
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Simen Tvete Aabol & Marcus Klomsten Dragsten

Active Learning in Norwegian Natural
Language Processing

Master’s thesis in Informatics, Artificial Intelligence
Supervisor: Ole Christian Eidheim
June 2023

Simen Tvete Aabol & Marcus Klomsten Dragsten

Active Learning in Norwegian Natural
Language Processing

Master’s thesis in Informatics, Artificial Intelligence
Supervisor: Ole Christian Eidheim
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

This thesis examines the use of active learning in Norwegian natural language pro-
cessing models to address the challenge of expensive data labeling. With the grow-
ing demand for larger datasets in artificial intelligence, fine-tuning language mod-
els has become crucial for various applications. However, creating labeled data for
fine-tuning can be time-consuming and costly. Active learning offers a solution by
iteratively selecting the most valuable data points for human labeling, thereby
reducing the amount of labeled data required. This paper focuses on comparing
different fine-tuning methods for Norwegian natural language processing models
in terms of accuracy and training time while incorporating active learning. Three
well-known active learning sampling methods are evaluated and compared to tra-
ditional random sampling to determine their effectiveness in selecting informat-
ive samples for labeling for a Norwegian natural language processing model. The
model will be evaluated while doing a sentiment classification task. The research
questions address the differences in accuracy metrics, how many samples one can
save using active learning, the performance of active learning methods, and their
impact on training time and training loss. The findings demonstrate the bene-
fits of active learning in the context of natural language processing and provide
insights for researchers, businesses, and organizations seeking to train machine
learning models more efficiently and cost-effectively. The paper concludes with a
discussion of the results, answering the research questions, and suggesting further
research avenues.

iii

Sammendrag

Denne avhandlingen undersøker bruken av aktiv læring i norske naturlig språk-
behandlingsmodeller for å adressere utfordringen med kostbar merking av data.
Med økende etterspørsel etter større datasett innen kunstig intelligens, har fin-
justering av språkmodeller blitt avgjørende for ulike applikasjoner. Imidlertid kan
generering av merket data for finjustering være tidkrevende og kostbart. Aktiv
læring tilbyr en løsning ved å iterativt velge de mest verdifulle datapunktene for
menneskelig merking, og reduserer dermed mengden merket data som kreves.
Denne studien fokuserer på sammenligning av ulike finjusteringsmetoder for nor-
ske naturlig språkbehandlingsmodeller med hensyn til nøyaktighet og treningstid,
samtidig som aktiv læring inkorporeres. Tre velkjente aktiv læring-utvalgsmetoder
evalueres og sammenlignes med tradisjonelt tilfeldig utvalg for å fastslå deres ef-
fektivitet i valg av informative datapunkter for merking i en norsk naturlig språk-
behandlingsmodell. Språkmodellen vil evalueres ved en sentiment klassifisering-
soppgave. Forskningsspørsmålene tar for seg forskjellene i nøyaktighetsmålinger,
hvor mange datapunkter man slipper å merke, ytelsen til aktiv læring-metodene
og deres innvirkning på treningstid og treningstap. Resultatene viser fordelene ved
aktiv læring i norske naturlig språkbehandlingsmodeller og gir innsikt for forskere,
bedrifter og organisasjoner som ønsker å trene maskinlæringsmodeller mer effekt-
ivt og kostnadseffektivt. Avhandlingen avsluttes med en diskusjon av resultatene,
besvarer forskningsspørsmålene og foreslår videre forskningsmuligheter.

v

Preface

Machine learning is a rapidly evolving field with significant implications for vari-
ous domains. In pursuit of exploring the intricacies of this fascinating field through
our master thesis, we sought collaboration with Kantega AS, a renowned corpor-
ation known for its expertise in software development and machine learning.

Fortunately, Kantega AS was open to our proposal and expressed their willingness
to collaborate on our master thesis, together with our advisor from NTNU, Ole
Christian Eidheim. We were fortunate to have Lars Nuvin from Kantega join us
in this process, whose guidance and support were instrumental in shaping our
thesis. Recognizing the significance of an appropriate research topic, Lars called
upon Magnus Oplenskedal, a knowledgeable expert within the organization, to
provide valuable insights.

Magnus, drawing upon his previous research and expertise, suggested that we
delve into the concept of active learning. This recommendation resonated per-
fectly with our ambitions and motivations, as we were eager to explore the realm
of machine learning. Furthermore, the topic enabled us to engage methodically
with new datasets and delve into the exciting domain of natural language pro-
cessing, which has garnered considerable attention in recent times.

The research process started with relative ease, as the data collection and pro-
cessing procedures were quickly implemented. However, the implementation of
the active learning framework and the fine-tuning methods presented unique chal-
lenges that required thorough attention and problem-solving. Through determin-
ation and collaboration, we overcame these obstacles, contributing to a compre-
hensive exploration of the subject at hand.

As we near the end of our thesis, we take pride in the knowledge that our re-
search efforts have yielded promising results. The journey has been both mentally
engaging and rewarding, allowing us to expand our knowledge, skills, and under-
standing of the vast landscape of machine learning. We are excited and honored
to present this master thesis, hopeful that our contributions will contribute to the
ever-growing body of knowledge in the field of machine learning.

vii

Acknowledgments

We would like to take this opportunity to express our deepest gratitude to the in-
dividuals who have contributed to the successful completion of our master thesis.
Your guidance, support, and insights have been invaluable throughout this jour-
ney.

First and foremost, we extend our heartfelt appreciation to our advisors, Ole Chris-
tian Eidheim from NTNU and Lars Nuvin from Kantega AS. Your unwavering com-
mitment, expertise, and encouragement have been instrumental in shaping our
project and achieving outstanding results. We are grateful for your guidance, pa-
tience, and willingness to share your knowledge and experience with us.

We would also like to acknowledge Magnus Oplenskedal from Kantega, whose
passion for active learning inspired us to explore this fascinating area. Your en-
thusiasm and ideas sparked our interest and made the process of researching and
writing about active learning both enjoyable and rewarding.

We are grateful to Ole Christian, Lars, and Magnus for their active involvement in
our project. Despite their busy schedules, they gladly joined us for weekly meet-
ings on Microsoft Teams, providing valuable feedback, insightful suggestions, and
constructive criticism.

Additionally, we express our gratitude to all those who have supported us along
the way. To our friends and family, thank you for your unwavering belief in us and
for providing a constant source of encouragement and motivation.

To everyone who has played a role in this adventure, directly or indirectly, we
sincerely thank you for your contributions. Without your support, this thesis would
not have been possible.

SIMEN TVETE AABOL

MARCUS KLOMSTEN DRAGSTEN

ix

Contents

1 Introduction . 1
1.1 Background and Motivation . 1
1.2 Scope and Research Questions . 2
1.3 Report Outline . 3

2 Theory . 5
2.1 Active Learning . 5

2.1.1 Least Confidence . 7
2.1.2 Smallest Margin . 8
2.1.3 Shannon Entropy . 9
2.1.4 Active Learning Library . 10

2.2 Transformers . 10
2.3 BERT . 11
2.4 Evaluation Metrics . 11

2.4.1 Accuracy Score . 12
2.4.2 Recall Score . 12
2.4.3 Precision Score . 12
2.4.4 F1 Score . 12
2.4.5 Balanced Accuracy Score . 12
2.4.6 Training Loss . 12

2.5 Hardware to Choose . 13
2.6 Hugging Face . 14
2.7 Fine-Tuning Pretrained Models . 14

2.7.1 Iterative Use of Models . 15
2.7.2 Initialize New Models . 15

2.8 Environmental Impact in Language Model Training 15
3 Related Work . 17

3.1 Active Learning and Fine-Tuning Models 17
3.2 BERT-Models and Active Learning . 17
3.3 Norwegian Natural Language Processing 18
3.4 Research Gap . 19

4 Method . 21
4.1 Hardware and Tools . 21
4.2 Hugging Face Implementation . 22

4.2.1 Datasets . 22
4.2.2 Preprocessing . 23
4.2.3 Final Dataset Specifics . 24

xi

xii Aabol & Dragsten: Active Learning in Norwegian NLP

4.2.4 Models and Tokenization . 25
4.3 Active Learning Implementation . 26

4.3.1 Scikit-Learn and Hugging Face API 29
4.3.2 Training Arguments . 30

5 Results . 33
5.1 Fine-Tuning Methods and Accuracy Metrics 33

5.1.1 Iterative Training Method . 34
5.1.2 New-Models Training Method 37

5.2 Comparing Active Learning Sampling Methods 40
5.2.1 Baseline with Traditional Sampling 40
5.2.2 Least Confidence Sampling . 41
5.2.3 Smallest Margin Sampling . 42
5.2.4 Shannon Entropy Sampling . 42

5.3 Performance of Fine-Tuning & Active Learning 43
5.3.1 Train Time . 43
5.3.2 Training Loss . 47

6 Discussion . 49
6.1 Examining Training with Fine-Tuning Methods 49
6.2 Active Learning versus Traditional Sampling 50
6.3 Model Performance Review . 51

6.3.1 Time Used . 51
6.3.2 The Importance of Training Loss 53

7 Conclusion . 55
8 Further Work . 59

8.1 Multiple Classification Classes . 59
8.2 Cross Validation . 59
8.3 Hyperparameter Tuning/Optimization 60
8.4 Comparing Language Models . 60
8.5 Implementing Parallelism . 61
8.6 Larger and More Diverse Dataset . 61
8.7 Number of Samples in Training . 62
8.8 Continue Scikit-Learn Solution with partial_fit() 62

Figures

2.1 Illustration of traditional sampling process. 5
2.2 Illustration of active learning sampling process. 6

4.1 Rating disparity for the Norwegian Review Corpus dataset. 24
4.2 Code example for tokenizing dataset 25
4.3 Training loop for active learning and Hugging Face 27
4.4 Predefined function for obtaining metrics. 29
4.5 Training arguments for each model in the project 30

5.1 Iterative runs with accuracy score . 34
5.2 Iterative runs with balanced accuracy score 35
5.3 Iterative runs with F1 score . 36
5.4 New-model runs with accuracy score 37
5.5 New-model runs with balanced accuracy score 38
5.6 New-model runs with F1 score . 39
5.7 Training time per iteration for all methods 44
5.8 Cumulative train time for all methods 45
5.9 The training loss for every model . 47

xiii

Tables

2.1 Arbitrarily output data from a classification model. 7
2.2 Example: Least Confidence method . 8
2.3 Example: Smallest Margin method . 9
2.4 Example: Shannon Entropy method . 10

3.1 Binary sentiment analysis task comparison. 19

4.1 Distribution of dataset sizes . 25

5.1 Iterative runs with accuracy score . 34
5.2 Iterative runs with balanced accuracy score 35
5.3 Iterative runs with F1 score . 36
5.4 New-model runs with accuracy score 37
5.5 New-model runs with balanced accuracy score 38
5.6 New-model runs with F1 score . 39
5.7 Baseline with traditional sampling method 40
5.8 Least Confidence sampling method results 41
5.9 Smallest Margin sampling method results 42
5.10 Shannon Entropy sampling method results 42
5.11 Train time and total time of training jobs 46

xv

Acronyms

AL active learning. 2, 3, 5–7, 10, 15, 17–19, 26, 28–30, 33, 40–42, 45, 46, 49–53,
55–57, 59, 62

API application programming interface. 22, 25, 26, 29, 30, 43, 62

BADGE Batch Active Learning by Diverse Gradient Embeddings. 17

BERT Bidirectional Encoder Representations from Transformers. 11, 14, 15, 17–
19, 49, 59, 60, 62

CPU central processing unit. 13

ELMo Embeddings from Language Model. 18

EOSC-Nordic European Open Science Cloud. 18

FP32 single-precision floating-point. 22

GLUE General Language Understanding Evaluation. 11

GPT generative pre-trained transformers. 1, 13, 15, 16

GPU graphics processing unit. 13, 14, 21, 22, 31, 61

LTG Language Technology Group. 18

ML machine learning. 1, 2, 10, 11, 17, 59, 60

NLP natural language processing. 2, 3, 5, 10, 11, 14, 18, 19, 22, 23, 25, 54, 55,
59

NoReC Norwegian Review Corpus. 18, 22–24, 59

NTNU Norwegian University of Science and Technology. 21

RNN recurrent neural networks. 10

SANT Sentiment Analysis for Norwegian Text. 18

xvii

xviii Aabol & Dragsten: Active Learning in Norwegian NLP

Sklearn Scikit-learn. 10, 29, 30, 33, 62

TF32 TensorFloat-32. 21, 22, 31

Chapter 1
Introduction

1.1 Background and Motivation

In recent years, the field of artificial intelligence has been moving towards the
creation of deeper and deeper neural networks. This trend has led to an increas-
ing demand for larger amounts of data. The growth of data volumes in machine
learning (ML) is accelerating at a staggering pace. For instance, generative pre-
trained transformers (GPT)-3.5 (released on the 12th of March 2022) has 175
billion parameters and was trained on around 570GB of datasets, including web
pages, books, and other sources [1]. The next iteration, GPT-4 (released on the
14th of March 2023), is reportedly six times bigger and has one trillion parameters
[2]. These are massive amounts of data that aid in the development of excellent
generative language models. When such models become available to the general
public, it may be necessary for companies to capitalize on their potential in or-
der not to lag behind competitors who adopt the technology. One method is to
fine-tune the models for various purposes rather than training them from scratch.

Fine-tuning language models is a process that requires less data than general
model training. However, it necessitates data on the relevant task to train the
model on. This data can often be unavailable. As a result, one must label this one-
self or hire someone to do it for them. This can quickly become time-consuming
and expensive. For instance, a stock analyst might want to fine-tune a model to
analyze all financial news found on the internet in order to automatically buy or
sell if the model discovers something interesting. In this case, one would have
to train a model with financial news/articles and a label for whether one should
invest in or sell out of this stock/company. Normally, this procedure would have
required one to manually go through all financial news and create a label for it.
One may have to label tens of thousands of pieces of financial news in order to
find a connection to the development of the share price. The work with this classi-
fication necessitates a domain expert in finance, which usually comes with a very
high salary and can be very costly for the project.

1

2 Aabol & Dragsten: Active Learning in Norwegian NLP

Fortunately, the issue of labeling data can be dealt with by implementing an act-
ive learning (AL) approach. AL is a popular method for reducing the amount of
labeled data required for training a ML model. When compared to the traditional
sampling approach, AL sampling algorithms can achieve high accuracy with less
training data by iteratively selecting the most valuable data points for humans to
label. Businesses can use this method to allow their employees to focus on labeling
only the most informative data points for the ML model. The person labeling data
will save a lot of time by not having to manually label every data point in a large
dataset by using this method. This process not only saves time but also helps the
model improve at an earlier stage of the training process. As a result, using AL
results in a more efficient and cost-effective data labeling process.

The motivation for this paper is to demonstrate that AL can be used to address the
issue of expensive data labeling. Additionally, the paper aims to make language
models available in a problem where labeled data is scarce for traditional fine-
tuning of language models, such as sentiment classification. The findings of this
paper can help to advance the research of AL in the context of ML. It will also
assist researchers, businesses, and organizations seeking to train ML models more
efficiently and cost-effectively. It is hoped that by demonstrating the benefits of AL
in natural language processing (NLP), further research in the field will be inspired.

