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Abstract: This paper expands the research around a recently proposed method to reduce the search
space region for thermal unit commitment problems. The importance of such techniques comes from
the combinatorial explosion regarding the variables of the problem when there are a large quantity
of generating units in the system. The proposed heuristic approach utilizes sensitivity indices to
gather information about the system and fix many of the binary decision variables over the planning
horizon. This work further explores the method by demonstrating its effectiveness in large-scale
systems subjected to ramp constraints. Despite the significantly increased complexity, the results
of this paper indicate that the method can achieve high quality solutions notably faster than other
approaches from the literature.

Keywords: thermal unit commitment; combinatorial optimization; search space reduction; heuristic

1. Introduction

The short-term Unit Commitment (UC) problem is among the most relevant problems
in the electrical energy sector, as it targets the planning and operation of generating units,
varying from a few hours to a day [1]. In general, UC can be described according to two
main stages: the operation decisions regarding the generating units, and the economic
dispatch [2]. The former aims to determine which generating units must operate and supply
power during each hour of the planning horizon, while the latter has the goal of minimizing
operational costs by optimally indicating how much power each operating unit should
generate [3,4] in order to attend to the power and reserve demands. UC problems can relate
to different planning horizons and time discretizations. This paper addresses applications
regarding a short-term 24 h planning window with hourly discretizations. When all
generating units are thermoelectric, UC is referred to as Thermal Unit Commitment (TUC).
Solving the TUC problem is a complex task due to the large number of binary variables [5]
which represent the operation decisions concerning each thermoelectric unit. Furthermore,
the problem under investigation is subjected to time-coupling constraints that further
increase its complexity. The UC problem can be represented in different manners, as shown
in the review presented by Montero et al. [6].

The combinatorial explosion regarding the decision-making process implies a sig-
nificant mathematical challenge to operational planning. Each unit added to an existing
system greatly increases the number of operational possibilities. Large-scale systems, e.g.,
40 to 100 units, have large solving difficulty due to the number of variables [7].

Considering ramp constraints brings the solution closer to real operation conditions
by including the thermoelectric characteristics of the generators [8]. However, this makes
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the problem more challenging to solve [9]. Montero et al. [6] indicated that researchers
occasionally neglect ramp constraints.

The TUC problem has been addressed by several techniques designed for combina-
torial formulations. It is well known that an exhaustive search would be infeasible due
to computational burden issues [10]. Among the early methods to solve TUC, Branch
and Bound [11] and Dynamic Programming [12] should be highlighted. However, these
approaches tend to take a long time to retrieve the solution, and can exclude the global
optimum early in the solving process [13]. Priority lists are based on heuristic informa-
tion regarding the characteristics of the generating units. They are widely utilized due to
their simple implementation [14,15]. Metaheuristics are able to provide good results faster
than other methods. However, they have the disadvantage of a large number of tuning
parameters, and are prone to local stagnation. In addition, their good performance usually
depends on a feasible initial solution [16–18].

In previous research [19], we presented a method of reducing the search space of the
TUC problem. The proposed constructive heuristic based on sensitivity indices exploits
system information to reduce the number of decision variables. This work extends our
previous study, and makes two new main contributions to the TUC literature:

• An adaptation of the method from [19] is presented to significantly reduce the search
space for the addressed TUC problem considering ramp constraints. Despite the space
reduction, the methodology preserves high quality solutions and enables feasibility
for cases in which the non-reduced problem does not converge within the established
time limit. Montero et al. [6] showed that 50% of the reviewed publications neglected
ramp constraints. This a fact increases the value of the results provided in this paper
towards advancing the state of the art.

• Based on [6], it has been verified that 48% of the reported papers address systems with
more than 50 generating units. In this paper, systems with 60, 80, and 100 units are
within the scope of the study. Thus, the value of the proposed method is shown for
large systems, which are usually neglected in the specialized literature.

It should be emphasized that the method proposed in [19] has proven able to greatly
reduce the search space for small-scale TUC problems. The results from [19] motivated the
study presented herein concerning larger systems subjected to ramp constraints.

Beyond this introduction, Section 2 provides the TUC problem formulation for this
study, Section 3 summarizes the proposed approach according to previous research,
Section 4 explores case studies by expanding the application to ramp-constrained and
significantly larger systems compared to the previous research, and Section 5 concludes the
work and mentions future studies.

