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ABSTRACT
Forest cover density (FCD) transformation and random decision
forest (RDF) classification have been widely used for vegetation
mapping. Nevertheless, a comparison of their capabilities in com-
plex tropical landscapes is still rarely carried out. This study com-
pared the two methods using Landsat-8 OLI imagery which
includes the blue up to thermal bands for vegetation structural
composition mapping in a complex landscape of Central Java,
Indonesia. We used the FCD transformation with six indices to
generate 11 classes, while the RDF classified the same 11 classes
based on training areas and used a random process involving
various number of splits and trees. The results showed that the
FCD transformation achieved 69.32% accuracy, while the RDF was
able to classify the 11 classes with various accuracies depending
on the parameter setting, i.e. from 70.76% to 75.19%. Regarding
the obtained accuracies, problems associated with the terrain and
vegetation characteristics have been discussed for further
recommendation.
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1. Introduction

1.1. Background

Vegetation mapping is an important part of the land resource inventory. This activity has
been done at various levels, from local to global scopes (K€uchler and Zonneveld 1988;
Franklin 2013). Analysis of the vegetation area shrinkage is not only based on the extent
of coverage but also on the quality. The quality of vegetation coverage can be seen from
its structural composition and diversity. Remote sensing as a science provides a wide
range of methods for land-cover/land-use studies, including vegetation density estimates
and classification (Giri 2012; Zaehringer et al. 2018). In digital image analysis, vegetation
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study and mapping usually make use of vegetation index based as well as multispectral
classification approaches. The vegetation index-based approach can highlight the density
but is generally unable to show heterogeneity if structural and floristic compositions are
taken into consideration. On the other hand, the multispectral classification can distin-
guish categories including heterogeneity but it does not show the density quantitatively
(Danoedoro 2019). In addition to mapping of natural vegetation areas, information
extraction of vegetation density and structural composition also needs to be carried out in
areas with mixed land-cover/land-use to analyse heterogeneity that is related to human
intervention (Danoedoro and Gupita 2022).

Indonesia is located in a wet tropical region with very complex phenomena of land-
scapes. Several islands were predominantly formed by tectonic forces, while some others
were strongly influenced by volcanic activities. In volcanic islands like Java, the elevation
range is very wide, from 0 up to more than 3000m above sea level (asl), which makes a
great variation in temperature, humidity, and rainfall. The combination between parent
materials, climate, and topography leads to the different developments of natural, semi-
natural and cultivated vegetations (van Gils et al. 1990; Huggett and Cheesman 2002).
Intensive encroachment of human population to the naturally vegetated areas during the
past 100 years also causes a specific phenomenon showing interleave between various
types of vegetation and man-made features. From an ecological perspective, this landscape
arrangement is interesting to map using vegetation ecological approaches based on
remotely sensed imagery. Remote sensing with vegetation ecological approach tries to
identify and classify either structural or floristic composition of vegetation by considering
terrain characteristics such as geology, landform, climate, soil, and hydrology (K€uchler
and Zonneveld 1988; van Gils et al. 1990; Ohno 1991). In practice, vegetation information
is extracted using either visual or digital image analysis, while the terrain characteristics
are interpreted visually, and the results are processed in a GIS environment (Danoedoro
2019).

Vegetation index transformation is usually applied for quantitative mapping of vegeta-
tion density levels (Xue and Su 2017), but this model is not intended to distinguish varia-
tions in structural composition. On the other hand, multispectral classification is often
carried out to distinguish various types of vegetation including their structural compos-
ition as categorical classes (Danoedoro et al. 2020). The Forest Cover Density (FCD)
model was developed by ITTO (Rikimaru et al. 2002) to overcome the weaknesses of
most vegetation indices, particularly the ratio- and normalized difference-based ones such
as simple ratio and NDVI, and at the same time it is intended to present quantitative
structural composition information (Bera et al. 2020). This model is also claimed to over-
come the problem of inability to distinguish the vegetation index values indicated by high
density grass (e.g. rice) from high density forest due to the saturation effect (Deka et al.
2019; Abdollahnejad et al. 2017; Hartoyo et al. 2019).

The FCD model is an empirical deductive-deterministic model. It is a rule-based
approach and is usually applied to natural/semi-natural vegetation coverage using six
input bands of Landsat series, i.e. blue, green, red, near infrared, first middle infrared
(SWIR1) and thermal infrared (Rikimaru et al. 2002). The FCD transformation combines
six kinds of indices called the advanced vegetation index (AVI), bare soil index (BI),
shadow index (SI), thermal index (TI), vegetation density (VD), and shadow scaled index
(SSI). VD is derived from the integration of AVI and BI, while SSI is derived from a com-
bination of SI and TI. The combination of VD and SSI produces FCD images with a
value range of 0–100 which shows the density level from open land (0% vegetation cover-
age) to very heterogeneous forest vegetation with a canopy density of 100%, and at the
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same time can be classified into structural composition classes into 11 classes. It should
also be noted that the FCD model was developed to minimize fieldwork. The FCD-based
mapping activities were also sometimes carried out without fieldwork (ITTO 1997)

Ho (1995) stated that Random Decision Forest (RDF) is a method to build multiple
trees in randomly selected subspaces of the feature space. Eastman (2019) stated that
Random Decision Forest (RDF) or simply called Random Forests (RF), a machine learn-
ing algorithm developed by Breiman (2001) and then Breiman and Cutler (2005), which
tries to overcome the weakness of decision trees. The RDF, according to Eastman (2019),
uses training data and a set of explanatory variables, such as remotely sensed reflectance
bands, and it produces a hard classification as well as an optional set of soft probability
images. The RDF or RF has also been used in remote sensing classification analysis. In
the process, RF uses a strategy of a random sample selection process and bootstrap aggre-
gating (bagging) with a resample process (with a replacement sample) to create a new
decision tree (Biau 2012). The RF algorithm applies a bagging process to evaluate the
model based on samples that are not used in the decision tree, and produces out-of-bag
error values (OOB). In addition, the randomization process at the time of tree creation
makes the RF less susceptible to overfitting which in this case makes the model more
accurate in modelling the training data. This randomization process has also been widely
developed because it can improve the accuracy of RF modelling (Smith et al. 2013;
Fawagreh et al. 2014).

