
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Ask Moe Løite

Binary Classification of Credit Card
Users with Logistic Regression,
Gradient Boosted Decision Trees and
Deep Learning

Master’s thesis in Applied Physics and Mathematics
Supervisor: John Sølve Tyssedal
June 2023

Ask Moe Løite

Binary Classification of Credit Card
Users with Logistic Regression,
Gradient Boosted Decision Trees and
Deep Learning

Master’s thesis in Applied Physics and Mathematics
Supervisor: John Sølve Tyssedal
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Preface

This master thesis was written during the spring of 2023 and completes my Master of Science in
Applied Physics and Mathematics at the Norwegian University of Science and Technology (NTNU).
The thesis was written as a part of my academic specialization within the field of statistics under
the guidance of my supervisor, John Sølve Tyssedal. The data for this thesis were provided by
Sparebank1, with Christian Meland as a company supervisor. A basic understanding of statistics,
statistical modeling, along with familiarity with banking and credit card terminology is expected
from the reader.

I would like to thank my supervisor John Sølve Tyssedal, I am grateful for the help and support
provided. Additionally, I would like to thank SpareBank1 for giving me the opportunity to write
this thesis.

i

Abstract

This thesis aims to examine passive credit card users within SpareBank1 and focuses on construct-
ing and refining models capable of predicting which passive customers that have the potential to
become active again. The task at hand involves binary classification, where the response is cat-
egorized as either ”true” or ”false”. The data used for this analysis is provided by SpareBank1
and encompasses data spanning from May 2020 to February 2023.

The predicting models used in this thesis are logistic regression, gradient boosted decision trees
and deep learning. These models were initially built with default values for the hyperparameters,
and then with optimized values for the hyperparameters found by Bayesian optimization. The
predictive models were evaluated by various metrics, including the area under the ROC curve,
Matthews Correlation Coefficient, Balanced Accuracy, and the Brier score. Furthermore, the
importance of features were investigated using both the predictive model libraries and SHAP
values both before and after the hyperparameter tuning process.

Gradient boosted decision trees outperformed both logistic regression and deep learning. Bayesian
optimization increased the predicting performance for gradient boosted decision trees and deep
learning, however it did not increase the predicting performance for logistic regression. The best
AUC (0.6606), Brier score (0.0593), Matthews Correlation Coefficient (0.1190), and Balanced Ac-
curacy (0.6217), where obtained using gradient boosted decision trees. Using optimized hyperpara-
meters did not significantly change the calculated feature importance for the predicting models.
Using SHAP values, it was found that different features emerged as the most important features
across the different predicting models.

ii

Sammendrag

En betydelig del av den vestlige befolkningen eier et kredittkort, men mange av disse personene
bruker ikke aktivt kortene sine. Denne oppgaven har som m̊al å undersøke passive kredittkort-
brukere hos SpareBank1, og fokuserer p̊a å konstruere og forbedre modeller som kan forutsi hvilke
passive kredittkort brukere som har potensial til å bli aktive kredittkort brukere. Oppgaven in-
volverer binær klassifisering, der responsen er kategorisert som enten ”sann” eller ”usann”. Dataene
som brukes i denne analysen er levert av SpareBank1 og omfatter perioden fra mai 2020 til februar
2023.

I denne oppgaven ble prediksjonsmodellene logistisk regresjon, gradient boosted decision trees
og dyp læring brukt. Logistisk regresjon ble valgt p̊a grunnlag av at denne modellen har vært
en av de mest brukte binære regresjonsmodellene de siste 40 årene. Dette skyldes enkelheten
og tolkningsmulighetene, samtidig som den gir gode prediksjonsresultater med minimal bruk av
beregningsressurser. Gradient boosted decision trees ble valgt fordi denne typen modell har vist
seg å være allsidig og overg̊a andre prediksjonsmodeller. Dyp læring ble valgt fordi denne modellen
har vist seg å være en svært effektiv maskinlæringsmodell de siste årene, med mange vellykkede
anvendelser p̊a tvers av ulike omr̊ader.

Prediksjonsmodellene ble først bygget med standardverdier for hyperparametere, og deretter med
optimaliserte verdier for hyperparameterne. For å finne de optimale verdiene for hyperparameterne
ble Bayesiansk optimalisering brukt. Evalueringen av prediksjonsmodellene fokuserte p̊a AUC,
MCC, BACC og Brier-score. Videre ble betydningen av ulike variabler undersøkt ved bruk av b̊ade
prediksjonsmodellbiblioteker og SHAP-verdier. Denne analysen omfattet vurdering av variablenes
betydning b̊ade før og etter hyperparameterjusteringen.

Gradient boosted decision trees fikk bedre resultater enn b̊ade logistisk regresjon og dyp læring.
Bayesiansk optimalisering forbedret prediksjonsytelsen for gradient boosted decision trees og dyp
læring, men ikke for logistisk regresjon. De beste verdiene for AUC (0.6606), Brier-score (0.0593),
MCC (0.1190) og BACC (0.6217) ble oppn̊add med gradient boosted decision trees. Bruk av
optimaliserte hyperparametere endret ikke signifikant beregnet betydning av variablene for pre-
diksjonsmodellene. Ved bruk av SHAP-verdier ble det funnet at de viktigste variablene endret seg
fra prediksjonsmodell til prediksjonsmodell.

iii

Table of Contents

List of Figures viii

List of Tables xiii

1 Introduction 1

1.1 Methodological background . 1

1.2 Outline . 2

2 A Brief Introduction to the Data 3

2.1 The Response . 3

3 Theoretical Background 6

3.1 Statistical learning . 6

3.1.1 Cross-Validation . 7

3.1.2 Gradient Descent . 8

3.1.3 Evaluation Metrics for Classification . 8

3.1.4 SHAP values . 12

3.2 Logistic Regression . 14

3.2.1 Generalized Linear Models . 14

3.2.2 Parameter estimation . 15

3.2.3 L1 and L2 Regularization . 17

3.2.4 Scikit-learn . 17

3.3 Gradient Boosted Decision Trees . 18

3.3.1 Decision Trees . 18

3.3.2 Ensemble learning . 20

3.3.3 Gradient Boosting . 20

3.3.4 Gradient Boosted Decision Trees . 22

iv

3.3.5 L1 and L2 Regularization . 26

3.3.6 LightGBM . 26

3.4 Deep Learning . 27

3.4.1 The Artificial Neuron . 27

3.4.2 The Neural Network . 28

3.4.3 Activation functions . 30

3.4.4 Training the Neural Network . 32

3.4.5 L1 and L2 Regularization . 36

3.4.6 Scikit-learn . 37

3.5 Hyperparameter tuning . 37

3.5.1 Bayesian optimization . 38

3.5.2 Optuna . 44

4 Data Preparation and Visualization 45

4.1 The different datasets . 45

4.2 Visualization . 46

4.3 Pre-Processing . 48

4.3.1 The first two datasets . 48

4.3.2 The last two datasets . 50

5 Methods and Hyperparameters, an Overview 52

5.1 The predicting models . 52

5.1.1 Logistic Regression . 52

5.1.2 Gradient Boosted Decision Trees . 53

5.1.3 Deep Learning . 54

5.2 The procedure . 55

5.2.1 Bayesian Optimization . 56

5.2.2 Threshold Optimization . 56

5.2.3 SHAP values . 56

6 Analysis and Results 57

6.1 Results with default hyperparameters . 57

6.1.1 Investigating threshold importance . 58

6.1.2 Feature Importance . 60

6.2 Logistic Regression Optimization . 61

6.2.1 First Results . 62

v

6.2.2 Second Results . 65

6.2.3 Threshold . 68

6.3 Gradient Boosted Decision Trees Optimization . 68

6.3.1 First Results . 69

6.3.2 Second Results . 71

6.3.3 Threshold . 74

6.4 Deep Learning Optimization . 75

6.4.1 First Results . 75

6.4.2 Second Results . 78

6.4.3 Threshold . 81

6.5 Comparing the Tuned Models . 81

6.5.1 The tuning process . 82

6.5.2 Investigating threshold importance . 83

6.5.3 Feature importance . 85

6.6 Feature Importance through SHAP values . 86

6.6.1 Default predicting models . 87

6.6.2 Tuned predicting models . 89

7 Discussion 91

8 Conclusion 94

8.1 Future Work . 94

A Variables in the different datasets with explanation 99

A.1 The fundamental dataset . 99

A.2 The appliance dataset . 99

A.3 The historical credit card dataset . 100

A.4 The historical transactions dataset . 101

B Correlation plot 103

C Results Logistic Regression 104

C.1 Code Printout . 104

C.2 Optimization Plots First Optimization . 105

C.3 Optimization Plots Second Optimization . 106

D Results Gradient Boosted Decision Trees 108

D.1 Code Printout . 108

vi

D.2 Optimization Plots First Optimization . 109

D.3 Optimization Plots Second Optimization . 113

E Results Deep Learning 115

E.1 Code Printout . 115

E.2 Optimization Plots First Optimization . 116

E.3 Optimization Plots Second Optimization . 118

F Other outprints and plots 120

F.1 Results . 120

F.2 Threshold plots on default models . 121

F.3 Threshold plots on tuned models . 122

F.4 Printouts from the SHAP values . 124

F.4.1 Default Predicting Models . 124

F.4.2 Tuned Predicting Models . 124

G The Code 126

G.1 Packages . 126

G.2 Main Code . 126

G.2.1 New Models . 129

G.3 Logistic Regression Tuning . 130

G.4 Gradient Boosted Decision Trees Tuning . 132

G.5 Deep Learning Tuning . 133

vii

List of Figures

2.1 Number of observations in each month in the original dataset. 4

2.2 The fraction of observations that becomes active in each month. 5

3.1 An illustration that demonstrates the process of performing 5-fold cross-validation 7

3.2 An illustration showing the confusion matrix . 9

3.3 A visual representation that demonstrates the plotting of several ROC curves . . . 12

3.4 A visual representation that demonstrates how a decision tree can perform binary
classification . 18

3.5 A visual representation that shows how every step in boosting can be compared to
hitting a golf ball, gradually moving it closer to the target 21

3.6 A visual representation that shows the main idea behind gradient boosted decision
trees. 23

3.7 An illustration provided to clarify how an objective is used in tree boosting 25

3.8 A comparison between a biological neuron and an artificial neuron 27

3.9 An illustration of a neural network . 28

3.10 An illustration of a multi layered neural network based on mathematical equations 30

3.11 Different sigmoid functions from different parameters 30

3.12 The derivative of the sigmoid function and the tanh function 31

3.13 An illustration showing the difference between random search and grid search. . . 38

3.14 An illustration showing examples of acquisition functions and their settings 44

4.1 Correlations between different variables within the merged dataset prior to pre-
processing . 46

4.2 Density plots of selected explanatory variables . 47

4.3 The figure shows three box plots on how much money is spent in different categories 48

4.4 Figures showing the importance of keeping information about missing values . . . 50

4.5 An illustration made to show how the historical datasets has been changed to later
be merged with the other datasets . 50

viii

6.1 A plot illustrating the impact of various threshold values on the Matthews Correl-
ation Coefficient (MCC) of different predictive models with default hyperparameters 59

6.2 A plot illustrating the impact of various threshold values on the Balanced Accuracy
(BACC) of different predictive models with default hyperparameters 59

6.3 A plot illustrating the impact of various threshold values on the Accuracy of different
predictive models with default hyperparameters . 60

6.4 Feature importance for logistic regression with default hyperparameters 60

6.5 Feature importance for gradient boosted decision trees with default hyperparameters
and threshold . 61

6.6 Optimization history plot for the first Bayesian optimization with logistic regression 63

6.7 Hyperparameter importance plot for the first logistic regression optimization . . . 63

6.8 Slice plot showing the impact the hyperparameter ”solver” has on the first logistic
regression optimization . 64

6.9 Slice plot showing the impact the hyperparameter ”C” has on the first logistic re-
gression optimization . 64

6.10 Optimization history plot for the second Bayesian optimization with logistic regression 65

6.11 Hyperparameter importance plot for the second logistic regression optimization . . 66

6.12 Slice plot showing the impact the hyperparameter ”C” has on the second logistic
regression optimization . 66

6.13 Contour plot showing how different combinations of ”C” and ”max iter” changes
the objective value for logistic regression . 67

6.14 A plot showing how different values of the threshold affect an objective value for
logistic regression . 68

6.15 Optimization history plot for the first Bayesian optimization with gradient boosted
decision trees . 69

6.16 Hyperparameter importance plot for the first gradient boosted decision trees optim-
ization . 70

6.17 Slice plot showing the impact the hyperparameter ”learning rate” has on the first
gradient boosted decision trees optimization . 70

6.18 Slice plot showing the impact the hyperparameter ”min split gain” has on the first
gradient boosted decision trees optimization . 71

6.19 Optimization history plot for the second Bayesian optimization with gradient boos-
ted decision trees . 72

6.20 Hyperparameter importance plot for the second gradient boosted decision trees op-
timization . 73

6.21 Slice plot showing the impact the hyperparameter ”learning rate” has on the second
gradient boosted decision trees optimization . 73

6.22 Contour plot showing how different combinations of ”learning rate” and ”max depth”
changes the objective value for gradient boosted decision trees 74

6.23 A plot showing how different values of the threshold affect an objective value for
gradient boosted decision trees . 74

6.24 Optimization history plot for the first Bayesian optimization with deep learning . . 76

ix

6.25 Hyperparameter importance plot for the first deep learning optimization 76

6.26 Slice plot showing the impact the hyperparameter ”num layers” has on the first deep
learning optimization . 77

6.27 Slice plot showing the impact the hyperparameter ”activation” has on the first deep
learning optimization . 77

6.28 Optimization history plot for the second Bayesian optimization with deep learning 79

6.29 Hyperparameter importance plot for the second deep learning optimization 79

6.30 Slice plot showing the impact the hyperparameter ”num layers” has on the second
deep learning optimization . 80

6.31 Contour plot showing how different combinations of ”num layers” and ”max iter”
changes the objective value for gradient boosted decision trees 80

6.32 A plot showing how different values of the threshold affect an objective value for
deep learning . 81

6.33 A plot illustrating the impact of various threshold values on the Matthews Correl-
ation Coefficient (MCC) of different predictive models with optimal hyperparameters 84

6.34 A plot illustrating the impact of various threshold values on the Balanced Accuracy
(BACC) of different predictive models with optimal hyperparameters 84

6.35 A plot illustrating the impact of various threshold values on the Accuracy of different
predictive models with optimal hyperparameters 85

6.36 Feature importance for logistic regression with optimal hyperparameters 85

6.37 Feature importance for gradient boosted decision trees with optimal hyperparameters 86

6.38 A figure showcasing the SHAP values for the default logistic regression model . . . 88

6.39 A figure showcasing the SHAP values for the default gradient boosted decision trees
model . 88

6.40 A figure showcasing the SHAP values for the default deep learning model 89

6.41 A figure showcasing the SHAP values for the tuned logistic regression model 90

B.1 Correlations in the merged dataset between the fundamental dataset and the appli-
ance dataset after pre-processing . 103

C.1 Printout of the best hyperparameter values and the execution time for the first
optimization with Logistic Regression . 104

C.2 Printout of the best hyperparameter values and the execution time for the second
optimization with Logistic Regression . 104

C.3 Slice plot showing the impact the hyperparameter ”penalty” has on the first Logistic
Regression optimization . 105

C.4 Slice plot showing the impact the hyperparameter ”max iter” has on the first Logistic
Regression optimization . 105

C.5 Slice plot showing the impact the hyperparameter ”tol” has on the first Logistic
Regression optimization . 106

C.6 Slice plot showing the impact the hyperparameter ”max iter” has on the second
Logistic Regression optimization . 106

x

C.7 Slice plot showing the impact the hyperparameter ”tol” has on the second Logistic
Regression optimization . 107

D.1 Printout of the best hyperparameter values and the execution time for the first
optimization with Gradient Boosted Decision Trees 108

D.2 Printout of the best hyperparameter values and the execution time for the second
optimization with Gradient Boosted Decision Trees 108

D.3 Slice plot showing the impact the hyperparameter ”colsample bytree” has on the
first Gradient Boosted Decision Trees optimization 109

D.4 Slice plot showing the impact the hyperparameter ”max depth” has on the first
Gradient Boosted Decision Trees optimization . 109

D.5 Slice plot showing the impact the hyperparameter ”reg alpha” has on the first Gradi-
ent Boosted Decision Trees optimization . 110

D.6 Slice plot showing the impact the hyperparameter ”subsample” has on the first
Gradient Boosted Decision Trees optimization . 110

D.7 Slice plot showing the impact the hyperparameter ”num leaves” has on the first
Gradient Boosted Decision Trees optimization . 111

D.8 Slice plot showing the impact the hyperparameter ”reg lambda” has on the first
Gradient Boosted Decision Trees optimization . 111

D.9 Slice plot showing the impact the hyperparameter ”n estimators” has on the first
Gradient Boosted Decision Trees optimization . 112

D.10 Slice plot showing the impact the hyperparameter ”colsample bytree” has on the
first Gradient Boosted Decision Trees optimization 112

D.11 Slice plot showing the impact the hyperparameter ”min child samples” has on the
first Gradient Boosted Decision Trees optimization 113

D.12 Slice plot showing the impact the hyperparameter ”max depth” has on the second
Gradient Boosted Decision Trees optimization . 113

D.13 Slice plot showing the impact the hyperparameter ”n estimators” has on the second
Gradient Boosted Decision Trees optimization . 114

E.1 Printout of the best hyperparameter values and the execution time for the first
optimization with Deep Learning . 115

E.2 Printout of the best hyperparameter values and the execution time for the second
optimization with Deep Learning . 115

E.3 Slice plot showing the impact the hyperparameter ”alpha” has on the first Deep
Learning optimization . 116

E.4 Slice plot showing the impact the hyperparameter ”learning rate init” has on the
first Deep Learning optimization . 116

E.5 Slice plot showing the impact the hyperparameter ”max iter” has on the first Deep
Learning optimization . 117

E.6 Slice plot showing the impact the hyperparameter ”neurons per layer” has on the
first Deep Learning optimization . 117

E.7 Slice plot showing the impact the hyperparameter ”tol” has on the first Deep Learn-
ing optimization . 118

xi

E.8 Slice plot showing the impact the hyperparameter ”max iter” has on the second
Deep Learning optimization . 118

E.9 Slice plot showing the impact the hyperparameter ”neurons per layer” has on the
second Deep Learning optimization . 119

F.1 Results from classification metrics on all models. To the left default hyperparameters
and threshold are used. To the right tuned hyperparameters and threshold are used. 120

F.2 Confusion matrices for all the models. To the left default hyperparameters and
threshold are used. To the right tuned hyperparameters and threshold are used. . . 121

F.3 A plot illustrating the impact of various threshold values on the Sensitivity of dif-
ferent predictive models with default hyperparameters 121

F.4 A plot illustrating the impact of various threshold values on the Specificity of dif-
ferent predictive models with default hyperparameters 122

F.5 A plot illustrating the impact of various threshold values on the Sensitivity of dif-
ferent predictive models with optimal hyperparameters 123

F.6 A plot illustrating the impact of various threshold values on the Specificity of dif-
ferent predictive models with optimal hyperparameters 123

F.7 A figure showcasing the SHAP values for the tuned deep learning model 124

F.8 Runtime for getting the SHAP values from the default Logistic Regression model . 124

F.9 Runtime for getting the SHAP values from the default Gradient Boosted Decision
Trees model . 124

F.10 Runtime for getting the SHAP values from the default Deep Learning model . . . 124

F.11 Runtime for getting the SHAP values from the tuned Logistic Regression model . . 124

F.12 Anticipated runtime for getting the SHAP values from the tuned Gradient Boosted
Decision Trees model . 125

F.13 Runtime for getting the SHAP values from the tuned Deep Learning model 125

xii

List of Tables

2.1 The average amount of people that becomes active or remain passive in each month. 3

3.1 An example of how Shapley values are calculated 14

4.1 A summary of all the different datasets. 45

5.1 The hyperparameters selected for tuning logistic regression, along with their default
values, data type, and domain. 53

5.2 The hyperparameters selected for tuning gradient boosted decision trees, along with
their default values, data type, and domain. 54

5.3 The hyperparameters selected for tuning deep learning, along with their default
values, data type, and domain. 55

6.1 Confusion matrix from logistic regression. The training of the model was performed
on the training set using default hyperparameters, and the model was evaluated on
the test set using a default threshold of 0.064. 0 represents remaining passive while
1 represents becoming active. 57

6.2 Confusion matrix from gradient boosted decision trees. The training of the model
was performed on the training set using default hyperparameters, and the model was
evaluated on the test set using a default threshold of 0.064. 0 represents remaining
passive while 1 represents becoming active. 58

6.3 Confusion matrix from deep learning. The training of the model was performed on
the training set using default hyperparameters, and the model was evaluated on the
test set using a default threshold of 0.064. 0 represents remaining passive while 1
represents becoming active. 58

6.4 Results from classification metrics on the test set for all models with default hyper-
parameters and threshold. 58

6.5 The hyperparameters with their search domain for the first logistic regression hy-
perparameter tuning. 62

6.6 The hyperparameters with their optimal values for the first logistic regression hy-
perparameter tuning. 62

6.7 The hyperparameters with their respective search domain for the second logistic
regression hyperparameter tuning. 65

xiii

6.8 The hyperparameters with their optimal values for the second logistic regression
hyperparameter tuning. 65

6.9 The hyperparameters with their respective search domain for the first gradient boos-
ted decision trees hyperparameter tuning. 68

6.10 The hyperparameters with their optimal values for the first gradient boosted decision
trees hyperparameter tuning. 69

6.11 The hyperparameters with their respective search domain for the second gradient
boosted decision trees hyperparameter tuning. 71

6.12 The hyperparameters with their optimal values for the second gradient boosted
decision trees hyperparameter tuning. 72

6.13 The hyperparameters with their respective search domain for the first deep learning
hyperparameter tuning. 75

6.14 The hyperparameters with their optimal values for the first deep learning hyper-
parameter tuning. 75

6.15 The hyperparameters with their respective search domain for the second deep learn-
ing hyperparameter tuning. 78

6.16 The hyperparameters with their optimal values for the second deep learning hyper-
parameter tuning. 78

6.17 Confusion matrix from logistic regression. The training of the model was performed
on the training set using optimal hyperparameters, and the model was evaluated on
the test set using a optimal threshold of 0.056. 0 represents remaining passive while
1 represents becoming active. 81

6.18 Confusion matrix from gradient boosted decision trees. The training of the model
was performed on the training set using optimal hyperparameters, and the model was
evaluated on the test set using a optimal threshold of 0.060. 0 represents remaining
passive while 1 represents becoming active. 82

6.19 Confusion matrix from deep learning. The training of the model was performed on
the training set using optimal hyperparameters, and the model was evaluated on
the test set using a optimal threshold of 0.062. 0 represents remaining passive while
1 represents becoming active. 82

6.20 Results from classification metrics on the test set for all predicting models with
optimal hyperparameters and threshold. 82

6.21 Information regarding the tuning process for each predicting model. The best ob-
jective value and the runtime is displayed for both the first and the second Bayesian
optimization . 83

6.22 The difference in the results from classification metrics on all models before and
after tuning. 83

6.23 The execution time for getting the SHAP values for the different predictive models,
both with and without optimized hyperparameters 87

A.1 Explanation of all the variables in the fundamental dataset 99

A.2 Explanation of all the variables in the appliance dataset 99

A.3 Explanation of all the variables in the historical credit card dataset 100

A.4 Explanation of all the variables in the historical transactions dataset 101

xiv

Chapter 1
Introduction

The use of credit cards has become an important part of the modern world, with many people
relying on them for various transactions. However, the origins of the credit card usage can be
traced back to the United States during the 1920s. During this time, individual firms such as oil
companies and hotel chains began to issue credit cards to their customers for purchases made at
their respective outlets [41].

Despite the introduction of these company-specific credit cards, it wasn’t until 1950 that the first
universal credit card was founded. This innovation is credited to Diners Club, which allowed
customers to use their credit cards at a variety of different establishments beyond those owned by
a particular company. The founding of Diners Club is considered a significant milestone in the
history of credit cards as it paved the way for the widespread adoption of credit cards by consumers
and businesses alike.

Today, credit cards are used by millions of people around the world for purchases of all kinds,
ranging from everyday essentials to major investments. With the rise of digital payments and
contactless technology, credit cards continue to evolve to meet the changing needs of consumers in
the 21st century. According to a report conducted by SIFO [35], in 2019, 87 percent of the adult
population in Norway possessed one or more credit cards.

The source of revenue for credit card companies comes from collecting various fees, among which
interest charges are the most significant. If a user fails to pay back the balance in full each month,
they are charged interest. Late fees and annual fees also contribute to the revenue, but to a lesser
extent. Consequently, credit card companies may potentially suffer losses if cardholders do not use
their credit cards. Thus, it can be advantageous for companies offering credit cards to anticipate
which of the inactive cardholders that will continue to remain inactive.

A cardholder who has not used their card within the last six months is classified as a passive user,
while a cardholder who has used their card within the last six months is categorized as an active
user.

1.1 Methodological background

Predicting binary outcomes is an important task in many modern world aspects. Advanced model-
ing techniques have the potential to provide more precise predictions of binary outcomes compared
to classical techniques. Logistic regression has for a long time been the foundation of most pre-
diction models with binary outcomes, as it is a reliable method for binary classification. Logistic
regression offers several advantages, such as ease of implementation, low computational cost and
interpretable results. Moreover, in many cases, the predictive performance of more advanced mod-
els is not substantially better than that of logistic regression. In some situations, particularly when

1

data is scarce, or when there is a need to use minimal computing power, logistic regression can
even outperform more sophisticated methods [40].

Over the past decades, an increasing amount of data has been converted into digital form, while
computing power has experienced a remarkable increase. As a result, there has been a growing
tendency among people to move away from traditional statistical learning and adopt machine
learning instead. Additionally, machine learning algorithms have gained significant traction in
research, and many cutting-edge algorithms are now accessible to the public for free.

Machine learning is essentially a scientific exploration of statistical models and intricate algorithms
that primarily rely on patterns and inference. With the promise of capturing non-linearities and
interactions in the data more effectively than classical statistical processes, machine learning has
the potential to deliver superior results.

Deep learning models have also received a lot of attention and expectations. These models can learn
hierarchical representations of the data, which can capture complex relationships between features.
As a result, neural networks have achieved state-of-the-art performance in many classification tasks.

Although machine learning has many benefits, there are also some drawbacks. For example,
modern techniques greater flexibility means that for reliable estimation, there may be needed
larger sample sizes. Additionally, machine learning algorithms can be impractical due to the need
to adjust hyperparameters, their high computational cost, and the fact that the resulting model
may be difficult to interpret.

1.2 Outline

In this thesis real world credit card data has been provided by Sparebank1. The task at hand is to
predict which passive credit card users that will convert into active users month for month. This
task involves binary classification, where a response of 1 denotes a user who becomes active, and
0 denotes one who remains passive. To accomplish this goal, this thesis employs three predicting
models; logistic regression, gradient boosted decision trees, and deep learning. Logistic regression
is chosen due to it being one of the most used binary classification models for the last 40 years,
which is because of its simplicity and interpretability, while also producing good predicting results
with a minimum use of computational resources. Gradient boosted decision trees is chosen because
it has been shown to be versatile, and outperform other predicting models when presented with
much data. Deep learning is chosen as it has proven to be a highly effective machine learning
technique in recent years, with numerous successful applications across a diverse range of fields.
Furthermore, Bayesian optimization will be employed to optimize the hyperparameters of each
prediction model for optimal results.

The structure of this thesis is as follows: Chapter 2 gives a short introduction to the data provided
by Sparebank1, and the response variable. Chapter 3 provides the relevant theoretical background
for the prediction and evaluation methods used, along with the topic of hyperparameter tuning
and Bayesian optimization. Chapter 4 includes investigation and modification of the dataset, this
encompasses data visualization, feature engineering, and other pre-processing techniques. Chapter
5 gives an overview of the methods used for training and testing. This includes a description of
each of the hyperparameters that is being optimized in the training. Chapter 6 presents the main
results. Chapter 7 covers the discussion of results, while Chapter 8 provides concluding remarks.

2

Chapter 2
A Brief Introduction to the Data

Sparebank1 provided the datasets used in this thesis. Originally four datasets were given, where one
of them forms the basis of the predicting task. The three remaining datasets consists of historical
credit card usage, historical transactions, along with data gathered when the customer applied for
the given credit card. Combining all four datasets demands some pre-processing, however it is the
basis dataset that is the fundamental dataset for the prediction. The other three datasets provides
additional information.

The fundamental dataset consists of 262773 observations and 12 variables. The variables contain
information regarding the customer, such as what sex the customer are, the age of the customer,
at what services the customer got their credit card, the first and last time the customers used their
credit card, the period the prediction takes place, and so on. Appendix A contains a comprehensive
list of all the variables in all the original datasets along with their respective explanations.

Each observation in the dataset represents a single customer at a given date. The dates range from
May 2020 all the way to February 2023.

2.1 The Response

Each observation will have the response variable ”AktivEtterPassiv”. This variable is a binary
response variable that tells if a customer has become active in a given month. It will be one if
a customer becomes active in that one month period and zero if the customer remains passive in
that one month period.

This dataset consists of passive credit card users only, so if a customer becomes active in a given
month, that customer will then not be included in the dataset for the next month. Customers that
do not use their credit card for six months are classified as passive users, and they will then be
included in the dataset.

It can be observed from Table 2.1 that only a small fraction of the observations become active each
month. This means that the majority of the customers that are passive remains passive.

Table 2.1: The average amount of people that becomes active or remain passive in each month.

Type Remaining passive(0) Becoming active(1) Total
Absolute 246020 16753 262773
Percentage 93.6 % 6.4 % 100 %

3

20
20

05
31

20
20

06
30

20
20

07
31

20
20

08
31

20
20

09
30

20
20

10
31

20
20

11
30

20
20

12
31

20
21

01
31

20
21

02
28

20
21

03
31

20
21

04
30

20
21

05
31

20
21

06
30

20
21

07
31

20
21

08
31

20
21

09
30

20
21

10
31

20
21

11
30

20
21

12
31

20
22

01
31

20
22

02
28

20
22

03
31

20
22

04
30

20
22

05
31

20
22

06
30

20
22

07
31

20
22

08
31

20
22

09
30

20
22

10
31

20
22

11
30

20
22

12
31

20
23

01
31

20
23

02
28

Date

0

2000

4000

6000

8000

10000

12000

14000

16000
Nu

m
be

r o
f o

bs
er

va
tio

ns
 e

ac
h

m
on

th

Figure 2.1: A figure showing the number of observations in each month. The dates are on the
format yyyymmdd.

Figure 2.1 shows the amount of observations in each month. One can notice that the number of
observations only increases each month, with one exeption; from August 2022 to September 2022
there is a small, almost unnoticeable decrease in observations. This decline is believed to come
from the fact that August 2022 is the month in the dataset where the most amount of people
became active again. These customers would thus exit the dataset.

4

20
20

05
31

20
20

06
30

20
20

07
31

20
20

08
31

20
20

09
30

20
20

10
31

20
20

11
30

20
20

12
31

20
21

01
31

20
21

02
28

20
21

03
31

20
21

04
30

20
21

05
31

20
21

06
30

20
21

07
31

20
21

08
31

20
21

09
30

20
21

10
31

20
21

11
30

20
21

12
31

20
22

01
31

20
22

02
28

20
22

03
31

20
22

04
30

20
22

05
31

20
22

06
30

20
22

07
31

20
22

08
31

20
22

09
30

20
22

10
31

20
22

11
30

20
22

12
31

20
23

01
31

20
23

02
28

Date

0.00

0.02

0.04

0.06

0.08
Fr

ac
tio

n
th

at
 b

ec
om

es
 a

ct
iv

e

Figure 2.2: A figure showing the fraction of observations that becomes active in each month. The
dates are on the format yyyymmdd.

Figure 2.2 shows the fraction of passive customers that becomes active in each month. One can
notice that there is sort of a pattern. The fraction of people that becomes active increases in the
warmer months, while it decreases in the colder months. One can also notice that the base level
of customers that becomes active are more or less constant throughout the prediction period.

5

Chapter 3
Theoretical Background

This chapter will seek to explain the theoretical foundations of the methods used in this thesis.
There will first be introduced some basic terms in statistical learning. Logistic regression, gradi-
ent boosted decision trees and deep learning will then be covered. Hyperparameter tuning with
Bayesian optimization will be presented at the end.

Some part of this chapter draws upon the theoretical framework of my project thesis [27] written
in the fall of 2022. Because certain illustrations and formulas were deemed significant enough to
be included yet again, this chapter will contain some repetition in the form of figures and formulas.

3.1 Statistical learning

The primary objective of statistical learning theory is to establish a framework for investigating the
problem of inference, which encompasses gaining knowledge, making predictions, making decisions,
or constructing models from a given dataset [29]. Statistical learning is generally categorized into
two broad groups: unsupervised and supervised learning. Unsupervised learning concerns itself
with comprehending data points that consist of explanatory variables exclusively, without a linked
label. The purpose of unsupervised learning is to attempt to describe how the data are related and
structured, and to identify meaningful patterns. In contrast, supervised learning tries to explain
how an output variable is correlated with its associated explanatory variables, establish a model,
and make predictions about the outcome. This thesis will focus on supervised learning.

In supervised learning the primary objective is to identify a function F that can predict a response
variable y using explanatory variables x, this can be represented as

y = F (x). (3.1)

The explanatory variables x are typically a vector of multiple components.

The primary focus of this thesis is to explore various methods for predicting real-world data. In
many real-world scenarios, it is often impossible to make perfect predictions of an outcome from
a set of variables, this is due to the presence of noise and other sources of variability. Therefore,
when performing predictions using such data, there will almost always be some degree of error.
One of the key objectives of this thesis is to compare and evaluate different predictive models to
determine the one that yields the best results. To achieve this, it is necessary to estimate the error
associated with each model accurately.

One commonly used method for estimating the error associated with a predictive model is to
randomly split the available data into two distinct sets: a training set and a test set. The training

6

set is then used to train the predictive model F , while the test set is held out for evaluating the
model’s performance.