2. Thermal Unit Commitment Problem

Different approaches exist to formulate the TUC problem [20–22]. In this work, the
problem is provided by a mixed-integer quadratic programming formulation, as in [23].
A variety of constraints are considered, aiming at obtaining solutions that better mimic
real operation, including minimum and maximum up time, cold and hot startup, and
ramp limitations.

The objective function seeks to minimize the operational costs (C). These expenses are
provided by the fuel consumption costs plus the startup costs, as in Equation (1). This goal
is broadly utilized in TUC studies. However, adaptations including other goals and cost
factors can be carried out according to the needs of the implementation. As a further remark,
Equation (1) models the startup cost of a generating unit according to the period during
which the unit has been inactive [24]. This factor changes the temperature conditions of the
unit, thereby impacting the startup expenditure:

minimize C =
T

∑
t=1

NG

∑
i=1

aiuit + biPgit + ciPg2
it + scold

it · s
cold
icost

+ shot
it · s

hot
icost

(1)
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where T is the quantity of discretizations in the planning horizon; NG is the amount of
generating units; ai, bi, and ci are the fuel cost coefficients; uit are the binary ON/OFF
states of the units; Pgit is the power output; scold

it and shot
it indicate cold and hot startups,

respectively; and scold
icost

and shot
icost

are the costs for cold and hot startups, respectively.
As mentioned before, many characteristics constrain the TUC solving process. As

in any electrical power system, power balance is mandatory. In other words, the power
supply has to meet the demand, as represented by Equation (2):

NG

∑
i=1

Pgit = Lt, ∀t ∈ T (2)

where Lt is the power demand (MW) at time t.
Power dispatch problems usually include the requirement of a spinning reserve

attendance, as in Equation (3). This reserve serves as a readily available power generation.
It can help the overall system in case of unexpected events [25], such as a power demand
value that surpasses what has been forecast:

NG

∑
i=1

uit Pgi ≥ Lt + srt, ∀t ∈ T (3)

where srt is the predetermined spinning reserve (MW).
The operational characteristics of the units impose several constraints on the problem.

The individual power generation of the units is bounded, as indicated by Equation (4).
Upon startup/shutdown, a unit must remain on/off according to its minimum up/down
time, as shown by Equations (5) and (6):

uit Pg
i
≤ Pgit ≤ uit Pgi, ∀t ∈ T, ∀i ∈ NG (4)

t

∑
w=t−MUTi+1

xiw ≤ uit , ∀t ∈ T, ∀i ∈ NG (5)

t

∑
w=t−MDTi+1

yiw ≤ 1− uit , ∀t ∈ T, ∀i ∈ NG (6)

where Pgi and Pg
i

are the maximum and minimum generation of unit i, respectively, and
MUTi and MDTi represent the minimum up and down times, respectively. In other words,
they relate to the least amount of time the unit must remain online/offline until it can
go inactive/active again. In addition, xit and yit are binary variables indicating start-up
and shut-down occurrences, respectively, while w is an auxiliary index responsible for
representing the relevant periods.

In this formulation, the startup and shutdown occurrences require the auxiliary vari-
ables x and y. The former indicates the startup of a unit, whereas the latter represents its
shutdown. Equation (7) establishes the temporal relation between the on/off variables
and the startup/shutdown indications. Equation (8) prevents a unit from simultaneously
starting and stopping:

uit − uit−1 = xit − yit , ∀t ∈ T, ∀i ∈ NG (7)

xit + yit ≤ 1, ∀t ∈ T, ∀i ∈ NG (8)

Equation (9) determines whether a startup is cold or hot. Equation (10) indicates if
the startup cost should be taken as cold or hot, ensuring that the objective function is
adequately quantified:
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scold
it + shot

it = xit , ∀t ∈ T, ∀i ∈ NG (9)

uit −
t−1

∑
w=t−tcsui−MDTi−1

uiw = scold
it , ∀t ∈ T, ∀i ∈ NG (10)

where tcsui is the number of hours (after MDT) in which unit i has a hot start if acti-
vated again.

Finally, the following description regards the ramp constraints. These restrictions
impose limitations on how much the power output of a unit can increase or decrease
once it is in operation. If a unit is not operating and is about to be activated, it is not
subjected to the ramp constraint. In other words, it can be set to any power value within its
operational range. This is an important aspect that must be captured by the constraints.
Equations (11) and (12) describe the up and down ramping limitations, respectively. The
parameters Uup

i and Udown
i denote how much the generation of unit i can increase or

decrease, respectively, if the unit was active in the previous period. Conversely, if the
unit was off, ε ensures that the unit can be turned on and set to any power value in its
generation range. It should be highlighted that ε must be greater than or equal to the
maximum power output among all units. In cases in which a unit goes from an OFF to an
ON state, Equation (4) is responsible for bounding the generation from above.

