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Problem Description

This study aims to develop a performance model of a distributed memory finite difference
solver for the Shallow Water Equations, quantify its potential for reducing communication
overhead, and test the model experimentally.
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Abstract

In this thesis, we focus on investigating the impact of varying border exchange thicknesses
for a proxy application. The amount of data in the exchanges impact the computational
load, and communication overhead. The proxy application is numerically solving the Shal-
low Water Equations, which are a set of partial differential equations that describe the flow
of water in a pressure surface.

We create a performance model using Bulk Synchronous Parallel model to analyze the
various costs attributed to the different states in the proxy application. We gather data for
sub-domains sizes ranging from 50 · 50 to, 1000 · 1000 with increments of 50 for varying
border exchange thicknesses of 1-20. The costs of the states are then used to predict the
calculation and communication time of the sub-domain size and border exchange thickness
configurations. The configurations that predict a performance benefit are experimentally
tested to see if the performance model is able to characterize the proxy application.

The results show that there are configurations where a speedup can be achieved, but
the performance model is lacking accuracy and needs further improvements to accurately
model the proxy application.
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Sammendrag

I denne avhandlingen fokuserer vi på å undersøke effekten av varierende tykkelser på kan-
tutvekslinger for en proxy-applikasjon. Mengden data i utvekslingene påvirker kostnaden
av beregningene og overheaden i forbindelse med kommunikasjon. Proxy-applikasjonen
løser gruntvannlikningene, som er en serie av partielle differensiallikninger som beskriver
vannstrømmen i en flate.

Vi lager en ytelsesmodell ved hjelp av Bulk Synchronous Parallel-modellen for å anal-
ysere de ulike kostnadene knyttet til de ulike tilstandene i proxy-applikasjonen. Vi samler
inn data for sub-domener fra 50 ·50 til 1000 ·1000, med en økning på 50 for hver størrelse,
og med varierende tykkelser på kantutvekslingen fra 1 til 20. Kostnadene for tilstandene
brukes deretter til å forutsi beregnings- og kommunikasjonstiden for hver kombinasjon av
sub-domenestørrelser og kanttykkelser. Konfigurasjonene som forutsier en ytelsesfordel,
blir eksperimentelt testet for å se om ytelsesmodellen er i stand til å karakterisere proxy-
applikasjonen.

Resultatene viser at det er konfigurasjoner der en hastighetsøkning kan oppnås, men
ytelsesmodellen modellerer ikke proxy-applikasjonen helt nøyaktig, og trenger videre
forbedringer.
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Chapter 1
Introduction

The Shallow Water Equations (SWE) are a set of partial differential equations used to
model the flow of water, such as waves and tides[3]. The equations can be solved nu-
merically by a proxy application using a finite difference method (FDM). FDM requires
neighboring values to compute, so we perform border exchanges to send the necessary data
between processes. It is interesting how the parallel computation of the sub-domains are
affected by varying the frequency of communication between the processes. This reduces
how often the application encounter the overhead of communication, but the trade-off is
that it also increases the computational load.

A performance model gives us the ability to identify configurations where a speedup
can be achieved. These configurations can then be tested by the proxy application.

The goal of the thesis is to create a proxy application solver for the SWE using a FDM,
create a performance model and identify how the varying frequency of border exchanges
affect the overall performance of the application.

1.1 Scope
In this thesis we develop a proxy application solving the SWE using a Lax-Friedrich
Scheme. It is parallelized in a horizontal topology using Message Passing Interface(MPI).
The performance model is created by evaluating the cost of each super-step in the proxy
application, which is done by gathering data for various sub-domains and border exchange
thicknesses. The gathered data provide estimates of the overall run-time and performance
benefits for certain sub-domains sizes and border exchange thicknesses. We run the proxy
application to verify if the performance model’s prediction is achievable. The tests are
run on the Idun cluster, provided by Norwegian University of Science and Technology
(NTNU), and Fram and Betzy clusters, provided by UNINETT Sigma2.
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1.2 Structure
The remainder of this thesis has the following structure:

• In Chapter 2 we present the background material for SWE, FTCS, Lax-Friedrichs
Scheme, Message Passing Interface (MPI), Bulk-Synchronous Parallel(BSP), en-
abling overlap between communication and computation, and reducing the commu-
nication overhead.

• In Chapter 3 we explore the states of the proxy application, and how they handle the
varying border exchange sizes.

• In Chapter 4 we explain the performance model, the various benefits and downside
of varying the border exchange thickness, how we gather data for the performance
model, and how we inspect the data.

• In Chapter 5 we introduce the HPC clusters and the experimental setup for the proxy
application and performance model.

• In Chapter 6 we compare the results of the performance model to the proxy applica-
tion tests.

• Finally, we summarize our conclusion and topics for future work in Chapter 7.
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Chapter 2
Background

In this chapter the background material is presented. We present a numerical solution of
the SWE using Lax-Friedrichs Scheme, introduce the Message Passing Interface, Bulk
Synchronous Parallel model, LogGP model, explain how we enable overlap between com-
putation and communication, and how we can reduce the communication overhead in the
proxy application.

2.1 Shallow Water Equations
The Shallow Water Equations (SWE) (2.1) - (2.3) are a set of partial differential equations
that describe the flow of water in a pressure surface. The SWE are characterized by that
the vertical dimension is smaller than the horizontal dimension for the grid. They are often
used to model oceans, and rivers to predict tides, and currents[3].

∂(ρη)

∂t
+

∂(ρηu)

∂x
+

∂(ρηv)

∂y
= 0 (2.1)

∂(ρηu)

∂t
+

∂

∂x
(ρηu2 +

1

2
ρgη2) +

∂(ρηuv)

∂y
= 0 (2.2)

∂(ρηv)

∂t
+

∂(ρηuv)

∂x
+

∂

∂y
(ρηv2 +

1

2
ρgη2) = 0 (2.3)

where

• u is the velocity in the x direction.

• v is the velocity in the y direction.

• g is acceleration of gravity.

• ρ is the fluid viscosity.

• η is the height (z axis).
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In this thesis the computations use a single fluid viscosity where ρ = 1. The equations
can therefore be simplified with Equation (2.4).

H = ρη (2.4)

The three Equations (2.1) - (2.3) can be simplified using Equation (2.4), which gives
us Equations (2.5) - (2.7):

∂(H)

∂t
= −∂(Hu)

∂x
− ∂(Hv)

∂y
(2.5)

∂(Hu)

∂t
= − ∂

∂x
(Hu2 +

1

2
Hgη)− ∂(Huv)

∂y
(2.6)

∂(Hv)

∂t
= −∂(Huv)

∂x
− ∂

∂y
(Hv2 +

1

2
Hgη) (2.7)

2.1.1 FTCS
Solving the Shallow Water Equations with the finite difference method converts the prob-
lem domain to a grid of uniformly distributed points. By using Forward Time Central
Space[4], we can rewrite the Shallow Water Equations expressions so that they use the
points of neighboring grid values to approximate next-step values. We change the left side
of the Equation (2.5) - (2.7) to utilize Forward Euler[5], and the right side with a finite
central difference stencil method. This gives the following Equations (2.8) - (2.10).

Ht+1
x,y −Ht

x,y

∆t
= −

(Hu)tx+1,y − (Hu)tx−1,y

2∆x
−

(Hv)tx,y+1 − (Hv)tx,y−1

2∆y
(2.8)

(Hu)t+1
x,y − (Hu)tx,y

∆t
= −

(Huv)tx,y+1 − (Huv)tx,y−1

2∆y
− (2.9)

(Hu2)tx+1,y − (Hu2)tx−1,y +
1
2 (Hgη)tx+1,y − 1

2 (Hgη)tx−1,y

2∆x

(Hv)t+1
x,y − (Hv)tx,y

∆t
= −

(Huv)tx+1,y − (Huv)tx−1,y

2∆x
− (2.10)

(Hv2)tx,y+1 − (Hv2)tx,y−1 +
1
2 (Hgη)tx,y+1 − 1

2 (Hgη)tx,y−1

2∆y

where

• superscript (t) is for the current time-step (known value).

• superscript (t+1) is for the next-step approximate value.

• subscript (x, y) is for the value at position (x, y) in the grid.

4



2.1 Shallow Water Equations

Finally, the ∆t, Ht
x,y , (Hu)tx,y and (Hv)tx,y can be moved to the right side of the equa-

tion, creating Equation (2.11) - (2.13), which calculates the mass, velocity in x-direction
(u) and velocity in y-direction (v), using values from the previous time-step. Because we
are working with a uniformly distributed grid, we can substitute ∆x = ∆y = h. All the
equations estimate next-step values in the grid by using the known values of the current
time-step.

Ht+1
x,y = Ht

x,y −∆t[
(Hu)tx+1,y − (Hu)tx−1,y

2h
+

(Hv)tx,y+1 − (Hv)tx,y−1

2h
] (2.11)

(Hu)t+1
x,y = (Hu)tx,y −∆t · [

(Huv)tx,y+1 − (Huv)tx,y−1

2h
+ (2.12)

(Hu2)tx+1,y − (Hu2)tx−1,y +
1
2 (Hgη)tx+1,y − 1

2 (Hgη)tx−1,y

2h
]

(Hv)t+1
x,y = (Hv)tx,y −∆t · [

(Huv)tx+1,y − (Huv)tx−1,y

2h
+ (2.13)

(Hv2)tx,y+1 − (Hv2)tx,y−1 +
1
2 (Hgη)tx,y+1 − 1

2 (Hgη)tx,y−1

2h
]

2.1.2 Lax-Friedrichs Scheme
Forward Time Central Space is not numerically stable for the two-dimensional Shallow
Water Equations. To ensure numerical stability, we can replace the Ht

x,y , (Hu)tx,y and
(Hv)tx,y of the Forward Euler formulation in Equations (2.8) - (2.10) with the spatial
average as shown in Equations (2.14) - (2.16), called the Lax-Friedrich Scheme.