1.2 Scope and Research Questions

The scope of this paper is narrowed down to the use of AL in Norwegian NLP
models. Specifically, the paper will compare different ways of fine-tuning these
NLP models, in terms of accuracy metrics and training time, while at the same time
using AL. Additionally, three different methods of AL sampling methods will be
compared to the traditional random sampling method, in terms of effectiveness.
The AL sampling methods used are three out of four well-known methods in the
field of AL [3]. The paper will examine how this approach can be used to select
the most valuable samples for labeling in Norwegian NLP models, in a sentiment
classification problem. The scope of the paper leads to these research questions:

RQ1 What are the differences in the accuracy metrics of Norwegian natural lan-
guage processing models for classification problems using different fine-tuning
methods while incorporating active learning?

RQ2 Which of the well-known active learning methods score highest in accuracy
metrics when selecting informative samples for labeling in Norwegian natural
language processing models, compared to the traditional random sampling
method? Additionally, how many samples can be potentially saved by employ-
ing active learning?

RQ3 How do different active learning methods, combined with different fine-tuning
methods, affect the performance, in terms of training time and training loss,
when training Norwegian natural language processing models, compared to
traditional data sampling methods?

Chapter 1: Introduction 3

1.3 Report Outline

This report is organized into 8 chapters. After the introduction, Chapter 2 presents
the theoretical background for the reader to understand the concepts and methods
used in the paper. In Chapter 3, the related work is presented to describe the
state-of-the-art in the field of AL and NLP. The methods used in this paper will
be described in Chapter 4. This chapter will describe the process for the project,
in addition to allowing the reader to reproduce the results achieved. Chapter 5
describes the results that complement Chapter 4. The discussion of these results
can be found in Chapter 6. Chapters 7 and 8 will conclude the paper by answering
the research questions and describing further work for the master thesis.

Chapter 2
Theory

This chapter will contain a theoretical background that may be useful to under-
stand the research group’s methods and procedures.

2.1 Active Learning

When working with training natural language processing (NLP) models with su-
pervised learning, active learning (AL) is a technique that may be used to speed
up the process and possibly improve the model’s accuracy [4] [5]. In the absence
of employing active learning strategies, the process of sampling data can resemble
the depiction illustrated in Figure 2.1, wherein a human selects data in a random
manner.

Figure 2.1: Illustration of traditional sampling process [6].

5

6 Aabol & Dragsten: Active Learning in Norwegian NLP

It is customary in classic supervised learning to label all the data before one begins
training on it. Because there is often such an enormous amount of data, labeling
can often take a long time and be unsustainable. This is due to the fact that labeling
has typically been done manually by people, and in some cases requires experts
within the domain [5] [4] [7].

One can avoid having to label the entire dataset by using AL. AL’s core element is
to only label the data that a model will learn the most from. In other words, the
idea is that one should label the entities that are difficult to classify, and not the
more trivial ones [4] [8].

The four primary possibilities for AL, according to Burr and Settles [4], are as
follows: (1) Membership query synthesis, where the learner creates new artificial
instances to be labeled. (2) Pool-based, where the learner has access to the closed
set of unlabeled instances, known as the pool. (3) Stream-based, where the learner
receives one instance at a time and has the option of keeping or discarding it. (4)
Batch-mode AL is used when the pool-based scenario runs on a group of instances
rather than a single instance [9]. In a text classification environment, the data-
set is usually a closed set. The batch-wise procedure reduces training operations,
causing waiting periods for the user. Therefore, a pool-based batch-mode is the
most suitable for this work [9].

In AL, the data is labeled iteratively during training, based on how uncertain a
classification model is in classifying the data that is in the training dataset [5]
[4] [8]. The data from the training dataset that the model is least certain about
is taken out, labelled, and placed in a training pool. The procedure can then be
repeated when the model has been trained once again using the newly sampled
data [4]. This process is illustrated in Figure 2.2.

Figure 2.2: Illustration of active learning sampling process [6]

Chapter 2: Theory 7

The concept is that by identifying the data that a model is most unsure of; the
model should be able to categorize the easy entities without having to label as
many of them. Numerous approaches exist for calculating uncertainty, some of
which will be discussed later. The most common ones are Least Confident, Smallest
Margin, Largest Margin, and Entropy Reduction [4]. There are also other ways
of measuring the uncertainty, which will not be discussed here, but which the
interested reader can familiarize themselves with [5].

A practical example will be conducted using three distinct methods of assessing
uncertainty in order to provide a brief and straightforward explanation of how AL
works. The data in Table 2.1 is an arbitrary output from a classification model,
which classifies a text excerpt into the categories "Sports", "Politics", "Economy",
"Entertainment", and "Technology". The further description of the methods for
calculating uncertainty is based on this output. Be aware that this data has been
normalized. The language models that will be covered later in this paper produce
logits as output. In the context of neural networks, logits typically refers to the
vector of raw (non-normalized) predictions that a classification model generates,
which is ordinarily then passed to a normalization function. If the model is solv-
ing a multi-class classification problem, logits typically become an input to the
softmax function. The softmax function then generates a vector of (normalized)
probabilities with one value for each possible class.

Table 2.1: Arbitrarily output data from a classification model.

Sport Politics Economy Entertainment Technology
Text 1 0.23 0.09 0.12 0.56 0.12
Text 2 0.19 0.17 0.19 0.21 0.24
Text 3 0.71 0.01 0.05 0.20 0.03
Text 4 0.20 0.20 0.20 0.20 0.20
Text 5 0.01 0.48 0.49 0.01 0.01

2.1.1 Least Confidence

The Least Confidence method takes all the maximum values of each output and
selects the one with the lowest maximum value of these [5]. In this case, this
gives the maximum values: Text 1: 0.56, Text 2: 0.24, Text 3: 0.71, Text 4: 0.2,
Text 5: 0.49.

This means that the method selects Text 4, with the value 0.2. The method there-
fore considers Text 4 to be the most uncertain. It will therefore be this text that
will be marked as part of the AL process. If one more entity was to be included,
this would be Text 2.

8 Aabol & Dragsten: Active Learning in Norwegian NLP

The most informative instance, or the best query, according to some query selec-
tion algorithm A is denoted from this point on by the notation:

x∗A (2.1)

The mathematical formula for Least Confidence is:

x∗LeastConfidence = argmin
x

P(y∗|x) (2.2)

where
y∗ = argmax

y
P(y|x) (2.3)

In the accompanying Table 2.2, the text with the highest level of uncertainty is
highlighted in red, while the text with the second-highest level of uncertainty is
highlighted in orange.

Table 2.2: Example for Least Confidence method. The algorithm’s most uncertain
entity is indicated by the color red, while the next is shown by orange.

Sport Politics Economy Entertainment Technology
Text 1 0.23 0.09 0.12 0.56 0.12
Text 2 0.19 0.17 0.19 0.21 0.24
Text 3 0.71 0.01 0.05 0.20 0.03
Text 4 0.20 0.20 0.20 0.20 0.20
Text 5 0.01 0.48 0.49 0.01 0.01

2.1.2 Smallest Margin

The Smallest Margin method is based on all maximum values and the second
highest for each output. The difference between these two values is calculated on
each row. The row with the lowest difference is the output one is most uncertain
about in this method [5]. This gives: Text 1: 0.33 (0.56-0.23), Text 2: 0.03 (0.24-
0.21), Text 3: 0.51 (0.71-0.20), Text 4: 0 (0.20-0.20), Text 5: 0.01 (0.49-0.48).

In this case, it is Text 4 that has the greatest uncertainty, and therefore the one
that will be labelled manually. If one more row were to be included, this would
have been Text 5.

The mathematical formula for Smallest Margin is:

x∗SmallestMargin = argmin
x
(P(y∗max|x)− P(y∗max−1|x)) (2.4)

where
y∗ = argmax

y
P(y|x) (2.5)

In the accompanying Table 2.3, the text with the highest level of uncertainty is
highlighted in red, while the text with the second-highest level of uncertainty is
highlighted in orange.

Chapter 2: Theory 9

Table 2.3: Example for Smallest Margin method. The algorithm’s most uncertain
entity is indicated by the color red, while the next is shown by orange.

Sport Politics Economy Entertainment Technology
Text 1 0.23 0.09 0.12 0.56 0.12
Text 2 0.19 0.17 0.19 0.21 0.24
Text 3 0.71 0.01 0.05 0.20 0.03
Text 4 0.20 0.20 0.20 0.20 0.20
Text 5 0.01 0.48 0.49 0.01 0.01

2.1.3 Shannon Entropy

When entropy is applied to a probability distribution, each likelihood is multiplied
by its own log, and the negative total is calculated [4] [10]. In theory, entropy is
a measure of the amount of uncertainty or randomness in the data. The meth-
odology for calculating Shannon Entropy differs slightly from the first two that
have been described. Shannon Entropy generates a value by using the entire row.
Higher levels signify greater uncertainty. Therefore, a model will be most unsure
about and need to choose the greatest values.

The mathematical formula for Shannon Entropy is:

x∗Entropy = argmax
x

�

−
∑

i

P(y∗i |x) log P(y∗i |x)

�

(2.6)

where
y∗ = argmax

y
P(y|x) (2.7)

Here it is worth noting that the base number of the logarithm is 2, as described by
Shannons [10]. The computation for "Text 1" is shown below. The other entities
adhere to the same process.

(2.8)

(Tex t1) =

(−0.23 ∗ log2(0.23)) + (−0.09 ∗ log2(0.09)) +

(−0.12 ∗ log2(0.12)) + (−0.56 ∗ log2(0.56)) +

(−0.12 ∗ log2(0.12))

(2.9)

(Tex t1) =

(−0.23 ∗ (−2.16)) + (−0.09 ∗ (−3.17)) +

(−0.12 ∗ (−2.73)) + (−0.56 ∗ (−0.85)) +

(−0.12 ∗ (−2.73)) = 1.91

10 Aabol & Dragsten: Active Learning in Norwegian NLP

In the accompanying Table 2.4, the text with the highest level of uncertainty is
highlighted in red, while the text with the second-highest level of uncertainty is
highlighted in orange. The values shown in the extra column "Entropy" in the table
2.4 are the outcome of calculating for each row.

Table 2.4: Example for Shannon Entropy method. The algorithm’s most uncertain
entity is indicated by the color red, while the next is shown by orange.

Sport Politics Economy Entertainment Technology Entropy
Text 1 0.23 0.09 0.12 0.56 0.12 1.91
Text 2 0.19 0.17 0.19 0.21 0.24 2.31
Text 3 0.71 0.01 0.05 0.20 0.03 1.25
Text 4 0.20 0.20 0.20 0.20 0.20 2.32
Text 5 0.01 0.48 0.49 0.01 0.01 1.21

2.1.4 Active Learning Library

modAL is an AL library for Python that is built on top of Scikit-learn (Sklearn)
[11]. It allows you to rapidly create AL workflows. The techniques covered in the
chapter on AL in Chapter 2.1 are available in this library. Because of this, using
these methods is simple and requires minimal effort.

2.2 Transformers

The transformer is a type of neural network architecture that was introduced in
2017 by Vaswani et al. in the paper ”Attention is All You Need”. Since then, it
has gained popularity as a method for machine learning (ML) applications such
as NLP and others. Self-attention is a important aspect in a transformer architec-
ture. The key idea behind self-attention is that the network can learn to attend
to different parts of the input sequence simultaneously when making predictions
or generating outputs. This is in contrast to traditional recurrent neural networks
(RNN), which process the input sequence one element at a time in a fixed order
[12].

The transformer architecture consists of an encoder and a decoder. The encoder
processes the input sequence and generates a sequence of hidden states, while
the decoder uses these hidden states to generate the output sequence. The key
innovation in the transformer architecture is the use of multi-head self-attention,
which allows the network to attend to different parts of the input sequence sim-
ultaneously [12].

Self-attention is a mechanism that allows the network to weigh different parts of
the input sequence when generating each output element. The weight assigned to
each input element is learned during training, based on the context of the input
sequence and the current state of the network. The mechanism can be described
as a function that takes as input a sequence of vectors and returns a sequence
of vectors of the same length [12]. The self-attention mechanism is used multiple

Chapter 2: Theory 11

times in parallel, each time with different learned parameters. This is called multi-
head self-attention, and it allows the network to attend to different parts of the
input sequence with different "heads" of attention. The output of each head is
concatenated and passed through a linear layer to generate the final output [12].

2.3 BERT

Bidirectional Encoder Representations from Transformers (BERT) is a powerful
pre-trained language model developed by Google in 2018. BERT’s capacity to com-
prehend the context and meaning of words in a phrase, which results in superior
performance on a range of NLP tasks, is widely recognized as a key NLP milestone
[13].

BERT uses a transformer architecture, as described in Chapter 2.2. It is created to
predict the following word in a sentence given the context of the preceding words
and is trained on a huge corpus of text, such as the whole Wikipedia corpus [13].

The capability of BERT to manage bidirectional context is one of its important
characteristics. Traditional language models process text in a unidirectional man-
ner, meaning they can only look at the words that come before the target word.
However, BERT can process text in both directions, allowing it to consider the
entire context of a sentence when predicting the next word [13].

BERT has produced cutting-edge outcomes for a variety of NLP tasks, including
sentence categorization, question answering, and language inference. It has even
outperformed human performance on some benchmarks, such as the General Lan-
guage Understanding Evaluation (GLUE) benchmark for natural language under-
standing [14] [15].

In conclusion, the pre-trained BERT model stands as an exemplary language model,
making significant strides in the field of NLP. As a result of its ability to understand
the context and meaning of words in a phrase, it has shown better performance on
a range of NLP tests. BERT has thus gained popularity among both NLP scholars
and practitioners [13] [14] [15].

2.4 Evaluation Metrics

There are a number of metrics that can be used to evaluate natural language
models within ML and data analysis. These metrics are widely used to evaluate
how well a model does at correctly classifying or forecasting events and to com-
pare the performance of multiple models. This chapter will examine six commonly
used metrics: accuracy score, balanced accuracy score, precision score, recall score,
F1 score, and training loss.

12 Aabol & Dragsten: Active Learning in Norwegian NLP

2.4.1 Accuracy Score

The accuracy score measures the proportion of accurate predictions made by a
model over the total number of forecasts. This metric may not always be the op-
timal one despite being well-liked and straightforward. When assessing scores on
a skewed dataset, it is important to consider the potential for misleading out-
comes. Skewed datasets are characterized by an unequal distribution of values,
where a substantial proportion of the data is concentrated towards one end of
the range. This can result in distorted interpretations of the data and may lead
to inaccurate conclusions. This is because a model can predict the class that is
overrepresented and thus achieve good accuracy [16].

2.4.2 Recall Score

The recall score measures the proportion of true positives among all the instances
that are truly positive. This metric is useful in cases where false negatives are
costly, such as identifying fraudulent transactions [17].

2.4.3 Precision Score

The precision score measures the proportion of true positives among all the in-
stances that the model classified as positive. This metric is useful in cases where
false positives are costly, such as in medical diagnosis [18].

2.4.4 F1 Score

The F1 score is a weighted average of the precision- and recall score, with equal
weight given to both. This metric provides a balance between precision- and recall
score, and is useful in cases where both false positives and false negatives are
important [19].

2.4.5 Balanced Accuracy Score

The balanced accuracy score is a modification of the accuracy score that takes
into account the imbalance between the classes. To guarantee that the score is
not skewed toward the majority class, it is computed as the average of the recall
scores for each class. This metric is particularly useful in cases where classes are
imbalanced [20].

