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Abstract

The importance of accurate hyperspectral imaging in remote sensing has given rise
to the necessity of enhanced calibration techniques. This thesis investigates the
automation of lunar observations as a method for calibrating hyperspectral imaging
sensors, specifically onboard the HYPSO-1 satellite. The study attempts to answer
how hyperspectral imaging can be used to capture and analyze the full moon phases,
the technical challenges in automating moon captures, and how the findings can be
applied to other applications or systems.

The methodology involved developing and implementing algorithms and models to
automate the lunar observation process, creating a system that minimizes the need
for manual intervention. Python and Systems Tool Kit were the primary tools used
for developing and testing the solution.

The work resulted in a streamlined process for capturing lunar data with the HYPSO-
1 satellite. While there were successful captures, the process also faced some failures,
providing a balanced view of the performance and the areas for improvement.

This research offers an improved process for lunar observations and sensor calibra-
tion. It contributes a step towards automating the lunar observation process, offering
potential benefits in terms of operational efficiency and accuracy. While its focus
is the HYPSO-1 satellite, the findings could have broader implications for other
planetary observation missions or small satellite missions. It also highlights areas
for future research, in refining the approach and expanding it to different contexts.



Abstrakt

Betydningen av nøyaktig hyperspektral bildebehandling i fjernmåling har ført til
behovet for forbedrede kalibreringsteknikker. Denne avhandlingen undersøker au-
tomatisering av måneobservasjoner som en metode for kalibrering av hyperspektrale
bildesensorer, spesifikt ombord på HYPSO-1-satellitten. Studien forsøker å svare på
hvordan hyperspektral bildebehandling kan brukes til å fange og analysere fullmåne-
faser, de tekniske utfordringene med å automatisere månefangst, og hvordan funnene
kan brukes til andre applikasjoner eller systemer.

Metodikken involverte utvikling og implementering av algoritmer og modeller for å
automatisere måneobservasjonsprosessen, og skape et system som minimerer behovet
for manuell intervensjon. Python og Systems Tool Kit var de primære verktøyene
som ble brukt for å utvikle og teste løsningen.

Arbeidet resulterte i en strømlinjeformet prosess for å fange månedata med HYPSO-
1-satellitten. Selv om det var vellykkede fangster, opplevde prosessen også noen feil,
noe som gir et balansert syn på ytelsen og områdene for forbedring.

Denne forskningen tilbyr en forbedret prosess for måneobservasjoner og sensor kali-
brering. Den bidrar til automatiseringen av måneobservasjonsprosessen, og tilbyr
potensielle fordeler i form av operasjonell effektivitet og nøyaktighet. Selv om
fokuset er på HYPSO-1-satellitten, kan funnene ha bredere implikasjoner for andre
planetobservasjonsoppdrag eller små satellittoppdrag. Den fremhever også områder
for fremtidig forskning, i raffinering av tilnærmingen og utvidelse til forskjellige kon-
tekster.
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Chapter 1

Introduction
Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives and Tasks . . . . . . . . . . . . . . . . . . . . . 4

On January 13th, 2022, a satellite with the name HYPSO-1 was launched on a
Falcon 9 Block 5 vehicle from SLC-40 at Cape Canaveral Space Force Station in
Florida. HYPSO-1 is the first research satellite made by a Norwegian university
that has been successfully launched into orbit.

Figure 1.1: HYPSO-1 (HYPer-spectral Satellite for Ocean Observation, HYPSO-1), ob-
tained from [1].

1.1 Motivation

The quest for more accurate and reliable data from earth observation instruments is
an ongoing challenge in the field of remote sensing. Hyperspectral imaging sensors,
due to their ability to capture a wide spectrum at many contiguous wavelengths, have
revolutionized how we perceive and analyze the world. However, like all instruments,
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Chapter 1. Introduction 1.2. Problem Formulation

their performance is influenced by numerous factors including noise, systematic bias,
and environmental factors among others. As such, the process of calibration becomes
imperative to ensure that the measurements made by these sensors are accurate,
precise, and reliable.

Calibration, in essence, adjusts for these influences by establishing a known relation-
ship between the observed values and the true values. This allows for more meaning-
ful and confident data interpretation and application, such as detecting changes in
ecosystems, studying the atmospheric composition, or analyzing the health of crops.
Given the complexity of hyperspectral data, calibration becomes a non-trivial task
that requires thoughtful design and execution.

The Moon, with its predictable cycles and stable spectral characteristics, provides
a unique opportunity as a calibration source. By automating the process of lunar
observations, we aim to enhance the calibration procedure of hyperspectral imagers.
Yet, this endeavour is not without its challenges – challenges we aim to tackle within
this thesis. This motivation sets the stage for an exciting journey into automating
lunar observations for the calibration of hyperspectral imagers.

1.2 Problem Formulation

Hyperspectral imagers, with their ability to provide a wealth of spectral informa-
tion, have the potential to revolutionize our understanding of the world. However,
this potential can only be fully realized when the data they produce is reliable and
accurate, which fundamentally depends on an effective calibration. One unique cal-
ibration method involves observing the Moon, a celestial body that presents us with
a stable and predictable spectral source. Manual lunar observations for calibration
purposes present challenges, including the timing of observations to coincide with
the appropriate lunar phase, adjusting the orientation of the hyperspectral sensor
to correctly target the Moon, and handling the vast amounts of data generated.

Creating an automated system to capture the lunar phases with the HYPSO-1’s
hyperspectral sensor would reduce the human workload and increase the efficiency
of the calibration process. However, this automation involves understanding various
technical aspects related to the HYPSO-1’s operation and the specifics of hyper-
spectral imaging, as well as designing a system that successfully integrates these
elements.

This thesis seeks to explore this intricate problem space, aiming to devise automated
methods for capturing the lunar phases with the HYPSO-1 satellite’s hyperspectral
imager. This involves understanding the technical aspects related to the operation of
the HYPSO-1 satellite and the specifics of hyperspectral imaging and, importantly,
devising an automated process that successfully integrates these elements in the
context of lunar observation. The challenges associated with this process lead us to
the main research questions that this thesis seeks to answer:

• How can hyperspectral imaging be used to capture and analyze the full moon
phases, and what benefits does this provide for lunar observation?

3



Chapter 1. Introduction 1.3. Objectives and Tasks

• What are the technical challenges involved in automating moon captures with
hyperspectral imaging, and how can these be overcome?

• How can the findings from this research be applied to other applications or
systems, such as small satellite missions or other planetary observation mis-
sions?

1.3 Objectives and Tasks

The primary objective of this thesis is to design, implement, and evaluate an au-
tomated system that uses HYPSO-1’s hyperspectral imaging sensor for capturing
lunar observations, thus facilitating the calibration process. This objective is divided
into specific tasks that aim to:

• Understand the technical workings of the hyperspectral sensor aboard HYPSO-
1 and its requirements for calibration.

• Explore the application of hyperspectral imaging in capturing and analyzing
the lunar phases.

• Develop an automation solution that coordinates the sensor’s data capture
with the Moon’s phases and positions.

• Assess the efficacy of the automated system through extensive testing and
analysis.

• Discuss potential applications of the research findings in broader contexts, such
as small satellite missions and planetary observation missions.

The anticipated outcome of this thesis is a reliable, automated system designed to
simplify the calibration process of hyperspectral imaging sensors. By completing
these tasks, the work seeks not only to contribute substantially to the existing body
of knowledge but also to influence the design and operation of future hyperspectral
imaging systems. Overall, the purpose is to offer valuable insights and tangible
improvements to the ongoing efforts in automating lunar observations and the cali-
bration of hyperspectral sensors.
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2.1.2 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Concept of Operations . . . . . . . . . . . . . . . . . . . . 8

2.2 Hyperspectral Remote Sensing . . . . . . . . . . . . . . . 9

2.2.1 Spectral Information . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Spectral Resolution . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Orbital Mechanics . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Kepler’s Laws of Planetary Motion . . . . . . . . . . . . . 11
2.3.2 Orbital Elements . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Orbit Determination . . . . . . . . . . . . . . . . . . . . . 13

2.4 Attitude Determination and Control System . . . . . . . 14

2.4.1 Attitude Representation . . . . . . . . . . . . . . . . . . . 14
2.4.2 Attitude Determination . . . . . . . . . . . . . . . . . . . 15
2.4.3 Attitude Control . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Radiometric Calibration . . . . . . . . . . . . . . . . . . . 15

2.5.1 Lunar Calibration Using the LIME Model . . . . . . . . . 16

In this chapter, we will explore the different elements that realize HYPSO-1’s mis-
sion, ranging from the satellite’s instrumentation and concept of operations to the
concepts of hyperspectral remote sensing and orbital mechanics, as well as the deter-
mination and control of the satellite’s attitude. Finally, we will introduce the process
of radiometric calibration through lunar observations and why this is necessary.

2.1 HYPSO-1

The HYPSO-1 satellite is a 6U CubeSat developed by the Norwegian University
of Science and Technology (NTNU) with the mission objective of observing ocean
colour along the coast of Norway. The satellite was launched into a sun-synchronous
polar orbit at an altitude of 540 km on January 13th, 2022 [2]. To achieve its mission
objectives, HYPSO-1 is equipped with a custom-built Pushbroom Hyperspectral
Imager (PBHSI) that captures imagery in the spectral range of approximately 387-
801 nm with a theoretical spectral bandpass of 3.33 nm and a swath width of 70 km
[3].
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Chapter 2. Background Theory 2.1. HYPSO-1

2.1.1 Mission Objectives

The HYPSO-1 satellite has a set of mission objectives aimed at monitoring ocean
colour events in the Visual and Near-Infrared (VIS-NIR) wavelengths between 400-
800 nm, and inferring phytoplankton functional groups. To achieve these objectives,
the mission has identified several key user needs that must be met, from [3]:

• Images should have spatial resolution better than 30 - 100 m per pixel.

• Raw hyperspectral data should have a spectral resolution of about 5 nm for
VIS-NIR wavelengths.

• The imager’s Signal-to-Noise Ratio (SNR) at Top of Atmosphere (ToA) should
be greater than 400 in visual wavelengths for open ocean water, and the at-
mospherically corrected SNR of water-leaving signals should be between 40 -
100.

• Data latency should be less than 1 hour.

• Revisit times to dedicated areas of interest should be 3 - 72 hours.