Once the model F has been trained on the training set, it can be used to predict the response
variable y for the explanatory variables x in the test set. The predicted response ŷ can then be
compared to the true response y using an error function to obtain an estimate of the model’s
accuracy on the test data.

3.1.1 Cross-Validation

In situations where the data is rich, it can be beneficial to split the dataset into three parts: a
training set, a validation set, and a test set. After fitting a model on the training set, the validation
set can be used as an evaluation to determine if the model needs to be modified, or if it meets the
desired results. Finally, the test set is used for the final evaluation of the model’s performance.

The thought of evaluation can be taken further to something called cross-validation. The two
primary forms of cross-validation are K-fold cross-validation and leave-one-out cross-validation,
where leave-one-out cross-validation is a special case of K-fold cross-validation.

In K-fold cross-validation, the training data is split into K equally sized groups. One of the groups
is used for evaluation, while the remaining K−1 groups are used for training a model. This process
is repeated with a different group as the evaluation group until all K groups have been used for
evaluation. The prediction error from each evaluation is then averaged to obtain an estimate of
the model’s performance. This procedure is illustrated in Figure 3.1.

Figure 3.1: An illustration that demonstrates the process of performing 5-fold cross-validation.
Taken from [13].

The choice of the optimal number of folds K in K-fold cross-validation is a trade-off between
prediction performance and computational cost. Increasing K typically leads to better predictions
but also increases the computational cost. A common value for K is 5, which strikes a good balance
between prediction performance and computational efficiency.

However, if the dataset is small or computational cost is not a concern, leave-one-out cross-
validation can be used, where K = N , with N being the number of observations in the training
set. In leave-one-out cross-validation, each observation is used as the validation set exactly once,
which can reduce bias in the estimate of the prediction error. However, it can have high variance

7

and be sensitive to outliers.

The main advantage of cross-validation is that it allows for a more reliable estimate of a model’s
performance on new data than simple train-test splitting. Cross-validation also enables the tuning
of model hyperparameters.

3.1.2 Gradient Descent

Gradient descent is a widely used optimization algorithm that helps find the local minimum or
maximum of a given function. In the context of machine learning, this algorithm is commonly used
to minimize a cost or loss function by iteratively updating a set of parameters. At each iteration,
the algorithm computes the gradient of the loss function with respect to the parameters and moves
in the direction of the steepest descent until a local minimum is reached.

The basics of the gradient decent algorithm follow these steps. At the start a set of parameters p
are often given or randomly initiated. The gradient descent algorithm then calculates the next set
of parameters using the current parameters, the gradient of the current parameters, and a stepsize
hyperparameter ρ:

pn+1 = pn − ρ∇F (pn) (3.2)

The hyperparameter ρ in the gradient descent algorithm is commonly known as the step size. This
hyperparameter often controls the learning rate of more advanced machine learning algorithms.
Choosing an appropriate learning rate is often very important for achieving good performance of
the model.

3.1.3 Evaluation Metrics for Classification

In supervised learning, the ultimate goal is to build a model that accurately can predict on in-
dependent test data. However, in real-world scenarios there will almost always be some kind of
error present. Therefore, it is crucial to evaluate the performance of the model. By measuring the
model’s performance on an independent test set, one can determine the accuracy of the model’s
predictions and make informed decisions about its suitability for a given task. By using appropri-
ate evaluation metrics, one can build models that are optimized for the specific task at hand and
that provide reliable, accurate predictions for a wide range of inputs.

In binary classification, the task is to assign each data point to one of two categories, often labeled
as positive (1) or negative (0). Many binary classification models work by predicting a probability
p ∈ [0, 1], which represents the estimated likelihood that a given data point belongs to the positive
class. To make a final classification decision, a threshold is chosen such that all data points with
a predicted probability greater than the threshold are classified as positive, while those with a
probability less than or equal to the threshold are classified as negative.

There are two types of binary classification metrics that are used to evaluate the performance of
such models. The first type of metric is designed to be used with binary data where a threshold is
chosen. These metrics provide information about the model’s ability to correctly classify positive
and negative instances based on a specific threshold value.

The second type of binary classification metrics is designed to evaluate the model’s performance
irrespective of the specific classification threshold chosen. These metrics are based on the ranking
of the predicted probabilities p, rather than the final classification of each observation.

Evaluation with threshold

Evaluating a model when a threshold is chosen and the predictions are binary requires the use of
metrics that are all based on the confusion matrix [10]. The confusion matrix is a 2 × 2 matrix

8

commonly used to show the count of correct and incorrect predictions. It includes four different
outcomes: true positive (TP), true negative (TN), false positive (FP), and false negative (FN). TP
represents a positive prediction correctly classified, TN represents a negative prediction correctly
classified, FP represents a positive prediction incorrectly classified, and FN represents a negative
prediction incorrectly classified. Figure 3.2 displays the confusion matrix in an intuitive way. By
using the confusion matrix, many different evaluation metrics can be calculated.

Figure 3.2: An illustration of the confusion matrix. Taken from [22].

Accuracy

A commonly used metric to evaluate the performance of a binary classification model is accuracy,
which calculates the proportion of correct predictions among all predictions made. Accuracy is
defined as

Accuracy =
TP + TN

TN + TP + FP + FN
. (3.3)

Accuracy is a popular go-to metric as it provides a simple and intuitive measure of the overall
performance of the model, as it shows just how accurate the model is. However, accuracy can
be misleading if the data is imbalanced. Then, it is easy to get a high accuracy score by simply
classifying all observations as belonging to the majority class.

Sensitivity and Specificity

Sensitivity or True Positive Rate (TPR) measures the proportion of actual positive observations
that have been classified as positive by the model. Sensitivity is defined as

TPR =
TP

TP + FN
. (3.4)

Sensitivity is a crucial metric in situations where missing a positive response could have severe
consequences, such as identifying a dangerous disease.

9

Specificity or True Negative Rate (TNR) on the other hand measures the proportion of actual
negative observations that have been classified as negative by the model. Specificity is defined as

TNR =
TN

TN + FP
. (3.5)

In situations where identifying a negative response carries high stakes, Specificity plays a critical
role as a metric.

While both Specificity and Sensitivity can be important metrics to use, relying solely on either one
of them can lead to incomplete evaluation of the model’s performance, as these metrics tell only a
part of the whole prediction.

Type I and II Error

Type I error, or false positive rate (FPR) measures the proportion of actual negative observations
that have been classified as positive by the model, and is defined as

FPR =
FP

FP + TN
. (3.6)

Type II error, or false negative rate (FNR) measures the proportion of actual positive observations
that have been classified as negative by the model, and is defined as

FNR =
FN

FN + TP
. (3.7)

Both of these metrics are rarely used alone, but they can be important in cases where monitoring
errors is crucial.

Each of the classification metrics mentioned above has a range of values between 0 and 1. Generally,
a higher value for accuracy, specificity, and sensitivity indicates a better predictive model, while a
higher value for Type I and II error typically indicates a worse predictive model.

Balanced Accuracy

Balanced Accuracy (BACC) is a metric that uses the mean value of the sensitivity metric and the
specificity metric. Balanced Accuracy is defined as

BACC =
1

2
(Specificity + Sensitivity) =

1

2

(
TN

TN + FP
+

TP

TP + FN

)
(3.8)

The Balanced Accuracy falls within the range of [0, 1], and a greater value indicates better pre-
dictive capability. Balanced Accuracy is particularly helpful for imbalanced data sets, as a higher
score suggests strong performance in all areas of the confusion matrix.

Matthews Correlation Coefficient

The Matthews Correlation Coefficient (MCC) is a metric that quantifies the correlation between
predicted classes and actual data, and it can be expressed as

MCC =
TP · TN - FP · FN√

(TN + FP)(TP + FN)(TN + FP)(TN + FN)
. (3.9)

10

The Matthews Correlation Coefficient falls within the range of [−1, 1], where 1 is a perfect predic-
tion and -1 is the opposite. A value of 0 indicates a random classifier.

The Matthews Correlation Coefficient has several advantages [10]. It performs well with imbalanced
data and is insensitive to the threshold value. A high MCC indicates excellent performance across
all the outcomes of the confusion matrix.

Evaluation without threshold

When the threshold is not set, there are plenty of metrics available to assess the model’s perform-
ance. The objective is to evaluate the probabilistic predictions p compared to the actual values
y.

Brier Score

The Brier Score (BS) is a measure of the accuracy of probabilistic predictions, which calculates the
mean squared difference between predicted probabilities and the actual outcomes of events. The
Brier Score is defined as

BS =
1

N

N∑
i=1

(yi − pi)
2. (3.10)

The Brier score ranges from 0 to 1, with 0 indicating perfect predictions. The Brier score is
commonly used to calibrate probabilistic predictions, which involves adjusting the predicted prob-
abilities to better reflect the true probabilities of the events. This can help to improve the overall
accuracy of the predictions and reduce the potential for bias or error in the model.

AUC and ROC Curve

The ROC curve is a graphical representation of the relationship between the true positive rate
(TPR) and false positive rate (FPR). This involves plotting the TPR and FPR at each threshold
value on a chart to gain a understanding of their tradeoff, as showed in Figure 3.3.

11

Figure 3.3: A visual representation that demonstrates the plotting of several ROC curves. Taken
from [39]

A model’s performance can be evaluated by analyzing its TPR and FPR values, with high TPR
and low FPR indicating a good model. The ROC AUC score, commonly called AUC, is calculated
by measuring the area under the ROC curve, hence providing a numerical representation of the
model’s performance. This score ranges from 0 to 1, with higher values indicating better model
performance, and where a completely random classifier would have an AUC of 1

2 . The AUC is
a popular and reliable metric that provides a balanced evaluation of the model’s performance for
both positive and negative classes.

3.1.4 SHAP values

SHAP (SHapley Additive exPlanations) values are a values used to explain the output of any
machine learning model by determining the contribution of each feature to the model’s predictions
[5]. SHAP values was first proposed by Lundberg and Lee in 2017, and are based on the Shapley
values from cooperative game theory introduced by Lloyd Shapley back in 1953.

One single Shapley value can be understood as the average incremental contribution towards the
prediction made by a observation of a single feature, taking into account all conceivable combina-
tions of features. In essence, Shapley values are the evaluation of the significance of each feature
by measuring its impact on the model’s prediction given all the other features.

Consider a predicting model with k features, such that the feature values are given by x =(
x1,x2, . . . ,xk

)
[38]. Furthermore, consider how to compute the significance of one particular

feature, call this feature I. First, let S be a combination of features such that S ⊆ Q \ {I}, where
Q \ {I} is the set of all the k features except the feature I. Now, to compute the effects of the
feature I, let us consider two predictions from the same model: The first one is a prediction with
the combination of features S and the feature I, denoted F (xS∪I). The second one is a prediction
with just the features S, denoted F (xS). The two predictions can now be compared through
subtraction to see how the much the model gets influenced by the feature I,

F (xS∪I)− F (xS). (3.11)

12

When considering the impact of excluding a specific feature from the model, it is essential to
take into account that the results one get depends upon the other features in the model. This
means that to fully understand how much the feature I contributes to the model, one have to be
considering all possible combinations of features in Q \ {I}. All these combinations are summed
together and weighted like this

∑
S⊆Q\{I}

|S|!(k − |S| − 1)!

k!
. (3.12)

Here |S| denotes the amount of features in S. This weighing acts as a averaging over all possible
feature orderings. Now, let the Shapley value for feature I be denoted ϕI . This is how much the
feature I contributes to the model output. The contribution for feature I is as a result given by

ϕI =
∑

S⊆Q\{I}

|S|!(k − |S| − 1)!

k!

(
F (xS∪I)− F (xS)

)
. (3.13)

This can be done for all the features in the dataset. The resulting Shapley values represent the
degree of influence of each feature on the model output. Positive Shapley values indicate that
a feature positively contributes to the model output, while negative Shapley values indicate the
opposite.

To get a further understanding of how a Shapley algorithm works, let us consider an example of a
model with three features, A, B and C. One can now consider the following outputs,

F (xA) = 5, F (xB) = 3, F (xC) = −1,

F (xA∪B) = 7, F (xA∪C) = 3, F (xB∪C) = 0,

and,

F (xA∪B∪C) = 8.

Because there are three features, there are 3! ways of arranging these features if one were to put all
three of them after one another, this is displayed in Table 3.1. For each of these arrangements one
can calculate how much each feature contributes to the model prediction. Let us consider the first
row in Table 3.1, F (xA) = 5, so feature A alone contributes 5. Including feature B in a coalition
where A is already there, gives F (xA∪B) = 7, now one can see how much feature B adds to the
predicted value: F (xA∪B)− F (xA) = 7− 5 = 2. To include yet another feature, feature C, yields
an effect of 1 since F (xA∪B∪C)− F (xA∪B) = 8− 7 = 1.

These contributions are again multiplied with different weights depending on how many features
that are in S. In this example |S| ∈ {0, 1, 2}, and as a result, the weights are { 13 ,

1
6 ,

1
3}. There are

now four different ways for assessing feature A, these are {0 ← A,B ← A,C ← A,B ∪ C ← A}.
This results in that the Shapley value for A becomes,

ϕA =
5

3
+

4

6
+

4

6
+

8

3
=

17

3
.

Notice that there are only four parts in the equation above, while there are six numbers beneath
Feature A in Table 3.1. This is because there is a repetition in two of the processes that creates
these values. One could just take the sum of every contribution and divide it by 6 to get the same
Shapley values as the method described above. However, as the amount of features increases, this
will be very computational expensive, and as a result the method above is the preferred one.

13

Table 3.1: An example of how Shapley values are calculated

Feature A Feature B Feature C
A ← B ← C 5 2 1
A ← C ← B 5 5 -2
B ← A ← C 4 3 1
B ← C ← A 8 3 -3
C ← A ← B 4 5 -1
C ← B ← A 8 1 -1

Sum 34 19 -5

SHAP value (ϕ) 17
3

19
6 − 5

6

Shap

”shap” is a popular open source python library used for interpreting and explaining machine learn-
ing models. It provides a unified framework for understanding the importance and contribution
of each feature in a predictive model’s output. The primary goal of ”shap” is to help users gain
insights into their model’s predictions and understand the underlying factors driving those predic-
tions. In [30] one can find comprehensive information on shap’s implementation of SHAP values.
This includes installation instructions, package details and visualization tools.

SHAP values builds on the same principles as the Shapley values, however, finding exact Shapley
values for datasets with many features can become computationally impossible to do. SHAP values
acts as an approximation of the Shapley values. SHAP values for a single model can be visualized
in shap, this visualization can among other show the rank of the features based on their absolute
impact on the model output. Other visualizations can show how high and low feature values can
impact the predicted output. This is a valuable method to get an understanding of how the features
influences a predicting model. However SHAP values also have their drawbacks, they are often
very computational costly to produce for advanced predicting models with many features.

3.2 Logistic Regression

Logistic regression is a statistical technique used to examine the relationship between a binary
target variable and one or more predictors, which can be either categorical or continuous. Under-
standing binary outcomes has been a critical aspect of statistical analysis, and logistic regression
has been the preferred model for binary regression since 1970 [1]. The model is not computationally
heavy, and also allows for a straightforward interpretation of each predictor variable.

3.2.1 Generalized Linear Models

Generalized linear models serve as the basis for understanding logistic regression. These models
extend the concept of ordinary linear regression by linking the mean of the response variable to
the predictors using a link function, while also enabling the variance of each observation to be a
function of its mean.

The response variable in generalized linear models is typically represented as yi, where i ranges from
1 to n, with n being the number of predictors. It is assumed that y follows a specific exponential
distribution family, which is characterized by a corresponding probability density function,

P (yi; θi, ϕi) = h(yi, ϕi)exp

(
yiθi − κ(θi)

ϕi

)
. (3.14)

14

The exponential distribution family used in generalized linear models consists of several paramet-
ers, including the canonical parameter θi, the dispersion parameter ϕi, the normalizing function
h(yi, ϕi), and the known second derivative function κ(θi).

The mean of the exponential family can be expressed as

E(yi) = µi =
d(κ(θi))

dθi
, (3.15)

and the variance as

V ar(yi) = ϕi
d2(κ(θi))

(dθi)2
. (3.16)

Generalized linear models also include a systematic component known as η, which is defined as

ηi =

p∑
j=1

βjxij , (3.17)

where p denotes the number of features in the dataset.

One can use a link function, g(µi) = ηi, to connect η with the mean. In generalized linear models,
the primary objective is to compute the estimates for βj . This results in an estimation of g(µ),
which in turn provides an estimate for µ.

Logistic regression involves a binary response, and it assumes that y follows a binomial (or
Bernoulli) distribution. One can examine the scenario in which the distribution is binomial,

yi = Bin(ni = 1, πi), (3.18)

where πi is the conditional probability, which is defined as

πi = E(yi) = P (yi = 1|xi). (3.19)

A generalized linear model for the binomial distribution can be constructed since the response
follows a distribution that is part of the exponential family,

xT
i β = ηi = g(µi) = g(πi). (3.20)

The binary logistic model is obtained using a logit link function,

g(πi) = log

(
πi

1− πi

)
= ηi = β0 + β1xi1 + ...+ βpxip. (3.21)

The other way around, this can be expressed with the logistic response function

πi =
eηi

1 + eηi
. (3.22)

3.2.2 Parameter estimation

To achieve desirable outcomes with logistic regression, it is crucial to have good estimates of
the regression parameters β = (β0, β1, ..., βk) [26]. The maximum likelihood approach is often

15

employed to accomplish this. The likelihood function is formulated by taking the product of the
probability densities of yi,

L(β) =

n∏
i=1

f(yi|β) =
n∏

i=1

πyi

i (1− πi)
1−yi . (3.23)

As β has a direct influence on the likelihood function, determining the values of the βj ’s can be
achieved by maximizing the likelihood function. However, the process of maximizing the likelihood
function can be very complex, thus it is often preferred to maximize the logarithm of the likelihood
function instead,

log(L(β)) = l(β) =

n∑
i=1

(
yilog

(
πi

1− πi

)
+ log(1− πi)

)
. (3.24)

Due to the fact that

1− πi =
1

1 + exp(xT
i β)

, (3.25)

one get that the logarithm of the likelihood function can be expressed as

l(β) =

n∑
i=1

(
yix

T
i β − log(1 + exp(xT

i β))
)
. (3.26)

A common technique when seeking the maximum of a differentiable function is to locate points
where its derivative is zero. This approach is also employed in this scenario, where the aim is to
determine the values of βj that lead to a score function of s(β) = 0. The score function is defined
as,

s(β) =
∂l(β)

∂β
. (3.27)

Solving s(β) = 0 involves a multi-dimensional system of non-linear equations. In order to obtain
the solutions to these equations, a numerical method is necessary. To facilitate this process, the
observed Fisher information H(β) is introduced,

H(β) = −∂s(β)

∂βT
. (3.28)

By utilizing this information, the numerical solution to the set of equations can be obtained in
an efficient and accurate manner. The Fisher scoring algorithm or the Newton-Raphson method
are commonly the methods of choice. In this situation, these methods coincide since the observed
Fisher information H(β) is equal to the expected Fisher information F (β). As a result, the process
for determining the regression parameters β is as follows: by initializing the value of β, the score
function s(β) is computed, and then the observed Fisher information matrix H(β) is obtained. By
applying the Fisher scoring algorithm or the Newton-Raphson method, an updated value of β is
obtained using this equation,

β̂
(t+1)

= β̂
(t)

+H−1(β̂
(t)
)s(β̂

(t)
). (3.29)

This process is repeated until convergence is achieved, and the final value of β is deemed to be the
optimal solution.

16

The positivity and invertibility of the expected Fisher information ensure that the observed Fisher
information is also positive definite. This property, coupled with the concavity of the log-likelihood
function, implies that the maximum-likelihood estimates are always unique.

3.2.3 L1 and L2 Regularization

L1 and L2 regularization are widely used techniques to simplify models that have a large number
of features in the dataset. These regularization methods are employed to counteract overfitting
and facilitate feature selection. When applied to logistic regression, L1 regularization is referred
to as lasso regression, while L2 regularization is known as ridge regression.

Lasso regression and ridge regression operate by introducing a penalty term into the log likelihood
function. When there are p features present in the dataset, the log likelihood function for lasso
regression becomes

l(β) =

n∑
i=1

(
yix

T
i β − log(1 + exp(xT

i β))
)
− λ

p∑
j=1

|βj |, (3.30)

and the log likelihood function adjusted for ridge regression becomes

l(β) =

n∑
i=1

(
yix

T
i β − log(1 + exp(xT

i β))
)
− λ

p∑
j=1

β2
j . (3.31)

In each of these equations, λ represents a hyperparameter that can be adjusted, and as λ increases
in value, a greater penalty is imposed on model complexity.

The primary distinction between lasso regression and ridge regression lies in their effects on the
coefficients β. Specifically, lasso regression shrinks the coefficients of less significant features to
zero, effectively eliminating them from consideration. As a consequence, lasso regression is well-
suited for feature selection. Ridge regression on the other hand usually shrinks the coefficients to
a lower value, but never to zero. A combination between ridge and lasso regression is sometimes
used.

3.2.4 Scikit-learn

Scikit-learn, also known as sklearn, is a popular machine learning library for Python. It is an open-
source software package that is built on top of NumPy, SciPy, and Matplotlib [43]. Scikit-learn
was initially released in 2007, and provides a wide range of tools for data pre-processing, feature
engineering, model selection, and model evaluation.

Scikit-learn is designed to be easy to use and comes with extensive documentation, tutorials, and
examples. It supports a wide range of machine learning algorithms, including linear regression,
logistic regression, decision trees, random forests, k-nearest neighbors, support vector machines,
and neural networks. These algorithms can be used for classification, regression, clustering, and
dimensionality reduction tasks.

Scikit-learn has become the go-to library for many machine learning practitioners and researchers.
It is widely used in industry and academia for a wide range of applications, including natural
language processing, image classification, and recommendation systems. Its popularity is due to
its ease of use, efficiency, and rich functionality, as well as its extensive community support.

Scikit-learn provides a powerful implementation of logistic regression that is both easy to use and
highly flexible. In [37] one can find comprehensive information on Scikit-learn implementation
of logistic regression. This includes installation instructions, package details and hyperparameter

17

information. Additionally, it provides some insights into the mathematics behind the different
algorithms.

3.3 Gradient Boosted Decision Trees

Gradient boosted decision trees has shown impressive success in various practical applications,
including but not limited to regression and classification problems, as it can effectively handle
complex non-linear relationships between variables. Its ability to combine multiple simpler decision
trees in one prediction, while minimizing a loss function makes it a powerful tool for predictive
modeling in the field of machine learning.

3.3.1 Decision Trees

Tree-based learning methods are widely used and considered to be among the best supervised
learning models [2]. They are versatile and can be used for both regression and classification
problems. Tree-based methods are known for their high accuracy, stability, and ability to handle
non-linear data.

At the heart of all tree-based learning methods are decision trees, which can be classified into
regression trees and classification trees. A classification tree is used when the response variable is
categorical, while a regression tree is used when the response variable is continuous. The focus of
this thesis is on binary classification trees.

A decision tree is a data structure that represents a way of traversing a dataset. The tree structure
guides the data to an expected outcome based on control statements or values. This is done so
that different data points lie on either side of a splitting node, depending on the values of a specific
feature. Once the decision tree is constructed, it can be used to make predictions for new data
points by traversing the tree and classifying them based on the leaf node they end up in. This
procedure is illustrated in Figure 3.4.

Figure 3.4: A visual representation that demonstrates how a decision tree can perform binary
classification. Taken from [18].

18

Attribute Selection Measure

In a decision tree algorithm, the attribute selection measure employed determines how each split
will be made. The splitting rules specify how the data will be divided at each level of the tree.
The attribute that yields the best score for a specific measure is chosen as the splitting attribute.
The two most commonly used attribute selection measures used for classification are entropy and
the Gini Index.

Let pk represent the fraction of the training data belonging to the kth class. For example, if a
node has 3 zeroes and 5 ones, then p0 would be 3

8 , and p1 would be 5
8 .

For the entropy selection measure, the entropy computation becomes

E = −p0log2(p0)− p1log2(p1). (3.32)

The entropy selection measure is designed such that the resulting value E, falls within the interval
[0, 1]. A value of E = 1 indicates that there is no order present, meaning that p0 = p1 = 1

2 . In
contrast, E = 0 implies that there is maximum order, and either p0 = 0 and p1 = 1, or p0 = 1 and
p1 = 0.

For the Gini index selection measure, the definition becomes

G = 1− p20 − p21. (3.33)

The Gini index is designed such that the resulting value G, falls within the interval [0, 1
2]. A value

of G = 1
2 means that p0 = p1 = 1

2 . In contrast, G = 0 implies that p0 and p1 are totally separated,
and either p0 = 0 and p1 = 1, or p0 = 1 and p1 = 0. Just like entropy, the objective of using the
Gini index is to minimize its value.

While entropy is mainly used for binary classification problems, the Gini index is commonly used
for both binary and multi-class classification problems. The Gini index measures the impurity of
the classes in a given node by calculating the total variance across all classes.

When a node has E = 0 or G = 0, it means that there is only one class in that node, and it
becomes a leaf node. Because there is no need for further branching, the decision tree terminates
at that point.

To avoid considering every possible tree that is possible to build, a greedy approach called recursive
binary splitting is commonly used. In this approach, each node is successively split into two new
nodes, starting from the top of the tree. At each node, the best split is chosen by considering all
predictors and all possible cutpoints for each of the predictors. This greedy approach simplifies the
search for the best tree and results in a decision tree that is close to optimal for the given data.

Tree Regularization

The greedy algorithm is a popular method for constructing decision trees. However, this method
may result in trees that are large and complex. Unless some datapoints are overlapping on every
single predictor, but not on the response, it is possible to construct a tree that perfectly separates
each class. However, such a model is prone to overfitting and may not perform well when applied
on new data.

To prevent overfitting, it is important to use techniques that reduce the complexity of the tree. One
popular technique is known as pruning, which involves removing branches that do not contribute
much to the accuracy of the tree. This leads to the creation of a smaller, simpler tree that is less
likely to overfit and hence will perform better on new data. In this way one creates a subtree of the
original tree T ⊂ T0. There are various methods to perform pruning, but they all share the same
goal; to minimize a combination of a loss function L of the predicted and estimated responses, and
a penalty term that takes into account the complexity of the model,

19

L(y, ŷ) + γ|T |. (3.34)

γ is here a regularizing hyperparameter that chooses at what degree complexity is penalized. |T |
is the number of leaf nodes of the tree T . As a result, if γ = 0, then the subtree will be equal to
the original tree. As the value of γ increases, the penalty for model complexity becomes stronger,
leading to more aggressive pruning of the decision tree. This results in a smaller and simpler
subtree.

There are other ways to avoid overfitting as well, such as setting a maximum depth of the tree,
or requiring a minimum number of samples to split a node. In more advanced tree-based learning
models it is common to use a combination of many regularization methods.

There are some potential drawbacks associated with tree-based methods, [42]. One of the primary
concerns is the risk of overfitting. Another issue is the instability of the predictions, as small changes
in the training data can result in significantly different trees and hence different predictions. Despite
these limitations, tree-based methods can become a powerful tool when used appropriately.

3.3.2 Ensemble learning

Historically, the standard approach to data driven modeling was to build a single, complex model
that aimed to accurately predict the target variable. However, in recent years, ensemble learning
has become a popular alternative. Ensemble learning involves building multiple, simpler models,
known as weak learners, and combining their predictions to create one single more accurate model.
One common technique in ensemble learning is bootstrap aggregation.

Bootstrap aggregation

Bootstrap aggregation, also referred to as bagging, is a powerful technique that enhances stability
and accuracy in machine learning models, particularly in tree-based models. In bagging, multiple
models are trained using different samples from the original dataset.

Given a standard training set D of size n, bagging involves the following three steps:

1. Generate m new training sets [D1, . . . , Dm] by sampling n observations from D uniformly and
with replacement. This means that the same observations can occur more than once in each new
training set Di.

2. Each weak learner in the ensemble is trained on a different bootstrap sample, Di.

3. The predictions of the individual models are combined to obtain a final prediction. How this is
done changes based on what ensemble learning method that is being used.

Bagging is a special case of model averaging, which involves training multiple models and combining
their predictions. However, in bagging, each model is trained on a bootstrap sample, whereas in
model averaging, each model is trained on the entire dataset. By training each model on a different
bootstrap sample, each weak learner will be forced to train a little different, bagging can thus reduce
variance and prevent overfitting. Additionally, bagging can improve the stability of the model by
reducing the impact of outliers and noisy data points [4].

3.3.3 Gradient Boosting

Gradient boosting is a machine learning technique that creates a predictive model by combining
multiple weak prediction models. These weak models are usually simple, such as decision trees
with limited depth or linear regression models.

20

At each iteration of the gradient boosting algorithm, a new weak learner is added to the ensemble
of models. The weak learner is trained to minimize the error of the whole ensemble generated
so far. This process continues until a stopping criteria is met, such as the error of the ensemble
cannot be further minimized or a predefined number of iterations is reached.

The new weak learners are designed to be correlated with the negative gradient of the loss function
of the entire ensemble. This approach helps in minimizing the loss function and improving the
accuracy of the predictive model. The ensemble of weak learners is combined in such a way that
each model contributes to the prediction according to its relative performance. The final prediction
is obtained by combining the predictions of all the weak learners in the ensemble.

Mathematically, the objective is to determine a function F̂ (x) that accurately predicts the response
variable based on the values of the explanatory variables. This is accomplished by introducing a
loss function L(y, F (x)) and minimizing it in expectation,

F̂ = argmin
F

Ex,y[L(y, F (x))]. (3.35)

There are two distinct approaches to minimizing the expected loss function, and those are numerical
optimization and optimization in function space. However, this thesis will exclusively be about
optimization in the function space.

Optimization in Function Space

The aim of optimization in function space is to search for functions that can be combined using
additive measures to form a function estimate, denoted as F̂ . Figure 3.5 illustrates the process of
constructing F̂ . The initial function F̂0 is first initialized, followed by a series of boosting steps.

Figure 3.5: A visual representation that shows how every step in boosting can be compared to
hitting on a golf ball, gradually moving it closer to the target. Taken from [34].

To understand the basic principles of gradient boosting, let us consider a single observation, where
the response variable is denoted y, and the explanatory variables are denoted x. Additionally, the
weak learners are denoted hm. Various types of weak learners exist, but common choices include
splines or decision trees. An additional parameter, known as the step size or learning rate, denoted
as ρm, must also be introduced. This parameter must be specified at each iteration. As a result,
the function at the m-th iteration can be expressed as

21

F̂m = F̂m−1 + ρmhm, (3.36)

where

ρmhm = argmin
ρ,h

(
L(y, F̂m−1(x)) + ρmhm(x)

)
. (3.37)

The primary goal of gradient boosting is to create a strong learner by iteratively adding weak
learners to the model. To achieve this goal, a strategy is employed in which the following principles
are central to every gradient boosting algorithm.

The first step is to train a weak learner F0 to fit the target value y. Remember that these equations
only focuses on one single observation.

Subsequently, the following four steps are repeated for M iterations:

1. Compute the gradient gm using the current ensemble of functions Fm−1,

gm = Ey

[
∂(L(y, Fm−1(x)))

∂(Fm−1(x))

]
. (3.38)

For instance, suppose that the loss function L is the mean squared error.

LMSE =
1

n

n∑
i=1

(yi − F (xi))
2. (3.39)

Subsequently, the gradient gm in our example, can be expressed as

gm = Ey

[
∂(LMSE(y, Fm−1(x)))

∂(Fm−1(x))

]
= 2(y − Fm−1(x)). (3.40)

2. In practice, the negative of the gradient, −gm, can be viewed as a set of pseudo-residuals. These
residuals are used to train a weak learner hm(x), such that the weak learner is as equal to the
negative of the gradient as possible,

hm(x) = −gm + ϵ, (3.41)

where ϵ denotes the error between the weak learner and the negative of the gradient.

3. Next, a step size ρm is selected such that

ρm = argmin
ρ

L(y, Fm−1(x) + ρmhm(x))). (3.42)

4. Finally, the model ρmhm(x) is added to the ensemble.

Fm = Fm−1 + ρmhm. (3.43)

3.3.4 Gradient Boosted Decision Trees

Gradient boosted decision trees are a popular form of gradient boosting that has demonstrated
state-of-the-art results in various real-world problems. This approach is an excellent way of cap-
turing interactions between explanatory variables. The objective of gradient boosted decision trees
is to minimize a loss function by adding new decision trees iterative as shown in figure 3.6.

22

Figure 3.6: A visual representation that shows the main idea behind gradient boosted decision
trees. As each tree is incorporated into the overall function in gradient boosted decision trees, the
error decreases. Taken from [33].

In each iteration, the new decision tree is built to fit the negative gradient of the loss function. The
algorithm uses a greedy approach to find the best split at each node, with the aim of minimizing
the loss function.

Gradient boosted decision trees can serve for both classification and regression tasks [28]. For
classification, the target variable is categorical, and the algorithm aims to minimize the log loss
or another suitable classification loss function. As with other gradient boosting algorithms, gradi-
ent boosted decision trees can be prone to overfitting if the model is too complex. Therefore,
regularization techniques such as shrinkage or early stopping are often used to prevent overfitting.

The algorithm uses an ensemble of tree models that can predict an output based on M additive
functions,

ŷi =

M∑
m=1

Fm(xi). (3.44)

Here yi and xi denotes one observation, where xi is a vector. Each tree Fm follows the same
structure as the decision trees explained earlier in this section. However, in gradient boosted
decision trees, each leaf node is assigned a weight w. This weight is used to calculate the final
prediction by summing the weights in the corresponding leaves.

Just like in the subsection before, the primary goal is to minimize a regularized objective [15].
Here, the regularized objective is defined as

obj =

n∑
i=1

L(yi, ŷ(t)i) +

t∑
i=t

Ω(Fi). (3.45)

The i-th observation’s prediction in the t-th iteration is denoted by ŷ
(t)
i . The loss function L

measures the deviation of predicted values from actual values, using a chosen metric. The second
term, Ω, penalizes model complexity and can be defined as follows

Ω(F) = γ|T |+ 1

2
λ||w||2. (3.46)

γ is here a regularizing hyperparameter that chooses how much complexity is penalized. |T | is the

23

number of leaf nodes of the tree T . In the second part, λ is a shrinkage hyperparameter. The
larger the value of λ, the more the model’s sensitivity to individual observations is reduced.