Pgit − Pgit−1
≤ uit−1 ·U

up
i +

(
1− uit−1

)
· ε, ∀t ∈ T, ∀i ∈ NG (11)

Pgit−1
− Pgit ≤ uit ·U

down
i + (1− uit) · ε, ∀t ∈ T, ∀i ∈ NG (12)

3. Summary of Previous Work

In [19], we proposed a constructive heuristic method to reduce the search space in TUC
problems. The method applies a workflow to generate several hybrid priority lists (HPLs).
These HPLs are combinations of pre-established lists obtained via consolidated metrics,
such as the full load average production cost [26], the production marginal cost [27], and
the Lagrange sensitivity [28]. Each HPL can be used to determine the operation decisions
of a TUC problem, followed by economic dispatch optimization. However, the method
in [19] consists of grouping all HPLs to obtain the so-called Relevance Matrix (RM).

In essence, each HPL is a matrix of zeros and ones that indicates the status of the units
over the planing horizon. The RM comes from the sum of all HPLs, granting activation
percentages regarding the units at each period. For instance, if at a certain hour a unit was
given as active in 800 out of 1000 HPLs, the method states that this unit had a relevance
of 80% to operate at this hour. Readers who wish to understand the method in greater
detail are invited to read the third section of [19], which is openly available. This work does
not present the method in its entirety, as it has not been modified. As mentioned before,
the main contribution of the present paper comes from demonstrating the feasibility and
effectiveness of our previous method in larger-scale systems including ramp constraints.
Apart from not considering ramp limitations, the largest system in [19] had 40 units. The
present paper, on the other hand, applies the method for systems with up to 100 units.

The method considers three relevance levels for RM: high (α), in which units were
ON at a certain hour in all HPLs; low (β), in which units were ON at a certain hour in 10%
or less of the HPLs; and none(γ), in which units were always OFF at a certain hour. The
10% criterion for low relevance classification was decided empirically. After several trials,
this value showed a good balance between the number of the number of fixed variables
(which impacts the computational burden) and quality of solutions.

Considering the aforementioned relevance levels, the method fixes several of the
ON/OFF decision variables; in other words, RM indicates their operation. Therefore, these
variables are no longer for the optimization to quantify. The procedure to fix part of the
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variables follows Equation (13). If the relevance of a unit at a given time does not relate to
the procedure, its decision comes from the optimization of Equations (1)–(12).

uit =

{
1, ∀ α

0, ∀ β and γ
(13)

Table 1 exemplifies the utilization of RM. In this table, the α, β, and γ occurrences
are colored as ( ), ( ), and ( ), respectively. This color scheme is utilized in the other
tables as well. In Table 1, 18 out of the 24 ON/OFF decision variables are decided by RM.
The reduced optimization problem has 26 ON/OFF combinations to explore, whereas the
original problem needed to search 224 combinations. This example illustrates the extent to
which our method can reduce the solution region. Despite being merely a demonstration,
this example highlights that the previous work [19] reports reductions in the number of
ON/OFF decision variables of around 80%.

Table 1. Example of RM.

Hour U1 U2 U3 U4
1 100 98 2 0
2 100 100 9 91
3 100 100 98 2
4 100 100 100 100
5 100 100 23 77
6 100 92 8 0

4. Results and Discussions

The ten-unit system from [24] was used as an initial test for the proposed method. This
system uses a planning horizon of 24 h. Table 2 provides the technical data on the system.
The power demands are found in [24]. The spinning reserve is taken as 10% of the load, as
in [29]. A total of 1000 HPLs were created, according to the procedure from [19]. Figure 1
shows the boxplot regarding the solutions for each one of the HPLs separately. The lowest
cost found is equal to USD 564,795. The median of all solutions is equal to USD 569,327.
The literature reports an optimal cost of USD 563,937. It can be observed that the process of
generating HPLs was able to achieve solutions that are close to the optimal.

The approach proposed in this paper aims to reduce the search space while keeping
good quality solutions and alleviating the computational burden. Considering that the
HPLs reduce the search space by deciding the ON/OFF variables, Figure 1 provides an idea
of the quality of solutions after fixing the binary decisions. However, the true potential of
the method is yet to be shown. Combined with RM, an academic license of the commercial
solver Mosek [30] is utilized to demonstrate the computational benefits that can be obtained
through this approach.

