, ax = plt.subplots(figsize=(6, 4), dpi=300)

ax.hist(modes_in_period, max - min)

ax.set_xticks(np.arange(min, max + 1, step=2))

ax.set_xlabel('Number of estimated modes in time series')

ax.set_ylabel('Number of time series')

plt.grid()

ax.xaxis.set_major_locator(plt.MultipleLocator(2))

ax.xaxis.set_minor_locator(plt.MultipleLocator(1))

return {'avg': avg, 'std': std, 'max': max, 'min': min}, fig

class FEM_result_loader:

"""

A dataloader specified to load modal parameters obtained from a FE-model created in Abaqus and

exported to a h5 file format.

"""

def __init__(self, path: str):

"""

Initializes an instance of the class.

Args:

path (str): The path to the HDF5 file.

Attributes:

path (str): The path to the HDF5 file.

hf (h5py.File): The HDF5 file object.

deck_modes_idx (np.array): The indices of the manually picked bridge deck modes from the Abaqus

model.,!

mode_type (list): The type of each mode.

sensor_labels (list): The labels of the sensors.

phi_label_temp (np.array): Temporary array of phi labels.

phi_label (list): The phi labels.

sensor_indexes (list): Indexes of the sensor labels in phi_label.

f (np.array): Frequencies of the deck modes.

phi (np.array): Mode shapes of the deck modes.

nodecoord (np.array): Node coordinates.

node_deck (np.array): Array of node indexes in the bridge deck.

index_node_deck (list): List index of nodes in the bridge deck.

nodecoord_deck (np.array): Node coordinates of the bridge deck.

index_y (list): List of indexes of y-DOFs in the bridge deck.

index_z (list): List of indexes of z-DOFs in the bridge deck.

index_t (list): List of indexes of t-DOFs in the bridge deck.

phi_y (np.array): Mode shapes corresponding to y-DOFs.

phi_z (np.array): Mode shapes corresponding to z-DOFs.

phi_t (np.array): Mode shapes corresponding to t-DOFs.

x_plot (np.array): x-coordinates of deck nodes.

"""

self.path = path

78

self.hf = h5py.File(self.path, 'r')

manually picked bridge deck modes from Abaqus model

self.deck_modes_idx = np.array([1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16, 19, 23, 25, 32, 33,

34, 40, 45, 48, 50, 58]) - 1

self.mode_type = ['Horizontal', 'Vertical', 'Horizontal', 'Vertical', 'Vertical',

'Vertical', 'Horizontal', 'Cable', 'Vertical', 'Vertical', 'Horizontal',

'Vertical', 'Torsional', 'Cable', 'Cable', 'Vertical', 'Torsional', 'Horizontal',

'Vertical', 'Vertical', 'Vertical', 'Torsional', 'Vertical', 'Vertical']

self.sensor_labels = ['3080_U1', '2080_U1', '3140_U1', '2140_U1', '3200_U1',

'2200_U1', '3240_U1', '2240_U1', '3290_U1', '2290_U1',

'3340_U1', '2340_U1', '3420_U1', '2420_U1', '3500_U1',

'2500_U1',

'3080_U2', '2080_U2', '3140_U2', '2140_U2', '3200_U2',

'2200_U2', '3240_U2', '2240_U2', '3290_U2', '2290_U2',

'3340_U2', '2340_U2', '3420_U2', '2420_U2', '3500_U2',

'2500_U2',

'3080_U3', '2080_U3', '3140_U3', '2140_U3', '3200_U3',

'2200_U3', '3240_U3', '2240_U3', '3290_U3', '2290_U3',

'3340_U3', '2340_U3', '3420_U3', '2420_U3', '3500_U3',

'2500_U3']

phi_label_temp = np.array(self.hf.get('phi_label'))

phi_label = phi_label_temp[:].astype('U10').ravel().tolist()

sensor_indexes = []

for label in self.sensor_labels:

if label in phi_label:

sensor_indexes.append(phi_label.index(label))

self.f = np.array(self.hf.get('f'))[self.deck_modes_idx]

phi = np.array(self.hf.get('phi'))[:, self.deck_modes_idx]

self.phi = phi[sensor_indexes, :]

nodecoord = np.array(self.hf.get('nodecoord'))

node_deck = np.arange(1004, 1576 + 1, 1)

Create list index of nodes in bridge deck

index_node_deck = []

for k in np.arange(len(node_deck)):

index_node_deck.append(np.argwhere(node_deck[k] == nodecoord[:, 0])[0, 0])

nodecoord_deck = nodecoord[index_node_deck, :]

Create list of index of y-DOFs,z-DOFs, and t-DOFs in bridge deck

index_y = []

index_z = []

index_t = []

for k in np.arange(len(node_deck)):

str_y = str(node_deck[k]) + '_U2'

index_y.append(phi_label.index(str_y))

str_z = str(node_deck[k]) + '_U3'

index_z.append(phi_label.index(str_z))

str_t = str(node_deck[k]) + '_UR1'

index_t.append(phi_label.index(str_t))

self.phi_y = phi[index_y, :]

self.phi_z = phi[index_z, :]

self.phi_t = phi[index_t, :]

self.x_plot = nodecoord_deck[:, 1] # x-coordinate of deck nodes

def get_all_modes(self):

"""

Retrieves all modes from the HDF5 file.

79

Returns:

list: A list of Mode objects representing the modes.

"""

modes = []

for i in range(len(self.f)):

mode = Mode(self.f[i], self.phi[:, i], mode_type=self.mode_type[i])

modes.append(mode)

return modes

80

AOMA.py

import numpy as np

import h5py

import src.AOMA.dataloader as dl

from src.AOMA.plot import stabilization_diagram

import os

import koma.oma

import koma.clustering

import strid

from time import time

from datetime import datetime, timedelta

import warnings

This is the main script for running AOMA on vibration data from the Hålogaland bridge

np.warnings.filterwarnings('ignore', category=np.VisibleDeprecationWarning)

warnings.filterwarnings('ignore', category=RuntimeWarning)

analysis_length = 30 # minutes

cutoff_frequency = 1 # Hz

bridgedeck_only = True

loader = dl.HDF5_dataloader(os.getcwd()+'/../../../../../../../Volumes/LaCie/Halogaland_sixth_try.hdf5',

bridgedeck_only=bridgedeck_only)

output_path = os.getcwd() + '/../../output/logs/output_AOMA_normal.h5'

