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Abstract—This paper presents a personalized graph federated
learning (PGFL) framework in which distributedly connected
servers and their respective edge devices collaboratively learn
device or cluster-specific models while maintaining the privacy of
every individual device. The proposed approach exploits similari-
ties among different models to provide a more relevant experience
for each device, even in situations with diverse data distributions
and disproportionate datasets. Furthermore, to ensure a secure
and efficient approach to collaborative personalized learning,
we study a variant of the PGFL implementation that utilizes
differential privacy, specifically zero-concentrated differential
privacy, where a noise sequence perturbs model exchanges.
Our mathematical analysis shows that the proposed privacy-
preserving PGFL algorithm converges to the optimal cluster-
specific solution for each cluster in linear time. It also reveals that
exploiting similarities among clusters could lead to an alternative
output whose distance to the original solution is bounded and
that this bound can be adjusted by modifying the algorithm’s
hyperparameters. Further, our analysis shows that the algorithm
ensures local differential privacy for all clients in terms of zero-
concentrated differential privacy. Finally, the effectiveness of
the proposed PGFL algorithm is showcased through numerical
experiments conducted in the context of regression and classifi-
cation tasks using some of the National Institute of Standards
and Technology’s (NIST’s) synthetic datasets, namely, MNIST,
and MedMNIST.

Index Terms—Federated learning, personalized learning,
graph federated architecture, differential privacy, zero-
concentrated differential privacy.

I. INTRODUCTION

The rise of internet-of-things (IoT) and cyber-physical sys-
tems has led to exponential growth in data collection from
distributed devices. However, transferring this massive amount
of data to a centralized processing point for inference and
decision-making is often impractical due to resource con-
straints and privacy concerns. To overcome these challenges,
distributed learning that features on-device processing is an
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attractive alternative. Such distributed learning enables effi-
cient data analysis without moving the raw data out of the
edge devices. Federated learning (FL) is a distributed learning
framework that facilitates collaborative model training across
edge devices or clients without exposing the underlying data
[2]-[4]. In particular, using its own local data, each client
refines a global model shared by a server and subsequently
transmits the updated model back to the server, which then
aggregates all updated client models before sending an update
back to clients for further refinements.

To date, research on FL mostly uses a single-server architec-
ture, which is susceptible to communication and computation
bottlenecks and vulnerabilities. It also scales poorly with
the number and with geographical dispersion of participat-
ing clients. To address these concerns, some alternatives to
the single-server architecture have been proposed, see, e.g.,
[5]-[8]. Examples of those alternatives include client-edge-
server hierarchical learning [6] and the graph federated ar-
chitecture [5], [8]. In client-edge-server hierarchical learning,
edge servers perform partial aggregation with their associated
clients and communicate their results to a single cloud server
that performs the global aggregation. However, using a single
cloud server is susceptible to bottlenecks and can only accom-
modate a limited number of edge servers. In contrast, the graph
federated architecture uses a server network in which each
server aggregates the information from its associated clients
and shares its model with its neighbors. Therefore, the graph
federated architecture is highly scalable with the number of
clients and easier to implement, thanks to its distributed nature.

One of the main challenges in FL is data heterogeneity,
which means there can be substantial differences in the
underlying statistical distributions among clients’ data [9]—
[11]. Consequently, a unique globally shared model can be
inadequate for such settings, and personalized models must
be learned instead [12]-[14]. For example, autonomous vehi-
cles need to maintain vehicle-specific models of their highly
dynamic environment while collaborating with nearby vehicles
and/or smart city IoT devices [10]. This requirement can be
met by personalized FL, where clients, or groups of clients
(clusters), learn client- or cluster-specific models [15]-[17].
These personalized models typically share some similarities
[18]. As an example, the environment of an autonomous vehi-
cle could be shared with other connected objects. Leveraging
the similarities between cluster-specific models can, therefore,
improve performance [18], [19], a process known as inter-
cluster learning, which is particularly useful when some clients
or clusters have insufficient data [20], [21].



Personalized FL has received considerable attention lately
due to its ability to improve learning performance in settings
where clients are required to observe device-specific behaviors,
see, e.g., [18], [20]-[24]. It is used in many applications
such as healthcare, electrical load forecasting, biometrics,
drone swarms, and autonomous vehicles [10], [11], [25]-[27].
However, all those works are limited to single-server cases.
For example, although [8] extends personalized FL to a multi-
server architecture, it assumes that all the clients associated
with a given server learn the same model. Under this as-
sumption, each server maintains a single model trained via
conventional FL and the model is refined by communicating
with other servers about their models. However, the general
case where each distributed server needs to enable the learning
of personalized models and collaborate with its neighbors to
refine those is yet to be studied.

In the context of graph FL, many devices take part in the
training process. Thus ensuring the privacy and security of
client data is crucial. The risk of eavesdropping attacks on the
client-server channels increases with the number of devices in
the system, and not all devices can be trusted. Even if data
is not explicitly shared among clients, repeated message ex-
changes could reveal sensitive information to curious devices
or external eavesdroppers [28], [29]. In order to reduce this
risk, differential privacy (DP) has been introduced to protect
client privacy by ensuring that the inclusion or exclusion of
an individual data sample does not significantly affect the
algorithm output. In other words, DP limits the ability of
attackers to infer information from individual data samples
by adding controlled noise to the data before sharing it with
the server [30]-[34]. To improve the privacy-accuracy trade-
off, conventional (e, §)-DP has been relaxed into concentrated
DP (CDP) in [35], which has been further relaxed to zero-
concentrated DP (zCDP) [36]. The zCDP is easier to analyze
and offers a tighter equivalence with (¢, d)-DP. Furthermore,
dynamic DP is well-suited for iterative implementations, as it
allows the privacy budget to be adjusted dynamically based
on the number of iterations [37]. For those reasons, this
paper considers dynamic zCDP in the graph FL architecture,
where the privacy of client data is of utmost importance. By
employing dynamic zCDP, clients perturb their local model
estimates with a noise sequence of known variance that de-
creases progressively during the learning process. This process
ensures privacy without compromising model accuracy.