Table 2. Data on the ten-unit system.

Unit 1 2 3 4 5 6 7 8 9 10

a 1000 970 700 680 450 370 480 660 665 670
b 16.19 17.26 16.6 16.5 19.7 22.26 27.74 25.92 27.27 27.79
c 0.00048 0.00031 0.002 0.00211 0.00398 0.00712 0.00079 0.00413 0.00222 0.00173

Pgmax
i 455 455 130 130 162 80 85 55 55 55

Pgmin
i 150 150 20 20 25 20 25 10 10 10

MUTi 8 8 5 5 6 3 3 1 1 1
MDTi 8 8 5 5 6 3 3 1 1 1

shot
i 4500 5000 550 560 900 170 260 30 30 30

scold
i 9000 10,000 1100 1120 1800 340 520 60 60 60

tcsui 5 5 4 4 4 2 2 0 0 0
IC 8 8 −5 −5 −6 −3 −3 −1 −1 −1
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10 units

System

5.65

5.66

5.67

5.68

5.69

5.7

5.71

5.72

5.73

5.74

5.75

C
o

st
 (

$
)

105

Figure 1. Cost dispersion for the ten-unit system.

As shown in the example of Table 1, the proposed RM does not decide all ON/OFF
decisions. Therefore, Mosek is responsible for optimizing the remaining binary variables, in
addition to solving the economic dispatch of the generating units. As described below, five
cases are considered regarding the search space reduction. Table 3 presents the reduction
magnitude of each case for the ten-unit system in Table 2. Table 3 was obtained according
to the procedure summarized in Section 3. In other words, 1000 HPLs were created to
define the relevance levels.

1. No reduction; Mosek solves the full problem.
2. RM fixes decisions only for α occurrences.
3. RM fixes decisions only for γ occurrences.
4. RM fixes decisions only for β occurrences (which include γ).
5. RM fixes decisions for α, β, and γ occurrences.

Table 3. Reduction alternatives and their impacts.

Total Amount of Case Number of Reduction (%)Binary Variables Fixed Variables

240

1 0 0
2 104 43.33
3 54 22.5
4 89 37.08
5 193 80.42

Considering the meaning of cases 2 and 3, Table 3 shows that 104 occurrences always
participate in the power demand attendance. In opposition, 54 occurrences never take
part. For clarification, an occurrence refers to a certain unit operating at a certain hour.
After reducing the search space, Mosek solves the remaining problem. An optimality gap
of up to 0.5% was allowed. This gap is provided by the percentage difference between
the objective function evaluation of a feasible solution and the evaluation of the relaxed
problem regarding the binary variables [30]. Thus, as long as the gap is greater than 0.5%,
Mosek’s Branch and Bound keeps exploring the nodes in the search for an acceptable
feasible solution. Table 4 presents the optimal cost, number of explored branches (NB), and
solving time (ST) for the five cases.
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Table 4. Optimization results with RM space reduction — ten-unit system.

Gap Case C ($) NB ST (s)

0 %

1 563,937.68 5843 72.45
2 563,937.68 1277 11.80
3 563,937.68 944 6.49
4 563,937.68 36 0.58
5 563,937.68 23 0.58

0.05 %

1 563,937.68 5693 67.5
2 563,937.68 1020 9.80
3 563,937.68 942 6.73
4 563,978.82 24 0.42
5 563,978.82 8 0.45

0.25 %

1 563,989.99 170 3.13
2 564,189.16 154 2.14
3 563,989.85 258 2.08
4 564,916.16 8 0.39
5 564,218.91 0 0.38

0.5 %

1 564,241.32 98 1.94
2 565,486.43 6 0.72
3 564,444.31 98 1.38
4 564,916.15 0 0.25
5 564,218.91 0 0.09

Table 4 shows that the optimizer required around 72 seconds to find the global solution
when the proposed method was not applied (null gap, case 1). For all reduction cases and
gap possibilities, ST is reduced significantly compared to case 1. It is worth highlighting
that all simulations utilized the same hardware. Therefore, the reductions to ST are all due
the proposed method. Regarding the cases with a gap of 0%, Table 4 indicates that the
global solution was achieved even in case 5, which is the one with the most significantly
reduced search region. This is an important observation, as it shows that for this system the
proposed approach is able to fix binary variables in such a way that the global optimum
was not compromised.