Hyperparameters

i = 50 # number of block rows

s = 1

fs = 2

orders = np.arange(2, 200+2, 2) # orders to perform system

stabcrit = {'freq': 0.2, 'damping': 0.2, 'mac': 0.5} # Default

prob_threshold = 0.99

min_cluster_size = 50

min_samples = 20

scaling={'mac':1.0, 'lambda_real':1.0, 'lambda_imag': 1.0}

Write hyperparameters as attributes to output file

with h5py.File(output_path, 'a') as hdf:

hdf.attrs['i'] = i

hdf.attrs['s'] = s

hdf.attrs['order'] = np.max(orders)

hdf.attrs['stabcrit_freq'] = stabcrit['freq']

hdf.attrs['stabcrit_damping'] = stabcrit['damping']

hdf.attrs['stabcrit_mac'] = stabcrit['mac']

hdf.attrs['prob_threshold'] = prob_threshold

hdf.attrs['min_cluster_size'] = min_cluster_size

hdf.attrs['min_samples'] = min_samples

hdf.attrs['scaling_mac'] = scaling['mac']

hdf.attrs['scaling_lambda_real'] = scaling['lambda_real']

hdf.attrs['scaling_lambda_imag'] = scaling['lambda_imag']

hdf.attrs['analysis_length [min]'] = analysis_length

hdf.attrs['cutoff_frequency'] = cutoff_frequency

hdf.attrs['bridgedeck_only'] = bridgedeck_only

if bridgedeck_only:

ix_references_y = (np.array([0, 2, 4, 6, 8, 10, 12, 14]) + 16)

ix_references_z = (np.array([0, 2, 4, 6, 8, 10, 12, 14]) + 32)

ix_references = np.concatenate((ix_references_y, ix_references_z)).tolist()

else: # with hangers in addition

ix_references_y = (np.array([0, 2, 4, 6, 8, 10, 12, 14]) + 20)

ix_references_z = (np.array([0, 2, 4, 6, 8, 10, 12, 14]) + 40)

ix_references = np.concatenate((ix_references_y, ix_references_z)).tolist()

number_of_periods = len(loader.periods)

print("Number of periods to run " + str(number_of_periods))

81

number_in_sample = fs*60*analysis_length

skipped = 0

for period in range(number_of_periods-44):

period = period + 44

acc = loader.load_all_acceleration_data(loader.periods[period], preprosess=True,

cutoff_frequency=cutoff_frequency, filter_order=10)

If all channels are present, proceed with split up in intervals and perform Cov-SSI and clustering,

if not, move to the next period

if isinstance(acc, np.ndarray):

acc = np.array_split(acc, acc.shape[0]/number_in_sample)

for j in range(len(acc)):

t0 = time() # Start timer of computation process

Cov-SSI

ssid = strid.CovarianceDrivenStochasticSID(acc[j].transpose(), fs) #, ix_references)

modes = {}

for order in orders:

A, C, G, R0 = ssid.perform(order, i)

modes[order] = strid.Mode.find_modes_from_ss(A, C, ssid.fs)

Sorting routine

lambdas = []

phis = []

for order in modes.keys():

modes_in_order = modes[order]

lambdas_in_order = []

phis_in_order = []

for mode in modes_in_order:

lambdas_in_order.append(mode.eigenvalue)

phis_in_order.append(mode.eigenvector)

lambdas.append(np.array(lambdas_in_order))

phis.append(np.array(phis_in_order).transpose())

Stabilization analysis

lambd_stab, phi_stab, orders_stab, idx_stab = koma.oma.find_stable_poles(lambdas, phis, orders, s,

stabcrit=stabcrit, valid_range={'freq': [0.05, np.inf], 'damping':[0, 0.2]},

indicator='freq', return_both_conjugates=False)

HDBSCAN

pole_clusterer = koma.clustering.PoleClusterer(lambd_stab, phi_stab, orders_stab,

min_cluster_size=min_cluster_size,

min_samples=min_samples, scaling=scaling)

args = pole_clusterer.postprocess(prob_threshold=prob_threshold, normalize_and_maxreal=True)

xi_auto, omega_n_auto, phi_auto, order_auto, probs_auto, ixs_auto = \

koma.clustering.group_clusters(*args)

xi_mean = np.array([np.median(xi_i) for xi_i in xi_auto])

fn_mean = np.array([np.median(om_i) for om_i in omega_n_auto])/2/np.pi

xi_std = np.array([np.std(xi_i) for xi_i in xi_auto])

fn_std = np.array([np.std(om_i) for om_i in omega_n_auto])/2/np.pi

Sort and arrange modeshapes

lambd_used, phi_used, order_stab_used, group_ixs, all_single_ix, probs = \

pole_clusterer.postprocess(prob_threshold=prob_threshold)

grouped_phis = koma.clustering.group_array(phi_used, group_ixs, axis=1)

phi_extracted = np.zeros((len(grouped_phis), len(loader.acceleration_sensors)*3))

for a in range(len(grouped_phis)):

for b in range(np.shape(grouped_phis[a])[0]):

82

phi_extracted[a, b] = (np.real(np.median(grouped_phis[a][b])))

Load environmental statistical data for analyzed time series

mean_wind_speed, max_wind_speed, mean_wind_direction = \

loader.load_wind_stat_data(loader.periods[period], analysis_length, j)

mean_temp = loader.load_temp_stat_data(loader.periods[period], analysis_length, j)

t1 = time() # end timer of computation process

print("Time serie " + str(j+1) + " of " + str(len(acc)) + " done in " + str(t1-t0) + " sec. Period " +

str(period+1) + " of " + str(number_of_periods) +

" done. Number of skipped periods: " + str(skipped)+".")

Prepare timestamp of the time series in process

timestamp = (datetime.strptime(loader.periods[period], "%Y-%m-%d-%H-%M-%S") +

timedelta(minutes=j*analysis_length)).strftime("%Y-%m-%d-%H-%M-%S")

Save stabilization plot

stab_diag = stabilization_diagram(acc[j], fs, 2, (np.array(omega_n_auto) / 2 / np.pi),

np.array(order_auto),

all_freqs=np.abs(lambd_stab) / 2 / np.pi, all_orders=orders_stab)

Write logs to h5 file

with h5py.File(output_path, 'a') as hdf:

G1 = hdf.create_group(timestamp)

Write logs

G1.create_dataset('Frequencies', data=fn_mean)

G1.create_dataset('Damping', data=xi_mean)

G1.create_dataset('Modeshape', data=phi_extracted)

Write attributes

G1.attrs['Mean wind speed'] = mean_wind_speed

G1.attrs['Max wind speed'] = max_wind_speed

G1.attrs['Mean wind direction'] = mean_wind_direction

G1.attrs['Mean temp'] = mean_temp

G1.attrs['Execution time'] = (t1-t0)

G1.attrs['Std of acceleration data'] = np.mean(np.std(acc[j], axis=0))

else:

skipped += 1

print("One or more channels are missing, period skipped.")

83

trace.py

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.ticker as ticker

import dataloader as dl

from strid.utils import modal_assurance_criterion

import scipy as sp

import koma.modal as modal

class ModeTrace:

"""

Mode trace object

"""

def __init__(self, reference_modes: list[dl.Mode], numb_analysis,

simcrit = {'freq': 0.4, 'mac': 0.5}):

"""

Initializes an instance of the ModeComparison class.

Args:

reference_modes (list[dl.Mode]): A list of reference modes to compare against.

numb_analysis (int): The number of analysis modes to compare.

simcrit (dict, optional): A dictionary specifying the similarity criteria for comparison.

Defaults to {'freq': 0.4, 'mac': 0.5}.