The mission objectives of HYPSO-1 are primarily focused on identifying and moni-
toring Harmful Algal Blooms (HABs) or cyanobacteria in Norwegian coastal waters.
These phytoplankton blooms have variable colouration and are often referred to as
"red tides," "green tides," or "brown tides," with wavelengths between 400-700 nm
that fall within the range of HYPSO-1’s spectral capabilities. They sporadically
appear worldwide with varying biomass concentrations, lasting from a few minutes
to a few days, and cover areas ranging from tens to hundreds of square kilometres in
size. Such blooms may cause sudden damage to the marine environment, ecosystems
and sustainable food sources.

2.1.2 Instrumentation

Imager

The PBHSI employed by HYPSO-1 operates by scanning in the direction of the
velocity vector, sequentially capturing several lines, Nx, each composed of instanta-
neous pixels, Ny and Nλ, to form a hyperspectral datacube [3], as shown in Figure
2.1. The number of spatial pixels perpendicular to the scan direction is denoted
by Ny, while the number of pixels along the spectral dimension is represented by
Nλ. The Field of View (FoV) of the PBHSI is characterized by the horizontal and
vertical components, ϵw and ϵh, respectively. The integration time, ∆t, represents
the time elapsed between two consecutive lines, or frames, and can be expressed as:

∆t =
1

FPS
= τ + δt (2.1)

where

• FPS is the frame rate,
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Chapter 2. Background Theory 2.1. HYPSO-1

• τ is the camera exposure time,

• δt is the read-out time.

Figure 2.1 illustrates the collection process of Nx frames with Nλ and Ny pixels using
the PBHSI [3]. The PBHSI is a valuable tool for capturing hyperspectral images,
which are useful for a variety of remote sensing applications.

Figure 2.1: Illustration of a PBHSI colleecting Nx frames with Nλ and Ny pixels, obtained
from [3].

RGB Camera

The satellite is equipped with an IDS UI-125x RGB camera with a 6mm F/1.4 Ci
series fixed lens. This camera provides a footprint of 770 km x 540 km and a spatial
resolution of approximately 500m [3]. Its main purpose is to support and validate
hyperspectral images in the spatial domain.

Transceiver

For downlinking payload data, the satellite uses a 2.4 GHz IQ Spacecom S-band
Transceiver. This transceiver provides a usable data rate of 1 Mbit/s [3].

Onboard Processing Unit

The satellite’s Onboard Processing Unit (OPU) hosts a Zynq 7030 Xilinx PicoZed
System-on-a-Chip (SoC) with flight heritage. It consists of two core ARM processors
and a Field Programmable Gate Array (FPGA) dedicated for onboard image pro-
cessing. The OPU allows for in-orbit updates of both software and FPGA hardware
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reconfigurations for uploaded algorithms. Larger data sizes can be buffered from the
OPU to the Payload Controller (PC) over Controller Area Network (CAN) before
downlinking over S-band radio, or smaller amounts of data can be downloaded di-
rectly from the OPU. Buffering data to the PC enables full utilization of the S-band
data rate and removes the need for keeping the OPU turned on for longer than nec-
essary. Power and data-line distribution to the hyperspectral and RGB cameras are
granted through a custom break-out board with PicoZed interfaces. Furthermore,
the OPU hosts an SD-card with 8 GB storage capacity [3].

2.1.3 Concept of Operations

HYPSO-1’s mission has four main capabilities as illustrated in Figure 2.2 that form
the Mission Concept Of Operations (CONOPS). These capabilities are [3]:

1. Hyperspectral imager orientation: the satellite can orient its hyperspec-
tral imager to start scanning a pre-defined area based on telecommands from
a ground station.

2. Single-axis slew manoeuvre: the satellite can execute a single-axis slew
manoeuvre to tilt the imager backwards as it translates forward, rotating the
imager’s footprint slowly backwards with respect to the scan direction. This
enhances the spatial resolution along the scan direction.

3. Onboard image processing: images are processed immediately onboard to
reduce their data size and speed up the download on the ground.

4. Groundstation downlink: the satellite downlinks data to ground stations
located at NTNU Trondheim and KSAT Svalbard, Norway [4]. It may also
(not yet integrated at the time of writing) downlink data to KSAT Puertollano,
Spain, or to one of NTNU’s Unmanned Aerial Vehicles (UAV)’s, Autonomous
Surface Vehicles (ASV)’s and Autonomous Underwater Vehicles (AUV)’s that
may collect in-situ data if within range of the observed area.

Figure 2.2: HYPSO-1 Concept of Operations, obtained from [3].
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2.2 Hyperspectral Remote Sensing

Hyperspectral remote sensing, also known as Hyperspectral Imaging (HSI) or imag-
ing spectroscopy, is an imaging technique used to collect and process information
from across a broad range of wavelengths. Unlike the human eye and most conven-
tional cameras, which can only see a small portion of the electromagnetic spectrum,
namely visible light, HSI can detect individual absorption features that are due to
specific bonds in materials. This makes it possible to identify different materials and
their properties, such as the concentration of a particular pigment. This is particu-
larly useful for detecting trace chemicals in the environment, such as chlorophyll-a
concentration or harmful algal blooms.

2.2.1 Spectral Information

Much like a traditional image with three bands, Red, Green and Blue (RGB), hy-
perspectral images are composed similarly - only with many more bands. In the case
of the HYPSO-1 satellite, there are 120 bands with wavelengths between approxi-
mately 387-801 nm at a theoretical spectral bandpass of 3.33 nm [3]. The bands,
or images, are stacked to create a hyperspectral image cube, with three dimensions:
the spatial dimensions x and y, and the spectral dimension z. Figure 2.3 below
illustrates the layers in a hyperspectral image.

Figure 2.3: Illustration of a hyperspectral image cube, obtained from [5]. A hyperspectral
image cube displays spatial and spectral dimensions at each pixel of an image. [6]

å

The spatial dimensions represent the horizontal and vertical dimensions of the image,
while the spectral dimension represents the wavelength dimension along which the
image is collected. Each layer in the spectral dimension represents the spectral
intensity at a specific wavelength at each pixel in the image. Passive hyperspectral
sensors like the HSI in HYPSO-1 use the sun as the primary source of radiation.
The energy that reaches the materials on the earth’s surface is reflected according
to the material’s spectral signature, and by taking out the solar and atmospheric
contributions to the sensor measurements, only the ground reflectance is left. There
are methods to correct the solar and atmospheric contributions, but this thesis will
not discuss this further.

Figure 2.4 below shows a hyperspectral image captured by the HYPSO-1 satellite,
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displaying both an RGB representation and spectral intensity graphs of three chosen
pixels marked by coloured dots. The RGB image is obtained by mapping the R, G,
and B values to the 60th, 80th, and 90th bands, respectively. For the pixel marked
with a green dot and graph, the corresponding values of the 60th, 80th, and 90th
bands are also depicted as colour bars, which correspond to the visual colours of the
image.

Figure 2.4: Left: Hyperspectral image obtained by HYPSO-1 satellite. Right: Graphs of
the raw spectral intensity of three pixels, illustrated by coloured dots on the image. The
bar chart shows the spectral intensity of the R, G and B values of the pixel marked with
a green dot.

It is clear that the hyperspectral image contains much more information than a
conventional RGB image, and that we can use the spectral intensity characteris-
tics of different pixels to obtain information about the materials of which they are
composed. For example, we see that the green and blue dots, which are located in
water, have much lower spectral intensity in the wavelengths over 700 nm than that
of the red dot, which is located on land. We also see a distinct difference between
the green and blue dots because the blue dot is in an algal bloom.

2.2.2 Spectral Resolution

The spectral resolution of a hyperspectral image is the range of wavelengths that
can be detected by the sensor. A high spectral resolution allows for the detection of
subtle differences in spectral signatures, enabling the identification and classification
of materials with greater accuracy. However, high spectral resolution can also result
in large data volumes that require advanced data analysis techniques to extract
meaningful information.

2.2.3 Data Analysis

Data analysis is a critical step in HSI, as large amounts of data are collected in the
form of hyperspectral images. Various techniques can be used to extract useful in-
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formation from hyperspectral images, such as hyperspectral target detection, which
aims to identify specific targets based on their unique spectral signature [7]. Other
methods include spectral unmixing [8], which decomposes the spectral signatures of
pixels into the spectral signatures of constituent materials, classification algorithms
[9], which group pixels with similar spectral signatures into classes, and anomaly
detection [10], which identifies pixels with unusual spectral signatures.

In conclusion, HSI is a powerful technique that can detect and identify materials
and their properties by analyzing the spectral signatures of pixels in a hyperspectral
image. The technique’s utility stems from its ability to collect information from a
broad range of wavelengths and the spectral differences among materials. However,
effective data analysis techniques are required to extract useful information from the
large amounts of data collected.

2.3 Orbital Mechanics

Orbital mechanics is a fundamental field of study in astrophysics that deals with the
motion of celestial bodies in space. All objects in orbit are governed by the laws of
physics, which are subject to various factors such as gravity, mass, velocity, and the
properties of the objects themselves. The understanding of these topics is important
when working with satellites, for example in order to calculate pointing direction at
specific times [11].

2.3.1 Kepler’s Laws of Planetary Motion

Kepler’s Laws, published by Johannes Kepler in the early 17th century, describe the
motion of objects in orbit around a central body. These laws were developed based
on observations made by Tycho Brahe [12].

First Law: Law of Ellipses

Kepler’s first law states that the orbit of a planet around the sun is an ellipse
with the sun at one focus. The distance between the sun and the planet changes
throughout the orbit, with the closest point called perihelion and the farthest point
called aphelion [12].

Mathematically, an ellipse can be represented by the formula:

r =
ρ

1 + ε · cosθ
(2.2)

where ρ is the semi-latus rectum, ε is the eccentricity of the ellipse, r is the distance
from the Sun to the planet, and θ is the angle to the planet’s current position from
its closest approach, as seen from the Sun.
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Second Law: Law of Equal Areas

Kepler’s second law states that a planet in orbit around the sun sweeps out equal
areas in equal times. This means that the planet moves faster when it is closer to
the sun (at perihelion) and slower when it is farther away (at aphelion) [12].

This law is described mathematically by the following equation:

dA

dt
=

1

2
r2
dθ

dt
(2.3)

where A is the area swept out by the planet in a given time, r is the distance from
the planet to the sun, and θ is the angle between the line connecting the planet and
the sun and a reference line.

Third Law: Law of Harmonies

Kepler’s third law states that the square of the period of a planet’s orbit is propor-
tional to the cube of the semi-major axis of the ellipse. In other words, planets that
are farther from the sun take longer to complete an orbit than those that are closer
[12].

This law is described mathematically by the following equation:

T 2

a3
=

4π2

GM
(2.4)

where T is the period of the planet’s orbit, a is the semi-major axis of the ellipse,
G is the gravitational constant, and M is the mass of the central body.