As a highlight, Figure 1 shows that none of the 1000 HPLs was individually capable
of providing the optimal cost of USD 563,937.68 after optimization of the economic dis-
patch. However, as shown in Table 4, combining the HPLs to create RM could achieve
global optimality.

For non-null gap values, it can be observed that tightening the search space can affect
the obtained solution concerning the global optimum. However, this is related to both the
space reduction and the gap itself. For the the cases with a gap of 0.05%, it can be noted
that the best solution was not achieved by the case with the most significant reduction. It is
worth emphasizing that the final solution for non-null gap binary optimization via branch-
and-bound algorithms always depends on how the binary search is performed. The most
important result to be highlighted here is that the proposed approach is capable of greatly
decreasing the computational burden while keeping high quality solutions. Apart from
the results presented for the ten-unit system, the following subsections explore studies for
systems with up to 100 units planned over 24 h. Such systems are obtained by replicating
the data from Table 2, as in [24].

4.1. Large-Scale Systems without Ramp Constraints

As a thermoelectric system becomes larger, the number of combinations for the binary
ON/OFF decisions grows exponentially. For 100 units operating over 24 h, there are
2400 variables, for a total of 22400 ON/OFF combinations. This combinatorial explosion
tends to make classical optimization approaches not viable. Therefore, heuristics can play
an important role in reducing the number of combinations to be evaluated.
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In order to validate the method brought in this paper, RM was put to the test in
systems with 20, 40, 60, 80, and 100 units. These systems were obtained by duplicating the
data from Table 2. Figure 2 shows the cost dispersion for these systems. Table 5 provides
the median and minimum costs. Analogously to analysis of the the ten-unit system, these
results were obtained prior to applying RM.

20 units
1.125

1.13

1.135

1.14

1.145

C
o

st
 (

$
)

106

40 units

2.25

2.255

2.26

2.265

2.27

2.275

2.28

2.285

106

60 units

System

3.38

3.4

3.42

3.44

3.46

3.48

106

80 units

4.5

4.51

4.52

4.53

4.54

4.55

4.56

106

100 units

5.62

5.63

5.64

5.65

5.66

5.67

5.68

5.69

5.7

5.71

106

Figure 2. Cost dispersion for the larger systems.

Table 5. Operation costs regarding the 1000 HPLs.

System 20 Units 20 Units 40 Units 60 Units 80 Units

Minimum cost $1,125,747 $2,249,574 $3,381,603 $4,501,392 $5,619,591

Median cost $1,135,242 $2,265,708 $3,454,001 $4,528,932 $5,656,563

For each of the five systems, the RM was obtained in order for the Mosek optimization
to take place. The same gap possibilities from Table 4 were utilized. Certain simulations
were quite long due to the size of the system. Computations that reached 3 h without
convergence were interrupted. The following tables tag these cases with a “*”. The results
are summarized in Table 6.

As seen in Table 6, several small gap cases were interrupted due to reaching the 3 h
limit. Only the twenty-unit system converged (for certain cases) with a null gap. In this
system, case 5 increased the cost by 0.087% compared to case 2. However, the solving time
decreased by 99.57%. Similar trends can be observed for the other gap possibilities and
for the other systems. With a gap of 0.05%, only the twenty-unit and forty-unit systems
converged. The latter was only solved within a viable time in case 5. The process took
almost 1 h. This exemplifies how the computational effort increases as the system becomes
larger. For a gap of 0.25%, cases 1 and 3 did not converge for systems with forty or more
units. As a reminder, case 1 applied no reduction, whereas case 3 had a small impact
as it only fixed occurrences where the units were switched off in all HPLs (see Table 3).
With the more relaxed gap of 0.5%, all cases converged. It is interesting to note that case 2
often presents a reasonable solving time despite the system being larger than in case 5. For
instance, in cases 2 and 5 for the 100-unit system with a gap of 0.5%, it was expected that
the solution of case 2 would have better quality than case 5, as its search space reduction
was less intense. It can be seen that the solving time of case 2 is significantly larger than
that of case 5. However, around 5 minutes is an acceptable time when it comes to daily
planning. This indicates that the best way of utilizing such an heuristic depends on how
the user balances the solving time versus the solution quality.
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4.2. Large-Scale Systems with Ramp Constraints

To verify the applicability of the proposed method to systems subjected to ramp
constraints, the same cases of the previous subsection, i.e., based on [24], were simulated,
including Equations (11) and (12). The parameters Uup

i and Udown
i for each unit were both

taken as equal to 20% of the maximum power output of the unit [31]. Ramp constraints
model the behavior where the power generation of a unit cannot reach its maximum
capacity in an one hour interval. Adding new constraints to an optimization problem
tends to make it computationally heavier. Therefore, heuristics that aim to reduce the
search region become even more valuable. Table 7 summarizes the results for this part of
the research.