"""

self.reference_modes = {}

for i, mode in enumerate(reference_modes):

new_mode = {i:mode}

self.reference_modes.update(new_mode)

self.numb_analysis = numb_analysis

self.mode_trace = np.empty(shape=[len(self.reference_modes), self.numb_analysis], dtype=object)

self.simcrit = simcrit

self.mode_type = ['Horizontal', 'Vertical', 'Horizontal', 'Vertical', 'Vertical',

'Vertical', 'Horizontal', 'Cable', 'Vertical', 'Vertical', 'Horizontal',

'Vertical', 'Torsional', 'Cable', 'Cable', 'Vertical', 'Torsional', 'Horizontal',

'Vertical', 'Vertical', 'Vertical', 'Torsional', 'Vertical', 'Vertical']

def add_modes_from_period(self, candidate_modes: list[dl.Mode], period: int):

"""

Adds candidate modes to the mode trace for a specific period, based on similarity criteria.

Args:

candidate_modes (list[dl.Mode]): A list of candidate modes to be added.

period (int): The period associated with the candidate modes.

Returns:

None

"""

candidate_modes = candidate_modes

f_tol = self.simcrit['freq']

mac_tol = self.simcrit['mac']

if len(candidate_modes[0].mode_shape) > 48:

indexes = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,20,21,

22,23,24,25,26,27,28,29,30,31,32,33,34,35,40,

41,42,43,44,45,46,47,48,49,50,51,52,53,54,55]

else:

indexes = np.arange(0, 48, 1)

for key, ref_mode in self.reference_modes.items():

for candidate in candidate_modes:

delta_f = np.abs(ref_mode.frequency - candidate.frequency)/\

np.max([ref_mode.frequency, candidate.frequency])

mac_1 = 1 - modal_assurance_criterion(ref_mode.mode_shape, candidate.mode_shape[indexes])

if delta_f < f_tol and mac_1 < mac_tol:

84

if not isinstance(self.mode_trace[key, period], dl.Mode):

self.mode_trace[key, period] = candidate

candidate_modes.remove(candidate)

else:

competitor = self.mode_trace[key, period]

comp_delta_f = np.abs(ref_mode.frequency - competitor.frequency)/\

np.max([ref_mode.frequency, competitor.frequency])

comp_mac_1 = 1 - modal_assurance_criterion(ref_mode.mode_shape,

competitor.mode_shape[indexes]),!

if (delta_f < comp_delta_f and

mac_1 < comp_mac_1):

self.mode_trace[key, period] = candidate

candidate_modes.remove(candidate)

candidate_modes.append(competitor)

def add_all_modes(self, all_modes):

"""

Adds all modes from a list of modes to the mode trace, corresponding to their respective periods.

Args:

all_modes (list): A list containing modes for each period.

Returns:

None

"""

for i in range(len(all_modes)):

self.add_modes_from_period(all_modes[i], period=i)

def get_frequencies_from_trace(self, trace):

"""

Retrieves the frequencies of modes from a specific trace in the mode trace.

Args:

trace (int): The index of the trace to retrieve frequencies from.

Returns:

list: A list of tuples containing the index and frequency of each mode in the trace.

"""

traces = self.mode_trace[trace,:]

freqs = []

for i in range(len(traces)):

if isinstance(traces[i], dl.Mode):

freqs.append((i, traces[i].frequency))

return freqs

def get_damping_from_trace(self, trace):

"""

Retrieves the damping values of modes from a specific trace in the mode trace.

Args:

trace (int): The index of the trace to retrieve damping values from.

Returns:

list: A list of tuples containing the index and damping value of each mode in the trace.

"""

traces = self.mode_trace[trace,:]

damps = []

for i in range(len(traces)):

if isinstance(traces[i], dl.Mode):

damps.append((i, traces[i].damping))

return damps

def plot_frequency_distribution(self):

85

"""

Plots the frequency distribution of the modes.

Returns:

matplotlib.figure.Figure: The generated figure object.

"""

fig, axs = plt.subplots(6, 4, figsize=(20, 20), dpi=300)

axs = axs.ravel()

remove = 0

for i, ax in enumerate(axs):

if i < len(self.reference_modes):

freqs = self.get_frequencies_from_trace(i)

ax.set_title('Mode ' + str(i + 1) + ' - ' + str(self.mode_type[i]))

ax.set_xlabel('f [Hz]')

if len(freqs) == 0:

continue

freqs_mode = np.array(list(zip(*freqs))[1])

ax.hist(freqs_mode, 20, label='AOMA')

ax.xaxis.set_major_formatter(ticker.FormatStrFormatter('%0.3f'))

text = 'n = ' + str(len(freqs_mode)) + '\nr = ' + \

f"{(100*len(freqs_mode)/self.numb_analysis):.1f}" + '%'

ax.text(0.72, 0.95, text, transform=ax.transAxes, fontsize=14, verticalalignment='top',

bbox= dict(boxstyle='round', facecolor='white'))

else:

remove += 1

continue

fig.suptitle('Frequency distribution', fontsize=14, y=0.99)

fig.tight_layout()

while remove > 0:

fig.delaxes(axs[-remove])

remove -= 1

return fig

def plot_damping_distribution(self):

"""

Plots the damping distribution of the modes.

Returns:

matplotlib.figure.Figure: The generated figure object.

"""

fig, axs = plt.subplots(6, 4, figsize=(20, 25), dpi=300)

axs = axs.ravel()

for i, ax in enumerate(axs):

damp = self.get_damping_from_trace(i)

ax.set_title('Mode ' + str(i + 1)+ ' - ' + str(self.mode_type[i]))

ax.set_xlabel('$\\xi$ [%]')

if len(damp) == 0:

continue

damp_mode = np.array(list(zip(*damp))[1])*100

ax.hist(damp_mode, 20)

ax.xaxis.set_major_formatter(ticker.FormatStrFormatter('%0.3f'))

fig.suptitle('Damping distribution', fontsize=20, y=0.99)

fig.tight_layout()

return fig

def plot_freq_vs_temp_corr(self, temps):

"""

Plots the correlation between mode frequencies and temperatures.

Args:

temps (numpy.ndarray): Array of temperatures.

Returns:

matplotlib.figure.Figure: The generated figure object.