Since ŷ
(t)
i = ŷ

(t−1)
i + Ft(xi), the regularized objective in the t-th iteration can be expressed as

obj(t) =

n∑
i=1

(
L(yi, ŷ(t−1)

i + Ft(xi))
)
+Ω(Ft). (3.47)

Approximating the loss function L up to the second order using Taylor expansion around ŷ
(t−1)
i

yields the following objective

obj(t) ≈
n∑

i=1

(
L(yi, ŷ(t−1)

i) + giFt(xi) +
1

2
hiF

2
t (xi)

)
+Ω(Ft). (3.48)

Here gi and hi are defined as

gi =
∂L(yi, ŷ(t−1)

i)

∂ŷ
(t−1)
i

hi =
∂2L(yi, ŷ(t−1)

i)

∂ŷ
(t−1)
i ∂ŷ

(t−1)
i

.

Observe that the term L(yi, ŷ(t−1)
i) is independent of Ft(xi), and since the objective is to optimize

Ft(xi), any terms that do not depend on Ft(xi) can be eliminated, resulting in a new objective,

obj(t) =

n∑
i=1

(
giFt(xi) +

1

2
hiF

2
t (xi)

)
+Ω(Ft). (3.49)

Before proceeding, it will be helpful to refine the definition of a tree Ft(x) as the following:

Ft(x) = wq(x) w ∈ R|T | q : Rd → {1, 2, ..., |T |} (3.50)

In this context, the vector w represents the weights assigned to the leaves of the tree. The function
q maps each data point to the leaf node it corresponds to, and d is the number of explanatory
variables in the dataset. Additionally, |T | still refers to the number of leaves present in the tree.

The reformulated tree model allows one to define the set of observations that belong to node j as
Ij = {i|q(xi) = j}. The predicted value for all observations within Ij is then given by Ft(xi) = wj ,
because wj represents the score assigned to the corresponding leaf node. This means that the
objective value for the t’th tree can be expressed as follows

obj(t) =

n∑
i=1

(
giwq(xi) +

1

2
hiw

2
q(xi)

)
+ γ|T |+ 1

2
λ

|T |∑
j=1

w2
j

=

|T |∑
j=1

(∑
i∈Ij

gi)wj +
1

2
(
∑
i∈Ij

hi + λ)w2
j

+ γ|T | (3.51)

Observe that in the second line of the expression, the summation index has been changed because
all data points belonging to the same leaf are assigned the same score. For the sake of simplicity,
the expression can be further compressed,

24

Gj =
∑
i∈Ij

gi and Hj =
∑
i∈Ij

hi,

resulting in

obj(t) =

|T |∑
j=1

[
Gjwj +

1

2
(Hj + λ)w2

j

]
+ γ|T | (3.52)

The equation shows that the wj values are independent, allowing for the formation of a quadratic
equation to determine the optimal wj values for a given structure q that yields the best objective,

w∗
j = − GJ

Hj + λ
(3.53)

obj∗ = −1

2

|T |∑
j=1

G2
j

Hj + λ
+ γ|T |. (3.54)

To gain a better understanding of this concept, Figure 3.7 is provided. Here, it is important to
recall that gi and hi represent the gradients and Hessians of the loss function. The fundamental
idea involves adding these gradients and Hessians together depending on how the tree is structured.
By utilizing the objective in equation 3.54, one can now evaluate how good the tree is.

Figure 3.7: An illustration clarifying how the objective score is calculated. For a particular tree
structure, the statistics gi and hi are assigned to their respective leaves. Then, the formula is
employed to compute the tree’s quality. Taken from [15].

In an ideal scenario, one would evaluate every conceivable tree and select the best one when
constructing a tree. However, in practice, this is a computationally expensive task. Therefore,
similar to decision trees, it is common to optimize one level of the tree at a time. This involves
splitting a leaf into two leaves, and the gain from such a split will then be equal to

Gain =
1

2

[
G2

L

HL + λ
+

G2
R

HR + λ
− (GR +GL)

2

HR +HL + λ

]
− γ. (3.55)

This equation can be obtained by using equation 3.54, and then multiply with −1. The result
in a function where maximizing is the goal. In this equation, L and R denotes the collection of
instances in the left and right nodes, after the split. This measure can be leveraged to determine
the optimal split by identifying the maximum gain, rather than leaving the leaf unchanged.

25

3.3.5 L1 and L2 Regularization

L1 and L2 regularization are popular tools for preventing over-fitting and reducing complexity in
gradient boosted decision trees. These methods accomplish this by adding a penalty term to the
objective that is being minimized. This penalty term penalizes the size of the weights. This results
in a new objective, as in equations 3.45 and 3.46, where L2 regularization is done. The reason L2
regularization is included in the introduction to gradient boosted decision trees is because it is a
widely used method to tackle the issue of overfitting, which is an often observed problem in this
type of predicting models.

However, it is possible to use L1 regularization instead of L2 regularization. For L1, the new
penalty term becomes

Ω(F) = γ|T |+ λ||w||. (3.56)

For more advanced algorithms, it is common to use a combination of both L1 and L2 regularization,
then the new penalty term becomes

Ω(F) = γ|T |+ λ1||w||+
1

2
λ2||w||2. (3.57)

In both these equations λ is a tuneable hyperparameter, and the larger λ is, the more complexity
is penalized.

The key difference between L1 and L2 regularization is that L1 regularization tends to shrink many
of the weights to zero, hence creating sparse models. L2 regularization on the other hand tends to
create models with lower values, but not zero, for the weights.

It is important to know that changing the regularization changes the objective, and as a result,
the end objective will not be the same as derived in the subsection above.

3.3.6 LightGBM

LightGBM, short for Light Gradient-Boosting Machine, is a distributed gradient-boosting frame-
work for machine learning that is available for free and is open-source. Microsoft created it and
released it in 2016 [23]. LightGBM is programmed in C++, Python, R, and C and it supports
C++, Python, R, and C#. LightGBM is compatible with Windows, macOS, and Linux.

LightGBM is recognized for its ability to perform parallel tree boosting. LightGBM was created
after another popular tree boosting algorithm, XGBoost. XGBoost quickly became popular after
launch, it was designed to be highly efficient, flexible and portable. XGBoost was made for real-
world scale problems, and could solve problems beyond billions of examples with a minimal amount
of resources and produce state of the art results [16]. However, XGBoost could be very computa-
tional costly. LightGBM was made to produce just as good results as XGBoost, but to handle the
training in a much faster way.

LightGBM is recognized for its ability to perform parallel tree boosting. LightGBM shares many
of the advantages of XGBoost, such as supporting sparse optimization, multiple loss functions
and regularizations, bagging, and early stopping. However, there is a difference between the two
in terms of tree construction. Unlike XGBoost, LightGBM does not adopt a level-wise strategy.
Instead, it grows trees in a leaf-wise manner and selects the leaf that yields the greatest gain.
Additionally, LightGBM does not employ the sorted-based decision tree learning algorithm used
by XGBoost, which looks for the best split point among sorted feature values. Instead, LightGBM
uses a highly optimized histogram-based decision tree learning algorithm, resulting in significant
improvements in efficiency and memory consumption. As a result, LightGBM is considered to be
faster than XGBoost while also producing just as good results [7].

26

In [8], one can find comprehensive information on LightGBM, including installation instructions,
package details, hyperparameter introductions, and tutorials. Additionally, [44] provides insights
into the mathematics and algorithms used in the histogram-based decision tree learning approach
applied in LightGBM.

3.4 Deep Learning

Deep learning is a branch in the field of machine learning that utilizes artificial neural networks, a
technique that is inspired by the workings of the human brain. Deep learning has proven to be a
highly effective machine learning technique in recent years, with numerous successful applications
across a diverse range of fields. Deep learning is thus seeing increased popularity and can be
applied to a wide range of areas [31]. Deep learning’s ability to handle large and complex data sets,
combined with its ability to learn patterns and relationships in data, has made it the preferred
method for many machine learning tasks. In this thesis, deep learning will be used for binary
classification.

3.4.1 The Artificial Neuron

The artificial neuron is the core building block of a neural network, and is inspired by biological
neurons.

Figure 3.8: A comparison between a biological neuron(left) and an artificial neuron(right). Taken
from [36]

.

The artificial neuron has a lot in common with the biological neuron. A biological neuron takes
in signals from its neighboring neurons through dendrites, as seen in Figure 3.8. The same goes
for an artificial neuron that takes input from other neurons. Biological neurons have synapses
connecting to the dendrites, similarly artificial neurons have weights that measure the importance
level of each input. In biological neurons, the nucleus processes input from dendrites to create an
output, the same is done in the artificial neuron. Lastly both passes this output to a neighboring
neuron.

The artificial neuron usually receives information from multiple inputs as showed in Figure 3.8.
The inputs xi are multiplied with each corresponding weight wi and then added together with a
bias term b to form z,

27

z =

n∑
i=1

(wixi) + b. (3.58)

The bias term is individual to each neuron and the purpose of including a bias term is to shift
the value of z, this will decrease or increase the output of each individual neuron. The output h
that each neuron sends out is a function of z. This function is called an activation function, and
is defined

σ(z) = h. (3.59)

Activation functions are a type of transfer functions that determine which information is passed
through a neural network. They are used to determine how a neuron should propagate learning
data during the learning phase. The activation function decides how ”excited” the neuron is, and
then passes along the information. There are many choices for what activation function to use,
but the most common ones are ReLU, sigmoid, tanh and leakyReLU, these will be discussed later.

3.4.2 The Neural Network

An artificial neural network is comprised of multiple neurons organized into layers. This config-
uration includes an input layer for data input, one or more hidden layers for processing, and an
output layer for producing the final results. This is illustrated in Figure 3.9.

Figure 3.9: An illustration of a neural network. Taken from [17]
.

Having introduced the architecture of the neural network, it’s time to take a closer look at the
individual layers workings.

The input layer consists of the data x, and the number of neurons in this layer will be exactly the
same as the number of features in the dataset.

The configuration of the hidden layers, including the number of layers and the number of neurons
per layer is a choice where L denotes the number of layers and l denotes the number of neurons

per layer. Let h
(L)
l denote the value that each neuron sends out. For the first hidden layer (Layer

0), one generates l0 + 1 hidden outputs from n+ 1 inputs

28

h
(0)
0 = σ

(
b
(0)
0 + w

(0)
00 x0 + w

(0)
01 x1 + . . .+ w

(0)
0n xn

)

h
(0)
1 = σ

(
b
(0)
1 + w

(0)
10 x0 + w

(0)
11 x1 + . . .+ w

(0)
1n xn

)
...

h
(0)
l0

= σ
(
b
(0)
l0

+ w
(0)
l00

x0 + w
(0)
l01

x1 + . . .+ w
(0)
l0n

xn

)
(3.60)

Remember that bi is the bias in each neuron.

For the second hidden layer (Layer 1), one generates l1 + 1 hidden outputs from l0 + 1 hidden
outputs from Layer 0

h
(1)
0 = σ

(
b
(1)
0 + w

(1)
00 h

(0)
0 + w

(1)
01 h

(0)
1 + . . .+ w

(1)
0l0

h
(0)
l0

)

h
(1)
1 = σ

(
b
(1)
1 + w

(1)
10 h

(0)
0 + w

(1)
11 h

(0)
1 + . . .+ w

(1)
1l0

h
(0)
l0

)
...

h
(1)
l1

= σ
(
b
(1)
l1

+ w
(1)
l10

h
(0)
0 + w

(1)
l11

h
(0)
1 + . . .+ w

(1)
l1l0

h
(0)
l0

)
(3.61)

Every hidden layer after Layer 1 follows the same principles except the last hidden layer (Layer
L). It generates m+ 1 visible outputs from the information from Layer L− 1

h
(L)
0 = σ

(
b
(L)
0 + w

(L)
00 h

(L−1)
0 + w

(L)
01 h

(L−1)
1 + . . .+ w

(L)
0lL−1

h
(L−1)
lL−1

)

h
(L)
1 = σ

(
b
(L)
1 + w

(L)
10 h

(L−1)
0 + w

(L)
11 h

(L−1)
1 + . . .+ w

(L)
1lL−1

h
(L−1)
lL−1

)
...

h(L)
m = σ

(
b(L)
m + w

(L)
m0h

(L−1)
0 + w

(L)
m1h

(L−1)
1 + . . .+ w

(L)
mlL−1

h
(L−1)
lL−1

)
(3.62)

These equations combined with the neural network that they are assign to are illustrated in Figure
3.10.

29

Figure 3.10: An illustration of a multi layered neural network based of the equations above. Notice
that the bias term is not included for the sake of simplicity. The illustration is inspired by [6].

3.4.3 Activation functions

Activation functions are an essential component of neural networks. These functions determine
the output of a neuron, which is then passed on to the next layer of the network. In this way,
activation functions are responsible for transforming the input signal into an output signal that
can be used for further processing. In this subsection, some of the most commonly used activation
functions in neural networks will be discussed.

The sigmoid function is a special form of the logistic function, and is defined

σ(z) =
1

1 + e−z
. (3.63)

Figure 3.11: An illustration of sigmoid curves corresponding to various parameter values where
z = wx+b. On the left one can see how the values of the weights influence the steepness of sigmoid
function. On the right one can see how the bias shifts the function left or right. The figures are
inspired by [6].

The sigmoid function has the property that it will map the entire number line into between 0 and 1.
Using this function for deep learning was inspired by the activation potential in biological neural
networks. Sigmoid functions play a crucial role in various machine learning applications where

30

they are often used to convert real-valued outputs into probabilities. Additionally, the sigmoid
function is easily differentiable, which makes it suitable for use in gradient descent algorithms for
training neural networks. Figure 3.11 shows how changing the weights and the bias will influence
the sigmoid function in the case that z = wx+ b.

The sigmoid function also has some drawbacks. Firstly, the sigmoid function becomes saturated for
large positive or negative numbers. When training each model, this will result in that the gradient
in these regions becomes nearly insignificant, hindering the network’s ability to learn. Secondly,
the outputs of the sigmoid function are not centered at zero, leading to potential issues with the
gradient updates for the weights. This can cause undesirable fluctuations in the gradient updates,
affecting the stability of the learning process.

An activation function similar to the the sigmoid function is the tanh function. The tanh function
is defined

tanh(z) =
ez − e−z

ez + e−z
. (3.64)

The tanh function is as well as the sigmoid function also easily differentiable, which is desirable.
There are mainly two ways in which the tanh function is preferred over the sigmoid function.
Firstly, the tanh function is zero-centered, and it has a range of output values ranging from -1 to
1. This can make it useful for applications where negative output values are meaningful, such as in
image processing or audio analysis. Secondly as showed in Figure 3.12, the derivative of the tanh
function is much steeper than the derivative of the sigmoid function. This characteristic implies
that the gradients in the tanh function are much stronger, facilitating faster convergence during
training.

Figure 3.12: An illustration showing the derivative of the sigmoid function and the derivative of
the tanh function. The figure is inspired by [6].

A problem that is also present when working with the tanh function, is that this function also
becomes saturated for large positive and negative numbers.

Another activation function is Rectified Linear Unit or ReLU for short. It is a simple yet powerful
function that has shown enhancements in the performance of neural networks. ReLU operates by
outputting the input value if it’s positive, and zero if it’s negative. This function has proven to be
effective in many deep learning applications, as it promotes sparsity in the network and reduces
the likelihood of overfitting. ReLU also has the advantage that for positive values, the function
never gets saturated.

A variant of the ReLU activation function that is commonly used in deep learning is the leakyReLU.
In contrast to the standard ReLU, the leakyReLU has a small slope for negative input values, which
allows for a non-zero gradient even for negative inputs. This can help with the ”dying ReLU”
problem, where ReLU units become inactive and produce zero gradients. The slope coefficient of
the leakyReLU is set before training. Both the ReLU and the leakyReLU can be defined as.

31

f(z) =

{
z if z ≥ 0

αz if z < 0
(3.65)

For ReLU α is set to 0. The ReLU and leakyReLU functions are not smooth unless α = 1, meaning
they have a sharp corner at zero.

Choosing the right activation function can significantly affect the performance of the network.
Each activation function has its advantages and disadvantages, and the choice of function depends
on the problem being solved and the architecture of the network. It is common that large neural
networks contain different activation functions for different layers.

3.4.4 Training the Neural Network

Training a neural network is a complex process that involves adjusting the weights and biases of
the network’s nodes to minimize the difference between the network’s predicted output and the
known correct output for a given set of input data. This process is known as learning, and it
involves repeatedly feeding the network with training data and adjusting the network’s parameters
based on the errors it makes.

For simplicity, one can consider the objective to be an arbitrary loss function L that is differentiable.
This objective is now a result of the weights w and the biases b, and can be written L(w, b), where

w =
[
w

(0)
00 , w

(0)
01 , . . . , w

(1)
00 , w

(1)
01 , . . . , w

(L)
00 , w

(L)
01 , . . .

]
,

and

b =
[
b
(0)
0 , b

(0)
1 , . . . , b

(1)
0 , b

(1)
1 , . . . , b

(L)
0 , b

(L)
1 , . . .

]
.

As a result, the task will be to find the w and the b that gives the lowest objective. Using the
gradients of the objective to continuously update the weights and biases gives these equations

wt+1 = wt − ρ∇wt
L,

bt+1 = bt − ρ∇btL. (3.66)

Here ρ is a stepsize parameter, and t denotes the stepwise update numerator. The equations can
be rewritten in terms of the scalar components

w
(l)
jk (t+1) = w

(l)
jk (t) − ρ

∂L
∂w

(l)
jk (t)

,

b
(l)
j (t+1) = b

(l)
j (t) − ρ

∂L
∂b

(l)
j (t)

. (3.67)

Backpropagation

It turns out that finding a closed form for the equations in 3.67 is very difficult. As a result
it is normal to use a technique called backpropagation. This technique works by propagating
errors backwards through the network. In this way, backpropagation provides a way to compute

32

the derivatives of the loss function with respect to each weight and bias parameter, allowing for
updates that improves the network.

To grasp the concept of backpropagation, one can first start by looking at a neural network with
only a single neuron per layer. This is a big simplification, but it allows for individual weights and
biases per layer, such that there is no need for any subscripts other than in what layer they are in.
This kind of network is showed in 3.68.

xi
w(0)

−−−→
b(0)

z(0)
σ()−−→ h(0) w(1)

−−−→
b(1)

z(1)
σ()−−→ h(1) . . . h(l−1) w(l)

−−→
b(l)

z(l)
σ()−−→ h(l) . . . h(L−1) w(L)

−−−→
b(L)

z(L) σ()−−→ h(L)

(3.68)

Where

z(0) = w(0)xi + b(0),

z(l) = w(l)h(l−1) + b(l) for l = 1, 2, . . . , L

and

h(l) = σ
(
z(l)

)
for l = 0, 1, . . . , L.

Let us now consider a single input output pair, xi and yi, and a loss function given as

L =
1

2

(
h(L) − yi

)2
.

To reduce complexity, one can define an auxiliary variable δ(l),

δ(l) =
∂L
∂z(l)

for l ∈ {0, 1, . . . , L}. (3.69)

The partial derivatives of the loss function with respect to the weights and the biases can be written
as

∂L
∂w(l)

=
∂L
∂z(l)

∂z(l)

∂w(l)
= δ(l)

∂(w(l)h(l−1) + b(l))

∂w(l)
= δ(l)h(l−1), (3.70)

∂L
∂b(l)

=
∂L
∂z(l)

∂z(l)

∂b(l)
= δ(l)

∂(w(l)h(l−1) + b(l))

∂b(l)
= δ(l). (3.71)

For the auxiliary variable δ(l), one can again use the chain rule

δ(l) =
∂L
∂z(l)

=
∂L

∂z(l+1)

∂z(l+1)

∂h(l)

∂h(l)

∂z(l)
= δ(l+1) ∂(w

(l+1)h(l) + b(l+1))

∂h(l)

dσ
(
z(l)

)
dz(l)

. (3.72)

Let us assume that the activation function is the sigmoid function, where it is known that
dσ
(
z
)

dz =

σ
(
z
)
(1− σ

(
z
)
). Then δ(l) can be written as

δ(l) = δ(l+1)w(l+1)σ
(
z(l)

)
(1− σ

(
z(l)

)
) = δ(l+1)w(l+1)h(l)(1− h(l)). (3.73)

33

Note that this deriving of δ(l) works with all the activation functions that are analytically differ-
entiable.

Before one can begin updating all the gradients one first needs to derive the auxiliary variable for
the L-layer,

δ(L) =
∂L

∂z(L)
=

∂L
∂h(L)

∂h(L)

∂z(L)
=

1

2

∂
((
h(L) − yi

)2)
∂h(L)

dσ
(
z(L)

)
dz(L)

. (3.74)

Again one can use the derivative of the sigmoid function, and get that

δ(L) =
(
h(L) − yi

)
σ
(
z(L)

)
(1− σ

(
z(L)

)
) =

(
h(L) − yi

)
h(L)(1− h(L)). (3.75)

For the training, one will start with initializing the weights w and the biases b. Thereafter the
network will figure out every value for h as shown in 3.68. This is called forward propagation.
One can now evaluate δ(L) and through iterative measures evaluate every δ(l) starting with δ(L−1)

using equation 3.73. In addition to calculating δ(l), one can simultaneously update the weights
and biases using the equations 3.70, and 3.71. The weights w and the biases b are now updated
and one can start with forward propagation again, this updating can be done repeatedly until a
stopping criteria is met.

Multiple neurons per layer

Backpropagation also works for a neural network with an arbitrary number of neurons per layer,
however the mathematics becomes more complicated, and the whole idea is not as intuitive as for
only one neuron per layer.

Forward propagation works as described earlier, and for simplicity one can rewrite these equations
to a vector format.

z
(l)
j =

m∑
k=0

(
w

(l)
jkh

(l−1)
k

)
+ b

(l)
j =⇒ z(l) = W (l)h(l−1) + b(l)

h
(l)
j = σ

(
z
(l)
j

)
=⇒ h(l) = σ

(
z(l)

)
(3.76)

Where

W (l) =

w

(l)
00 w

(l)
01 · · · w

(l)
0m

w
(l)
10 w

(l)
11 · · · w

(l)
n1

...
...

. . .
...

w
(l)
n0 w

(l)
n1 . . . w

(l)
nm

 b(l) =
[
b
(l)
0 b

(l)
1 . . . b

(l)
n

]T

and

h(l) =
[
h
(l)
0 h

(l)
1 . . . h

(l)
n

]T
h(l−1) =

[
h
(l−1)
0 h

(l−1)
1 . . . h

(l−1)
m

]T
.

For binary classification in neural networks it is normal that the output is one number between 0
and 1, this can be contained in one output neuron. Because the output layer is just one neuron, the
loss function L can be the same as for the network with only one neuron per layer. The auxiliary

variable δ
(l)
j is now defined almost the same way, but there are now multiple values per layer,

34

δ
(l)
j =

∂L
∂z

(l)
j

for l ∈ {0, 1, . . . , L} and j ∈ {0, 1, . . . , J}. (3.77)

Where J is the number of neurons in layer l.

Compared to the simple case of one neuron per layer, understanding the evaluation of δ
(l)
j = ∂L

∂z
(l)
j

in the general case for an arbitrary layer l is much more complex. In the general case, the loss

function L does not have a direct dependence on the inner layer variable z
(l)
j . Instead, the loss

depends on the activations of the last layer, which in turn depend on the previous layer, and so
on. The z values in any given layer form a complete dependency set for the loss L, which means
that the loss can be expressed solely in terms of these variables, with no other variables needed.

This means that the loss can be expressed as L
(
z
(l+1)
0 , z

(l+1)
1 , z

(l+1)
2 , . . .

)
. Then, by using partial

differentiation

δ
(l)
j =

∂L
(
z
(l+1)
0 , z

(l+1)
1 , z

(l+1)
2 , . . .

)
∂z

(l)
j

=
∑
k

∂L
∂z

(l+1)
k

∂z
(l+1)
k

∂z
(l)
j

=
∑
k

∂L
∂z

(l+1)
k

∂z
(l+1)
k

∂h
(l)
j

∂h
(l)
j

∂z
(l)
j

. (3.78)

By definition,

∂L
∂z

(l+1)
k

= δ
(l+1)
k . (3.79)

While

∂z
(l+1)
k

∂h
(l)
j

=

∂

(∑m
n=0

(
w

(l+1)
kn h

(l)
n

)
+ b

(l+1)
k

)
∂h

(l)
j

= w
(l+1)
kj , (3.80)

and

∂h
(l)
j

∂z
(l)
j

=
dσ

(
z
(l)
j

)
dz

(l)
j

= h
(l)
j (1− h

(l)
j). (3.81)

Notice that in equation 3.81 it is assumed that the activation function is a sigmoid function.

Combining all these equations, one get the scalar expression for a single auxiliary variable. This
is presented below along with the equivalent vector equation for the entire layer

δ
(l)
j = δ

(l+1)
j w

(l+1)
kj h

(l)
j (1− h

(l)
j) (3.82)

δ(l) =

((
W (l+1)

)T
δ(l+1)

)
⊙ h(l) ⊙

(
1− h(l)

)
. (3.83)

Here ⊙ denotes the Hadamard multiplication. This multiplicator uses element-wise product such
that given two vectors a and b

(
a⊙ b

)
i
= ai · bi.

Notice that equation 3.83 assumes layers with the same number of neurons in them, however this
can be adjusted. Now that the auxiliary variables δ(l) can be evaluated through δ(l+1) one have

35

to show that the auxiliary variables for the last layer are directly computable from the activations
of that layer. Since there is only one output neuron the mathematics are the same as for the one
neuron example earlier, see equations 3.74 and 3.75 for more details. However, it is necessary to
convert this single value to an array. This can be done quite easily by just multiplying δ(L) by an
array of ones.

δ(L) =
(
h(L) − yi

)
h(L)(1− h(L)) · 1 (3.84)

The next part is to evaluate the derivatives of the loss with respect to the weights and the biases
in terms of the auxiliary variables

∂L
∂w

(l)
jk

=
∂L
∂z

(l)
j

∂z
(l)
j

∂w
(l)
jk

= δ
(l)
j

∂

(∑m
k=0

(
w

(l)
jkh

(l−1)
k

)
+ b

(l)
j

)
∂w

(l)
jk

= δ
(l)
j h

(l−1)
k

∂L
∂b

(l)
j

=
∂L
∂z

(l)
j

∂z
(l)
j

∂b
(l)
j

= δ
(l)
j

∂

(∑m
k=0

(
w

(l)
jkh

(l−1)
k

)
+ b

(l)
j

)
∂b

(l)
j

= δ
(l)
j (3.85)

In vector format these equations become

∇w(l)L = δ(l)
(
h(l−1)

)T
∇b(l)L = δ(l) (3.86)

The idea for training now becomes the same as described in the one neuron per layer example.

3.4.5 L1 and L2 Regularization

L1 and L2 regularization are popular tools for preventing over-fitting and reducing complexity in
neural networks. These methods accomplish this by adding a penalty term to the loss function,
which penalizes the size of the weights and biases. This results in a new loss function. For L1, the
new loss function becomes

L(w, b) =

n∑
i=1

(
L(i) (yi, ŷi)

)
+ λ

(
||w||+ ||b||

)
, (3.87)

And for L2, the new loss function becomes

L(w, b) =

n∑
i=1

(
L(i) (yi, ŷi)

)
+ λ

(
||w||2 + ||b||2

)
, (3.88)

In both these loss functions λ is a tuneable hyperparameter, and the larger λ is, the more complexity
is penalized. L(i) denotes the old loss function.

The key difference between L1 and L2 regularization is that L1 regularization tends to shrink many
of the weights and biases to zero, hence creating sparse models. L2 regularization on the other
hand tends to create models with low values, but not zero, for the weights and biases.

36

3.4.6 Scikit-learn

An introduction to Scikit-learn can be found in subsection 3.2.4, where the same library is used
for logistic regression.

Scikit-learn also offers a powerful implementation of deep learning, which is both easy to implement,
and flexible. In [12] one can find comprehensive information on Scikit-learns implementation of
deep learning on classification problems. This includes coding examples, package details and
hyperparameter introductions.

3.5 Hyperparameter tuning

When creating a machine learning model, one of the critical decisions to make is how to define the
model’s architecture. The model’s architecture plays a crucial role in determining its performance,
and selecting the optimal architecture can be a challenging task as it is often difficult to tell the
optimal architecture for a given model right away.

To address this challenge, one approach is to explore a range of possibilities for the model architec-
ture. This exploration for the optimal model architecture can be carried out either by a machine
automatically, or manually by a person. Hyperparameters are parameters that remain constant
throughout the training process, and they determine the model architecture. The process of ex-
ploring various possibilities of hyperparameters to find the optimal model architecture is known
as hyperparameter tuning. Examples of hyperparameters include the number of trees to grow, the
learning rate, and the fraction of columns to use for training, among other possibilities.

It is often unclear how hyperparameters affect the performance of machine learning algorithms,
as the relationship between hyperparameters and model performance is often complex and non-
linear. As a result, the performance of a model with a specific set of hyperparameters cannot
be determined until the model is first trained and then tested. There are several methods for
conducting this training and testing.

Grid search is a widely used hyperparameter tuning technique in machine learning that is both
intuitive and easy to implement. The idea behind grid search is to try out every possible com-
bination of hyperparameters within a pre-defined area of interest. Consequently, the approach for
conducting grid search involves systematically searching over a predefined hyperparameter space
to find the optimal combination of hyperparameters that results in the best model performance.

The grid search algorithm creates a grid of all possible combinations of hyperparameters based on
a set of predefined values for each hyperparameter. The model is trained and evaluated for each
combination of hyperparameters in the grid, and the set of hyperparameters that produces the
best model performance is selected as the optimal combination.

In the real world, training a model often requires a considerable amount of time, and grid search
is a computationally intensive method. Especially when the number of hyperparameters and their
respectable domains are large. The curse of dimensionality afflicts grid search because the quantity
of models that must be trained increases exponentially with the number of hyperparameters in-
volved. However, grid search is a simple and effective technique for finding the optimal combination
of hyperparameters when the hyperparameter space is relatively small.

Random search is another popular hyperparameter tuning technique used in machine learning.
Unlike grid search, which searches through a predefined set of hyperparameters in a grid-like
manner, random search samples hyperparameters randomly from a defined hyperparameter space.

The idea behind random search is that, in many cases, only a few hyperparameters have a sig-
nificant impact on model performance. By randomly sampling from a wide range of possible
hyperparameters, the technique allows for a greater exploration of the hyperparameter space. As
a consequence, random search is more likely to identify the optimal values of the most influential
hyperparameters.

37

When the hyperparameters impact on the model performance varies significantly, the model is
said to have a lower effective dimensionality. Figure 3.13 illustrates the contrast between grid
search and random search in terms of their ability to deal with low effective dimensionality. In
this given example, the model F (x, y) is dependent on two variables - x and y. The impact of x
on the model F is significant and is represented by a subspace on the top of each plot, whereas
y has a relatively minor impact and is represented by a subspace on the left of each plot. Thus,
it can be approximated that F (x, y) ≈ F (x). In the grid search layout, the points are uniformly
distributed in the original space, but not efficiently distributed in the subspace. On the other hand,
the random search layout shows slightly less uniform distribution of points in the original space,
but a more efficient distribution in the subspace. As a result, in this example, random search is
more likely to find hyperparameters that will produce a better model than grid search.

Figure 3.13: An illustration showing how a random search can be more beneficial than a grid
search when some hyperparameters have a small influence on the model performance. Taken from
[20]

While grid search will not be utilized in this thesis for hyperparameter tuning, it is important to
note that this technique offers a systematic and structured approach to exploring hyperparameters
by exhaustively searching over a predefined range of values. The inclusion of grid search in the
theoretical framework aims to provide an understanding of how each possible combination of
hyperparameters can influence the model, which is the ultimate goal of hyperparameter tuning.
However, due to the curse of dimensionality, it is not a practical approach to do grid search in this
thesis.

In this thesis, random search will be employed to initialize Bayesian optimization for hyperpara-
meter tuning. The inclusion of random search in the theoretical framework serves another purpose
as well, as it provides a clear and intuitive way to demonstrate that, despite initially seeming
inferior to grid search, random search can actually outperform it in many scenarios.

3.5.1 Bayesian optimization

Grid search and random search are popular techniques for hyperparameter tuning in modern
machine learning research [21]. However, these methods leave out something potentially very
useful. Both have a limitation in that they do not leverage any information gained from previous
iterations to identify optimal hyperparameter values. They simply iterate through a vast number
of possible hyperparameter combinations without regard to the outcomes of previous searches.
This is where Bayesian optimization offers a significant advantage.

By contrast, Bayesian optimization incorporates previous iterations into its search process, making

38

it an efficient and powerful hyperparameter tuning technique. By iteratively updating a probab-
ilistic model of the objective function, Bayesian optimization is able to quickly identify promising
areas of the hyperparameter space and focus its search there. This results in faster convergence
and more accurate identification of optimal hyperparameter values, making Bayesian optimization
an ideal technique for tuning complex models with a large number of hyperparameters.

There should be noted that there also exists other ways to tune hyperparameters where one take
into account the results of previous iterations. Design of Experiments (DOE), is such a way [32].
DOE is done by hand, such that the next hyperparameter values that will be tested are decided
by a person, and then put into the computer manually. DOE involves selecting hyperparamet-
ers, determining their values, and deciding on the number of experiments to conduct. The goal
is to understand how the response is affected by the settings of the hyperparameters involved.
DOE for hyperparameter tuning enables efficient exploration and optimization, however it lacks
the automation that Bayesian optimization has to offer. Research has also shown that Bayesian
optimization can outperform manual hyperparameter tuning performed by human experts [21].

In Bayesian optimization, the objective is to identify the maximum value of an unknown function
F at a given sampling point x,

x∗ = argmax
x∈A

F (x). (3.89)

The search space for the hyperparameters x is denoted as A.