RF algorithms have been widely applied to remote sensing studies, including for classi-
fication tasks such as rice field classification/identification, and prediction of vegetation
biophysical information (Arjasakusuma et al. 2020, 2021). This algorithm can also be
accessed using cloud computing platforms, such as Google Earth Engine (GEE) (Gorelick
et al. 2017), which is useful for processing large volumes of remotely sensed data.

With respect to the described background, a relatively conventional vegetation map-
ping method using forest cover density (FCD) transformation should be compared with
more recent machine learning-based classification methods, by using complex terrain
characteristics and complex vegetation structural composition as a testing area. This study
needs to be carried out to have a better understanding of the vegetation structural
composition mapping based on recently developed classification methods like machine
leaning-based random forest, which has been claimed as an accurate method for many
land-cover classification purposes. On the other hand, several studies showed that the
FCD transformation methods produced inconsistent results with various levels of accuracy
(Himayah et al. 2016; Abdollahnejad et al. 2017; Danoedoro and Gupita, 2022).

1.2. Study objective

Based on the described background and problem statement, this study aimed to compare
the performance of rule-based FCD transformation and machine learning-based RDF clas-
sification for mapping the vegetation structural composition in Salatiga – Ambarawa and
its surrounding, Central Java, which exhibits a wet tropical complex landscape of
Indonesia.

Many studies related to vegetation structural composition mapping using FCD trans-
formation (e.g. Himayah et al. 2016; Deka et al. 2019; Salsabila and Danoedoro 2021) and
RDF/RF classifier (e.g. Fu et al. 2017; Mohammadpour et al. 2022) did not pay particular
attention on the complexity of landscape characteristics with respect to the obtained accu-
racies. Therefore, this study sought to provide a better understanding of the advantages
and limitations of both methods in vegetation structural composition mapping in complex
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tropical landscapes such as in Indonesia. In addition, even though the FCD transform-
ation has been widely used, results presented in literature are inconsistent in terms of
their accuracy, especially when they are derived using different algorithms in different
softwares (Himayah et al. 2016; Salsabila and Danoedoro 2021; Danoedoro et al. 2022).
Therefore, a machine learning approach needs to be tried to see whether a model based
on spectral transformation with a series of indices can be replaced by RDF classification.

2. Materials and methods

2.1. Study area

The landscape of the Salatiga-Ambarawa area, Central Java, represents a combination
between volcanoes, structural hills, and lacustrine plains of wet tropical region, which are
covered by various types of vegetation and occupied for various categories of land-use
(van Bemmelen 1949; Pratama and Danoedoro 2020; Danoedoro et al. 2022). This area
covers Merbabu volcano with an elevation of 3142m above sea level (asl) in the south,
and Ungaran volcano in the north-west (2050m asl). In the north-eastern part, there is a
low hilly terrain with an altitude range from 100 to 250m asl, while in the middle is a flu-
vial basin with eutrophicating lake of Rawa Pening, a lacustrine plain at an altitude of
around 470m asl (Piranti et al. 2019). The town of Salatiga is a part of the foot slopes of
Merbabu volcano at an altitude of about 550–700m asl, while Ambarawa is another small
town in the foot slope of Ungaran volcano (2000m asl). Figure 1 summarizes this
description.

The mixture of vegetation, water, building, and barren land shows very complex land-
cover as viewed from its structural compositions. Various types of vegetation, from very
high-density montane forest, medium density forest, industrial plantation forest, shrubs,
mixed trees, plantation with perennial crops (rubber, coffee and cocoa), annual agricul-
tural crops, and aquatic weed called enceng gondok (Eichhornia crasssipes) can be found

Figure 1. Study area as presented using Landsat false colour composite and SRTM hillshade images.
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in a mixture, although some categories only exist in particular environment. Trees as
homestead gardens and mixed gardens appear alternately with settlements, thus present-
ing a variety of complex structural compositions, which cannot be found in most natural
or semi-natural vegetation covers (Hadi and Danoedoro 2021). Therefore, vegetation
structural composition mapping activities would face different problems as compared to
its application in the majority forested land.