Ht
x,y =

Ht
x+1,y +Ht

x−1,y +Ht
x,y+1 +Ht

x,y−1

4
(2.14)

(Hu)tx,y =
(Hu)tx+1,y + (Hu)tx−1,y

2
(2.15)

(Hv)tx,y =
(Hv)tx,y+1 + (Hv)tx,y−1

2
(2.16)

By inserting the replacements of Equations (2.14) - (2.16) in Equations (2.11) - (2.13)
we get Equations (2.17) - (2.19), which estimate the next time-step value for the mass, ve-
locity in the x-direction and velocity in the y-direction for the SWE using a Lax-Friedrichs
Scheme.
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Ht+1
x,y =

Ht
x+1,y +Ht

x−1,y +Ht
x,y+1 +Ht

x,y−1

4
− (2.17)

∆t[
(Hu)tx+1,y − (Hu)tx−1,y

2h
+

(Hv)tx,y+1 − (Hv)tx,y−1

2h
]

(Hu)t+1
x,y =

(Hu)tx+1,y + (Hu)tx−1,y

2
−∆t · [

(Huv)tx,y+1 − (Huv)tx,y−1

2h
+ (2.18)

(Hu2)tx+1,y − (Hu2)tx−1,y +
1
2 (Hgn)tx+1,y − 1

2 (Hgn)tx−1,y

2h
]

(Hv)t+1
x,y =

(Hv)tx,y+1 + (Hv)tx,y−1

2
−∆t · [

(Huv)tx+1,y − (Huv)tx−1,y

2h
+ (2.19)

(Hv2)tx,y+1 − (Hv2)tx,y−1 +
1
2 (Hgn)tx,y+1 − 1

2 (Hgn)tx,y−1

2h
]

2.2 Boundary conditions
When calculating within a grid, it is necessary to define how the system reacts when the
edges of the grid are encountered. In this simulated environment, we use Neumann bound-
ary conditions to preserve the energy of the simulation by reflecting the energy back into
the domain[6].

2.3 Message Passing Interface
From Flynn’s taxonomy, our paper’s experiment is conducted using the MIMD category
[7]. The processes are responsible for computing their sub-domain, performing communi-
cation, and verifying successful message transmissions. We use the Message Passing In-
terface (MPI) to facilitate data transfer and computation across multiple processors (MPI
ranks).
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2.3 Message Passing Interface

Figure 2.1: A representation of an interconnection network [1].

MPI [8] is an interface for sending messages between computing MPI ranks. This
can be within a CPU or across clusters with several nodes. There were a lot of existing
solutions during the 90s with different syntax and semantics, which made it so that ex-
periments had to be re-implemented for different architectures[1]. The Message Passing
Interface was created by the HPC community and vendors to make a standard for how pro-
grams interacted, which increased the portability of HPC applications across architectures.
This interface is used for the proxy application in Chapter 3, and provides parallelism be-
tween the computer nodes[9].

2.3.1 Blocking MPI calls

MPI has the following blocking calls for sending and receiving data between compute
nodes: MPI Send([...]) and MPI Recv([...]). These are blocking communication
calls. When MPI Send is executed, the program pauses until the corresponding MPI Recv
verifies that the source buffer safely can be modified.

7



Chapter 2. Background

2.3.2 Non-blocking MPI calls
The MPI calls: MPI Isend([...]) and MPI Irecv([...]) are non-blocking calls
[8]. In contrast to the blocking MPI calls, these only initiate the message transmission,
and do not guarantee that it is safe to modify the data. The program continues to run,
and can potentially access unsafe buffers. One of the arguments of the MPI Isend and
MPI Irecv is a MPI Request handle, which can be used to verify that the message
transmission is complete. This request handle is verified using a MPI Wait or MPI Test
call [8].

2.4 Bulk Synchronous Parallel Programming Model
The BSP model[10] is a parallel computing model that aims to simplify the relation of
hardware and software for parallel computing. For our purpose, the SWE domain is di-
vided into sub-domains for each MPI rank. This model consists of three steps:

1. Computing The data that are processed are located in the process’ local memory
and are computed without interference.

2. Communicating the required data so that the next 1) step safely can compute.
This step is usually performed by a router or network hardware, which offloads the
communication so that the CPU can perform other tasks [11].

3. Synchronize Ensures that all communication has been successfully transmitted
and that all processes are ready to start again.

One cycle of these steps are called a super-step. The cost of each super-step is defined
with Equation (2.20).

p
max
i=1

(wi) +
p

max
i=1

(hig) + l (2.20)

where

• wn = local computation cost of MPI Rank.

• hn = number of messages sent by the MPI Rank.

• g = message delivery cost.

• l = synchronization cost.
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2.5 LogGP Model
The LogGP model[12], an extension of the LogP model[13], is used to predict the perfor-
mance of communication in parallel computing. Unlike the LogP model, which does not
consider the gap time between longer messages (G), the LogGP model incorporates this
factor. The five parameters are of the LogGP model are:

• L is the latency of the transmission. It represents the time it takes for a message to
travel through the network. It is usually modeled after the worst-case scenario.

• o is the overhead. This represents the time the CPU is unavailable to perform other
tasks. During this time, it is occupied with designating send and receive buffers
and initializing communication. This overhead can be different for the sending and
receiving process.

• g is the gap time between multiple messages sent in bursts. It represents the time
between consecutive messages.

• G is the gap time between individual bytes in messages.

• P is the number of processes involved in the communication. For this paper, this is
two, since we are using one-to-one communication for the border exchanges.

2.6 Border exchange
The finite difference solution of the Shallow Water Equations requires neighboring cells to
compute the value for the next time-step. The proxy application we develop in this thesis
use MPI to split the problem domain into a sub-domain for each MPI rank. The Figure 2.2
shows how each MPI rank receives data from the neighboring sub-domain though border
exchange[14]. It illustrates how the MPI ranks send their colored edge, and it is received
by the neighboring MPI rank. The MPI ranks send the data to the neighbors every Hth
iteration, where H represents the thickness of each border in the halo. The example in
Figure 2.2 has a thickness of one, so only a single row is sent for each communication.
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Figure 2.2: Two MPI ranks sending and receiving the necessary halo data to calculate their edges.

2.7 Overlap between communication and computation
By using non-blocking communication, mentioned in Section 2.3.2, it is efficient that the
MPI rank can calculate unrelated data as the network hardware is completing the message
transmission. Figure 2.3 shows how the CPU is only busy for a certain amount of time
(overhead) before it is able to continue unrelated computation. By enabling the proxy ap-
plication to have enough unrelated data to calculate, we can improve performance of the
proxy application, and reduce its bandwidth requirements[15].

The CPU is then only busy with setting up the message transmissions before it is of-
floaded to the NIC, which used RDMA to store the data. This is necessary to achieve a
benefit from the overlap and can be regarded as hardware parallelism. [11].
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Figure 2.3: Communication scenario with and without overlap [2].

2.8 Reduce communication overhead
From the LogGP model[12] we know that the time it takes for messages of size k to travel
from one processor to another is defined by Equation (2.21).

osend + (k − 1)G+ L+ oreceive (2.21)

We also know that the processors are only busy during the overhead if they are able to
overlap computation and communication. So if overlap is achieved, the time a processor
is busy when sending or receiving a message is osend or oreceive.

By reducing how often we initiate border exchanges, we can:

• Reduce the amount of times the overhead (o) is encountered for the receiving and
sending processor.

• Reduce the delay of the latency (L) if we are not able to overlap communication and
computations.

• Keep the same amount of gap time between bytes (G) in total, as we are sending the
same amount of data in total.

• Reduce the gap time between messages (g), because we are sending fewer messages
in total.

The trade-off of is that each MPI rank has to store more border exchange data, as
seen in Figure 2.6, and these additional data also have to be computed. To have an overall
performance benefit, it is necessary that the reduction of overhead(o) and gap time between
messages (g) is bigger than the increase in computational load.
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Chapter 3
Proxy Application

In this thesis we develop a proxy application solving the SWE equations using a FDM
with Lax-Friedrichs Scheme. It starts out with an initial wave and because of the artificial
viscosity of the Lax-Friedrichs Scheme the energy in the grid is reduced as the iterations
accumulate. Along the edges of the domain, the energy is reflected back into the model
using Neumann boundary conditions [6].

In this chapter we illustrate how the proxy application works. First we describe the
initial condition, followed by different states of the application, and how they handle the
varying border exchange thickness. The states have a different amount of workload for
each super-step depending on the border exchange thickness.

As seen in Figure 2.2, the following parts of a sub-domain refers to:

• Border is the outer edge of the grid where data are received from neighboring MPI
ranks. These are the data we receive from the border exchange, also referred to as
halo data.

• Edges are the data which will be sent to neighboring MPI ranks. These are the data
we are sending using border exchanges. The amount of data sent varies depending
on the thickness of the border.

• Core refers to the data between the edges. The calculation of these data can be
overlapped with the border exchange.

The application is designed to calculate a sub-domain of the Shallow Water Equations
for a specified number of iterations. The flowchart in Figure 3.1 provides an overview of
the states of the application.
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Figure 3.1: Flowchart representation of the proxy application.
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3.1 Initial condition

3.1 Initial condition
The initial SWE domain is the cosine function in Equation (3.1). The frequency varies
by the domain width. Figure 3.2 and Figure 3.3 is a visual verification that the border
exchanges and stencil computations are correct.

width∑
j=1

10 + 3 · cos(j · π

width/4
) + 1 (3.1)

where

• 10 is the sea-floor.

• 3 is the amplitude.

Figure 3.2: SWE wave starting position.
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(a) (b)

(c) (d)

Figure 3.3: SWE wave after 80(a), 180(b), 280(c), and 380(d) iterations using 20 rows for the border
exchange.
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3.2 Application states

The proxy application completes several states for each loop, as seen in Figure 3.1. The
following variables are used in the thesis:

• Iterations are the number of times the domain is calculated.

• Time-step is a reference to certain iteration within a super-step as seen in Figure 3.5,
and Figure 3.6.

• H is the border exchange thickness, and can vary to reduce the frequency of border
exchanges.

• Super-steps are the number of times we perform each state. This ratio is iterations
H .

Figure 3.4: Varying workload for each application state depending on the border exchange thickness
(H).

The workload of each of states in each super-step varies by the border exchange thick-
ness. As seen in Figure 3.4 the edge calculation state is calculating H time-steps before
the border exchange is initiated. Then the core calculation will finish the sub-domains that
the edge calculation started on, before the communication finally is verified. Because one
time-step corresponds to one iteration, we see that in flows where the super-step is H, we
calculate H iterations of the sub-domain by only initiating one border exchange sequence.
By only sending this one border exchange for larger H’s we intend to reduce the overall
communication overhead.
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3.2.1 Edge calculation

The edge calculation state is responsible for computing the halo data which are received,
and the edges so that it can be sent to neighboring MPI ranks. The halo data are used
to calculate the edges for a specific number of iterations ahead, where the number of
iterations ahead is equal to the thickness of the border rows. Figure 3.5 shows an example
with a border thickness of 3.