Overall, Kepler’s laws of planetary motion are important for understanding the
behaviour of objects in orbit around a central body and have been instrumental in
the development of modern astronomy and space exploration.

2.3.2 Orbital Elements

[13] To accurately describe the position and motion of a spacecraft in orbit around a
celestial body, six orbital elements are commonly used. These elements include the
semi-major axis (a), eccentricity (e), inclination (i), right ascension of the ascending
node (Ω), argument of periapsis (ω), and mean anomaly (M). A real orbit and its
elements are influenced by the gravitational perturbations of other celestial bodies
and the principles of general relativity. A Kepler orbit, as expressed by these six
parameters, is an idealized, mathematical approximation of an orbit at a specific
moment in time [14].

The semi-major axis, a, is the average distance between the centre of mass of the
spacecraft and the centre of mass of the celestial body it is orbiting. This element is
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a measure of the size of the orbit and is usually expressed in units of distance, such
as kilometres or astronomical units.

The eccentricity is a measure of how elliptical the orbit is. An orbit with an eccen-
tricity of zero is perfectly circular, while an orbit with an eccentricity greater than
zero is elliptical. The eccentricity ranges from 0 (circular) to 1 (parabolic).

The inclination is the angle between the plane of the orbit and the plane of the
celestial body’s equator. This element is measured in degrees and can range from 0
(a perfectly equatorial orbit) to 180 (a retrograde orbit).

The right ascension of the ascending node is the angle between the celestial body’s
reference direction (such as the vernal equinox) and the point where the spacecraft’s
orbit crosses the celestial body’s equatorial plane moving northward. This element
is also measured in degrees.

The argument of periapsis is the angle between the ascending node and the point on
the orbit closest to the centre of the celestial body being orbited (periapsis). This
element is measured in degrees.

Finally, the mean anomaly is the angle between the spacecraft’s position and the
position it would occupy if it were moving at a constant speed in a circular orbit.
This element is also measured in degrees and increases linearly with time.

Together, these six orbital elements provide a complete description of the position
and motion of a spacecraft in orbit, and they are essential for calculating the space-
craft’s position at any given time. In the context of this thesis, knowledge of these
orbital elements will be crucial for accurately predicting the position of the space-
craft during lunar observations and for the calibration of the sensors.

2.3.3 Orbit Determination

Orbit determination is the process of determining the position and velocity of a
satellite in its orbit at a given time. To accurately determine the orbit of a celestial
body, a relatively advanced set of calculation based on observations from tracking
stations on the ground are required. The United States Space Force [15] tracks all
detectable objects in Earth orbit, creating publicly available Two-Line Elements set
(TLE) data corresponding to each object.

Two Line Element set (TLE)

TLE is a standardized format for providing information about the orbit of a satellite.
They consist of two lines of text that include information such as the inclination
and eccentricity as described in 2.3.2, as well as the satellite’s name, international
designator, argument of perigee, mean anomaly, mean motion and epoch time.

There are many available tools that can be used to calculate a satellites position,
velocity, azimuth and elevation and any other data required based on TLE sets, such
as Skyfield [16], Pyorbital [17] and more, which are further discussed in Methods
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and Tools.

While TLE data provide a convenient way to obtain information about a satellite’s
orbit, they have limitations. TLE’s simplification ignores many of the complexities
of the earth’s gravity field, such as variations in the earth’s shape, mass distribution,
and the gravitational effects of other celestial bodies, to name a few. As a result,
TLE data is only accurate for a short period of time, typically from a few days to
a few weeks. It is therefore important to update TLE data often and to not rely on
the calculated orbits if the time of interest is far in the future or past.

2.4 Attitude Determination and Control System

In order to point the satellite in the correct direction when capturing images, we
need methods to estimate and represent the orientation of the satellite, as well as
some way of controlling the orientation. The orientation of a satellite is also known
as its attitude.

2.4.1 Attitude Representation

There are several ways to represent spacecraft orientation, including Euler angles
and quaternions. Euler angles describe the orientation of a spacecraft in terms of
three angles that represent rotations around three distinct axes [18]. These angles
are typically denoted by the symbols ϕ (phi), θ (theta), and ψ (psi), and correspond
to rotations around the spacecraft’s X, Y, and Z axes, respectively.

Quaternions are another way of representing spacecraft orientation, as they are a set
of four numbers that represent a rotation in three-dimensional space. The first three
numbers correspond to the axis of rotation, and the fourth number represents the
angle of rotation. Quaternions are a mathematical concept that extends the concept
of complex numbers to four dimensions. In the context of spacecraft attitude repre-
sentation, quaternions are a way of representing orientation that avoids some of the
problems associated with Euler angles. One of the main advantages of quaternions
is their ability to avoid gimbal lock, something which can occur when using Euler
angles. Gimbal lock is the loss of one degree of freedom in a three-dimensional,
three-gimbal mechanism that occurs when the axes of two of the three gimbals are
aligned, "locking" the system into rotation in a degenerate two-dimensional space,
ultimately causing the other two axes to become coincident. This can make it diffi-
cult or impossible to represent certain orientations using Euler angles.

In contrast, quaternions are able to represent all possible rotations without en-
countering gimbal lock, as quaternions represent orientation as a single rotation in
three-dimensional space, rather than a series of rotations around distinct axes. This
makes them particularly useful in applications that require high precision, such as
satellite attitude control.

Another advantage of quaternions is their ease of use in numerical calculations.
Quaternions can be multiplied and divided like regular numbers, which makes them
particularly useful in computer simulations and other numerical applications. [19]
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[20].

2.4.2 Attitude Determination

Attitude determination is a critical component of space missions that involve imag-
ing or precise orientation requirements. To ensure precise attitude estimation during
HYPSO-1’s imaging process, the satellite uses a Nano Star Tracker ST-1 and Sen-
sonor STIM 210 Inertial Measurement Unit (IMU) [3]. These sensors rely on the
detection and identification of known stars in the sky to accurately determine the
spacecraft’s position and orientation. By comparing the observed positions of the
stars to known star positions, the star tracker can calculate the spacecraft’s ori-
entation in three-dimensional space. In cases where images will not be taken, the
satellite uses six sun sensors, three magnetometers, and three gyroscopes instead.
While these provide coarser attitude knowledge, they consume less power [3].

2.4.3 Attitude Control

Attitude control is critical to maintaining the stability and control of a spacecraft.
HYPSO-1 uses four reaction wheels for attitude control, each providing up to 3.2
mNm of torque. Three of these wheels are placed orthogonally along the body axes,
while the fourth is tilted at an angle of 54.7°. The wheels are used to generate the
necessary torques to control the spacecraft’s attitude and to maintain its orienta-
tion in space. Additionally, two magnetorquers are placed along each body axis
for reaction wheel momentum dumping [3]. The combination of reaction wheels
and magnetorquers allows the HYPSO-1 satellite to maintain precise control of its
attitude, enabling it to execute its mission objectives.

2.5 Radiometric Calibration

Sensor calibration is a fundamental component of hyperspectral imaging, ensur-
ing precise and consistent measurements of the spectral signatures reflected from
Earth’s surfaces. These spectral signatures play a significant role in accurately iden-
tifying and categorising different surface materials, which is crucial in a variety of
applications, including environmental monitoring and precision agriculture.

Radiometric calibration is the process of converting raw sensor counts into calibrated
radiance or reflectance values. It involves the measurement of a known reference
target, the calculation of calibration coefficients based on the sensor’s response to
the reference target, and the subsequent application of these coefficients to the raw
sensor data.

One challenge in radiometric calibration is the necessity to account for atmospheric
conditions, such as the absorption and scattering of light. Lunar observations can be
used as a calibration reference to mitigate these atmospheric effects. The Moon, with
its lack of an atmosphere and relatively stable surface, provides a consistent source
for calibrating sensor responses across a wide range of wavelengths. By comparing
the sensor response to known lunar reflectance values, calibration coefficients can be
derived and used to correct systematic errors in the sensor’s measurements.
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The Lunar Irradiance Model ESA (LIME) is an example of a tool used for radio-
metric calibration. Developed by the European Space Agency (ESA), this model
simulates the spectral reflectance of the lunar surface. LIME takes into account sev-
eral factors, including the geometry of the Sun-Moon-Earth system, the topography
of the lunar surface, and the reflectance properties of lunar surface materials.

The utility of LIME lies in its capability to predict irradiance values at the sensor
for any given lunar observation, thereby enabling precise calibration of the sensor
response. The LIME instrument is scheduled to operate until 2024, with the model
being updated annually based on accumulating lunar measurements. These contin-
uous updates enhance the model’s accuracy and broaden its application, reinforcing
its value in the field of hyperspectral imaging.

2.5.1 Lunar Calibration Using the LIME Model

Lunar calibration employs the Moon as a radiometric reference for spaceborne and
airborne sensors. The LIME model is of particular importance in this context, as it
facilitates the derivation of accurate calibration coefficients for hyperspectral sensors
based on lunar observations. The following sequence of steps elucidates the typical
procedure adopted when implementing the LIME model for hyperspectral imager
calibration:

1. Collecting Lunar Observations: The initial step involves amassing a series of
lunar observations captured by the hyperspectral imager under diverse illumi-
nation conditions and viewing angles. This will be the main objective of this
thesis, as automating the process of collecting lunar observations and success-
fully capturing enough diversity in the illumination conditions and viewing
angles is an advanced and time-consuming task.

2. Acquiring LIME Data: The subsequent step involves accessing the LIME
model data, which comprises lunar irradiance values for a plethora of con-
ditions and geometries.

3. Aligning Observations with LIME Data: Each lunar observation needs to be
corresponded with the appropriate data set in the LIME model. This process
entails matching the illumination conditions and viewing angles of the Sun-
Moon-Earth system with our observations.

4. Computing Calibration Coefficients: Once a match has been established be-
tween the observations and LIME data, calibration coefficients can be com-
puted for each spectral band of the hyperspectral imager. The calculation
of these coefficients generally involves minimizing the difference between the
observed radiance values and the reference radiance values derived from the
LIME model.

5. Applying Calibration Coefficients: The final phase involves applying the com-
puted calibration coefficients to the raw sensor data to obtain calibrated radi-
ance or reflectance values.
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Time-dependent effects and changes in geometry need to be taken into account dur-
ing the calibration process. An integral part of this procedure is also the validation
of the calibration results, usually achieved by comparing the calibrated data with
known reference data or verifying its applicability in a well-established application.