"""

fig, axs = plt.subplots(6, 4, figsize=(20, 25), dpi=300)

axs = axs.ravel()

86

remove = 0

for i, ax in enumerate(axs):

if i < len(self.reference_modes):

freqs = self.get_frequencies_from_trace(i)

ax.set_title('Mode ' + str(i + 1)+ ' - ' + str(self.mode_type[i]))

ax.set_xlabel('f [Hz]')

ax.set_ylabel('Temperature [$^\circ$C]')

if len(freqs) == 0:

continue

indexes = np.array(list(zip(*freqs))[0])

temps_for_mode = temps[indexes]

freqs_mode = np.array(list(zip(*freqs))[1])

Find regression line

b, a = np.polyfit(np.array(freqs_mode), np.array(temps_for_mode), deg=1)

xseq = np.linspace(0, 10, num=len(temps_for_mode))

Pearson correlation coefficient

corr = sp.stats.linregress(np.array(freqs_mode), np.array(temps_for_mode))

ax.scatter(np.array(freqs_mode), np.array(temps_for_mode), alpha=0.7)

ax.plot(xseq, a + b * xseq, color='red')

ax.set_xlim([np.mean(freqs_mode) - np.std(freqs_mode) * 5,

np.mean(freqs_mode) + np.std(freqs_mode) * 5])

ax.xaxis.set_major_formatter(ticker.FormatStrFormatter('%0.3f'))

ax.set_ylim([-15, 10])

ax.set_xlim([np.min(freqs_mode), np.max(freqs_mode)])

text = 'r = ' + f"{corr.rvalue:.2f}"

ax.text(0.72, 0.95, text, transform=ax.transAxes, fontsize=14, verticalalignment='top',

bbox=dict(boxstyle='round', facecolor='white'))

fig.suptitle('Frequency vs temperature correlation', fontsize=20, y=0.99)

fig.tight_layout()

while remove > 0:

fig.delaxes(axs[-remove])

remove -= 1

return fig

def plot_damp_vs_wind_corr(self, wind):

"""

Plots the correlation between damping and mean wind speed.

Args:

wind (numpy.ndarray): Array of mean wind speeds.

Returns:

matplotlib.figure.Figure: The generated figure object.

"""

fig, axs = plt.subplots(6, 4, figsize=(20, 25), dpi=300)

axs = axs.ravel()

remove = 0

for i, ax in enumerate(axs):

if i < len(self.reference_modes):

damp = self.get_damping_from_trace(i)

ax.set_title('Mode ' + str(i + 1)+ ' - ' + str(self.mode_type[i]))

ax.set_xlabel('$\\xi$ [%]')

ax.set_ylabel('Mean wind speed [m/s]')

if len(damp) < 1:

continue

indexes = np.array(list(zip(*damp))[0])

wind_for_mode = wind[indexes]

damp_mode = np.array(list(zip(*damp))[1])*100

Find regression line

b, a = np.polyfit(np.array(damp_mode), np.array(wind_for_mode), deg=1)

xseq = np.linspace(0, 10, num=len(wind_for_mode))

Pearson correlation coefficient

87

corr = sp.stats.linregress(np.array(damp_mode), np.array(wind_for_mode))

ax.scatter(np.array(damp_mode), np.array(wind_for_mode), alpha=0.7)

ax.plot(xseq, a + b * xseq, color='red')

ax.set_xlim([0, np.mean(damp_mode) + np.std(damp_mode) * 5])

ax.xaxis.set_major_formatter(ticker.FormatStrFormatter('%0.2f'))

ax.set_ylim([0, 30])

text = 'r = ' + f"{corr.rvalue:.2f}"

ax.text(0.72, 0.95, text, transform=ax.transAxes, fontsize=14, verticalalignment='top',

bbox=dict(boxstyle='round', facecolor='white'))

fig.suptitle('Damping vs wind correlation', fontsize=20, y=0.99)

fig.tight_layout()

while remove > 0:

fig.delaxes(axs[-remove])

remove -= 1

return fig

def plot_AOMA_vs_FEM(self):

"""

Plots the AOMA frequencies versus FEM frequencies for each mode type.

Returns:

matplotlib.figure.Figure: The generated figure object.

"""

fig, axs = plt.subplots(2, 2, figsize=(10, 10), dpi=300)

for i in range(len(self.reference_modes)):

if self.mode_type[i] == 'Horizontal':

axs[0, 0].plot(self.reference_modes[i].frequency,

np.mean(np.array(self.get_frequencies_from_trace(i)[:])[:, 1]), marker='o', color='r')

axs[0, 0].plot([0, 1], [0, 1], transform=axs[0, 0].transAxes, color='black')

axs[0, 0].set_xlabel('f_{FEM} [Hz]')

axs[0, 0].set_ylabel('f_{AOMA} [Hz]')

axs[0, 0].set_title(self.mode_type[i])

axs[0, 0].set_xticks(np.arange(0, 1.2, step=0.2))

axs[0, 0].set_yticks(np.arange(0, 1.2, step=0.2))

axs[0, 0].set_xlim([0, 1])

axs[0, 0].set_ylim([0, 1])

elif self.mode_type[i] == 'Vertical':

axs[0, 1].plot(self.reference_modes[i].frequency,

np.mean(np.array(self.get_frequencies_from_trace(i)[:])[:, 1]), marker='o', color='r')

axs[0, 1].plot([0, 1], [0, 1], transform=axs[0, 1].transAxes, color='black')

axs[0, 1].set_xlabel('f_{FEM} [Hz]')

axs[0, 1].set_ylabel('f_{AOMA} [Hz]')

axs[0, 1].set_title(self.mode_type[i])

axs[0, 1].set_xticks(np.arange(0, 1.2, step=0.2))

axs[0, 1].set_yticks(np.arange(0, 1.2, step=0.2))

axs[0, 1].set_xlim([0, 1.1])

axs[0, 1].set_ylim([0, 1.1])

elif self.mode_type[i] == 'Torsional':

axs[1, 0].plot(self.reference_modes[i].frequency,

np.mean(np.array(self.get_frequencies_from_trace(i)[:])[:, 1]), marker='o', color='r')

axs[1, 0].plot([0, 1], [0, 1], transform=axs[1, 0].transAxes, color='black')

axs[1, 0].set_xlabel('f_{FEM} [Hz]')

axs[1, 0].set_ylabel('f_{AOMA} [Hz]')

axs[1, 0].set_title(self.mode_type[i])

axs[1, 0].set_xticks(np.arange(0, 1.2, step=0.2))

axs[1, 0].set_yticks(np.arange(0, 1.2, step=0.2))

axs[1, 0].set_xlim([0, 1])

axs[1, 0].set_ylim([0, 1])

elif self.mode_type[i] == 'Cable':

axs[1, 1].plot(self.reference_modes[i].frequency,

88

np.mean(np.array(self.get_frequencies_from_trace(i)[:])[:, 1]), marker='o', color='r')

axs[1, 1].plot([0, 1], [0, 1], transform=axs[1, 1].transAxes, color='black')

axs[1, 1].set_xlabel('f_{FEM} [Hz]')

axs[1, 1].set_ylabel('f_{AOMA} [Hz]')

axs[1, 1].set_title(self.mode_type[i])

axs[1, 1].set_xticks(np.arange(0, 1.2, step=0.2))

axs[1, 1].set_yticks(np.arange(0, 1.2, step=0.2))

axs[1, 1].set_xlim([0, 1])

axs[1, 1].set_ylim([0, 1])

return fig

def plotModeShapeAOMA(tracer: ModeTrace, FEM_loader: dl.FEM_result_loader, type ='Vertical'):

"""

Plots the mode shapes for the given ModeTrace and FEM_result_loader objects.

Args:

tracer (ModeTrace): ModeTrace object containing mode information.

FEM_loader (dl.FEM_result_loader): FEM_result_loader object containing FEM results.

type (str, optional): Type of mode shape to plot. Defaults to 'Vertical'.

Returns:

fig: The generated matplotlib Figure object.