Compared to a super-step that communicates every iteration, there will be an additional
cost for some of the received data. Figure 3.5 visualizes how we calculate sub-domain, but
the first and second time-step add 2 and 1 extra rows respectively for each edge. This is
the additional cost of this implementation.

All the data are stored in an array for their time-step. Therefore, the application re-
quires that there is enough memory to store the float values for all the time-step arrays. It
is always H + 1 arrays, one for the initial data, and one for each time-step, as visualized
in Figure 3.5, and Figure 3.6.

18
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Figure 3.5: Visualizes how the edges are calculated 3 time-steps ahead.

3.2.2 Border exchange

After the two edges are calculated, they can be sent to the neighboring MPI ranks. As
described in Section 2.7, the CPU will be busy with for a certain amount of time (over-
head) before the transmission is offloaded to the network hardware. By varying the border
exchange thickness, the frequency and amount of data we send change. In Figure 3.5 and
Figure 3.6 we send three rows, but only every 3rd iteration.
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3.2.3 Core calculation

While the halo rows are being calculated in Figure 3.5, the MPI ranks can continue calcu-
lating the core data while the borders exchanges are completed by the network hardware.
Figure 3.6 shows how the green core data fields are calculated. They have all the neces-
sary data from the previous time-step toestimate the grid cells of the next one. Combined
with the blue fields which were calculated in the edge calculation state, we are left with a
complete sub-domain for each time-step grid, seen in Figure 3.6.

Figure 3.6: Demonstrates how the core calculation state fills up the time-step arrays until they
contain a complete sub-domain.
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3.2.4 Border exchange verification
After the last iteration of the core calculations state is complete, it is necessary to verify
that the halo data from the border exchanges are safe to modify. When verified, the entire
cycle repeats until the desired number of iterations are reached, as visualized in Figure 3.1.
By verifying all the border exchanges, the application is inderectly synchronized, and all
MPI ranks will start the next super-step at approximately the same time.

Figure 3.7: Shows how the data sent in Figure 3.5 and data combined in Figure 3.6 makes up the
new initial data set for the next super-step.

In this chapter we have explained how our proxy application calculates the data for
border exchanges H time-steps ahead before it initiates border exchanges, how those data
are stored in arrays for their respective time-steps, and how the core calculation state cal-
culates the remaining data for each time-step.
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Chapter 4
Performance Model

In this chapter we look at the theory of the various computational and communicative costs
of the application, how we gain a speedup of the proxy application, how we gather the data
for the model, and how the data is inspected.

The proxy application is modeled using the costs of the various application states,
which is done by gathering data for various sub-domain sizes and border exchange thick-
ness combinations. Then we analyze how the cost of the various states affect the overall
performance of the application.
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4.1 Variable definitions

Table 4.1 describes the variables and what they represent throughout this thesis. All tim-
ings are recorded in units of seconds.

Variable Description
s Super-step as defined in Section 2.4.
R The run-time for a desired number of iterations.
Scost The total cost of a super-step. As defined in the BSP model.
H The number of border exchange rows sent and received for each super-step.
w The width of sub-domain.
h The height of the sub-domain.
Ep The number of stencil points in the edge calculation state per super-step. Visual-

ized in Figure 3.5.
Et The time it takes for the CPU to do the edge calculation state for each super-step.
Ea The time used to calculate the additional stencil points of our implementation for

each super-step.
Cp The number of stencil points in the core calculation state per super-step. Shown

in Figure 3.6.
Ct The time it takes for the CPU to do the core calculation state for each super-step.
co The overhead when calculating stencil points for the CPU. This is influenced by

memory, caching and context-switching.
cstencil The speed of which the CPU is able to calculate stencil points per second.
Bs This represents the time during which the CPU is busy initiating communication

and creating buffers for the border exchange during each super-step.
Br The time the CPU is busy setting up the receiving end of the non-blocking com-

munication for the border exchange during for each super-step.
Bv The time the CPU is busy ensuring that the sent and received data can be accessed

safely. This can be higher if overlap between communication and computations
is not achieved.

B Bs +Br +Bv

Bb The blocking communication time for the border exchanges.

Table 4.1: Overview of performance model terms.

4.2 Theory

From the LogGP model[12], there is an overhead cost associated with transferring data
between MPI ranks. To reduce this overhead, we can reduce the frequency of commu-
nication. This is achieved by sending a larger amount of data, allowing each process to
complete several iterations of the sub-domain for each border exchange. To accomplish
this, we increase the number of halo rows exchanged during each border exchange. This
comes with additional rows added to the sub-domain size, as explained in Section 4.2.1.3.
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4.2 Theory

By utilizing the BSP model described in Section 2.4 as a starting point, our focus is on
evaluating how different border exchange thicknesses affect the cost of each super-step.
The total number of super-steps is determined by Equation (4.1).

s(H) =
iterations

H
(4.1)

If we aim to complete 2520 iterations of our SWE domain, the corresponding number
of super-steps (s) for each border exchange thickness is presented in Table 4.2. This table
contains 10 super-steps, and the selected iteration count 2520 is the LCM of 1 to 10. In
this thesis we are using up to 20 border exchange rows, however the LCM for that number
approximately 20 · 106, so we have accepted inaccuracy on thicknesses greater than 10
instead.

Border Thickness, H 1 2 3 4 5 6 7 8 9 10
s(H) 2520 1260 840 630 504 420 360 315 280 252

Table 4.2: The ratio between iterations, border exchange thicknesses and super-steps.

With the BSP Equation (2.20) in mind, we can rewrite the following sections to account
for varying border exchange thicknesses (H). It is important to note that the variables in
the list below do not take the domain proportions into account.

• wn => Et + Ct

• hn => 3 · 2 Three messages for each SWE Equation and two for each edge.

• g => Bs +Br

• l => Bv Verifying border exchanges will indirectly synchronize all the MPI ranks.

MPI Wait ensures that buffers can be accessed safely, as explained in Section 2.3.2.
This is only possible when every process has completed its entire super-step. The formula
for cost of a super-step with halo thickness(H) is given by Equation 4.2.

Scost(H) = Et(H) + Ct(H) +B(H) (4.2)

To obtain the total run-time (R) of a desired number of iterations, the formula should
be multiplied by the number of super-steps.

R = Scost(H) · s(H) (4.3)
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4.2.1 Costs

4.2.1.1 Edge calculation cost

The edge calculation step (Et) in Section 3 varies by the width and border thickness. The
grid height of the edge calculations will increase by 2 with each iteration time-step. This
leads to Equation 4.4 for the edge calculation stencil points for each super-step. It is
important to note that the product 3 and 2 represents three Shallow Water Equations and
the number of edges for each process, respectively.

Ep(w,H) = 3
H∑

k=1

w · 2[H + 2(H − k)] (4.4)

The time it takes to calculate the stencil points depends on CPU speed, the overhead
of task switching which involves saving registers and memory maps and arithmetic oper-
ations involved in the varying loop sizes represented by the parameter k in Equation 4.4.
This gives us Equation (4.5).

Et(w,H) =
Ep(w,H)

cstencil + co
(4.5)

4.2.1.2 Core calculation cost

Core calculation speed is impacted by the width, height and border exchange thickness
for the super-step. The various time-steps within the super-steps will have various grid
sizes, as visualized in Section 3.6. The amount of core calculation stencil points for each
super-step is shown in Equation 4.6. The factor 2 represents the 2 edges for each process
in the horizontal topology.

Cp(w, h,H) =

H∑
k=1

w · [h− 2H − 2(H − k)] (4.6)

By factoring in the CPU overhead and computational speed, we get Equation (4.7)

Ct(w, h,H) =
Cp(w, h,H)

cstencil + co
(4.7)

4.2.1.3 Additional Stencil Points

When H > 1 there are additional rows added to the edge calculations on top and bottom
of the sub-domain, these are the additional costs of this proxy application implementation,
as seen in Figure 3.5. The additional cost for pre-calculating the data for a super-steps with
border thickness H, is seen in Equation (4.8). It is worth mentioning that the expression
2(H − k) is the same that is subtracted from the core calculation in Equation (4.6).

Ea(w,H) = 3

H∑
k=1

w · 2(H − k)

cstencil + co
(4.8)
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4.2.1.4 Border exchange costs

From Section 2.8 we know that sending and receiving a message when overlap is achieved
only makes the CPU busy during the overhead. Therefore, we can set the cost of sending
the border exchanges as seen in Equation (4.9), the cost of receiving the border exchanges
as seen in Equation (4.10), and the cost of verifying that the border exchange is complete,
defined as Bv .

Bs(H) = 6 ∗ osend(H) (4.9)

Br(H) = 6 ∗ oreceive(H) (4.10)

The total cost for the border exchange per super-step is then defined by Equation (4.11).

B(H) = Bs(G) +Br(H) +Bv(H) (4.11)

By conducting tests for each possible width, and border thickness, we are able to in-
clude the variations of the overhead, and capture parameters which might not overlap
during the border exchange.

4.2.1.5 Blocking communication cost

If the communication finished concurrently, MPI Wait should not have to wait for longer
than it takes to verify that the buffers can be accessed safely. To ensure that it does not
wait for communication to finish, the MPI ranks require enough unrelated work to do in
the core calculation state. Therefore, it is interesting to time how long a message uses from
process A to B. To accomplish this, we have timed the blocking communication pattern
for each width and border thickness combination (Bb).

4.2.2 Achieving speedup
To achieve an overall speedup of the application, the additional costs of the edge calcu-
lation, Equation (4.8), has to be smaller than the reduced cost of the border exchange
seen in Equation (4.12). The cost of the border exchanges and additional stencil points is
compared to the original border exchange cost when H = 1.

OverallCostChange(H) = s(H) ∗ [B(H) + Ea(w,H)]−B(1) ∗ s(1) (4.12)

4.3 Collecting data
To collect data, tests are conducted on the clusters to extract the calculation, and commu-
nication time for each of the involved MPI ranks. Table 4.3 shows the values used in the
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Variable Value
WIDTHS 50-1000
HEIGHTS 50-1000

HALO ROWS 1-20
INTERVAL 50

Table 4.3: List of the defined variables used in the data gathering.

data gathering. The INTERVAL is the increment of the WIDTHS and HEIGHTS between
tests.