2.2. Data and materials

This study made use of Landsat 8 OLI covering the Salatiga – Ambarawa area and its sur-
rounding, Central Java, at Path/Row 120/065, recorded in September 18th 2018, which has
been corrected geometrically at T level, as shown in Figure 1. The dataset consists of six
bands ranging from blue (0.450–0.515lm), green (0.525–0.600lm), red (0.630–0.680lm),
near infrared (NIR) (0.845–0.885lm), and short-wave infrared-1 (SWIR1) (1.550–
1.660 lm), which were recorded at 30m spatial resolution, as well as thermal infrared
(band 10) (10.30–11.30lm) that has been resampled from 100m to 30m pixel size, as
developed and explained by Rikimaru et al. (2002), which said that the use of thermal
band differentiate multistorey forest canopy from high density grassland, where the forest
canopy tends to be cooler. This study also utilized WorldView imagery covering some
parts of the study area (particularly the city of Salatiga and its surrounding) and RBI
topographic map at 1:25,000 scale as a basis for field orientation, measurement, and field
reference during accuracy assessment. We used ILWIS Open for image processing and
spatial analysis software, particularly to process the FCD transformation, and
Idrisi/Terrset image processing/GIS software for radiometric correction and classification
using machine learning, particularly with random decision forest (RDF) algorithm.

2.3. Methods

This study consists of two main methods, namely FCD transformation and machine
learning-based classification with RDF. To compare the two, we used the Landsat 8 OLI
dataset with the same spectral bands, i.e. blue, green, red, NIR, SWIR1 and thermal infra-
red of band 10. The dataset al.so geometrically and radiometrically corrected. For radio-
metric correction, Chavez’s full model correction method (Chavez 1996; Eastman 2019)
applied. Figure 2 shows a flow chart in this research method. The FCD-generated vegeta-
tion structural composition map was then compared with the best result obtained using
RDF classification. Prior to the comparison, we evaluated the RDF classification by using
the out of bag (OOB) accuracy, overall accuracy, and Kappa index of each derived map as
a result of a particular combination between number of the split variable (i.e. input spec-
tral bands) and the number of decision trees. Field reference for accuracy assessment of
both FCD transformation and RDF classification results was developed using a collection
of independent datasets in the forms of polygons.

2.3.1. Radiometric correction
The original Landsat-8 OLI image was available in 16-bit coding format or has a range of
digital number (DN) 0–65,535. Since the FCD model was developed based on 8-bit cod-
ing Landsat-5 TM and Landsat-7 ETMþ images, the correction used full atmospheric cor-
rection to derive new dataset with 0–1.0 range of at surface reflectance. This new dataset
was then stretched to 0–255 DN range. The equation of full atmospheric correction was
based on the work of Chavez (1996) as follows:
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q ¼ ðP�ðLk � LhazeÞÞ
ðsv�ðEo�Cos TZð Þ�sz þ EdownÞ (1)

where q is at-surface reflectance in percent, Lk is the image spectral radiance, Lhaze is scat-
tered spectral radiance recorded as the minimum one by the sensor, sv is the atmospheric
transmittance or optical thickness of the atmosphere, Eo is the solar spectral irradiance,
which takes into account the Earth-Sun distance in specific Julian day, Tz is the incident
angle of the direct solar flux to the Earth surface, and Edown is downwelling spectral
irradiance due to the scattered solar flux in the atmosphere.

2.3.2. FCD transformation
The FCD transformation generated vegetation density and structural composition map
with a value range of 0–100 and was classified into 11 classes as presented in Table 1.
This study modified the original FCD class description to accommodate the presence of
water and buildings in the study area.

To achieve this result, in the initial stage we transformed the six Landsat 8 OLI spec-
tral bands to four indices, namely Advanced Vegetation Index (AVI), Soil Brightness
Index (BI), Shadow Index (SI), and Thermal Index (TI). According to Rikimaru et al.

Figure 2. Methods flowchart.
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(2002), the AVI and BI were then combined using principal component analysis (PCA),
where the resultant PC1 becomes derived data called Vegetation Density (VD), while the
SI and TI were also integrated with PCA to produce derived data in the form of Shadow
Scale Index (SSI). The VD was inverted and rescaled with respect to the newly defined
0% and 100% of vegetation cover, respectively, while the SSI was linearly transformed
with respect to new 0% (no shadow) and 100% (fully covered by forest). The final result
is FCD value derived from combining VD and SSI images. Before applying all the formu-
las that make up the various indices and FCDs, all the original bands that have been cor-
rected for at-surface reflectance were stretched to 0–255 range first (Danoedoro and
Gupita 2022). This had to be done, because the original FCD formula developed by ITTO
(Rikimaru et al. 2002) used an image with 8-bit coding.

The AVI involved the red (Red) and near infrared (NIR) bands. Since this formula
contains NIR-Red terms, it is possible that the results obtained from NIR-Red <0, so that
the following conditions were required:

Table 1. Original classification of forest cover density (FCD) which is translated to new vegetation structural compos-
ition for this study.

Class Value Range
FCD Vegetation structural composition

description

Short description of
vegetation structural

composition for this study

0 0 Bare soil Bare soil, building, or water
body

1 1–10 No canopy coverage. Open land and grass
are predominant

Very sparse bushy grassland
or urban building with
very sparse vegetation

2 11–20 Tree canopies began to emerge but open
soil is still predominat,

Sparse wooded bushy
grassland or urban/rural
buildings with sparse
vegetation

3 21–30 Tree canopies occupy 11–20% of the pixel
area but open land is still predominant

Sparse wooded bushland or
rural buildings

4 31–40 Tree canopies occupy 21–30% of the pixel
area interleaved with bushes and
shrubs

Denser wooded bushland

5 41–50 Young tree canopies develop and cover
41–50% of the pixel area, with a
predominance of shrubs while shrubs
decrease.