Bayesian optimization is based on Bayes’ theorem [11], which states that the posterior probability
P (M |E) of a model M , given evidence data E, is proportional to the likelihood P (E|M) of
observing E given model M , multiplied by the prior probability P (M):

P (M |E) ∝ P (E|M)P (M) (3.90)

The fundamental concept of Bayesian optimization is reflected by this formula. At the heart
of Bayesian optimization lies the principle of combining the prior distribution of the objective
function F (x) with the sampled information to obtain the posterior. The ultimate goal is to locate
the maximum value of F (x) using an utility function a, also known as the acquisition function.
The prior distribution is updated as new data is collected, and the acquisition function utilizes
this updated information to determine the next point to be evaluated. This iterative process is
repeated until the maximum number of iterations is reached, or some other stopping criterion is
met.

As the prior distribution for Bayesian optimization a Gaussian process is often preferred. A
Gaussian process is a stochastic process in which any random variable has a multivariate Gaussian
distribution, making the Gaussian process a generalization of the Gaussian probability distribution.
In the case of D hyperparameters, the hyperparameters are represented by x ∈ RD. The Gaussian
process is defined by a mean function µ : RD → R and a covariance function k : RD × RD → R,
such that the Gaussian process can be denoted as:

F (x) ∼ GM(µ(x), k(x,x′)). (3.91)

Let

x1:t = [x1,x2, ...,xt]
T and F 1:t = [F (x1), F (x2), . . . , F (xt)]

T .

Now, for a given set of t observations {xi, F (xi)}ti=1, the probability of any finite set of F 1:t is
now assumed to be Gaussian,

F 1:t ∼ N(µ(x1:t),K(x1:t,x1:t)). (3.92)

39

Where

K(x1:t,x1:t) =

k(x1,x1) k(x1,x2) · · · k(x1,xt)
k(x2,x1) k(x2,x2) · · · k(x2,xt)

...
...

. . .
...

k(xt,x1) k(xt,x2) . . . k(xt,xt)

 (3.93)

Several options exist for the correlation function k, but a popular and simple choice is

k(xi,xj) = exp(−1

2
||xi − xj ||2). (3.94)

The anticipated distribution of the Gaussian process is now analytically feasible. If there is a
new point xt+1, the joint probability distribution of the established values F 1:t and the predicted
function F (xt+1) is expressed as follows

[
F 1:t

F (xt+1)

]
∼ N

([
µ(x1:t)
µ(xt+1)

]
,

[
K(x1:t,x1:t) k

kT k(xt+1,xt+1)

])
, (3.95)

where

k = [k(xt+1,x1), k(xt+1,x2), ..., k(xt+1,xt)]
T .

By utilizing µ(x1:t) = 0, the problem can now be simplified. As a result, the predictive posterior
distribution of F (xt+1) becomes Gaussian.

F (xt+1)|F 1:t ∼ N(µt+1(xt+1|F 1:t), σ
2
t+1(xt+1|F 1:t)), (3.96)

where

µt+1(xt+1) = kTKF 1:t,

and
σ2
t+1(xt+1) = k(xt+1,xt+1)− kTK−1k.

After obtaining the posterior distribution of the objective function, Bayesian optimization employs
the acquisition function a to determine the maximum of the function F ,

xnext = argmax
x

a(x|x1:t, F1:t). (3.97)

It is typically assumed that a high value in the acquisition function a corresponds to a high value
of the objective function F . Consequently, maximizing the acquisition function is equivalent to
maximizing the function F ,

x+ = argmax
x∈x1:t

F (x). (3.98)

Here, the hyperparameters that yield the best value obtained so far are denoted as x+. In other
words, the acquisition function is used to explore the hyperparameter space in order to find the
next set of hyperparameters to evaluate.

40

Probability of Improvement

Historically, the first proposed acquisition function was Probability of Improvement [25]. It aims
to maximize the probability of improvement over the current best value. This function calculates
the probability that the next point will be better than the current best point,

aPI(x) = P (F (x) > F (x+)). (3.99)

F (x) is Gaussian, and aPI(x) can thus be expressed as

aPI(x) = 1− P (F (x) ≤ F (x+)) = 1− P

(
F (x)− µ(x)

σ(x)
≤ F (x+)− µ(x)

σ(x)

)
= 1− Φ

(
F (x+)− µ(x)

σ(x)

)
= Φ

(
µ(x)− F (x+)

σ(x)

)
. (3.100)

One limitation with using Probability of Improvement is that the algorithm shares similarities
with the gradient descent algorithm. Consequently, the next sampling point may be confined to
a restricted range, leading to the potential of the optimization algorithm becoming trapped in a
local optimum.

To address this issue, a possible solution is to introduce an explanatory parameter ξ into the
function,

aPI(x) = P (F (x) ≥ F (x+) + ξ) = Φ

(
µ(x)− F (x+)− ξ

σ(x)

)
. (3.101)

The new sampling point will replace the current optimal value only if the difference between the
value of the subsequent sampling point and the current optimal value exceeds ξ. Increasing the
value of ξ will encourage exploration, enabling the algorithm to seek additional solutions beyond
the current optimum.

The Probability of Improvement function has been used in a variety of applications, such as op-
timization of expensive black-box functions and reinforcement learning. It is also computationally
efficient and has a simple analytical form, making it an attractive choice for practical applications.

In general, even though the Probability of Improvement function is able to balance exploration
and exploitation, Probability of Improvement tends to favor exploitation over exploration, as it
focuses on finding points that are likely to improve the current best value.

Expected Improvement

Expected Improvement is another popular acquisition function. I differs from Probability of Im-
provement by taking into account not just the probability of improvement, but also the extent of
improvement. The Expected Improvement function measures the improvement in the objective
function that can be expected by evaluating a new point in the search space. It does this by
comparing the predicted value of the objective function at the new point with the current best
value found so far. This is achieved through the use of an improvement function, denoted as I(x),

I(x) = max{F (x)− F (x+), 0}. (3.102)

To clarify, if the predicted value is greater than the current best known value, the improvement
function I(x) takes on a positive value. However, if the predicted value is not better than the
current best known value, then I(x) is assigned a value of zero.

41

In order to compute the expected improvement, a reparameterization technique is employed. Recall
that the distribution of F (x) follows a normal distribution with a mean of µ(x) and a variance
of σ2(x). To facilitate the computation, a new variable z is introduced, which is also normally
distributed with a mean of zero and a variance of one; z ∼ N(0, 1). By using this new variable,
F (x) can be expressed as F (x) = µ(x)+σ(x)z, which is still normally distributed with a mean of
µ(x) and a variance of σ2(x). In this reparameterization, the improvement function I(x) can be
rewritten as

I(x) = max{F (x)− F (x+), 0} = max{µ(x) + σ(x)z − F (x+), 0} (3.103)

As a result of the reparameterization, the expectation of the improvement can be expressed as

EI(x) ≡ E[I(x)] =
∫ ∞

−∞
I(x)ϕ(z)dz =

∫ ∞

−∞
max{F (x)− F (x+), 0}ϕ(z)dz (3.104)

Here, ϕ(z) represents a standardized normally distributed variable z, with a probability density

ϕ(z) =
1√
2π

exp(−1

2
z2).

To calculate this integral, it is necessary to eliminate the max operator. This can be achieved by
splitting the integral into two parts based on whether F (x)− F (x+) is positive or negative. The
point at which this transition occurs, where F (x) = F (x+), is labeled as z0.

F (x) = F (x+)⇒ µ(x) + σ(x)z = F (x+)⇒ z =
F (x+)− µ(x)

σ(x)
= z0

Consequently, the integral can be split in two,

EI(x) =

∫ z0

−∞
I(x)ϕ(z)dz︸ ︷︷ ︸

Zero since I(x)=0

+

∫ ∞

z0

I(x)ϕ(z)dz.

Now, the expected improvement can be computed as follows:

EI(x) =

∫ ∞

z0

max{F (x)− F (x+), 0}ϕ(z)dz =

∫ ∞

z0

(µ(x) + σ(x)z − F (x+)ϕ(z))dz

=

∫ ∞

z0

(µ(x)− F (x+)ϕ(z))dz +

∫ ∞

z0

σ(x)z
1√
2π

e−
1
2 z

2

dz

= (µ(x)− F (x+))

∫ ∞

z0

ϕ(z)dz︸ ︷︷ ︸
1−Φ(z0)

+σ(x)

∫ ∞

z0

1√
2π

ze−
1
2 z

2

dz

= (µ(x)− F (x+)) (1− Φ(z0))︸ ︷︷ ︸
Φ(−z0)

+σ(x)
1√
2π

e−
1
2 z

2
0︸ ︷︷ ︸

ϕ(−z0)

= (µ(x)− F (x+))Φ(−z0) + σ(x)ϕ(−z0)

(3.105)

As a result, the acquisition function for the Expected Improvement can now be evaluated,

aEI(x) = (µ(x)− F (x+))Φ

(
µ(x)− F (x+)

σ(x)

)
+ σ(x)ϕ

(
µ(x)− F (x+)

σ(x)

)
. (3.106)

42

Here Φ(.) is a cumulative distribution function.

Similar to Probability of Improvement, an explanatory parameter ξ can be incorporated to regulate
exploration.

aEI(x) = (µ(x)− F (x+))Φ

(
µ(x)− F (x+)− ξ

σ(x)

)
+ σ(x)ϕ

(
µ(x)− F (x+)− ξ

σ(x)

)
. (3.107)

Similar to previous, a larger ξ will encourage exploration.

The Expected Improvement function has two main advantages. Firstly, it is able to balance
exploration and exploitation by placing a higher emphasis on unexplored areas of the search space
where the improvement could potentially be large. Secondly, it has a straightforward analytical
form that allows for efficient optimization.

The Expected Improvement function has been widely used in various applications, such as optim-
ization of expensive black-box functions, and experimental design. Its versatility, efficiency, and
ability to balance exploration and exploitation make it a popular choice in Bayesian optimization.

Confidence Bound

The Gaussian Process Upper Confidence Bound (GP-UCB), often referred to as Confidence Bound,
is another popular acquisition function used in Bayesian optimization [19]. The Confidence Bound
function is based on the upper confidence bound of the posterior distribution of the objective
function, which represents the uncertainty of the model’s prediction.

The Confidence Bound function aims to balance exploration and exploitation by selecting points
in the search space that have high potential for improvement but are also uncertain. Specifically,
the Confidence Bound function selects the point with the highest upper confidence bound, which
corresponds to the point with the highest potential for improvement while still having a high level
of uncertainty. The acquisition function thus takes the form,

aGP−UCB(x) = µ(x) + κσ(x). (3.108)

In this context, the parameter κ is adjustable and serves to balance the degree of exploitation
versus exploration. A larger value of κ corresponds to a greater emphasis on exploration. It is
not uncommon for more sophisticated algorithms to update the value of κ based on the number of
iterations completed within the algorithm. An example of this is showed below,

κt =
1√
υt

. (3.109)

Here υ is a constant, an t denotes the number of iterations performed. This approach is often
utilized to promote exploration at the beginning of the process, while shifting towards exploitation
as the process continues.

One advantage of the Confidence Bound function is that it provides a measure of the trade-off
between exploration and exploitation in a principled manner. This can be useful in scenarios
where the cost of evaluating the objective function is high, and selecting points with high potential
for improvement is critical.

Figure 3.14 illustrates examples of different acquisition functions and their settings. It can be
observed that the location of the maximum value for each of the three functions varies, but not as
much as the location of the maximum value varies with respect to the settings of the exploration
parameters. This suggests that the selection of exploration parameters may be more influential
in determining the behavior of the acquisition function than the choice of the acquisition function
itself.

43

Figure 3.14: The figure presents examples of acquisition functions and their settings. The top panel
displays the Gaussian process posterior, while the other panels show the corresponding acquisition
functions, which are probability of improvement, expected improvement, and upper confidence
bound, respectively. A triangle marker indicates the location of the maximum value for each
function. Taken from [19]

.

3.5.2 Optuna

Optuna is a widely used open source automatic optimization framework for hyperparameters. It
is designed to automate the process of hyperparameter tuning by efficiently searching for the best
hyperparameter values through trial and error. One of the main methods used by Optuna for
hyperparameter tuning is Bayesian optimization, which is based on the principles described in this
sub-chapter. However, the methods used in Optuna are highly optimized to improve efficiency and
effectiveness. In this thesis, all hyperparameter tuning is performed using Bayesian optimization
implemented in Optuna. For further information about Optuna, see [24].

44

Chapter 4
Data Preparation and Visualization

In this chapter, a more thorough understanding of the data provided by Sparebank1 will be offered.
The chapter will begin with an introduction to the different datasets provided by Sparebank1, and
then proceed to show some visualizations. In the end, the methods used to prepare the data for
analysis will be presented.

4.1 The different datasets

The datasets used in this thesis were provided by Sparebank1. There were originally given four
datasets, each dataset containing different information regarding a customer. All the datasets will
get a brief introduction below. Table 4.1 provides a summary of all the datasets. A comprehensive
list of all the variables in all the original datasets along with their respective explanations are given
in Appendix A.

Table 4.1: A summary of all the different datasets.

Datasets Description
Number of
variables

Number of
observations

Fundamental
Basic information regarding

customers and their credit cards 12 262 773

Appliance
Information regarding customers, this

includes income, children and marital status 23 20 933

Historical credit card
Information regarding customers

credit card history 23 174 492

Historical transactions
Information regarding customers transactions

to their credit card account 12 5 475

Final dataset
The final dataset used for prediction

after pre-prosessing 1199 262 773

The fundamental dataset consists of 262773 observations and 12 variables, including the response
variable ”AktivEtterPassiv”. The other variables in the dataset contain information regarding the
customer, such as what sex the customer are, the age of the customer, the first and last time
the customers used their credit card, and so on. Each observation in the fundamental dataset
represents a single customer at a given date. The dates range from May 2020 all the way to
February 2023.

The information in the appliance dataset is collected from when a customer applied for the credit
card, which means that there is only one observation per customer. The dataset consists of 20933
observations and 23 variables.

45

The data in the appliance dataset contain information that was useful for the bank when determ-
ining if the customer should get a credit card, and the balance on the credit card. As a result,
the variables in the dataset contain information regarding the customers appliance, such as what
balance the customer wants on their credit card, what balance the customer got on their credit
card, the gross income of the customer, different types of loans the customer might have, if the
customer has children, and in that case how many, and so on.

The information from the historical credit card dataset is collected from when a customer has used
their credit card for payment. Each observation in this dataset represents a single customer at a
given period. The historical credit card dataset consists of 174492 observations and 23 variables,
where the variables contains the amount of money that each customer has spent with their credit
card on various products within a specified timeframe.

The various products are put into different groups, like groceries, transport and restaurants. The
different timeframes are 12 and 3 months. As a result, a given variable can consist of the amount
of money spent on groceries for the last 12 months.

The information from the historical transactions dataset is collected from when a customer has
made transactions from or to a known bank account that the customer possesses. Each observation
in this dataset represents a single customer at a given period. The historical transactions dataset
consists of 5475 observations and 12 variables, where the variables contain the amount of money
transferred or the amount of transactions made within a 12 months period.

The final dataset is the dataset after preprosessing, and is the dataset used for prediction.

4.2 Visualization

Visualizing data can be highly beneficial in gaining a more profound understanding of how the
data interact.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
kt
iv
E
tte
rP
as
si
v

U
tg
an
gs
pu
nk
t

A
ld
er

K
jÃ
.n
n

N
oO
fC
hi
ld
re
n

F
Ã
.r
st
eB
ru
kt

A
P
P
LI
E
D
_C
R
E
D
IT
_L
IM
IT
_A
M
T

G
R
A
N
T
E
D
_C
R
E
D
IT
_L
IM
IT
_A
M
T

G
R
O
S
S
_I
N
C
O
M
E
_A
M
T

S
T
U
D
E
N
T
_L
O
A
N
_A
M
T

M
O
R
T
G
A
G
E
S
_A
M
T

D
eb
tR
eg
is
te
rN
um

D
eb
tR
eg
is
te
rI
E
LA

H
O
M
E
O
W
N
E
R
_I
N
D

H
O
U
S
IN
G
_C
O
O
P
E
R
A
T
IV
E
_I
N
D

N
oO
fC
hi
ld
re
n.
1

S
um
A
va
ila
bl
e

F
LI
_A
M
T

S
F
LI
_A
M
T

AktivEtterPassiv
Utgangspunkt

Alder
KjÃ.nn

NoOfChildren
FÃ.rsteBrukt

APPLIED_CREDIT_LIMIT_AMT
GRANTED_CREDIT_LIMIT_AMT

GROSS_INCOME_AMT
STUDENT_LOAN_AMT

MORTGAGES_AMT
DebtRegisterNum
DebtRegisterIELA

HOMEOWNER_IND
HOUSING_COOPERATIVE_IND

NoOfChildren.1
SumAvailable

FLI_AMT
SFLI_AMT

Figure 4.1: Correlations between different variables within the merged dataset prior to pre-
processing

46

Before beginning the visualization, the fundamental dataset and the appliance dataset were merged
by using the variable ”BK ACCOUNT ID”, which is the personal account number of a customer.
This resulted in one dataset that consists of 262 773 observations and 34 variables, which is more
or less the same dataset as the fundamental dataset, just with more explanatory variables.

Exploring the relationships between variables can provide valuable insight. Figure 4.1 visualizes
the correlations between different variables. To calculate correlations, categorical variables had to
be excluded.

Observe that ”APPLIED CREDIT LIMIT AMT” and ”GRANTED CREDIT LIMIT AMT” are
strongly correlated. This could be interpreted as that the majority of customers are granted a
credit card limit close to their requested amount. One can also observe that ”FLI AMT” and
”SFLI AMT” are highly correlated. ”FLI AMT” is a number that tells how well a person can
manage a loan, and ”SFLI AMT” is a stress-test where the loans interests are raised with 5
percentage point. Together with ”FLI AMT” and ”SFLI AMT”, ”SumAvailable” also seems to be
relatively correlated. Notice that ”NoOfChildren” and ”NoOfChildren.1” also is really correlated,
these two variables are the same variables, but one of them was from the appliance dataset, whereas
the other was from the fundamental dataset. This is a duplication that was removed later.

A correlation plot done with all the variables on the merged dataset after the pre-processing can
be found in Appendix B.

Figure 4.2 displays density plots of selected variables. This is a visualization tool that presents
the distributions of continuous variables. In this case, it is used to compare the distribution of the
same explanatory variable for two different responses in the response variable ”AktivEtterPassiv”.
The colors red and blue represent the responses 0 (remaining passive) and 1 (becomes active),
respectively. The varying densities depicted in the plots indicate differences between customers
who remain passive and customers who become active, providing insights as to how some of the
explanatory variables may help to predict the response variable.

0.0

2.5

5.0

7.5

10.0

12.5

1.5 2.0 2.5 3.0
GROSS_INCOME_AMT

de
ns
ity

AktivEtterPassiv

0

1

0.000

0.005

0.010

0.015

0.020

25 50 75 100
Alder

de
ns
ity

AktivEtterPassiv

0

1

0.0

0.2

0.4

0.6

-5.0 -2.5 0.0
log(log(FLI_AMT))

de
ns
ity

AktivEtterPassiv

0

1

0.0

0.2

0.4

0.6

4 8 12 16
SumAvailable

de
ns
ity

AktivEtterPassiv

0

1

Figure 4.2: Density plots of selected explanatory variables. Red shows the densities for observations
that remain passive, while blue shows the densities for observations that become active. The figures
follow this layout: Top left: (”GROSS INCOME AMT”) The income the customer has. Top Right:
(”Alder”) The age of the customer. Bottom left: (log(log(”FLI AMT”))) The natural logarithm of
the natural logarithm of a liquidity indicator made by Sparebank1 on how well the customer can
handle a loan. Bottom right: (”SumAvailable”) The amount of money available to a customer.

Looking at the densities for the different explanatory variables it becomes clear that there is not
much of a difference between the densities of the observations becoming active and the observations

47

who remain passive. However, although subtle, there are some differences.

If one were to look at ”Alder”, one can notice a trend; older customers tend to be slightly less likely
to become active, and the same seems to be the case for the youngest customers. There is also a
very subtle trend in the variable ”FLI AMT”, where a lower value here will increase the chance
of becoming active. Although the other two plots exhibit some variation in densities between the
two groups, they are not as distinct as in the other plots.

Let us also look at the historical datasets, these datasets contain a huge amount of observations
for each feature. Most of these observations are zero, as there are many categories in which the
customer has not used their credit card.

Figure 4.3: The figure shows three box plots on how much money is spent in different categories
for the last 12 months.

In Figure 4.3 box plots of how much money is spent in selected categories is shown. Most customers
use less than 10 000 NOK in each category, however, there are some outliers that use substantially
more.

The line right between 100 and 1000 NOK in the category ”FOOD STORES WAREHOUSE 12”
shows the median amount of money spent. In the two other categories, this median is zero.

4.3 Pre-Processing

Data pre-processing refers to the manipulation or removal of data before its usage to ensure or
improve the predictive models performance.

4.3.1 The first two datasets

Before any pre-processing is done, some of the explanatory variables had to removed from the
dataset made by merging the fundamental dataset and the appliance dataset. This removal had
to be done due to the fact that many of the explanatory variables contained information regarding
if the customers had become active, hence ruining the whole predicting task.

There are 4 of these variables, ”SisteKortbruk”, ”SisteTransaksjon”, ”Revolver” and ”Fullpayer”.
The first two explanatory variables will contain a date after the one month predicting interval if
a person has used their credit card or made any transactions after that month, hence telling if
a person is going from passive to active. While the last two explanatory variables won’t entirely
hinder the prediction task, they do indicate whether a customer has used their credit card. Passive

48

users cannot be classified as full-payers or revolvers, so the variables representing these categories
will have a value of zero. However, if these variables change to one, it will indicate that the
customer has used their credit card again.

After removing some of the explanatory variables, the next part is making the data available for
the computer. This is only done for the variables ”ForsteBrukt” and ”Utgangspunkt”. This is
because both these variables display dates.

For ”ForsteBrukt” the values were changed to days between the date that is displayed, and the
date at ”Utgangspunkt”. This is done because it is believed that the predicting models can make
better use of that type of data, as it now tells directly how many days it is between the first time
a customer uses their credit card and the predicting date.

For ”Utgangspunkt”, two new explanatory variables were created. The two new variables being
created are ”Utgangspunkt år” and ”Utgangspunkt m̊aned”, containing information of what year
and what month it is.

Afterwards, the pre-processing continued with feature construction. Two new variables were cre-
ated. One by taking the difference between ”APPLIED CREDIT LIMIT AMT” and ”GRAN-
TED CREDIT LIMIT AMT”, and the other one by dividing ”APPLIED CREDIT LIMIT AMT”
by ”GRANTED CREDIT LIMIT AMT”. Both of these feature constructions were carried out to
capture any potential reason behind why a customer may not be granted the credit limit they
requested.

The variable ”CREATED DT” tells when the appliance for the credit card was made. Along with
the date, this variable also contains the hour of the day, hence making it possible to create a
new feature with that information. There were also made a new feature which is the difference
between the variable ”FørsteBrukt” and the date at ”CREATED DT”. This new feature contains
the information of how many days there are between the appliance of the credit card and the actual
usage of the credit card.

Dummy encoding

Handling categorical values with neural networks can often be quite challenging. A common
approach to deal with this issue is to use something called dummy encoding. Dummy encoding,
also known as one-hot encoding, is a popular technique used in machine learning and data analysis
to convert categorical variables into a numerical representation that can be used by predicting
models.

Dummy encoding creates binary variables for each unique category within a categorical feature.
Each binary variable represents whether a specific category is present or not. If a category is
present for a particular observation, the corresponding binary variable will be assigned a value of
1, and if not, it will be assigned a value of 0.

In the merged dataset there were many missing values. A complete list of all the explanatory
variables with explanation for each of the different datasets, as well as how many observations that
were missing for each variable, is included in Appendix A. As the reasons for the missing values
were unknown, they could potentially hold valuable information for the computer. Therefore, it
was crucial to preserve the information about missing values in the data after pre-processing. The
significance of this is demonstrated in Figure 4.4, which highlights the substantial decrease in the
probability of becoming an active user due to missing values in the data.

After performing dummy encoding for both categorical and missing values, there were still some
”not a number” (NaN) values in the numerical variables. To handle this, these NaN values were
replaced with either the median or the mean of the remaining data in that variable.

The new dataset that was created from the fundamental dataset and the appliance dataset now
consisted of 103 variables and 262 773 observations.

49

0 1

CREATED_DT
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 1

NoOfChildren
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1

DebtRegisterIELA
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Figure 4.4: The three figures show the importance of keeping information about missing values.
Each plot shows the proportion of data with a positive outcome of the binary response variable
”AktivEtterPassiv” on the y-axis. The x-axis represents the presence or absence of missing obser-
vations, where 0 indicates the absence of missing observations and 1 indicates their presence.

4.3.2 The last two datasets

The historical credit card dataset, and the historical transactions dataset were on a slightly different
format than desired. This led to the necessity to transform these datasets in such a way that they
could be merged with the fundamental dataset. For doing that, it was needed to put every bit of
information regarding a customer into one observation. This is illustrated in Figure 4.5.

BK_ACCOUNT_ID PeriodId FOOD_STORE OTHER_TRANSPORT

1 2020.01 2000 500

1 2020.02 3000 0

1 2020.03 2500 3000

2 2020.01 6000 1000

2 2020.02 8000 2000

3 2020.02 500 0

3 2020.03 300 0

BK_ACCOUNT_ID FOOD_STORE
_2020_01

FOOD_STORE
_2020_02

FOOD_STORE
_2020_03

OTHER
_TRANSPORT
_2020_01

OTHER
_TRANSPORT
_2020_02

OTHER_
TRANSPORT
_2020_03

1 2000 3000 2500 500 0 3000

2 6000 8000 0 1000 2000 0

3 0 500 300 0 0 0

Figure 4.5: An illustration made to show how the historical datasets has been changed to later be
merged with the other datasets. This is a big simplification, and the upper table represents the
data given by Sparebank1, and the lower table represents the transformed table that later would
be merged with the other datasets.

In the datasets provided by Sparebank1 the periods ranged all the way from 2019 to 2023, con-
sequently the transformed datasets contained a significant number of explanatory variables.

The historical credit card dataset after transformation contained 820 explanatory variables and
28 375 observations. While the historical transactions dataset after transformation contained 281
explanatory variables and 5081 observations.

Every dataset could then be combined using the variable ”BK ACCOUNT ID”. This led to some
new NaN values because not all bank account id’s had all the historical data. These NaN values
were changed into zeros as it was believed that the reason why the NaN values existed was that
there just had not been an event where the money had been spent or transferred.

Now that every dataset was combined, some modifications on some of the explanatory variables
that came from the historical datasets had to be done. Some of the customers in the dataset became
active, and then passive again. As a result, for a given customer at a given period of prediction,
some of the explanatory variables contained information about future usage of the credit card. This

50

is obviously bad for the predicting task. Hence, for every observation, it was searched through all
the explanatory variables to see if there was some information about the future, and if there were
some, it was deleted.

In the end, MinMaxScaler() from sklearn.preprocessing in python was used as a way to scale all
the explanatory variables in the whole dataset between zero and one. This is a standard procedure
in machine learning, and is done as it often makes it easier for the predicting models to learn
efficiently.

51

Chapter 5
Methods and Hyperparameters, an
Overview

In this chapter, a brief summary of the hyperparameters of each of the predictive models along with
the techniques used to construct and improve the predictive models will be provided. All models
were developed using the programming language python. The code implemented are presented in
Appendix G, while the underlying theory is explained in Chapter 2.

5.1 The predicting models

In this section, the predictive models along with their corresponding hyperparameters will be
presented.

5.1.1 Logistic Regression

The modeling of logistic regression involves using the LogisticRegression() function imported
from the sklearn.linear model sub-library. This predicting model contains several hyperpara-
meters, all of which can be found in [14]. For the purpose of this thesis, it has been selected five
key hyperparameters for tuning, which are listed in Table 5.1 along with their respective domain.
These particular hyperparameters have been chosen because of their potential to influence on the
execution of logistic regression.

The ”solver” hyperparameter is categorical, and its purpose is to specify the optimization method
used to identify the optimal values for β, which in turn should maximize the likelihood func-
tion. There are five different categories available for this hyperparameter: "newton-cg","lbfgs",
"liblinear", "sag", and "saga". Further reading can be found in [14].

The ”penalty” hyperparameter is also categorical and determines the method used to penal-
ize the complexity of the model. There are three categories available for this hyperparameter:
"none","l1", and "l2". These categories respectively correspond to no penalization on complex-
ity, lasso regularization, and ridge regularization.

52

Table 5.1: The hyperparameters selected for tuning logistic regression, along with their default
values, data type, and domain.

Hyperparameter Default value Data type Domain

solver "lbfgs" categorical "newton-cg","lbfgs", "liblinear", "sag", "saga"
penalty "l2" categorical "none","l1" , "l2"

tol 10−4 float [0,∞)
max iter 100 integer [1,∞)

C 1.0 float [0,∞)

The ”tol” hyperparameter is continuous and sets the tolerance level for the stopping criteria of the
algorithm. A lower value for ”tol” will cause the algorithm to stop closer to the point of convergence.
The ”max iter” hyperparameter is also continuous, and closely linked to the ”tol” hyperparameter
as it specifies the maximum number of iterations the algorithm can perform. Therefore, either
”tol” or ”max iter” will determine the number of iterations executed by the algorithm.

The final hyperparameter chosen for logistic regression is ”C”. ”C” is a continuous hyperparameter
and represents the inverse of the regularization strength. A smaller value of ”C” will thus result
in a stronger regularization effect on the model’s complexity.

5.1.2 Gradient Boosted Decision Trees

The modeling of gradient boosted decision trees involves using the LGBMClassifier() function
imported from the lightgbm library. This predicting model has various hyperparameters that are
listed in [9]. For this thesis, 10 hyperparameters were chosen for optimization, which are presented
in table 5.2. All the hyperparameters selected for tuning in the gradient boosted decision trees are
continuous variables.

The hyperparameter ”learning rate” serves as a step size to avoid overfitting. It reduces the feature
weights after each boosting step, making the boosting process more conservative. Lower values of
this hyperparameter will slow down the algorithm, but enhance its precision.

The hyperparameter ”n estimators” is closely linked to ”learning rate”. It determines the number
of boosting iterations, and therefore, the number of trees built. A small number of iterations
may lead to an inaccurate model, while a large number may cause overfitting. When tuning this
hyperparameter, it is necessary to take into account the value of ”learning rate”.

Two hyperparameters that also are closely related to each other are ”reg alpha” and ”reg lambda”.
Both of these hyperparameters determine the extent to which the model’s complexity is penalized.
”reg alpha” refers to L1 regularization, whereas ”reg lambda” refers to L2 regularization. Increas-
ing the value of either of these hyperparameters results in a higher penalization of the models
complexity.

The hyperparameter ”min child samples” denotes the minimum sum of weights required to perform
a split. If the resulting leaf node after the tree partitioning process has a weight sum that is lower
than ”min child samples”, then the process of creating partitions will terminate. Reducing the
value of ”min child samples” will as a result lead to the construction of more complex trees.

”colsample bytree” is a hyperparameter that functions similarly to bagging. It represents the sub-
sample ratio of columns used to build each tree. For instance, if ”colsample bytree” is set to 0.6,
60% of the columns in the training data will be selected to construct each tree randomly. Sub-
sampling occurs once for every tree created, and this process assists in extracting diverse insights
from the data by restricting the number of features used in building each tree. Consequently, this
approach may result in a more robust model.

53

Table 5.2: The hyperparameters selected for tuning gradient boosted decision trees, along with
their default values, data type, and domain.

Hyperparameter Default value Data type Domain
learning rate 0.1 float (0,∞)
n estimators 100 integer [0,∞)
reg alpha 0 float [0,∞)
reg lambda 0 float [0,∞)

min child samples 20 integer [0,∞)
colsample bytree 1 float (0, 1]

max depth −1 integer [0,∞)
subsample 1 float (0, 1]

min split gain 0 float [0,∞)
num leaves 31 integer (1, 131072]

”max depth” is an important hyperparameter that governs the maximum height of each tree in the
model. A high value of this hyperparameter results in a complex model that is more susceptible to
overfitting. The value of ”max depth” must be chosen carefully, taking into account the balance
between model complexity and accuracy. One can notice that the default value of ”max depth” is
-1, this means that there is no maximum depth set as a standard.

The hyperparameter ”subsample” regulates bagging. It does this by specifying the proportion of
training data used in constructing each tree. For instance, if ”subsample” is set to 0.5, only half of
the training data will be used in building each tree. Subsampling occurs randomly once for every
tree created.

The hyperparameter ”min split gain” decides the minimum gain required to execute a split. A
higher value of this hyperparameter will lead to fewer splits in the tree, hence creating less complex
models.

The hyperparameter ”num leaves” functions in a similar way to ”max depth”, except that instead
of specifying the maximum height of each tree, it sets a maximum number of leaf nodes. Similar
to ”max depth”, setting a high value for ”num leaves” will lead to a more complex model, which
may increase the risk of overfitting.

5.1.3 Deep Learning

The sub-library sklearn.neural network was used to model deep learning using the MLPClassifier()
function. This predicting model has various hyperparameters that are described in [12]. For this
thesis, 6 hyperparameters were chosen for optimization, which are presented in table 5.3.

The hyperparameter ”activation” is categorical and decides the activation function used in the
hidden layers in the neural network.

The hyperparameter ”alpha” is continuous and decides the extent to which the model’s complexity
is penalized. This hyperparameter uses L2 regularization, and increasing the value will result in a
higher penalization of the models complexity.

”learning rate init” is a continuous hyperparameter, and controls the initial learning rate used to
train the model. It controls the step-size when updating the biases and weights in the neural
network. A lower step-size will slow down the algorithm, but enhance its precision.

54

Table 5.3: The hyperparameters selected for tuning deep learning, along with their default values,
data type, and domain.