The variables cstencil + co from Equation (4.5) and Equation (4.7) are not directly
collected in the data gathering process. We are gathering data for each combination of
width, height and border thickness, so the CPU overhead and computational speed are
included in the measurements.

4.3.1 Border exchanges

The border exchanges are performed by sending each of the SWE equation to the neigh-
boring processors’ subdomain, as seen in Algorithm 1.

Function BorderExchangeSend(width,H)
MPI Isend(SWE mass,width ∗H)
MPI Isend(SWE velocity X,width ∗H)
MPI Isend(SWE velocity Y, width ∗H)

End Function
Function BorderExchangeRecv(width,H)

MPI Irecv(SWE mass,width ∗H)
MPI Irecv(SWE velocity X,width ∗H)
MPI Irecv(SWE velocity Y, width ∗H)

End Function
Algorithm 1: Pseudo-code for border exchanges.

4.3.2 Blocking data gathering

Algorithm 2 illustrates how we collect the total blocking communication time ( Bb), men-
tioned in Section 4.2.1.5, for each of the domain and border thickness combinations. The
code block is timing the entire communication pattern with the neighboring MPI ranks.
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Function BlockingCommunicationTime()
for width in WIDTHS do

for H in HALO ROWS do
MPI Barrier()
start time←− time.now
BorderExchangeSend(width,H)
BorderExchangeRecv(width,H)
MPI Wait()
timing(width,H)←− time.now − start time

end
end

End Function
Algorithm 2: Pseudo-code for timing the blocking communication time of the border
exchanges.

4.3.3 Non-blocking data gathering
Algorithm 3 measures the border exchange costs for send (Bs), receive (Br) and wait
(Bv). Each timer is responsible for measuring the duration of the border exchange param-
eters associated with send, receive and wait. We are timing the MPI function calls for each
combination of width and border exchange thicknesses, and are not timing the LogGP pa-
rameters individually. The resulting data provide insights into how long the CPU is busy
sending, receiving and verifying the border exchanges for all the different widths and bor-
der thickness combinations.

Function BorderExchangeCost()
for width in WIDTHS do

for H in HALO ROWS do
MPI Barrier()
send time←− time.now
BorderExchangeSend(width,H)
send timing(width,H)←− time.now − send time
sleep()
recv time←− time.now
BorderExchangeRecv(width,H)
send timing(width,H)←− time.now − recv time
sleep()
recv time←− time.now
MPI Wait()
timing(width,H)←− time.now − start time

end
end

End Function
Algorithm 3: Pseudo-code for timing the border exchange costs.
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4.3.4 Edge data gathering
Algorithm 4 illustrates how edge calculation (Et) timings for all the widths and border
exchange combinations are measured.

Function EdgeCalculation():
for width in WIDTHS do

for H in HALO ROWS do
start time←− time.now
CalculateEdge(width,H)
timing(width,H)←− time.now − start time

end
end
return timing

End Function
Algorithm 4: Pseudo-code for retrieving the edge calculation time.

4.3.5 Core data gathering
Algorithm 5 shows how the core calculation (Ct) timings for all the widths, height and
border exchange combinations are measured.

Function CoreCalculation():
for width in WIDTHS do

for height in HEIGHTS do
for H in HALO ROWS do

start time←− time.now
CalculateCore(width, height,H)
timing(width,H)←− time.now − start time

end
end
return timing

end
End Function

Algorithm 5: Pseudo-code for retrieving the core calculation time.
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4.4 Analyzing data
The output files of the data collection process are analyzed by the performance model,
which is written in Python[16] programming language. Then the data is processed and the
averages, standard deviations and medians of the measurements, from Section 4.3, are ex-
tracted using NumPy[17]. Finally, we visualize the results using the Matplotlib library[18].

During the processing of the data, we sort the data by size, and the top 0.5% and lowest
0.5% of the measurements are removed. This has been implemented to eliminate extreme
values that influence the average of the data-sets. To estimate the total running time, we
use Equation (4.3).

Scost(H) = Et(w, h) + Ct(w, h,H) + Bs(w,H) + Br(w,H) + Bv(w,H)

Within the Et(w, h) we have the additional stencil computation cost for the super-step
as mentioned in Section 4.2.2, and the cost of the border exchanges and verification is
present in the Bs(w,H) +Br(w,H) +Bv(w,H) variables.

In contrast to the BSP model, this performance model does not use the maximum val-
ues of each super-step. Instead, it utilizes the averaged values of the data-sets to estimate
the total cost of the super-steps.

Algorithm 6 outlines the requirement to ensure that Ct(w, h,H) can overlap with the
border exchanges, as discussed in Section 2.7. It demonstrates that 10 percent margin
on top of the communication time ensures that the core calculation has enough data to
process. If the function returns False, then the result is marked as not suitable for a perfor-
mance benefit.

Function VerifyEnoughComputation(Ct, Bb, w, h,H)
if Ct(w, h,H) > Bb(w, h) ∗ 1.10 then

return True
else

return False
end

End Function
Algorithm 6: Pseudo-code verifying enough calculation time.
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4.4.1 Result tables
Appendix F, Appendix G and Appendix H shows how the output of the performance model
are displayed. There are a total of 8000 rows of result tables for each cluster. These can
be found in the attached files.

4.4.2 Manual data inspection
To ensure the validity of the data used in the performance model, we perform a manual
inspection. We inspect the box-plots of each of the collected timings to look for incon-
sistencies that could impact the prediction. For the following examples we have used the
data gathered for the Idun cluster with a sub-domain size of 150w and 900h. The graphs
for the other sub-domain sizes can be found in Appendix C, Appendix D and Appendix E.

4.4.2.1 Border exchange costs

In Figure 4.1, the border exchange send cost graph, the data is similarly grouped across the
varying thicknesses. Some of the data have substantially bigger boxes, but it is consistent
across the whole data set. It is important to note that the messages with a halo thickness(H)
are H times larger than those with halo thickness 1. We see similar grouped data in the
receive border exchange graph and verify border exchange graph in Figure 4.2 and Figure
4.3.

Figure 4.1: Border exchange send cost for each super-step when sending messages with width 150
for Idun.

When considering the total border exchange cost as shown in Figure 4.4, the variations
for the border exchange costs are low. We also see that the total cost increases a little as
the border exchange thickness increases. The increase is not a factor from 1 to 20, which

32



4.4 Analyzing data

Figure 4.2: Border exchange receive cost for each super-step when receiving messages with width
150 for Idun.

Figure 4.3: Border exchange verify cost for each super-step when sending messages with width 150
for Idun.

indicates that sending bigger messages less often can reduce the overhead of the border
exchanges.
It is important to note that the outliers have been disabled for all the border exchange
graphs.
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Figure 4.4: Total border exchange cost for each super-step when sending messages with width 150
for Idun.

4.4.2.2 Core calculation cost

Figure 4.5 represents the time spent on calculating the core stencil points using Equation
(4.7). The data has low variation in the box plots, and are consistent across thicknesses.

4.4.2.3 Edge calculation cost

Figure 4.6 shows the edge calculation data, and how they also demonstrate low variance
in the boxes.

4.4.2.4 Blocking communication time

Figure 4.7 presents an example of the blocking communication time. As shown in Algo-
rithm 5 it is necessary to have sufficient data to calculate while the border exchanges are
completed by the NIC. Comparing the blocking communication time to the core calcu-
lation times in Figure 4.5, we observe that the communication times are below the core
calculation times. This verifies that the core calculation has enough data to compute while
the communication is finished.

4.4.3 Test predicted run-times
The prediction model calculates the expected run-time for 2520 iterations. In certain cases,
the predicted run-time for specific sub-domains may be very low. To address this, the
number of iterations is multiplied until the expected run-time falls within the range of 10-
20 seconds. The selected multipliers for the the proxy application tests can be found in
Section 5.3. The non multiplied running time for each of sub-domains for 2520 iterations
can be found in Appendix F, Appendix G, and Appendix H.
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Figure 4.5: Core calculation cost for each super-step for a 150x900 sub-domain for Idun.
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Figure 4.6: Edge calculation cost for each super-step for a 150w sub-domain for Idun.
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Figure 4.7: Blocking communication time when sending messages of width 150 for Idun.
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Chapter 5
Experimental Setup

In this chapter, we look at the setup of the HPC clusters and their hardware, followed by an
overview of the nodes and MPI ranks involved in the performance models’ data gathering,
and the configurations of the proxy application tests. Each of the conducted tests are done
for their domain with varying border thicknesses from 1 to 20.

5.1 Clusters & configurations

5.1.1 Idun cluster
Idun is hosted at the Norwegian University of Science and Technology. It combines the
resources of the individual departments resources to create a cluster for rapid testing and
HPC prototyping. The hardware specification used for the computation are listed in Table
5.1[19].

Property Value
Compiler version GCC 10.2.0
Compiler Flags -O3 -lm

MPI Version Intel(R) MPI Library for Linux* OS,
Version 2019 Update 9 Build 20200923

Processor Intel Xeon Gold 6348
Node type Dell PE730

Processors/node 2
Cores/node 56

Memory/node 256 GB

Table 5.1: Hardware and attributes used for the computations on Idun.
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5.1.2 Fram cluster

Fram is hosted at the Arctic University of Norway[20]. The hardware specification used
for the computation are listed in Table 5.2.

Property Value
Compiler version GCC 10.2.0
Compiler Flags -O3 -lm

MPI Version Intel(R) MPI Library for Linux* OS,
Version 2019 Update 9 Build 20200923

Processor Intel E5-2683v4 2.1 GHz
System Lenovo NeXtScale nx360

Processors/node 2
Cores/node 32

Memory/node 64 GB

Table 5.2: Hardware and attributes used for the computations on Fram.

5.1.3 Betzy cluster

Betzy is located at NTNU in Trondheim and is the biggest supercomputer used for testing
in this project[20]. The hardware specification used for the computation are listed in Table
5.3.

Property Value
Compiler version GCC 10.2.0
Compiler Flags -O3 -lm

MPI Version Intel(R) MPI Library for Linux* OS,
Version 2019 Update 9 Build 20200923

Processor AMD® Epyc™ 7742 2.25GHz
System BullSequana XH2000

Processors/node 2
Cores/node 128

Memory/node 256 GB

Table 5.3: Hardware and attributes used for the computations on Betzy.
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5.2 Data collection
Table 5.5, Table 5.6 and Table 5.7 lists the combination of nodes and processors used
for the data gathering and performance model. Table 5.4 visualizes that the number of
conducted tests varies on the number of processors (P).