Compared to the simulations without ramping constraints (Tables 4 and 6), the follow-
ing simulations did not converge within the established time limit: gap 0, twenty units, case
2; gap 0.25%, twenty units, cases 1 and 3; gap 0.05%, forty units, case 5; gap 0.25%, forty,
sixty, and eighty units, case 2. These are consequences of the additional layer of complexity
added by the ramp constraints. In general, similar conclusions to the previous subsection
can be drawn regarding the tradeoffs between the solving time and optimality gap. Overall,
the most important indication is that again the proposed approach is shown to greatly
reduce the computational burden, although the quality of the solutions is hardly affected.
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Table 6. Optimization results with RM space reduction applied to large systems.

20 Units 40 Units 60 Units 80 Units 100 Units
Gap Case C ($) NB ST (s) C ($) NB ST (s) C ($) NB ST (s) C ($) NB ST (s) C ($) NB ST (s)

0%

1 * * * * * * * * * * * * * * *
2 1,123,297 165,418 3367.5 * * * * * * * * * * * *
3 * * * * * * * * * * * * * * *
4 1,124,274 11,621 79.1 * * * * * * * * * * * *
5 1,124,274 2649 14.5 * * * * * * * * * * * *

0.05%

1 * * * * * * * * * * * * * * *
2 1,123,300 21,979 426.7 * * * * * * * * * * * *
3 * * * * * * * * * * * * * * *
4 1,124,274 10,651 64.5 * * * * * * * * * * * *
5 1,124,274 2224 12.9 2,246,107 266,720 3299.1 * * * * * * * * *

0.25%

1 1,123,464 23,389 799.4 * * * * * * * * * * * *
2 1,123,783 97 4.81 2,242,965 10,106 813.8 3,366,371 21,222 2687.6 4,481,489 13,153 3108.5 * * *
3 1,123,893 28,230 755.3 * * * * * * * * * * * *
4 1,124,527 98 1.5 2,247,521 426 9.8 3,371,769 1616 363.3 4,489,471 453 45.7 5,604,355 6915 495.5
5 1,125,074 0 0.4 2,246,575 194 4.7 3,370,974 356 30.8 4,490,665 380 32.1 5,605,442 803 47.9

0.5%

1 1,125,770 466 16.1 2,247,391 879 34.8 3,364,026 585 171.2 4,488,501 671 327.2 5,607,777 742 309.4
2 1,123,783 97 3.9 2,244,488 539 16.9 3,373,450 0 5.9 4,484,954 489 112.4 5,602,995 739 263.6
3 1,125,265 192 7.1 2,246,949 788 23.8 3,371,815 621 131.3 4,484,159 597 116.8 5,611,380 686 303.4
4 1,127,305 0 0.4 2,252,604 0 0.4 3,376,798 531 80.2 4,494,195 0 0.9 5,610,948 0 2.5
5 1,127,290 0 0.2 2,251,593 0 0.2 3,373,512 0 2.91 4,496,674 0 0.9 5,609,350 0 1.6
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Table 7. Optimization results with RM space reduction applied to large systems considering ramp constraints.

10 Units 20 Units 40 Units 60 Units 80 Units 100 Units
Gap Case C ($) NB ST (s) C ($) NB ST (s) C ($) NB ST (s) C ($) NB ST (s) C ($) NB ST (s) C ($) NB ST (s)

0%

1 565,186 28,732 434.3 * * * * * * * * * * * * * * *
2 565,186 1555 19 * * * * * * * * * * * * * * *
3 565,186 3559 26.8 * * * * * * * * * * * * * * *
4 565,186 71 0.6 1,126,541 25,551 310.6 * * * * * * * * * * * *
5 565,186 39 0.4 1,126,541 4607 37.7 * * * * * * * * * * * *

0.05%

1 565,186 28,572 387.4 * * * * * * * * * * * * * * *
2 565,186 1258 14.3 1,125,576 73,900 1890.1 * * * * * * * * * * * *
3 565,186 3559 22.6 * * * * * * * * * * * * * * *
4 565,186 71 0.56 1,126,541 24,273 212.5 * * * * * * * * * * * *
5 565,227 28 0.44 1,126,541 3225 22.3 * * * * * * * * * * * *