Hyperparameter Default value Data type Domain
activation "relu" categorical "relu","tanh", "logistic", "identity"
alpha 0.0001 float [0, 1)

learning rate init 0.001 float (0, 1)
tol 0.0001 float (0, 1)

max iter 200 integer [1,∞)
hidden layer sizes [100] list of integers [1,∞)

The ”tol” and ”max iter” hyperparameters serve the same purpose as for logistic regression. ”tol”
sets the tolerance level for the stopping criteria of the algorithm. A lower value for ”tol” will
cause the algorithm to halt closer to the point of convergence. The ”max iter” hyperparameter
specifies the maximum number of iterations the algorithm can perform. Therefore, either ”tol” or
”max iter” will determine the number of iterations executed by the algorithm.

Lastly, the hyperparameter called ”hidden layer sizes” is responsible for determining the number of
hidden layers and the number of neurons in each hidden layer in the neural network. It is specified
as a list, so if one wish to create a model with three hidden layers and 20 neurons in each layer, one
can set ”hidden layer sizes” equal to ”[20, 20, 20]”. Increasing the number of layers and neurons
per layer will result in a more complex model, which may improve prediction accuracy, but it also
increases the risk of overfitting. For this predicting task, each hidden layer will contain the same
amount of neurons in them. As a result, this hyperparameter creates two new hyperparameters,
”num layers” and ”neurons per layer”.

5.2 The procedure

The procedure for comparing the three predicting models involves six steps:

1. The dataset will be split into a training set and a test set. The predicting models will then be
trained with default hyperparameters on the training set. Thereafter, the predicting models will
be tested on the test set with a default threshold, and a comparison of the results will be made.

2. Cross-Validation and Bayesian optimization will be used on each of the predicting models as
way to find optimal hyperparameters. This process will be well documented and a comparison
between the the tuning process for the different predicting models will be discussed.

3. A second Bayesian optimization on the most important continuous hyperparameters of each
of the predicting models will be performed. This is done to further investigate the relationships
between some of the hyperparameters without the noise of the other hyperparameters, along with
a re-justification of the search domains.

4. Cross-Validation will again be used, but now to find an optimal threshold for each of the
predicting models.

5. The predicting models will again be trained on the training set, and then tested on the test set,
but now with optimal hyperparameters and threshold. A comparison between the models will be
made again.

6. Lastly, SHAP values will used as a way to compare feature importance across predicting models.

The splitting of the dataset into a training set and a test set is done using the function train test split()

imported from the sub-library sklearn.linear selection. The split is done randomly, and 75%
of the data is used for training, and 25% is used for testing. This results in a training set of 197080
observations, and a test set of 65693 observations.

55

5.2.1 Bayesian Optimization

To perform Bayesian optimization, the first step involves creating an objective function that will
be maximized, this is done using the syntax def objective(). Next, a ”study” is created by
calling the optuna.create study() function. Finally, the study is used to optimize the objective
value by using the study.optimize() function. The complete code can be found in Appendix
G. It is crucial to choose an appropriate objective function to maximize. In this thesis, the same
objective function will be used for all the predictive models to ensure that the tuning process can
be compared across models.

In the objective, cross-validation is used with N = 3. This number is selected because it offers the
advantages of cross-validation while remaining computationally efficient. Cross-validation with
N = 3 will result in three groups of data, two with 65693 observations, and one with 65694
observations. As a consequence, three models are trained with identical hyperparameters but
varying data. This is repeated for each iteration of the Bayesian optimization process.

In my project thesis [27], a similar optimization of hyperparameters was done. In that study, a
threshold was also added to the optimization, this was done in case there was a link between the
hyperparameters and the threshold, in the belief that it might yield better results than finding an
optimal threshold later on. However, the dataset that is used now are approximately 100 times
larger, and as a result, training one predictive model now is much more computational expensive. It
leads to a significant higher training time, and hence a decrease in the iterations for the Bayesian
optimization is necessary. The combination of fewer iterations and no significant improvement
resulted in the decision to not include the threshold in the Bayesian optimization again.

As the threshold is left out of the Bayesian optimization, all the evaluation metrics have to be
without a threshold. As a result, the objective value is chosen to be the mean of the AUC of the
three predicting models. This metric is chosen as it is considered to be a good all-round test.

100 iterations with Bayesian optimization will be done. After interpreting the results, 50 more
iterations will be conducted with fewer hyperparameters.

5.2.2 Threshold Optimization

After the optimal hyperparameters have been found, Cross-Validation with N = 3 is again used to
find an optimal threshold for each predicting model. Each predicting model is now trained with
optimal hyperparameters. An objective is then formed as a way to tell how good the threshold
being tested is. A list of 1000 evenly spaced points between 0 and 1 is then used to test the
objective value for every threshold. The objective value is defined as

Objective value =

3∑
i=1

(
MCCi + 2 · BACCi

)
, (5.1)

where MCC is the Matthews Correlation Coefficient and BACC is Balanced Accuracy. The reason
BACC is multiplyed with 2 is that it ranges from 0 to 1, whereas MCC ranges from -1 to 1, so
multiplying with 2 gives more balance between the metrics. These metrics are used as they both
are good all-round metrics on imbalanced datasets.

5.2.3 SHAP values

The SHAP values for each predicting model, both with and without tuned hyperparameters, will be
found so that there can be done an comparison of the feature importance across predicting models.
Both the shap.KernelExplainer() function and the explainer.shap values() function, from
the shap library [30], will be used to do this.

56

Chapter 6
Analysis and Results

The analysis and results obtained from the techniques described in chapter 5 will be presented
in this chapter. First, the results obtained using predictive models with default hyperparameters
and threshold will be presented. Subsequently, the findings from Bayesian optimization, including
the optimal threshold for each predictive model, will be shown. Next, the results achieved with
predictive models using optimal hyperparameters and threshold will be presented. In the end, an
analysis of the SHAP values for each predictive model will be provided.

The whole dataset is used for the prediction task. In the dataset there are multiple observations per
customer, however the feature ”BK ACCOUNT ID”, which is the personal account number of a
customer, is removed. As a result, each observation is assumed to be independent. The prediction
task is made so that there will be done predictions for a single customer at several different months.
This approach results in an incorrect prediction if a customer is classified as becoming active in a
month when they actually remain passive, even though they become active in a later month.

6.1 Results with default hyperparameters

The predictive models were first trained on the training set using default hyperparameters. There-
after, the models were evaluated on the test set, with a threshold value of 0.064. This particular
threshold was chosen because it corresponds to the proportion of active and passive customers in
the dataset. Previous studies [3] suggest that using this threshold as a default value may be more
effective than simply relying on 0.5.

Table 6.1, 6.2, and 6.3 display the confusion matrices showing how each predictive model categor-
ized the test set. The predictions of the three models are comparable. Notably, deep learning
assigns the ”becoming active” label to customers less often than the other models. On the other
hand gradient boosted decision trees seems to assign the ”becoming active” label to customers
slightly more often than logistic regression.

Table 6.1: Confusion matrix from logistic regression. The training of the model was performed on
the training set using default hyperparameters, and the model was evaluated on the test set using
a default threshold of 0.064. 0 represents remaining passive while 1 represents becoming active.

True
Predicted

0 1

0 36028 25468
1 2010 2188

57

Table 6.2: Confusion matrix from gradient boosted decision trees. The training of the model was
performed on the training set using default hyperparameters, and the model was evaluated on
the test set using a default threshold of 0.064. 0 represents remaining passive while 1 represents
becoming active.

True
Predicted

0 1

0 32714 28782
1 1362 2836

Table 6.3: Confusion matrix from deep learning. The training of the model was performed on the
training set using default hyperparameters, and the model was evaluated on the test set using a
default threshold of 0.064. 0 represents remaining passive while 1 represents becoming active.

True
Predicted

0 1

0 45174 16322
1 2741 1457

Table 6.4 displays the results of each classification metric. It is important to note that the Brier
score is the only metric where minimization is the goal. Consequently, to transform the objective
of all metrics presented in the table into maximization, 1−Brier score is employed.

One can see that gradient boosted decision trees outperforms both logistic regression and deep
learning in every all-round metric. The only metrics where the other predictive models shows
better results are in accuracy and sensitivity. Nonetheless, accuracy and sensitivity alone does not
provide a complete picture of the overall prediction performance.

Logistic regression and deep learning performs quite similar in all the all-round metrics. However,
logistic regression does a slightly better predicting job overall.

Table 6.4: Results from classification metrics on the test set for all models with default hyperpara-
meters and threshold.

Predicting model AUC 1−Brier score MCC BACC Accuracy Sensitivity Specificity

Logistic regression 0.5731 0.9403 0.0530 0.5535 0.5817 0.5859 0.5212
Gradient boosted decision trees 0.6461 0.9407 0.1016 0.6038 0.5411 0.5320 0.6756

Deep learning 0.5580 0.9302 0.0450 0.5408 0.7098 0.7346 0.3471

6.1.1 Investigating threshold importance

The used threshold is not optimized, and it may be advantageous to examine how different eval-
uation metrics are affected by it. Figure 6.1, 6.2, and 6.3 visualizes this. These figures indicates
that the MCC is slightly less sensitive to the threshold in comparison to the BACC. Moreover, it
becomes evident that the accuracy metric is not an ideal test for unbalanced datasets.

The ideal threshold for each predictive model remains relatively consistent across all metrics except
for the accuracy. The optimal threshold for the MCC and the BACC is roughly the same as the
proportion of active and passive customers in the dataset. One can therefore conclude that choosing
0.064 as a default threshold is not that bad. For accuracy, the optimal threshold seems to be the
higher the better.

It is noteworthy that even though the maximum MCC and BACC scores of deep learning are not as
high as those of the other predictive models, the scores of deep learning appear to be less affected
by changes in the threshold value.

Appendix F contains similar graphs, although these focus on Sensitivity and Specificity instead.

58

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.00

0.02

0.04

0.06

0.08

0.10

M
at

th
ew

s C
or

re
la

tio
n

Co
ef

fic
ie

nt

Logistic Regression
Gradient Boosting
Deep Learning

Figure 6.1: A plot illustrating the impact of various threshold values on the Matthews Correlation
Coefficient (MCC) for different predictive models with default hyperparameters. Logistic regression
is displayed in red, gradient boosted decision trees is displayed in blue and deep learning is displayed
in yellow.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.50

0.52

0.54

0.56

0.58

0.60

Ba
la

nc
ed

 A
cc

ur
ac

y
Sc

or
e

Logistic Regression
Gradient Boosting
Deep Learning

Figure 6.2: A plot illustrating the impact of various threshold values on the Balanced Accuracy
(BACC) for different predictive models with default hyperparameters. Logistic regression is dis-
played in red, gradient boosted decision trees is displayed in blue and deep learning is displayed in
yellow.

59

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.2

0.4

0.6

0.8
Ac

cu
ra

cy
 S

co
re

Logistic Regression
Gradient Boosting
Deep Learning

Figure 6.3: A plot illustrating the impact of various threshold values on the Accuracy for different
predictive models with default hyperparameters. Logistic regression is displayed in red, gradient
boosted decision trees is displayed in blue and deep learning is displayed in yellow.

6.1.2 Feature Importance

Figure 6.4 and 6.5 exhibit the feature importance for each predictive model. The feature importance
for logistic regression is determined by the absolute value of the coefficients βj . The scale is set so
that the feature with the highest coefficient has a feature importance of 100.

0 20 40 60 80 100
Feature Importance

AIRLINE_3_2021_1
diff_applied_granted

TRAVEL_AGENCIES_12_2020_10
TRAVEL_AGENCIES_12_2020_7

RECREATION_12_2020_1
FOOD_STORES_WAREHOUSE_3_2022_6

HOTEL_MOTEL_3_2021_12
CountRoundPaidToCCL12_2021_11

CountPaidToCCL12_2021_9
CountDistinctPaidToCCL12_2021_12

CountDistinctPaidToCCL12_2021_9
CountRoundPaidToCCL12_2021_10

RESTAURANTS_BARS_12_2022_7
AIRLINE_3_2021_5

CountPaidToCCL12_2021_12
SumPaidToCCL12_2021_9

VEHICLES_12_2020_3
FOOD_STORES_WAREHOUSE_3_2022_7

CountRoundPaidToCCL12_2021_3
INTERIOR_FURNISHINGS_3_2021_11

Figure 6.4: Feature importance for logistic regression with default hyperparameters. The top 20
most important features are displayed.

60

The feature importance regarding gradient boosted decision trees is evaluated based on the im-
provement of the performance measure attributed to each split in a tree. This is weighted by the
number of observations for which each node is responsible for. The overall feature importance is
determined by averaging the feature importance across all the trees in the model.

0 50 100 150 200
Feature importance

INTERIOR_FURNISHINGS_12_2020_12
LastTaxYear3_TAX_CLASS_CD_nan

DebtRegisterNum
APPLIED_CREDIT_LIMIT_AMT

SumPaidToCCL12_2021_9
diff_applied_granted

STUDENT_LOAN_AMT
DebtRegisterIELA
Utgangspunkt_år

CREATED_DT_hour
SFLI_AMT

SumAvailable
MORTGAGES_AMT

FLI_AMT
GROSS_INCOME_AMT

diff_created_første
CREATED_DT

Alder
Utgangspunkt_måned

FørsteBrukt
Fe

at
ur

es

13
14
15
16
16
21
27
27
32
32
35
35
37
41

48
77
81

115
161

213

Figure 6.5: Feature importance for gradient boosted decision trees with default hyperparameters
and threshold. The top 20 most important features are displayed.

One can see that logistic regression and gradient boosted decision trees do not share any of the
top 20 most important features except ”SumPaidToCCL12 2021 9” and ”diff applied granted”.
”SumPaidToCCL12 2021 9” is the number 5 most important feature for logistic regression, whereas
it is the number 15 in gradient boosted decision trees. One can also see that the top 20 most
important features for logistic regression only contain historical credit card uses or transactions
except ”diff applied granted”. ”diff applied granted” is not in the top 10 most important features
for any of the two predicting models.’

Other than that ”INTERIOR FURNISHINGS 3 2021 11”, ”CountRoundPaidToCCL12 2021 3”
and ”FOOD STORES WAREHOUSE 3 2022 7” are the most important features for logistic re-
gression. Whereas ”FørsteBrukt”, ”Utgangspunkt m̊aned” and ”Alder” are the most important
features in gradient boosted decision trees.

The feature importance for deep learning is not provided in the Scikit-learn package, there will as
a result be looked at SHAP values for deep learning. This will be done in the last section of this
chapter. The SHAP values for the other predicting models will also be included.

Outprint from the code is included in Appendix F.

6.2 Logistic Regression Optimization

In this section of the analysis and results, there will only be used the training dataset. Cross-
validation is employed to evaluate the different combinations of hyperparameters and threshold
values. This is done to simulate real world scenarios, where the building and training of the
predictive models has to be done without any knowledge of the test dataset.

Logistic regression does not allow for the execution of every possible hyperparameter combination.
This is because certain variables in the ”solver” and ”penalty” options may not be compatible. For

61

instance, the ”solver” "lbfgs" is not able to use the ”penalty” "l1". As a result, the ”penalty”
"l1" along with the ”solver” "liblinear" will not be used in the optimization. Table 6.5 displays
the hyperparameters chosen for optimization along with their search domains.

Table 6.5: The hyperparameters with their search domain for the first logistic regression hyper-
parameter tuning.

Hyperparameter Search Domain
solver "newton-cg","lbfgs", "sag", "saga"
penalty "none" , "l2"

tol [10−10, 10−2]
max iter [10, 100]

C [0.05, 100]

6.2.1 First Results

Table 6.6 shows the outcome of the first hyperparameter tuning process. The tuning took 10 hours
and 36 minutes to execute and yielded an AUC value of 0.5697.

Table 6.6: The hyperparameters with their optimal values for the first logistic regression hyper-
parameter tuning.

Hyperparameter Value
solver "saga"

penalty "l2"

tol 3.8727 · 10−8

max iter 35
C 0.2505

Figure 6.6 shows a history plot of the first Bayesian optimization. This plot displays the objective
value (AUC) for each iteration of the Bayesian optimization process. It is evident that the best
objective value shows some improvement in the beginning, but eventually plateaus after around
20 iterations.

Figure 6.7 shows the degree of importance that each hyperparameter has on the objective values
seen in Figure 6.6. The plot indicates that ”solver” is the most significant hyperparameter, followed
by ”penalty” and ”C”. In contrast, the other two hyperparameters, ”max iter” and ”tol”, appear to
have minimal impact on the objective value. When examining Figure 6.8, it becomes evident why
”solver” is of such high importance: selecting an inappropriate solver can significantly compromise
the predictive performance of the model.

62

0 20 40 60 80 100
0.556

0.558

0.56

0.562

0.564

0.566

0.568

0.57 Objective Value
Best Value

Optimization History Plot

Trial

O
bj

ec
tiv

e
Va

lu
e

Loading [MathJax]/extensions/MathMenu.js
Figure 6.6: Optimization history plot of the Bayesian optimization. The objective value (AUC)
for each iteration are denoted by blue dots. The red line corresponds to the best objective value
obtained so far.

<0.01

0.02

0.26

0.27

0.46

0 0.1 0.2 0.3 0.4

tol

max_iter

C

penalty

solver

Hyperparameter Importances

Importance for Objective Value

H
yp

er
pa

ra
m

et
er

Loading [a11y]/accessibility-menu.js
Figure 6.7: Hyperparameter importance plot indicating the importance each hyperparameter has
on the objective value.

63

lbfgs newton-cg saga sag
0.556

0.558

0.56

0.562

0.564

0.566

0.568

0.57

0

20

40

60

80

Trial

Slice Plot

solver

O
bj

ec
tiv

e
Va

lu
e

Loading [MathJax]/extensions/MathMenu.js
Figure 6.8: Slice plot showing the impact the hyperparameter ”solver” has on the objective value.
Whiter dots represents earlier iterations in the Bayesian optimization.

Figure 6.9 indicates that the upper bound on the objective value is influenced by the ”C” hyper-
parameter. This suggests that determining the ideal degree of penalizing complexity is crucial for
achieving optimal results.

5 0.1 2 5 1 2 5 10 2 5 100
0.556

0.558

0.56

0.562

0.564

0.566

0.568

0.57

0

20

40

60

80

Trial

Slice Plot

C

O
bj

ec
tiv

e
Va

lu
e

Loading [MathJax]/extensions/MathMenu.js
Figure 6.9: Slice plot showing the impact the hyperparameter ”C” has on the objective value.
Whiter dots represents earlier iterations in the Bayesian optimization.

64

6.2.2 Second Results

To further investigate the importance of the hyperparameters, a second Bayesian optimization has
been done with 50 iterations. The second Bayesian optimization will only focus on the continuous
hyperparameters and not the categorical. Additionally, the domains of these hyperparameters have
been adjusted. Table 6.7 displays the hyperparameters chosen for a second optimization along with
their new search domains.

Table 6.7: The hyperparameters with their respective search domain for the second logistic regres-
sion hyperparameter tuning.

Hyperparameter Search Domain
max iter [10, 80]

tol [10−6, 10−3]
C [0.01, 10]

Table 6.8 shows the outcomes of the hyperparameter tuning process. The second hyperparameter
tuning took 2 hours and 59 minutes to execute and yielded an AUC value of 0.5697. This means
that there was not any improvement in the objective value for the second optimization compared
to the first one.

Table 6.8: The hyperparameters with their optimal values for the second logistic regression hyper-
parameter tuning.

Hyperparameter Value
max iter 54

tol 1.3111 · 10−4

C 0.2333

0 10 20 30 40 50

0.565

0.566

0.567

0.568

0.569

0.57
Objective Value
Best Value

Optimization History Plot

Trial

O
bj

ec
tiv

e
Va

lu
e

Figure 6.10: Optimization history plot of the Bayesian optimization. The objective values (AUC)
for each iteration are denoted by blue dots. The red line corresponds to the best objective value
obtained so far.

65

Figure 6.10 shows a history plot of the second Bayesian optimization. It is evident that the best
objective value shows some improvement in the beginning, but eventually plateaus after 10 to 15
iterations.

0.04

0.16

0.80

0 0.2 0.4 0.6 0.8

tol

max_iter

C

Hyperparameter Importances

Importance for Objective Value

H
yp

er
pa

ra
m

et
er

Figure 6.11: Hyperparameter importance plot indicating the importance each hyperparameter has
on the objective value.

Figure 6.11 shows the degree of importance that each hyperparameter has on the objective value.
The plot indicates that ”C” is the most significant hyperparameter. ”max iter” appear to have
some impact, and ”tol” appear to have a minimal impact on the objective value.

0.01 2 5 0.1 2 5 1 2 5 10

0.565

0.566

0.567

0.568

0.569

0.57

0

10

20

30

40

Trial

Slice Plot

C

O
bj

ec
tiv

e
Va

lu
e

Figure 6.12: Slice plot showing the impact the hyperparameter ”C” has on the objective value.
Whiter dots represents earlier iterations in the Bayesian optimization.

66

When examining Figure 6.12, it becomes evident why ”C” is so important. In that figure, it can
seem as if the objective value is almost a function of ”C” only.

Figure 6.13 shows a Contour plot. In this plot one can see how two different hyperparameters
influences the objective value. Darker color represents better objective value. It is clear that ”C”
has the highest influence on the objective value.

0.01 2 5 0.1 2 5 1 2 5 10
10

20

30

40

50

60

70

80

0.565

0.566

0.567

0.568

0.569

Objective Value

Contour Plot

C

m
ax

_i
te

r

Figure 6.13: Contour plot showing how different combinations of ”C” and ”max iter” changes the
objective value. Darker color represents better objective values.

Outprint from the code as well as the slice plots for the other hyperparameters are included in
Appendix C.

67

6.2.3 Threshold

The logistic regression model with optimal hyperparameters achieved its best performance at a
threshold of 0.056. Figure 6.14 illustrates the impact of varying the threshold between zero and
one on the objective value defined in Chapter 5. It is evident from the graph that there is a distinct
optimal threshold that maximizes the model’s performance.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

3.0

3.1

3.2

3.3

3.4

Ob
je

ct
iv

e
va

lu
e

Figure 6.14: A plot showing how different values of the threshold affect an objective value.

6.3 Gradient Boosted Decision Trees Optimization

In this section of the analysis and results, there will only be used the training dataset. Cross-
validation is employed to evaluate the different combinations of hyperparameters and threshold
values. This is done to simulate real world scenarios, where the building and training of the
predictive models has to be done without any knowledge of the test dataset.

Table 6.9 displays the domains that have been chosen for the first hyperparameter search along
with the respective hyperparameter.

Table 6.9: The hyperparameters with their respective search domain for the first gradient boosted
decision trees hyperparameter tuning.

Hyperparameter Search Domain
learning rate [0.001, 0.3]
n estimators [10, 3000]
reg alpha (0, 50]
reg lambda (0, 50]

min child samples [0, 300]
colsample bytree [0.01, 1]

max depth [3, 20]
subsample [0.01, 1]

min split gain [0.01, 1]
num leaves [10, 5000]

68

6.3.1 First Results

Table 6.10 shows the outcome of the first hyperparameter tuning process. The tuning took 8 hours
and 31 minutes to execute and yielded an AUC value of 0.6569.

One thing to notice is that the value of the ”learning rate” became quite close to the edge of the
search domain. In Figure 6.17 one can see that the points are focused towards a lower ”learn-
ing rate”. As a result, the second Bayesian optimization will include this hyperparameter with a
domain containing smaller values.

Table 6.10: The hyperparameters with their optimal values for the first gradient boosted decision
trees hyperparameter tuning.

Hyperparameter Optimal value
learning rate 0.001018
n estimators 2272
reg alpha 0.003702
reg lambda 0.7099

min child samples 57
colsample bytree 0.2303

max depth 20
subsample 0.5025

min split gain 0.9187
num leaves 759
threshold 0.3313

Figure 6.15 shows a history plot of the first Bayesian optimization. This plot displays the objective
value (AUC) for each iteration of the Bayesian optimization process. It is evident that the best
objective value shows substantial improvement in the beginning, but eventually plateaus after
around 30 iterations.

0 20 40 60 80 100

0.61

0.62

0.63

0.64

0.65

0.66
Objective Value
Best Value

Optimization History Plot

Trial

O
bj

ec
tiv

e
Va

lu
e

Figure 6.15: Optimization history plot of the Bayesian optimization. The objective values (AUC)
for each iteration are denoted by blue dots. The red line corresponds to the best objective value
obtained so far.

69

Figure 6.16 shows the degree of importance that each hyperparameter has on the objective value.
The plot indicates that ”learning rate” is the most significant hyperparameter, followed closely
by ”min split gain”. The other hyperparameters appear to have some to minimal impact on the
objective value. When examining Figure 6.17, it becomes evident why ”learning rate” is of such
high importance; a lower value for ”learning rate” clearly gives better Objective values.

<0.01

<0.01

0.04

0.06

0.06

0.07

0.07

0.11

0.25

0.32

0 0.05 0.1 0.15 0.2 0.25 0.3

reg_lambda

num_leaves

max_depth

min_child_samples

n_estimators

reg_alpha

subsample

colsample_bytree

min_split_gain

learning_rate

Hyperparameter Importances

Importance for Objective Value

H
yp

er
pa

ra
m

et
er

Figure 6.16: Hyperparameter importance plot indicating the importance each hyperparameter has
on the objective value.

0.001 2 5 0.01 2 5 0.1 2

0.61

0.62

0.63

0.64

0.65

0.66

0

20

40

60

80

Trial

Slice Plot

learning_rate

O
bj

ec
tiv

e
Va

lu
e

Figure 6.17: Slice plot showing the impact the hyperparameter ”learning rate” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

70

Figure 6.18 provides the importance of ”min split gain”. The plot displays how varying values of
”min split gain” changes the corresponding objective values. The results demonstrate that there
exists an optimal range between 0.8 and 1.

0.2 0.4 0.6 0.8 1

0.61

0.62

0.63

0.64

0.65

0.66

0

20

40

60

80

Trial

Slice Plot

min_split_gain

O
bj

ec
tiv

e
Va

lu
e

Figure 6.18: Slice plot showing the impact the hyperparameter ”min split gain” has on the object-
ive value. Whiter dots represents earlier iterations in the Bayesian optimization.

6.3.2 Second Results

To further investigate the importance of the hyperparameters, a second Bayesian optimization has
been done with 50 iterations.

There are a lot of hyperparameters to choose from in gradient boosted decision trees, but three
hyperparameters have been selected for the second optimization. Table 6.11 displays these hyper-
parameters with their respective domain. ”learning rate” and ”max depth” are chosen because the
search domains of these hyperparameters needs some readjustments. ”n estimators” is chosen as
there could be a tendency that if the step size hyperparameter ”learning rate” gets smaller, there
might be needed to build more trees to get an optimal combination of hyperparameters.

Table 6.11: The hyperparameters with their respective search domain for the second gradient
boosted decision trees hyperparameter tuning.

Hyperparameter Search Domain
learning rate [0.0001, 0.003]
n estimators [2000, 5000]
max depth [15, 30]

Table 6.12 shows the outcomes of the hyperparameter tuning process. The second hyperparameter
tuning took 11 hours and 28 minutes to execute and yielded an AUC value of 0.6592. This
means that there was an improvement of 0.0023 in the objective value for the second optimization
compared to the first one.

71

Table 6.12: The hyperparameters with their optimal values for the second gradient boosted decision
trees hyperparameter tuning.

Hyperparameter Value
learning rate 0.0005807
n estimators 2789
max depth 30

Figure 6.19 shows a history plot of the second Bayesian optimization. It is evident that the best
objective value shows larger improvements in the beginning, but eventually slows down, but still
shows some improvement even after 40 iterations.

0 10 20 30 40 50

0.648

0.65

0.652

0.654

0.656

0.658

Objective Value
Best Value

Optimization History Plot

Trial

O
bj

ec
tiv

e
Va

lu
e

Figure 6.19: Optimization history plot of the Bayesian optimization. The objective values (AUC)
for each iteration are denoted by blue dots. The red line corresponds to the best objective value
obtained so far.

Figure 6.20 shows the degree of importance that each hyperparameter has on the objective value.
The plot indicates that ”learning rate” is the most significant hyperparameter. ”max depth” and
”n estimators” appear to have some impact on the objective value.

Figure 6.21 provides a visual representation of the importance of ”learning rate”. The plot displays
varying values of ”learning rate” and their corresponding objective values. The results demonstrate
that there exists an optimal range between 0.0007 and 0.0003.

72

0.05

0.10

0.85

0 0.2 0.4 0.6 0.8

n_estimators

max_depth

learning_rate

Hyperparameter Importances

Importance for Objective Value

H
yp

er
pa

ra
m

et
er

Figure 6.20: Hyperparameter importance plot indicating the importance each hyperparameter has
on the objective value.

2 3 4 5 6 7 8 9
0.001

2 3

0.648

0.65

0.652

0.654

0.656

0.658

0

10

20

30

40

Trial

Slice Plot

learning_rate

O
bj

ec
tiv

e
Va

lu
e

Figure 6.21: Slice plot showing the impact the hyperparameter ”learning rate” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

Figure 6.22 shows a Contour plot. In this plot one can see how two different hyperparameters
influences the objective value. Darker color represents better objective value. It is clear that both
”learning rate” and ”max depth” plays a significant role on the model performance.

Outprint from the code as well as the slice plots for the other hyperparameters are included in
Appendix D.

73

2 3 4 5 6 7 8 9
0.001

2 3

16

18

20

22

24

26

28

30

0.65

0.652

0.654

0.656

0.658

Objective Value

Contour Plot

learning_rate

m
ax

_d
ep

th

Figure 6.22: Contour plot showing how different combinations of ”learning rate” and ”max depth”
changes the objective value. Darker color represents better objective values.

6.3.3 Threshold

The gradient boosted decision trees model with optimal hyperparameters achieved its best perform-
ance at a threshold of 0.060. Figure 6.23 illustrates the impact of varying the threshold between
zero and one on the objective value defined in Chapter 5. It is evident from the graph that there
is a distinct optimal threshold that maximizes the model’s performance.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

3.0

3.2

3.4

3.6

3.8

4.0

Ob
je

ct
iv

e
va

lu
e

Figure 6.23: A plot showing how different values of the threshold affect an objective value.

74

6.4 Deep Learning Optimization

In this section of the analysis and results, there will only be used the training dataset. Cross-
validation is employed to evaluate the different combinations of hyperparameters and threshold
values. This is done to simulate real world scenarios, where the building and training of the
predictive models has to be done without any knowledge of the test dataset.

Table 6.13 displays the hyperparameters chosen for the first Bayesian optimization along with their
respective search domain.

Table 6.13: The hyperparameters with their respective search domain for the first deep learning
hyperparameter tuning.

Hyperparameter Search Domain
activation "relu","tanh", "logistic", "identity"
alpha [10−8, 1]

learning rate init [10−5, 1]
tol [10−6, 0.1]

max iter [2, 100]
num layers [2, 20]

neurons per layer [2, 200]

6.4.1 First Results

Table 6.14 shows the outcome of the first hyperparameter tuning process. The tuning took 53
hours and 6 minutes to execute and yielded an AUC value of 0.5917.

One thing to notice is that the optimal value of ”num layers” became 2, which is on the edge of
the search domain. In Figure 6.26 one can see that lower values for ”num layers” often results in
a higher objective value. This will be further tested in the second Bayesian optimization.

Table 6.14: The hyperparameters with their optimal values for the first deep learning hyperpara-
meter tuning.

Hyperparameter Optimal value
activation "logistic"

alpha 9.1556 · 10−4

learning rate init 2.3164 · 10−3

tol 1.3651 · 10−6

max iter 62
num layers 2

neurons per layer 169

Figure 6.24 shows a history plot of the first Bayesian optimization. This plot displays the objective
value (AUC) for each iteration of the Bayesian optimization process. It is evident that the best
objective value shows substantial improvement even after 60 iterations, but eventually plateaus.
It is also noteworthy that deep learning produces many models that performs as bad as a random
classifier, and some that perform even worse. It is thus important to choose good hyperparameters
when using deep learning.

75

0 20 40 60 80 100

0.5

0.52

0.54

0.56

0.58

Objective Value
Best Value

Optimization History Plot

Trial

O
bj

ec
tiv

e
Va

lu
e

Figure 6.24: Optimization history plot of the Bayesian optimization. The objective values (AUC)
for each iteration are denoted by blue dots. The red line corresponds to the best objective value
obtained so far.

Figure 6.25 shows the degree of importance that each hyperparameter has on the objective value.
The plot indicates that ”num layers” is the most significant hyperparameter, followed by ”activa-
tion” and ”max iter”. The other hyperparameters appear to have some impact to minimal impact
on the objective value. When examining Figure 6.26, it becomes evident why ”num layers” is of
such high importance; a lower value for ”num layers” can give better objective values.

<0.01

0.02

0.04

0.06

0.14

0.25

0.48

0 0.1 0.2 0.3 0.4 0.5

tol

learning_rate_init

alpha

neurons_per_layer

max_iter

activation

num_layers

Hyperparameter Importances

Importance for Objective Value

H
yp

er
pa

ra
m

et
er

Figure 6.25: Hyperparameter importance plot indicating the importance each hyperparameter has
on the objective value.

76

5 10 15 20

0.5

0.52

0.54

0.56

0.58

0

20

40

60

80

Trial

Slice Plot

num_layers

O
bj

ec
tiv

e
Va

lu
e

Figure 6.26: Slice plot showing the impact the hyperparameter ”num layers” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

Figure 6.27 provides a visual representation of the significance of the different activation functions.
The results demonstrates that the logistic, also known as the sigmoid, activation function gives
the best results.

identity logistic tanh relu

0.5

0.52

0.54

0.56

0.58

0

20

40

60

80

Trial

Slice Plot

activation

O
bj

ec
tiv

e
Va

lu
e

Figure 6.27: Slice plot showing the impact the hyperparameter ”activation” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

77

6.4.2 Second Results

To further investigate the importance of the hyperparameters, a second Bayesian optimization has
been done with 50 iterations. Table 6.15 displays the hyperparameters that has been chosen for
further investigation with their respective domain. ”num layers” is chosen because it could be
interesting to investigate if 1 layer might give better results than more layers, and also to check if
there is a clear tendency that more layers give poorer results. ”neurons per layer” and ”max iter”
are chosen because they are the second and third most influential continuous hyperparameters.