"""

all_modeshapes = np.array(np.empty([tracer.mode_trace.shape[0], tracer.mode_trace.shape[1],

len(tracer.mode_trace[0,0].mode_shape)]), dtype=np.float)

for i in range(tracer.mode_trace.shape[0]):

for j in range(tracer.mode_trace.shape[1]):

if isinstance(tracer.mode_trace[i,j], dl.Mode):

all_modeshapes[i, j, :] = tracer.mode_trace[i, j].mode_shape

f_mean = []

xi_mean = []

ref_phi = np.zeros([48, len(tracer.reference_modes)])

for i in range(len(tracer.reference_modes)):

ref_phi[:, i] = tracer.reference_modes[i].mode_shape

f_mean.append(np.mean(np.array(tracer.get_frequencies_from_trace(i)[:])[:, 1]))

xi_mean.append(100*np.mean(np.array(tracer.get_damping_from_trace(i)[:])[:, 1]))

num = tracer.mode_type.count(type)

Plot

fig, axs = plt.subplots(int(np.ceil(num/2)), 2, figsize=(20, int(np.ceil(num/2))*3), dpi=300)

x = np.array([-572.5, -420, -300, -180, -100, 0, 100, 260, 420,

572.5]) # Sensor x-coordinates - [TOWER, A03, A04, A05, A06, A07, A08, A09, A10, TOWER]

B = 18.6 # Width of bridge girder

phi_y_ref = ref_phi[16:32, :]

phi_z_ref_temp = ref_phi[32:48, :]

phi_y_ref = (modal.maxreal((phi_y_ref[::2, :] + phi_y_ref[1::2, :]) / 2))

phi_z_ref = (modal.maxreal((phi_z_ref_temp[::2, :] + phi_z_ref_temp[1::2, :]) / 2))

phi_t_ref = (modal.maxreal((- phi_z_ref_temp[::2, :] + phi_z_ref_temp[1::2, :]) / B))

Add plot of reference modes here

f = FEM_loader.f

phi_y_FEM = FEM_loader.phi_y

phi_y_FEM[:, [6, 7, 14, 17]] = phi_y_FEM[:, [6, 7, 14, 17]]*(-1)

phi_z_FEM = FEM_loader.phi_z

phi_z_FEM[:, [1, 5, 11, 19, 20]] = phi_z_FEM[:, [1, 5, 11, 19, 20]]*(-1)

phi_t_FEM = FEM_loader.phi_t*(-1)

phi_t_FEM[:, [16, 21]] = phi_t_FEM[:, [16, 21]]*(-1)

x_FEM = FEM_loader.x_plot

j = 0

for i in range(len(f)):

89

axs[int(np.floor(j / 2)), j % 2].set_xlabel('x[m]')

axs[int(np.floor(j / 2)), j % 2].set_ylim([-1, 1])

axs[int(np.floor(j / 2)), j % 2].set_xlim([-600, 600])

axs[int(np.floor(j / 2)), j % 2].set_xticks([-600, -300, 0, 300, 600])

axs[int(np.floor(j / 2)), j % 2].set_yticks([-1, -0.5, 0, 0.5, 1])

axs[int(np.floor(j / 2)), j % 2].vlines([-420, -300, -180, -100, 0, 100, 260, 420], -1, 1, color='grey',

linestyles=':', alpha=0.5)

if FEM_loader.mode_type[i] == 'Horizontal' and type == 'Horizontal':

factor = 1 / np.max(np.abs(phi_y_FEM[:, i]))

axs[int(np.floor(j / 2)), j % 2].plot(x_FEM, phi_y_FEM[:, i] * factor, color='black', alpha=0.5)

j += 1

elif FEM_loader.mode_type[i] == 'Vertical' and type == 'Vertical':

factor = 1 / np.max(np.abs(phi_z_FEM[:, i]))

axs[int(np.floor(j / 2)), j % 2].plot(x_FEM, phi_z_FEM[:, i] * factor, color='black', alpha=0.5)

j += 1

elif FEM_loader.mode_type[i] == 'Torsional' and type == 'Torsional':

factor = 1 / np.max(np.abs(phi_t_FEM[:, i]))

axs[int(np.floor(j / 2)), j % 2].plot(x_FEM, phi_t_FEM[:, i] * factor, color='black', alpha=0.5)

j += 1

elif FEM_loader.mode_type[i] == 'Cable' and type == 'Cable':

factor = 1 / np.max(np.abs(phi_y_FEM[:, i]))

axs[int(np.floor(j / 2)), j % 2].plot(x_FEM, phi_y_FEM[:, i] * factor, color='black', alpha=0.5)

j += 1

for a in range(all_modeshapes.shape[1]):

phi = all_modeshapes[:, a, :].transpose()

phi_x, phi_y, phi_z_temp = np.split(phi, 3, axis=0)

phi_y = phi_y[:16, :]

phi_z_temp = phi_z_temp[:16, :]

phi_y = (modal.maxreal((phi_y[::2, :] + phi_y[1::2, :]) / 2))

phi_z = (modal.maxreal((phi_z_temp[::2, :] + phi_z_temp[1::2, :]) / 2))

phi_t = (modal.maxreal((-phi_z_temp[::2, :] + phi_z_temp[1::2, :]) / B))

j = 0

for i in range(len(tracer.reference_modes)):

axs[int(np.floor(j / 2)), j % 2].set_xlabel('x[m]')

axs[int(np.floor(j / 2)), j % 2].set_ylim([-1, 1])

axs[int(np.floor(j / 2)), j % 2].set_xlim([-600, 600])

axs[int(np.floor(j / 2)), j % 2].set_xticks([-600, -300, 0, 300, 600])

axs[int(np.floor(j / 2)), j % 2].set_yticks([-1, -0.5, 0, 0.5, 1])

if tracer.mode_type[i] == 'Horizontal' and type == 'Horizontal':

factor = 1 / np.max(np.abs(phi_y[:, i]))

factor_ref = 1 / np.max(np.abs(phi_y_ref[:, i]))

if np.sum(np.abs(phi_y[:, i] - phi_y_ref[:, i]*factor_ref)) > 5.0:

phi_y[:, i] = phi_y[:, i]*(-1)

axs[int(np.floor(j/2)), j % 2].plot(x, np.concatenate((np.array([0]), phi_y[:, i], np.array([0])))

, color='tab:red', alpha = 0.05)

axs[int(np.floor(j / 2)), j % 2].set_title(

'Mode ' + str(i + 1) + ' - ' + type + '\n \overline{f}_n = ' + f"{f_mean[i]:.3f}" + ' Hz, '

'$\overline{\\xi}_n$ = ' + f"{xi_mean[i]:.1f}"

+'%'),!

axs[int(np.floor(j / 2)), j % 2].grid()

j += 1

elif tracer.mode_type[i] == 'Vertical' and type == 'Vertical':

factor = 1 / np.max(np.abs(phi_z[:, i]))

factor_ref = 1 / np.max(np.abs(phi_z_ref[:, i]))

if np.sum(np.abs(phi_z[:, i] - phi_z_ref[:, i]*factor_ref)) > 5.0:

phi_z[:, i] = phi_z[:, i]*(-1)

axs[int(np.floor(j/2)), j % 2].plot(x, np.concatenate((np.array([0]), phi_z[:, i], np.array([0])))