0.25%

1 565,227 8485 100 * * * * * * * * * * * * * * *
2 565,518 238 3.1 1,126,160 1322 45.1 * * * * * * * * * * * *
3 565,254 846 5.4 * * * * * * * * * * * * * * *
4 565,421 0 0.2 1,126,985 303 5.3 2,251,372 16,197 600 3,376,457 3656 276.3 4,496,094 714 65.8 5,612,040 1791 251.2
5 565,421 0 0.1 1,126,605 182 2.8 2,251,818 234 8.8 3,376,664 338 39.6 4,498,484 839 58.0 5,614,517 1218 113.3

0.50%

1 565,829 98 2.3 1,127,222 272 11.2 2,248,551 418 52.2 3,370,788 716 116.8 4,495,848 852 510.4 5,615,392 1141 350.9
2 565,711 98 2.1 1,126,928 192 7.5 2,248,029 291 24.6 3,372,529 405 52.4 4,490,705 544 103.3 5,612,895 675 166.1
3 565,509 178 1.8 1,127,115 369 12.8 2,249,392 353 25.8 3,374,612 585 61.3 4,492,980 729 271.1 5,614,996 736 288.9
4 565,421 0 0.1 1,128,091 98 1.9 2,255,748 0 1.0 3,379,952 504 42 4,506,255 0 3.8 5,622,632 0 3.1
5 565,421 0 0.1 1,128,047 0 0.1 2,256,506 0 1.1 3,376,664 338 31.4 4,502,989 0 1.2 5,618,623 0 1.9
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4.3. Comparisons to Other Publications

To validate the proposed approach, this subsection presents comparisons to the TUC
literature regarding the optimal cost and processing time. For all executions of the proposed
heuristic, the simulation duration is based on a Core i5 1.19 Ghz, 8 GB de RAM computer.
Tables 8 and 9 provide comparisons without and with the ramp constraints, respectively.
In these tables, the lowest cost for each system is presented in bold. The values of C for the
proposed approach were retrieved from Tables 4, 6 and 7. They were chosen according to
what we believe represents a good balance between cost and solving time. Thus, these cost
values are not necessarily the smallest ones among all executed simulations.

Table 8. Literature comparison for the TUC problem without ramp constraints.

Ref. Year 10 Units 20 Units 40 Units 60 Units 80 Units 100 Units
C ($) ST (s) C ($) ST (s) C ($) ST (s) C ($) ST (s) C ($) ST (s) C ($) ST (s)

[24] 1996 565,825 221 1,126,243 733 2,251,911 2697 3,376,625 5840 4,504,933 10,036 5,627,437 15,733
[32] 2011 570,006 18.34 1,139,005 65.87 2,277,396 317.3 3,420,438 572.3 4,554,346 1069 5,706,201 1735
[33] 2014 563,937 - 1,123,996 - 2,246,445 - 3,364,665 - 4,488,039 - 5,607,838 -
[34] 2016 563,938 1.3 1,123,587 4 2,243,688 26.7 3,362,951 39.3 4,484,497 90.1 5,602,364 144.2
[14] 2017 564,835 0.154 1,126,231 0.169 2,250,405 0.194 3,370,832 0.215 4,495,873 0.246 5,616,303 0.275
[35] 2017 563,977 - 1,124,056 - 2,243,721 - 3,362,485 - 4,484,974 - 5,605,622 -
[36] 2018 563,937 28.19 1,123,297 42.64 2,242,957 115.5 3,361,298 176.2 4,481,770 310 5,601,726 381
[37] 2019 565,807 231.3 - - - - - - - - - -
[38] 2019 563,937 204.3 1,124,931 427.8 2,251,891 2688 - - - - - -
[39] 2020 564,810 20.47 - - - -
[40] 2020 563,937 - 1,124,389 - 2,246,837 - 3,367,348 - 4,491,179 - 5,611,494 -
[41] 2021 563,977 0.18 1,124,926 0.23 2,248,413 0.32 3,368,150 0.45 4,492,188 0.61 5,611,886 0.76
[42] 2021 563,977 - 1,123,311 - - - - - - - - -
[43] 2021 563,978 17.78 1,123,825 26.22 2,247,165 43.27 3,369,731 62.33 4,493,825 76.62 5,618,038 96.64
[44] 2015 563,938 14.76 1,123,297 36.96 2,243,996 86.52 3,364,076 188.2 4,486,528 323 5,605,748 452
[45] 2022 563,937 40.44 1,124,389 - 2,246,837 - 3,367,348 - 4,491,179 - 5,611,494 -

Proposed 563,937 0.58 1,123,783 3.9 2,244,488 16.9 3,373,512 2.91 4,484,159 116.8 5,602,995 263.6

Table 9. Literature comparison for the TUC problem with ramp constraints.