Woodland

6 51–60 Adult and young tree canopies are
growing, covering 51–60% of the pixel
area which is starting to show a
difference

Woodland with multi-story
trees

7 61–70 Tree canopies are growing rapidly
covering 61–70% of the pixel area with
differences in strata of stands, clearly
visible and heterogeneous

Heterogeneous moderate
density forest

8 71–80 Tree canopies cover 71–80% of the pixel
area with distinct strata standing
distinctions, species heterogeneity is
increasing,

Heterogeneous dense forest

9 81–90 Tree canopies cover 81–90% of the pixel
area with different standing strata; very
clearly seen, very high heterogeneity

Heterogeneous very dense
forest

10 91–100 Tree canopies cover 91–100% of the pixel
area with very stratified differences,
very high heterogeneity, sunlight is
unable to reach the forest floor and
moisture is very high.

Extremely dense forest

Modified from Rikimaru (2002).
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IF (NIR-Red) � 0,
THEN AVI ¼ 0,
ELSE

AVI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NIRþ 1ð Þ� 256� Redð Þ�ðNIR� RedÞ3

q
(2)

BI was obtained by involving the first shortwave infrared (SWIR1), near infrared
(NIR), red (Red) and Blue (Blue) bands with the following formula:

BI ¼ SWIR1þ Redð Þ � NIRþ Blueð Þ
WIR1þ RedÞ þ ðNIRþ BlueÞ

 !
�100

 !
þ 100 (3)

Where is 0�BI � 200
These AVI and BI images were then integrated using PCA, where the first principal

component (PC1) was taken as the VD or vegetation density image. These results were
then transformed linearly into a new image with the 0–100 range, where 0 indicated bare
soil (0% vegetation cover) and 100 indicated forest with 100% vegetation cover.

SI image was generated by involving blue, green and red bands, with the following
formula:

SI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
256� Blueð Þ� 256� Greenð Þ�ð256� RedÞ3

q
(4)

Thermal band of Landsat-8 OLI was used due to its capability to distinguish multi-
storey vegetation composition from very dense grass such as mature rice (Rikimaru et al.
2002). The thermal band was converted to spectral radiance image Lk_ through the fol-
lowing formula (Jensen 2015):

Lkimage ¼ Lkmin þ
Lkmax � Lkmin

DNmax
�DNimage

� �
(5)

where Lk_min is the minimum detectable spectral radiance value in the corrected band, Lk_
max is the maximum detectable spectral radiance value, DNmax is the maximum DN of the
original image (in 16-bit coding means 65,535), while DNimage denotes all image’s DNs to
be calibrated to spectral radiance in Watt m�2 sr�1 mm�1. The value Lkmin in this new
image was then converted to 8-bit system (0–255) and was used as the thermal index
image (TI) (Danoedoro and Gupita 2022).

In the next step, the SI and the TI images were then integrated with the PCA method
to derive a new image called the Scaled Shadow Index (SSI). Areas with SSI value ¼ 0
were regions with shadow value (SI) ¼ 0 too. The area where SSI ¼ 100 was the area
with 100% shadow cover. This value range was then used as a basis for scaling back the
SI value into a normalized SSI through a linear transformation process, where the original
SI range was changed to 0–100, to represent the percentage of 0–100% vegetation cover.

Finally, the FCD map was derived from the VD and SSI images using the following
formula:

FCD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VD�SSIð Þ þ 1

p� �
� 1 (6)

where it is assumed that FCD would have a range of 0–100, with 0 representing open
land and 100 representing very dense vegetation with multiple layers (multistory). The
generated FCD pixel values were then classified into 11 classes, as shown in Table 1.
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2.3.3. Machine learning-based multispectral classification using RDF
The algorithm is briefly described as follows: First, it assumes that the training set has a
size N, and the number of independent variables is equal to M. Then the algorithm adds
three input parameters, i.e. a ratio r (0� r� 1), a number of attributes m�M, and a
number of trees Ntree � 1. By using primary training set, the algorithm generates a ran-
dom sample without repetitions. The training set elements that failed to get into the sam-
ple be used later for estimating the generalization error. Based on the generated samples,
the algorithm grows a decision tree. For each node of the tree, it randomly chooses m
variables on which to base the decision at that node. Following this procedure, it then cal-
culates the best split based on these m variables in the training set. The difference of RDF
with the original RF algorithm, the tree is fully grown and is never pruned. The proced-
ure is reiterated NTrees times. The trees grown unite to form a committee deciding by
voting.

Unlike the FCD transformation, which is deterministic and deductive, RDF is a classifi-
cation model that is inductive in character (because it uses spectral samples as training
areas) and is based on stochastic processing. In this RDF, the authors used 241 polygon
samples (12,049 pixels) representing the classes as presented in Table 1 and Figure 3,
using high-resolution imagery and field observations. Figure 3 also shows a spatial distri-
bution of independent dataset (142 polygons) which used as a field reference for the
accuracy assessment of the FCD and RDF modelling results. The locations of samples
were selected using a stratified random sampling strategy, and each sample consists of at
least 50 times of the number of classes with respect to Costa et al. (2018). Referring to
Table 1, each sample describes a certain category of structural composition that covers a
certain canopy density class as well.

The sampling strategy was carried out using stratified random sampling, where the
strata were used are tentative spectral classes obtained using unsupervised classification
with ISODATA (Jensen, 2015). The input for this ISODATA is the number of classes, the
minimum number of pixels in each class, the spectral distance between classes, the stand-
ard deviation of each class, and the number of iterations. The distribution of sample
points according to this strategy was delivered automatically using the spatial sampling
module available in Idrisi/Terrset al.l selected points were then taken as samples in the
form of polygons or regions of interest (ROI).