2.4.6 Training Loss

Training loss is a metric used during the training phase of the model to measure
the error between the predicted values and the actual values. It is used to optimize

Chapter 2: Theory 13

the model parameters to minimize the loss [21].

2.5 Hardware to Choose

Language models are taught to anticipate the following word or series of words
in a given text. To create a proficient language model, it is often necessary to
utilize extensive computational power. Such substantial capacity may either stem
from a central processing unit (CPU) or a graphics processing unit (GPU). The
advantages and disadvantages of training language models on CPU and GPU will
be discussed in this chapter.

One advantage of using a CPU to train language models is the availability of low-
cost hardware. Since desktop and laptop computers have CPUs, many academics
and business people view them as a useful and affordable option. Furthermore,
since it doesn’t call for the usage of specialist software or hardware, training lan-
guage models on CPUs is frequently less difficult than on GPUs.

The biggest drawback of employing CPUs is their comparatively poor processing
speed. This can drastically lengthen the training process for language models,
making them less practical for models with bigger datasets or more intricate ar-
chitectures. Additionally, the size of the models that may be trained could be
constrained by CPUs’ relatively low memory capacities. Contrarily, because GPUs
process information far more quickly than CPUs do, researchers can train larger
and more complicated language models in a shorter period of time. GPUs also
have larger memory capacity than CPUs, allowing for larger models to be trained.
These advantages make GPUs a popular choice for training state-of-the-art lan-
guage models, such as generative pre-trained transformers (GPT)-4 [22].

The increased cost of GPUs compared to CPUs is one key disadvantage. Since GPUs
may be significantly more expensive than CPUs, academics and professionals on a
limited budget may find it difficult to use them. Furthermore, GPUs could in some
situations need specific software and hardware, which might complicate their use
and maintenance.

The unique requirements of the project, the size of the dataset, including the com-
plexity of the model architecture, and the availability or lack of funding, affect
whether to use a CPU or a GPU for training language modeling . While CPUs offer
low-cost and convenient hardware, they may not be suitable for large or com-
plex models. Although GPUs are more complex and costly, they also offer quicker
processing rates and frequently have more memory. It is important to remember
that it requires far less computing power to fine-tune a data model compared to
training one from scratch.

It is also possible to use several GPUs when training language models. Here it has
been noted that it is not always better to have more in all cases. When one uses
several GPUs at the same time, this brings a lot of overhead and administration.

Since the work needs to be distributed, moving from a single GPU to numerous
ones requires some kind of parallelism. To produce parallelism, there are a number

14 Aabol & Dragsten: Active Learning in Norwegian NLP

of methods, including pipeline, data, and tensor parallelism. The ideal settings
depend on the hardware one is using because there isn’t a single answer that works
for everyone [23]. In those cases where one works with extremely large datasets
and or with extremely large models, it may not be possible to run everything on
a single GPU. In such situations, it is necessary to use several GPUs.

2.6 Hugging Face

Hugging Face is an open-source platform for NLP that provides a number of tools
and resources for developing and utilizing NLP models. The platform was intro-
duced in 2016 and has since gained popularity among NLP academics and pro-
grammers [24].

Hugging Face’s notable feature is its emphasis on open-source development and
community-driven innovation. The platform is based on the frameworks Tensor-
Flow and PyTorch, which are well-known and widely used within the NLP com-
munity. All source code is also on GitHub, so everyone can review and contribute.
This approach has created an active ecosystem of developers and researchers who
share models, datasets, code, and best practices [25]. Hugging Face has become
an essential player in the NLP landscape, providing a flexible and robust plat-
form for constructing and deploying NLP models. Hugging Face also provides a
variety of tools for learning about NLP and staying up to date with current in-
dustry advancements, including blog entries, tutorials, and a community forum
for knowledge exchange and question-and-answer sessions.

2.7 Fine-Tuning Pretrained Models

Fine-tuning a BERT model is a common technique to improve the performance of
pre-trained language models on specific downstream tasks. This process involves
training a pre-trained BERT model on a smaller dataset that is specific to the task
of interest, using supervised learning.

There are many pretrained BERT models one can find, e.g. on Hugging Face, so it
might be good to do some research on which one best suits the task. BERT models
are typically pre-trained on large, general-domain corpora and are available in
various sizes and configurations. The pre-trained model that is chosen depends
on the particular job at hand as well as the size and complexity of the dataset.

Once one have found a suitable model, one is ready to adapt it to the task it
will perform. This is done by replacing the final layer(s) of the BERT model with
task-specific layers, which are then trained on a labeled dataset using supervised
learning. The labeled dataset should be representative of the task and should con-
tain sufficient examples to train the model effectively [13].

It is important to consider a variety of factors, one of these is the choice of the
hyperparameters, which might affect how well the model performs. The learning

Chapter 2: Theory 15

rate, batch size, and training epoch count are some of these hyperparameters. To
obtain best performance, it is crucial to choose suitable values for these hyper-
parameters.

Evaluation of the trained model should also be taken into account. A validation
set distinct from the training set should be used to assess the performance of the
model. Through subsequent iterations of the fine-tuning process, this evaluation
might assist in detecting possible overfitting or underfitting concerns.

When utilizing AL to fine-tune models, one is faced with a choice, reusing the same
model, or initiating a new one each time. The most common method is to initiate
new models in each training cycle. The two approaches are described below.

2.7.1 Iterative Use of Models

Fine-tuning the same BERT model through the entire training process involves
reusing the same model for each iteration of AL. This approach can be beneficial
if the labeled training set is large enough to prevent overfitting. However, reusing
the same model can also lead to overfitting if the remaining set is too small.

2.7.2 Initialize New Models

Initializing a new model at each training session involves starting with the same
fresh BERT model and fine-tuning it on the labeled training set. This could be
necessary because fine-tuning a pre-trained BERT model on a new task can result
in overfitting, where the model becomes too specialized to the training set and
performs poorly on new data. Starting with a new model lowers the possibility of
overfitting and improves the model’s ability to generalize to new data.

To address overfitting in either approach; regularization, dropout, and early stop-
ping can be employed. Regularization involves adding a penalty term to the loss
function that encourages the model to learn simpler patterns. Early stopping in-
volves monitoring the validation loss during training and stopping the training
process when the validation loss starts to increase. Dropout randomly drops out
neurons during training, preventing the model from relying too heavily on any
one feature and forcing it to learn more robust representations [26].

2.8 Environmental Impact in Language Model Training

It is well-known that the use of computational resources has an environmental
impact. The power and resources required to train GPT-4 are immense. However,
it is important to recognize that sustainability and the green shift require contri-
butions from all parties, not just the major players. The expression "Many small
streams make one big river" resonates in this context. Although GPT-4 is relatively
new, accurate estimates of its energy consumption during training are limited.

16 Aabol & Dragsten: Active Learning in Norwegian NLP

Nonetheless, a study titled "Making AI Less Thirsty," released on April 6th, 2023,
investigated the energy and water consumption of ChatGPT-3. The study revealed
that a single interaction with ChatGPT-3 is equivalent to wasting half a liter of wa-
ter. Furthermore, in terms of energy consumption, the researchers reported that
the volume of fresh water used to cool the server farms running ChatGPT-3 could
fill a nuclear reactor’s cooling tower. Training a software like ChatGPT-3 requires
energy comparable to building batteries for 320 Tesla cars or 370 BMW cars [27].

Chapter 3
Related Work

3.1 Active Learning and Fine-Tuning Models

Active learning (AL) is a well-known concept in machine learning (ML) that has
been described in papers as early as 1998 and 2002 [28] [29]. Despite this, AL
has not been widely adopted as the norm in ML, especially deep models [30]. To
further develop AL within the scope of Norwegian text analysis, it is interesting
to look at related work in the field and understand what has been done and what
can be done.

Schröder (2020) [30] discusses the concept of employing AL in deep neural net-
works. He addresses the issue of training a deep neural network with AL. As men-
tioned earlier, small datasets are not adequate for deep neural network training.
On the other hand, Schröder highlights certain AL applications for deep neural
networks that are appropriate. One of these tasks is the process of fine-tuning a
trained model. This is highlighted because the amount of data required for this is
far less than the actual training of the model. Another obstacle that is highlighted
is how to make good query strategies on the output from a neural network. Among
other things, the more conventional techniques that Settles introduced will not
always work for a neural network since they lack an inherent indicator of un-
certainty [4]. Schröder refers to other authors who have considered alternative
solutions to this. Ash et al.’s article from 2019 presents Batch Active Learning
by Diverse Gradient Embeddings (BADGE) [31]. This is a query strategy adapted
to deep neural networks. The final layer’s gradients are seeded with K-means++
[32]. By doing this, one obtains a query based on uncertainty and diversity.

3.2 BERT-Models and Active Learning

A very central and relevant study for the scope of the report at hand is the empir-
ical study by Ein-Dor et al. [33]. The study looks at AL for Bidirectional Encoder
Representations from Transformers (BERT) models. Ein-Dor et al. also looks at

17

18 Aabol & Dragsten: Active Learning in Norwegian NLP

how the use of AL can boost the performance of BERT, even under a challenging
setting, with a small annotation budget and highly skewed data. This reflects many
aspects of the thesis at hand, including AL and already trained BERT-models. Ein-
Dor et al.’s report sets some guidelines for the use of AL in this project.

The study highlights the challenges presented by real-world scenarios for text clas-
sification, where labels are usually expensive and data is often characterized by
class imbalance. AL is a widely adopted approach that addresses the challenge
of data scarcity. It is a popular paradigm used to overcome the limitations posed
by limited data availability. Recently, pre-trained NLP models such as BERT have
received massive attention due to their outstanding performance in various NLP
tasks. However, the use of AL with deep pre-trained models has so far received
little consideration. This study provides valuable insights into the use of active
learning techniques with BERT-based classification and demonstrates their po-
tential to improve performance in practical scenarios

3.3 Norwegian Natural Language Processing

Touileb et al. [34] wrote a report about sentiment analysis for book reviews in
Norwegian using the Norwegian Review Corpus (NoReC) [35], but only the subset
containing book reviews. This report is relevant for the project at hand because of
the dataset used, in addition to the use of sentiment analysis with binary sentiment
classification. Touileb et al. also provides guidelines for dataset splitting of dice
ratings, where ratings 1, 2, and 3 are negative while rating 6 is positive. To balance
the dataset, Touileb et al. randomly sampled ratings of 5 as positive.

There are several trained deep neural networks that can be used for text analysis
for the Norwegian language. The report "Large-Scale Contextualized Language
Modeling for Norwegian" highlights these [36]. The models in this report are
based on two different frameworks, BERT and Embeddings from Language Model
(ELMo). Some of the models discussed in this report have been created specific-
ally for Norwegian text, while others are multilingual. An interesting factor the
report mentions is that a model can perform better with a clean and small dataset
compared to a model that has been trained on a larger dataset with more noise
[36].

Of the models compared, the NorBERT model comes out best in fine-grained sen-
timent analysis evaluated on a sentiment graph and a non-polar sentiment graph
[37]. In the tests on sentence-level binary sentiment classification, the NorBERT
model comes out second best, only beaten by the model NB-BERT. Here it is in-
teresting to see that the multilingual model mBERT, developed by Google, pro-
duces noticeably worse results by a large margin. Keep in mind that Kutuzov’s
report used NorBERT in the comparison, and not NorBERT 2. It can therefore be
speculated that NorBERT 2 would achieve similar, if not better, results than its
predecessor [36].

A combined effort of the projects European Open Science Cloud (EOSC-Nordic)
and Sentiment Analysis for Norwegian Text (SANT), managed by the Language

Chapter 3: Related Work 19

Technology Group (LTG) at the University of Oslo, resulted in a publication of
NorBERT 2 on February 7th, 2022 [38]. The reports by Kutuzov et al. from 2021
were used as a basis for their effort to construct this model. There has been a sig-
nificant increase in vocabulary from NorBERT to NorBERT 2. NorBERT features a
custom 30,000 WordPiece vocabulary, while NorBERT 2 features a custom 50,000
WordPiece vocabulary. This means that NorBERT 2 has a 40% larger vocabulary
than its predecessor [38]. NorBERT 2 was evaluated on several of the same bench-
marks that Kutuzov et al. used in their report. This investigation demonstrates that
NorBERT 2 produced the best results for binary sentiment analysis. The outcomes
from all the models have been included in Table 3.1. Here it can be observed that
NorBERT 2 outperforms NB-BERT by a small margin.

Table 3.1: Binary sentiment analysis task comparison.

Model F1-score
mBERT 67.7
XLM-R 71.8
NorBERT 77.1
NorBERT 2 84.2
NB-BERT-Base 83.9

3.4 Research Gap

Surveying the usage of AL within text analysis, with an emphasis on Norwegian
text, has been the key research gap in this report. Since this is unexplored ground,
this study will be valuable and serve as a resource for future work in the field. The
content of this chapter illustrates that there is great potential within AL in NLP,
with Norwegian NLP using AL in particular. This is because no one, to the best of
current knowledge, has worked on this before with the Norwegian language. In
addition, the combination of AL and NLP with the English language has produced
promising results. One of those who has illustrated the possibilities for AL within
NLP is Ein-Dor et al., who have worked on this on an English-trained BERT model
[33]. These findings lay the foundation for this study, where the aim is to produce
results for Norwegian NLP using AL on a binary sentiment classification problem.

Chapter 4
Method

4.1 Hardware and Tools

As mentioned in the Chapter 2, Theory, training language models can require a lot
of machine resources. Therefore, it was established early on that the project group
would receive available resources from Kantega AS and the Norwegian University
of Science and Technology (NTNU). From Kantega AS, the group was provided
with its own environment in Azure Databricks. This was flexible and the project
group could configure the environment according to their own wishes, but with
limitations on computing power and the availability of a graphics processing unit
(GPU). NTNU offered access to their own cluster system, Idun. Idun uses a system
called Slurm Workload Manager, where one can make requests for a job, and after
a certain waiting time one can be granted this [39]. This is a large GPU cluster that
offers extremely high computing power. The cluster consists, among other things,
of the GPUs NVIDIA V100, NVIDIA P100, and NVIDIA A100 [40]. The downside
of Idun was that this is a shared cluster with other students and researchers at
NTNU. This could sometimes result in up to 50 hours of waiting time to run a
Python file. Despite this, the project group chose to use Idun instead of Azure
Databricks. The biggest driving force for this choice was the availability of costly
resources. The project group also had access to Idun earlier in the startup phase
and had everything set up on Idun. It would therefore have been a transaction
cost for the group to switch over to Azure Databricks.

Since Idun could have up to 50 hours of waiting time, much of the testing was
done on local machines, while the actual training was carried out on the Idun ma-
chines. Based on NVIDIA’s own report, the project group chose to use the NVIDIA
A100 GPU [41]. This one has a compute capability of 8.0, which enables the use
of the TensorFloat-32 (TF32) file format [41] [42]. Tensor cores are specialized
processing units that can perform mixed-precision matrix operations, which are
commonly used in deep learning models. As described in a blog post by NVIDIA’s
developer website, Accelerating AI Training with TF32 Tensor Cores, TF32 is a
mixed-precision data format that uses 10 bits for the exponent and 22 bits for
the mantissa. This format allows for increased precision in the accumulation of

21

22 Aabol & Dragsten: Active Learning in Norwegian NLP

small gradients in the model, while also leveraging the Tensor Cores for faster
computation. According to NVIDIA, the TF32 format can achieve up to 20% faster
training times compared to the previous single-precision floating-point (FP32)
format, with negligible impact on model accuracy. This improvement in train-
ing speed can be particularly beneficial in large-scale deep learning applications,
where training times can often be a bottleneck. If one wants to reproduce and
run the source code for this project and do not have access to at least a NVIDIA
Ampere hardware with a compute capability of 8.0, one will need to change the
format.