This manuscript tackles the general case of personalized
graph federated learning (PGFL) in conventional and privacy-
preserving ways. Specifically, we consider a multi-server ar-
chitecture with distributed clients grouped into clusters (of
similar learning tasks), irrespective of their associated servers,
for the decentralized training of cluster-specific personalized
models. The proposed algorithms, within the considered PGFL
architecture, leverage similarities between clusters to mitigate
data scarcity and improve learning performance. The local
training in the proposed framework uses the alternating di-
rection method of multipliers (ADMM), well-suited for dis-
tributed applications [38]-[40] and demonstrating fast, often
linear [41], [42], convergence. The main contributions of this
manuscript are summarized in the following.

o A PGFL framework is proposed to improve learning per-
formance in a distributed learning setting. Our approach
employs inter-cluster learning to improve the accuracy of
local models by leveraging information from other clus-
ters. The graph FL problem is formulated as a constrained
optimization problem and solved in a distributed manner
using ADMM.

o We design a privacy-preserving variant of the PGFL algo-
rithm, where clients perturb their local models to achieve
local differential privacy using the zCDP framework.
The privacy loss is quantified per iteration as well as
throughout the computation.

o Mathematical analysis is given to show that the privacy-
preserving implementation of the PGFL algorithm con-
verges to the optimal solution for each cluster in linear
time. Additionally, our analysis shows that utilizing inter-
cluster learning leads to an alternative solution whose
distance to the original solution is bounded and that the
bound depends on cluster similarity and can be adjusted
with hyperparameter selection.

The paper is organized as follows: Section II presents the
problem formulation and the PGFL algorithm along with
its zCDP variant. Sections III and IV are dedicated to the
convergence and privacy analyses of the proposed algorithm.
In Section V, we demonstrate the effectiveness of the algorithm
through a series of experiments involving regression and clas-
sification tasks. Section VI concludes the paper. The following
table contains the mathematical symbols used throughout the

paper.

I Identity matrix
0 Null vector
(a,b) Inner product between vectors a and b

Transpose operator

()"

E[] Statistical expectation operator

Normal distribution with mean g and co-
N, %) variance matrix % g
U(a,b) Uniform distribution on an interval (a, b)
Vi) Gradient of a function f(-)

Euclidean norm

Sum and product operators

Intersection and union operators
Exclusion of the element « from the set A
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II. PROBLEM FORMULATION AND PROPOSED METHOD

The proposed PGFL framework solves a personalized opti-
mization problem in a graph federated architecture and utilizes
the similarities among clusters to enhance learning perfor-
mance. For this purpose, we consider a distributed network
that consists of S servers with a total of K clients. The
server network is modeled as an undirected graph G = (S, &),
where S is the set of servers and &£ is the set of edges so
that two servers s and p can communicate if and only if
(s,p) € €. The set of neighbors to a server s is denoted
by N, and it contains s. We denote N = N;\s. Each
server s is associated with a set of clients, denoted C,, with
UsesCs = C and C,NC, = 0,Vs # p. Every client k € C
has access to a local dataset Dy, of cardinality |Dy| = Dy,



which is composed of a data matrix Xy = [xx1... Xk, |7,
where xj;,i € {1,...,Dy} is a vector of size L, and a
response vector yr = [Uk1,---,Yk D,]7 that is subject to
white observation noise. Each client £ € C aims to learn a
personalized, client-specific model wy.

The learning task for each client is defined by the set
{Dy, £}, which represents its local data and loss function.
All clients connected to distributed servers, regardless of their
associated servers, are grouped into () clusters. These clusters
are formed by clients with similar learning tasks, such as
F-similar tasks [43], with the aim of collectively learning
a shared model. It is assumed that there is a degree of
relationship among the learning tasks across clusters, which
can manifest in various ways. For example, clusters may
share the same loss and regularizer functions while having
different data distributions, or they may have the same data
distribution but distinct objective functions. For instance, in
healthcare, clusters can represent various patient diagnostics,
independent of their respective associated hospitals, with a
hospital functioning akin to a server. We denote the set of
clusters as @ = {1,...,Q}. The clients belonging to a specific
cluster ¢ € Q form the set C(,) aiming to learn the model w(*q).
Additionally, the set of clients associated with server s within
cluster ¢ is denoted as C, (4), With C, () = Cs () C(g)-

A. Personalized Graph Federated Learning

To address task variations, personalized (cluster) models are
preferable. However, despite their differences, the underlying
relationship among tasks, or equivalently, clusters, can still
be exploited in decentralized learning. Here, we consider a
modified regularized empirical risk minimization problem to
leverage cluster similarities. For this purpose, we introduce an
additional regularizer function that enforces similarity among
the cluster-specific personalized models. This additional reg-
ularizer function corresponds to inter-cluster learning and is
controlled by the inter-cluster learning parameter 7 € (0, 1).
The resulting optimization problem for a cluster ¢ is formu-
lated as:

Dy,
. 1
min Z —Z&(Xk,i,yk,i;w(q))JF)\R(W(q))

WO e, Tk im
+7 > Wy — w3 (1)
r€Q\q

where ¢(-), R(-), and A\ denote the client loss function, the
global regularizer function, and the regularization parameter,
respectively. The larger the 7 value is, the more the similarities
among cluster-specific personalized models are exploited.