Furthermore, the RDF model is simulated with various scenarios including the number
of splits or Mtry, and the number of trees (Ntree). For the number of splits, values of 2,
3, 4, 5 and 6 are used, where the maximum value of split 6 is the maximum number of
variables (in this case the number of input spectral bands), while the number of decision
trees were set from 50 to 400 with 50 increments. The Ntree of 50 was selected based on
the previous studies stating that smaller number of trees will lead to less reliable probabil-
ity estimates, while the large number of Ntree, i.e. more than 500, will lead to a slower
classification stage (Eastman 2019).

In each simulation that consists of a unique combination between Mtry and Ntree, the
OOB accuracy value was obtained as one of the bases for evaluating the results. However,
accuracy assessment and comparison between FCD and RDF transformation-based mod-
els were undertaken by referring to independent field samples in the form of polygons.
The accuracy value was determined by using the confusion matrix, which takes into
account the producer’s and user’s accuracies in addition to the overall accuracy and
Kappa index (Congalton and Green 2019). In addition, this study also compared the
results (as a vegetation structural composition map) with the conventional multispectral
classification result using the maximum likelihood algorithm.
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3. Results and discussion

3.1. Radiometric correction and calibration

The dataset containing reflective bands was radiometrically corrected using equation (1)
and derived at-surface reflectance images with pixel values at 0–1.0 range, where the 0
indicates very low reflectance, while the 1 shows the highest one. During the process, sev-
eral pixels in each band also have values more than 1.0 but they have been neglected since
the number of those pixels are less than 0.001% of the total pixels. These values were
then set to 1.0, based on the assumption that they represent anomalous pixels. The ther-
mal bands were calibrated to spectral radiance using equation (5) and then rescaled to 0–
100 for FCD modelling input and 0–1.0 for RDF classification input. Figure 4 shows the
corrected and calibrated images.

3.2. Vegetation structural composition according to FCD model

Six indices have been derived from the dataset for constituting the FCD, as shown in
Figure 4. Equation (2) derived AVI image, and it shows the spectral variation where vege-
tation looks very bright while non-vegetated objects look dark. This appearance also
shows that the AVI functions the same as other vegetation indices. However, the AVI
model still shows a slight deviation, where high-density herbs such as aquatic weed of
Eichhornia crassipes with water background are still of very high value, even higher than
that of very dense forests. The same problem also found in the works of Salsabila and
Danoedoro (2021), and Danoedoro and Gupita (2022). On the other hand, the BI model
that generated using equation (3) shows variations in brightness related to the presence of
barren land as opposed to vegetation density, so that bare soil, building rooftops, water
bodies, and impervious surfaces have very high values, in contrast to dense vegetation
that shows very low one.

Equation (4) produced SI model, which represents very high values in high density
and heterogeneous forest due to shadow effect of the canopy, and very low values in bar-
ren land, building roof tops and other impervious surfaces. It is interesting to note, how-
ever, that SI also shows a slightly high value for water bodies, and this is shown in Lake
Rawa Pening. On the contrary, the TI model produced by equation (5) provides the same

Figure 3. Distribution of training areas and independent data (in the form of polygons) for accuracy assessment.
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information as temperature variations in the field, where barren land, impervious surfaces,
and building rooftops tend to have very high values, while vegetation and water have very
low ones. Apart from this appearance, the variation of terrain elevation in the study area
also shows an interesting phenomenon, where the vegetation cover in very high elevations
produces very low thermal index, even lower than that of water bodies. That is why
Rikimaru et al. (2002) suggested that water and clouds should be masked first in order to
overcome this problem.

Integration of AVI with BI to generate VD was carried out by implementing PCA.
Since the two input indices are negatively correlated, the result of the transformation in
the form of PC1 as the basis for developing VD actually shows a variation that is opposite
to the vegetation index, where vegetation is negative, while open land is positive.
Therefore, this PC1 image still requires further transformation in the form of inversion so
that vegetation cover becomes bright and barren land becomes dark, ready to be rescaled
to 0–100 by selecting pixels of barren land as 0 value and those of densest vegetation as
100. Integration using PCA also applied in combining SI and TI to derive the SSI image.
The result of PC1 at this stage was also further processed to become SSI in a similar way
as VD, where PC1 must be reversed first, then a new 0 value was determined based on
pixels of barren land, while 100 value is determined using pixel values of very dense forest
found in the field. In this case, no black soil or burnt soil were found, so the identifica-
tion of black soil in the previous step according to Rikimaru et al. (2002) was not
necessary.

Based on the rescaled VD and SSI inputs, the spatial distribution of density and the
structural composition of vegetation in the study area could be determined using equation
(6). The result was a new image representing vegetation density and structural compos-
ition with a value range of 0–100. The values were then classified according to Table 1.

Figure 4. Dataset containing blue, green, red, NIR, SWIR1 and Thermal bands that have been radiometrically corrected
or calibrated.
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Thus, the result of this modelling was a forest cover density map containing classes with
nominal data (but at the same time can be viewed as ordinal data). Figure 5 shows the
process and results.

Problems arose with the FCD modelling were not reported by several authors, e.g.
Sukarna (2008), Ismail et al. (2017), Himayah et al. (2016), Hartoyo et al. (2019), and
Ahmed (2020), who used semi-expert system software of FCD Mapper (ITTO/JOFCA
2003). This study used widely available softwares like ILWIS and Idrisi with map calcula-
tor and scripting capabilities for more flexible data conversion and analyses.