The project team had six A100 GPUs available, but only used one during the train-
ing. The waiting time to run code on Idun increased dramatically when requesting
more resources, and this was simply not feasible within the time frame. Two of
the GPUs had 40GB of memory and 48 cores, while the remaining four had 80GB
of memory and 64 cores. The project team does not know which of these two was
used, and it is possible that both have been used interchangeably. All training was
run multiple times in the starting phase without significant differences in runtime
and results. Training was run with 16GB of memory to reduce the wait time on
Idun. During the project, different numbers of cores were tested, but it was found
that it was feasible to use only one. It was faster with multiple nodes, but the wait
time on Idun also became considerably longer. In addition, the project team con-
siders it good practice towards other fellow students to not use more resources
than necessary in order to make the resources available to more people. The pro-
ject group’s decision on the duration of each training run was influenced by this
factor. Specifically, the number of epochs used in each iteration of training was
affected. Further details on this topic can be found in Chapter 4.3.2.

4.2 Hugging Face Implementation

When working with natural language processing (NLP), many useful resources
can be found on Hugging Face, as previously mentioned. In particular, Hugging
Face helped the project group to store their altered datasets, as well as their cre-
ated models. This sped up the experimental process, since both datasets and mod-
els could easily can be imported using their application programming interface
(API). In this chapter, the project group’s usage of datasets and models from Hug-
ging Face will be described.

4.2.1 Datasets

There is a significant lack of good Norwegian datasets after researching both Hug-
ging Face and other various sources. If the keyword "Norwegian" is searched on
Hugging Face for datasets, only 12 results are displayed. If the features; "Norwe-
gian", "Norwegian Bokmål, and "Norwegian Nynorsk" are selected, only 10 res-
ults are displayed. After further research, many of these datasets are either empty,
not Norwegian, or not useful for the projects purpose. From the related work in
Chapter 3.3, the Norwegian Review Corpus (NoReC) [35]was deemed very useful

Chapter 4: Method 23

for the projects purpose, as it is a large Norwegian corpus with reviews that can
be used for sentiment classification. There is a total of 43,000 reviews with dice
ratings in the corpus. The reviews are gathered from various Norwegian news
sources, and the reviews dates as far back as 1998. The reviews also originate
from different genres of entertainment. These include: audiovisual media, music,
miscellaneous items, literature, products, games, restaurants, stage, and sports.
After skimming through the reviews in the dataset, the quality seemed fair, and
little preprocessing were needed.

The search for datasets on Hugging Face were not in vain, as one dataset seemed
useful for the purpose of the project. The "Norwegian_sentiment" dataset, created
by user "sepidmnorozy" [43], contains 3,608 rows of reviews. These reviews have
labels of 0 or 1, which indicates their sentiment. There is little information or
documentation about this dataset, but it was also deemed as useful, since it could
be concatenated with the NoReC dataset, to create more variation and a larger
data foundation. In addition, both datasets has tags for the train/validation/test
split, which indicates that the data is evenly distributed in terms of for example
categories in the NoReC dataset. Therefore, for this project both the NoReC dataset
and "Norwegian_sentiment" datasets were used for sentiment classification.

4.2.2 Preprocessing

The Norwegian Review Corpus

After determining what datasets to use, a small exploratory data analysis was per-
formed by the project group on both of the datasets to find important features to
keep or not. The NoReC dataset was clearly the largest, and contained some in-
tricacies. Firstly, the rating disparity was clear. Figure 4.1 shows this. In particular
there are few reviews for the ratings 1, 2, and 6, with 389, 2,346, and, 2,410 re-
views respectively. This already suggests that a classification on dice ratings might
be challenging with so small sample sizes. Furthermore, it was found that there
are 460 reviews that is written in Norwegian Nynorsk. These reviews were kept,
since the Norwegian NLP model chosen has also trained on this language. Lastly,
it was found that around 5,000 of the reviews had empty excerpts. The text in the
reviews are obviously important, so these reviews were deleted.

24 Aabol & Dragsten: Active Learning in Norwegian NLP

Figure 4.1: Rating disparity for the Norwegian Review Corpus dataset.

Norwegian Sentiment Dataset

This dataset [43] seemed to be cleaned up before uploaded to Hugging Face, as
there were no empty excerpts. Additionally, the rating disparity was somewhat
tighter than the NoReC dataset. The value counts for the labels are 1,186, and
2,422, for negative and positive sentiment respectively. Since the rating disparity
of the NoReC data was significant, the "Norwegian_sentiment" dataset will act as
a buffer of data. In particular, for the negative sentiment classification. As men-
tioned in Chapter 4.2.2 and Chapter 3.3, classification for dice ratings would be
challenging with minimal amounts of data for some of the ratings. Therefore, the
project group decided to concatenate and split the datasets, to simplify the classi-
fication. Figure 4.1 shows that ratings with value 4 is a clear separation between
negative reviews and positive reviews. Therefore, ratings of 4 were deleted from
the dataset, and the two sides were remapped to negative (1, 2, and 3) and pos-
itive (5 and 6). Lastly, the "Norwegian_sentiment" dataset was concatenated with
the altered NoReC dataset to act as the dataset the model will train on.

4.2.3 Final Dataset Specifics

After preprocessing both the NoReC dataset and the "Norwegian_sentiment" data-
set, and concatenating them, it is now possible to examine some specifics regard-
ing how they were used in the training process. Firstly, the total length of the pro-
cessed dataset is 29,383 rows. This is further divided into three separate datasets:
train, validation, and test. The dataset sizes are 23,354 for the train set, 3,001 for

Chapter 4: Method 25

the validation set, and 3,028 for the test set. All three datasets are evenly split in
terms of review categories, where each has reviews representing every category.
The label disparity in terms of positive/negative sentiment is also evenly skewed
for each dataset. There are approximately double the amount of positive reviews
as negative in each dataset. This caused some intricacies in terms of the accur-
acy score, which is why balanced accuracy score is also represented in the results
chapter. The dataset specifics are collected in Table 4.1:

Table 4.1: Distribution of positive and negative reviews for each dataset, in ad-
dition to the total size of each dataset.

Total size Nr. of positives Nr. of negatives
Train dataset 23,354 14,958 8,396
Validation dataset 3,028 2,087 941
Test dataset 3,001 2,095 906

4.2.4 Models and Tokenization

As mentioned in Chapter 3.3, NorBERT 2 is the model of choice for this project.
This model is available from Hugging Face [44], and can be used for fine-tuning
and other purposes. In normal NLP pipelines, the model that is supposed to be fine-
tuned, can also supply different tools for the text it will train on. These include
the tokenizer and a data collator, in addition to the model itself. Therefore, in the
code for the project, a tokenize dataset function is defined to tokenize the whole
dataset in terms of the excerpt. This is shown in Figure 4.2.

1 from transformers import AutoTokenizer
2

3 def tokenize_dataset(dataset, model_checkpoint):
4 tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
5

6 def tokenize_function(examples):
7 return tokenizer(examples["text"], padding="max_length", truncation

=True)
8

9 train_data = dataset["train"]
10 val_data = dataset["validation"]
11 test_data = dataset["test"]
12

13 train_data = train_data.map(tokenize_function, batched=True)
14 val_data = val_data.map(tokenize_function, batched=True)
15 test_data = test_data.map(tokenize_function, batched=True)
16

17 return train_data, val_data, test_data

Figure 4.2: The tokenize_dataset method for preparing the dataset to be trained
on. It uses the Hugging Face AutoTokenizer with padding=’max_length’ and trun-
cation=True

The tokenizer is imported from the Hugging Face application programming inter-
face (API) with AutoTokenizer, where NorBERT 2 is input in the from_pretrained()

26 Aabol & Dragsten: Active Learning in Norwegian NLP

method. This tokenizer is used with padding=’max_length’ and truncation=True.
The padding option pads short sentences to create equal sized tensors up to the
models maximum token length. The truncation option shortens long sentences
back to the max length which is the same as in the padding option. The code in
Figure 4.2 illustrates how the review text in the whole dataset is tokenized.

4.3 Active Learning Implementation

The active learning (AL) training method used in this project has been composed
by the project group as an attempt to combine a common AL implementation,
with the Hugging Face trainer API. Figure 4.3 shows a semi-pseudo code version
of the training loop, to help understand how the project group has trained the
models in this project. Note that some of the methods used in this code snippet
are altered for the sake of understanding the code. The full source code for the
project is available in a repository on GitHub, for those interested in the whole
unaltered training loop and other resources used in the project can find it here
[45].

https://github.com/simenaabol/Norwegian-text-classifier-optimisation-with-active-learning

Chapter 4: Method 27

1 from transformers import Trainer
2

3 def train_active_learning(n, model_checkpoint, active_learning,
type_sampling, train_new_models):

4

5 # Get model from Hugging Face
6 tokenizer, data_collator, model = get_model_util(model_checkpoint)
7

8 # Get custom dataset uploaded to Hugging Face
9 train_set, validation_set, test_set = get_dataset()

10

11 # Pick n amount of reviews to start training on
12 train_set, new_reviews = pick_n_random_reviews(train_set, n)
13

14 # Create training pool, and add the reviews to it
15 train_pool = create_dataset_from_empty_df()
16 train_pool = add_samples_to_pool(train_pool, new_reviews)
17

18 # Train until the train set is empty
19 while len(train_set) > n:
20

21 # Initialize the trainer
22 trainer = Trainer(model=model, args=training_args, train_dataset=

train_pool, data_collator=data_collator, tokenizer=tokenizer,
eval_dataset=validation_set, compute_metrics=compute_metrics)

23

24 # Train on the data provided and evaluate on test set
25 trainer.train()
26 score = trainer.evaluate(test_set)
27

28 if active_learning:
29 # Get samples using chosen active learning method
30 if type_sampling == "least_confidence":
31 new_reviews = least_confidence_sampling(train_set, n,

trainer)
32 elif type_sampling == "margin":
33 new_reviews = margin_sampling(train_set, n, trainer)
34 elif type_sampling == "entropy":
35 new_reviews = entropy_sampling(train_set, n, trainer)
36 else:
37 # Get the n indices randomly
38 train_set, new_reviews = pick_n_random_reviews(train_set, n)
39

40 if train_new_models:
41 # Get a new non-fine-tuned model and expand the training pool
42 tokenizer, data_collator, model = get_model_util(

model_checkpoint)
43 train_pool = add_samples_to_pool(train_pool, new_reviews)
44 else:
45 # Train iteratively by keeping the same model, with new rows
46 train_pool = create_dataset_from_empty_df()
47 train_pool = add_samples_to_pool(train_pool, new_reviews)

Figure 4.3: A semi-pseudo code version of the main training loop for active learn-
ing training with the Hugging Face application programming interface. All meth-
ods used are either shortened or described elsewhere in the source code. This
figure serves a purpose for understanding how the models are trained.

28 Aabol & Dragsten: Active Learning in Norwegian NLP

The main takeaway from the snippet in Figure 4.3 is the opportunity to custom-
ize the training process. The program has multiple input variables to control this
process. This includes:

• How many samples to train on in each iteration.

• What model to download and use for fine-tuning from Hugging Face.

• Whether one wants to train using AL or not.

• What type of AL sampling methods to use - if AL is chosen.

• Whether one wants to train iteratively or use new-models for each iteration
of training.

Another key element to the snippet is the fact that there are two ways the training
pool is altered. This depends if the train_new_models flag is active or not. If one
wants to use the new-models training method, the model is initialized a new, and
the dataset increases in size with the new samples found for later iterations. If
one wants to train iteratively, a new model will not be initialized, but the training
pool will only consist of the newly found samples. This separates the two methods
used in this project.

In addition, it is noteworthy that the majority of the outcomes presented in Chapter
5 will be derived from the metrics computed on line 26 in Figure 4.3. This line
employs a predefined function for calculating metrics that has been specified by
the project team. The function is displayed in Figure 4.4. It returns a dictionary
of the metrics found. The results obtained are based on evaluation on the test
dataset derived.

Chapter 4: Method 29

1

2 from sklearn.metrics import (accuracy_score, balanced_accuracy_score,
precision_score, recall_score, f1_score)

3

4 def compute_metrics(pred):
5 labels = pred.label_ids
6 preds = pred.predictions.argmax(-1)
7

8 # Calculate accuracy using sklearn's functions
9 acc = accuracy_score(labels, preds)

10 balanced_accuracy = balanced_accuracy_score(labels, preds)
11 f1 = f1_score(labels, preds)
12 recall = recall_score(labels, preds)
13 precision = precision_score(labels, preds)
14

15 accuracy_dict = {
16 'accuracy': acc,
17 'balanced_accuracy': balanced_accuracy,
18 'f1_score': f1,
19 'recall': recall,
20 'precision': precision,
21 }
22

23 return accuracy_dict

Figure 4.4: Predefined function that derives metrics from the predictions of the
model, evaluated on the test dataset.

4.3.1 Scikit-Learn and Hugging Face API

In the final version of the source code for this project, the Hugging Face API ac-
counted for most of the solution. Scikit-learn (Sklearn) was primarily used for
measuring different accuracy metrics for the results, as seen in Figure 4.4. This
was not always the case, as there were many useful tools offered by Sklearn that
the project group wished to use.

For one, there were multiple PyPi packages that offer useful functionality for the
project. modAL [11] is a package that offer methods for AL sampling. This was
recommended to the project group early in the process, but a problem with com-
patibility with the Hugging Face trainer API occurred. Every sampling method in
the package requires a BaseEstimator, which is a base class for all estimators in
Sklearn. Therefore, the project group started implementing a Sklearn solution to
accommodate the estimator problem. This involved using Sklearn’s pipeline tool
[46], to use the transformer language from Hugging Face and feed these weights
to a Sklearn classifier (such as LogisticRegression [47]), for it to have the BaseEs-
timator that modAL requires. An example of this is illustrated in an article written
on Hugging Face by the Sklearn team [48].

The problem with the Sklearn solution was the training itself. Unlike the Hugging
Face trainer API, one cannot train on all of the classifiers iteratively. There are
some classifiers that support a method called partial_fit [49], which the project

30 Aabol & Dragsten: Active Learning in Norwegian NLP

group tried, but found no results. Although it now was possible to use modAL
natively, it serves little purpose when the training itself fails.

This experimentation led to the final solution for this project. The Sklearn pipeline
was scrapped and the native Hugging Face trainer API was used, as shown in Fig-
ure 4.3. The project group still wanted to implement the modAL package - or at
least the source code for it. Therefore, the AL sampling methods from the package
were rewritten by the project group to support the Hugging Face model instead.
This resulted in a Hugging Face API training process with supporting AL sampling
methods originating from modAL. Sklearn provided, as mentioned earlier, accur-
acy metrics used in the results from training, based on the predictions made by the
Hugging Face model. Everything else in the source code for the project is either
related to Hugging Face or modAL.