The centralized optimization problem above relies on the
global variable w(g-Ina multi-server architecture, the servers
maintain local cluster-specific models and communicate with
their neighbors to reach a consensus for each cluster. The
equivalent distributed optimization problem for cluster g, is

given by

Dy,
Z( Z Dikzgk(xk,iayk,ﬁw&(@) )

min
{Ws,(q)} qeQ kecs,(q) i=1
FAR(Wa () +T D > Wy — Ws,<q>|§>7
reQ\g peN;
8.t Ws,(a) = Zs,p,(a)> Wp,(a) = Zs,p,(q)

V(s,p) € E,Vq € Q,

where w, ;) denotes the model for the cluster ¢ connected
to server s and consensus is enforced by the cluster-specific
auxiliary variables {z, ; q);V(s,p) € £,Yq € Q}. From (2),
the augmented Lagrangian with penalty parameter p can be
derived as

O (X, Yi5 Wi (q))
EM(VwM’Z):Zl > Dy AR )

SES kECS,(q)
+7 YD W) — Waol3
reQ\qpeN;
+ 3 (Va0 = Zoni) + YL (Vi) = Zen0)
pENS
p
+ by Z (HWS»(q) - Zs,p,(Q)H% + Wy, ) — Zs,p,(q)Hg)]?
PEN,
3)
with the set of primal variables V, = {w, ;s € S},

Lagrange multipliers M = ({5 ,,}, {15 ,}), and auxiliary
variables Z = {z , (4)}. Given that the Lagrange multipliers
are initialized to zero, using the Karush-Kuhn-Tucker condi-
tions of optimality and setting ¥, = 221)6 N P ps it can
be shown that the Lagrange multipliers p ,, and the auxiliary
variables Z are eliminated [44]. From (3), it is possible to
derive the local update steps of the ADMM for clients and
servers. For client k € C; (4, the primal and dual updates are
given by

o Client primal update:

n o1 A
w,(C ) =argmin — 0 (Xk, yr; W) + —— R(w) ())
w [% |CA

(n—1)

n—1 P n—1
- <""f(< LWl > + §||W_Wi,(q> I3,

o Client dual update:

(n) (n—1)

el = D 4 pwll ) —wi), 5)

where the superscript n denotes the iteration number. Further,
the primal and dual updates for a server s € S are given by:



Algorithm 1 PGFL

Initialization: W](CO) =0 and w( () )= =0,Vk,q,s
— Procedure at client k € Cy —
For iteration n = 1,2,...

Update w%n) as in (4)

( (n—1)

Share w; "~ and ¢, with server s

Receive wg (@ from server s
Update <p,(€”) as in (5)
EndFor
— Procedure at server s —

For iteration n = 1, 2,.
() (n=1)

Receive {wSC P )k € Cst
Update w_ as in (8)
Share w Vq with each server p in N

Receive w( () )

,Vq from each server p in N
Aggregate w( ()q) as in (9)
Compute W( () ) as in (10)

Share wi ()q) with clients in Cg
EndFor

o Server primal update:

w® 1
Ve T T NG| IC <q)|

B 1 Z I(;L—l)

p|CS_( )\ keC,. (o)
+5 2w
p€N7

Z Z an(rl)], 6)

reQ\q peEN;

S w

keCy (q)

(n—1)
Ws.(a)

~ Yo(a)

+ 7'("

\ s

e Server dual update

¢q, - (n U—I—p Z < W) tl()q)> )

pENS

where 7(™), the inter-cluster learning parameter, is iteration-
dependent. Since inter-cluster learning may degrade perfor-
mance toward the end of the computation, it may be necessary
for 7(") to follow a decreasing sequence.

The computation in (6) performs local aggregation (first
two lines), inter-server aggregation (third line), and inter-
cluster learning (fourth line) in a single step. This presents the
major drawback of using the models of the previous iteration

for inter-server aggregation, i.e., w](gn(;)l ), and inter-cluster

learning, i.e., w(" 1) [45], [46]. A multi-step mechanism
addresses this i 1ssue by replacing the primal and dual updates
of the server as follows:

o Server aggregation

> -

|CSv(‘1) | kECs (q)

. (n) 1
Wsle) =

|C (q

k€Cs (g

®)

Z (Pn 1).

+ Inter-server aggregation

w™ = = (n)
Wsia) = |/\[| Z W.(a)° ®)
PEN;
« Inter-cluster learning
(n)
(") _ (n) ~(n) T ~(n)
Wiy = (1-")% Vot o1 2 W (10
reQ\q

The above multi-step mechanism has two main advantages.
First, performing server aggregation prior to inter-server ag-
gregation enables the servers to maintain models composed
of the last available client estimates. Second, the fact that
inter-cluster learning is performed at the end of the multi-
step mechanism ensures that model similarities are leveraged
evenly; that is, the same weight is given to any two clients’
estimates within the server neighborhood. The resulting PGFL
algorithm is summarized in Algorithm 1.

B. Privacy Preservation in PGFL

This section presents a privacy-preserving variant of the
PGFL algorithm that uses dynamic zero-concentrated differ-
ential privacy to protect the participants’ data.

Zero-concentrated differential privacy is defined as follows.
Definition. A randomized mechanism M satisfies ¢-zCDP if,
for any two neighboring datasets D, D' differing in only one
data sample, we have

Do(M(D)||M(D")) (11)

where D, (-) denotes the «-Rényi divergence between the
distributions M (D) and M (D’).

The motivation for choosing zCDP over conventional (e, §)-
DP is that, like CDP, it offers improved accuracy for identical
privacy loss in the worst-case scenario, where an eavesdropper
aggregates all the exchanged messages [35], [36]. We have the
option to use either CDP or zCDP to preserve privacy in the
proposed algorithm, but for simplicity, we choose to use zCDP.

Since the proposed PGFL algorithm is iterative in nature, it
is crucial to control privacy protection at every iteration and
consider the privacy leakage for the entire learning process.
For this purpose, we adjust the privacy protection dynami-
cally per iteration, as developed in [37], to control the total
privacy leakage of the algorithm throughout the computation.
In practice, instead of sharing the exact local estimate W,(C"),
a client k shares with its server at iteration n the perturbed
estimate vNV,(cn), given by

< ga, Vo € (1, 4+00),

W =w g, (12)

where the perturbation noise follows a Gaussian mechanism,
£~ N(0,62™1), with 62" being the variance of the
perturbation noise at iteration n.