In conclusion, the LIME model presents a sophisticated tool for conducting lunar
calibration of hyperspectral imagers, thereby bolstering the accuracy and reliability
of remote sensing data. By employing such calibration strategies, we are better
equipped to understand and analyze Earth’s diverse environments and their changes
over time.
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3.1 Capturing the moon

In order to capture the entire moon in one single image, we need to make sure that
the HSI’s FoV across track is wide enough to capture the diameter of the moon at
the Moon’s distance and calculate the maximum frame rate in order to give the HSI
enough time to capture the entire moon along track. Lastly, we must also calculate
the minimum frame rate in order to ensure that we do not get undersampling 1.

3.1.1 Pixels needed across track

The number of pixels occupied by the moon in the across-track field of view of the
hyperspectral imager can be calculated using the following formulas:

Pixel size =
FoV∑
pixels

(3.1)

αmoon = 2 · tan−1

(
Ømoon

2 · dsat_moon

)
(3.2)

1Undersampling refers to capturing too few frames during a rotation of the camera, resulting in
incomplete coverage of the moon’s (or other object’s) surface. This can lead to missing information
and gaps in the final image, potentially resulting in reduced image quality and loss of details.
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where

• FoV is the HSI’s field of view

• αmoon is the angular size of the moon in the HSI’s FoV

• Ømoon is the moons diameter

• dsat_moon is the distance from the satellite to the moon

From this, we can calculate the number of pixels occupied by the moon in the
across-track field of view by:

αmoon

Pixel size
(3.3)

Using the values dsat_moon = 360 000 km, Ømoon = 3 474.8 km, FoV = 4.00415° and∑
pixels across track = 684 pixels, we get

Pixels needed across track =
2 · tan−1

(
3474.8km

2·360000km

)
4.00415°

684

=

0.553027303 deg

0.005854020468
= 94.4696565417 ≈ 95 pixels

(3.4)

As the non-binned images captured by the satellite have 684 pixels across track, and
our calculations tells us we need 95 pixels to capture the entire moon, this means
we are in the clear.

3.1.2 Frames needed along track

In the along-track direction, there are multiple factors at play. In the non-binned
capture mode, which will be the main capture mode used to capture images of the
moon, the satellite is in a constant pointing direction with regard to the earth’s core.
This means that in the span of one orbit, the satellite rotates 360° around its axis.
With an orbit time of 95 minutes, this translates to a rotational speed of

ω =
360°

95 min · 60 s
min

= 0.063 °/s (3.5)

The HSI is not always pointing in the direction which gives the extra rotational
speed calculated in equation 3.5, as the off-nadir2 angle of the Moon’s position
varies throughout the moon phase, and depending on where the satellite is in its

2Off-nadir describes the angle at which a satellite or airborne sensor deviates from directly
pointing towards the nadir, or the zenith directly below the sensor - in other words, it refers to the
angle at which the sensor is looking away from the vertical or straight down position.
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orbit during the capture. The extra rotational speed of the HSI can therefore be
calculated by

ωhsi =

(
360°

95 min · 60 s
min

)
· − cos(αoff_nadir) (3.6)

The satellite also moves with a constant speed of 7.6 km/s along track. Ignoring
the rotational speed of the satellite, the HSI would need to travel approximately
the distance of the moon’s diameter to capture the entire moon in one image. With
the moons diameter Ømoon = 3474.8 km this gives a total capture time = 3474.8km

7.6km/s
=

457.2 seconds.

As calculated in equation 3.4, the Moon occupies ≈ 0.55° of the FoV. As the off-
nadir angle varies between each capture, we must use this as a variable to calculate
the maximum frame rate. The total capture time along-track can be calculated by

t =
1√

( vsat
Ømoon

)2 + ( ωhsi
αmoon

)2
(3.7)

where

• vsat is the linear speed of the satellite

• Ømoon is the diameter of the moon

• ωhsi is the rotational speed of the HSI

• αmoon is the angular size of the moon in the HSI’s FoV

The shortest possible scan time in the along-track direction is when the off-nadir
angle equals 180°. From this we get the HSI’s rotational speed ω = 0.063°/sec, as
shown in equation 3.5 , which tells us that it takes

t =
1√(

vsat
Φmoon

)2

+
(

ωhsi
αmoon

)2
=

1√(
7.6 km/s
3474.8 km

)2

+
(

0.063°/s
0.55°

)2
= 8.73 s (3.8)

to scan the entire moon in the along-track direction. In the non-binned capture
mode, the satellite captures 106 frames along track. Therefore, the maximum frame
rate allowed to keep the entire moon in one capture is FPSmax = frames

scan time = 106
8.73

=
12.14 FPS.

The longest possible scan time in the along-track direction is when the off-nadir
angle equals 90°. From equation 3.6 we get the HSI’s rotational speed

20



Chapter 3. Methods and Tools 3.2. Python

ωhsi =

(
360°

95 min · 60 s
min

)
· − cos(90°) = 0 °/s (3.9)

which in turn gives the total capture time from equation 3.7

t =
1√(

7.6 km/s
3474.8 km

)2

+
(

0°/s
0.55°

)2
= 457.2s (3.10)

There are however some limitations to the capture configurations in the HYPSO-1
satellite. One particular limitation that affects this case is that we can only set
the frame rate to whole numbers between 1 and 22. As the number of frames in
non-binned mode is 106, the longest possible capture time is 106 seconds, with FPS
= 1. We, therefore, set a boundary on the total capture time when planning moon
captures at an off-nadir angle of 95.5° and a rotational speed of 0.006 °/s, which
gives a total capture time of approximately 90 seconds for good measure.

To avoid missing any details, it is necessary to calculate the least FPS to ensure pixel
overlap. Given the distance of 360 000 km and a vertex angle of 0.0573 degrees, which
equates to the HSI’s FoV in the along-track direction, the swath width calculates to
354.4 km. Assuming the frames are captured in real-time, we would need about 10
frames (Ømoon/swath width = 3474.8/354.4 = 9.8 ≈ 10 frames) to cover the entire
moon without missing any information. When the satellite is at its highest effective
capture speed, particularly when the off-nadir angle is 180 degrees and the rotational
speed ωsat = 0.063°/s, the total time required for capturing is around 8.73 seconds
as shown in equation 3.8. Hence, to prevent undersampling, if the total capture time
is under 10 seconds, we require at least 2 frames per second, and at least 1 frame
per second if the total capture time extends over 10 seconds.

3.2 Python

In order to simplify the process of planning moon captures, we want to develop a
tool that can do this for us. Python [21] offers several tools that we can use to
do this, which we will explain in this section. Finally, we will discuss how we have
combined these tools to create a program that automatically generates the necessary
parameters for precise moon captures.

3.2.1 Skyfield

Skyfield is a powerful Python library that provides precise and comprehensive posi-
tional data for various celestial bodies, such as the Earth, Sun, Moon, earth-orbiting
satellites, and other stars and planets. [16] Developed by programmer and amateur
astronomer, Brandon Rhodes, Skyfield can be used in scientific research, astronomy,
and astrophysics for calculating distances, angles, and other positional parameters.
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Features and Functionality

Skyfield offers a rich set of features and functionality for working with celestial
body positional data. It provides an extensive database of accurate ephemeris data,
including precise positions, velocities, and accelerations for celestial bodies, based on
high-quality observational data. Its results should agree with the positions generated
by the United States Naval Observatory [22] and their Astronomical Almanac [23]
to within 0.0005 arcseconds [16] 3, or within approximately 0.000000139 degrees.

Skyfield can be used to calculate pointing vectors for captures based on satellite and
moon positions. This can be done by retrieving the satellite and moon positions
for a specified time, and then using mathematical operations to calculate the rel-
ative orientation or pointing direction in the three-dimensional space. Using TLE
data gathered from reliable sources such as CelesTrak [24], Skyfield can accurately
pinpoint the location of any registered satellite with its latest updated trajectory.

3.3 Systems Tool Kit

STK stands for "Systems Tool Kit" and is a suite of software tools for modelling,
simulating, and analyzing a wide range of systems and environments. The STK
software provides a comprehensive set of capabilities for modelling, visualizing, and
analyzing the performance of complex systems over time. This can help organiza-
tions make informed decisions and optimize their systems’ performance.

To achieve our goal of automating planning of precise pointing towards the moon,
STK is a very useful tool to verify our results along the way. By inserting the
HYPSO-1 satellite with its latest TLE we can simulate the orbit of the satellite
around the earth, as well as the position of the sun, moon and other celestial bodies,
in real-time. Using STKs built-in features we can visualize the HSIs FoV and the
relative vectors between the satellite and the moon. We can also jump to a specific
moment and observe the predicted positions at that point in time. Visualizing the
direct vector between the satellite and the moon gives the desired pointing direction.
By rotating the satellite using the quaternions we calculate, we can see how well the
FoV matches with this vector.

3.3.1 Planning Moon Captures

Planning moon captures should be a fast and simple process. The current solution
consists of visualizing body axes in STK, and manually picking a time when the
moon will cross the y-z plane of HYPSO-1 at some time t. One must then manually
set the azimuth and elevation angles of the HSI through trial and error until it is
within an acceptable range of the moon vector. We then note the time and use
a script to calculate the quaternions based on our azimuth and elevation angles.
These can then be fed into the Mission Control Software (MCS) which transfers the
capture scripts to the satellite.

3An arcsecond is a unit of angular measurement, where one arcsecond is equal to 1/3600th of
a degree.
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(a) 3D Overview in STK
(b) 2D Overview in STK

(c) 3D Zoomed-in View in
STK

Figure 3.1: Three Images showing the Satellite Orbit and Field of View (FoV) at April
18th 2023, 12:02:18. In image (c) we see the satellite above Svalbard, Norway with its HSI
pointed at 0° off-nadir.

Our goal is to simplify this process. Preferably, the user should just have to specify
what range of time they want a capture to be planned and how many captures
they want. The program should then find the best fit(s) based on criteria such as
off-nadir angle and distance to the moon, as well as ensure that the earth is not
blocking the view and that the sun is not too close to the HSIs or startrackers
FoV to keep from blinding the sensors. The program should then output all the
necessary parameters in a simple format that can be fed directly into the next step
of planning, which is the MCS process. The program should both be an executable
that a user can manually run on their local computer, as well as importable from
other scripts that may want to make use of the program’s capabilities. In addition
to the automation for HYPSO-1 Moon captures planning functionality, the program
should accept arguments to plan pointing quaternions for other satellites to point
towards other celestial bodies.

3.3.2 Flight Scripts

Flight Scripts is a collection of scripts developed by NTNU-SmallSat-Lab [25] that
are helpful and/or necessary to generate scripts and control the Flight Computer
(FC), Payload Controller (PC) and Hypso Command Line Interface (Hypso-Cli). In
our case, we will mainly take advantage of the scripts script_generator.py and
script_series.py.