4.3.2 Training Arguments

To reproduce the results in this project, it is important to examine the training
arguments defined. As previously mentioned, the models were trained using the
Trainer API from Hugging Face. The TrainingArguments class can be found in the
same API and is used as an argument for the Trainer. This class defines several
aspects of the training process. The project group arrived at these arguments after
extensive trial and error. The final training arguments reflect the final results from
the models and can be seen in Figure 4.5.

1 from transformers import TrainingArguments
2

3 training_args = TrainingArguments(
4 num_train_epochs=5,
5 per_device_train_batch_size=32,
6 per_device_eval_batch_size=32,
7 gradient_checkpointing=True,
8 gradient_accumulation_steps=8,
9 learning_rate=5e-5,

10 optim='adafactor',
11 weight_decay=0.01,
12 tf32=True
13)

Figure 4.5: The training arguments for each model in the project.

To go into more detail about the training arguments, they can be looked at one
by one:

• num_train_epochs: This is the most significant argument, as it specifies the
number of times the model will be trained on the dataset provided. For the
project at hand, this means how many times each iteration of data will be
trained on. One epoch is defined as one complete pass through the entire
training dataset. The duration of training was influenced by limited time
and resources, as mentioned in Chapter 4.1. As a result, the project group

Chapter 4: Method 31

chose a middle ground for the number of epochs used in each iteration of
training. This decision led to 5 epochs per iteration.

• per_device_train_batch_size: This argument specifies the number of train-
ing samples per batch per GPU.

• per_device_eval_batch_size: This argument specifies the number of eval-
uation samples per batch per GPU.

• gradient_checkpointing: This argument specifies whether or not to use
gradient checkpointing to reduce memory usage. It is a technique that trades
compute for memory by recomputing intermediate activations during back-
propagation.

• gradient_accumulation_steps: This argument specifies the number of steps
to accumulate gradients before performing an optimizer step. This can be
used to simulate larger batch sizes without increasing memory usage. Both
of the gradient arguments are used to save memory because of limited
memory access and out-of-memory errors during training.

• learning_rate: This argument specifies the learning rate for the optimizer.
The learning rate determines how much the weights of the model are up-
dated during training. The same learning rate is kept throughout the train-
ing process.

• optim: This argument specifies the optimizer to use. An optimizer is an
algorithm that updates the weights of a model during training based on the
gradients computed during backpropagation. The adafactor optimizer is an
adaptive learning rate optimizer that focuses on fast training of large scale
neural networks.

• weight_decay: This argument specifies the weight decay for the optimizer.
Weight decay is a regularization technique that adds a penalty term to the
loss function to encourage smaller weights.

• tf32: This argument specifies whether or not to use TF32 precision. TF32
is a mixed precision format that uses 10-bit mantissa and 5-bit exponent. A
NVIDIA Ampere hardware with a compute capability of 8.0 is required for
this file format.

Chapter 5
Results

The results are presented in this chapter and reflect the methods described in
Chapter 4. Each chapter is related to one of the three research questions presen-
ted in Chapter 1. Specifically, Chapter 5.1 corresponds to RQ1, Chapter 5.2 cor-
responds to RQ2, and Chapter 5.3 corresponds to RQ3.

5.1 Fine-Tuning Methods and Accuracy Metrics

As previously mentioned, the models in this project are trained using two meth-
ods: iteratively training the same model with new data and training new models
for each iteration with a continuously larger dataset. This chapter presents a com-
parison of how each training method scores on different accuracy metrics from
Scikit-learn (Sklearn). The research question for this chapter is as follows:

RQ1 What are the differences in the accuracy metrics of Norwegian natural lan-
guage processing models for classification problems using different fine-tuning
methods while incorporating active learning?

In this chapter, the project group presents the results as graphs from the train-
ing process, in addition to tables containing the progression of accuracy metrics
throughout the training. For each of the fine-tuning training methods, a table
is complemented by a description of the different active learning (AL) sampling
methods, in addition to traditional random sampling. This is also displayed in the
graphs. Chapter 5.1.1 displays accuracy metrics for the iterative training method,
while Chapter 5.1.2 displays accuracy metrics for the new-models training method.

33

34 Aabol & Dragsten: Active Learning in Norwegian NLP

5.1.1 Iterative Training Method

Accuracy Score

Figure 5.1: All training runs for the iterative training method using the accuracy
score metric.

Table 5.1: The accuracy score metric for Figure 5.1 is shown in this table. Each
active learning method used, in addition to traditional random sampling, is dis-
played by the interval of number of samples.

Samples Least Confidence Smallest Margin Shannon Entropy Random
0 0.695 0.749 0.706 0.662
2,000 0.834 0.832 0.837 0.828
4,000 0.833 0.833 0.843 0.811
6,000 0.848 0.844 0.848 0.817
8,000 0.850 0.856 0.855 0.829
10,000 0.852 0.857 0.849 0.825
12,000 0.851 0.840 0.852 0.826
14,000 0.847 0.848 0.849 0.837
16,000 0.839 0.846 0.849 0.834
18,000 0.840 0.834 0.834 0.844
20,000 0.831 0.807 0.827 0.842
22,000 0.767 0.789 0.795 0.842

Chapter 5: Results 35

Balanced Accuracy

Figure 5.2: All training runs for the iterative training method using the balanced
accuracy score metric.

Table 5.2: The balanced accuracy score metric for Figure 5.2 is shown in this
table. Each active learning method used, in addition to traditional random
sampling, is displayed by the interval of number of samples.

Samples Least Confidence Smallest Margin Shannon Entropy Random
0 0.513 0.623 0.529 0.576
2,000 0.799 0.804 0.778 0.780
4,000 0.785 0.797 0.802 0.787
6,000 0.818 0.812 0.815 0.789
8,000 0.823 0.815 0.815 0.796
10,000 0.812 0.820 0.825 0.778
12,000 0.819 0.815 0.827 0.806
14,000 0.810 0.829 0.821 0.796
16,000 0.800 0.813 0.792 0.800
18,000 0.823 0.807 0.780 0.798
20,000 0.796 0.793 0.804 0.812
22,000 0.788 0.784 0.801 0.816

36 Aabol & Dragsten: Active Learning in Norwegian NLP

F1 Score

Figure 5.3: All training runs for the iterative training method using the F1 score
metric.

Table 5.3: The F1 score metric for Figure 5.3 is shown in this table. Each active
learning method used, in addition to traditional random sampling, is displayed
by the interval of number of samples.

Samples Least Confidence Smallest Margin Shannon Entropy Random
0 0.816 0.840 0.823 0.766
2,000 0.882 0.879 0.888 0.880
4,000 0.884 0.881 0.890 0.862
6,000 0.892 0.889 0.892 0.868
8,000 0.892 0.899 0.898 0.878
10,000 0.896 0.899 0.892 0.877
12,000 0.894 0.885 0.893 0.873
14,000 0.892 0.890 0.892 0.885
16,000 0.886 0.890 0.897 0.881
18,000 0.883 0.881 0.885 0.891
20,000 0.880 0.857 0.874 0.887
22,000 0.815 0.841 0.843 0.886

Chapter 5: Results 37

5.1.2 New-Models Training Method

Accuracy Score

Figure 5.4: All training runs for the new-models training method using the ac-
curacy score metric.

Table 5.4: The accuracy score metric for Figure 5.4 is shown in this table. Each
active learning method used, in addition to traditional random sampling, is dis-
played by the interval of number of samples.

Samples Least Confidence Smallest Margin Shannon Entropy Random
0 0.705 0.736 0.711 0.766
2,000 0.835 0.839 0.834 0.830
4,000 0.845 0.843 0.840 0.837
6,000 0.852 0.847 0.848 0.839
8,000 0.854 0.853 0.853 0.843
10,000 0.856 0.858 0.853 0.842
12,000 0.855 0.860 0.851 0.852
14,000 0.857 0.855 0.853 0.855
16,000 0.860 0.859 0.859 0.852
18,000 0.862 0.857 0.860 0.858
20,000 0.863 0.858 0.857 0.861
22,000 0.861 0.860 0.863 0.861

38 Aabol & Dragsten: Active Learning in Norwegian NLP

Balanced Accuracy

Figure 5.5: All training runs for the new-models training method using the bal-
anced accuracy metric.

Table 5.5: The balanced accuracy score metric for Figure 5.5 is shown in this
table. Each active learning method used, in addition to traditional random
sampling, is displayed by the interval of number of samples.

Samples Least Confidence Smallest Margin Shannon Entropy Random
0 0.540 0.576 0.542 0.647
2,000 0.793 0.804 0.801 0.789
4,000 0.805 0.807 0.805 0.811
6,000 0.816 0.813 0.812 0.809
8,000 0.815 0.817 0.819 0.806
10,000 0.819 0.827 0.820 0.812
12,000 0.826 0.832 0.823 0.820
14,000 0.827 0.825 0.825 0.824
16,000 0.831 0.825 0.833 0.830
18,000 0.835 0.826 0.831 0.830
20,000 0.830 0.828 0.827 0.830
22,000 0.833 0.832 0.835 0.832

Chapter 5: Results 39

F1 Score

Figure 5.6: All training runs for the new-models training method using the F1
score metric.

Table 5.6: The F1 score metric for Figure 5.6 is shown in this table. Each active
learning method used, in addition to traditional random sampling, is displayed
by the interval of number of samples.

Samples Least Confidence Smallest Margin Shannon Entropy Random
0 0.8188 0.8387 0.8243 0.8498
2,000 0.8842 0.8857 0.8816 0.8797
4,000 0.8908 0.8887 0.8867 0.8829
6,000 0.8957 0.8910 0.8924 0.8845
8,000 0.8970 0.8961 0.8955 0.8892
10,000 0.8985 0.8988 0.8954 0.8867
12,000 0.8968 0.8997 0.8937 0.8945
14,000 0.8984 0.8970 0.8948 0.8965
16,000 0.9001 0.9002 0.8991 0.8942
18,000 0.9014 0.8984 0.9000 0.8986
20,000 0.9030 0.8986 0.8982 0.9011
22,000 0.9011 0.9004 0.9020 0.9007

40 Aabol & Dragsten: Active Learning in Norwegian NLP

5.2 Comparing Active Learning Sampling Methods

The three AL sampling methods that are presented in the results are Least Confid-
ence, Smallest Margin and Shannon Entropy. In this chapter, each of the methods
is presented and compared by their peak metrics, and how they compare to the
baseline of traditional random sampling. All of the metric numbers used in this
chapter are generated from the same code that produced the graphs and metric
numbers in Chapter 5.1. The research question for this chapter is as follows:

RQ2 Which of the well-known active learning methods score highest in accuracy
metrics when selecting informative samples for labeling in Norwegian natural
language processing models, compared to the traditional random sampling
method? Additionally, how many samples can be potentially saved by employ-
ing active learning?

5.2.1 Baseline with Traditional Sampling

To compare the different AL sampling methods, traditional random sampling will
first be presented. This baseline, which is trained by both presented fine-tuning
methods, iterative and new-models, is measured in accuracy score, balanced ac-
curacy score, and F1 score. In the later subchapter, each AL sampling method is
compared to this baseline in terms of peak accuracy metric reached and how many
samples this took to accomplish. The traditional sampling baseline is presented in
Table 5.7.

Table 5.7: Baseline with traditional sampling method. Both of the fine-tuning
methods are displayed, in addition to their respective peak metric value and how
many samples it took to reach this metric.

Fine-tuning Metric Peak metric value Samples
Iterative Accuracy 0.851716 18,400
Iterative Balanced 0.821800 22,800
Iterative F1 0.896004 18,400
New-Models Accuracy 0.870043 21,200
New-Models Balanced 0.840520 21,200
New-Models F1 0.907670 21200

Chapter 5: Results 41

The following chapters will have expanded tables. These tables contain compar-
isons to the baseline. This includes two distinct comparisons:

• (+/-) Metric: The first column compares the peak accuracy metric of the
baseline model to that of the AL sampling method. This comparison involves
examining the sample count required by the AL sampling method to reach
its peak and then checking the metric value for the baseline model at that
sample count. The results show the difference between the AL sampling
method and the baseline model in terms of increased or decreased metric
value.

• (%) Samples: The second comparison column examines the number of
samples required by the AL sampling method to reach its peak compared
to the number of samples required by the baseline model to reach its peak.
This comparison shows how many potential samples one can avoid labeling
by hand, and is measured in percentages. Also, to emphasize, these peaks
do not mean that the compared metrics have the same value, as alluded to
in the previous bullet point.

5.2.2 Least Confidence Sampling

The first AL sampling method presented is the Least Confidence sampling method
in Table 5.8:

Table 5.8: Results regarding the Least Confidence sampling method. Both of the
fine-tuning methods are displayed, in addition to their respective peak metric
value and how many samples it took to reach this metric. The two rightmost
columns are comparisons to the baseline in Chapter 5.2.1. The first column com-
pares the peak metric value of the Least Confidence sampling method to the met-
ric value of the baseline at the sample count where the AL method peaked. The
second column displays how many samples the Least Confidence sampling method
requires to reach its peak compared to the baseline.

Fine-tuning Metric Peak metric value Samples (+/-) Metric (%) Samples
Iterative Accuracy 0.856048 7,800 +0.023326 -57.6%
Iterative Balanced 0.828616 12,800 +0.028175 -43.9%
Iterative F1 0.898592 7,800 +0.016988 -57.6%
New-Models Accuracy 0.866378 21,000 +0.006665 -7.9%
New-Models Balanced 0.840311 21,800 +0.014647 +2.8%
New-Models F1 0.904592 21,000 +0.005093 -0.9%

42 Aabol & Dragsten: Active Learning in Norwegian NLP

5.2.3 Smallest Margin Sampling

Next up are the results for Smallest Margin sampling in table 5.9:

Table 5.9: Results regarding the Smallest Margin sampling method. Both of the
fine-tuning methods are displayed, in addition to their respective peak metric
value and how many samples it took to reach this metric. The two rightmost
columns are comparisons to the baseline in Chapter 5.2.1. The first column com-
pares the peak metric value of the Smallest Margin sampling method to the met-
ric value of the baseline at the sample count where the AL method peaked. The
second column displays how many samples the Smallest Margin sampling method
requires to reach its peak compared to the baseline.

Fine-tuning Metric Peak metric value Samples (+/-) Metric (%) Samples
Iterative Accuracy 0.857048 10,000 +0.03199 -45.7%
Iterative Balanced 0.829079 14,000 +0.033172 -38.6%
Iterative F1 0.900531 9,400 +0.03268 -48.9%
New-Models Accuracy 0.866378 20,200 +0.024659 -4.7%
New-Models Balanced 0.839774 20,200 +0.004848 -4.7%
New-Models F1 0.904547 20,200 +0.004929 -4.7%

5.2.4 Shannon Entropy Sampling

Lastly, the results for Shannon Entropy sampling, are displayed in table 5.10:

Table 5.10: Results regarding the Shannon Entropy sampling method. Both of
the fine-tuning methods are displayed, in addition to their respective peak met-
ric value and how many samples it took to reach this metric. The two rightmost
columns are comparisons to the baseline in Chapter 5.2.1. The first column com-
pares the peak metric value of the Shannon Entropy sampling method to the
metric value of the baseline at the sample count where the AL method peaked.
The second column displays how many samples the Shannon Entropy sampling
method requires to reach its peak compared to the baseline.