In the context of dynamic zCDP, privacy protection is
governed by qﬁ,(co) and (. The parameter ¢,(€0) represents the
initial privacy leakage, indicating the desired level of privacy
at the start of the algorithm. On the other hand, ¢ € (0,1)
denotes the exponential decay factor of the noise variance,
dynamically adjusting the iteration-specific privacy budget



Algorithm 2 Privacy-preserving PGFL

Initialization: w( ) =0 and w(o() )= 0,Vk,q,s
— Procedure at clzent keCs—
For iteration n = 1,2,...

Update w'™ as in (4)

Perturb wlz’” into w\™ as in (12)

(n (n=1)

Share v~vk and ¢, with server s

Receive w( ()) from server s

Update ¢ ( ) as in (5) using v~v£n()q) and w

EndFor

— Procedure at server s —

For iteration n = 1 2,.
Receive {w\" ,go,(Cn 2 ;Vk € Cs}
Update v(v ”(q) as in (13)

&,

Share w_ 5.(q ),Vq with each server p in N

Receive W; () ),Vq from each server p in N
Aggregate win()q) as in (9)
Compute wgn()q) as in (10)

Share wgn()q) with clients in Cj
EndFor

as the computation takes place. As shown later in Section
IV, the privacy parameter at iteration n, qSk ), is inversely
proportional to the variance of the perturbation noise, (52("
Here, for each client, & € C, the initial variance 5k( is
fixed, and subsequently, the variance at iteration n is updated
according to the relationship 0. = ¢52""~"). This recursive
update ensures a decreasing privacy budget as the algorithm
progresses.

The server aggregation (8) and client dual update (5) are
affected by the noise perturbation (12). The server aggregation

becomes
Z ‘/’\«V](Cn Z <P(n 1’

kGCs,(q) keCg s,(q)

N(n 1
Wle) = |Cs,(q)\

pIC (@
(13)

and in the client dual update, we substitute Win()q) with vTrin()q)

and w( ") with w(").

The resultlng prlvacy-preserving algorithm is summarized in
Algorithm. 2. In the following sections, we provide a detailed
study of the privacy protection and convergence properties of
the proposed privacy-preserving PGFL algorithm.

III. CONVERGENCE ANALYSIS

This section studies the convergence behavior of the pro-
posed privacy-preserving PGFL algorithm. Sections III-A and
III-B study the algorithm without inter-cluster learning and
show that it converges to the optimal solution of (2) with
7 = 0 in linear time. Section III-C then shows the impact
of inter-cluster learning. In particular, we show that although
inter-cluster learning leads to a different convergence point
than intra-cluster learning, the distance between these two
points is bounded by a function of the task dissimilarity and

the inter-cluster learning parameter sequence. Moreover, we
show that this bound can be used to design the inter-cluster
learning parameter sequence to achieve a desired convergence
point under mild assumptions on cluster similarity, allowing
for greater accuracy control in personalized learning while
leveraging the task similarity for faster convergence and im-
proved performance.

A. Problem Reformulation

We consider the server update steps with 7(") = 0. Then,
the minimization problem for the client k € C; () becomes

2 R(w)

1
min — 5 (Xp, yi; Wi) +
wi Dy, ( ) ICs]

S.l. Wi = ®S7(q)7 (14)

where W, ) is the result of inter-server aggregation (9),
defined as the average model for cluster ¢ in N;. To simplify
the analysis, we reformulate (14) as

HJ},? (W)

st W =eg, W =eg,Vl € z Co.(a); (15)
pEN
where fi(wy) is given by
1 A
Te(wi) = 0 (Xi, yi; Wi) + = R(wg), (16)
Dy, |Cs|

and the auxiliary variables {ey,},Vk,l € >\ Cp (g €n-
force consensus. To reformulate (15) further, we introduce the
following:

w=[w],.. ..W‘El]T,
w=[w],.. ..‘XI‘TCJT:WJrf
@ =lp],. "7(Pk7"'790rc\]1-a
F(w) =Y fu(ws), (17)

keC

where £ is the concatenation of the noise added to the local
models to ensure privacy. In addition, we introduce the vector
e € R2?Md concatenating the vectors ey, e, V(k,1) €
{1,...,K} : k # 1, where d is the dimension of the models
and M is the number of constraints in (15). We can then
reformulate (15) as

min F'(w)
s.t. Aw + Be =0.

where A = [A1, Ay] and B = [—Isp74, —I2ps4). The matrices
A, Ay € R?MAx[Cld gre composed of d x d-sized blocks.
Given a couple of connected clients (k,[), their associated
auxiliary variable ey, ;, and its corresponding index in e, g; the
blocks (Al) , and (Ag) g are equal to the identity matrix
I, all other f)locks are null.

From the above definitions, one can express
Yepico Wi —erdl” + [[wi—ewi]|* = [[Aw+Be|?
and, for A € R*Md, Y okec Zle/\/k«wk — €1, Ag) + (Wi —
€L, )\26+q>) = <AW + Be, )\>

(18)



Therefore, the Lagrangian can be rewritten as
L,(Vy, M) = F(w) + (Aw + Be, A) + g |Aw + Bel.
19)

B. Convergence Proof

We make the following assumptions to continue the analysis.

Assumption 1. The functions fi(-),k € {1,...,K}, are
convex and smooth.

Using (19), and under Assumption 1, the steps of the PGFL
algorithm without inter-cluster learning can be expressed as
follows:

VE(wm ) 4 ATAM 4 pAT (Aw<”+1> + Be<”>) —0,

B'A™ 4+ pBT (Avv("“) + Be(”+1)> =0,

AT z(m) p(AV~V(”+1) + Be(n+1)) =0.