According to this original FCD transformation model, the landscape of Salatiga and its
surroundings looks quite varied in terms of the vegetation structural composition,
although the predominant classes are Class 3 (bushy grassland or urban/rural building,
light-purple colour). In addition, classes of woodland, woodland with multistorey trees,
and heterogeneous moderate density and heterogeneous dense forest also prominent (light
– medium dark green). Figure 6 shows that classes of 10 and 11 (heterogeneous very
dense forest and extremely dense forest) are mainly found in very steep and highly ele-
vated mountainous areas. The distribution of each class with respect to the landform
classes is presented in Table 2.

3.3. Vegetation structural composition according to RDF classifier

By using RDF, this study simulated several variations of scenario using different number
of split (with respect to the number of input bands), and the number of trees. The first

Figure 5. Six indices used for generating FCD model. The result has a range of 0–100 that shows gradation of density
as well as changes in structural composition.
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splits were set to two, three, four, five and six, respectively, followed by setting up the
number trees from 50 to 400 with 50 trees increment.

In contrast to the FCD model, which uses several formulas for defining AVI, BI, SI,
TI, VD, SSI and FCD, the RDF classification makes use of field-referring samples to iden-
tify the categories. This RDF sampling process differs from the conventional sampling for
multispectral classification, particularly in defining each sampling object with respect to
its spectral homogeneity. When the conventional sampling procedure separates the same
categorical objects based on their spectral characteristics, e.g. reddish bare soil, black bare
soil, and white limestone outcrops; in the RDF sampling process we considered any type
of water bodies, barren land, buildings, and other impervious surfaces as the same classifi-
cation sample, directly referring to the classification scheme at Table 1, regardless of their
spectral differences.

Every time the classification process completed the task with a particular setting of the
split and the number of trees, the out of bag (OOB) accuracy was reported. However, this
study considered this OOB accuracy values as an indicator of consistency or internal
accuracy of the classification rather than real accuracy values, which require an independ-
ent dataset as a validator. Therefore, we undertook a separate process of validation using
independent dataset containing polygons, which also applied to the result of the FCD
transformation.

Based on the classification with RDF, this study generated 40 vegetation structural
composition maps, where each of which shows a certain OOB accuracy value. In general,
the data says that the most influential on the OOB accuracy value for any number of trees
is the number of first splits, where the least number of first splits will give a low OOB
accuracy value, while the number of first splits is high (according to the number of input
bands), it will give a high OOB accuracy value (Figure 7).

Compared to the vegetation structure composition maps generated using the FCD
transformation, all maps derived using the RDF classification showed consistency in terms
of the spatial distribution of each class. There is no significant difference between the gen-
eral categorizations generated in this RDF classification map. Moreover, the gradation
looks smooth on one side, but the appearance of several classes is more solid. This
appearance is prominent for the classes of water bodies (Lake Rawa Pening), coffee and

Figure 6. Vegetation structural composition model derived using FCD Transformation.
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cocoa plantations, rubber plantations, and teak forests. However, the FCD transform-
ation-based map looks better in differentiating urban/built-up area with very sparse vege-
tation (Class FCD 1) from other urban areas which are more vegetated (Class FCD 2).
The suburb areas which consist of buildings and homestead garden are also correctly cate-
gorized as Class FCD 3. On the other side, the RDF algorithm could not correctly classify
them since all urban building and the associated vegetation are classified as class FCD 2.
This is the case with all 40 RDF resultant maps.

The distribution of vegetation structural composition classes according to the landform
units are presented in Table 3. According to the table, the FCD classes 9 and 10 are
mostly found in volcanic cones and volcanic upper slopes. Actually, the volcanic cones
mostly occupied by the FCD class 10 are the ones with lower elevation than 2000m asl,
due to the climatic requirements or suitability. Compared to the FCD transformation
results, the distribution of vegetation structural composition based on RDF classification
model is more correlated to the distribution of landform units. For examples, the FCD
class 0 (which is associated with barren land or built-up areas) are mainly found in very
steep slopes, urban areas, as well as agricultural land. The FCD classes of dense vegetation
(classes 8, 9 and 10) are mainly found in volcanic upper and middle slopes, as well as the
old and highly dissected hills with pyroclastic.

3.4. Accuracy assessment and comparison

Accuracy assessment of the results obtained using FCD transformation and RDF classifi-
cation were undertaken using a set of polygons representing independently collected fea-
tures in the field with the aid of high-spatial resolution imagery. We overlaid all
generated maps with the field reference polygons to create accuracy assessment using con-
fusion matrix. This study found that the FCD transformation result achieved 69.32% over-
all accuracy (Kappa ¼ 0.6519), while the RDF-based classification results obtained various
accuracy levels, ranging from 70.76% overall accuracy (Kappa ¼ 0.6747) to 75.19% overall
accuracy (Kappa ¼ 0.7235). These accuracy values of the RDF classification results were
obtained from 40 classified images, which were also computed with respect to their OOB

Figure 7. Vegetation structural composition model derived using RDF classification.

GEOCARTO INTERNATIONAL 15



Ta
bl
e
3.

D
is
tr
ib
ut
io
n
of

FC
D
cl
as
se
s
ac
co
rd
in
g
to

th
e
La
nd

fo
rm

un
its

(in
he
ct
ar
es
),
ba
se
d
on

RD
F
cl
as
si
fi
ca
tio

n.