Table 6.15: The hyperparameters with their respective search domain for the second deep learning
hyperparameter tuning.

Hyperparameter Search Domain
num layers [1, 5]

neurons per layer [100, 300]
max iter [2, 100]

Table 6.16 shows the outcomes of the hyperparameter tuning process. The second hyperparameter
tuning took 46 hours and 10 minutes to execute and yielded an AUC value of 0.5923. This
means that there was an improvement of 0.0006 in the objective value for the second optimization
compared to the first one.

Table 6.16: The hyperparameters with their optimal values for the second deep learning hyper-
parameter tuning.

Hyperparameter Value
num layers 2

neurons per layer 274
max iter 85

Figure 6.28 shows a history plot of the second Bayesian optimization. It is evident that the best
objective value shows smaller improvements in the beginning, and then eventually slows down.

78

0 10 20 30 40 50

0.5

0.52

0.54

0.56

0.58

Objective Value
Best Value

Optimization History Plot

Trial

O
bj

ec
tiv

e
Va

lu
e

Figure 6.28: Optimization history plot of the Bayesian optimization. The objective values (AUC)
for each iteration are denoted by blue dots. The red line corresponds to the best objective value
obtained so far.

Figure 6.29 shows the degree of importance that each hyperparameter has on the objective value.
The plot indicates that ”num layers” is the most significant hyperparameter. ”max iter” and
”neurons per layer” appear to have a small impact on the objective value.

0.01

0.04

0.95

0 0.2 0.4 0.6 0.8

neurons_per_layer

max_iter

num_layers

Hyperparameter Importances

Importance for Objective Value

H
yp

er
pa

ra
m

et
er

Figure 6.29: Hyperparameter importance plot indicating the importance each hyperparameter has
on the objective value.

Figure 6.30 provides a visual representation of the impact of the amount of layers in the neural

79

network. The results demonstrate that one to two layers gives the best results.

1 2 3 4 5

0.5

0.52

0.54

0.56

0.58

0

10

20

30

40

Trial

Slice Plot

num_layers

O
bj

ec
tiv

e
Va

lu
e

Figure 6.30: Slice plot showing the impact the hyperparameter ”num layers” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

0 20 40 60 80 100

1

1.5

2

2.5

3

3.5

4

4.5

5

0.5

0.52

0.54

0.56

0.58

Objective Value

Contour Plot

max_iter

nu
m

_l
ay

er
s

Figure 6.31: Contour plot showing how different combinations of ”num layers” and ”max iter”
changes the objective value. Darker color represents better objective values.

Figure 6.31 shows a Contour plot. In this plot one can see how two different hyperparameters
influence the objective value. Darker color represents better objective values. It is clear that both
”num layers” and ”max iter” plays an important role on the model performance.

80

Outprint from the code as well as the slice plots for the other hyperparameters are included in
Appendix E.

6.4.3 Threshold

The deep learning model with optimal hyperparameters achieved its best performance at a threshold
of 0.062. Figure 6.32 illustrates the impact of varying the threshold between zero and one on the
objective value defined in Chapter 5. It is evident from the graph that there is a distinct optimal
threshold that maximizes the model’s performance.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

3.0

3.1

3.2

3.3

3.4

3.5

Ob
je

ct
iv

e
va

lu
e

Figure 6.32: A plot showing how different values of the threshold affect an objective value.

6.5 Comparing the Tuned Models

The predictive models were all trained using the optimal hyperparameters and optimal threshold
selected in the sections above. This training was carried out exclusively on the training set,
after which the predictive models were tested using the test set. The classification results of each
predictive model on the test set are displayed in Table 6.17, 6.18, and 6.19, in the form of confusion
matrices.

The three model predictions shows somewhat similar results. A thing to notice is that logistic
regression tends to classify customers as becoming active a bit more frequently than the other
models.

Table 6.17: Confusion matrix from logistic regression. The training of the model was performed
on the training set using optimal hyperparameters, and the model was evaluated on the test set
using a optimal threshold of 0.056. 0 represents remaining passive while 1 represents becoming
active.

True
Predicted

0 1

0 20960 40536
1 1046 3152

81

Table 6.18: Confusion matrix from gradient boosted decision trees. The training of the model was
performed on the training set using optimal hyperparameters, and the model was evaluated on
the test set using a optimal threshold of 0.060. 0 represents remaining passive while 1 represents
becoming active.

True
Predicted

0 1

0 32278 29218
1 1182 3016

Table 6.19: Confusion matrix from deep learning. The training of the model was performed on the
training set using optimal hyperparameters, and the model was evaluated on the test set using a
optimal threshold of 0.062. 0 represents remaining passive while 1 represents becoming active.

True
Predicted

0 1

0 30760 30736
1 1524 2674

Table 6.20 displays the results of each classification metric. It is important to note that the Brier
score is the only metric where minimization is the goal. Consequently, to transform the objective
of all metrics presented in the table into maximization, 1−Brier score is employed.

Gradient boosted decision trees still outperforms both logistic regression and deep learning for
every all-round metric. The only metric where some of the other predictive models shows better
results are in specificity. Nonetheless, specificity alone does not provide a complete picture of the
overall prediction performance.

Logistic regression and deep learning still performs somewhat similar in all the all-round metrics.
Nonetheless, deep learning does a better predicting job.

Table 6.20: Results from classification metrics on the test set for all predicting models with optimal
hyperparameters and threshold.

Predicting model AUC 1−Brier score MCC BACC Accuracy Sensitivity Specificity

Logistic regression 0.5728 0.9404 0.0475 0.5458 0.3670 0.3408 0.7508
Gradient boosted decision trees 0.6606 0.9407 0.1190 0.6217 0.5372 0.5249 0.7184

Deep learning 0.5967 0.9406 0.0671 0.5686 0.5089 0.5002 0.6370

6.5.1 The tuning process

Table 6.21 displays information on different aspects of the tuning process. It is evident that
the runtime varies significantly among the predictive models. The first Bayesian optimization
required the training of 300 predictive models, whereas the second required the training of 150.
Consequently, the runtime can be considerably high.

Training a logistic regression model usually requires minimal computational power, therefore, the
runtime for training a single model is generally quite low. This is particularly evident in the second
optimization. However, during the first optimization, the runtime for training a single model was at
times considerably extended because an inefficient ”solver” was utilized to identify the coefficients
βj . This solver was not employed during the second Bayesian optimization, resulting in a more
efficient runtime. It is worth noting that deep learning, on the other hand, is a time-intensive
process.

Upon examining the optimal AUC scores for each optimization, it becomes evident that the pre-
dictive models did not experience significant improvement from the first Bayesian optimization to

82

the second. In particular, there was no improvement in the performance of the logistic regression
model. Moreover, one can see that gradient boosted decision trees outperforms the other two
models.

Table 6.21: Information regarding the tuning process for each predicting model. The best objective
value and the runtime is displayed for both the first and the second Bayesian optimization

Predicting model First runtime Best AUC (first) Second runtime Best AUC (second)

Logistic regression 10 hours and 36 minutes 0.5697 2 hours and 59 minutes 0.5697
Gradient boosted decision trees 8 hours and 6 minutes 0.6569 11 hours and 28 minutes 0.6592

Deep learning 53 hours and 6 minutes 0.5917 46 hours and 10 minutes 0.5923

Table 6.22 presents a comparison of the classification metrics for all models before and after tuning.
All models were trained on the same training set and evaluated using the same test set. A positive
value indicates an improvement in the corresponding metric, whereas a negative value indicates an
reduction. Overall, deep learning demonstrated the most significant improvement, while gradient
boosted decision trees saw modest improvement across most metrics. In contrast, the performance
of the logistic regression model slightly declined. Another thing to notice is that all the predicting
models saw a decline in both accuracy and sensitivity. This is likely due to the changing to a
smaller threshold value for every model.

Table 6.22: The difference in the results from classification metrics on all models before and after
tuning.

Predicting model AUC 1−Brier score MCC BACC Accuracy Sensitivity Specificity

Logistic regression −0.0003 0.0001 −0.0055 −0.0077 −0.2147 −0.2451 0.2296
Gradient boosted decision trees 0.0145 0.0000 0.0174 0.0179 −0.0039 −0.0071 0.0428

Deep learning 0.0387 0.0104 0.0221 0.0278 −0.20009 −0.2344 0.2899

6.5.2 Investigating threshold importance

Figure 6.33, 6.34, and 6.35 visualizes how the threshold influences different metrics. As before,
these figures indicates that the MCC is slightly less sensitive to the threshold in comparison to
the BACC. Moreover, it becomes evident that the accuracy metric is still not an ideal test for
unbalanced datasets.

The ideal threshold for each predictive model remains relatively consistent across all metrics except
for the accuracy.

It is noteworthy that even though the maximum MCC and BACC scores for the deep learning
model are not as high as those for the gradient boosted decision trees model, the scores of deep
learning appear to be less affected by changes in the threshold value. The gradient boosted decision
trees model also exhibits a notable behavior with respect to both the MCC and the BACC metrics,
as certain threshold values yield outcomes that perform even worse than a random classifier.

Appendix F contains similar graphs, although these focus on Sensitivity and Specificity instead.

83

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
at

th
ew

s C
or

re
la

tio
n

Co
ef

fic
ie

nt

Logistic Regression
Gradient Boosting
Deep Learning

Figure 6.33: A plot illustrating the impact of various threshold values on the Matthews Correl-
ation Coefficient (MCC) for different predictive models with optimal hyperparameters. Logistic
regression is displayed in red, gradient boosted decision trees is displayed in blue and deep learning
is displayed in yellow.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Ba
la

nc
ed

 A
cc

ur
ac

y
Sc

or
e

Logistic Regression
Gradient Boosting
Deep Learning

Figure 6.34: A plot illustrating the impact of various threshold values on the Balanced Accuracy
(BACC) for different predictive models with optimal hyperparameters. Logistic regression is dis-
played in red, gradient boosted decision trees is displayed in blue and deep learning is displayed in
yellow.

84

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.2

0.4

0.6

0.8
Ac

cu
ra

cy
 S

co
re

Logistic Regression
Gradient Boosting
Deep Learning

Figure 6.35: A plot illustrating the impact of various threshold values on the Accuracy for different
predictive models with optimal hyperparameters. Logistic regression is displayed in red, gradient
boosted decision trees is displayed in blue and deep learning is displayed in yellow.

6.5.3 Feature importance

Figure 6.36 and 6.37 exhibit the feature importance for each predictive model. These graphs provide
insight into the importance of each feature in the respective models. The feature importance for
logistic regression is determined by the absolute value of the coefficients βj . The scale is set so
that the feature with the highest coefficient has a feature importance of 100.

0 20 40 60 80 100
Feature Importance

AIRLINE_3_2021_1
CountRoundPaidToCCL12_2021_11

RECREATION_12_2020_1
HOTEL_MOTEL_12_2022_7
SumPaidToCCL12_2021_9

CountPaidToCCL12_2021_9
SumPaidToCCL12_2020_8

CountDistinctPaidToCCL12_2021_9
CountDistinctPaidToCCL12_2021_12

RESTAURANTS_BARS_12_2022_7
AIRLINE_3_2021_5

TRAVEL_AGENCIES_12_2020_10
HOTEL_MOTEL_3_2021_12

CountRoundPaidToCCL12_2021_10
TRAVEL_AGENCIES_12_2020_7

CountPaidToCCL12_2021_12
FOOD_STORES_WAREHOUSE_3_2022_7

VEHICLES_12_2020_3
CountRoundPaidToCCL12_2021_3

INTERIOR_FURNISHINGS_3_2021_11

Figure 6.36: Feature importance for logistic regression with optimal hyperparameters. The top 20
most important features are displayed.

85

The feature importance regarding gradient boosted decision trees is still evaluated based on the
improvement of the performance measure attributed to each split in a tree. This is weighted by
the number of observations for which each node is responsible for. The overall feature importance
is determined by averaging the feature importance across all the trees in the model.

0 25000 50000 75000 100000
Feature importance

FOOD_STORES_WAREHOUSE_12_2020_11
FOOD_STORES_WAREHOUSE_12_2020_8

FOOD_STORES_WAREHOUSE_12_2021_11
div_applied_granted
diff_applied_granted

Utgangspunkt_måned
APPLIED_CREDIT_LIMIT_AMT

GRANTED_CREDIT_LIMIT_AMT
DebtRegisterIELA

STUDENT_LOAN_AMT
CREATED_DT_hour
MORTGAGES_AMT

GROSS_INCOME_AMT
Alder

diff_created_første
SumAvailable

SFLI_AMT
FLI_AMT

CREATED_DT
FørsteBrukt

Fe
at

ur
es

7345
7756
8236
11288
11649
13219
14623
17329

22701
23406

30893
40100

64537
68973
71965
74977
75307
79031

98723
111706

Figure 6.37: Feature importance for gradient boosted decision trees with optimal hyperparameters.
The top 20 most important features are displayed.

One can see that logistic regression and gradient boosted decision trees do not share any of the
top 20 most important features. It also becomes evident that the top 20 most important features
for logistic regression now only contain historical credit card uses or transactions.

One thing to notice is that ”INTERIOR FURNISHINGS 3 2021 11” and ”CountRoundPaidToCCL12 2021 3”
are still the top two most important features for logistic regression. Whereas ”FørsteBrukt” is still
the most important feature for gradient boosted decision trees, but ”CREATED DT” has now
taken the second place.

The feature importance for deep learning is not provided in the Scikit-learn package, there will as
a result be looked at SHAP values for deep learning. This will be done in the last section of this
chapter. The SHAP values for the other predicting models will also be included.

Outprint from the code as well as threshold plots for the tuned models are for included in Appendix
F.

6.6 Feature Importance through SHAP values

In this section, there will be employed SHAP values to explore feature importance across different
predictive models.

Obtaining SHAP values for the default predictive models required some runtime, but eventually,
everything fell into place. However, when it came to the tuned predictive models, the process
did not yield the desired results. Finding SHAP values from the tuned logistic regression model
followed essentially the same procedure as for the default logistic regression model with the desired
results.

The expected execution time for finding SHAP values for the tuned gradient boosted decision trees

86

model, however, was estimated to be 294 hours, this is a little over 12 days. Due to the excessive
duration, the code was interrupted.

The process for the tuned deep learning model appeared to be functioning well until the the SHAP
value plots were displayed. As showed in Figure F.7, both plots turned out to be completely blank,
without any information. The exact reason behind this remains unknown, but one possibility is
that a neural network designed for a dataset with 1200 features, incorporating 2 hidden layers with
274 neurons per layer, could potentially consume excessive memory when computing the SHAP
values. Consequently, the computer might have released some of this memory, resulting in the
blank plots, this is however unknown. The process of generating SHAP values for the tuned deep
learning model was attempted twice, but produced the same outcome each time.

Table 6.23 shows the execution time for getting the SHAP values for the different predictive models,
both with and without optimized hyperparameters. It is important to know that the execution
time for getting the SHAP values for the tuned gradient boosted decision trees model is just an
estimation based on the first iterations, however, based on the estimations of the execution time
for the other predicting models, this estimate should be fairly accurate.

Table 6.23: The execution time for getting the SHAP values for the different predictive models,
both with and without optimized hyperparameters

Predicting model Runtime Default Runtime Tuned

Logistic regression 26 hours and 40 minutes 26 hours and 56 minutes
Gradient boosted decision trees 28 hours and 19 minutes 294 hours

Deep learning 42 hours and 34 minutes 36 hours and 51 minutes

6.6.1 Default predicting models

The SHAP values for the default predicting models are showed in Figure 6.38, 6.39 and 6.40, one
can see that the predicting models feature importance varies a lot across models. Logistic regression
ranks the historical credit card features as the most important features with ”OTHER RETAIL 12 2021 2”
being the most important feature. Gradient boosted decision trees also has a lot of historical credit
card features as the most important features with ”SumPaidToCCL12 2021 11” as the most im-
portant feature, this feature comes from the historical transactions dataset. Deep learning on the
other hand sets personal features from both the appliance dataset and the fundamental dataset as
being the most important features, with ”ProductId 8” as being the most important feature.

Additionally, for both deep learning and gradient boosted decision trees, it seems that ”Utgang-
spunkt m̊aned” and ”FørsteBrukt” are important features.

It should be noted that the earlier feature importance plots in this chapter are a direct consequence
of the parameters of the predicting models. An example of this is how the feature importance for
logistic regression is determined by the absolute value of the coefficients βj only. However, the
SHAP values from the different predicting models are not a direct consequence of these parameters,
but rather the evaluation of the significance of each feature by measuring its impact on the model’s
prediction given all the other features.

87

0.00 0.25 0.50 0.75 1.00 1.25 1.50
mean(|SHAP value|) (average impact on model output magnitude)1e 5

ELECTRIC_APPLIANCE_12_2021_3

RECREATION_12_2021_4

RESTAURANTS_BARS_12_2022_5

ELECTRIC_APPLIANCE_3_2021_10

LastTaxYear3_TAX_CLASS_CD_nan

OTHER_RETAIL_12_2020_3

OTHER_RETAIL_12_2020_9

SPORTING_TOY_STORES_12_2021_10

RESTAURANTS_BARS_12_2020_1

OTHER_RETAIL_12_2020_11

RECREATION_12_2020_10

SPORTING_TOY_STORES_12_2020_6

SPORTING_TOY_STORES_12_2020_7

SPORTING_TOY_STORES_12_2021_9

FOOD_STORES_WAREHOUSE_12_2021_10

AIRLINE_12_2021_7

FOOD_STORES_WAREHOUSE_3_2020_4

FOOD_STORES_WAREHOUSE_12_2021_9

OTHER_RETAIL_12_2019_12

OTHER_RETAIL_12_2021_2

0.2 0.1 0.0 0.1
SHAP value (impact on model output)

ELECTRIC_APPLIANCE_12_2021_3

RECREATION_12_2021_4

RESTAURANTS_BARS_12_2022_5

ELECTRIC_APPLIANCE_3_2021_10

LastTaxYear3_TAX_CLASS_CD_nan

OTHER_RETAIL_12_2020_3

OTHER_RETAIL_12_2020_9

SPORTING_TOY_STORES_12_2021_10

RESTAURANTS_BARS_12_2020_1

OTHER_RETAIL_12_2020_11

RECREATION_12_2020_10

SPORTING_TOY_STORES_12_2020_6

SPORTING_TOY_STORES_12_2020_7

SPORTING_TOY_STORES_12_2021_9

FOOD_STORES_WAREHOUSE_12_2021_10

AIRLINE_12_2021_7

FOOD_STORES_WAREHOUSE_3_2020_4

FOOD_STORES_WAREHOUSE_12_2021_9

OTHER_RETAIL_12_2019_12

OTHER_RETAIL_12_2021_2

Low

High

Fe
at

ur
e

va
lu

e

Figure 6.38: A figure showcasing the SHAP values for the default logistic regression model. The
left graph shows the mean of the absolute value for all the SHAP values in each feature, hence
showcasing the average impact each feature has on the model output. The right graph shows the
densities of how the SHAP values contribute to the model output for each feature. This graph also
shows how high and low feature values contribute to the model output with red denoting a high
feature value and blue denoting a low feature value.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
mean(|SHAP value|) (average impact on model output magnitude)1e 5

OTHER_RETAIL_12_2021_2

AIRLINE_12_2020_2

OTHER_SERVICES_12_2021_10

HARDWARE_3_2019_12

diff_created_første

OTHER_RETAIL_12_2022_7

DebtRegisterIELA

Alder

OTHER_RETAIL_12_2020_7

SFLI_AMT

OTHER_RETAIL_12_2022_8

FOOD_STORES_WAREHOUSE_12_2021_10

OTHER_RETAIL_12_2021_11

FOOD_STORES_WAREHOUSE_12_2021_11

FOOD_STORES_WAREHOUSE_12_2022_8

FørsteBrukt

FOOD_STORES_WAREHOUSE_12_2022_5

ELECTRIC_APPLIANCE_12_2019_12

Utgangspunkt_måned

SumPaidToCCL12_2021_11

0.1 0.0 0.1 0.2
SHAP value (impact on model output)

OTHER_RETAIL_12_2021_2

AIRLINE_12_2020_2

OTHER_SERVICES_12_2021_10

HARDWARE_3_2019_12

diff_created_første

OTHER_RETAIL_12_2022_7

DebtRegisterIELA

Alder

OTHER_RETAIL_12_2020_7

SFLI_AMT

OTHER_RETAIL_12_2022_8

FOOD_STORES_WAREHOUSE_12_2021_10

OTHER_RETAIL_12_2021_11

FOOD_STORES_WAREHOUSE_12_2021_11

FOOD_STORES_WAREHOUSE_12_2022_8

FørsteBrukt

FOOD_STORES_WAREHOUSE_12_2022_5

ELECTRIC_APPLIANCE_12_2019_12

Utgangspunkt_måned

SumPaidToCCL12_2021_11

Low

High

Fe
at

ur
e

va
lu

e

Figure 6.39: A figure showcasing the SHAP values for the default gradient boosted decision trees
model. The left graph shows the mean of the absolute value for all the SHAP values in each
feature, hence showcasing the average impact each feature has on the model output. The right
graph shows the densities of how the SHAP values contribute to the model output for each feature.
This graph also shows how high and low feature values contribute to the model output with red
denoting a high feature value and blue denoting a low feature value.

88

0.00 0.01 0.02 0.03 0.04 0.05
mean(|SHAP value|) (average impact on model output magnitude)

HABITATION_TYPE_NAME_nan

ApplicationSalesChannel_nan

CREATED_DT

CREATED_DTnan

MARITAL_STATUS_NAME_SINGLE

ApplicationSalesChannel_Operatørkanal

HABITATION_TYPE_NAME_RENTER

HABITATION_TYPE_NAME_HOMEOWNER

LastTaxYear2_TAX_CLASS_CD_1

Utgangspunkt_måned

EMPLOYMENT_TYPE_NAME_STUDENT

FørsteBrukt

ProductId_27

ProductId_20

LastTaxYear3_TAX_CLASS_CD_1

EMPLOYMENT_TYPE_NAME_RETIREE

NoOfChildren_nan

EMPLOYMENT_TYPE_NAME_EMPLOYEE

MARITAL_STATUS_NAME_MARRIED

ProductId_8

0.4 0.2 0.0 0.2 0.4
SHAP value (impact on model output)

HABITATION_TYPE_NAME_nan

ApplicationSalesChannel_nan

CREATED_DT

CREATED_DTnan

MARITAL_STATUS_NAME_SINGLE

ApplicationSalesChannel_Operatørkanal

HABITATION_TYPE_NAME_RENTER

HABITATION_TYPE_NAME_HOMEOWNER

LastTaxYear2_TAX_CLASS_CD_1

Utgangspunkt_måned

EMPLOYMENT_TYPE_NAME_STUDENT

FørsteBrukt

ProductId_27

ProductId_20

LastTaxYear3_TAX_CLASS_CD_1

EMPLOYMENT_TYPE_NAME_RETIREE

NoOfChildren_nan

EMPLOYMENT_TYPE_NAME_EMPLOYEE

MARITAL_STATUS_NAME_MARRIED

ProductId_8

Low

High

Fe
at

ur
e

va
lu

e

Figure 6.40: A figure showcasing the SHAP values for the default deep learning model. The
left graph shows the mean of the absolute value for all the SHAP values in each feature, hence
showcasing the average impact each feature has on the model output. The right graph shows the
densities of how the SHAP values contribute to the model output for each feature. This graph also
shows how high and low feature values contribute to the model output with red denoting a high
feature value and blue denoting a low feature value.

6.6.2 Tuned predicting models

In Figure 6.41 one can see the SHAP values for the tuned logistic regression model. It be-
comes evident that there is not any major change in the feature importance after tuning, and
”OTHER RETAIL 12 2021 2” is still the most important hyperparameter for both the default
and the tuned logistic regression model.

89

0.0 0.5 1.0 1.5 2.0 2.5 3.0
mean(|SHAP value|) (average impact on model output magnitude)1e 6

HOTEL_MOTEL_12_2021_2

SPORTING_TOY_STORES_12_2021_11

SPORTING_TOY_STORES_12_2020_1

OTHER_RETAIL_12_2022_2

FOOD_STORES_WAREHOUSE_3_2021_8

SPORTING_TOY_STORES_12_2020_9

SPORTING_TOY_STORES_12_2020_8

OTHER_RETAIL_12_2020_12

FOOD_STORES_WAREHOUSE_3_2021_12

SPORTING_TOY_STORES_12_2020_7

HOMEOWNER_IND_1.0

FOOD_STORES_WAREHOUSE_12_2020_4

RECREATION_12_2020_11

FOOD_STORES_WAREHOUSE_3_2020_4

ELECTRIC_APPLIANCE_12_2021_1

SPORTING_TOY_STORES_12_2021_9

FOOD_STORES_WAREHOUSE_12_2021_9

SPORTING_TOY_STORES_12_2020_2

FOOD_STORES_WAREHOUSE_12_2021_10

OTHER_RETAIL_12_2021_2

0.075 0.050 0.025 0.000 0.025
SHAP value (impact on model output)

HOTEL_MOTEL_12_2021_2

SPORTING_TOY_STORES_12_2021_11

SPORTING_TOY_STORES_12_2020_1

OTHER_RETAIL_12_2022_2

FOOD_STORES_WAREHOUSE_3_2021_8

SPORTING_TOY_STORES_12_2020_9

SPORTING_TOY_STORES_12_2020_8

OTHER_RETAIL_12_2020_12

FOOD_STORES_WAREHOUSE_3_2021_12

SPORTING_TOY_STORES_12_2020_7

HOMEOWNER_IND_1.0

FOOD_STORES_WAREHOUSE_12_2020_4

RECREATION_12_2020_11

FOOD_STORES_WAREHOUSE_3_2020_4

ELECTRIC_APPLIANCE_12_2021_1

SPORTING_TOY_STORES_12_2021_9

FOOD_STORES_WAREHOUSE_12_2021_9

SPORTING_TOY_STORES_12_2020_2

FOOD_STORES_WAREHOUSE_12_2021_10

OTHER_RETAIL_12_2021_2

Low

High

Fe
at

ur
e

va
lu

e

Figure 6.41: A figure showcasing the SHAP values for the tuned logistic regression model. The
left graph shows the mean of the absolute value for all the SHAP values in each feature, hence
showcasing the average impact each feature has on the model output. The right graph shows the
densities of how the SHAP values contribute to the model output for each feature. This graph also
shows how high and low feature values contribute to the model output with red denoting a high
feature value and blue denoting a low feature value.

Outprints for the execution time for finding the SHAP values along with the anticipated execution
time for the tuned gradient boosted decision trees model are included in Appendix F.

90

Chapter 7
Discussion

SpareBank1 is distributing credit cards to customers, however some customers who possess credit
cards are not using them. The objective of this thesis was to develop and refine models capable of
classifying passive customers into two categories: those who will remain passive for a given month
and those who will become active for a given month. The training process involved using inform-
ation from four distinct datasets. A comparative analysis of three binary classification models;
logistic regression, gradient boosted decision trees, and deep learning, was conducted using the
provided data from Sparebank1. The hyperparameters for each classification model were optim-
ized through Bayesian optimization, aiming to maximize an objective value. The outcome of this
optimization process resulted in performance improvements for two out of the three classification
models.

Initially, the classification models underwent training using default hyperparameters. The models
were then evaluated on the test set, using a threshold of 0.064. Various classification metrics were
employed, and the corresponding outcomes are presented in Table 6.4. Gradient boosted decision
trees saw superior predicting performance across all all-round metrics. Logistic regression attained
the second-best results, while deep learning yielded the least favorable outcomes.

Upon closer examination, the threshold value of 0.064 did seem as a potentially optimal threshold.
Additionally, the investigation of feature importance revealed difference between logistic regression
and gradient boosted decision trees. In the case of logistic regression, features from the historical
credit card dataset was being identified as the most significant. This trend likely arises due to the
calculation of feature importance for logistic regression. Features with a limited number of outliers,
where these outliers appear to contribute significantly, or in other words, where the coefficients βj

have large absolute values, seem to be prioritized. Unfortunately, the deep learning package used
did not provide support for feature importance, so the feature importance for deep learning had
to be investigated later when using SHAP values.

Using Bayesian optimization did not only lead to the discovery of optimal hyperparameter values,
but also provided valuable insights into the significance and impact of these hyperparameters on
the objective value. When applied to logistic regression, Bayesian optimization revealed that the
hyperparameters had a relatively lower influence on the objective value compared to the other
predictive models. Furthermore, a notable finding was the finding of a clear optimum for the L2
penalization. Additionally, it was observed that using a second, more refined optimization did not
yield any improvements in the objective value.

By employing Bayesian optimization to gradient boosted decision trees, it became evident that the
hyperparameters had a notable impact on the objective value. It was observed that increasing the
number of trees and reducing the learning rate enhanced the predictive performance of the model.
Moreover, the analysis indicated that using a second, more refined optimization, led to improve-
ments in the objective value. Additionally, it was discovered that the model had a preference for
a substantially lower learning rate compared to the default value.

91

The usage of Bayesian optimization on deep learning showed a substantial influence of the hyper-
parameters on the objective value. Certain combinations of hyperparameters resulted in an AUC
over 0.59, while others yielded outcomes worse than those of a random classifier. Furthermore, it
became evident that the model exhibited a preference for two hidden layers in the neural network.
The introduction of a second optimization demonstrated more clearly that incorporating three
or more hidden layers resulted in a significant decline in predictive performance. Moreover, the
objective value in the second optimization saw a slight improvement.

The threshold optimization showed that every predicting model preferred a threshold around 0.06,
which is really close the the fraction of positive cases in the dataset.

All the classification models were then trained using tuned hyperparameters. The models were
then evaluated on the test set, using optimized thresholds. Various classification metrics were
employed, and the corresponding outcomes are presented in Table 6.20. Gradient boosted decision
trees maintained its superiority over the other models across the all-round metrics. Notably, deep
learning emerged as the second-best performer, while logistic regression yielded the least favorable
results. These findings were consistent with expectations, considering the objective value observed
during the hyperparameter tuning process.

Table 6.22 shows the improvements achieved by each predictive model in each binary classification
metric following the hyperparameter tuning process. In general, logistic regression exhibited a
slight decrease in performance, and the exact reason behind this outcome remains uncertain. It
is evident that the hyperparameters in the logistic regression model had minimal impact on the
objective value. Since default hyperparameters are typically robust, the tuning process might not
have contributed significantly, and the slight decline in performance could be attributed to chance.
On the other hand, deep learning experienced a substantial performance boost after tuning. Lastly,
gradient boosted decision trees showed slight improvements in the all-round metrics following the
tuning process.

The tuning process itself involves training numerous models. In this case, Bayesian optimization
was conducted with 100 and 50 iterations. This was done with cross-validation where N = 3. As
a result, a total of 450 models were trained for each predictive model. Table 6.21 illustrates the
variations in runtime for the tuning process across the different predictive models. Logistic regres-
sion, being a simple model, requires relatively little computational resources. On the other hand,
deep learning heavily relies on computational power, as evidenced by its longer runtime during the
tuning process. Gradient boosted decision trees falls in between these two extremes. Although it
is based on a computationally intensive algorithm, it incorporates a highly optimized histogram-
based decision tree learning approach, providing significant efficiency and memory consumption
advantages.

Upon examining the feature importance in the tuned models, it is apparent that there is not a
significant difference before and after the tuning process. Gradient boosted decision trees and
logistic regression continue to make more or less different feature importance plots. Notably,
”FørsteBrukt” remains the most important feature for gradient boosted decision trees, while ”IN-
TERIOR FURNISHINGS 3 2021 11” remains the most important feature for logistic regression.

The creation of SHAP values was successfully performed for the default predicting models. How-
ever, when it came to the tuned predicting models, certain issues arose during the process.

The SHAP values for the default prediction models showed significant variations in the feature im-
portance across different models. Logistic regression still ranks the historical credit card features
as the most important, with ”OTHER RETAIL 12 2021 2” being the top-ranked feature. Simil-
arly, gradient boosted decision trees assigns high importance to many historical credit card features,
however the most important features are features from all the datasets, with ”SumPaidToCCL12 2021 11”
standing out as the most influential feature, which is from the historical transactions dataset. On
the contrary, deep learning prioritizes personal features from both the appliance dataset and the
fundamental dataset as being the most important, with ”ProductId 8” emerging as the most sig-
nificant feature.

Upon observation, it becomes apparent that the most important features for logistic regression

92

correspond to features with SHAP values that have a few outliers with significant high absolute
values, while the remaining SHAP values have low or zero absolute values. A similar pattern can
be observed for gradient boosted decision trees, nevertheless there is a notable increase in the
presence of outliers with high SHAP values. However, in the case of deep learning, this trend
does not hold true. Instead, each observation in each feature seems to receive a non-zero SHAP
value, indicating that the contribution of each observation is rarely negligible. While the SHAP
values provides useful insights to feature importance, extracting the SHAP values can be a very
computational heavy task.

After data pre-processing, hyperparameter tuning, and threshold optimization, it remains challen-
ging to create a single model that accurately predicts which type of passive customers that will
become active at what given month. One can argue that the data provided by Sparebank1 may
not have been sufficiently informative to achieve precise predictions. Although the dataset was not
sparse, there were missing values in several explanatory variables. Additionally, it is important to
recognize that the prediction task at hand is challenging. It involves not only predicting whether
a customer will become active, but also at what month this transition might occur.

Nevertheless, despite these challenges, the predictive models developed did perform significantly
better than random classifiers, indicating that the data from Sparebank1 contains useful informa-
tion.

For this dataset, there was a notable difference in the performance of the three predicting models.
The gradient boosted decision trees model saw much better predictive capabilities compared to
both logistic regression and deep learning. Deep learning, although computationally heavy and
requiring careful tuning for satisfactory results, outperformed logistic regression. However, deep
learning may not be a suitable option for this specific task due to it falling short in every way
compared to gradient boosted decision trees. It lacks model interpretability completely, it is more
computationally heavy, and it produces inferior results.