# Test Property Formula
CORE TESTS x · P
EDGE TESTS x · P

CPU LOCK TESTS x · P
BLOCK COM TESTS x · P

Table 5.4: Tests depend on the number of MPI ranks (P).

5.2.1 Idun data collection

# Node(s) # MPI Ranks Core tests Edge tests Lock tests B. Com tests
2 112 5 · 112 5 · 112 20 · 112 10 · 112

Table 5.5: Data collection for each width, height and border exchange thickness combinations for
Idun.

5.2.2 Fram data collection

# Node(s) # MPI Ranks Core tests Edge tests Lock tests B. Com tests
2 64 5 · 64 5 · 64 20 · 64 10 · 64

Table 5.6: Data collection for each width, height and border exchange thickness combinations for
Fram.
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5.2.3 Betzy data collection

# Node(s) # MPI Ranks Core tests Edge tests Lock tests B. Com tests
4 512 2 · 512 2 · 512 10 · 512 10 · 512

Table 5.7: Data collection for each width, height and border exchange thickness combinations for
Betzy.

5.3 Proxy application configuration
Table 5.8, Table 5.9 and Table 5.10 shows the selected domains, combination of nodes,
tests and processors for running the proxy application. The performance models’ analysis
graphs for the respective domains can be found in appendix, referenced in column eight.
It is worth noting that the domains are rectangular, and resemble a line. This is not help-
full for practical problems, but should not impact the analysis of how the varying border
exchange thickness impacts the overall performance of the proxy application.

5.3.1 Idun proxy application tests

Width Height Height
MPI Ranks # Iterations # Node(s) # MPI Ranks # Tests Appendix

100 2800 50 2520 · 50 1 56 25 C.1
100 5600 50 2520 · 50 2 112 25 C.1
100 11200 50 2520 · 50 4 224 22 C.1
300 2800 50 2520 · 20 1 56 25 C.2
300 5600 50 2520 · 20 2 112 25 C.2
300 11200 50 2520 · 20 4 224 24 C.2
150 50400 900 2520 · 2 1 56 25 C.3
150 100800 900 2520 · 2 2 112 24 C.3
150 201600 900 2520 · 2 4 224 24 C.3

Table 5.8: List of parameters used to run the proxy application for Idun.
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5.3.2 Fram proxy application tests

Width Height Height
MPI Ranks # Iterations # Node(s) # MPI Ranks # Tests Appendix

50 11200 350 2520 · 10 1 32 25 D.1
50 22400 350 2520 · 10 2 64 25 D.1
50 89600 350 2520 · 10 8 256 8 D.1

300 32000 1000 2520 1 32 25 D.2
300 64000 1000 2520 2 64 25 D.2
300 256000 1000 2520 8 256 10 D.2

Table 5.9: List of parameters used to run the proxy application for Fram.

5.3.3 Betzy proxy application tests

Width Height Height
MPI Ranks # Iterations # Node(s) # MPI Ranks # Tests Appendix

300 256000 500 2520 4 512 10 E.1

Table 5.10: List of parameters used to run the proxy application for Betzy.
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Chapter 6
Results & Discussion

In this chapter we will compare the predictions of the performance model, in Chapter 4, to
the actual tests of the proxy application, explained in Chapter 3. We have observed that we
are able to achieve a speedup for certain halo thicknesses, particularly H = 2. The mod-
eling of the core and edge calculations have good accuracy, while they sometimes deviate
from the actual run-times.

Throughout all the tests, we have noticed that our performance models’ prediction of
communication times are optimistic, primarily capturing the lower outliers rather than the
actual time spent waiting on communication. This makes sense as the model has been
created using the average values of the communication, and does not take data variation
and interference of the interconnect into account.

6.1 Graph details
For the run-time plots each run reports data for each individual process. They have the
following properties:

• Runtime: The total run-time.

• Wait time: The time spent on waiting and verifying communication. This indirectly
includes synchronization of the MPI ranks.

• Core calculation time: The time spent on calculating the core stencil points.

• Edge calculation time: The time spent on calculating edge stencil points.

When plotting the data each output of a sub-domain is mapped by the slowest run-time,
as this is how fast the entire domain would be finished. The ID of the slowest process is
then used to get the time for the core, edge and wait times used for the comparison plots.
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Figure 6.1: Graph plot explanation.
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6.2 Idun results

Figure 6.1 demonstrates how the results are presented.

• Q1 is the 25th percentile of the box.

• Q3 is the 75th percentile of the box.

• IQR (Interquartile range).

• Median is the median of the values.

• Lineplot is the average of the prediction value explained in Chapter 4. This has the
same color as the run-time values it is predicting.

• Percent: In the result graphs there will be a percentage on the x-axis labels. This
is how the median value of the border exchange thicknesses compare to the H = 1
value.

6.2 Idun results
For the Idun results we have bad predictions of the total run-time for the sub-domains
width a height of 50. The performance model is predicting speedup for most of the border
exchange thicknesses, but we are only able to achieve it for H = 2. In contrast, the sub-
domain of 150w, and 900h is accurately modeled. While we do have issues with modeling
the communication, and that the results deviate from the prediction, we see that some of
the actual computations give a performance benefit.

The number of tests conducted for each of the domains and node combinations are
found in Table 5.8.

6.2.1 Sub-domain of 100w, 50h
Figure 6.2 illustrates that the total running time increased with an increase in the border
exchange thickness. The core calculation data aligns well with the prediction. The edge
calculation line falls slightly below the median of the run-times. Overall, the core and edge
prediction aligns well with measured values.

The communication prediction is following the gray box plots for the first 2 border ex-
change thicknesses, but do not accurately represent the actual wait time in the computation
for the other thicknesses. As seen in Figure 6.2, they follow the outliers of the prediction
when H > 2 We see that the wait timing is reduced in the range of H = 2 to H = 8,
which can indicate the there is a reduction in the communication overhead. The overall
runtime prediction predicts speedup for all the border exchange thicknesses. We only see
a speedup of 2.4% and 1.3% for H = 2 and H = 3, respectively. The actual run-time is
slowly increasing as the thicknesses increase.

The discrepancy for the prediction and actual run-time can be attributed to the op-
timistic communication estimate, and that the core and edge results vary as the border
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exchanges’ thickness changes. Similar observation are seen in the tests for 1 node and 4
nodes in Appendix A.1.

H 1 2 3 4 5 6 7 8 9 10
Run % 100.0 97.6 98.7 100.1 101.6 103.4 105.2 107.4 109.4 111.4
Pred % 100.0 91.2 87.2 85.7 82.4 81.0 80.5 81.0 79.5 79.6

H 11 12 13 14 15 16 17 18 19 20
Run % 114.2 116.5 119.1 123.3 128.1 133.5 140.4 148.8 153.2 158.9
Pred % 80.1 80.3 80.4 81.3 81.2 84.4 86.0 91.1 93.7 99.0

Table 6.1: Actual runtime compared to prediction. Combined from Figure 6.2 and Result table,
Appendix F.1.

Figure 6.2: Results for Idun 100w, 50h sub-domain for 2 nodes, and 112 MPI ranks.
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6.2.2 Sub-domain of 300w ,50h
In this sub-domain size, increasing the border exchange thickness do not provide any bene-
fits in terms of reducing the network overhead. We have similar observations for the edge,
core and wait comparisons between the prediction and the actual run-times, as we have
seen in Section 6.2.1. The same behavior is observed in the tests for 1 and 4 nodes seen
in Appendix A.2, this further supports the previous observation that the communication
prediction is optimistic.

H 1 2 3 4 5 6 7 8 9 10
Run % 100.0 103.0 105.4 142.2 112.4 117.2 119.9 121.8 124.8 128.6
Pred % 100.00 93.3 92.7 92.4 90.8 91.0 90.4 91.0 90.6 90.9

H 11 12 13 14 15 16 17 18 19 20
Run % 131.5 135.1 137.4 140.6 146.3 151.3 157.1 170.9 179.3 188.4
Pred % 91.3 91.8 92.3 93.4 95.0 97.8 101.6 108.5 109.5 115.0

Table 6.2: Percentage of run-time compared to prediction. Combined from Figure 6.3 and Result
Table, Appendix F.2.

Figure 6.3: Results for Idun 300w, 50h sub-domain for 2 nodes, and 112 MPI ranks.
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6.2.3 Sub-domain of 150w, 900h
As previously seen this sub-domain size continues the pattern where the communication
model is following the outliers. Table F.3 shows a speedup of 3.5% in the actual run-time
compared to a predicted value of 2.1%. In this sub-domain the edge and core values are
accurately modeled, but the communication timing is not accurate, as it is very close to the
y = 0 axis.

There is a fluctuating pattern observed in the results for every odd number, which
stem from the variation of the core calculation times. We do see these fluctuations and
performance benefits in the tests for 1 and 4 nodes too, presented in Appendix C.3, where
a speedup of 4.5% and 5.4% is achieved for border exchange thickness 2.

H 1 2 3 4 5 6 7 8 9 10
Run % 100.0 96.5 101.1 101.6 97.8 101.8 98.2 101.5 97.6 101.8
Pred % 100.0 98.9 100.7 101.6 102.3 102.5 103.0 103.1 102.9 103.1

H 11 12 13 14 15 16 17 18 19 20
Run % 102.5 98.9 101.4 97.5 102.2 102.3 98.8 102.4 99.0 102.2
Pred % 102.8 102.9 102.9 103.1 103.1 103.1 103.2 103.1 103.1 103.1

Table 6.3: Actual runtime compared to prediction. Combined from Figure 6.4 and Result table,
Appendix F.3.

Figure 6.4: Results for Idun 150w, 900h sub-domain for 2 nodes, and 112 MPI ranks.
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6.3 Fram results
For the Fram results we perceive a speedup for the sub-domains when H = 2, and that the
core and edge prediction accurately models the actual values, while the communication
model continues to fall short. The number of tests conducted for each of the domains and
node combinations are found in Table 5.9.