Fine-tuning metric Peak metric value Samples (+/-) Metric (%) Samples
Iterative accuracy 0.858381 8,600 +0.034322 -53.3%
Iterative balanced 0.830019 8,800 +0.032159 -61.4%
Iterative F1 0.900585 8,600 +0.027998 -53.3%
New-Models accuracy 0.866378 20,600 +0.003332 -2.8%
New-Models balanced 0.841101 21,200 +0.000581 0%
New-Models F1 0.904773 20,600 +0.002421 -2.8%

Chapter 5: Results 43

5.3 Performance of Fine-Tuning & Active Learning

Accuracy metrics are not the only thing to measure model training on. This chapter
will present other metrics, such as training time and training loss. The training
time can be separated into the training itself and the process of picking samples
to train on. This combined time will result in a total time for the whole training job.
Training loss is also an important metric for understanding the training process for
a model, particularly when analyzing potential over- or underfitting. The research
question for this chapter is as follows:

RQ3 How do different active learning methods, combined with different fine-tuning
methods, affect the performance, in terms of training time and training loss,
when training Norwegian natural language processing models, compared to
traditional data sampling methods?

5.3.1 Train Time

Training time in terms of metrics generated from the HuggingFace application pro-
gramming interface (API) is measured in seconds and describes how much time
the trainer uses in each iteration of the training process. In the case of this pro-
ject, this is either each time the iterative method trains on each batch of samples
or when the new-models method trains on the continuously increasing pool of
data. In this chapter, the training time will be displayed in graphs, one which will
describe time used in each iteration of training, and the other as a cumulative
visualization of seconds used. Lastly, the total time of the whole training job will
be explored. This includes initialization of models and datasets, in addition to
picking samples from the dataset to train on.

44 Aabol & Dragsten: Active Learning in Norwegian NLP

Train Time Per Iteration

In Figure 5.7, the training time, in seconds, is displayed for each iteration of the
training process. The main takeaway from this graph is that the iterative train-
ing method uses approximately the same amount of time throughout the whole
training process, while the new-models method uses linearly more time for each
iteration.

Figure 5.7: Training time in seconds for each iteration of each trained model.
Both fine-tuning methods are displayed, with the different active learning
sampling methods for each training method.

Chapter 5: Results 45

Cumulative Train Time

Figure 5.8 displays the total time used by each model with each AL sampling
method by accumulating all the previous entries of seconds to make a graph. This
graph shows the development of time usage during the whole training process.
The main takeaways from this graph are that the new-models method uses con-
tinuously more time, while the iterative version uses linear amounts of time during
training.

Figure 5.8: Cumulative train time for all methods, including both fine-tuning
training methods, with the different active learning sampling methods.

46 Aabol & Dragsten: Active Learning in Norwegian NLP

Total Time on Training Job

Table 5.11 displays how much time each of the sampling methods and fine-tuning
training methods use on training and the job in total. As previously mentioned,
it does not only take computational power to train the model itself but also for
the sampling methods to pick informative samples for the model to train on. The
total time will express this difference. In particular, with AL sampling methods,
the model has to predict each sample in the dataset to pick the most informat-
ive samples to train on. Furthermore, there is overhead in terms of initializing
models/datasets for both fine-tuning methods, and creating new models in the
new-models method. The value is measured in seconds for both train time and
total time.

Table 5.11: Train time and total time for each training job. Each sampling method
is represented by both fine-tuning training methods. The difference is displayed
in the rightmost column. All values are measured in seconds.

Fine-tuning Sampling Train time Total time Increase
Iterative Random 1,607 1,824 217
Iterative Shannon Entropy 1,493 2,449 956
Iterative Least Confidence 1,363 2,329 966
Iterative Smallest Margin 1,360 2,102 742
New-Models Random 11,312 17,936 6,624
New-Models Shannon Entropy 11,166 18,317 7,151
New-Models Least Confidence 11,750 19,404 7,654
New-Models Smallest Margin 11,888 19,926 8,038

Chapter 5: Results 47

5.3.2 Training Loss

The last performance metric that will be displayed in this chapter is training loss.
Figure 5.9 shows each sampling method, with both fine-tuning training methods,
and their corresponding training loss across the whole training session.

Figure 5.9: The training loss for every model. This includes both fine-tuning
methods with every sampling method.

Chapter 6
Discussion

The findings from Chapter 5, Results, suggest that using active learning (AL)
could be beneficial. This is an exciting discovery in and of itself. Based on pub-
lished work, Norwegian Bidirectional Encoder Representations from Transformers
(BERT) models haven’t been utilized much for this type of task. Although AL has
several positive and exciting factors, it also has some downsides. Therefore, it’s
crucial to assess one’s own needs and available resources. What stands out in this
work is the unconventional approach of iteratively training language models dur-
ing the AL cycle. This chapter will be organized similarly to Chapter 5, Results,
with Chapter 6.1 associated with RQ1, Chapter 6.2 covering RQ2, and the same
with Chapter 6.3 and RQ3.

6.1 Examining Training with Fine-Tuning Methods

This chapter will focus on the first phase of training, which is the most relevant
to discuss when using AL since the main focus of this approach is to reduce the
amount of data needed. The benefits of using AL are clearly shown in Figures
5.1 and 5.4. In Figure 5.1, the advantage is even more apparent compared to
Figure 5.4. In Figure 5.4, where the iterative training method is used, random
requires considerably more data to achieve the same accuracy. In fact, random
does not even reach as high a peak in accuracy score as Shannon Entropy, Least
Confidence, and Smallest Margin. This can also be seen in the other score metrics:
balanced accuracy and F1 score. When looking at the corresponding graphs, the
scores converge around 8,000 to 10,000 samples. Compared to a more traditional
approach to random training, which does not reach the convergence point, even
with 22,000 samples. It is worth noting that the iterative way of training when
using random is not exactly the same as the normal traditional way of training.
On the contrary, creating new models in each training cycle with random is closer
to the approach of traditional supervised training.

When looking closer at the results of the training that used the more traditional
approach, making new models in each training cycle, the difference is not as sig-

49

50 Aabol & Dragsten: Active Learning in Norwegian NLP

nificant as with iterative training when compared to the random baseline. Despite
this, a clear improvement is still seen with AL compared to random selection when
creating new models.

If one compare the accuracy of the different AL sampling methods from iterative
and new-models, they show quite similar results when looking at accuracy score
at 8,000 samples. However, if one looks at the interval from 4,000 to 6,000, new-
models is slightly higher. This argues for using new-models over iterative.

It is worth noting that the iterative approach requires far less computational power
compared to creating new models in each training cycle. This can be a decisive
factor in determining the most feasible solution in a given situation. This will be
further discussed in Chapter 6.3. On the other hand, the new-model approach
achieves a higher peak in accuracy score compared to its iterative counterpart,
with samples in the higher region. This will be discussed further in the next
Chapter, 6.2.

6.2 Active Learning versus Traditional Sampling

This chapter reviews the findings presented in Chapter 5.2, which addresses RQ2.
There is not always a perfect way to present the results. One must therefore do
it as they deem most appropriate. Chapter 5.2 emphasized peak values, which
are easily misrepresented in fluctuating graphs. As such, it is possible to achieve
a high accuracy score with fewer samples. In some cases, a marginally lower ac-
curacy score may be acceptable if it significantly reduces the number of necessary
samples. Despite this, the project group believes that the data is appropriately
represented. However, to allow for further improvement, all data is available on
a public GitHub repository [45].

Table 5.7 in Chapter 5.2.1 indicates that between 18,400 and 22,800 samples are
required to reach peak values for all of the metrics using random sampling. New-
models require more samples but have higher metric values, with the exception
of the balanced accuracy score on iterative which has a lower value but still re-
quires more samples. Figure 5.2 shows that random on balanced accuracy score
has three peaks at approximately 18,000, 21,000, and 22,800, all of which could
be representative for random as a baseline. Ultimately, the table demonstrates that
a significant amount of data and samples are required to train the model.

In Chapters 5.2.2, 5.2.3, and 5.2.4, the findings from the sampling methods are
reviewed. The baseline from random is compared with each of the AL sampling
methods used in the research. Each of these chapters contains a Table (5.8, 5.9,
5.10), that shows the percentage of samples that can be saved based on when
the AL sampling methods reach their respective peaks. A quick overview of these
tables clearly shows that all iterative methods show significant savings compared
to the iterative baseline. New-models also show savings, but not as significant.
This is because the metrics for new-models improve marginally throughout the
training process. At first glance, it may seem that new-models do not have a
significant effect, but this does not provide an accurate picture. Training with

https://github.com/simenaabol/Norwegian-text-classifier-optimisation-with-active-learning

Chapter 6: Discussion 51

new-models results in higher scores earlier than the baseline, which is the main
principle of AL. Therefore, it is important to examine the graphs that show devel-
opment and focus on the beginning of the graph. Both methods have advantages
compared to the baseline, including requiring fewer samples and improved accur-
acy and runtime. The latter will be discussed in Chapter 6.3. Since the purpose of
using AL is to reduce the need for samples, the focus will be on the results early
in the training process when comparing all sampling methods.

When examining the various sampling methods, there are no significant differ-
ences between them. If these training runs were conducted multiple times and an
average was taken, it could potentially be easier to see and recognize if any of
the methods proved to be better than the others. When looking at the sampling
methods with the iterative approach, Shannon Entropy possibly performs slightly
better. Shannon Entropy has fewer low dips and remains relatively high. When
looking at the new-models approach, Shannon Entropy also stands out here. It
has a slightly lower score until 5,000 samples, then it transitions to being in the
top tier at around 8,000 samples. Note that the differences are small and it is
difficult to distinguish the AL sampling methods from each other.

6.3 Model Performance Review

This chapter reviews the findings presented in Chapter 5.3, which addresses RQ3.
The findings from Chapter 5.1 and 5.2 conveyed that there were many similarities
between the different fine-tuning methods, but this is not the case in Chapter 5.3.
Here, the difference between the iterative and new-model methods becomes clear.

6.3.1 Time Used

The first thing displayed in Chapter 5.3 is the runtime of the training itself. Note
that this only includes the training itself, and not the retrieval of datasets, initial-
ization of models, and calculations related to sampling methods. Chapter 5.3 has
two graphs that show the runtime of training, where Figure 5.7 shows the runtime
of each training instance, while Figure 5.8 shows the accumulated runtime, i.e.,
the total runtime for training. In both of these graphs, two distinct trends can be
seen, and these two differ to a large extent. These trends are quite understand-
able considering the approaches used in training. In Figure 5.7, it can be seen
that training using new-models has a linear increase, while iterative training has
a constant development. The reason for this large difference lies in the size of the
dataset that language models train on. In new-models, the dataset increases by
200 samples in each training cycle, and it therefore takes longer to fine-tune the
model. The same correlation between runtime and dataset size can be seen in the
iterative approach. This is completely constant and does not increase because it al-
ways trains on 200 samples. Figure 5.7 is a very good graph for understanding the
relationship between runtime and choice of approach. Figure 5.8 shows the total
runtime and provides a very good overview of the training time. In this graph, the
difference between training methods is even more evident. This difference is so

52 Aabol & Dragsten: Active Learning in Norwegian NLP

large that it is worth considering what one’s greatest need is, what resources are
available, or how one wants to prioritize these resources. If one accepts a slightly
lower score, it may be appropriate to use the iterative approach. If one absolutely
wants to maximize the score and computing power is not a problem, then it may
be appropriate to use new-models.

Another factor that may influence the choice of training approaches is power con-
sumption. A correlation can be drawn between the time spent on training and
power consumption. Implementing fine-tuning on a large scale can result in signi-
ficant power savings when choosing the iterative approach compared to the new-
models approach. Overall, these two approaches require little power compared to
creating the language models themselves. This resonates with Chapter 2.8, which
explains the environmental impact of language model training. Although the fine-
tuning methods has less power requirement than training language models from
scratch, the difference between the methods are significant. For instance, the it-
erative version of the Smallest Margin AL method uses about 89% less time than
the new-models version.

In Table 5.11, the total time for training is presented. This data includes everything
from the initialization of models, retrieval of datasets, the training itself, and the
time spent on sampling methods. In this table, one can easily compare the training
time and the total time spent on training. Here, one can see that the difference
from iterative random on train time to total time is 217 seconds, a 13.5% increase,
but with AL sampling methods, the difference is greater. This makes sense as it
takes time to use these methods to select new samples, compared to random where
some arbitrary samples are chosen. Of the three AL sampling methods on iterative,
there is a slight difference in how large the increase is. It is uncertain whether this
information can be used to conclude anything, and the project group does not have
enough information to conclude why this is so. But in this case, Smallest Margin
uses slightly less time compared to Shannon Entropy and Least Confidence.

Looking at new-models in Table 5.11, one can see that there is quite a bit more
overhead happening alongside the training itself. One cannot be sure what this is
due to, but it probably comes from initializing new models before each training
and possibly deleting old models. So it makes sense that new-models will have
a larger difference than iterative. Looking at the AL sampling methods closest to
random in iterative and new-models, one ends up with fairly similar numbers. It-
erative Smallest Margin at 742 minus iterative random at 217 gives 525 seconds.
New-models Shannon Entropy at 7,151 minus new-models random at 6,624 gives
526 seconds. Based on this, one can assume that introducing AL sampling meth-
ods is less time-consuming than introducing training using new-models. A very
simple estimate suggests that the process of creating new models and deleting
old ones takes at least 6,098 seconds, in this project. This is calculated by taking
6,624 minus 526 It should be noted that this estimate is not precise and it must
be taken into consideration that other AL sampling methods had longer training
times. The most important thing here is to show that the overhead of creating
and deleting used/old language models is more time-consuming than using AL
sampling methods.

Chapter 6: Discussion 53

6.3.2 The Importance of Training Loss

Chapter 5.3.2 introduces Figure 5.9, which illustrates the train loss for each model
during the training process. This metric is crucial to understand how the model
performs and for researchers to consider possible flaws or intricacies using AL. One
clear correlation between all AL sampling methods for both iterative and new-
models fine-tuning is that the training loss is significantly higher than random
sampling in the first half of the training process. This can be explained by the
type of samples each method trains on. The point of AL is to select samples that
provide the most value for the model. These samples happen to be the "hardest"
to classify, naturally. Therefore, the training loss would be higher earlier in the
training process, contrary to random sampling, which selects samples from all
across the dataset.

The more interesting part of Figure 5.9 is the clear difference between the iterative
and new-models fine-tuning methods in terms of training loss. Firstly, the new-
models method has a very steadfast development both for random sampling and
AL sampling methods. The only difference between them is that the AL sampling
methods have a higher loss earlier in the training process. The training loss for
both sampling methods naturally ends up at the same value since they ultimately
train on the same data, in addition to training on the whole dataset in one go.
The same cannot be said with the iterative fine-tuning method. In this case, the
random sampling ends up with a training loss around 0.2, while the AL sampling
methods end up with zero loss. This is a worrying sign for the training process but
can also explain the massive dip in accuracy metrics for the iterative method in
Chapter 5.1.

There might be multiple reasons for the low training loss for the iterative fine-
tuning method at the end of the training. One reason might be the fact that the
remaining samples in the later stage of training do not offer much value to the
model or, in other words, are "easy" for the model to classify. One can also consider
these samples as being of the lowest echelon because of their lack of value. So
when the model gets to the point of trying to learn from these samples, it might
largely generalize on them and "forget" about the valuable samples it learned from
in the beginning.