The script_generator.py is a script developed by NTNU-SmallSat-Lab that is
used to generate PC and FC scripts based on the provided script arguments. The
mandatory options that need to be provided are:

• -u/–unix: Capture start time in Unix time format. This option needs to be
provided at least once and can be provided twice with -u and -u2 in case of
dual capture.

• -p/–pointing: Pointing mode for the script. It can take one of the following
values: generic, quaternion, nadir, slew, generic_slew, nonbinned, fullframe,
maxspatial, wide.
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• -a/–append: Whether to append to an existing script.

Additionally, several optional arguments can be provided to customize the generated
scripts:

• -e: Exposure time in milliseconds.

• –se: Selection of which PC script engine to run.

• -n/–name: Name of the hsi-folder.

• -b/–buff_file: File ID of buffer file.

• -r/–r: Specifies the quaternion component ’r’ for the primary target pointing
direction.

• -l/–l: Specifies the quaternion component ’l’ for the primary target pointing
direction.

• -j/–j: Specifies the quaternion component ’j’ for the primary target pointing
direction.

• -k/–k: Specifies the quaternion component ’k’ for the secondary target point-
ing direction in case of dual capture mode.

• -d: Delaying buffering of metazip and hsi-cube by 20min if capture is in a
pass.

• -s: Flag for enabling the star tracker.

• -fps: Frame rate in frames per second.

• -lat/–latitude: Latitude of the capture location to be included in the meta-
data.

• -lon/–longitude: Longitude of the capture location to be included in the
metadata.

• -fr/–frames: Number of frames to capture.

The generated scripts will depend on the provided arguments and can be used to
control the PC and FC in the desired pointing mode and capture start time.

The generated scripts must then be updated on the MCS, and a new upload sequence
must be manually enabled. The MCS then ensures that the new scripts are uploaded
on the next satellite pass.
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3.3.3 Case Study: HYPSO-1 Calibration

In this study, we aim to apply similar techniques and methods used in the commis-
sioning of the Sentinel-3B satellite during a single lunar observation [26]. The lunar
observation allowed the assessment of the possible use of the moon for characterizing
and validating onboard instruments. The stable orientation of the satellite after a
roll manoeuvre enabled imaging of the moon by the Earth view of instruments. The
data acquired by the Ocean Land Color Instrument (OLCI) facilitated the verifica-
tion of stray-light correction (SLC) performed by the Mission Performance Centre
(MPC) and assessment of radiometric behaviour of the instrument in comparison
with lunar irradiance models developed in collaboration between European Space
Research and Technology Centre (ESTEC) and European Organisation for the Ex-
ploitation of Meteorological Satellites (UEMETSAT).

In our experiments, we plan to replicate the approach used in this paper by per-
forming similar lunar observations and utilizing the acquired data to assess the
performance of our onboard instruments. We will use the proposed update of stray-
light correction developed with the use of lunar data as a reference to evaluate the
accuracy and effectiveness of our own stray-light correction techniques.

3.4 Lunar Reflectance Models

Lunar reflectance models represent our understanding of how the Moon reflects
sunlight and other incident light. They are created using a combination of direct
observations from lunar missions, earth-based telescopic measurements, and theo-
retical calculations of reflectance properties. These models attempt to capture the
reflectance properties across the Moon’s surface, taking into account factors such as
the lunar phase, lunar libration, and the position of the observer.

The use of these models is particularly beneficial for the calibration of satellite
sensors. Satellite sensors, especially those operating in deep space, experience a
different environment than the one they were built and tested in, causing discrepan-
cies between the observed and actual values. By observing a known target, such as
the Moon, it’s possible to adjust sensor readings to be more accurate. The Moon,
as an extraterrestrial reference source, is a constant and predictable target whose
reflectance characteristics are well-studied and understood.

Stray light, i.e., unwanted or scattered light in an optical system, is a significant
concern in satellite sensor calibration. Although it can distort sensor readings, the
stable and predictable nature of lunar reflectance allows us to separate the signal of
interest from the stray light, thus providing a correction factor that can be used for
more accurate measurements.

3.4.1 Lunar Irradiance Model ESA (LIME)

The European Space Agency’s Lunar Irradiance Model, also known as LIME, rep-
resents a modern, high-accuracy approach to lunar reflectance modelling. More
detailed information can be found on the dedicated CEOS portal and associated
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documentation [27, 28].

LIME is based on extensive sets of high-resolution images and radiometric measure-
ments of the Moon, capturing a wide range of lunar phases, libration states, and
solar illumination angles. The result is a model that can generate realistic and highly
accurate spectral radiance maps of the Moon for any given observation geometry.

LIME is built upon several models including the empirical model from the U.S.
Geological Survey’s Robotic Lunar Observatory (ROLO), but it further enriches
this with data from other lunar observation campaigns and advanced modelling
techniques.

The calibration process using LIME involves comparing the observed lunar irradi-
ance with the one predicted by the model. The ratio of these two quantities provides
the correction factor that needs to be applied to the sensor readings. Regular com-
parisons between sensor observations and the model allow for continuous calibration
and performance monitoring over the sensor’s lifetime.

3.4.2 Robotic Lunar Observatory (ROLO)

The U.S. Geological Survey’s ROLO is another significant player in lunar reflectance
modelling. In over 6 years of operations, ROLO has acquired over 85 000 images
of the Moon [29], generating an extensive database of lunar images and spectra
that can be used for sensor calibration. ROLO’s model focuses on accounting for
variations in lunar reflectance caused by changing viewing geometry, lunar phase,
and lunar libration.

3.4.3 Other alternatives

There are several other methods for sensor calibration, including the use of stars,
asteroids, and other celestial bodies. However, these sources lack the constant and
predictable nature of the Moon, making them less suitable for routine calibration.

Artificial light sources on Earth can also be used for calibration, but they suffer from
atmospheric distortion and are not as consistent or predictable as the Moon.

In conclusion, lunar reflectance models, including LIME and ROLO, are valuable
tools for the calibration of satellite sensors. The constant and predictable nature
of lunar reflectance, combined with sophisticated models that accurately capture
these properties, provides a powerful method for sensor calibration and ongoing
performance monitoring.
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4.1 Celestial Bodies

In order to efficiently and accurately calculate the distances, angles and velocities
between the different celestial bodies, we need to develop scripts that can do this for
us given a few simple inputs. To do this, we mainly take advantage of the Python
library Skyfield [16] as discussed in chapter 3.2.
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4.1.1 Distances

Distances between objects in space are a critical aspect of space missions and astro-
nomical observations. However, determining distances in space is not as straight-
forward as it may seem, as they are relative to the reference point or system in
which they are measured. The International Celestial Reference System (ICRS) and
J2000 epoch are commonly used as reference systems in astronomy and space ex-
ploration. Additionally, there are different types of distances to consider, including
barycentric, astrometric, and apparent distances. Furthermore, different coordinate
systems are used to represent the position and motion of objects in space, including
the Earth-Centered Inertial (ECI) and Earth-Centered, Earth-Fixed (ECEF) coor-
dinates. Understanding these concepts is crucial for accurately measuring distances
and predicting the motion of objects in space.

International Celestial Reference System (ICRS)

The International Celestial Reference System (ICRS) is the current standard celes-
tial reference system, with its centre at the barycenter 1 of the solarsystem. Using
Skyfields at() method on celestial bodies we get the barycentric position of the
body with reference to the solar systems barycenter in either Astronomical Units
(AU), kilometres or meters.

EarthSatellite and Observers

Using TLE files and Skyfields api.load package [31], we can import an earth-
orbiting satellite as an EarthSatellite object [32]. The position returned from
Skyfields at() method on satellites is an XYZ (3D Cartesian) system relative to the
Earth’s centre in the Geocentric Celestial Reference System (GCRS).

Using Skyfelds observe() method, we are able to get the relative distance from an
observer, i.e. a celestial body, to a target, i.e. another celestial body. Using the
Earth as the observer, we get the distance to the target in GCRS coordinates. This
way the observer, target and orbiting object are all in the same coordinate system
with the earth’s core at its centre. From this, we can easily calculate distances,
angles and relative velocities over time.

4.1.2 Distance from Object to Target

The distance_obj_to_target() function is used to compute the linear distance
between an orbiting object and a target at a given time t. The function takes four
arguments, namely time, satellite, target and observer. The function returns
the distance between the satellite and the target in kilometres as a floating-point
number.

To compute the distance between the objects, the function first calculates the posi-
tion of the target as observed from the observer at the given time t. This is done
using the observe() method of the observer object from the Skyfield library. Next,

1Barycenter is the centre of mass of two or more bodies that orbit one another and is the point
about which the bodies orbit. [30]

28



Chapter 4. Work and Results 4.1. Celestial Bodies

the function computes the position of the satellite at the same time t using the
at() method of the satellite object. Once the positions of the target and the satel-
lite are known, the function calculates the distance between the two objects using
the np.linalg.norm() function. The np.linalg.norm() function calculates the
Euclidean distance between the two position vectors, which gives the linear distance
between the orbiting object and the target.

This function is particularly useful when combined with the get_minimum_distance()
function, which searches for the time when the distance between two celestial bodies
is at its minimum within a specified time frame.

4.1.3 Get Minimum Distance

The get_minimum_distance() function is used to find the time when the distance
between an object and a target is at its minimum within a specified timeframe. This
function takes five arguments: t_start, t_end, satellite, target, and observer.
An optional argument, search_interval, can also be specified to set the time step
in minutes. The function returns two values, the minimum distance in kilometres
as a float, and the time of the minimum distance as a DateTime object.

The initial minimum distance is calculated at t_start using the
distance_obj_to_target() function as explained above and stores it as min_d.
The variable min_t is set to t_start to store the time at which the minimum
distance occurs.

The total number of iterations is computed based on the specified timeframe and
search interval. Then, the function enters a loop that iterates through each time
step between t_start and t_end with the specified search interval.

Inside the loop, the function calculates the distance at the current time step using
the distance_obj_to_target() function. If the calculated distance is smaller than
the current minimum distance, the minimum distance and its corresponding time
are updated.

After the loop completes, the variable max_t is converted to a UTC DateTime object.
Finally, the function returns the minimum distance in kilometres and the time of its
occurrence as a DateTime object.

In figure 4.1 we see the distances between the HYPSO-1 satellite and the moon, at
one-minute intervals, over 4 hours on May 26th 2023. The minimum distance per
orbit is marked in red.
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Figure 4.1: Hypso-moon distance four hours on May 26th 2023. The minimum distances
are marked in red.