6.3.1 Sub-domain of 50w, 350h
Table 6.4 visualizes the predicted run-times in percentage compared to the actual run-time
in percentages. We see that it is only a run-time speedup for H = 2, while the predicted
run-time gives speedup for all border exchange thicknesses. We observe in the table and
Figure 6.5 that the predicted values are increasing slowly from H = 2 to H = 20, as
the run-time also does. The predicted value of H = 1 is high, which is the reason of the
optimistic prediction percentages.

We also observe that the core calculation follows the curvature of the measured values,
but tends to be slightly higher and aligned with some outliers instead of the IQR of the
box plots. The edge calculation is also modeling the actual compute-time, but is below the
IQR of the boxes. As we have seen in the other sub-domain tests, the communication is
following the outliers of the actual timings, instead of being in the IQR. The median of the
gray communicating boxes are reduced from approximately 1.7 to 1.5 as the thicknesses
increase, which indicates a reduction of the verification overhead.

Additional tests for 1 and 4 nodes, shown in Appendix B.1, also demonstrate a speedup
of 2.1% and 2.7% for H = 2, and demonstrate the same discrepancies between the core,
edge and communication predictions.

H 1 2 3 4 5 6 7 8 9 10
Run % 100.0 98.1 99.7 100.1 100.9 101.8 102.7 103.2 103.7 104.2
Pred % 100.0 95.5 95.8 96.3 96.6 97.3 97.3 97.7 97.9 98.1

H 11 12 13 14 15 16 17 18 19 20
Run % 104.4 103.1 105.0 103.7 105.9 105.8 104.4 104.7 106.4 105.3
Pred % 98.3 98.1 98.1 98.2 98.1 98.2 98.1 98.1 98.1 98.2

Table 6.4: Actual runtime compared to prediction. Combined from Figure 6.5 and Result table,
Appendix G.1.
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Chapter 6. Results & Discussion

Figure 6.5: Results for Fram 50w, 350h sub-domain for 2 nodes, and 64 MPI ranks.
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6.3 Fram results

6.3.2 Sub-domain of 300w, 1000h
Table 6.5 demonstrates that we have a speedup of 0.3% compared to the predicted 0.8%.
The speedup is not convincing, and we see in Appendix B.2 that the tests for 1 and 4
nodes show no speedup for H = 2, but the Q1 and Q3 for H = 2 are grouped closer than
H = 1, so there should be some runs where speedup is achieved. In Figure 6.6 we see that
the core and edge calculations are modeled accurately, and that our prediction is following
the actual run-time, but the actual computation is about a percent higher when H >= 5.

Here, it is also evident that the communication wait time is being reduced as the border
exchange thickness increases. Indicating that there might be a benefit of increased overlap
between the computation and communication for some of the thicknesses.

H 1 2 3 4 5 6 7 8 9 10
Run % 100.0 99.7 100.1 100.1 100.8 100.2 100.5 100.4 100.2 100.5
Pred % 100.0 99.2 99.7 99.9 100.0 100.1 100.2 100.2 100.3 100.3

H 11 12 13 14 15 16 17 18 19 20
Run % 100.9 100.5 100.8 100.9 100.9 101.3 101.6 101.9 101.4 101.4
Pred % 100.3 100.4 100.5 100.5 100.4 100.4 100.3 100.4 100.5 100.4

Table 6.5: Actual run-time compared to prediction. Combined from Figure 6.6 and Result table,
Appendix G.2.

Figure 6.6: Results for Fram 300w, 1000h sub-domain for 2 nodes, and 64 MPI ranks.
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Chapter 6. Results & Discussion

6.4 Betzy results

6.4.1 Sub-domain of 350w, 500h
In the Betzy tests, as indicated in Table 6.6, a speedup is predicted for all thicknesses
where H > 1. The prediction is optimistic, and we see that the actual speedup is only
1.6%.

Upon closer examination, we find that the individual models for the edge and core
calculations are accurate. As seen in the other clusters, the communication prediction,
represented by the gray line, consistently underestimates the actual communication time
and does not accurately reflect its behavior. The communication wait time is reduced for
H = 2 through H = 10, and shows that the MPI ranks are spending less time waiting,
when it is calculating that many time steps ahead between each border exchange. While
this might affect the results, we see from the overall run-time that it does not increase and
decrease at the same H, and is therefore not the sole reason for the reduced overall run-
time.

This discrepancy between the predicted and actual values suggests that the perfor-
mance model needs further refinements in the communication predictions to provide more
accurate predictions for the Betzy cluster.

H 1 2 3 4 5 6 7 8 9 10
Run % 100.0 99.7 99.3 99.0 99.3 99.5 99.4 99.2 99.2 98.9
Pred % 100.0 97.0 97.1 96.6 96.1 95.7 95.2 94.8 93.9 93.4

H 11 12 13 14 15 16 17 18 19 20
Run % 99.3 98.9 98.8 98.7 98.7 98.7 98.5 98.5 98.2 98.4
Pred % 93.0 92.5 91.9 91.4 91.2 90.9 90.6 90.4 89.7 89.2

Table 6.6: Actual runtime compared to prediction. Combined from Figure 6.4.1 and Result table,
Appendix H.1.
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6.4 Betzy results

Figure 6.7: Results for Betzy 350w, 500h sub-domain for 4 nodes, and 512 MPI ranks.
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Chapter 6. Results & Discussion

6.5 Sources of error
The performance model relies on average values to predict the run-time. It is important
to note that there is variance in the data-sets, as seen in Appendix C, Appendix D, and
Appendix E. The average values used in the performance model can found in the result
tables, presented in Appendix F, Appendix G and Appendix H.

It is worth considering that the communication pattern is influenced by the number of
nodes participating in application. The current performance model utilizes data collected
from two nodes for Idun and Fram, and four for Betzy. When scaling to a different num-
ber of nodes for the proxy application, the limit of the interconnect bandwidth can change
the communication time for the border exchanges, which makes it so that the amount of
unrelated work we need in the core calculation state to achieve overlap may change.

Because we use a multiple of 2520 iterations for each run, we have border exchange
thicknesses greater than 10 where 2520 is not evenly dividable. This can make the program
run an additional super-step until the total iteration count is over the multiple of 2520, and
for a worst case scenario (H = 17) a program can run 2533 iterations before terminating.
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Chapter 7
Conclusion

In this thesis, we demonstrate how we can reduce the total amount of communication
overhead by computing more stencil points and exchange data between MPI rank less
often. We develop a proxy application that solves the Shallow Water Equations using
a finite difference method and create a performance model of the proxy application by
separating its procedures into costs per super-step.

The results demonstrate that we were able to achieve an overall speedup by reducing
the frequency of data exchanges to every 2nd. iteration. However, it became evident that
while the performance modeling of the stencil computations are characterizing the proxy
application, the modeling of the border exchange costs are optimistic and based on the
least costly and least probable communication time between MPI ranks.

In the results of Fram we see a reduction in the border exchange verification time for
all border exchange thicknesses (H), and for H = 2 to H = 17 for the sub-domain sizes of
50w, 350h and 300w, 1000h. For the Idun sub-domain size of 150w, 900h, all the border
exchange thicknesses has a reduction in the border exchange verification time. The sub-
domain tested on Betzy also shows a reduction in the border exchange cost for H = 2
to H = 10. These observations indicate that there is less overhead in the higher border
exchange verification thicknesses.

Furthermore, as anticipated in the performance model described in Chapter 4, we ob-
served an increase in computational cost for the core and edge computations because of
additional stencil points for each sub-domain. This aligns with our estimations and sup-
ports that we can employ the BSP model in this way to estimate the cost.

In this thesis, we have learned that it is possible to mask the communication overhead
by trading additional stencil computations against fewer, but larger message transmissions.
We have also experienced that modeling the communication pattern after average results
provide a model that takes the best case scenario into account, and does not estimate the
interference present in an interconnected network.
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Chapter 7. Conclusion

7.1 Future work
The results obtained for our sub-domain demonstrate that there can be benefits of reduc-
ing the frequency of initiated communications. In order to improve the accuracy of the
performance model, the following topics could be investigated further:

• Cartesian Topology: In order to increase the usability and scalability of the proxy
application and performance model, one could implement a Cartesian topology.
The current horizontal topology is less scalable, and the domains are hard to keep
quadratic for problems where many MPI ranks are employed.

• Communication Model: The current solution to modelling the communication as
described in Section 4.2.1.4 only gives an optimistic timing for the border exchange
patterns employed in the proxy application. A more in-depth and perhaps theoretical
solution based on benchmarks of the network and the individual LogGP parameters
can increase the accuracy.

• Tune Performance Model: The current implementation by employing the av-
erage for the entire prediction model provided a general estimation of the modeled
values. However, as discussed in the results, Chapter 6, a few of the tests have core
and edge results which differ slightly from the actual model.
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Appendix A
Additional Idun Results

A.1 100w, 50h sub-domain

Figure A.1: Results for Idun 100w, 50h sub-domain for 1 node, and 56 MPI ranks.
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Figure A.2: Results for Idun 100w, 50h sub-domain for 4 nodes, and 224 MPI ranks.
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A.2 300w, 50h sub-domain

Figure A.3: Results for Idun 300w, 50h sub-domain for 1 node, and 56 MPI ranks.

Figure A.4: Results for Idun 300w, 50h sub-domain for 4 nodes, and 224 MPI ranks.
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A.3 150w, 900h sub-domain

Figure A.5: Results for Idun 150w, 900h sub-domain for 1 node, and 56 MPI ranks.

Figure A.6: Results for Idun 150w, 900h sub-domain for 4 nodes, and 224 MPI ranks.
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Appendix B
Additional Fram Results

B.1 50w, 350h sub-domain

Figure B.1: Results for Fram 50w, 350h sub-domain for 1 node, and 32 MPI ranks.
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Figure B.2: Results for Fram 50w, 350h sub-domain for 8 node, and 256 MPI ranks.
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B.2 300w, 1000h sub-domain

Figure B.3: Results for Fram 300w, 1000h sub-domain for 1 node, and 32 MPI ranks.

Figure B.4: Results for Fram 300w, 1000h sub-domain for 8 node, and 256 MPI ranks.
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Appendix C
Idun Prediction Data

C.1 100w, 50h sub-domain.
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Figure C.1: Core calculation cost for each super-step for 100w, 50h sub-domain.
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Figure C.2: Edge calculation cost for each super-step for 100w, 50h sub-domain.
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Figure C.3: Border exchange send cost for each super-step for 100w, 50h sub-domain.