(20)
Similarly to [41], we introduce the following to simplify (20):

_ AT T

Moo ATl Ho-AT-AL

1 T L.=_-HH'
L+ = §H+H+7 - 2 - -
1
a=H"w, M= (L, + L)

Then, as derived in [41, Section II.B], (20) becomes
VF(w™) 4+ o™ 4+ 2pMw™ ) — pL w™ =0,
o) — ™ _ pL,_w+t) = 0. (21)
As in [47, Lemma 1], the equations in (21) can be combined

to obtain

M71VF(W(TL+1))

ML, w(
+ 2+W

Wt —

(22)

_ M_;Lf f:;v(sx
s=0

Similarly to [47], by introducing the following:
Q=+L_/2, r =% "Qw),

(n) <r(")> .
q "= ~ 3 ,OI 0
(n) _
v G {0 pL+/2} ’

(22) can be reformulated using [47, Lemma 2] as
VE (wrth)

(23)

Theorem L. Under Assumption 1, if 7™ = 7 = 0,Vn, the
proposed PGFL algorithm converges to the optimal solution
of (2) in linear time for each cluster:

Proof. Under Assumption 1, F'(w) is convex and smooth by
composition and, therefore, differentiable. Using [48, Lemma
6] and [48, Theorem V] with a convex and smooth function
F(w) demonstrates that the proposed PGFL algorithm, with-
out inter-cluster learning (7 = 0 ), converges to the optimal
solution of (2) in linear time for any given cluster. O

+2Qu Y+ Ly (wlrH) - W) — aMgtH.

C. Impact of Inter-Cluster Learning

In situations with limited data, as demonstrated in Section
V, employing inter-cluster learning (7 # 0) can enhance
performance compared to 7 = 0. This section establishes an
upper bound on the disparity between the resulting cluster-
specific personalized models obtained in scenarios with and
without inter-cluster learning. It is worth noting that this bound
can be controlled by properly choosing the sequence 7(n).

To do so, it is necessary to reformulate the client primal
update using Assumption 1. The primal update for client k €
Cs,(q) is expressed as follows:

w,(C"H) =argmin Jr(w) — <go§€n)7 w— ng()q)>

+ 2ltw =i I, (24)
which, under Assumption 1, is equivalent to
Vhew ) =+ p(wi ) - wl ) =0, @3)
Further reformulation leads to the following:
wi " = w) pso(”) fok(w,i"“)» (26)
By replacing w(”H) with (26) in (8), we obtain
D) 1 1 (n-1) _ 1 (n)
_— w — =Vfi(w;")).
Va0 TN S 1)l ke%:(q)( p@p F )
(27)

Next, we investigate the effect of inter-cluster learning by
comparing the performance of models obtained using the
PGFL algorithm with and without inter-cluster learning. We
shall prove that the difference between the resulting models
is bounded and depends on both the inter-cluster learning
parameter and the similarity of models between clusters.
Theorem II. Given a sufficiently large penalty parameter p,
for all iterations, server s € S and cluster q € Q, the impact
of inter-cluster learning after n iterations is bounded by

n n
E[|w, —wiB] < SS(TT (1=r9))
i=1 j=i+1
where the expectation is taken with respect to the privacy-
related noise added in (12) and the data observation noise,
gl()q) denotes the model obtained by the algorithm without
inter-cluster learning, and n is the maximum cluster model

distance, defined as:

)n, (28)

w

2

; (29)
2

= s Hw<q> G
with the models w7 ,q € Q being the cluster-specific solu-
tions of (2) with 7 = 0.

Proof We prove this theorem by induction. With initial values

(0 =0 and W(O) = 0, one can write.
Ws.() s,(q)

€)
O (0D T ~(1)
Ws,<q>*(1 T ) s(q)+Q_1 D ol

rEQ\q

_© _1 (1)
s(q)—| A |C | Z (Wp,(q>_*vf’€(wk ))’

pGN p(q) kGCP (q) p
(30)



(0) (0)

where, given that _;?gq) = w;?()q) and W, ° = w, ’, and using
(27), we have wil()q) = ngq). Hence,

S _m Y ) _ o)

Wl " Vel T o1 > (Ws (@~ s (v)) @D

rEQ\q

Taking the expectation with respect to the privacy-related
and observation noises, we can express this difference as
a function of the inter-cluster learning parameter and the
maximum cluster model distance.

1 1
E[[w((,) — w18 < 7. (32)

Further, we assume that (28) is satisfied for all iterations up
to iteration n — 1. For iteration n, we have

(n)
w™ )™ T <~ (n)
Wl = (1 T ) e<q>+Q_1 > Wy
TEQ\q

_(n) L L _(n-1) _ 1 (1)
W, = w — =V fi(w;")),

(9) ] p%\:[s |Cp,(q)| ke%;(q)( P.(2) P F )

(33)

5 2 (w

p7(q)
Sl peN, kECyp (q)
(34)
The difference is given by
) (n) _ £(n) n) _ &0
Wel@)™ Wala) = ( )( s@ W 7<q>)
(n)
T = (1) ~(n)
to1 > (Ws,(q) s(r)) 335)
r€Q\q
with
OO 1 1 <7<n—1>
w —_— w
(@ " W) T |./\[é| |Cp7(q)| ke;( ) p:(9)
n—1 n
—w;(q)> ——ka( m) 4 1 VI (w! ))‘
(36)
We note that the expectation of Hw(n(q)1 ) wi()"(;)l)H% with

respect to the privacy-related and observation noises is iden-
tical for all servers. Therefore, since (28) is satisfied for
iteration n — 1 for all servers, given a sufficiently large penalty
parameter p, and taking the expectation with respect to the
privacy-related and observation noises, we have

_(n ~(n n— 1 n—1
El[w) - w3 <EIw) - wt VIR 6D
Combining (35) and (37), we will have
Bl[w) = wil B < (1= rE[w Y - wl P
(n)
T m _ &
+Q_ Z E”Wg(q) 9(7)”2)
TEQ\q

(38)

(n-1) 1 (n)
ALY ))-

which, using the maximum cluster model distance, yields

n n—1)
By — Wiy B < (1= 7RI - w3
+ 7™y, (39)
Given (28) for iteration n — 1, we have
n—1 n-—1
w0y —wilE < (1=7) SO (IT (0= 7))
i=1 j=i+1
+7_(n)
< Z( H 1—7) ) Dp. (40)
i=1 j=i

That is, (28) is satisfied for iteration n.
By the principle of induction, (28) is satisfied for all
iterations, server s € S and cluster g € Q.
O

Corollary. If 79 = 0,Vi < n and ") # 0, the impact of a
single iteration of inter-cluster learning is bounded by

E|lw") ", (41)

S~ Well3 <
where w( denotes a model obtained without inter-cluster
learning, n is as defined in Theorem II, and the expectation
is taken with respect to the privacy-related and observation
noises.