4.1.4 Angles

As important as the distance between the orbiting object, target and observer are,
the angles between them are equally important. In the span of one orbit, the satellite
should have its maximum off-nadir angle at the same point in time as when the
distance between the satellite and the target is at its minimum. Calculating the
off-nadir angle is therefore an efficient way to ensure that the minimum distance
calculated occurs at the correct time. The lunar zenith angle is also important to
calculate, as it is an important input in the calibration process.

4.1.5 Get Off-Nadir Angle

The get_off_nadir_angle() function calculates the off-nadir angle between a satel-
lite and a target at a given time. It takes four arguments: time, earth, target,
and sat.
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Figure 4.2: Visualization of the off-nadir angle. 0° off-nadir is the vector pointing at the
earth’s core (nadir point), perpendicular to the earth’s surface. The higher the off-nadir
angle, the more away from the earth’s core the optical axis direction. From [33].

First, the function obtains the positions and velocities of the satellite and the target
at the specified time using the get_positions() and get_velocity() functions.

Next, the function performs coordinate transformation from the Earth-Centered In-
ertial (ECI) frame to the Local-Vertical-Local-Horizontal (LVLH) frame. It uses the
eci2LVLH() function to calculate the LVLH frame’s position vector (r_o), velocity
vector (v_o), and transformation matrix (R_io).

The relative position vector between the target and the satellite is calculated by
subtracting the satellite’s position from the target’s position. This relative position
vector is then transformed into the orbit frame using the transformation matrix
R_io.

To compute the off-nadir angle, the function normalizes the relative position vector
in the orbit frame by dividing it by its magnitude using the np.linalg.norm()
function. The nadir vector in the orbit frame (z_o_hat_o) is defined as [0, 0, 1].
The cosine of the off-nadir angle is calculated by taking the dot product between the
target unit vector and the nadir vector. Finally, the off-nadir angle is obtained by
taking the arccosine of the cosine and converting the result from radians to degrees.

The function returns the off-nadir angle in degrees.
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4.1.6 Get Maximum Off Nadir Angle

Similarly as for the get_minimum_distance() function explained above, the
get_maximum_off_nadir_angle() function is used to find the time when the off-
nadir angle between a satellite and a target is at its maximum within a specified
timeframe. It takes five arguments: t_start, t_end, obj, target, and observer.
Additionally, it has an optional argument search_interval to specify the time
step in minutes. The function returns two values, the maximum off-nadir angle in
degrees, and the time of the maximum off-nadir angle as a DateTime object.

The function performs similarly to the get_minimum_distance() function, by it-
eratively calling the get_off_nadir_angle() for each time step between t_start
and t_end with the given time step specified by search interval. At each step,
the function checks if the off-nadir angle is greater than the previously computed
maximum off-nadir angle, and if so, updates the maximum off-nadir angle and the
corresponding time.

In figure 4.3 we see the off-nadir angles between the HYPSO-1 satellite and the
earth, at one-minute intervals, over four hours on May 26th 2023. The maximum
off-nadir angle per orbit is marked in red.

Figure 4.3: Off-nadir angles over four hours on May 26th 2023. Maximum off-nadir angles
are marked in red.

In figure 4.4 we see both the distances between the HYPSO-1 satellite and the moon
and the off-nadir angles between the HYPSO-1 satellite and the earth, at one-minute
intervals on May 26th 2023. As expected, the peak off-nadir angles occur at the same
point in time as the minimum distance between the satellite and the moon.

32



Chapter 4. Work and Results 4.1. Celestial Bodies

Figure 4.4: Hypso-moon distance and off-nadir angles over two orbits. Maximum off-nadir
angles are marked in red, and minimum distances are marked in purple.

4.1.7 Get Lunar Zenith Angle

The lunar zenith angle is important to note for each capture, as it is an important
aspect of the calibration process. The lunar radiance varies greatly depending on the
lunar phase, and to determine the expected radiance versus the captured radiance,
we need to classify the lunar phase at capture.

Using the position of the moon, earth and sun, acquired by the same methods as
previously discussed in this chapter, we can calculate the lunar zenith angle. The
angle is simply found by calculating the dot product between the sun-earth and sun-
moon vectors, calculating the magnitudes of these vectors, and finally calculating
the angle using the arccosine function. The angle for each capture is thus readily
available for each capture at any point in time.

In figure 4.5 we see the variety of lunar reflectances measured at 440 nm from the
1088 and 933 instruments used to develop the LIME model.
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Figure 4.5: Lunar irradiance measurements for 440 nm from the 1088 and 933 instruments
[34].

4.2 Pointing

For HYPSO-1, we employ quaternion-based pointing methodology due to its ad-
vantages in representing and manipulating orientation in three-dimensional space,
as discussed in section 2.4.1. Quaternions provide a compact and computationally
efficient representation, avoiding common issues such as singularities that can oc-
cur with other orientation representations such as Euler angles. Quaternion-based
pointing allows for smooth and continuous rotations, enabling precise control and
flexibility in aligning the satellite with desired targets.

In this section, we delve into the functions developed to calculate the quaternions
required for our satellite’s pointing. These functions involve various mathematical
transformations and calculations, enabling us to determine the optimal orientation
of the satellite relative to the Earth, target objects, and reference frames. By un-
derstanding and implementing these functions, we gain the ability to accurately
determine the necessary quaternion parameters for achieving desired pointing con-
figurations.

4.2.1 Get Quaternion

The get_quaternion() function is designed to calculate the rotation quaternion
that represents the desired orientation of a satellite with respect to a target at a
given time. The function takes four arguments: time, earth, target, and sat.

To begin, the function obtains the positions of the satellite (sat_pos) and the target
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(target_pos) using the get_positions() function. The velocity of the satellite at
the specified time is also acquired (sat_vel).

Next, the function computes the relative position vector from the satellite to the
target by subtracting the satellite’s position from the target’s position. This relative
position vector is then transformed into the orbit frame using the transformation
matrix R_io calculated from the satellite’s position and velocity, using the eci2LVLH
function described below.

The function normalizes the relative position vector to obtain the target unit vector.
It then calculates the cosine of the off-nadir angle by taking the dot product of the
target unit vector and the nadir vector in the orbit frame (z_o_hat_o). The off-nadir
angle is computed in degrees using the inverse cosine function.

Finally, the function calculates the rotation quaternion by constructing the rotation
matrix R_ob that represents the rotation from the orbit frame to the body frame
based on the off-nadir angle. This rotation matrix is then converted to a quaternion
(q_ob) using the rot2q() function.

The function returns the rotation quaternion (q_ob) as the desired orientation of
the satellite with respect to the target.

4.2.2 ECI to LVLH Transformation

The eci2LVLH() function is responsible for converting the position and velocity
vectors from the Earth-Centered Inertial (ECI) frame to the Local-Vertical-Local-
Horizontal (LVLH) frame. The function takes two arguments: r_i (position vector
in ECI frame) and v_i (velocity vector in ECI frame).
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Figure 4.6: ECI and LVLH reference frames shown in black and blue, respectively. From
[35].

To begin, the function calculates the unit vector along the negative radial direction
(z_o) by normalizing the position vector (r_i). The unit vector along the negative
cross-track direction (y_o) is computed by taking the cross product of the position
vector (r_i) and the velocity vector (v_i), and then normalizing it. The unit vector
along the in-track direction (x_o) is obtained by taking the cross product of the
cross-track vector (y_o) and the radial vector (z_o).

Using these three orthogonal unit vectors, the function constructs the rotation ma-
trix R_o_i that represents the transformation from the ECI frame to the LVLH
frame. The transpose of this rotation matrix (R_i_o) is also computed for the re-
verse transformation.

The function applies the transformation to the position vector (r_i) and the velocity
vector (v_i) using matrix multiplication. This results in the position vector (r_o)
and the velocity vector (v_o) represented in the LVLH frame.

Finally, the function returns the transformed position vector (r_o), velocity vector
(v_o), and the rotation matrix (R_o_i) as the outputs.

4.2.3 Rodrigues Rotation

The rot_rodrigues() function implements the Rodrigues rotation formula to com-
pute a rotation matrix that rotates a vector a towards another vector b by an angle
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theta. This formula is commonly used in various geometric and computational ap-
plications. The function takes three arguments: a (initial vector), b (target vector),
and theta (rotation angle in radians).

To start, the function normalizes the initial vector a and the target vector b by
dividing them by their respective norms. Then, it calculates the cross product of
the normalized vectors, resulting in the vector lambda. The norm of lambda is also
computed.

Next, the function checks if the norm of lambda is below a certain threshold value (in
this case, 1×10−12). If it is, the function assigns lambda to lambda_hat. Otherwise,
it divides lambda by its norm to obtain lambda_hat, the unit vector in the direction
of lambda.

The function then computes the skew-symmetric matrix skew by multiplying lambda_hat
with theta and passing it to the skew_sym() function. The skew_sym() function
constructs the skew-symmetric matrix based on the given input.

Finally, the function calculates the rotation matrix R using the exponential matrix
function (expm()) from the SciPy library applied to the skew matrix.

The resulting rotation matrix R represents the transformation required to rotate the
initial vector a towards the target vector b by the specified angle theta.

4.2.4 Rotation to Quaternion Conversion

The rot2q() function is responsible for converting a rotation matrix R into a quater-
nion representation. Quaternions are commonly used to represent rotations in 3D
space due to their compactness and computational advantages. This function takes
a 3x3 rotation matrix R as its input.

The conversion process starts by computing the rotation angle theta using the
arccosine function applied to the trace of the rotation matrix, subtracted by one, and
divided by two. The trace of the matrix represents the sum of its diagonal elements.
If the computed theta is very close to zero (using the isclose() function), the
function sets the axis of rotation e_hat as the zero vector [0, 0, 0]. Otherwise, it
calculates e_hat as the normalized vector [R[1,2]-R[2,1], R[2,0]-R[0,2], R[0,1]-R[1,0]]
divided by twice the sine of theta.

Next, the function computes the quaternion components: q_0 is set to cos(θ/2),
and q_1, q_2, and q_3 are calculated by multiplying the respective components of
e_hat with sin(θ/2). The resulting quaternion q is represented as an array [q_0,
q_1, q_2, q_3].

Finally, to ensure the quaternion is normalized, the function divides q by its Eu-
clidean norm using the linalg.norm() function.
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4.3 Timing

Timing plays a crucial role in satellite imaging, particularly when targeting celestial
bodies like the Moon. To optimize the capture of high-quality images and ensure
efficient utilization of satellite resources, it is essential to consider the total cap-
ture time and the maximum Frames Per Second (FPS) achievable during imaging
operations. In this section, we will explore the concepts of total capture time and
calculate the frames per second required for effective imaging.