Another reason for the loss might be because of the class disparity in the dataset.
There are significantly more positive samples than negative ones. Therefore, at
the end of the training process, there might be a case where there are samples
from only one class left to train on. This leads to the same problem as in the
previous case, where the model tries to generalize on samples that do not offer
any significant value from only one class. In either case, there is a strong case for
overfitting because of the significantly low training loss. This case is strengthened
by the theory that the remaining samples in the dataset are very alike in some
way. Either by giving no significant value to the model by being "easy" classifiable
samples or by being from one class in particular. The model tries to generalize on
a data pool that does not fit being generalized in this case, because it does not
represent a large part of the dataset.

54 Aabol & Dragsten: Active Learning in Norwegian NLP

One potential solution to prevent the training loss from reaching zero is to weigh
the training against the level of uncertainty. This can be achieved, for example,
by adjusting the learning rate during training so that models learn more at the
beginning and less over time. However, this is only speculation without further
information. In hindsight, the project group recognizes that more data should have
been stored from the training. It would have been useful to know which classes
of samples were selected and how confident the model was in these selections.
As mentioned in Chapter 4.2.1, the training dataset consists of several different
types of feedback. The proportion of each type is quite skewed, so it would have
been interesting to store which types of samples were selected during training.
Collecting all this data could have provided a better understanding of what is
happening.

It is worth mentioning that in real-life scenarios where active learning would be
implemented in training natural language processing (NLP) models, one would
never reach the lower echelon of samples because of the practical use of the
method. This is because an organization or business would probably classify a
batch of samples every week or even every month. The sampler would only sample
"good" samples and not an entire dataset which has been conducted in this pro-
ject. Therefore, this intricacy would probably not affect real-life scenarios, but the
project group found it interesting and valuable to highlight.

Chapter 7
Conclusion

Active learning (AL) has been a concept of interest in practical scenarios and has
proven useful in this project for training Norwegian natural language processing
(NLP) models. The objective of this thesis is to investigate the effectiveness of
AL and its employment using different fine-tuning methods for transformer mod-
els from Hugging Face. The Norwegian NorBERT 2 model has been the focus of
this project as it has proven to be exceptional for different Norwegian text tasks
such as sentiment analysis, which is the task at hand in this master thesis. This
thesis has three research questions that focus on different aspects of the imple-
mentation of AL when training NLP models. The first research question focuses
on the difference between fine-tuning language models using an iterative method
and a new-models method. The second research question looks at the different
AL sampling methods and how they compare to a baseline using traditional ran-
dom sampling. The AL sampling methods used in this project are Least Confid-
ence, Smallest Margin, and Shannon Entropy. The last research question focuses
on the general performance of the different fine-tuning methods using the differ-
ent sampling methods, both random and AL. The performance is measured in time
used in the training process in addition to the training loss for each fine-tuning
method with all sampling methods. These research questions will be answered in
this chapter.

RQ1 What are the differences in the accuracy metrics of Norwegian natural lan-
guage processing models for classification problems using different fine-tuning
methods while incorporating active learning?

The two methods for fine-tuning AL models are vastly different in both accuracy
metrics and performance during training. The iterative method is efficient and
volatile, while the new-models method is inefficient but steadfast. When training
the same model iteratively, one can see a big difference between random sampling
and AL sampling. While using AL sampling, the model converges quickly but drops
off in the later stages of training. The accuracy metrics are higher than when using
random sampling. The difference between random sampling and AL sampling is
more clear with the iterative method than with new-models, but the latter also

55

56 Aabol & Dragsten: Active Learning in Norwegian NLP

benefits from AL as this method also achieves higher accuracy at earlier stages
of training in comparison to using random sampling. This shows that AL works
as it is supposed to. When comparing the two fine-tuning methods, new-models
achieves higher accuracy metrics but at a cost. The iterative method is much more
time-efficient, which will be explored more in RQ3.

RQ2 Which of the well-known active learning methods score highest in accuracy
metrics when selecting informative samples for labeling in Norwegian natural
language processing models, compared to the traditional random sampling
method? Additionally, how many samples can be potentially saved by employ-
ing active learning?

When comparing the different AL sampling methods, two clear conclusions can
be drawn. Firstly, there is a significant possibility to save resources on labeling
data. Secondly, the accuracy metrics are always better when using AL in the ex-
periments conducted by the project group. There are some nuances to the res-
ults though. The conclusions can clearly be drawn when using the iterative fine-
tuning method. When using AL sampling, it converges using between 38% to 61%
fewer samples than traditional random sampling. At the same time, the iterative
method shows higher accuracy metrics using the same sample count as the tradi-
tional sampler. The results are not as promising using the new-models fine-tuning
method. The accuracy metrics are higher in this case as well, but it requires about
the same amount of samples as traditional sampling. On the other hand, the new-
models method achieves higher metrics across the board compared to the iterative
method. When it comes to finding the best AL sampling method, it is hard to con-
clude. The differences are marginal, but Shannon Entropy might take the marginal
lead. Because of the limited number of training runs, this is inconclusive

RQ3 How do different active learning methods, combined with different fine-tuning
methods, affect the performance, in terms of training time and training loss,
when training Norwegian natural language processing models, compared to
traditional data sampling methods?

Lastly, the training performance is very interesting, as alluded to earlier. The train-
ing time is vastly different when using the two different fine-tuning methods.
The new-models method requires a lot of training time compared to the iterat-
ive method. This is not surprising, as the dataset the new-models method trains
on gets increasingly bigger for each iteration, while the dataset the iterative ver-
sion trains on is static with 200 samples each iteration. There are more factors
to consider though, when using the new-models method. Firstly, for each itera-
tion, a new model has to be initialized, and the previous model has to be deleted.
This creates a lot of overhead. So much that one has to carefully consider the
importance of slightly higher metrics compared to computational resources. Also,
different kinds of tasks require different methods.

When comparing traditional random sampling to AL sampling in terms of perform-
ance, one can see that random sampling requires less time. This is not surprising,
as AL sampling requires the model to predict on the remaining samples in the
dataset to pick valuable samples for labeling. Also here, it is inconclusive which

Chapter 7: Conclusion 57

AL sampling method is the most efficient in terms of total time, as the differences
are marginal. After calculating the differences between random sampling and AL
sampling, one can conclude that AL sampling uses a relatively short amount of
time compared to other overhead factors. In particular, one can see this overhead
in the new-models fine-tuning method. The sampling takes around an estimated
time of 525 seconds on average. This is not so prevalent when comparing it to the
total time of 18-20,000 seconds when fine-tuning using new-models.

The training loss is also important to highlight for the performance of the mod-
els. When using AL sampling, the training loss is much higher in the beginning,
contrary to using traditional random sampling. This supports the theory that AL
picks samples that are "harder" to classify and can provide more value. The new-
models method shows steadfast development of training loss, but the same cannot
be said about the iterative method. This method has a very irregular loss, in par-
ticular with AL sampling, where the loss ends up at zero. This is most likely a sign
of overfitting. The reasons for this can be class disparity, samples with low value
to the model, or that the samples are very alike and should not be generalized
upon. In the real world, this might not be a problem, as the samples in the very
end can be classified as lowest echelon, as they are picked last. In a real-world
scenario, one would only label samples that provide real value to the model at
hand.

Chapter 8
Further Work

8.1 Multiple Classification Classes

In this project, it was decided quite early in the process that a binary dataset for
classification would be used. The Norwegian Review Corpus (NoReC) [35] seemed
to fit well with the goal of this thesis, in addition to another dataset from Hugging
Face [43] that was concatenated with the NoReC dataset. Originally, the NoReC
dataset is labelled in dice ratings from 1-6. It would be interesting, for further
work, to see how well the Norwegian natural language processing (NLP) models,
with active learning (AL), performs with multiple classes.

8.2 Cross Validation

Cross validation is a widely used technique in machine learning (ML) for evalu-
ating model performance and tuning model hyperparameters. When fine-tuning
Bidirectional Encoder Representations from Transformers (BERT) language mod-
els, cross validation can be particularly useful for several reasons [50].

Firstly, using cross validation can help to reduce overfitting. BERT models contain
a lot of parameters, and fine-tuning them on a small dataset can cause overfitting,
where the model learns to match the training data too closely and struggles on
new, unforeseen data. Cross validation can help by dividing the data into many
folds. This will enable training the model on each fold while verifying on the re-
maining data, and average the performance across all folds. This makes it possible
to prevent the model from being too tailored to one subset of the data [50].

Furthermore, cross validation can provide a more precise estimate of model per-
formance. By training and evaluating the model on multiple folds of the data, one
can obtain a more robust estimate of how the model is likely to perform on new,
unseen data. Given that the performance of BERT models can be significantly in-
fluenced by the particular selection of hyperparameters and training data. This

59

60 Aabol & Dragsten: Active Learning in Norwegian NLP

can be especially helpful when fine-tuning BERT models [50].

Finally, cross validation can be useful for selecting the optimal hyperparameters
for the BERT model. By testing with different hyperparameters on multiple folds of
the data, one may gain a deeper understanding of how different hyperparameters
affect model performance. This can help to guide the selection of hyperparameters
for the final model [50].

Overall, using cross validation when fine-tuning BERT language models can be a
good idea for reducing overfitting, providing a more accurate estimate of model
performance, and selecting optimal hyperparameters. It would therefore be a
good idea to make use of cross validation if someone is going to further develop
the findings in this research report.

8.3 Hyperparameter Tuning/Optimization

Hyperparameter tuning is an essential step in the optimization of BERT models.
In order to maximize performance on a specific job, such as text categorization or
question-answering, the procedure entails fine-tuning model parameters.

Several studies have shown the importance of hyperparameter tuning for improv-
ing BERT model performance. For instance, a study by Devlin et al [13] found
that fine-tuning BERT on downstream tasks can significantly improve performance
over pre-trained models. Learning rate and batch size are two hyperparameters
that one must carefully choose in order to get the best results.

Similarly, Liu et al. [15] found that hyperparameter tuning can significantly im-
prove BERT’s performance on a range of natural language understanding tasks.
The choice of hyperparameters can significantly affect how well a model repres-
ents data.

Additionally, the importance of hyperparameter tuning is understood by the en-
tire ML community. For example, Bergstra and Bengio [51] demonstrated that
hyperparameter optimization can significantly improve the performance of deep
learning models.

Further study should investigate the effects of various hyperparameters on per-
formance for different tasks, given the significance of hyperparameter tuning for
optimizing BERT models. This could involve exploring the effect of different learn-
ing rates, batch sizes, and regularization techniques on model performance.

8.4 Comparing Language Models

This research report has only used one language model, NorBERT 2. This was
chosen on the basis of the report by Kutuzov et al. [36] and the fact that NorBERT
2 "excels in binary sentiment analysis" [38]. Multiple other Norwegian models
were also highlighted that have produced good results, in particular NorBERT

Chapter 8: Further Work 61

and NB-BERT-Base. The code base used in the project has the ability to use all
models from Hugging Face, which both of the aforementioned models are. Due
to the time frame and scope of the project, no time and complexity was set aside
to test with different models. This is a naive approach, but also a necessity for
implementation. It is recommended that others build on the work in this paper
and test several different models and find out how a model affects the end result.

8.5 Implementing Parallelism

It is also possible to further develop the research in this article by implement-
ing parallelism in the fine-tuning. This opens up the possibility of using multiple
graphics processing unit (GPU)s and cores simultaneously. This can dramatically
decrease runtime. Although this is a possibility, the research has other weaknesses
and points of improvement than this, which may be more appropriate to work on.
If, on the other hand, one were to use a dataset that is considerably larger and
or use a model that requires more resources, it may be necessary to use more
memory, more cores, and GPUs in the fine-tuning.

8.6 Larger and More Diverse Dataset

The data used for fine-tuning is based solely on feedback on audiovisual media,
music, miscellaneous items, literature, products, games, restaurants, stage, and
sports. This is a weakness since such feedback is not representative of an entire
language. It is possible that the accuracy would have been very low if the lan-
guage models from this project had been tested against arbitrary sentences that
do not originate from a movie review. In that sense, one could argue that the data
used in this project is too limited to fine-tune a model that can be used for gen-
eral Norwegian sentiment analysis. Before drawing conclusions on this, a deeper
investigation is required. One possibility is to find or create a more generalized
dataset for testing and/or training.

Improved model capacity to capture a wider range of language in addition to
sentiment expressions, are two reasons why utilizing a larger dataset for fine-
tuning is advantageous. The model performs better on sentiment analysis tasks
when it has been fine-tuned on a larger dataset because it can better catch the
intricacies of the language used in the relevant area.

Using a larger dataset can help mitigate the effects of bias in sentiment analysis. A
study by Kiritchenko et al. (2018) found that sentiment analysis models trained on
smaller datasets were more likely to be biased towards the dominant sentiment in
the data. In contrast, models trained on larger and more diverse datasets were less
susceptible to such biases, leading to more robust and reliable sentiment analysis
results [52].

62 Aabol & Dragsten: Active Learning in Norwegian NLP

8.7 Number of Samples in Training

When fine-tuning a BERT model with AL, the number of samples added to each
training cycle is an important parameter to consider. Adding a higher number of
entities per cycle can help to increase the training efficiency. The model can learn
more at once. However, it is worth noting that adding a higher number of entities
per cycle also requires more computational resources and may lead to slower con-
vergence during training. Therefore, the choice of the number of entities per cycle
should be based on a trade-off between performance and computational efficiency.
As the primary motive for employing AL is to minimize the labeling requirements
during training, it would be worthwhile to experiment with a smaller number of
labels added in each training cycle compared to the 200 utilized in this project.
This would enable the model to converge faster. Exploring various training sizes
could be an intriguing avenue to investigate further.

8.8 Continue Scikit-Learn Solution with partial_fit()

As briefly explained in Chapter 4.3.1, a solution using mostly tools from Scikit-
learn (Sklearn) was experimented upon. This was halted by a specific factor: the
difficulty of iteratively training a model. Sklearn has many tools for training mod-
els, where fit() is the most popular. This trains the model on the dataset with
corresponding labels. The problem with this method in the case of this project
is that whenever a "fitted" model receives new data to train on, it discards any
earlier fitting of the same model. Therefore, this method could not be used for
this project. There is another method which looks promising from Sklearn, which
is called partial_fit() [49]. This is a method that can incrementally fit on batches
of samples and seems to be a solution for using a Sklearn solution. This method
is only available on five classification models, but there is absolutely a chance
for some of the classifiers to be suitable for the project. If there was not a tight
time constraint on the project, this would be valuable to look at. As previously
mentioned, the final solution was solely based on the Hugging Face application
programming interface (API), but the project group sees the possibility to change
this in the future.

Bibliography

[1] F. Tonetti. ‘Getting to know chatgpt: Some statistics.’ (2022), [Online].
Available: https://blog.invgate.com/chatgpt-statistics (visited on
17/04/2023).

[2] M. R. Anderson. ‘Gpt-4 has a trillion parameters.’ (2022), [Online]. Avail-
able: https://the-decoder.com/gpt-4-has-a-trillion-parameters/
(visited on 17/04/2023).

[3] C. Molnar. ‘Active learning: Overview, strategies, and uncertainty meas-
ures.’ (2020), [Online]. Available: https://towardsdatascience.com/
active-learning-overview-strategies-and-uncertainty-measures-
521565e0b0b (visited on 17/04/2023).