90

, color='tab:blue', alpha = 0.05)

axs[int(np.floor(j / 2)), j % 2].set_title(

'Mode ' + str(i + 1) + ' - ' + type + '\n \overline{f}_n = ' + f"{f_mean[i]:.3f}" + ' Hz,'

' $\overline{\\xi}_n$ = ' + f"{xi_mean[i]:.1f}" +

'%'),!

axs[int(np.floor(j / 2)), j % 2].grid()

j += 1

elif tracer.mode_type[i] == 'Torsional' and type == 'Torsional':

factor = 1 / np.max(np.abs(phi_t[:, i]))

factor_ref = 1 / np.max(np.abs(phi_t_ref[:, i]))

if np.sum(np.abs(phi_t[:, i] - phi_t_ref[:, i]*factor_ref)) > 4.0:

phi_t[:, i] = phi_t[:, i]*(-1)

axs[int(np.floor(j/2)), j % 2].plot(x, np.concatenate((np.array([0]), phi_t[:, i], np.array([0])))

, color='tab:orange', alpha = 0.05)

axs[int(np.floor(j / 2)), j % 2].set_title(

'Mode ' + str(i + 1) + ' - ' + type + '\n \overline{f}_n = ' + f"{f_mean[i]:.3f}" + ' Hz,'

' $\overline{\\xi}_n$ = ' + f"{xi_mean[i]:.1f}" +

'%'),!

axs[int(np.floor(j / 2)), j % 2].grid()

j += 1

elif tracer.mode_type[i] == 'Cable' and type == 'Cable':

factor = 1 / np.max(np.abs(phi_y[:, i]))

factor_ref = 1 / np.max(np.abs(phi_y_ref[:, i]))

if np.sum(np.abs(phi_y[:, i] - phi_y_ref[:, i]*factor_ref)) > 5.0:

phi_y[:, i] = phi_y[:, i]*(-1)

axs[int(np.floor(j/2)), j % 2].plot(x, np.concatenate((np.array([0]), phi_y[:, i], np.array([0])))

, color='tab:green', alpha = 0.05)

axs[int(np.floor(j / 2)), j % 2].set_title(

'Mode ' + str(i + 1) + ' - ' + type + '\n \overline{f}_n = ' + f"{f_mean[i]:.3f}" + ' Hz, '

'$\overline{\\xi}_n$ = ' + f"{xi_mean[i]:.1f}"

+'%'),!

axs[int(np.floor(j / 2)), j % 2].grid()

j += 1

if num % 2:

fig.delaxes(axs[int(np.ceil(num/2))-1, 1])

fig.tight_layout()

return fig

def plotSingleModeAllComponents(tracer: ModeTrace, FEM_loader: dl.FEM_result_loader, mode_i):

"""

Plots the mode shapes of a single mode along with the reference modes.

Args:

tracer (ModeTrace): Object containing the mode trace information.

FEM_loader (dl.FEM_result_loader): Object containing FEM results.

mode_i (int): Index of the mode to be plotted.

Returns:

fig: Figure object containing the plot.

"""

all_modeshapes = np.array(np.empty([tracer.mode_trace.shape[0], tracer.mode_trace.shape[1],

len(tracer.mode_trace[0,0].mode_shape)]), dtype=np.float)

for i in range(tracer.mode_trace.shape[0]):

for j in range(tracer.mode_trace.shape[1]):

if isinstance(tracer.mode_trace[i,j], dl.Mode):

all_modeshapes[i, j, :] = tracer.mode_trace[i, j].mode_shape

f_mean = []

xi_mean = []

91

ref_phi = np.zeros([48, len(tracer.reference_modes)])

for i in range(len(tracer.reference_modes)):

ref_phi[:, i] = tracer.reference_modes[i].mode_shape

f_mean.append(np.mean(np.array(tracer.get_frequencies_from_trace(i)[:])[:, 1]))

xi_mean.append(100*np.mean(np.array(tracer.get_damping_from_trace(i)[:])[:, 1]))

num = tracer.mode_type.count(type)

Plot

fig, axs = plt.subplots(2, 1, figsize=(10,5), dpi=300)

x = np.array([-572.5, -420, -300, -180, -100, 0, 100, 260, 420,

572.5]) # Sensor x-coordinates - [TOWER, A03, A04, A05, A06, A07, A08, A09, A10, TOWER]

B = 18.6 # Width of bridge girder

phi_y_ref = ref_phi[16:32, :]

phi_z_ref_temp = ref_phi[32:48, :]

phi_y_ref = (modal.maxreal((phi_y_ref[::2, :] + phi_y_ref[1::2, :]) / 2))

phi_z_ref = (modal.maxreal((phi_z_ref_temp[::2, :] + phi_z_ref_temp[1::2, :]) / 2))

phi_t_ref = (modal.maxreal((- phi_z_ref_temp[::2, :] + phi_z_ref_temp[1::2, :]) / B))

Add plot of reference modes here

f = FEM_loader.f

phi_y_FEM = FEM_loader.phi_y

phi_y_FEM[:, [6, 7, 14, 17]] = phi_y_FEM[:, [6, 7, 14, 17]]*(-1)

phi_z_FEM = FEM_loader.phi_z

phi_z_FEM[:, [1, 5, 11, 19, 20]] = phi_z_FEM[:, [1, 5, 11, 19, 20]]*(-1)

phi_t_FEM = FEM_loader.phi_t

phi_t_FEM[:, [16, 21]] = phi_t_FEM[:, [16, 21]]

x_FEM = FEM_loader.x_plot

for ax in axs:

ax.set_xlabel('x[m]')

ax.set_ylim([-1, 1])

ax.set_xlim([-600, 600])

ax.set_xticks([-600, -300, 0, 300, 600])

ax.set_yticks([-1, -0.5, 0, 0.5, 1])

ax.vlines([-420, -300, -180, -100, 0, 100, 260, 420], -1, 1, color='grey',

linestyles=':', alpha=0.5)

for a in range(all_modeshapes.shape[1]):

phi = all_modeshapes[:, a, :].transpose()

phi_x, phi_y, phi_z_temp = np.split(phi, 3, axis=0)

phi_y = phi_y[:16, :]

phi_z_temp = phi_z_temp[:16, :]

phi_y = (modal.maxreal((phi_y[::2, :] + phi_y[1::2, :]) / 2))

phi_z = (modal.maxreal((phi_z_temp[::2, :] + phi_z_temp[1::2, :]) / 2))

phi_t = (modal.maxreal((-phi_z_temp[::2, :] + phi_z_temp[1::2, :]) / B))

Horizontal component

factor = 1 / np.max(np.abs(phi_y[:, mode_i]))

factor_ref = 1 / np.max(np.abs(phi_y_ref[:, mode_i]))

#if np.sum(np.abs(phi_y[:, mode_i] - phi_y_ref[:, mode_i]*factor_ref)) > 8.0:

phi_y[:, mode_i] = phi_y[:, mode_i]*(-1)

axs[0].plot(x, np.concatenate((np.array([0]), phi_y[:, mode_i], np.array([0])))