Ref. Year 10 Units 20 Units 40 Units 60 Units 80 Units 100 Units
C ($) ST (s) C ($) ST (s) C ($) ST (s) C ($) ST (s) C ($) ST (s) C ($) ST (s)

[46] 2004 566,404 7.4 1,127,244 22.4 2,254,123 58.3 3,378,108 117.3 4,498,943 176 5,630,838 242.5
[31] 2006 565,988 3.35 1,127,955 16.8 2,252,125 88.28 - - 4,501,156 405 5,624,301 696.4
[44] 2015 565,671 35.49 1,126,634 87.36 2,252,544 212.9 3,375,368 396 4,500,742 614.7 5,628,853 1007
[34] 2016 565,723 2.4 1,128,273 14.6 2,251,134 33.7 3,376,480 88.5 4,501,641 123 5,625,921 210.9
[36] 2018 565,195 41.56 1,125,667 65.8 2,247,774 157.6 3,369,320 238.2 4,494,574 404.2 5,616,689 485.3
[47] 2020 565,671 21.71 1,126,461 59.74 2,251,398 157.8 3,373,241 244.9 4,498,081 382.5 5,609,984 597.5
[48] 2020 565,527 - 1,126,702 - 2,249,413 - 3,370,854 - 4,495,995 - 5,618,169 -

Proposed 565,186 0.4 1,126,541 22.3 2,248,029 24.6 3,376,664 31.4 4,490,705 103.3 5,614,517 113.3

For the simulations without ramp constraints (Table 8), the proposed RM method
was the fastest to achieve the global optimum for the ten-unit system compared to the
papers that reported simulation duration. For the twenty-, forty-, and sixty-unit systems,
the cost values from RM were only slightly higher than the best ones in the analyzed
literature. However, the simulation lengths were significantly shorter. For the 80- and
100-unit systems, the gains in computational burden were relevant, despite not being as
prominent as in the other systems. As a remark regarding the two larger systems, it can be
seen in Table 6 that the proposed approach was able to find costs of 4,496,674 and 5,609,350
in 0.9 and 1.6 s, respectively. On the one hand, these values are around 0.35% greater
than the lowest costs reported in the literature. On the other hand, the processing times
decreased by more than 99%. This indicates how powerful the proposed RM method can
be in reaching good quality solutions for the TUC problem in incredibly short time periods.

When the ramp constraints are included (Table 9), RM outperformed the other papers
both in terms of cost and time concerning the ten- and eighty-unit systems. For all other
systems, the proposed method converged with slightly higher cost, though in a shorter
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period of time. Analogously to the studies without ramp constraints, Table 7 reveals that
RM can find solutions for the 80- and 100-unit systems faster than the values presented in
Table 9. The method does this without imposing a significant increment to the cost values.

It is worth noting that in Tables 8 and 9 the proposed approach provides values from
different reduction cases and optimality gaps. In other words, the proposed heuristic should
be tested for different cases and gaps before being applied to real problems. Depending on
the system and constraints in place, a different case may be the most promising one.

5. Conclusions

This paper further explores a search region reduction method proposed by the authors
for the thermal unit commitment problem. As a sequence to the previous research, the
method was applied to larger systems with up to 100 generating units. Furthermore, ramp
constraints were included as an additional layer of complexity. The proposed approach has
been shown to greatly reduce the computational burden with a minor overall impact on
the obtained cost. For certain cases, the method was able to outperform the investigated
alternatives from the literature in terms of the final cost as well.

The implementation of the proposed method is relatively simple. In addition, although
Mosek was used to solve the economic dispatch and operation decisions that were not fixed
by RM, many other optimization techniques could be applied. It should be emphasized that
the method can also be used to generate initial solutions for other optimization techniques.

The findings of this paper demonstrate that the proposed method has the potential to
be a solid contribution to the solving processes of large thermal systems. In the investiga-
tions carried out in this work, RM reduced the computational burden by up to 99.2% in
certain cases compared to the convergence time required when the method was not utilized.
Adding network constraints to the formulation is the main factor in expanding the scope of
future research.
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