Figure C.4: Border exchange receive cost for each super-step for 100w, 50h sub-domain.
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Figure C.5: Border exchange verify cost for each super-step for 100w, 50h sub-domain.

Figure C.6: Total border exchange cost for each super-step for 100w, 50h sub-domain.
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Figure C.7: Blocking communication time for each super-step for 100w, 50h sub-domain for Idun.
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C.2 300w, 50h sub-domain.

Figure C.8: Core calculation cost for each super-step for 300w, 50h sub-domain for Idun.
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Figure C.9: Edge calculation cost for each super-step for 300w, 50h sub-domain for Idun.
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Figure C.10: Border exchange send cost for each super-step for 300w, 50h sub-domain for Idun.

Figure C.11: Border exchange receive cost for each super-step for 300w, 50h sub-domain for Idun.
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Figure C.12: Border exchange verify cost for each super-step for 300w, 50h sub-domain for Idun.

Figure C.13: Total border exchange cost for each super-step for 300w, 50h sub-domain for Idun.
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Figure C.14: Blocking communication time per super-step for 300w, 50h sub-domain for Idun.
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C.3 150, 900h sub-domain.

Figure C.15: Core calculation cost for each super-step for 150w, 900h sub-domain for Idun.
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Figure C.16: Edge calculation cost for each super-step for 150w, 900h sub-domain for Idun.
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Figure C.17: Border exchange send cost for each super-step for 150w, 900h sub-domain for Idun.

Figure C.18: Border exchange receive cost for each super-step for 150w, 900h sub-domain for Idun.
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Figure C.19: Border exchange verify cost for each super-step for 150w, 900h sub-domain for Idun.

Figure C.20: Total border exchange cost for each super-step for 150w, 900h sub-domain for Idun.
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Figure C.21: Blocking communication time per super-step for 150w, 900h sub-domain for Idun.
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Appendix D
Fram Prediction data

D.1 50w, 500h sub-domain.
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Figure D.1: Core calculation cost for each super-step for 50w, 350h sub-domain for Fram.
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Figure D.2: Edge calculation cost for each super-step for 50w, 350h sub-domain for Fram.
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Figure D.3: Border exchange send cost for each super-step for 50w, 350h sub-domain for Fram.

Figure D.4: Border exchange receive cost for each super-step for 50w, 350h sub-domain for Fram.
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Figure D.5: Border exchange verify cost for each super-step for 50w, 350h sub-domain for Fram.

Figure D.7: Total border exchange cost for each super-step for 50w, 350h sub-domain for Fram.
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Figure D.8: Blocking communication time per super-step for 50w, 350h sub-domain for Fram.

90



D.2 300w, 1000h sub-domain.

Figure D.9: Core calculation cost for each super-step for 300w, 1000h sub-domain for Fram.
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Figure D.10: Edge calculation cost for each super-step for 300w, 1000h sub-domain for Fram.
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Figure D.11: Border exchange send cost for each super-step for 300w, 1000h sub-domain for Fram.

Figure D.12: Border exchange receive cost for each super-step for 300w, 1000h sub-domain for
Fram.
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Figure D.13: Border exchange verify cost for each super-step for 300w, 1000h sub-domain for
Fram.

Figure D.14: Total border exchange cost for each super-step for 300w, 1000h sub-domain for Fram.
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Figure D.15: Blocking communication time per super-step for 300w, 1000h sub-domain for Fram.
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Appendix E
Betzy Prediction Data

E.1 - 350w, 500h sub-domain.
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Figure E.1: Core calculation cost for each super-step for 350w, 500h sub-domain for Betzy.
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Figure E.2: Edge calculation cost for each super-step for 350w, 500h sub-domain for Betzy.
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Figure E.3: Border exchange send cost for each super-step for 350w, 500h sub-domain for Betzy.

Figure E.4: Border exchange receive cost for each super-step for 350w, 500h sub-domain for Betzy.
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Figure E.5: Border exchange verify cost for each super-step for 350w, 500h sub-domain for Betzy.

Figure E.6: Total border exchange cost for each super-step for 350w, 500h sub-domain for Betzy.

101



Figure E.7: Blocking communication time per super-step for 350w, 500h sub-domain for Betzy.
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Appendix F
Idun Prediction Tables
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Width Height HALO BExccost
Sstep

BComTime
Sstep

CoreCalc
Sstep

EdgeCalc
Sstep

super-steps CCalc
BCom

> 1.10 Runtime Percentage H=1 runtime

100 50 1 1.76e-05 7.79e-06 8.38e-05 1.88e-06 2520.0 True 0.26 100 0.26
100 50 2 1.69e-05 9.38e-06 0.00015 1.92e-05 1260.0 True 0.24 91.21 0.26
100 50 3 2.13e-05 1.15e-05 0.00021 3.94e-05 840.0 True 0.23 87.22 0.26
100 50 4 2.70e-05 1.54e-05 0.00026 7.13e-05 630.0 True 0.22 85.71 0.26
100 50 5 2.25e-05 1.96e-05 0.00029 1.10e-04 504.0 True 0.21 82.42 0.26
100 50 6 2.02e-05 2.28e-05 0.00032 1.61e-04 420.0 True 0.21 80.52 0.26
100 50 7 2.30e-05 2.60e-05 0.00034 2.19e-04 360.0 True 0.21 81.02 0.26
100 50 8 2.33e-05 2.74e-05 0.00035 2.87e-04 315.0 True 0.21 79.50 0.26
100 50 9 2.85e-05 5.62e-05 0.00035 3.61e-04 280.0 True 0.21 79.56 0.26
100 50 10 2.84e-05 3.50e-05 0.00034 4.54e-04 252.0 True 0.21 80.06 0.26
100 50 11 3.05e-05 4.33e-05 0.00032 5.68e-04 229.09 True 0.21 81.04 0.26
100 50 12 3.02e-05 4.44e-05 0.00030 6.65e-04 210.0 True 0.21 80.26 0.26
100 50 13 3.09e-05 4.70e-05 0.00026 7.92e-04 193.85 True 0.21 80.40 0.26
100 50 14 3.79e-05 5.06e-05 0.00022 9.19e-04 180.0 True 0.21 81.32 0.26
100 50 15 3.08e-05 5.26e-05 0.00018 1.04e-03 168.0 True 0.21 81.24 0.26
100 50 16 3.48e-05 6.02e-05 0.00015 1.21e-03 157.5 True 0.21 84.41 0.26
100 50 17 3.47e-05 6.41e-05 0.00012 1.35e-03 148.24 True 0.22 85.95 0.26
100 50 18 3.92e-05 6.60e-05 9.74e-05 1.55e-03 140.0 True 0.24 91.06 0.26
100 50 19 3.60e-05 9.47e-05 7.33e-05 1.73e-03 132.63 False 0.24 93.73 0.26
100 50 20 3.72e-05 7.29e-05 5.41e-05 1.95e-03 126.0 False 0.26 99.02 0.26

Table F.1: Idun prediction data and results for sub-domain of 100w, 50h.
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Width Height HALO BExccost
Sstep

BComTime
Sstep

CoreCalc
Sstep

EdgeCalc
Sstep

super-steps CCalc
BCom

> 1.10 Runtime Percentage H=1 runtime

300 50 1 1.96e-05 1.17e-05 2.45e-04 6.01e-06 2520.0 True 0.68 100 0.68
300 50 2 2.22e-05 2.22e-05 4.43e-04 4.08e-05 1260.0 True 0.64 93.33 0.68
300 50 3 2.27e-05 3.16e-05 6.21e-04 1.09e-04 840.0 True 0.63 92.65 0.68
300 50 4 3.19e-05 5.86e-05 7.67e-04 2.02e-04 630.0 True 0.63 92.43 0.68
300 50 5 2.89e-05 5.15e-05 8.83e-04 3.17e-04 504.0 True 0.62 90.78 0.68
300 50 6 3.35e-05 6.42e-05 9.74e-04 4.72e-04 420.0 True 0.62 91.03 0.68
300 50 7 3.51e-05 7.63e-05 1.03e-03 6.46e-04 360.0 True 0.61 90.41 0.68
300 50 8 4.59e-05 8.62e-05 1.06e-03 8.63e-04 315.0 True 0.62 91.03 0.68
300 50 9 4.17e-05 9.81e-05 1.06e-03 1.10e-03 280.0 True 0.62 90.61 0.68
300 50 10 4.52e-05 1.09e-04 1.03e-03 1.38e-03 252.0 True 0.62 90.93 0.68
300 50 11 4.93e-05 1.20e-04 9.77e-04 1.69e-03 229.09 True 0.62 91.27 0.68
300 50 12 5.65e-05 1.32e-04 8.89e-04 2.04e-03 210.0 True 0.63 91.83 0.68
300 50 13 5.99e-05 1.61e-04 7.72e-04 2.42e-03 193.85 True 0.63 92.29 0.68
300 50 14 6.21e-05 1.53e-04 6.53e-04 2.83e-03 180.0 True 0.64 93.43 0.68
300 50 15 5.53e-05 1.64e-04 5.44e-04 3.26e-03 168.0 True 0.64 95.01 0.68
300 50 16 6.88e-05 1.76e-04 4.41e-04 3.73e-03 157.5 True 0.67 97.81 0.68
300 50 17 6.84e-05 1.87e-04 3.58e-04 4.25e-03 148.24 True 0.69 101.59 0.68
300 50 18 2.05e-04 1.99e-04 2.78e-04 4.81e-03 140.0 True 0.74 108.51 0.68
300 50 19 7.29e-05 2.08e-04 2.12e-04 5.35e-03 132.63 False 0.75 109.54 0.68
300 50 20 7.98e-05 2.19e-04 1.51e-04 6.00e-03 126.0 False 0.79 115.04 0.68

Table F.2: Idun prediction data and results for sub-domain of 300w, 50h.
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Width Height HALO BExccost
Sstep