4.3.1 Total Capture Time

The total capture time refers to the duration required to capture a specific target or
area of interest during satellite imaging. It is influenced by various factors such as
the off-nadir angle, which represents the deviation from the satellite’s nadir pointing
direction. The off-nadir angle determines the extent of rotation needed to align the
imaging sensor with the target, affecting the overall imaging time.

To calculate the total capture time for a given off-nadir angle, the function
calculate_total_capture_time(off_nadir_angle) is utilized. This function takes
the off-nadir angle as input and returns the total capture time in seconds. It con-
siders parameters such as the satellite’s linear speed, the Moon’s field of view, and
the Moon’s diameter to estimate the time required for complete imaging coverage.

4.3.2 Calculate Frames per Second

In satellite imaging, the number of frames captured per second (FPS) is a crucial
parameter that affects the temporal resolution of the acquired imagery. The higher
the FPS, the more frames can be captured within a given time.

To determine the optimal frames per second for capturing the target within the
calculated total capture time, the function calculate_frames(total_time) is em-
ployed. This function takes the total capture time as input and calculates the
number of frames and the required frames per second. It considers a target number
of frames and a target FPS as reference values and adjusts the FPS based on the
total capture time to ensure an appropriate balance between temporal resolution
and data volume.

By understanding the total capture time and calculating the frames per second,
satellite imaging operations can be carefully planned and optimized to achieve de-
sired results within the allocated resources and time constraints.

4.4 Execution

The execution of the program has been designed to be user-friendly and straightfor-
ward, requiring minimal input from the user. By providing the necessary parameters
specific to their case, users can easily run the program and leverage the developed
methods. To enhance usability, two executable scripts have been developed, each
tailored to different functionalities. The first script, SatNav, is a general program
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capable of searching for optimal capture times and calculating pointing quaternions
for any registered satellite on a selection of celestial bodies. The second script fo-
cuses specifically on planning moon captures for the HYPSO-1 satellite. In this
section, we will explore both programs, providing instructions on their usage and
discussing their capabilities.

4.4.1 SatNav

The general program offers a versatile solution for users seeking to determine the
best possible capture time(s) and calculate the corresponding pointing quaternions
for their registered satellite. This program supports a range of selectable celestial
bodies, allowing users to tailor the imaging operations according to their specific
requirements. By inputting the relevant parameters, users can initiate the program
and obtain optimized capture times and corresponding quaternions for precise satel-
lite pointing.
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Figure 4.7: SatNav execution, specifically for two captures of the moon from the HYPSO-
1 satellite, sometime between the next 4 and 28 hours, executed on May 27th 2023 at
14:16:41 UTC+2.

As shown in figure 4.7 above, the execution of the SatNav script provided two
captures on May 28th, at 03:02:29.40 UTC and 15:40:29.40 UTC, respectively. The
off-nadir angles of these captures are calculated to be at 134.58° and 138.54°, and
the required pointing quaternions are also provided.

4.4.2 Moon Capture Planning for HYPSO-1

The second executable script is dedicated to planning moon captures specifically for
the HYPSO-1 satellite. With a specialized focus on lunar imaging, this program
streamlines the process of determining optimal capture times and generating point-
ing quaternions tailored to the unique characteristics of the satellite and the Moon.
By utilizing this program, users can efficiently plan and execute imaging operations
targeting the Moon with the HYPSO-1 satellite.
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Figure 4.8: Hypso Moon Script Command Generator help option, providing the necessary
information about the usage of the script.

Figure 4.9: Hypso Moon Script Command Generator, specifically for two captures of the
moon from the HYPSO-1 satellite, sometime between the next 4 and 28 hours, executed
on May 27th 2023 at 15:00:29 UTC+2.

As shown in figure 4.9 above, the execution of the Hypso Moon Script Command
Generator provided two commands, each representing a capture on May 28th 2023,
at 04:37:29.28 UTC and 15:40:29.27 UTC, respectively. The off-nadir angles of
these captures are calculated to be 135.06°and 138.54°. The command is specifically
formatted to suit the NTNU SmallSat Lab’s tools for generating Payload Controller
(PC) and Flight Computer (FC) scripts that are fed to the satellite. As discussed
in 3.3.2, the command includes:

• -b: the file ID buffer file for the capture, here set to 33.

• -u: Capture start time in Unix time format, here set to 1685248649 and
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1685288429 respectively.

• -s: flag for enabling the star tracker.

• -a: Whether to append an existing script.

• -p: Pointing mode, here set to nonbinned.

• -n: Name of the hsi-folder, here set to moon.

• -d: Delaying buffering of metazip and hsi-cube by 20min if capture is in a
pass.

• -e: Exposure time in milliseconds, here set to 70 milliseconds.

• -r, -l, -j and -k: Specifies the pointing quaternion components.

• -fps: Frame rate in frames per second, here set to 9.

• -fr: Number of frames to capture, here set to 106.

Additionally, the timestamp, off-nadir angle, sun-moon distance and satellite-moon
distance are printed along with the command for readability and easier analysis later
in time.

4.5 Observing the moon

4.5.1 Planning captures

The process of planning captures is not as simple as generating commands from the
above scripts and uploading them to the satellite. Multiple factors at play need to
be accounted for. Among many others, some of these are:

• Two captures should not be planned within half an hour of each other, as the
payload needs time both before and after a capture to boot, prepare, capture,
buffer etc. If these processes are interrupted, the payload can reboot causing
the images to be lost or corrupted. The payload is continuously booked to
capture several locations on Earth, and we must therefore find capture times
for lunar observations that match with these.

• There is a set number of buffer files available, and these need time to downlink
before a new capture can be buffered to the same file.

• In case of bad space weather, or other significant events that affect the perfor-
mance of the satellite, we might be forced to shut the payload down. In this
case, we must plan the captures around these events.
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4.5.2 Obtaining captures

Even if the planning procedure works out and the necessary scripts are uploaded to
the satellite, we are not assured that the capture will be successful. Again, multiple
factors are at play, some of which we are not yet able to predict or adjust for. Among
many others, some of these are:

• Time sync: The Onboard Processing Unit (OPU) syncs time from PC, which
syncs time from FC Real-Time Clock (RTC). The FC RTC is synced from
Global Positioning System (GPS) time but is still running UTC/UNIX, so it
does sync to the GPS to correct drift but is not synced to GPS time, which is
approximately 18 s offset from UTC/UNIX time.

• TLE offset: The satellite updates its TLE lines every day. The TLE lines used
for planning are not necessarily from the same day, as we plan multiple days
ahead. This can cause an offset.

• Script engine rounding error: The script engine interprets UNIX time, but can
only use integers, not floats. This could cause a rounding error to the nearest
second.

• Capture timing uncertainty: The capture itself is run by a wrapper function
in the HSI Capture software. There are many underlying functions in this
software, as well as initialization delays etc., which can affect when a capture
begins. The exact uncertainty of this is still unknown.

• Attitude Determination and Control System (ADCS) The actual pointing ac-
curacy is also subject to the satellite platform ADCS functionality and perfor-
mance, on which a further discussion is outside the scope of this thesis.

Ultimately the combination of all of these effects causes the pointing and timing
to be somewhat uncertain. As the moon only obtains roughly 0.52° of the HSI’s
FoV, it is expected that the combined uncertainty will result in occasional misses or
deviations in the lunar observations.

4.6 Captures

In this chapter, we present the captures obtained during our study, which aimed
to automate the process of capturing images of the Moon using the hyperspectral
imager on HYPSO-1. We provide a comprehensive analysis of both successful and
unsuccessful captures, discussing the configurations employed for each capture and
highlighting the factors that contributed to the outcomes. Additionally, we delve
into the analysis of wavelength radiance and other relevant metrics to gain further
insights into the captured data.

The section is organized as follows: In Subsection 4.6.1, we showcase the successful
captures. This will be followed by Subsection 4.6.2, where we discuss the captures
that did not yield the desired results, identifying the limitations and challenges

43



Chapter 4. Work and Results 4.6. Captures

encountered. Finally, in Subsection 4.6.3, we perform a detailed analysis of the
successfully captured data, focusing on wavelength radiance measurements, and any
notable observations that arise from our findings.

4.6.1 Successful captures

The first successful captures were obtained on March 16th at 23:50 UTC+00, March
17th at 01:25 UTC+00 and 03:00 UTC+00. These are shown in figure 4.10 below.

During these captures, the moon-sun-earth angle (moon zenith angle) was -113.84°,
-114.73° and -115.68°, respectively. The moon was at this point in its Wanin Cresent
phase, meaning it is less than 50% illuminated, but has not yet reached 0% (New
Moon).

(a) March 16th, 23:50
UTC+00. Capture mode:
nonbinned, exposure: 50 ms,
fps: 7.

(b) March 17th, 01:25
UTC+00. Capture mode:
nonbinned, exposure: 70 ms,
fps: 5.

(c) March 17th, 03:00
UTC+00. Capture mode:
nonbinned, exposure: 40, fps:
6.

Figure 4.10: Three successful captures betweeen March 16th and March 17th.

In figure 4.11 are the graphs corresponding to the knowledge quaternions and star
tracker angles at the time of capture of figure 4.10b, as calculated by the satellite
payload.
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(a) Knowledge quaternions as calculated by the
satellite payload.

(b) Star tracker angles as calculated by the satel-
lite payload.

Figure 4.11: Knowledge quaternions and star tracker angles from capture at March 17th,
01:25 UTC+00.

As we see in figure 4.11b, the star tracker angle to the sun is approximately 90° at
the time when the satellite aligns with its desired orientation, meaning that the star
tracker should not be blinded by the sun. Startracker blinding is further discussed
in 4.6.2. Further, we see that the star tracker is pointing at 0° towards the velocity
vector and approximately 90° towards the nadir.

At the time of this thesis’s completion, we have 10 successful captures. These are
all shown in figure 4.12 below.

(a) Successful capture from March 16th, 23:50 UTC+00. Capture mode: nonbinned, exposure:
50, fps: 7, lunar phase = -113.84°

(b) Successful capture from March 17th, 01:25 UTC+00. Capture mode: nonbinned, exposure:
70, fps: 5, lunar phase = -114.73°

(c) Successful capture from March 17th, 03:00 UTC+00. Capture mode: nonbinned, exposure:
40, fps: 6, lunar phase = -115.68°.
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(d) Successful capture from April 26th, 17:45 UTC+00. Capture mode: nonbinned, exposure: 70,
fps: 2, lunar phase = 103.43°.