FC
D
0

FC
D
-1

FC
D
-2

FC
D
3

FC
D
-4

FC
D
-5

FC
D
-6

FC
D
-7

FC
D
-8

FC
D
-9

FC
D
10

TO
TA

L(
ha
)

Vo
lc
an
ic
co
ne

2.
34

90
.3

73
.6
5

15
7.
11

57
8.
01

78
.5
1

9.
15

35
2.
8

37
0.
23

21
8.
67

19
9.
65

71
01
4

Vo
lc
an
ic
up

pe
r
sl
op

es
19
.4
7

16
0.
47

37
0.
29

43
6.
47

11
14
.3
5

38
9.
22

32
7

14
89
.9
5

74
9.
01

42
5.
7

29
6.
19

19
26
04

Vo
lc
an
ic
m
id
dl
e
sl
op

es
55
.2
9

18
0.
03

87
5.
97

11
07
.4
2

15
82
.3
2

26
8.
62

57
2.
82

69
6.
15

26
4.
69

53
.8
2

50
.4

19
02
51

Vo
lc
an
ic
fo
ot
sl
op

e,
hi
gh

ly
di
ss
ec
te
d

0.
96

30
.2
1

67
.9
8

71
.9
4

37
5.
18

5.
7

59
.6
1

65
.3
7

41
.2
8

2.
4

0.
03

24
02
2

Vo
lc
an
ic
fo
ot
sl
op

es
–
m
od

er
at
el
y
di
ss
ec
te
d

24
9.
93

47
3.
22

13
33
.6
2

93
4.
86

11
67
.5
4

25
4.
04

67
4.
85

85
7.
34

10
.2
3

5.
61

0.
18

19
87
14

vo
lc
an
ic
fo
ot
sl
op

e
–
sl
ig
ht
ly
di
ss
ec
te
d

19
0.
92

43
9.
32

10
34
.1

43
1.
76

44
6.
79

18
7.
71

15
9.
24

46
8.
99

0.
66

0.
87

0
11
20
12

O
ld
,v
ol
ca
ni
c
hi
ll
–
hi
gh

ly
di
ss
ec
te
d

0.
24

1.
92

13
.4
7

12
.8
7

44
.3
1

10
.0
5

15
.4
2

24
.6
9

4.
11

1.
05

0.
03

42
72

O
ld
,h

ig
hl
y
di
ss
ec
te
d
hi
lls

w
ith

py
ro
cl
as
tic

m
at
er
ia
ls

13
.4
7

12
4.
35

33
0.
24

22
1.
31

12
51
.2
7

13
3.
2

36
8.
85

81
5.
58

11
79
.7
8

16
.0
5

1.
44

14
85
18

O
ld
,m

od
er
at
el
y
di
ss
ec
te
d
hi
lls

w
ith

py
ro
cl
as
tic
s

17
9.
13

36
2.
82

19
07
.3
7

14
21
.9
4

14
29
.2
3

34
1.
22

91
9.
74

72
2.
76

9.
93

2.
79

0.
27

24
32
40

St
ru
ct
ur
al
hi
lls

w
ith

lim
es
to
ne

se
di
m
en
ta
ry

ro
ck
s

46
.3
2

15
6.
48

12
23
.3
4

32
4.
69

14
6.
43

43
.7
7

89
.2
8

51
2.
43

0.
15

0.
33

0.
03

84
77
5

La
cu
st
rin

e
pl
ai
n

52
0.
5

57
7.
38

10
9.
53

12
5.
79

53
.4

26
.2
8

22
.1
4

53
.7
6

0
0.
12

0
49
63
0

To
ta
la

re
a

12
78
.5
7

25
96
.5

73
39
.5
6

52
46
.1
6

81
88
.8
3

17
38
.3
2

32
18
.1

60
59
.8
2

26
30
.0
7

72
7.
41

54
8.
22

39
57
1.
56

16 P. DANOEDORO ET AL.



accuracies. In addition, we also used the classification result of maximum likelihood algo-
rithm as a comparison.

In short, among three different models generated using FCD transformation, RDF clas-
sification, and maximum likelihood classification, the machine learning-based RDF per-
forms the best accuracy, while the maximum likelihood provides the worst. The RDF
classification was run using 40 combination representing various number of split (Mtry)
and number of trees (Ntree). With the RDF as a modification of Random Forest algo-
rithm, there is no pruning so that all trees were used, as explained by Eastman (2019).
Although the RDF classification delivered various accuracy levels, the lowest one still
higher than that of FCD transformation result and maximum likelihood-based classified
map. Moreover, the visual appearances of all RDF classification results show similar pat-
tern, which do not exhibit the clear difference when observed visually at small scales.

It is also important to note that the OOB accuracy do not directly correlate with the
overall accuracy that is computed using independent dataset. As shown in Figure 8, 40
classification results generated using RDF algorithm were assessed using OOB accuracy,
Overall accuracy, as well as Kappa. We compared the results by grouping them into dif-
ferent number of splits and number of trees. Generally speaking, the OOB accuracies are
low (0.69) when the number of splits are also low, which means that the algorithm only
use less number of input variables (in this case, the input spectral bands). It gradually
increases with the larger number of splits and reaches the highest one at 0.72 with the
number of splits of five and six. However, the overall accuracies could reach the highest
one (75.16 and 75.19) at the smaller number of splits, i.e. two, and at the medium num-
ber of trees, i.e. 200 and 250. After that, the overall accuracy gradually decreases with the
larger number of trees, even though the smallest number of trees that were used here, i.e.
50 for both number of splits of three and five exhibit accuracy plunges as compared to
the others. The Kappa is presented in % shows the same pattern as the overall accuracy.