Therefore, the choice for a predictive model for this kind of task is really between logistic regression
and gradient boosted decision trees. This choice depends on the specific task and desired outcome.
If the objective is to achieve the most precise predictions for a given task, implementing gradient
boosted decision trees and using Bayesian optimization for tuning hyperparameters, would be a
worthwhile approach. On the other hand, if the task primarily requires simple predictions, a
logistic regression model without optimized hyperparameters may be sufficient.

When selecting the most appropriate model for a specific dataset and task, it is essential to consider
the trade-off between model complexity, interpretability, computational cost, and the desired level
of predictive performance.

In the context of response modeling, the balance between interpretability and model performance
is important. One crucial aspect of model building is gaining insights into how certain features
contribute to the response variable. In terms of interpretability and simplicity, logistic regression
offers a straightforward approach. It allows for understanding the impact of each explanatory
variable on the response. On the other hand, gradient boosted decision trees is a complex model
that lacks such interpretability. Therefore, if the priority is to conduct a statistical analysis where
interpretability is crucial, logistic regression would likely be the preferred method.

All i all, it is crucial to carefully assess the specific requirements of the task at hand, such as the
need for interpretability and the level of prediction accuracy desired. By considering these factors,
one can make an informed decision about the most suitable predicting model.

93

Chapter 8
Conclusion

The main objective of this thesis was to predict what type of passive credit card users that would
become active credit card users, and in what month this transition would happen. The developed
predictive models demonstrated significant better predictive performance than a random classifier.
The predictive models also provided useful information on how certain features contributed to
the response. However, none of the models achieved accurate classification of customers. It is
important to recognize the complexity associated with predicting individual behavior, which is
influenced by various factors beyond the scope of datasets, and although the dataset provided was
informative, the predictive task proved to be difficult.

This thesis has demonstrated that more complex classification models, such as gradient boosted de-
cision trees and deep learning, can outperform a simpler model like logistic regression. Optimizing
the hyperparameters of gradient boosted decision trees and deep learning resulted in a improved
classification performance of these models. The degree of improvement varied, with deep learning
showing a significant improvment, while gradient boosted decision trees showed a more modest
improvement. On the other hand, tuning the hyperparameters of logistic regression did not result
in any improvement in classification performance.

The most important hyperparameter for logistic regression was determined to be ”solver”, whereas
for gradient boosted decision trees this was ”learning rate”. As for deep learning, the most im-
portant hyperparameter was ”num layers.” The tuning process did not significantly affect the fea-
ture importance. Examining the SHAP values, it was found that ”OTHER RETAIL 12 2021 2”
emerged as the most important feature for logistic regression, ”SumPaidToCCL12 2021 11” for
gradient boosted decision trees, and ”ProductId 8” for deep learning.

8.1 Future Work

There are several suggestions for future work. First of all, it is not totally clear how each of the
datasets provided by Sparebank1 contributed to the predictive performance of the different models.
Trying out different combinations of datasets, and see the predicting results might give even more
insight in what type of data that is most useful in this predicting task. Furthermore, finding more
data, and see if the predicting results would improve, could also be interesting. Another task that
would have been interesting to look at, is trying to predict only if a customer will become active
or not, and thus not focus on the month that they become active in, and thus see if that would
improve the predictive performance of the models, and in that case, how much. The response
variable in the dataset is also very imbalanced, and there are several methods to make the data
more balanced. For example, one could see if both undersampling or oversampling could improve
the predictive performance.

Runtime was a major factor in this task, so an idea would be to look at ways to remove less

94

important features. This should be interesting in two ways; how the runtime changes as features
are removed, and how the predicting results changes as features are removed. Another scenario is
that if more computing power was available, it would then be interesting to see if there could have
been achieved better results by exploring more hyperparameters with broader domains through
more iterations with Bayesian optimization. A further investigation of the SHAP values would
also then be possible.

Lastly, it could be interesting to see how other predictive models would perform on this dataset,
and also if combining different predictive models could lead to better performance.

95

Bibliography

[1] Arun Addagatla. ‘Maximum Likelihood Estimation in Logistic Regression’. In: Medium
(2021). url: https://arunaddagatla.medium.com/maximum-likelihood-estimation- in- logistic-
regression-f86ff1627b6.

[2] Avcontentteam. ‘Tree Based Algorithms: A Complete Tutorial from Scratch (in R & Py-
thon)’. In: Analytics Vidhya (2021). url: https://www.analyticsvidhya.com/blog/2016/04/
tree-based-algorithms-complete-tutorial-scratch-in-python/.

[3] Jason Brownlee. ‘A new method of locating the maximum point of an arbitrary multipeak
curve in the presence of noise’. In:Machine Learning Mastery (2021). url: https://machinelearningmastery.
com/threshold-moving-for-imbalanced-classification/.

[4] Jason Brownlee. ‘Essence of Bootstrap Aggregation Ensembles’. In: Machine Learning Mas-
tery (2021). url: https ://machinelearningmastery. com/essence - of - bootstrap - aggregation -
ensembles/.

[5] Quan Yuan Chao Yang Mingyang Chen. ‘The application of XGBoost and SHAP to examin-
ing the factors in freight truck-related crashes: An exploratory analysis’. In: (2021). url:
https://www.sciencedirect.com/science/article/abs/pii/S0001457521001846?via%3Dihub.

[6] Krishnendu Chaudhury. ‘Math and Architectures of Deep Learning Version 10’. In: (2022).

[7] Microsoft Corporation. Experiments. 2020. url: https://lightgbm.readthedocs.io/en/v3.3.2/
Experiments.html.

[8] Microsoft Corporation. ‘LightGBM’s documentation’. In: LightBGM-readthedocs (2022). url:
https://lightgbm.readthedocs.io/en/v3.3.3/index.html.

[9] Microsoft Corporation. ‘Parameters’. In: LightBGM-readthedocs (2022). url: https://lightgbm.
readthedocs.io/en/latest/Parameters.html.

[10] Author Jakub Czakon. ‘24 Evaluation Metrics for Binary Classification And When to Use
Them’. In: MLOps Blog (2022). url: https://neptune.ai/blog/evaluation-metrics- binary-
classification.

[11] Jia Wu — Xiu-Yun Chen — Hao Zhang — Li-Dong Xiong — Hang Lei — Si-Hao Deng. ‘Hy-
perparameter Optimization for Machine Learning Models Based on Bayesian Optimization’.
In: KeAi (2019).

[12] scikit-learn developers. ‘sklearn.neural network.MLPClassifier’. In: (2023). url: https : / /
scikit-learn.org/stable/modules/generated/sklearn.neural network.MLPClassifier.html.

[13] Scikit-learn developers. ‘Cross-validation: evaluating estimator performance’. In: Scikit-learn
(2022). url: https://scikit-learn.org/stable/modules/cross validation.html.

[14] Scikit-learn developers. ‘sklearn.linear model.LogisticRegression’. In: Scikit-learn (2022). url:
https ://scikit - learn.org/stable/modules/generated/sklearn. linear model .LogisticRegression.
html#sklearn.linear model.LogisticRegression.

[15] XGBoost developers. ‘Introduction to Boosted Trees’. In: XGBoost Documentation (2022).
url: https://xgboost.readthedocs.io/en/stable/tutorials/model.html.

96

https://arunaddagatla.medium.com/maximum-likelihood-estimation-in-logistic-regression-f86ff1627b6
https://arunaddagatla.medium.com/maximum-likelihood-estimation-in-logistic-regression-f86ff1627b6
https://www.analyticsvidhya.com/blog/2016/04/tree-based-algorithms-complete-tutorial-scratch-in-python/
https://www.analyticsvidhya.com/blog/2016/04/tree-based-algorithms-complete-tutorial-scratch-in-python/
https://machinelearningmastery.com/threshold-moving-for-imbalanced-classification/
https://machinelearningmastery.com/threshold-moving-for-imbalanced-classification/
https://machinelearningmastery.com/essence-of-bootstrap-aggregation-ensembles/
https://machinelearningmastery.com/essence-of-bootstrap-aggregation-ensembles/
https://www.sciencedirect.com/science/article/abs/pii/S0001457521001846?via%3Dihub
https://lightgbm.readthedocs.io/en/v3.3.2/Experiments.html
https://lightgbm.readthedocs.io/en/v3.3.2/Experiments.html
https://lightgbm.readthedocs.io/en/v3.3.3/index.html
https://lightgbm.readthedocs.io/en/latest/Parameters.html
https://lightgbm.readthedocs.io/en/latest/Parameters.html
https://neptune.ai/blog/evaluation-metrics-binary-classification
https://neptune.ai/blog/evaluation-metrics-binary-classification
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://xgboost.readthedocs.io/en/stable/tutorials/model.html

[16] XGBoost developers. ‘XGBoost Documentation’. In: XGBoost Documentation (2022). url:
https://xgboost.readthedocs.io/en/stable/index.html.

[17] IBM Cloud Education. ‘Neural Networks’. In: IBM Cloud Learn Hub (2020). url: https :
//www.ibm.com/uk-en/cloud/learn/neural-networks.

[18] EliteAI. ‘The Math Behind Decision Trees’. In: Medium (2021). url: https://eliteai-coep.
medium.com/the-math-behind-decision-trees-9d843b3e4057.

[19] Vlad M. Cora Eric Brochu and Nando de Freitas. ‘A Tutorial on Bayesian Optimization
of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical
Reinforcement Learning’. In: (2010). url: https://arxiv.org/pdf/1012.2599.pdf.

[20] Sydney Firmin. ‘Hyperparameter Tuning Black Magic’. In: Alteryx (2019). url: https://
community.alteryx.com/t5/Data-Science/Hyperparameter-Tuning-Black-Magic/ba-p/449289.

[21] Sydney Firmin. ‘Hyperparameter Tuning Black Magic’. In: Alteryx (2019). url: https://
community.alteryx.com/t5/Data-Science/Hyperparameter-Tuning-Black-Magic/ba-p/449289.

[22] ‘How to evaluate you model using the Confusion Matrix’. In: Towards AI (2021). url: https:
//subscription.packtpub.com/book/data/9781838555078/6/ch06lvl1sec34/confusion-matrix.

[23] Guolin Ke. ‘LightGBM’. In: Wikipedia (2022). url: https://en.wikipedia.org/wiki/LightGBM.

[24] Takuya Akiba; Shotaro Sano; Toshihiko Yanase; Takeru Ohta; Masanori Koyama. ‘Optimize
Your Optimization’. In: Optuna (2019). url: https://optuna.org/.

[25] H. J. Kushner. ‘A new method of locating the maximum point of an arbitrary multipeak
curve in the presence of noise’. In: (1964).

[26] ‘Logistic regression’. In: Wikipedia (2022). url: https : / / en .wikipedia . org /wiki / Logistic
regression.

[27] Ask Moe Løite. ‘Binary Classification of Credit Card Users with Logistic Regression, XG-
Boost and LightGBM’. In: Project Thesis NTNU (2022).

[28] Leon Lok. ‘Decision Trees, Random Forests and Gradient Boosting: What’s the Difference?’
In: (2022). url: https://leonlok.co.uk/blog/decision-trees-random-forests-gradient-boosting-
whats-the-difference/.

[29] Olivier Bousquet ; Stephane Boucheron ; Gabor Lugosi. ‘Introduction to Statistical Learning
Theory’. In: (). url: http://www.econ.upf.edu/∼lugosi/mlss slt.pdf.

[30] Scott M. Lundberg. ‘Topical Overviews’. In: (2018). url: https://shap.readthedocs.io/en/
latest/overviews.html.

[31] Ismail Mebsout. ‘Deep Learning’s mathematics’. In: Towards Data Science (2020). url: https:
//towardsdatascience.com/deep-learnings-mathematics-f52b3c4d2576.

[32] Gustavo A. Lujan-Moreno; Phillip R. Howard; Omar G. Rojas; Douglas C. Montgomery.
‘Topical Overviews’. In: (2018). url: https://www.sciencedirect.com/science/article/abs/pii/
S0957417418303178.

[33] Aratrika Pal. ‘Gradient Boosting Trees for Classification: A Beginner’s Guide’. In: The Star-
tup (2020). url: https ://medium.com/swlh/gradient - boosting - trees - for - classification - a -
beginners-guide-596b594a14ea.

[34] Terence Parr and Jeremy Howard. ‘How to explain gradient boosting’. In: explained.ai ().
url: https://explained.ai/gradient-boosting/.

[35] Bakkeli Nan Zou Poppe Christian Borgeraas Elling. ‘L̊anefinansiert forbruk i Norge anno
2019’. In: (2019). url: https://oda.oslomet.no/oda-xmlui/handle/20.500.12199/2981.

[36] Rukshan Pramoditha. ‘The Concept of Artificial Neurons (Perceptrons) in Neural Networks’.
In: Towards Data Science (2021). url: https : // towardsdatascience . com/the - concept - of -
artificial-neurons-perceptrons-in-neural-networks-fab22249cbfc.

[37] Scikit-learn. ‘Logistic regression’. In: Scikit-learn (2023). url: https://scikit-learn.org/stable/
modules/linear model.html#logistic-regression.

[38] Su-In Lee Scott M. Lundberg. ‘A Unified Approach to Interpreting Model Predictions’. In:
(2017). url: https://arxiv.org/pdf/1705.07874.pdf.

97

https://xgboost.readthedocs.io/en/stable/index.html
https://www.ibm.com/uk-en/cloud/learn/neural-networks
https://www.ibm.com/uk-en/cloud/learn/neural-networks
https://eliteai-coep.medium.com/the-math-behind-decision-trees-9d843b3e4057
https://eliteai-coep.medium.com/the-math-behind-decision-trees-9d843b3e4057
https://arxiv.org/pdf/1012.2599.pdf
https://community.alteryx.com/t5/Data-Science/Hyperparameter-Tuning-Black-Magic/ba-p/449289
https://community.alteryx.com/t5/Data-Science/Hyperparameter-Tuning-Black-Magic/ba-p/449289
https://community.alteryx.com/t5/Data-Science/Hyperparameter-Tuning-Black-Magic/ba-p/449289
https://community.alteryx.com/t5/Data-Science/Hyperparameter-Tuning-Black-Magic/ba-p/449289
https://subscription.packtpub.com/book/data/9781838555078/6/ch06lvl1sec34/confusion-matrix
https://subscription.packtpub.com/book/data/9781838555078/6/ch06lvl1sec34/confusion-matrix
https://en.wikipedia.org/wiki/LightGBM
https://optuna.org/
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Logistic_regression
https://leonlok.co.uk/blog/decision-trees-random-forests-gradient-boosting-whats-the-difference/
https://leonlok.co.uk/blog/decision-trees-random-forests-gradient-boosting-whats-the-difference/
http://www.econ.upf.edu/~lugosi/mlss_slt.pdf
https://shap.readthedocs.io/en/latest/overviews.html
https://shap.readthedocs.io/en/latest/overviews.html
https://towardsdatascience.com/deep-learnings-mathematics-f52b3c4d2576
https://towardsdatascience.com/deep-learnings-mathematics-f52b3c4d2576
https://www.sciencedirect.com/science/article/abs/pii/S0957417418303178
https://www.sciencedirect.com/science/article/abs/pii/S0957417418303178
https://medium.com/swlh/gradient-boosting-trees-for-classification-a-beginners-guide-596b594a14ea
https://medium.com/swlh/gradient-boosting-trees-for-classification-a-beginners-guide-596b594a14ea
https://explained.ai/gradient-boosting/
https://oda.oslomet.no/oda-xmlui/handle/20.500.12199/2981
https://towardsdatascience.com/the-concept-of-artificial-neurons-perceptrons-in-neural-networks-fab22249cbfc
https://towardsdatascience.com/the-concept-of-artificial-neurons-perceptrons-in-neural-networks-fab22249cbfc
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://arxiv.org/pdf/1705.07874.pdf

[39] Riccardo Di Sipio. ‘A Quick Guide to AUC-ROC in Machine Learning Models’. In: Medium
(2021). url: https://towardsdatascience.com/a-quick-guide-to-auc-roc-in-machine-learning-
models-f0aedb78fbad.

[40] Marguerite Ennis ; Geoffrey Hinton ; David Naylor ; Mike Revow ; Robert Tibshirani. ‘A
comparison of statistical learning methods on the GUSTO database’. In: Statistics in Medi-
cine (1998). url: https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0258(19981115)17:
21%3C2501::AID-SIM938%3E3.0.CO;2-M.

[41] Amy Tikkanen. ‘credit card’. In: Britannica (2022). url: https://www.britannica.com/topic/
credit-card.

[42] Jerome Friedman Trevor Hastie Robert Tibshirani. ‘The Elements of Statistical Learning
Data Mining, Inference, and Prediction, Second Edition’. In: (2009). url: https : / / link .
springer.com/book/10.1007/978-0-387-84858-7.

[43] Wikipedia. ‘scikit-learn’. In:Wikipedia (2023). url: https://en.wikipedia.org/wiki/Scikit-learn.

[44] David Chen ; Echo Yang. ‘Tree-Math’. In: Github (2020). url: https ://github.com/YC-
Coder-Chen/Tree-Math/blob/master/LightGBM.md.

98

https://towardsdatascience.com/a-quick-guide-to-auc-roc-in-machine-learning-models-f0aedb78fbad
https://towardsdatascience.com/a-quick-guide-to-auc-roc-in-machine-learning-models-f0aedb78fbad
https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0258(19981115)17:21%3C2501::AID-SIM938%3E3.0.CO;2-M
https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0258(19981115)17:21%3C2501::AID-SIM938%3E3.0.CO;2-M
https://www.britannica.com/topic/credit-card
https://www.britannica.com/topic/credit-card
https://link.springer.com/book/10.1007/978-0-387-84858-7
https://link.springer.com/book/10.1007/978-0-387-84858-7
https://en.wikipedia.org/wiki/Scikit-learn
https://github.com/YC-Coder-Chen/Tree-Math/blob/master/LightGBM.md
https://github.com/YC-Coder-Chen/Tree-Math/blob/master/LightGBM.md

Appendix A
Variables in the different datasets with
explanation

A.1 The fundamental dataset

Table A.1: Explanation of all the variables in the fundamental dataset

Variable Name Observations missing Explanation
Utgangspunkt 0% The predicting month
BK ACCOUNT ID 0% Internal account ID
ProductId 0% What kind of credit card the customer got
Revolver 0% An individual who carries a balance from month

to month
Fullpayer 0% An individual who pays in each time to avoid in-

terests
FørsteBrukt 0% First time the credit card was used
Førstekortbruk 0% Also first time the credit card was used
SisteKortbruk 0% Last time the credit card is used
SisteTransaksjon 0% Last transaction done
AktivEtterPassiv 0% The response
Alder 0% The age of the customer
Kjønn 0% The sex of the customer

A.2 The appliance dataset

Table A.2: Explanation of all the variables in the appliance dataset

Variable Name Observations missing Explanation
BK ACCOUNT ID 0 Internal account ID
CREATED DT 0% The date, and the time of the day the appliance

was filed
ApplicationSalesChannel 0% At what service the customer applied for the card
APPLIED CREDIT
LIMIT AMT

0% The balance the customer applied for

GRANTED CREDIT
LIMIT AMT

0% The balance the customer got

99

GROSS INCOME AMT 0% The gross income for the customer
STUDENT LOAN AMT 0% The amount of student-loan the customer has
MORTGAGES AMT 0% The amount of house-loan the customer has
EMPLOYMENT TYPE
NAME

0% A categorical feature that tells the type of em-
ployment of each customer

EMPLOYMENT
DURATION DESC

0% A categorical feature that tells how long the cus-
tomer has been employed at that employment

HABITATION TYPE
NAME

0% A categorical feature that tells how the customer
lives

MARITAL STATUS
NAME

0% A categorical feature that tells the marital status
of the customer

DebtRegisterNum 41% Is the number of credit cards the customer has
DebtRegisterIELA 41% The credit card debt assosiated with each cus-

tomer
TAX CLASS CD 6% The tax class the customer belonged to last year
LastTaxYear2 TAX
CLASS CD

12% The tax class the customer belonged to 2 years
ago

LastTaxYear3 TAX
CLASS CD

17% The tax class the customer belonged to 3 years
ago

HOMEOWNER IND 0% Describes if the customer owns a home
HOUSING
COOPERATIVE IND

0% An indicator if the customer is part of a housing
co-operative

NoOfChildren 0% The number of children each customer has
FLI AMT 0% A liquidity indicator made by Sparebank1 on how

well the customer can handle a loan
SFLI AMT 0% A stress test on FLI AMT where the intrests are

raised
SumAvailable 9% The amount of money available to the customer

A.3 The historical credit card dataset

Table A.3: Explanation of all the variables in the historical credit card dataset

Variable Name Observations missing Explanation
BK ACCOUNT ID 0 Internal account ID
PeriodId 0% The period this information is relevant
AIRLINE 12 0% How much money the customer has spent on air-

lines in the last 12 months with their credit card
ELECTRIC
APPLIANCE 12

0% How much money the customer has spent on elec-
tric appliances in the last 12 months with their
credit card

FOOD STORES
WAREHOUSE 12

0% How much money the customer has spent on gro-
ceries in the last 12 months with their credit card

HOTEL MOTEL 12 0% How much money the customer has spent on ho-
tels and motels in the last 12 months with their
credit card

HARDWARE 12 0% How much money the customer has spent on
hardware in the last 12 months with their credit
card

INTERIOR
FURNISHINGS 12

0% How much money the customer has spent on in-
terior and furnishing in the last 12 months with
their credit card

OTHER RETAIL 12 0% How much money the customer has spent on air-
lines in the last 12 months with their credit card

100

OTHER SERVICES 12 0% How much money the customer has spent on
other services that is not included in the other
variables in the last 12 months with their credit
card

OTHER
TRANSPORT 12

0% How much money the customer has spent on
transportation in the last 12 months with their
credit card

RECREATION 12 0% How much money the customer has spent on re-
creation in the last 12 months with their credit
card

RESTAURANTS
BARS 12

0% How much money the customer has spent on res-
taurants and bars in the last 12 months with their
credit card

SPORTING TOY
STORES 12

0% How much money the customer has spent on
sporting and toy stores in the last 12 months with
their credit card

TRAVEL AGENCIES 12 0% How much money the customer has spent on
travel agencies in the last 12 months with their
credit card

VEHICLES 12 0% How much money the customer has spent on
vehicles in the last 12 months with their credit
card

QUASI CASH 12 0% How much money the customer has spent on
quasi cash transactions in the last 12 months with
their credit card

AIRLINE 3 0% How much money the customer has spent on air-
lines in the last 3 months with their credit card

ELECTRIC
APPLIANCE 12

0% How much money the customer has spent on elec-
tric appliances in the last 12 months with their
credit card

FOOD STORES
WAREHOUSE 3

0% How much money the customer has spent on gro-
ceries in the last 3 months with their credit card

HOTEL MOTEL 3 0% How much money the customer has spent on ho-
tels and motels in the last 3 months with their
credit card

HARDWARE 3 0% How much money the customer has spent on
hardware in the last 3 months with their credit
card

INTERIOR
FURNISHINGS 3

0% How much money the customer has spent on in-
terior and furnishing in the last 3 months with
their credit card

A.4 The historical transactions dataset

Table A.4: Explanation of all the variables in the historical transactions dataset

Variable Name Observations missing Explanation
BK ACCOUNT ID 0 Internal account ID
PeriodId 0% The period this information is relevant
SumPaidToCCL12 0% Sum paid from the customers bank account to

known credit card accounts the last 12 months
SumPaidToRepayment
LoanL12

0% Sum paid from the customers bank account to
repayment of loan the last 12 months

101

CountPaidTo Repay-
ment LoanL12

69% Number of payments from the customers bank
account to repayment of loan the last 12 months

CountPaidToCCL12 31% Number of payments from the customers bank
account to known credit card accounts the last
12 months

CountDistinct
PaidToRepayment
LoanL12

69% Number of payments from the customers bank
account to repayment of distinct external loans
the last 12 months

CountDistinct
PaidToCCL12

31% Number of payments from the customers bank ac-
count to known distinct external credit card ac-
counts the last 12 months

CountRoundPaid ToRe-
paymentLoanL12

46% Number of round payments, (dividable by 100),
from the customers bank account to repayment
of loan the last 12 months

CountRound
PaidToCCL12

9% Number of round payments, (dividable by 100),
from the customers bank account to known credit
card accounts the last 12 months

102

Appendix B
Correlation plot

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B
K
_A
C
C
O
U
N
T
_I
D

A
ld
er

K
jÃ
.n
n

F
Ã
.r
st
eB
ru
kt

R
ev
ol
ve
r

F
ul
lp
ay
er

A
kt
iv
E
tte
rP
as
si
v

C
R
E
A
T
E
D
_D
T

A
P
P
LI
E
D
_C
R
E
D
IT
_L
IM
IT
_A
M
T

G
R
A
N
T
E
D
_C
R
E
D
IT
_L
IM
IT
_A
M
T

G
R
O
S
S
_I
N
C
O
M
E
_A
M
T

S
T
U
D
E
N
T
_L
O
A
N
_A
M
T

M
O
R
T
G
A
G
E
S
_A
M
T

D
eb
tR
eg
is
te
rN
um

D
eb
tR
eg
is
te
rI
E
LA

F
LI
_A
M
T

S
F
LI
_A
M
T

S
um
A
va
ila
bl
e

U
tg
an
gs
pu
nk
t_
Ã
.r

U
tg
an
gs
pu
nk
t_
m
Ã
.n
ed

C
R
E
A
T
E
D
_D
T
_h
ou
r

di
ff_
cr
ea
te
d_
fÃ
.r
st
e

di
ff_
ap
pl
ie
d_
gr
an
te
d

di
v_
ap
pl
ie
d_
gr
an
te
d

P
ro
du
ct
Id
_8

P
ro
du
ct
Id
_2
0

P
ro
du
ct
Id
_1
8

P
ro
du
ct
Id
_1
0

P
ro
du
ct
Id
_9

P
ro
du
ct
Id
_2
9

P
ro
du
ct
Id
_2
7

P
ro
du
ct
Id
_2
6

P
ro
du
ct
Id
_2
8

A
pp
lic
at
io
nS
al
es
C
ha
nn
el
_n
an

A
pp
lic
at
io
nS
al
es
C
ha
nn
el
_O
pe
ra
tÃ
.r
ka
na
l

A
pp
lic
at
io
nS
al
es
C
ha
nn
el
_N
et
tb
an
k

A
pp
lic
at
io
nS
al
es
C
ha
nn
el
_M
ob
ilb
an
k

A
pp
lic
at
io
nS
al
es
C
ha
nn
el
_A
ut
en
tis
er
t.w
eb

A
pp
lic
at
io
nS
al
es
C
ha
nn
el
_R
es
po
ns
si
de

A
pp
lic
at
io
nS
al
es
C
ha
nn
el
_K
re
di
ttb
an
ke
n

E
M
P
LO
Y
M
E
N
T
_T
Y
P
E
_N
A
M
E
_n
an

E
M
P
LO
Y
M
E
N
T
_T
Y
P
E
_N
A
M
E
_E
M
P
LO
Y
E
E

E
M
P
LO
Y
M
E
N
T
_T
Y
P
E
_N
A
M
E
_S
T
U
D
E
N
T

E
M
P
LO
Y
M
E
N
T
_T
Y
P
E
_N
A
M
E
_R
E
T
IR
E
E

E
M
P
LO
Y
M
E
N
T
_T
Y
P
E
_N
A
M
E
_T
E
M
P
_E
M
P
LO
Y
E
E

E
M
P
LO
Y
M
E
N
T
_T
Y
P
E
_N
A
M
E
_D
IS
A
B
IL
IT
Y
_P
E
N
S
IO
N
E
R

E
M
P
LO
Y
M
E
N
T
_T
Y
P
E
_N
A
M
E
_S
E
LF
_E
M
P
LO
Y
E
D

E
M
P
LO
Y
M
E
N
T
_T
Y
P
E
_N
A
M
E
_O
T
H
E
R

E
M
P
LO
Y
M
E
N
T
_T
Y
P
E
_N
A
M
E
_U
N
E
M
P
LO
Y
E
D

E
M
P
LO
Y
M
E
N
T
_T
Y
P
E
_N
A
M
E
_A
T
_H
O
M
E

E
M
P
LO
Y
M
E
N
T
_T
Y
P
E
_N
A
M
E
_S
O
C
IA
L_
S
E
C
U
R
IT
Y

E
M
P
LO
Y
M
E
N
T
_D
U
R
A
T
IO
N
_D
E
S
C
_n
an

E
M
P
LO
Y
M
E
N
T
_D
U
R
A
T
IO
N
_D
E
S
C
_M
or
e.
th
an
.3
.y
ea
rs

E
M
P
LO
Y
M
E
N
T
_D
U
R
A
T
IO
N
_D
E
S
C
_N
ot
.s
et

E
M
P
LO
Y
M
E
N
T
_D
U
R
A
T
IO
N
_D
E
S
C
_B
et
w
ee
n.
1.
an
d.
3.
ye
ar
s

E
M
P
LO
Y
M
E
N
T
_D
U
R
A
T
IO
N
_D
E
S
C
_L
es
s.
th
an
.1
.y
ea
r

H
A
B
IT
A
T
IO
N
_T
Y
P
E
_N
A
M
E
_n
an

H
A
B
IT
A
T
IO
N
_T
Y
P
E
_N
A
M
E
_H
O
M
E
O
W
N
E
R

H
A
B
IT
A
T
IO
N
_T
Y
P
E
_N
A
M
E
_R
E
N
T
E
R

H
A
B
IT
A
T
IO
N
_T
Y
P
E
_N
A
M
E
_P
A
R
E
N
T
S

H
A
B
IT
A
T
IO
N
_T
Y
P
E
_N
A
M
E
_O
T
H
E
R

H
A
B
IT
A
T
IO
N
_T
Y
P
E
_N
A
M
E
_A
P
A
R
T
M
E
N
T

M
A
R
IT
A
L_
S
T
A
T
U
S
_N
A
M
E
_n
an

M
A
R
IT
A
L_
S
T
A
T
U
S
_N
A
M
E
_C
O
H
A
B
IT
IN
G

M
A
R
IT
A
L_
S
T
A
T
U
S
_N
A
M
E
_S
IN
G
LE

M
A
R
IT
A
L_
S
T
A
T
U
S
_N
A
M
E
_M
A
R
R
IE
D

M
A
R
IT
A
L_
S
T
A
T
U
S
_N
A
M
E
_W
ID
O
W
E
D

M
A
R
IT
A
L_
S
T
A
T
U
S
_N
A
M
E
_D
IV
O
R
C
E
D

T
A
X
_C
LA
S
S
_C
D
_n
an

T
A
X
_C
LA
S
S
_C
D
_1

T
A
X
_C
LA
S
S
_C
D
_1
E

T
A
X
_C
LA
S
S
_C
D
_0

La
st
T
ax
Y
ea
r2
_T
A
X
_C
LA
S
S
_C
D
_n
an

La
st
T
ax
Y
ea
r2
_T
A
X
_C
LA
S
S
_C
D
_1

La
st
T
ax
Y
ea
r2
_T
A
X
_C
LA
S
S
_C
D
_1
E

La
st
T
ax
Y
ea
r2
_T
A
X
_C
LA
S
S
_C
D
_2
F

La
st
T
ax
Y
ea
r2
_T
A
X
_C
LA
S
S
_C
D
_2

La
st
T
ax
Y
ea
r2
_T
A
X
_C
LA
S
S
_C
D
_0

La
st
T
ax
Y
ea
r3
_T
A
X
_C
LA
S
S
_C
D
_n
an

La
st
T
ax
Y
ea
r3
_T
A
X
_C
LA
S
S
_C
D
_1

La
st
T
ax
Y
ea
r3
_T
A
X
_C
LA
S
S
_C
D
_1
E

La
st
T
ax
Y
ea
r3
_T
A
X
_C
LA
S
S
_C
D
_2
F

La
st
T
ax
Y
ea
r3
_T
A
X
_C
LA
S
S
_C
D
_2

La
st
T
ax
Y
ea
r3
_T
A
X
_C
LA
S
S
_C
D
_0

H
O
M
E
O
W
N
E
R
_I
N
D
_n
an

H
O
M
E
O
W
N
E
R
_I
N
D
_1
.0

H
O
M
E
O
W
N
E
R
_I
N
D
_0
.0

H
O
U
S
IN
G
_C
O
O
P
E
R
A
T
IV
E
_I
N
D
_n
an

H
O
U
S
IN
G
_C
O
O
P
E
R
A
T
IV
E
_I
N
D
_0
.0

H
O
U
S
IN
G
_C
O
O
P
E
R
A
T
IV
E
_I
N
D
_1
.0

N
oO
fC
hi
ld
re
n_
na
n

N
oO
fC
hi
ld
re
n_
3.
0

N
oO
fC
hi
ld
re
n_
1.
0

N
oO
fC
hi
ld
re
n_
2.
0

N
oO
fC
hi
ld
re
n_
4.
0

N
oO
fC
hi
ld
re
n_
5.
0

N
oO
fC
hi
ld
re
n_
8.
0

N
oO
fC
hi
ld
re
n_
6.
0

N
oO
fC
hi
ld
re
n_
7.
0

N
oO
fC
hi
ld
re
n_
9.
0

C
R
E
A
T
E
D
_D
T
na
n

D
eb
tR
eg
is
te
rN
um
na
n

S
um
A
va
ila
bl
en
an

BK_ACCOUNT_ID
Alder
KjÃ.nn

FÃ.rsteBrukt
Revolver
Fullpayer

AktivEtterPassiv
CREATED_DT

APPLIED_CREDIT_LIMIT_AMT
GRANTED_CREDIT_LIMIT_AMT

GROSS_INCOME_AMT
STUDENT_LOAN_AMT

MORTGAGES_AMT
DebtRegisterNum
DebtRegisterIELA

FLI_AMT
SFLI_AMT

SumAvailable
Utgangspunkt_Ã.r

Utgangspunkt_mÃ.ned
CREATED_DT_hour
diff_created_fÃ.rste
diff_applied_granted
div_applied_granted

ProductId_8
ProductId_20
ProductId_18
ProductId_10
ProductId_9
ProductId_29
ProductId_27
ProductId_26
ProductId_28

ApplicationSalesChannel_nan
ApplicationSalesChannel_OperatÃ.rkanal

ApplicationSalesChannel_Nettbank
ApplicationSalesChannel_Mobilbank

ApplicationSalesChannel_Autentisert.web
ApplicationSalesChannel_Responsside
ApplicationSalesChannel_Kredittbanken

EMPLOYMENT_TYPE_NAME_nan
EMPLOYMENT_TYPE_NAME_EMPLOYEE
EMPLOYMENT_TYPE_NAME_STUDENT
EMPLOYMENT_TYPE_NAME_RETIREE

EMPLOYMENT_TYPE_NAME_TEMP_EMPLOYEE
EMPLOYMENT_TYPE_NAME_DISABILITY_PENSIONER

EMPLOYMENT_TYPE_NAME_SELF_EMPLOYED
EMPLOYMENT_TYPE_NAME_OTHER

EMPLOYMENT_TYPE_NAME_UNEMPLOYED
EMPLOYMENT_TYPE_NAME_AT_HOME

EMPLOYMENT_TYPE_NAME_SOCIAL_SECURITY
EMPLOYMENT_DURATION_DESC_nan

EMPLOYMENT_DURATION_DESC_More.than.3.years
EMPLOYMENT_DURATION_DESC_Not.set

EMPLOYMENT_DURATION_DESC_Between.1.and.3.years
EMPLOYMENT_DURATION_DESC_Less.than.1.year

HABITATION_TYPE_NAME_nan
HABITATION_TYPE_NAME_HOMEOWNER

HABITATION_TYPE_NAME_RENTER
HABITATION_TYPE_NAME_PARENTS
HABITATION_TYPE_NAME_OTHER

HABITATION_TYPE_NAME_APARTMENT
MARITAL_STATUS_NAME_nan

MARITAL_STATUS_NAME_COHABITING
MARITAL_STATUS_NAME_SINGLE

MARITAL_STATUS_NAME_MARRIED
MARITAL_STATUS_NAME_WIDOWED
MARITAL_STATUS_NAME_DIVORCED

TAX_CLASS_CD_nan
TAX_CLASS_CD_1
TAX_CLASS_CD_1E
TAX_CLASS_CD_0

LastTaxYear2_TAX_CLASS_CD_nan
LastTaxYear2_TAX_CLASS_CD_1
LastTaxYear2_TAX_CLASS_CD_1E
LastTaxYear2_TAX_CLASS_CD_2F
LastTaxYear2_TAX_CLASS_CD_2
LastTaxYear2_TAX_CLASS_CD_0

LastTaxYear3_TAX_CLASS_CD_nan
LastTaxYear3_TAX_CLASS_CD_1
LastTaxYear3_TAX_CLASS_CD_1E
LastTaxYear3_TAX_CLASS_CD_2F
LastTaxYear3_TAX_CLASS_CD_2
LastTaxYear3_TAX_CLASS_CD_0

HOMEOWNER_IND_nan
HOMEOWNER_IND_1.0
HOMEOWNER_IND_0.0

HOUSING_COOPERATIVE_IND_nan
HOUSING_COOPERATIVE_IND_0.0
HOUSING_COOPERATIVE_IND_1.0

NoOfChildren_nan
NoOfChildren_3.0
NoOfChildren_1.0
NoOfChildren_2.0
NoOfChildren_4.0
NoOfChildren_5.0
NoOfChildren_8.0
NoOfChildren_6.0
NoOfChildren_7.0
NoOfChildren_9.0
CREATED_DTnan

DebtRegisterNumnan
SumAvailablenan

Figure B.1: Correlations in the merged dataset between the fundamental dataset and the appliance
dataset after pre-processing

103

Appendix C
Results Logistic Regression

C.1 Code Printout

Figure C.1: Printout of the best hyperparameter values, the best objective value and the execution
time(s), for the first optimization with Logistic Regression

Figure C.2: Printout of the best hyperparameter values, the best objective value and the execution
time(s), for the second optimization with Logistic Regression

104

C.2 Optimization Plots First Optimization

none l2
0.556

0.558

0.56

0.562

0.564

0.566

0.568

0.57

0

20

40

60

80

Trial

Slice Plot

penalty

O
bj

ec
tiv

e
Va

lu
e

Loading [MathJax]/extensions/MathMenu.js
Figure C.3: Slice plot showing the impact the hyperparameter ”penalty” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

20 40 60 80 100
0.556

0.558

0.56

0.562

0.564

0.566

0.568

0.57

0

20

40

60

80

Trial

Slice Plot

max_iter

O
bj

ec
tiv

e
Va

lu
e

Figure C.4: Slice plot showing the impact the hyperparameter ”max iter” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

105

100p 10n 1μ 100μ
0.556

0.558

0.56

0.562

0.564

0.566

0.568

0.57

0

20

40

60

80

Trial

Slice Plot

tol

O
bj

ec
tiv

e
Va

lu
e

Loading [MathJax]/extensions/MathMenu.js
Figure C.5: Slice plot showing the impact the hyperparameter ”tol” has on the objective value.
Whiter dots represents earlier iterations in the Bayesian optimization.