, color='tab:red', alpha = 0.05)

axs[0].set_title(

'Mode ' + str(mode_i + 1) + ' - ' + 'Horizontal component')

Vertical component

factor = 1 / np.max(np.abs(phi_z[:, mode_i]))

factor_ref = 1 / np.max(np.abs(phi_z_ref[:, mode_i]))

92

axs[1].plot(x, np.concatenate((np.array([0]), phi_z[:, mode_i], np.array([0])))

, color='tab:blue', alpha = 0.05)

axs[1].set_title(

'Mode ' + str(mode_i + 1) + ' - ' + 'Vertical component')

fig.tight_layout()

return fig

93

plot.py

import numpy as np

from scipy import signal

import matplotlib.pyplot as plt

import koma.modal as modal

from dataloader import FEM_result_loader

import colordict

color_values = list(colordict.ColorDict(norm=1).values())

def welch_plot(acc, sampling_frequency, Ndivisions):

"""

Compute and plot the Welch spectrum of the acceleration data.

Args:

acc (array-like): The acceleration data.

sampling_frequency (float): The sampling frequency of the acceleration data.

Ndivisions (int): The number of divisions/segments for computing the Welch spectrum.

Returns:

None

"""

Nwindow = np.ceil(len(acc) / Ndivisions) # Length of window/segment

Nfft_pow2 = 2 ** (np.ceil(np.log2(Nwindow))) # Next power of 2 for zero padding

dt = 1 / sampling_frequency # Time step

Call welch from scipy signal processing

f, Sx_welch = signal.welch(acc, fs=1 / dt, window='hann', nperseg=Nwindow, noverlap=None, nfft=Nfft_pow2,

detrend='constant', return_onesided=True, scaling='density', axis=- 1,

average='mean'),!

plt.figure(figsize=(14, 7), dpi=250)

plt.plot(f, Sx_welch, label='Welch spectrum of acceleration data')

plt.xlabel('f [Hz]')

plt.ylabel('$S(f)$')

plt.grid()

plt.legend()

plt.show()

def stabilization_diagram(acceleration, sampling_frequency, Ndivisions, frequencies, orders,

all_freqs=None, all_orders=None):

"""

Plot the stabilization diagram showing model orders and frequencies, along with power spectral density (PSD)

of the acceleration data.

Args:

acceleration (array-like): The acceleration data.

sampling_frequency (float): The sampling frequency of the acceleration data.

Ndivisions (int): The number of divisions/segments for computing the PSD.

frequencies (array-like): An array of frequencies for each cluster.

orders (array-like): An array of model orders for each cluster.

all_freqs (array-like, optional): An array of frequencies for discarded modes (default: None).

all_orders (array-like, optional): An array of model orders for discarded modes (default: None).

Returns:

matplotlib.figure.Figure: The generated figure.

"""

fig, ax = plt.subplots(figsize=(14, 5), dpi=300)

if len(all_freqs) > 0 and len(all_orders) > 0:

ax.scatter(all_freqs, all_orders, marker='o', color='grey', label='Discarded modes')

for cluster in range(frequencies.shape[0]):

94

ax.plot(frequencies[cluster], orders[cluster], marker='o', color=color_values[cluster + cluster * 3])

ax.set_ylabel("Model order")

ax.set_xlabel('f [Hz]')

ax.set_xticks(np.arange(0, 1.1, step=0.1))

ax.set_xlim([0, 1])

Creating power spectral density in each direction of motion of the bridge

Nwindow = np.ceil(len(acceleration) / Ndivisions) # Length of window/segment

Nfft_pow2 = 2 ** (np.ceil(np.log2(Nwindow))) # Next power of 2 for zero padding

dt = 1 / sampling_frequency # Time step

length = acceleration.shape[1]

length = int(length / 3)

n_channels = int(length / 2)

B = 18.6

Transforming to find y, z, theta component for the sensor pair at the midspan

y = (acceleration[:, length + int(np.floor(length / 4))] +

acceleration[:, length + int(np.floor(length / 4)) + n_channels]) / 2

z = (acceleration[:, length + int(np.floor(length / 4)) + n_channels * 2] +

acceleration[:, length + int(np.floor(length / 4)) + n_channels * 3]) / 2

theta = (-acceleration[:, length + int(np.floor(length / 4)) + n_channels * 2] +

acceleration[:, length + int(np.floor(length / 4)) + n_channels * 3]) / B

Call welch from scipy signal processing

f, Sy_welch = signal.welch(y, fs=1 / dt, window='hann', nperseg=Nwindow, noverlap=None, nfft=Nfft_pow2,

detrend='constant', return_onesided=True, scaling='density', axis=- 1,

average='mean'),!

f, Sz_welch = signal.welch(z, fs=1 / dt, window='hann', nperseg=Nwindow, noverlap=None, nfft=Nfft_pow2,

detrend='constant', return_onesided=True, scaling='density', axis=- 1,

average='mean'),!

f, Stheta_welch = signal.welch(theta, fs=1 / dt, window='hann', nperseg=Nwindow, noverlap=None,

nfft=Nfft_pow2,,!

detrend='constant', return_onesided=True, scaling='density', axis=- 1,

average='mean')

ax2 = ax.twinx()

ax2.plot(f, Sy_welch, color='black', label='$PSD\ y-direction$', lw=0.5)

ax2.plot(f, Sz_welch, color='blue', label='$PSD\ z-direction$', lw=0.5)

ax2.plot(f, Stheta_welch * 10, color='red', label=r'$PSD\ \theta-direction\ e1$', lw=0.5)

ax2.set_ylabel("PSD")

plt.legend()

plt.grid()

return fig

def stabilization_diagram_cov_ssi(acceleration, sampling_frequency, Ndivisions,

all_freqs, all_orders, freq_stab=None, orders_stab=None):

"""

Plot the stabilization diagram for covariance-driven subspace identification (SSI) method,

showing model orders and frequencies, along with power spectral density (PSD)

of the acceleration data.

Args:

acceleration (array-like): The acceleration data.

sampling_frequency (float): The sampling frequency of the acceleration data.

Ndivisions (int): The number of divisions/segments for computing the PSD.

all_freqs (array-like): An array of frequencies for all the identified modes.

all_orders (array-like): An array of model orders for all the identified modes.

freq_stab (array-like, optional): An array of frequencies for stable modes (default: None).

orders_stab (array-like, optional): An array of model orders for stable modes (default: None).

Returns:

matplotlib.figure.Figure: The generated figure.