[4] B. Settles, Active learning literature survey, University of Wisconsin-Madison
Department of Computer Sciences, 2009. [Online]. Available: https://
minds.wisconsin.edu/handle/1793/60660 (visited on 17/04/2023).

[5] V.-L. Nguyen, M. H. Shaker and E. Hüllermeier, ‘How to measure uncer-
tainty in uncertainty sampling for active learning,’ Mach. Learn., vol. 111,
no. 1, pp. 89–122, Jan. 2022, ISSN: 0885-6125. DOI: 10.1007/s10994-
021-06003-9. [Online]. Available: https://doi.org/10.1007/s10994-
021-06003-9.

[6] M. Oplenskedal, ‘Avanserte” maskinlærekonsepter: Aktiv læring,’ Medium,
2022. [Online]. Available: https://medium.com/kantega/avanserte-
maskinl%C3%A6rekonsepyrt-aktiv-l%C3%A6ring-d354fc4e5edf.

[7] M. Goudjil, M. Koudil, M. Bedda and N. Ghoggali, ‘A novel active learning
method using svm for text classification,’ International Journal of Automa-
tion and Computing, vol. 15, Jul. 2016. DOI: 10.1007/s11633-015-0912-z.

[8] D. Lewis and W. Gale, ‘A sequential algorithm for training text classifiers,’
Proceedings of the 17th annual international ACM SIGIR conference on Re-
search and development in Information Retrieval, vol. 29, Aug. 2001. DOI:
10.1145/219587.219592.

[9] S. Tong and D. Koller, ‘Support vector machine active learning with ap-
plications to text classification,’ J. Mach. Learn. Res., vol. 2, pp. 45–66,
Mar. 2002, ISSN: 1532-4435. DOI: 10.1162/153244302760185243. [On-
line]. Available: https://doi.org/10.1162/153244302760185243.

63

https://blog.invgate.com/chatgpt-statistics
https://the-decoder.com/gpt-4-has-a-trillion-parameters/
https://towardsdatascience.com/active-learning-overview-strategies-and-uncertainty-measures-521565e0b0b
https://towardsdatascience.com/active-learning-overview-strategies-and-uncertainty-measures-521565e0b0b
https://towardsdatascience.com/active-learning-overview-strategies-and-uncertainty-measures-521565e0b0b
https://minds.wisconsin.edu/handle/1793/60660
https://minds.wisconsin.edu/handle/1793/60660
https://doi.org/10.1007/s10994-021-06003-9
https://doi.org/10.1007/s10994-021-06003-9
https://doi.org/10.1007/s10994-021-06003-9
https://doi.org/10.1007/s10994-021-06003-9
https://medium.com/kantega/avanserte-maskinl%C3%A6rekonsepyrt-aktiv-l%C3%A6ring-d354fc4e5edf
https://medium.com/kantega/avanserte-maskinl%C3%A6rekonsepyrt-aktiv-l%C3%A6ring-d354fc4e5edf
https://doi.org/10.1007/s11633-015-0912-z
https://doi.org/10.1145/219587.219592
https://doi.org/10.1162/153244302760185243
https://doi.org/10.1162/153244302760185243

64 Aabol & Dragsten: Active Learning in Norwegian NLP

[10] C. E. Shannon, ‘A mathematical theory of communication,’ Bell System Tech-
nical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[11] T. Danka and P. Horvath, ‘ModAL: A modular active learning framework
for Python,’ available on arXiv at https://arxiv.org/abs/1805.00979.
[Online]. Available: https://github.com/modAL-python/modAL.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser and I. Polosukhin, Attention is all you need, 2017. arXiv: 1706.03762
[cs.CL].

[13] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, ‘BERT: Pre-training of
deep bidirectional transformers for language understanding,’ in Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), Minneapolis, Minnesota: Association for Computational
Linguistics, Jun. 2019, pp. 4171–4186. DOI: 10.18653/v1/N19-1423. [On-
line]. Available: https://aclanthology.org/N19-1423.

[14] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy and S. R. Bowman, Glue:
A multi-task benchmark and analysis platform for natural language under-
standing, 2019. arXiv: 1804.07461 [cs.CL].

[15] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L.
Zettlemoyer and V. Stoyanov, Roberta: A robustly optimized bert pretraining
approach, 2019. arXiv: 1907.11692 [cs.CL].

[16] Scikit-learn, Accuracy_score, https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.accuracy_score.html, accessed 2023-04-
25.

[17] Scikit-learn, Recall_score, https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.recall_score.html, accessed 2023-04-25.

[18] Scikit-learn, Precision_score, https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.precision_score.html, accessed 2023-04-
25.

[19] Scikit-learn, F1_score, https://scikit- learn.org/stable/modules/
generated/sklearn.metrics.f1_score.html, accessed 2023-04-25.

[20] Scikit-learn, Balanced_accuracy_score, https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.balanced_accuracy_score.html,
accessed 2023-04-25.

[21] Hugging-Face, Trainer_compute_loss, https://huggingface.co/docs/
transformers/main_classes/trainer, accessed 2023-04-25.

[22] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C.
Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever and D. Amodei, Lan-
guage models are few-shot learners, 2020. arXiv: 2005.14165 [cs.CL].

[23] H. Face, Training performance on gpu with transformers, https://huggingface.
co/docs/transformers/perf_train_gpu_many, accessed 2023-04-25.

https://arxiv.org/abs/1805.00979
https://github.com/modAL-python/modAL
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1907.11692
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://huggingface.co/docs/transformers/main_classes/trainer
https://huggingface.co/docs/transformers/main_classes/trainer
https://arxiv.org/abs/2005.14165
https://huggingface.co/docs/transformers/perf_train_gpu_many
https://huggingface.co/docs/transformers/perf_train_gpu_many

Chapter 8: Further Work 65

[24] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T.
Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma,
Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest and
A. M. Rush, Huggingface’s transformers: State-of-the-art natural language
processing, 2020. arXiv: 1910.03771 [cs.CL].

[25] Hugging Face, About hugging face, https://huggingface.co/about, Ac-
cessed on May 2, 2023, Accessed 2023.

[26] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li and M.
Sun, ‘Graph neural networks: A review of methods and applications,’ AI
Open, vol. 1, pp. 57–81, 2020, ISSN: 2666-6510. DOI: https://doi.org/
10.1016/j.aiopen.2021.01.001. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2666651021000012.

[27] P. Li, J. Yang, M. A. Islam and S. Ren, Making ai less "thirsty": Uncovering and
addressing the secret water footprint of ai models, 2023. arXiv: 2304.03271
[cs.LG].

[28] A. K. McCallum and K. Nigam, ‘Employing em and pool-based active learn-
ing for text classification,’ 1998.

[29] S. Tong and D. Koller, ‘Support vector machine active learning with applic-
ations to text classification,’ Journal of Machine Learning Research, vol. 2,
pp. 45–66, 2002.

[30] C. Schröder and A. Niekler, ‘A survey of active learning for text classifica-
tion using deep neural networks,’ arXiv preprint arXiv:2004.06639, 2020.

[31] J. Ash, C. Zhang, A. Krishnamurthy, J. Langford and A. Agarwal, ‘Deep
batch active learning by diverse, uncertain gradient lower bounds,’ in Ad-
vances in Neural Information Processing Systems, 2019, pp. 6311–6321.

[32] D. Arthur and S. Vassilvitskii, ‘K-means++: The advantages of careful seed-
ing,’ in Proceedings of the eighteenth annual ACM-SIAM symposium on Dis-
crete algorithms, Society for Industrial and Applied Mathematics, 2007,
pp. 1027–1035.

[33] L. Ein-Dor, A. Halfon, A. Gera, E. Shnarch, L. Dankin, L. Choshen, M.
Danilevsky, R. Aharonov, Y. Katz and N. Slonim, ‘Active learning for bert: An
empirical study,’ in Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), Online, Nov. 2020, pp. 7949–
7962.

[34] S. Touileb, L. Øvrelid and E. Velldal, ‘Gender and sentiment, critics and
authors: A dataset of norwegian book reviews,’ in Proceedings of the 28th
International Conference on Computational Linguistics, 2020, pp. 125–138.

[35] E. Velldal, L. Øvrelid, E. A. Bergem, C. Stadsnes, S. Touileb and F. Jør-
gensen, ‘NoReC: The Norwegian Review Corpus,’ in Proceedings of the 11th
edition of the Language Resources and Evaluation Conference, Miyazaki, Ja-
pan, 2018, pp. 4186–4191.

[36] A. Kutuzov, J. Barnes, E. Velldal, L. Øvrelid and S. Oepen, ‘Large-scale con-
textualised language modelling for norwegian,’ Journal of Language Mod-
elling, vol. 9, no. 1, pp. 163–218, 2021.

https://arxiv.org/abs/1910.03771
https://huggingface.co/about
https://doi.org/https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/https://doi.org/10.1016/j.aiopen.2021.01.001
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://arxiv.org/abs/2304.03271
https://arxiv.org/abs/2304.03271

66 Aabol & Dragsten: Active Learning in Norwegian NLP

[37] A. NORLM, Norwegian large-scale language models, Available at http://
wiki.nlpl.eu/Vectors/norlm, [Accessed 8.12.2022], 2022.

[38] A. NORLM, Norbert: Bidirectional encoder representations from transformers,
Available at http://wiki.nlpl.eu/Vectors/norlm/norbert, [Accessed
8.12.2022], 2022.

[39] SchedMD. ‘SLURM overview.’ (2023), [Online]. Available: https://slurm.
schedmd.com/overview.html (visited on 01/05/2023).

[40] High Performance Computing Group, NTNU, IDUN: A National Infrastruc-
ture for High-Performance Computing, https://www.hpc.ntnu.no/idun/,
Accessed 2023.

[41] NVIDIA. ‘Nvidia ampere architecture in-depth.’ (2020), [Online]. Avail-
able: https://developer.nvidia.com/blog/nvidia-ampere-architecture-
in-depth/ (visited on 01/05/2023).

[42] NVIDIA. ‘Cuda gpus | nvidia developer.’ (2023), [Online]. Available: https:
//developer.nvidia.com/cuda-gpus (visited on 01/05/2023).

[43] A. Sepidmnorozy, Norwegian sentiment, Available at https://huggingface.
co/datasets/sepidmnorozy/Norwegian_sentiment, 2021.

[44] Language Technology Group (University of Oslo), NorBERT2: Multilingual
BERT for Norwegian and Other Languages, https://huggingface.co/ltg/
norbert2, Feb. 2021.

[45] Simen Tvete Aabol, Marcus Klomsten Dragsten, Norwegian text classifier
optimization with active learning, https : / / github . com / simenaabol /
Norwegian- text- classifier- optimisation- with- active- learning,
Accessed on May 11, 2023, Accessed 2023.

[46] Scikit-learn, Pipeline, https://scikit- learn.org/stable/modules/
generated/sklearn.pipeline.Pipeline.html, accessed 2023-05-05.

[47] Scikit-learn, Logisticregression, https : / / scikit - learn . org / stable /
modules/generated/sklearn.linear_model.LogisticRegression.html,
accessed 2023-05-05.

[48] Scikit-learn, Hugging face transformers with scikit-learn classifiers, https://
huggingface.co/scikit-learn/sklearn-transformers, accessed 2023-
05-05.

[49] Scikit-learn, Strategies to scale computationally: Bigger data, https://scikit-
learn.org/0.15/modules/scaling_strategies.html, accessed 2023-05-
05.

[50] J. D. Kelleher, Deep Learning. The MIT Press, Sep. 2019, ISBN: 9780262354899.
DOI: 10.7551/mitpress/11171.001.0001. [Online]. Available: https:
//doi.org/10.7551/mitpress/11171.001.0001.

[51] J. Bergstra and Y. Bengio, ‘Random search for hyper-parameter optimiza-
tion,’ J. Mach. Learn. Res., vol. 13, no. null, pp. 281–305, Feb. 2012, ISSN:
1532-4435.

[52] S. Kiritchenko and S. M. Mohammad, ‘Examining gender and race bias
in two hundred sentiment analysis systems,’ CoRR, vol. abs/1805.04508,
2018. arXiv: 1805.04508. [Online]. Available: http://arxiv.org/abs/
1805.04508.

http://wiki.nlpl.eu/Vectors/norlm
http://wiki.nlpl.eu/Vectors/norlm
http://wiki.nlpl.eu/Vectors/norlm/norbert
https://slurm.schedmd.com/overview.html
https://slurm.schedmd.com/overview.html
https://www.hpc.ntnu.no/idun/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://huggingface.co/datasets/sepidmnorozy/Norwegian_sentiment
https://huggingface.co/datasets/sepidmnorozy/Norwegian_sentiment
https://huggingface.co/ltg/norbert2
https://huggingface.co/ltg/norbert2
https://github.com/simenaabol/Norwegian-text-classifier-optimisation-with-active-learning
https://github.com/simenaabol/Norwegian-text-classifier-optimisation-with-active-learning
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://huggingface.co/scikit-learn/sklearn-transformers
https://huggingface.co/scikit-learn/sklearn-transformers
https://scikit-learn.org/0.15/modules/scaling_strategies.html
https://scikit-learn.org/0.15/modules/scaling_strategies.html
https://doi.org/10.7551/mitpress/11171.001.0001
https://doi.org/10.7551/mitpress/11171.001.0001
https://doi.org/10.7551/mitpress/11171.001.0001
https://arxiv.org/abs/1805.04508
http://arxiv.org/abs/1805.04508
http://arxiv.org/abs/1805.04508

	Introduction
	Background and Motivation
	Scope and Research Questions
	Report Outline

	Theory
	Active Learning
	Least Confidence
	Smallest Margin
	Shannon Entropy
	Active Learning Library

	Transformers
	BERT
	Evaluation Metrics
	Accuracy Score
	Recall Score
	Precision Score
	F1 Score
	Balanced Accuracy Score
	Training Loss

	Hardware to Choose
	Hugging Face
	Fine-Tuning Pretrained Models
	Iterative Use of Models
	Initialize New Models

	Environmental Impact in Language Model Training

	Related Work
	Active Learning and Fine-Tuning Models
	BERT-Models and Active Learning
	Norwegian Natural Language Processing
	Research Gap

	Method
	Hardware and Tools
	Hugging Face Implementation
	Datasets
	Preprocessing
	Final Dataset Specifics
	Models and Tokenization

	Active Learning Implementation
	Scikit-Learn and Hugging Face API
	Training Arguments

	Results
	Fine-Tuning Methods and Accuracy Metrics
	Iterative Training Method
	New-Models Training Method

	Comparing Active Learning Sampling Methods
	Baseline with Traditional Sampling
	Least Confidence Sampling
	Smallest Margin Sampling
	Shannon Entropy Sampling

	Performance of Fine-Tuning & Active Learning
	Train Time
	Training Loss

	Discussion
	Examining Training with Fine-Tuning Methods
	Active Learning versus Traditional Sampling
	Model Performance Review
	Time Used
	The Importance of Training Loss

	Conclusion
	Further Work
	Multiple Classification Classes
	Cross Validation
	Hyperparameter Tuning/Optimization
	Comparing Language Models
	Implementing Parallelism
	Larger and More Diverse Dataset
	Number of Samples in Training
	Continue Scikit-Learn Solution with partial_fit()