BComTime
Sstep

CoreCalc
Sstep

EdgeCalc
Sstep

super-steps CCalc
BCom

> 1.10 Runtime Percentage H=1 runtime

150 900 1 1.64e-05 8.25e-06 0.00237 2.84e-06 2520.0 True 6.02 100.0 6.02
150 900 2 1.85e-05 1.22e-05 0.00468 2.61e-05 1260.0 True 5.96 98.91 6.02
150 900 3 2.42e-05 1.59e-05 0.00715 5.21e-05 840.0 True 6.07 100.71 6.02
150 900 4 2.21e-05 2.17e-05 0.00958 0.00010 630.0 True 6.12 101.56 6.02
150 900 5 2.06e-05 2.62e-05 0.01204 0.00016 504.0 True 6.16 102.32 6.02
150 900 6 2.37e-05 3.03e-05 0.01443 0.00024 420.0 True 6.17 102.47 6.02
150 900 7 2.57e-05 3.75e-05 0.01688 0.00033 360.0 True 6.21 103.02 6.02
150 900 8 3.39e-05 5.59e-05 0.01926 0.00043 315.0 True 6.21 103.11 6.02
150 900 9 2.72e-05 4.83e-05 0.02155 0.00055 280.0 True 6.20 102.88 6.02
150 900 10 3.41e-05 5.30e-05 0.02392 0.00068 252.0 True 6.21 103.07 6.02
150 900 11 3.39e-05 6.11e-05 0.02617 0.00083 229.09 True 6.19 102.81 6.02
150 900 12 4.01e-05 6.54e-05 0.02848 0.00100 210.0 True 6.19 102.70 6.02
150 900 13 4.30e-05 7.51e-05 0.03078 0.00119 194.18 True 6.19 102.61 6.02
150 900 14 4.79e-05 8.42e-05 0.03310 0.00140 180.0 True 6.20 102.55 6.02
150 900 15 5.05e-05 9.44e-05 0.03542 0.00163 168.0 True 6.19 102.47 6.02
150 900 16 5.38e-05 0.00010 0.03777 0.00187 157.5 True 6.18 102.39 6.02
150 900 17 5.68e-05 0.00011 0.04007 0.00213 148.24 True 6.18 102.34 6.02
150 900 18 6.02e-05 0.00012 0.04239 0.00240 140.0 True 6.17 102.29 6.02
150 900 19 6.22e-05 0.00013 0.04469 0.00269 132.63 True 6.17 102.24 6.02
150 900 20 6.41e-05 0.00014 0.04700 0.00300 126.0 True 6.17 102.19 6.02

Table F.3: Idun prediction data and results for sub-domain of 150w, 900h.
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Fram Prediction Tables
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Width Height HALO BExccost
Sstep

BComTime
Sstep

CoreCalc
Sstep

EdgeCalc
Sstep

super-steps CCalc
BCom

> 1.10 Runtime Percentage H=1 runtime

50 350 1 3.23e-05 7.01e-05 0.00048 1.57e-06 2520.0 True 1.30 100 1.30
50 350 2 9.93e-06 3.74e-05 0.00097 1.15e-05 1260.0 True 1.24 95.46 1.30
50 350 3 1.07e-05 2.67e-05 0.00144 3.06e-05 840.0 True 1.25 95.81 1.30
50 350 4 1.16e-05 2.44e-05 0.00192 5.75e-05 630.0 True 1.25 96.29 1.30
50 350 5 1.14e-05 2.78e-05 0.00239 9.18e-05 504.0 True 1.26 96.63 1.30
50 350 6 2.35e-05 2.59e-05 0.00286 1.34e-04 420.0 True 1.27 97.34 1.30
50 350 7 1.18e-05 2.93e-05 0.00332 1.86e-04 360.0 True 1.27 97.32 1.30
50 350 8 1.21e-05 2.76e-05 0.00378 2.49e-04 315.0 True 1.27 97.65 1.30
50 350 9 1.34e-05 2.20e-05 0.00422 3.18e-04 280.0 True 1.28 97.86 1.30
50 350 10 1.81e-05 2.10e-05 0.00466 3.95e-04 252.0 True 1.28 98.12 1.30
50 350 11 2.55e-05 9.98e-05 0.00508 4.85e-04 229.09 True 1.28 98.32 1.30
50 350 12 1.67e-05 2.35e-05 0.00549 5.82e-04 210.0 True 1.28 98.13 1.30
50 350 13 1.84e-05 2.53e-05 0.00589 6.86e-04 193.85 True 1.28 98.11 1.30
50 350 14 1.85e-05 2.60e-05 0.00628 8.01e-04 180.0 True 1.28 98.10 1.30
50 350 15 2.75e-05 2.77e-05 0.00667 9.25e-04 168.0 True 1.28 98.24 1.30
50 350 16 1.90e-05 2.89e-05 0.00704 1.06e-03 157.5 True 1.28 98.09 1.30
50 350 17 2.00e-05 3.11e-05 0.00741 1.20e-03 148.24 True 1.28 98.18 1.30
50 350 18 2.00e-05 3.23e-05 0.00776 1.35e-03 140.0 True 1.28 98.10 1.30
50 350 19 2.13e-05 3.46e-05 0.00810 1.51e-03 132.63 True 1.28 98.11 1.30
50 350 20 3.14e-05 5.79e-05 0.00844 1.68e-03 126.0 True 1.28 98.19 1.30

Table G.1: Fram prediction data and results for sub-domain of 50w, 350h.
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Width Height HALO BExccost
Sstep

BComTime
Sstep

CoreCalc
Sstep

EdgeCalc
Sstep

super-steps CCalc
BCom

> 1.10 Runtime Percentage H=1 runtime

300 1000 1 1.37e-05 1.44e-05 0.00889 8.99e-06 2520.0 True 22.47 100 22.47
300 1000 2 1.56e-05 2.32e-05 0.01761 7.02e-05 1260.0 True 22.29 99.22 22.47
300 1000 3 2.09e-05 3.26e-05 0.02646 0.00018 840.0 True 22.40 99.67 22.47
300 1000 4 3.04e-05 6.97e-05 0.03526 0.00035 630.0 True 22.45 99.91 22.47
300 1000 5 2.86e-05 5.35e-05 0.04401 0.00057 504.0 True 22.48 100.04 22.47
300 1000 6 3.59e-05 6.35e-05 0.05269 0.00083 420.0 True 22.50 100.11 22.47
300 1000 7 4.14e-05 7.28e-05 0.06131 0.00116 360.0 True 22.50 100.15 22.47
300 1000 8 5.66e-05 8.42e-05 0.06989 0.00154 315.0 True 22.52 100.22 22.47
300 1000 9 5.16e-05 9.38e-05 0.07843 0.00198 280.0 True 22.53 100.25 22.47
300 1000 10 5.71e-05 1.03e-04 0.08687 0.00248 252.0 True 22.53 100.27 22.47
300 1000 11 6.25e-05 1.14e-04 0.09534 0.00305 229.09 True 22.55 100.37 22.47
300 1000 12 6.85e-05 1.23e-04 0.10384 0.00366 210.0 True 22.59 100.53 22.47
300 1000 13 8.22e-05 1.58e-04 0.11197 0.00431 193.85 True 22.56 100.39 22.47
300 1000 14 7.77e-05 1.45e-04 0.12022 0.00502 180.0 True 22.56 100.39 22.47
300 1000 15 8.45e-05 1.53e-04 0.12839 0.00578 168.0 True 22.55 100.37 22.47
300 1000 16 9.31e-05 1.65e-04 0.13653 0.00658 157.5 True 22.55 100.37 22.47
300 1000 17 9.38e-05 1.73e-04 0.14466 0.00744 148.24 True 22.56 100.40 22.47
300 1000 18 9.80e-05 1.84e-04 0.15272 0.00848 140.0 True 22.58 100.50 22.47
300 1000 19 1.16e-04 1.94e-04 0.16074 0.00932 132.63 True 22.56 100.44 22.47
300 1000 20 1.18e-04 2.04e-04 0.16854 0.01034 126.0 True 22.55 100.37 22.47

Table G.2: Fram prediction data and results for sub-domain of 300w, 1000h.
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Appendix H
Betzy Prediciton Tables
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Width Height HALO BExccost
Sstep

BComTime
Sstep

CoreCalc
Sstep

EdgeCalc
Sstep

supersteps CCalc
BCom

> 1.10 Runtime Percentage H=1 runtime

350 500 1 2.09e-05 9.03e-06 0.00559 1.35e-05 2520.0 True 14.18 100 14.18
350 500 2 2.57e-05 1.24e-05 0.01083 6.29e-05 1260.0 True 13.75 97.01 14.18
350 500 3 5.29e-05 4.92e-05 0.01617 1.63e-04 840.0 True 13.76 97.08 14.18
350 500 4 3.38e-05 2.16e-05 0.02141 3.08e-04 630.0 True 13.70 96.64 14.18
350 500 5 4.04e-05 3.07e-05 0.02650 4.98e-04 504.0 True 13.62 96.10 14.18
350 500 6 4.44e-05 4.13e-05 0.03154 7.31e-04 420.0 True 13.57 95.72 14.18
350 500 7 4.72e-05 5.03e-05 0.03646 1.00e-03 360.0 True 13.50 95.25 14.18
350 500 8 5.60e-05 6.71e-05 0.04128 1.31e-03 315.0 True 13.43 94.76 14.18
350 500 9 6.62e-05 8.16e-05 0.04585 1.66e-03 280.0 True 13.31 93.94 14.18
350 500 10 7.28e-05 9.37e-05 0.05042 2.03e-03 252.0 True 13.24 93.37 14.18
350 500 11 1.45e-04 1.11e-04 0.05495 2.47e-03 229.09 True 13.19 93.02 14.18
350 500 12 1.10e-04 1.73e-04 0.05939 2.95e-03 210.0 True 13.11 92.50 14.18
350 500 13 9.47e-05 1.45e-04 0.06365 3.51e-03 193.85 True 13.03 91.95 14.18
350 500 14 1.09e-04 1.66e-04 0.06771 4.21e-03 180.0 True 12.96 91.44 14.18
350 500 15 2.35e-04 1.86e-04 0.07164 5.07e-03 168.0 True 12.93 91.17 14.18
350 500 16 1.14e-04 2.03e-04 0.07572 5.98e-03 157.5 True 12.88 90.88 14.18
350 500 17 1.27e-04 2.20e-04 0.07975 6.83e-03 148.24 True 12.85 90.65 14.18
350 500 18 1.54e-04 2.48e-04 0.08370 7.78e-03 140.0 True 12.82 90.49 14.18
350 500 19 1.62e-04 2.63e-04 0.08707 8.68e-03 132.63 True 12.72 89.72 14.18
350 500 20 1.54e-04 2.75e-04 0.09063 9.61e-03 126.0 True 12.65 89.23 14.18

Table H.1: Betzy prediction data and results for sub-domain of 350w, 500h.
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