When the numbers of Mtry and Ntrees were compared, we found that their smaller
numbers show better accuracy results than those with larger numbers. This was due to
the several reasons, e.g. overfitting. Too large Mtry and Ntrees values may have caused

Figure 8. OOB accuracy, overall accuracy and Kappa index obtained using RDF algorithm at various number of splits
and number of trees.
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the model to start overfitting the training data, which means that it learned the noise in
the training data and finally generated poor generalization of new data. With smaller val-
ues of Mtry and Ntrees, the classification process is less likely to overfit and can better
generalize to new data.

When we compared the result of RDF with the conventional maximum likelihood clas-
sification results, we found that the maximum likelihood-based vegetation structural com-
position map is less accurate, i.e. with overall accuracy of 60.81% and Kappa ¼ 0.5665. It
should be noted, however, that the sampling strategy for the maximum likelihood classifi-
cation used the same sample dataset that was utilized by the RDF, which did not differen-
tiate various types of barren land (e.g. dark open soil, light open soil, etc.). The samples
also mixed-up various types of impervious surface (concrete rooftops, metal rooftops,
asphalt surface) from the barren lands, leading to heterogeneous, not properly clustered
features. Given that the maximum likelihood classifier works using assumption that every
sample is spectrally homogeneous, and the pixel values are normally distributed (paramet-
ric classification approach), the low accuracy obtained is understandable. On the other
hand, the RDF can work in a better way with this kind of samples, referring to FCD clas-
sification, which is probably due to the non-metric classification approach (Jensen 2015).

Apart from the numbers related to the accuracies obtained, a map-to-map comparison
was carried out to see the resultant patterns obtained using two different models. We
used the most accurate RDF-based map and the FCD map to compare, as presented in
Figure 9. First, the distribution of the vegetation structural composition classes based on
FCD transformation looks more random in character, while the one generated using RDF
classification shows more clustered phenomenon. Second, the FCD transformation pro-
duced larger forested areas or tree-dominated structural composition classes than RDF.

Figure 9. Comparison between vegetation structural composition maps generated using FCD transformation (left) and
RDF machine learning classification (right).
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With the RDF, those classes are mainly found in rugged terrain with elevation less than
2000m asl. Third, several categories related to specific ecosystem units were clearly misi-
dentified using FCD. For example, the aquatic weed (Eichhornia crassipes) at the Rawa
Pening Lake was miscategorized as FCD class 10 (extremely dense forest), although this
vegetation type is a kind of floating herb. The FCD transformation also identified coffee
and cocoa plants (just in the northeast of the lake) as heterogeneous vegetation with vari-
ous densities, while the RDF algorithm classified them as denser wooded bushland. In the
field, the coffee and cocoa plantations make up a combination between homogeneous
shrub interleaved by shade trees of legumes (e.g. Leucaena leucocephala). The rubber plan-
tation in the north of Salatiga was identified as FCD Classes 8 up to Classes 10 using
FCD transformation, depending on its density, but these rubber trees were classified as
woodland and woodland with multistorey trees by the RDF algorithm. Fourth, the FCD
transformation identified urban areas as two categories: FCD Class 0 and Class 1 with
respect to the percentage of associated vegetation. However, the RDF algorithm classified
the urban areas more homogeneously as Class 2.

The comparison shows that the FCD transformation is more sensitive to individual
pixel characteristics in all involved bands, including shadow and temperature aspects.
Therefore, a landscape containing many pixels with various types of vegetation would be
identified individually regardless their adjacency. On the other hand, even though the
RDF algorithm works like any other per-pixel classification, it can successfully classify pix-
els in more compact clusters. In addition, the misidentification using FCD transformation
might be caused by the used of thermal band of Landsat in defining the thermal index
(TI). Since the TI considers low temperature pixels are associated with dense vegetation,
the lake water containing floating vegetation was identified as relatively dense vegetation.
This study has tried to mask the water body using NDVI and SWIR band, but the vegeta-
tion content causes its values higher. The aquatic weed of Eichhornia crassipes was also
treated similarly. Moreover, the shrubs and grass on the top of Mt Merbabu grow in the
high-altitude soil, which are represented by low temperature pixels in the TI image.
Therefore, their density was misidentified by the FCD transformation as denser vegetation
structure.

Given that machine learning algorithms are usually able to accommodate input data in
different domains, it is also interesting to consider that RDF or artificial neural network
(ANN) as machine learning classifiers may be used to combine other spatial data like ele-
vation, soil types and rainfall. Changes in mapping accuracy may be studied further in
separate research, in order to analyze the sensitivity of particular input bands or other
spatial variables to generate vegetation structural composition map.

4. Conclusions

This study showed that the deductive-deterministic-empirical model of FCD did not work
well in a complex landscape with high-range altitudes, various landforms, and various
types of vegetation interleaved by built ups areas and eutrophicating lake. The complex
characteristics have led to the inaccurate information of the constituting indices.
Meanwhile, the machine learning-based RDF algorithm could be used for classifying the
vegetation structural composition used in FCD at moderately high accuracy, although it
does not deliver ratio-interval values to be regrouped into discrete categories, like in the
original FCD model. It directly classifies the categories using well defined samples refer-
ring to the FCD classes. A further study using different approaches in machine learning
which makes use of terrain characteristics is recommended.
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