Theorem II bounds the difference in the resulting models
with and without inter-cluster learning. Combining Theorems
I and II, the resulting models obtained by the algorithms are
guaranteed to reside within a neighborhood of the optimal
solution of (2) with 7 = (. The size of this neighborhood can
be adjusted by selecting the sequence 7("). When ample data
is available, the algorithm converges to a satisfactory solution
within this neighborhood. However, in cases of limited data,
the solution of (2) with 7 = 0 may be inadequate. In such
situations, inter-cluster learning becomes crucial, allowing the
proposed algorithm to achieve higher accuracy, as demon-
strated in Section V. By exploiting inter-cluster learning, the
algorithm effectively overcomes the limitations imposed by
scarce data, leading to improved performance.

IV. PRIVACY ANALYSIS

This section focuses on quantifying the local privacy
protection provided by the proposed PGFL algorithm. To
achieve this, we begin by calculating the lo-norm sensitivity,
which quantifies the variation in output resulting from a
change in an individual data sample. Once we have established
the lo-norm sensitivity, we proceed to adjust the noise variance
added to the primal variables, ensuring satisfactory protection.

Definition. The l5-norm sensitivity is defined by

(n) (n) H

Wi D, — Wi,D, (42)

(n) _

A3 = pax |
where W](:I))k and W,E%L denote the local primal variables
obtained from two neighboring data sets Dy and D;, which
differ in only one data sample.



Assumption 3. The functions {(-), k € C, have bounded
gradients. That is, for k € C there exists a constant C}, such
that ||[VL:.()|| < C
Lemma 1. Under Assumption 3, the ly-norm sensitivity for a
client k is given by

() _ () QCk

A" = max [lwi") —wi || =

max (43)

Proof. We consider two neighboring data sets for a client k,
Dy, and Dy, both of cardinality Dy. For simplicity, we assume
that they differ on the last data sample. We denote W](an)) the

model obtained using the initial data set, and w,(C 1)) the model
obtained using the alternative data set. Those are obtained,

according to (4), by:

Dy,

w’(:) _argrmn—z:ﬁlC Xis Yk,is W) + |2\S|R(w)
W D wi”(q)”> + 2w WV
W,(;%l argmm C 9| R(w)
1 Dy —1
+ Dj( Z (X iy Yio,is W) +fk(X;€)Dk,y;c,Dk;w))
) e

Using (26), that we recall:

(n) (n—1) (n—1) _

wy = w )+ p«p VW), @4
we can derive:
W'D, — Wi || = (45)

HM(V&(Xk,Dk,yk,Dk;w;c) - V@k(xgka,y;’Dk;wk))H ’

which, under Assumption 3, provides a value for the /5-norm
sensitivity:
2Ck

max

. (n) ||
Di,Dy

Wi D, (46)

| |wk7%k
O

With the ls-norm sensitivity, we can establish the relation
between the noise variance added in (12) and the privacy
parameter gf),ﬁm as well as prove the privacy guarantee of the
algorithm in terms of zCDP.

Theorem IIl. Under Assumption 3, PGFL satisfies dynamic
(n)—zCDP with the relation between the privacy parameter
and the perturbation noise variance given by

2(n)
A
9 ¢§€n)
Proof. For any client k and iteration n, the perturbed primal
update is obtained with (12). That is, it is equivalent to v"\'/,(cn) ~

N (W](Cn), 5,3(")1). The result in [36, Proposition 6], states that a
sensitivity-A query ¢ releasing an output N'(g(z), §%) from an

5]3(”) _

(47)

input z satisfies (A2?/26%)—2C D P. Thus, the PGFL algorithm

~ ic o™ ith (") — Aks
satisfies the dynamic ¢; *-zCDP with ¢, = IDR O
k

Theorem III gives the relationship between the noise
perturbation variance and the privacy protection at a given
iteration. Since the proposed algorithm is iterative in nature
and models are exchanged several times with the servers, one
should consider the total privacy loss throughout the learning
process. To this aim, we establish the following theorem.

Theorem IV. Under Assumption 3 and for a final iteration
N, the PGFL algorithm satisfies ¢'*"-zCDP throughout the
entire computation for each client k, with qﬁf’“l given by

N
¢§§"al _ Z ¢](Cn)

n=1

(43)

Proof. This theorem results from the use of [36, Lemma 7]
N times over. O]

V. NUMERICAL SIMULATIONS

This section illustrates the performance of the proposed
PGFL algorithm for solving regression and classification tasks.

A. Experiments for Regression

We consider a graph federated network consisting of |S| =
10 servers, each having access to |Cs| = 15 clients, for
a total of |C| = 150 clients. The set of servers and their
communication channels form a random connected graph
where the average node degree is three. Each client has access
to a random number of noisy data samples between Dy = 2
and D, = 9, each composed of a vector x;; of dimension
d = 60 and a response scalar y; ;. Doing so, each cluster
is globally observable but not locally at any given client or
set Cs, s € S. The servers implement random scheduling of
clients to reduce the communication load [49]. In particular,
at every global iteration, each server randomly selects a subset
of three clients to participate in the learning process.