"""

95

fig, ax = plt.subplots(figsize=(14, 5), dpi=300)

ax.scatter(all_freqs, all_orders, marker='o', color='grey')

if not (freq_stab is None) and not (orders_stab is None):

ax.scatter(freq_stab, orders_stab, marker='o', color='blue')

ax.set_ylabel("Model order")

ax.set_xlabel('f [Hz]')

ax.set_xticks(np.arange(0, 1, step=0.1))

ax.set_xlim([0, 1])

Creating power spectral density in each direction of motion of the bridge

Nwindow = np.ceil(len(acceleration) / Ndivisions) # Length of window/segment

Nfft_pow2 = 2 ** (np.ceil(np.log2(Nwindow))) # Next power of 2 for zero padding

dt = 1 / sampling_frequency # Time step

length = acceleration.shape[1]

length = int(length / 3)

n_channels = int(length / 2)

B = 18.6

Transforming to find y, z, theta component for the sensor pair at the midspan

y = (acceleration[:, length + int(np.floor(length / 4))] + acceleration[:, length + int(np.floor(length / 4))

+,!

n_channels]) / 2

z = (acceleration[:, length + int(np.floor(length / 4)) + n_channels * 2] +

acceleration[:, length + int(np.floor(length / 4)) + n_channels * 3]) / 2

theta = (-acceleration[:, length + int(np.floor(length / 4)) + n_channels * 2] +

acceleration[:, length + int(np.floor(length / 4)) + n_channels * 3]) / B

Call welch from scipy signal processing

f, Sy_welch = signal.welch(y, fs=1 / dt, window='hann', nperseg=Nwindow, noverlap=None, nfft=Nfft_pow2,

detrend='constant', return_onesided=True, scaling='density', axis=- 1,

average='mean'),!

f, Sz_welch = signal.welch(z, fs=1 / dt, window='hann', nperseg=Nwindow, noverlap=None, nfft=Nfft_pow2,

detrend='constant', return_onesided=True, scaling='density', axis=- 1,

average='mean'),!

f, Stheta_welch = signal.welch(theta, fs=1 / dt, window='hann', nperseg=Nwindow, noverlap=None,

nfft=Nfft_pow2,,!

detrend='constant', return_onesided=True, scaling='density', axis=- 1,

average='mean')

ax2 = ax.twinx()

ax2.plot(f, Sy_welch, color='black', label='$PSD\ y-direction$', lw=0.5)

ax2.plot(f, Sz_welch, color='blue', label='$PSD\ z-direction$', lw=0.5)

ax2.plot(f, Stheta_welch * 10, color='red', label=r'$PSD\ \theta-direction\ e1$', lw=0.5)

ax2.set_ylabel("PSD")

plt.legend()

plt.grid()

return fig

def plotModeShapeFEM(FEM_loader: FEM_result_loader, type='Vertical'):

"""

Plots the mode shapes of the Finite Element Model (FEM) loaded using FEM_result_loader.

Args:

FEM_loader (FEM_result_loader): An instance of the FEM_result_loader class.

type (str, optional): The type of mode shape to plot. Defaults to 'Vertical'.

Returns:

matplotlib.figure.Figure: The generated figure containing the mode shape plots.

"""

f = FEM_loader.f

phi_y = FEM_loader.phi_y

phi_z = FEM_loader.phi_z

96

phi_t = FEM_loader.phi_t

x = FEM_loader.x_plot

num = FEM_loader.mode_type.count(type)

Plot

fig, axs = plt.subplots(int(np.ceil(num / 2)), 2, figsize=(20, int(np.ceil(num / 2)) * 3), dpi=300)

j = 0

for i in range(len(f)):

axs[int(np.floor(j / 2)), j % 2].set_xlabel('x[m]')

axs[int(np.floor(j / 2)), j % 2].set_ylim([-1, 1])

axs[int(np.floor(j / 2)), j % 2].set_xlim([-600, 600])

axs[int(np.floor(j / 2)), j % 2].set_xticks([-600, -300, 0, 300, 600])

axs[int(np.floor(j / 2)), j % 2].set_yticks([-1, -0.5, 0, 0.5, 1])

if FEM_loader.mode_type[i] == 'Horizontal' and type == 'Horizontal':

factor = 1 / np.max(np.abs(phi_y[:, i]))

axs[int(np.floor(j / 2)), j % 2].plot(x, phi_y[:, i] * factor, color='black')

axs[int(np.floor(j / 2)), j % 2].set_title(

'Mode ' + str(i + 1) + ' - ' + type + '\n f_n = ' + f"{f[i]:.3f}" + ' Hz')

axs[int(np.floor(j / 2)), j % 2].grid()

j += 1

elif FEM_loader.mode_type[i] == 'Vertical' and type == 'Vertical':

factor = 1 / np.max(np.abs(phi_z[:, i]))

axs[int(np.floor(j / 2)), j % 2].plot(x, phi_z[:, i] * factor, color='black')

axs[int(np.floor(j / 2)), j % 2].set_title(

'Mode ' + str(i + 1) + ' - ' + type + '\n f_n = ' + f"{f[i]:.3f}" + ' Hz')

axs[int(np.floor(j / 2)), j % 2].grid()

j += 1

elif FEM_loader.mode_type[i] == 'Torsional' and type == 'Torsional':

factor = 1 / np.max(np.abs(phi_t[:, i]))

axs[int(np.floor(j / 2)), j % 2].plot(x, phi_t[:, i] * factor, color='black')

axs[int(np.floor(j / 2)), j % 2].set_title(

'Mode ' + str(i + 1) + ' - ' + type + '\n f_n = ' + f"{f[i]:.3f}" + ' Hz')

axs[int(np.floor(j / 2)), j % 2].grid()

j += 1

elif FEM_loader.mode_type[i] == 'Cable' and type == 'Cable':

factor = 1 / np.max(np.abs(phi_y[:, i]))

axs[int(np.floor(j / 2)), j % 2].plot(x, phi_y[:, i] * factor, color='black')

axs[int(np.floor(j / 2)), j % 2].set_title(

'Mode ' + str(i + 1) + ' - ' + type + '\n f_n = ' + f"{f[i]:.3f}" + ' Hz')

axs[int(np.floor(j / 2)), j % 2].grid()

j += 1

if num % 2:

fig.delaxes(axs[int(np.ceil(num / 2)) - 1, 1])

fig.tight_layout()

return fig

97

	Abstract
	Sammendrag
	Preface
	List of symbols
	List of Abbreviations
	Introduction
	Background
	Problem Formulation
	Limitations
	Structure of the thesis

	Theory
	Signal processing
	Correlation and spectral density
	Welch's method
	Low Pass Filtering
	Downsampling

	Structural Dynamics
	Modal analysis

	State-space models
	Continuous-time state-space model
	Discrete-time state-space model
	Discrete-time stochastic state-space model

	Operational Modal Analysis
	Covariance-driven Stochastic Subspace Identification
	Reference-based stochastic subspace identification

	Clustering Algorithms
	HDBSCAN

	Automatic Operational Modal Analysis
	Cov-SSI
	Stabilization analysis
	HDBSCAN

	Numerical example
	Method
	Results
	Discussion

	The Hålogaland bridge
	Method
	Monitoring system
	Finite element model
	Data exploration and processing
	Application of AOMA

	Results
	Results from FEM
	Results for AOMA
	Comparison of AOMA and FEM
	Environmental factors influence on modal parameters

	Discussion
	Automatic Operational Modal Analysis
	Comparison of AOMA and FEM
	Environmental effects
	Comparison with OMA

	Conclusion and Further work
	Conclusion
	Further work

	References
	Appendix