C.3 Optimization Plots Second Optimization

20 40 60 80

0.565

0.566

0.567

0.568

0.569

0.57

0

10

20

30

40

Trial

Slice Plot

max_iter

O
bj

ec
tiv

e
Va

lu
e

Figure C.6: Slice plot showing the impact the hyperparameter ”max iter” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

106

1μ 2 5 10μ 2 5 100μ 2 5 0.001

0.565

0.566

0.567

0.568

0.569

0.57

0

10

20

30

40

Trial

Slice Plot

tol

O
bj

ec
tiv

e
Va

lu
e

Figure C.7: Slice plot showing the impact the hyperparameter ”tol” has on the objective value.
Whiter dots represents earlier iterations in the Bayesian optimization.

107

Appendix D
Results Gradient Boosted Decision Trees

D.1 Code Printout

Figure D.1: Printout of the best hyperparameter values, the best objective value and the execution
time(s), for the first optimization with Gradient Boosted Decision Trees

Figure D.2: Printout of the best hyperparameter values, the best objective value and the execution
time(s), for the second optimization with Gradient Boosted Decision Trees

108

D.2 Optimization Plots First Optimization

0 0.2 0.4 0.6 0.8 1

0.61

0.62

0.63

0.64

0.65

0.66

0

20

40

60

80

Trial

Slice Plot

colsample_bytree

O
bj

ec
tiv

e
Va

lu
e

Figure D.3: Slice plot showing the impact the hyperparameter ”colsample bytree” has on the
objective value. Whiter dots represents earlier iterations in the Bayesian optimization.

5 10 15 20

0.61

0.62

0.63

0.64

0.65

0.66

0

20

40

60

80

Trial

Slice Plot

max_depth

O
bj

ec
tiv

e
Va

lu
e

Figure D.4: Slice plot showing the impact the hyperparameter ”max depth” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

109

10 −16 1p 10n 100μ 1

0.61

0.62

0.63

0.64

0.65

0.66

0

20

40

60

80

Trial

Slice Plot

reg_alpha

O
bj

ec
tiv

e
Va

lu
e

Figure D.5: Slice plot showing the impact the hyperparameter ”reg alpha” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

0 0.2 0.4 0.6 0.8

0.61

0.62

0.63

0.64

0.65

0.66

0

20

40

60

80

Trial

Slice Plot

subsample

O
bj

ec
tiv

e
Va

lu
e

Figure D.6: Slice plot showing the impact the hyperparameter ”subsample” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

110

0 1000 2000 3000 4000 5000

0.61

0.62

0.63

0.64

0.65

0.66

0

20

40

60

80

Trial

Slice Plot

num_leaves

O
bj

ec
tiv

e
Va

lu
e

Figure D.7: Slice plot showing the impact the hyperparameter ”num leaves” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

10 −20 10 −16 1p 10n 100μ 1

0.61

0.62

0.63

0.64

0.65

0.66

0

20

40

60

80

Trial

Slice Plot

reg_lambda

O
bj

ec
tiv

e
Va

lu
e

Figure D.8: Slice plot showing the impact the hyperparameter ”reg lambda” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

111

0 500 1000 1500 2000 2500 3000

0.61

0.62

0.63

0.64

0.65

0.66

0

20

40

60

80

Trial

Slice Plot

n_estimators

O
bj

ec
tiv

e
Va

lu
e

Figure D.9: Slice plot showing the impact the hyperparameter ”n estimators” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

0 0.2 0.4 0.6 0.8 1

0.61

0.62

0.63

0.64

0.65

0.66

0

20

40

60

80

Trial

Slice Plot

colsample_bytree

O
bj

ec
tiv

e
Va

lu
e

Figure D.10: Slice plot showing the impact the hyperparameter ”colsample bytree” has on the
objective value. Whiter dots represents earlier iterations in the Bayesian optimization.

112

0 50 100 150 200 250 300

0.61

0.62

0.63

0.64

0.65

0.66

0

20

40

60

80

Trial

Slice Plot

min_child_samples

O
bj

ec
tiv

e
Va

lu
e

Figure D.11: Slice plot showing the impact the hyperparameter ”min child samples” has on the
objective value. Whiter dots represents earlier iterations in the Bayesian optimization.

D.3 Optimization Plots Second Optimization

15 20 25 30

0.648

0.65

0.652

0.654

0.656

0.658

0

10

20

30

40

Trial

Slice Plot

max_depth

O
bj

ec
tiv

e
Va

lu
e

Figure D.12: Slice plot showing the impact the hyperparameter ”max depth” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

113

2000 2500 3000 3500 4000 4500 5000

0.648

0.65

0.652

0.654

0.656

0.658

0

10

20

30

40

Trial

Slice Plot

n_estimators

O
bj

ec
tiv

e
Va

lu
e

Figure D.13: Slice plot showing the impact the hyperparameter ”n estimators” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

114

Appendix E
Results Deep Learning

E.1 Code Printout

Figure E.1: Printout of the best hyperparameter values, the best objective value and the execution
time(s), for the first optimization with Deep Learning

Figure E.2: Printout of the best hyperparameter values, the best objective value and the execution
time(s), for the second optimization with Deep Learning

115

E.2 Optimization Plots First Optimization

10n 1μ 100μ 0.01 1

0.5

0.52

0.54

0.56

0.58

0

20

40

60

80

Trial

Slice Plot

alpha

O
bj

ec
tiv

e
Va

lu
e

Figure E.3: Slice plot showing the impact the hyperparameter ”alpha” has on the objective value.
Whiter dots represents earlier iterations in the Bayesian optimization.

10μ 100μ 0.001 0.01 0.1 1

0.5

0.52

0.54

0.56

0.58

0

20

40

60

80

Trial

Slice Plot

learning_rate_init

O
bj

ec
tiv

e
Va

lu
e

Figure E.4: Slice plot showing the impact the hyperparameter ”learning rate init” has on the
objective value. Whiter dots represents earlier iterations in the Bayesian optimization.

116

0 20 40 60 80 100

0.5

0.52

0.54

0.56

0.58

0

20

40

60

80

Trial

Slice Plot

max_iter

O
bj

ec
tiv

e
Va

lu
e

Figure E.5: Slice plot showing the impact the hyperparameter ”max iter” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

0 50 100 150 200

0.5

0.52

0.54

0.56

0.58

0

20

40

60

80

Trial

Slice Plot

neurons_per_layer

O
bj

ec
tiv

e
Va

lu
e

Figure E.6: Slice plot showing the impact the hyperparameter ”neurons per layer” has on the
objective value. Whiter dots represents earlier iterations in the Bayesian optimization.

117

1μ 10μ 100μ 0.001 0.01 0.1

0.5

0.52

0.54

0.56

0.58

0

20

40

60

80

Trial

Slice Plot

tol

O
bj

ec
tiv

e
Va

lu
e

Figure E.7: Slice plot showing the impact the hyperparameter ”tol” has on the objective value.
Whiter dots represents earlier iterations in the Bayesian optimization.

E.3 Optimization Plots Second Optimization

0 20 40 60 80 100

0.5

0.52

0.54

0.56

0.58

0

10

20

30

40

Trial

Slice Plot

max_iter

O
bj

ec
tiv

e
Va

lu
e

Figure E.8: Slice plot showing the impact the hyperparameter ”max iter” has on the objective
value. Whiter dots represents earlier iterations in the Bayesian optimization.

118

100 150 200 250 300

0.5

0.52

0.54

0.56

0.58

0

10

20

30

40

Trial

Slice Plot

neurons_per_layer

O
bj

ec
tiv

e
Va

lu
e

Figure E.9: Slice plot showing the impact the hyperparameter ”neurons per layer” has on the
objective value. Whiter dots represents earlier iterations in the Bayesian optimization.

119

Appendix F
Other outprints and plots

F.1 Results

Figure F.1: Results from classification metrics on all models. To the left default hyperparameters
and threshold are used. To the right tuned hyperparameters and threshold are used.

120

Figure F.2: Confusion matrices for all the models. To the left default hyperparameters and
threshold are used. To the right tuned hyperparameters and threshold are used.

F.2 Threshold plots on default models

Sensitivity and Specificity with default hyperparameters:

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty
 S

co
re

Logistic Regression
Gradient Boosting
Deep Learning

Figure F.3: A plot illustrating the impact of various threshold values on the Sensitivity for different
predictive models with default hyperparameters. Logistic Regression is displayed in red, Gradient
Boosted Decision Trees is displayed in blue and Deep Learning is displayed in yellow.

121

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

ifi
cit

y
Sc

or
e

Logistic Regression
Gradient Boosting
Deep Learning

Figure F.4: A plot illustrating the impact of various threshold values on the Specificity for different
predictive models with default hyperparameters. Logistic Regression is displayed in red, Gradient
Boosted Decision Trees is displayed in blue and Deep Learning is displayed in yellow.

F.3 Threshold plots on tuned models

Sensitivity and Specificity with optimal hyperparameters:

122

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty
 S

co
re

Logistic Regression
Gradient Boosting
Deep Learning

Figure F.5: A plot illustrating the impact of various threshold values on the Sensitivity for different
predictive models with optimal hyperparameters. Logistic Regression is displayed in red, Gradient
Boosted Decision Trees is displayed in blue and Deep Learning is displayed in yellow.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

ifi
cit

y
Sc

or
e

Logistic Regression
Gradient Boosting
Deep Learning

Figure F.6: A plot illustrating the impact of various threshold values on the Specificity for different
predictive models with optimal hyperparameters. Logistic Regression is displayed in red, Gradient
Boosted Decision Trees is displayed in blue and Deep Learning is displayed in yellow.

123

F.4 Printouts from the SHAP values

0.04 0.02 0.00 0.02 0.04
mean(|SHAP value|) (average impact on model output magnitude)

OTHER_SERVICES_12_2020_1

OTHER_SERVICES_12_2021_7

OTHER_SERVICES_12_2021_9

OTHER_SERVICES_12_2022_12

OTHER_SERVICES_12_2022_11

OTHER_SERVICES_12_2022_10

OTHER_SERVICES_12_2022_9

OTHER_SERVICES_12_2022_8

OTHER_SERVICES_12_2022_7

OTHER_SERVICES_12_2022_6

OTHER_SERVICES_12_2022_5

OTHER_SERVICES_12_2022_4

OTHER_SERVICES_12_2022_3

OTHER_SERVICES_12_2022_2

OTHER_SERVICES_12_2022_1

OTHER_SERVICES_12_2021_12

OTHER_SERVICES_12_2021_11

OTHER_SERVICES_12_2021_10

OTHER_SERVICES_12_2021_8

CountRoundPaidToCCL12_2022_9

0.04 0.02 0.00 0.02 0.04
SHAP value (impact on model output)

OTHER_SERVICES_12_2020_1

OTHER_SERVICES_12_2021_7

OTHER_SERVICES_12_2021_9

OTHER_SERVICES_12_2022_12

OTHER_SERVICES_12_2022_11

OTHER_SERVICES_12_2022_10

OTHER_SERVICES_12_2022_9

OTHER_SERVICES_12_2022_8

OTHER_SERVICES_12_2022_7

OTHER_SERVICES_12_2022_6

OTHER_SERVICES_12_2022_5

OTHER_SERVICES_12_2022_4

OTHER_SERVICES_12_2022_3

OTHER_SERVICES_12_2022_2

OTHER_SERVICES_12_2022_1

OTHER_SERVICES_12_2021_12

OTHER_SERVICES_12_2021_11

OTHER_SERVICES_12_2021_10

OTHER_SERVICES_12_2021_8

CountRoundPaidToCCL12_2022_9

Low

High

Fe
at

ur
e

va
lu

e

Figure F.7: A figure that should showcase the SHAP values for the tuned deep learning model.

F.4.1 Default Predicting Models

Figure F.8: A printout of the runtime for getting the SHAP values for the default Logistic Regres-
sion model.

Figure F.9: A printout of the runtime for getting the SHAP values for the default Gradient Boosted
Decision Trees model.

Figure F.10: A printout of the runtime for getting the SHAP values for the default Deep Learning
model.

F.4.2 Tuned Predicting Models

Figure F.11: A printout of the runtime for getting the SHAP values for the tuned Logistic Regres-
sion model.

124

Figure F.12: A printout of the anticipated runtime for getting the SHAP values for the tuned
Gradient Boosted Decision Trees model.

Figure F.13: A printout of the runtime for getting the SHAP values for the tuned Deep Learning
model.

125

Appendix G
The Code

This chapter in the appendix will not contain any pre-processing. It will however contain informa-
tion so that the processes that has been done with with this dataset can be repeated with another
dataset.

G.1 Packages

from chart_studio import plotly as py

from lightgbm import LGBMClassifier

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import plotly.express as px

import optuna

from sklearn.metrics import accuracy_score

from sklearn.metrics import confusion_matrix

from sklearn.metrics import precision_score, recall_score, accuracy_score

import lightgbm as lgb

from sklearn.metrics import roc_auc_score

from sklearn.metrics import brier_score_loss

from sklearn.metrics import matthews_corrcoef

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import balanced_accuracy_score

import shap

from sklearn.neural_network import MLPClassifier

G.2 Main Code

data = pd.read_csv('hele_data_fully_scaled.csv')

pd.pandas.set_option('display.max_columns',None)

data = data.drop(['Revolver'], axis=1)

data = data.drop(['Fullpayer'], axis=1)

X = data.drop(['AktivEtterPassiv'], axis=1)

126

y = data['AktivEtterPassiv']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)

#Training and fitting a model for Gradient Boosted Decision Trees

modelLGBM = LGBMClassifier()

modelLGBM.fit(X_train, y_train)

probsLGBM = modelLGBM.predict_proba(X_test)

probsLGBM = probsLGBM[:,1]

#Training and fitting a model for Logistic Regression

modelLR = LogisticRegression()

modelLR.fit(X_train, y_train)

probsLR = modelLR.predict_proba(X_test)

probsLR = probsLR[:,1]

#Training and fitting a model for Deep Learning

nn = MLPClassifier()

nn.fit(X_train, y_train)

probsNN = nn.predict_proba(X_test)

probsNN = probsNN[:,1]

#Making the MCC-curve

#This can be repeated with other metrics

LGBM=[]

LR=[]

KE=[]

x=[]

for i in range(1000):

threshold=i/1000

x.append(threshold)

y_pred = (probsLR >= threshold).astype(int)

LR.append(matthews_corrcoef(y_test, y_pred))

y_pred = (probsLGBM >= threshold).astype(int)

LGBM.append(matthews_corrcoef(y_test, y_pred))

y_pred = (probsNN >= threshold).astype(int)

KE.append(matthews_corrcoef(y_test, y_pred))

plt.plot(x, LR, color='r', label='Logistic Regression')

plt.plot(x, LGBM, color='b', label='Gradient Boosting')

plt.plot(x, KE, color='y', label='Deep Learning')

Naming the x-axis, y-axis and the whole graph

plt.xlabel("Threshold")

plt.ylabel("Matthews Correlation Coefficient")

plt.legend()

plt.savefig("Threshold_Matthews_Correlation_Coefficient.pdf")

127

plt.show()

#Using the default threshold to classify observations

predsLGBM = (probsLGBM >= 0.064).astype(int)

predsLR = (probsLR >= 0.064).astype(int)

predsKE = (probsNN >= 0.064).astype(int)

tnLGBM, fpLGBM, fnLGBM, tpLGBM = confusion_matrix(y_test, predsLGBM).ravel()

tnLR, fpLR, fnLR, tpLR = confusion_matrix(y_test, predsLR).ravel()

tnKE, fpKE, fnKE, tpKE = confusion_matrix(y_test, predsKE).ravel()

#Prining the different scores for the different metrics

print('AUC: \nGradient Boosting:' , roc_auc_score(y_test,probsLGBM), '\nLogistic:' ,

roc_auc_score(y_test,probsLR), '\nDeep Learning:' , roc_auc_score(y_test,probsNN))

print('\n')

print('Brier-score: \nGradient Boosting:' , brier_score_loss(y_test,probsLGBM), '\nLogistic:' ,

brier_score_loss(y_test,probsLR), '\nDeep Learning:' , brier_score_loss(y_test,probsNN))

print('\n')

print('MCC: \nGradient Boosting:' , matthews_corrcoef(y_test,predsLGBM), '\nLogistic:' ,

matthews_corrcoef(y_test,predsLR), '\nDeep Learning:' , matthews_corrcoef(y_test,predsKE))

print('\n')

print('BACC: \nGradient Boosting:' , balanced_accuracy_score(y_test,predsLGBM), '\nLogistic:' ,

balanced_accuracy_score(y_test,predsLR),

'\nDeep Learning:' , balanced_accuracy_score(y_test,predsKE))

print('\n')

print('Accuracy: \nGradient Boosting:' , accuracy_score(y_test,predsLGBM), '\nLogistic:' ,

accuracy_score(y_test,predsLR), '\nDeep Learning:' , accuracy_score(y_test,predsKE))

print('\n')

print('Specificity: \nGradient Boosting:' , tnLGBM / (tnLGBM+fpLGBM), '\nLogistic:'

, tnLR / (tnLR+fpLR), '\nDeep Learning:' , tnKE / (tnKE+fpKE))

print('\n')

print('Sensitivity: \nGradient Boosting:' , tpLGBM / (tpLGBM+fnLGBM), '\nLogistic:'

, tpLR / (tpLR+fnLR), '\nDeep Learning:' , tpKE / (tpKE+fnKE))

print('\n')

#Printing the confusion matrices

print('Matrix LGBM:')

print(confusion_matrix(y_true=y_test, y_pred=predsLGBM))

print('Matrix LR:')

print(confusion_matrix(y_true=y_test, y_pred=predsLR))

print('Matrix DL:')

print(confusion_matrix(y_true=y_test, y_pred=predsKE))

#Making feature importance plot for Logistig Regression

feature_importance = abs(modelLR.coef_[0])

feature_importance = 100.0 * (feature_importance / feature_importance.max())

sorted_idx = np.argsort(feature_importance)

pos = np.arange(sorted_idx.shape[0]) + .5

featfig = plt.figure()

featax = featfig.add_subplot(1, 1, 1)

128

featax.barh(pos[1178:], feature_importance[sorted_idx][1178:], align='center')

featax.set_yticks(pos[1178:])

featax.set_yticklabels(np.array(X.columns)[sorted_idx][1178:], fontsize=8)

featax.set_xlabel('Feature Importance')

plt.tight_layout()

plt.savefig("Feature_importance_LR.pdf")

plt.show()

#Making feature importance plot for Gradient Boosted Decision Trees

lgb.plot_importance(modelLGBM, max_num_features=20, title='')

plt.tight_layout()

plt.savefig("Feature_importance_LGBM.pdf")

plt.show()

#Making Shap plots

X_train_summary = shap.kmeans(X_train, 10)

explainer = shap.KernelExplainer(nn.predict, X_train_summary)

shap_values = explainer.shap_values(X_test)

fig = shap.summary_plot(shap_values, X_test, plot_type="bar",show=False)

plt.savefig("Feature_importance_Deep.pdf",bbox_inches="tight")

shap.summary_plot(shap_values, X_test,show=False)

plt.savefig("Feature_importance_Deep_2.pdf",bbox_inches="tight")

X_train_summary = shap.kmeans(X_train, 10)

explainer = shap.KernelExplainer(modelLGBM.predict, X_train_summary)

shap_values = explainer.shap_values(X_test)

shap.summary_plot(shap_values, X_test,show=False)

plt.savefig("Feature_importance_shap_LGBM_2.pdf",bbox_inches="tight")

shap.summary_plot(shap_values, X_test, plot_type="bar",show=False)

plt.savefig("Feature_importance_shap_LGBM.pdf.pdf",bbox_inches="tight")

X_train_summary = shap.kmeans(X_train, 10)

explainer = shap.KernelExplainer(modelLR.predict, X_train_summary)

shap_values = explainer.shap_values(X_test)

shap.summary_plot(shap_values, X_test,show=False)

plt.savefig("Feature_importance_shap_LR_2.pdf",bbox_inches="tight")

shap.summary_plot(shap_values, X_test, plot_type="bar",show=False)

plt.savefig("Feature_importance_shap_LR.pdf",bbox_inches="tight")

G.2.1 New Models

Now the same code is run again, but with these models and these thresholds:

param = {

"n_estimators": 2789,

129

"learning_rate": 0.0005807394611462965,

"num_leaves": 759,

"max_depth": 30,

"min_child_samples": 57,

"reg_alpha": 0.0037022924110828533,

"reg_lambda": 0.7099353086700094,

"min_split_gain": 0.9187319657459281,

"subsample": 0.5025515010962769,

"colsample_bytree": 0.23028910864717372,

'verbose': -1,

}

modelLGBM = LGBMClassifier(**param)

param = {

'penalty' : 'l2',

'C' : 0.2333449360609842,

'tol' : 0.0001311102130259688,

'solver' : 'saga',

"max_iter": 54,

}

modelLR = LogisticRegression(**param)

num_layers = 2

neurons_per_layer = 274

param = {

'activation' : 'logistic',

"alpha": 0.0009155620098305521,

"learning_rate_init": 0.0023164263237247782,

"tol": 0.0000013651202992461953,

"max_iter": 85,

"hidden_layer_sizes": list(np.ones((num_layers),dtype=int)*neurons_per_layer)

}

nn = MLPClassifier(**param)

predsLGBM = (probsLGBM >= 0.06).astype(int)

predsLR = (probsLR >= 0.056).astype(int)

predsKE = (probsNN >= 0.062).astype(int)

G.3 Logistic Regression Tuning

This will only conain coding of the first tuning

def objective(trial, X_train, y_train):

130

param = {

'penalty' : trial.suggest_categorical("penalty", ["none", 'l2']),

'C' : trial.suggest_loguniform("C", 0.05, 100),

'tol' : trial.suggest_loguniform("tol", 0.0000000001, 0.01),

'solver' : trial.suggest_categorical("solver", ['newton-cg', 'lbfgs', 'sag','saga']),

"max_iter": trial.suggest_int("max_iter", 10,100),

}

X_train, X_1, y_train, y_1 =

train_test_split(X_train, y_train, test_size=0.33333333333, random_state=42)

X_2, X_3, y_2, y_3 = train_test_split(X_train, y_train, test_size=0.5, random_state=42)

model1 = LogisticRegression(**param)

model2 = LogisticRegression(**param)

model3 = LogisticRegression(**param)

model1.fit(pd.concat([X_2,X_3]), pd.concat([y_2,y_3]))

model2.fit(pd.concat([X_1,X_3]), pd.concat([y_1,y_3]))

model3.fit(pd.concat([X_2,X_1]), pd.concat([y_2,y_1]))

probs1 = model1.predict_proba(X_1)

probs2 = model2.predict_proba(X_2)

probs3 = model3.predict_proba(X_3)

probs1 = probs1[:,1]

probs2 = probs2[:,1]

probs3 = probs3[:,1]

auc1 = roc_auc_score(y_1,probs1)

auc2 = roc_auc_score(y_2,probs2)

auc3 = roc_auc_score(y_3,probs3)

return (auc1 + auc2 + auc3)/3

start_time = time.time()

X = data.drop(['AktivEtterPassiv'], axis=1)

y = data['AktivEtterPassiv']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)

study = optuna.create_study(direction="maximize", study_name="LGBM Classifier")

func = lambda trial: objective(trial, X_train, y_train)

study.optimize(func, n_trials=100)

end_time = time.time()

print(f"The execution time is: {end_time-start_time}")

print(f"\tBest value (Score): {study.best_value:.5f}")

print(f"\tBest params:")

for key, value in study.best_params.items():

print(f"\t\t{key}: {value}")

optuna.visualization.plot_param_importances(study)

131

.write_image("Bayesian_optimization_LR_importance.pdf")

optuna.visualization.plot_optimization_history(study)

.write_image("Bayesian_optimization_LR_history.pdf")

optuna.visualization.plot_slice(study, params=['C'])

.write_image("Bayesian_optimization_LR_C.pdf")

#Finding optimal threshold

mattbcc=[]

x=[]

for i in range(1000):

threshold=i/1000

x.append(threshold)

y_pred1 = (probs1 >= threshold).astype(int)

y_pred2 = (probs2 >= threshold).astype(int)

y_pred3 = (probs3 >= threshold).astype(int)

mattbcc.append(matthews_corrcoef(y_1, y_pred1)+matthews_corrcoef(y_2, y_pred2)+matthews_corrcoef(y_3, y_pred3)+2*(balanced_accuracy_score(y_1, y_pred1)+balanced_accuracy_score(y_2, y_pred2)+balanced_accuracy_score(y_3, y_pred3)))

plt.plot(x, mattbcc, color='r')

Naming the x-axis, y-axis and the whole graph

plt.xlabel("Threshold")

plt.ylabel("Objective value")

plt.savefig("mattbcc_lr.pdf")

plt.show()

mattbcc.index(max(mattbcc))/1000

G.4 Gradient Boosted Decision Trees Tuning

This section is built on the same principles as Logistic Regression, and it will thus only contain
the hyperparameters tuned.

param = {

"device_type": trial.suggest_categorical("device_type", ['gpu']),

"n_estimators": trial.suggest_int("n_estimators", 10,3000),

"learning_rate": trial.suggest_loguniform("learning_rate", 0.001, 0.3),

"num_leaves": trial.suggest_int("num_leaves", 10, 5000),

"max_depth": trial.suggest_int("max_depth", 3, 20),

"min_child_samples": trial.suggest_int("min_child_samples", 0, 300),

"reg_alpha": trial.suggest_loguniform("reg_alpha", 0.0000000000000000001, 50),

"reg_lambda": trial.suggest_loguniform("reg_lambda", 0.0000000000000000001, 50),

"min_split_gain": trial.suggest_float("min_split_gain", 0.01, 1),

"subsample": trial.suggest_float("subsample", 0.01, 1),

#"bagging_freq": trial.suggest_categorical("bagging_freq", [1]),

132

"colsample_bytree": trial.suggest_float("colsample_bytree", 0.01, 1),

'verbose': -1,

}

G.5 Deep Learning Tuning

This section is built on the same principles as Logistic Regression, and it will thus only contain
the hyperparameters tuned.

num_layers = trial.suggest_int("num_layers",2,20)

neurons_per_layer = trial.suggest_int("neurons_per_layer",2,200)

param = {

'activation' :

trial.suggest_categorical("activation", ["identity", 'logistic', 'tanh','relu']),

"alpha": trial.suggest_loguniform("alpha", 0.00000001, 1),

"learning_rate_init": trial.suggest_loguniform("learning_rate_init", 0.00001, 1),

"tol": trial.suggest_loguniform("tol", 0.000001, 0.1),

"max_iter": trial.suggest_int("max_iter", 2,100),

"hidden_layer_sizes": list(np.ones((num_layers),dtype=int)*neurons_per_layer)

}

133

	List of Figures
	List of Tables
	Introduction
	Methodological background
	Outline
	A Brief Introduction to the Data
	The Response

	Theoretical Background
	Statistical learning
	Cross-Validation
	Gradient Descent
	Evaluation Metrics for Classification
	SHAP values

	Logistic Regression
	Generalized Linear Models
	Parameter estimation
	L1 and L2 Regularization
	Scikit-learn

	Gradient Boosted Decision Trees
	Decision Trees
	Ensemble learning
	Gradient Boosting
	Gradient Boosted Decision Trees
	L1 and L2 Regularization
	LightGBM

	Deep Learning
	The Artificial Neuron
	The Neural Network
	Activation functions
	Training the Neural Network
	L1 and L2 Regularization
	Scikit-learn

	Hyperparameter tuning
	Bayesian optimization
	Optuna

	Data Preparation and Visualization
	The different datasets
	Visualization
	Pre-Processing
	The first two datasets
	The last two datasets

	Methods and Hyperparameters, an Overview
	The predicting models
	Logistic Regression
	Gradient Boosted Decision Trees
	Deep Learning

	The procedure
	Bayesian Optimization
	Threshold Optimization
	SHAP values

	Analysis and Results
	Results with default hyperparameters
	Investigating threshold importance
	Feature Importance

	Logistic Regression Optimization
	First Results
	Second Results
	Threshold

	Gradient Boosted Decision Trees Optimization
	First Results
	Second Results
	Threshold

	Deep Learning Optimization
	First Results
	Second Results
	Threshold
	Comparing the Tuned Models
	The tuning process
	Investigating threshold importance
	Feature importance

	Feature Importance through SHAP values
	Default predicting models
	Tuned predicting models

	Discussion
	Conclusion
	Future Work

	Variables in the different datasets with explanation
	The fundamental dataset
	The appliance dataset
	The historical credit card dataset
	The historical transactions dataset
	Correlation plot
	Results Logistic Regression
	Code Printout
	Optimization Plots First Optimization
	Optimization Plots Second Optimization
	Results Gradient Boosted Decision Trees
	Code Printout
	Optimization Plots First Optimization
	Optimization Plots Second Optimization
	Results Deep Learning
	Code Printout
	Optimization Plots First Optimization
	Optimization Plots Second Optimization
	Other outprints and plots
	Results
	Threshold plots on default models
	Threshold plots on tuned models
	Printouts from the SHAP values
	Default Predicting Models
	Tuned Predicting Models
	The Code
	Packages
	Main Code
	New Models

	Logistic Regression Tuning
	Gradient Boosted Decision Trees Tuning
	Deep Learning Tuning