The clients of the network are randomly split between @) =
3 clusters. Clients of a given cluster solve the ridge regression
problem with data generated from an original model w(*q ,
obtained with w(,, = w( 4 ywg with v ~ U(70.15,O.15§,
where w{ is a base model. In doing so, the learning tasks
of different clusters share the same objective functions but
have different, albeit related, data distributions. The loss and
regularizer functions are given by

Ce(Xn, yis Wi) = [lye — Xewi||?,

R(wy) = ||wg|>. (49)

Performance is evaluated by computing the normalized
mean squared deviation (NMSD) of the local models with
respect to the corresponding cluster-specific original model
used to generate the data, w(*q) for k € C(y). It is given by:

SEEES 55>

q=1 kGC(q)

(") *
Wi = w

2
(q) ‘

2, (50)

ol



where the result is averaged over several Monte Carlo it-
erations. The proposed algorithm is compared with various
existing algorithms. The ClusterFL algorithm, defined in [50],
implements conventional personalized FL with inter-cluster
learning. For a fair comparison, the ClusterFL algorithm
has been modified to leverage similarity among tasks in the
same manner as the PGFL algorithm. The GFL algorithm,
defined in [5], implements single-task graph FL in a privacy-
preserving manner. To ensure a fair comparison, the ClusterFL
and GFL algorithms have been modified to ensure privacy in
the same manner as the PGFL algorithm. Furthermore, the
algorithms are set to observe the same initial convergence rate
whenever possible. For most experiments, the learning curves
are displayed as plots of the NMSD versus the iteration index.

We first consider an ideal setting wherein all algorithms are
evaluated without privacy considerations (£ (n) — 0, Vn)) and
client scheduling. In this scenario, the inter-cluster parameter
7(") of the PGFL algorithm was kept fixed throughout the
learning, specifically, 70 = 0 and 7(™) = 0.4. Figure 1
shows the learning curves for the GFL, ClusterFL, and PGFL
algorithms. The results illustrate the superiority of the pro-
posed PGFL algorithm over GFL, as cluster-specific learning
tasks benefit significantly from personalized models tailored
to each cluster. We also see that incorporating inter-cluster
learning results in improved convergence speed and steady-
state accuracy. Furthermore, the performance of the ClusterFL
algorithm is notably poor in this setting, emphasizing the
importance of using the graph federated architecture when
data is scarce. Leveraging the model similarities improves
learning speed and accuracy by compensating for data scarcity.
In addition, isolated servers whose clients lack sufficient data
to achieve satisfactory accuracy independently reinforce the
necessity of the graph federated architecture.

Next, we modify the setting to incorporate client scheduling
and evaluate the aforementioned algorithms with reduced
communication load. Figure 2 shows the learning curves
for the GFL, ClusterFL, and PGFL algorithms with client
scheduling. In this figure and the ones below, 3 clients out
of 15 are randomly selected to participate by each server at
every iteration, reducing the communication load by 80% for
every algorithm. We observe that the PGFL algorithm exhibits
slower convergence and higher steady-state NMSD when
utilizing client scheduling. And we note that GFL performs
better with client scheduling. The performance degradation
for the PGFL algorithm is due to the lower client participation
resulting in a smaller quantity of data being utilized. The better
performance of GFL in this setting is due to the imbalance of
cluster representation in the universal model, which benefits
the participating clients on average.

Finally, we evaluate the aforementioned algorithms in a
setting with client scheduling and privacy protection. All of the
algorithms utilize zCDP with the noise perturbation presented
in (12) and the parameters qb,(f) = 0.001,Vk and ¢ = 0.99.
Hence, all the algorithms satisfy ¢i"!-zCDP throughout the
computation with q’)f,i“a' = 0.095,Vk. Figure 3 shows the
learning curves for the GFL, ClusterFL, and PGFL algorithms
with client scheduling and privacy. We observe that the noise
perturbation associated with differential privacy significantly
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Fig. 1: Learning curves of the PGFL algorithm with a fixed
inter-cluster learning parameter and the FedAvg algorithm,
without client scheduling or privacy.
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reduces the convergence speed of all the simulated algorithms.
However, we note that the NMSD after 300 iterations is nearly
identical to the one in Fig. 2. This behavior is explained by the
use of zCDP, in which the variance of the noise perturbation
starts high and decreases linearly throughout the learning
process.

Further, we illustrate the importance of carefully choosing
the value of the inter-cluster learning parameter. In Fig. 4,
we simulated the proposed PGFL algorithm for various fixed
7(") values and displayed the NMSD after 200 iterations.
For instance, the NMSD for 7(") = 0.4 corresponds to the
result obtained in Fig. 3. This figure confirms that inter-cluster
learning has the potential to increase learning performance
by alleviating data scarcity, as the PGFL algorithm achieves
lower NMSD with 7(™) € (0.1,0.5) than with 7(") = 0. It
also shows that the inter-cluster learning parameter must be
carefully selected, as a value too large for the setting leads to
performance degradation.

We then illustrate an alternative use of inter-cluster learning.
For this experiment, the difference between the data distribu-
tion of the different clusters has been increased. Precisely,
the datasets were simulated with the models obtained by
W) = Wo + ywo with v ~ U(-0.5,0.5). The learning
curves are presented in Fig. 5. We observed that, because of
the higher cluster dissimilarity, inter-cluster learning degrades
steady-state NMSD; this is observed in the learning curves for
PGFL with 7(") = 0 and 7(") = 0.4. However, by mitigating
data scarcity within a cluster, inter-cluster learning improves
the initial convergence rate. To benefit from an improved
initial convergence rate and avoid steady-state performance
degradation, it is possible to reduce the inter-cluster learn-
ing parameter progressively. Doing so, the PGFL algorithm
with time-varying 7(") = 0.4 x 0.98" has the same initial
convergence rate as the PGFL algorithm with fixed 7 = 0.4
and attains near-identical steady-state NMSD as the PGFL
algorithm with fixed 7 = 0.

Finally, we study the impact of privacy protection on the
steady-state NMSD of the PGFL algorithm. Fig. 6 shows
the NMSD after 200 iterations versus the initial value of the
privacy parameter ¢ for a decaying rate of ¢ = 0.99. Note
that, as seen in Theorem III, a lower value of ¢y ensures
more privacy. We observe that for smaller values of ¢g, the
steady-state NMSE of the PGFL algorithm is higher. In fact,
a lower total privacy loss bound leads to higher perturbation
noise variance and diminishes the learning performance of
the algorithm. Similarly, Fig. 7 shows the NMSD after 200
iterations versus the variance decrease rate ¢ for an initial
privacy value of ¢y = 0.001. The lower the decrease rate,
the faster the privacy protection weakens, and the lower the
steady-state NMSE of the algorithm as more information is
exchanged among clients. On the other hand, a decrease rate
close to 1 ensures better privacy protection but comes at the
cost of lower accuracy.

B. Experiments for Classification on the MNIST Dataset

The following experiments were conducted on the MNIST
handwritten digits dataset [51]. In those experiments, the
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learning tasks of the clients associated with different clusters
share the same data but have different, related, objective
functions. The structure of the server network, as well as the
number of clients per server, are identical to the experiments
for regression. In the following experiments, the clients of
a given cluster use the ADMM for logistic regression to
differentiate between two classes. The loss function for the
logistic regression is given by

Dy,
log[Ck (X, yks wi)] = D Z(y’“ log[yp ;]

i=1

+ (1 = yg,qi) log[1 — yﬁc,z—])7 (51

with

1
- . 52
yk,’b 1 +eXp(7W;I;Xk»L) ( )

We simulated the PGFL algorithm in the context of clas-
sification with client scheduling, privacy, a fixed inter-cluster
learning parameter 7("™ = 7 = 0.4, and without inter-cluster
learning 7("™) = 0. Figure 8 shows the test accuracy versus
iteration index in a setting where the clients of a given cluster
must differentiate between two classes composed of a single
digit. Each client receives between D = 2 and Dy = 4
data samples composed of two MNIST images. The clients of
cluster 1 have access to images of the digits {1} and {8}.
The clients of clusters 2 and 3 have access to images of
the digits {1} and {9}, and {7} and {8}, respectively. Given
that the clients of different clusters must differentiate between
different digits, the similarity between the learning task is
limited. Nevertheless, we observe that inter-cluster learning
does improve the accuracy of the PGFL algorithm in this
setting.

Further, we modified the setting so that the clusters exhibit
more similarity. Figure 9 shows the test accuracy versus
iteration index in a setting where the clients of a given cluster
must differentiate between two classes composed of triplets of
digits. Each client receives between Dy, = 6 and Dj, = 12 data
samples, each composed of two triplets of MNIST images.
The clients of cluster 1 must differentiate between the classes
{1,2,3} and {6, 7, 8}, the clients of cluster 2 between {1, 2, 3}
and {7,8,9}, and the clients of cluster 3 between {1, 2,3} and
{6,8,9}. We observe that, in this setting, inter-cluster learning
significantly improves the accuracy of the PGFL algorithm.

Finally, we utilize the previous setting and evaluate the
impact of the value of the inter-cluster learning parameter 7(™)
on the accuracy achieved by the PGFL algorithm in the context
of classification. Figure 10 displays the accuracy achieved
by the PGFL algorithm after 100 iterations versus the value
of the inter-cluster learning parameter in the context of the
classification task of Fig. 9. We observe that, in this setting
where the similarity among the learning tasks is high, medium
and large fixed values for 7(™ lead to significant accuracy
improvement. However, very large values lead to performance
degradation, similar to Fig. 4.
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C. Experiments for Classification on the MedMNIST Dataset

To demonstrate the proposed method of utilizing inter-
cluster learning to palliate data scarcity and improve learning
performance in real-life applications, two experiments are con-
ducted on the OrganAMNIST dataset, part of the biomedical
MedMNIST dataset [52]. The OrganAMNIST dataset contains
lightweight images of 11 different organs labeled by type. It
comprises more than 58000 data samples split into training,
validation, and testing data. We use the proposed method to
improve classification accuracy in the following setting. The
server network and the loss function are identical to previous
experiments; however, only three clients are associated with
each server, each client having access to two data samples.
In both experiments, clients of a given cluster are tasked
with differentiating between two types of organs. Different
clusters are associated with different pairs of organs, and inter-
cluster learning is utilized to improve classification accuracy
by leveraging the similarity between some of the organs.

In the first experiment, the three clusters are given similar
learning tasks. In particular, one of the elements of each pair
of organs is identical. Cluster 1 differentiates between the right
lung and the left lung, cluster 2 between the liver and the left
lung, and cluster 3 between the right kidney and the left lung.
Figure 11 shows the test accuracy versus iteration index. We
observe that a large amount of inter-cluster learning leads to
significantly improved performances, increasing classification
accuracy by about 5%.

In the next experiment, the learning tasks associated with
each cluster are less similar than in the previous experiment.
They share only the vague shape of the classified organs.
Cluster 1 differentiates between the spleen and the left lung,
cluster 2 between the left kidney and the bladder, and cluster 3
between the right kidney and the right lung. Due to the lower
cluster similarity, we utilize a decaying inter-cluster learning
parameter to preserve steady-state accuracy. Figure 12 shows
the test accuracy versus iteration index. We observe that a
medium decay rate of the inter-cluster learning parameter can
improve the learning speed, boosting classification accuracy
by about 2%.

VI. CONCLUSIONS

This paper proposed a framework for personalized graph
federated learning in which distributed servers collaborate with
each other and their respective clients to learn cluster-specific
personalized models. The proposed framework leverages the
similarities among clusters to improve learning speed and
alleviate data scarcity. Further, this framework is implemented
with the ADMM as a local learning process and with local
zero-concentrated differential privacy to protect the partici-
pants’ data from eavesdroppers. Our mathematical analysis
showed that this algorithm converges to the exact optimal
solution for each cluster in linear time and that utilizing inter-
cluster learning leads to an alternative output whose distance to
the original solution is bounded by a value that can be adjusted
with the inter-cluster learning parameter sequence. Finally,
numerical simulations showed that the proposed method is
capable of leveraging the graph federated architecture and
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the similarity between the clusters’ learning tasks to improve
learning performance.
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