(e) Successful capture from April 26th, 19:19 UTC+00. Capture mode: quaternion, exposure: 70,
fps: 14, lunar phase = 102.73°

.

(f) Successful capture from April 27th, 17:27 UTC+00. Capture mode: nonbinned, exposure: 70,
fps: 2, lunar phase = 92.64°.

(g) Successful capture from April 27th, 20:35 UTC+00. Capture mode: quaternion, exposure: 70,
fps: 14, lunar phase = 91.23°.

(h) Successful capture from May 31st, 21:06 UTC+00. Capture mode: nonbinned, exposure: 30,
fps: 4, lunar phase = 42.57°.

(i) Successful capture from June 1st, 01:50 UTC+00. Capture mode: nonbinned, exposure: 30,
fps: 4, lunar phase = 40.18°.
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(j) Successful capture from June 1st, 08:10 UTC+00. Capture mode: nonbinned, exposure: 20,
fps: 4, lunar phase = 36.97°.

(k) Successful capture from June 3rd, 17:04 UTC+00. Capture mode: nonbinned, exposure: 40,
fps: 6, lunar phase = 7.19°.

(l) Successful capture from June 3rd, 23:22 UTC+00. Capture mode: nonbinned, exposure: 40,
fps: 6, lunar phase = 4.63°.

Figure 4.12: All successful captures as of this thesis’s completion.

Further analysis of the successful captures is discussed in section 4.6.3 below.

4.6.2 Unsuccessful captures

As discussed in section 4.5, there are many reasons as to why a successful capture
may be hard to obtain. The research conducted in this thesis is performed on a
’real’ system, i.e. the satellite HYPSO-1, orbiting the earth at great speed. This
includes many unpredictable errors in its trajectory calculations, time synchroniza-
tion, rounding errors and so on, as well as varying accuracy in positional calculations
for the involved celestial bodies. Therefore, as expected, the HSI missed its target,
the Moon, on multiple occasions. In addition to this, we mentioned issues that can
occur in case of unplanned reboots of the payload and other causes for interrupted
data downlinking.

Startracker blinding

In figure 4.13a below we see an example of a capture from April 5th, 22:43 UTC+00,
where the HSI was pointing in the wrong direction at the time of capture. In figure
4.13b we see a successful capture from May 31st, 21:06 UTC+00, which we will use
for comparison in this section.
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(a) Unsuccessful capture from April 5th, 22:43 UTC+00. Capture mode: nonbinned, exposure:
70 ms, fps: 4.

(b) Successful capture from May 31st, 21:06 UTC+00. Capture mode: nonbinned, exposure: 30
ms, fps: 4.

Figure 4.13: Unsuccessful and successful captures.

We will now take a deeper look at the captures from April 5th, 22:43 UTC+00
and May 31st, 21:06 UTC+00. In figure 4.14 are the graphs corresponding to the
knowledge quaternions and star tracker angles at the time of capture, as calculated
by the satellite payload.
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(a) Knowledge quaternions as calculated by the
satellite payload, from capture on April 5th.

(b) Star tracker angles as calculated by the satel-
lite payload, from capture on April 5th.

(c) Knowledge quaternions as calculated by the
satellite payload, from capture on May 31st.

(d) Star tracker angles as calculated by the satel-
lite payload, from capture on May 31st.

Figure 4.14: Knowledge quaternions and star tracker angles from capture at April 5th,
22:43 UTC+00.

As we see in figure 4.14b, the star tracker angle to the sun is approximately 110°
and the angle to the nadir is approximately 90° at the time when the satellite aligns
with its desired orientation. Similarly, in figure 4.14d, the star tracker angle to the
sun is approximately 90° and the angle to the nadir is approximately 90° at the
time when the satellite aligns with its desired orientation.

Regarding the star tracker’s susceptibility to being blinded, it is generally expected
that as long as the angle to the sun and earth is greater than 90 degrees, the star
tracker should not be affected. However, our observations have indicated that the
Earth Inhibition angle 2 may have a greater impact than initially assumed. It is
suspected that if the satellite is on the daytime side of the Earth, it can still be
potentially blinded by the Earth, even if the angle to the Earth is greater than 90
degrees. Conversely, if the satellite is on the nighttime side of the Earth, it is less
likely to be affected by such blinding. Further investigation and analysis are required
to better understand and mitigate this issue. It is suspected that this is the cause
of failure for this capture and other unsuccessful captures with similar results.

2The minimum angle required between the line of sight from the satellite to the Sun and the
Earth’s limb. It represents the angular distance necessary to prevent the satellite from being
obstructed or blinded by the Earth or Sun.
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In addition to the hyperspectral image captured by the HSI, the satellite payload
also captures an RGB image with a separate camera. In figure 4.15 below, we see
the RGB image of the unsuccessful capture on April 5th, 22:43 UTC+00 (left), as
well as the RGB image of the successful capture from May 31st, 21:06 UTC+00
(right). A line has been added in the middle of the images, in both the horizontal
and vertical directions.

(a) RGB image of capture from April 5th, 22:43
UTC+00. The Moon is visible on the upper
right side of the centre. The capture correspond-
ing to this RGB image was unsuccessful.

(b) RGB image of capture from May 31st, 21:06
UTC+00. The Moon is visible on the upper left
side of the centre. The capture corresponding to
this RGB image was successful.

Figure 4.15: RGB images of one unsuccessful and one successful capture. The horizontal
and vertical centre lines are marked in red.

As seen in the figure, there is a noticeable difference in the position of the moon
in the RGB images. The satellite payload is configured to capture the RGB image
once it has finished capturing the hyperspectral image. The total number of frames
and the number of frames captured per second therefore plays a significant role
in when the RGB image will be triggered, with regards to the total duration of
the hyperspectral capture. The total number of frames and number of frames per
second configured for these captures are both set to 106 and 4 respectively, so the
total capture time is the same. In theory, the Moon should therefore be in the same
position in the RGB images.

In figure 4.14 it can be observed that the star tracker angles to the velocity vector are
the same for both captures, i.e. the orientation of the RGB images in figure 4.15 is
the same. In figure 4.15b, the successful capture, we see that the Moon is positioned
on the left-hand side of the centre line. This is expected, as the Moon should be in
the centre of both cameras FoV’s in the middle of the hyperspectral imaging process,
i.e. on either side of the centre line when the RGB camera is triggered. Given that
the Moon appears on the left side in the successful capture’s centre line, it’s clear
that the Moon was moving left relative to the camera’s field of view during this pass.
In figure 4.15a, the unsuccessful capture, we see that the Moon is positioned slightly
on the right-hand side of the centre line. Considering that the RGB images are
oriented in the same direction, this implies that the hyperspectral imaging process
started too early, with the Moon positioned ahead of the cameras FoV centre.
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In conclusion, this section analyzed the influence of factors like the star tracker’s
susceptibility to blinding, the role of the Earth Inhibition angle, and the timing of
the hyperspectral capture process on the success of Moon captures. This provides a
deeper understanding of the challenges faced in automating lunar capture and serves
as a foundation for improving future attempts. Nonetheless, additional research
is needed to further validate these findings and to determine effective mitigation
strategies.

Downlink-Related Failures in Image Capturing

Successful image acquisition via a hyperspectral imager on a satellite involves not
only capturing the target accurately but also ensuring that the acquired image data
is downlinked effectively to a ground station. In this section, we delve into scenarios
that have caused failures due to complications in the downlinking process.

An essential aspect of a successful downlink is the proper synchronization between
the image buffering and downlinking processes. This critical sequence begins when
the ground station recognizes a buffered file’s presence and size on the satellite. It
then initiates a download process based on this data. However, complications arise if
a new capture begins and the corresponding data are buffered to the same file before
the download has completed. This overlapping can create file conflicts, resulting in
unsuccessful data retrieval despite the capture process being error-free.

The stability of the Payload Controller (PC) is another crucial factor for successful
image capture and downlink. The PC, which oversees payload operations including
the hyperspectral imager and data handling, must maintain uninterrupted function
during the buffering process. An unexpected reboot of the PC during this period
can lead to data loss or corruption, thereby disrupting the image capture and trans-
mission despite the capture being correctly executed.

Figure 4.16 presents an image disrupted by a PC reboot. It is evident that the PC
reboot causes substantial data loss, resulting in fragmented and incomplete captures.
The image depicts stark discontinuities and data corruption, signifying the loss of
crucial information during the image acquisition process.

Figure 4.16: Capture from May 5th disrupted by a Payload Controller (PC) reboot. The
resulting data loss and corruption underline the potential impacts of system reboots during
the image acquisition process.

Even with successful image capture and buffering, an image downlink process may
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not always reach completion due to a variety of reasons. These factors can range
from signal disruptions and hardware malfunctions on the satellite to exceeding the
allocated bandwidth for data transfer. In these scenarios, the unavailability of full
image data at the ground station results in unsuccessful image retrieval.

Buffering errors are another significant concern that can lead to unsuccessful cap-
tures. These errors encompass a wide range of issues, including software glitches,
memory allocation problems, and hardware faults on the satellite. Such problems
can prevent the proper buffering of the captured image data, thereby hindering the
downlink process.

Figure 4.17 below provides an illustrative example of a capture affected by buffering
issues. As can be seen, these issues can significantly compromise the integrity of the
image data, resulting in incomplete or corrupted image output. In this particular
capture, the erratic patterning and missing data sections are indicative of buffering
errors that occurred during the image acquisition process.

Figure 4.17: Capture from May 25th, illustrating a capture affected by a buffer bug.
The significant degradation in image quality and data integrity highlights the influence of
buffering issues on successful image acquisition.

In sum, these cases reflect the complexity and the delicate balance required in cap-
turing images using a hyperspectral imager on a satellite. Any disruption or anomaly
in the intricate interplay between the various steps - image capturing, buffering, and
downlinking - can lead to unsuccessful image retrieval despite a potentially success-
ful capture. Addressing these concerns and enhancing the robustness and reliability
of this process is out of the scope of this thesis, but clearly affects the results.

4.6.3 Analysis

To analyse the image of the moon, a simple script has been developed to identify
which pixels are of the moon and which pixels are of deep space. This is achieved
by systematically examining each pixel in the image and determining the average
radiance based on a specific set of wavelengths. These wavelengths are recognized
for exhibiting elevated values if the pixel represents the moon, and diminished values
if the pixel corresponds to deep space or a shadowed area on the moon. A represen-
tation of the pixels of interest on a capture from March 17th is shown in figure 4.18
below.
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(a) Capture from March 17th, 01:25 UTC+00.

(b) Capture from March 17th, 01:25 UTC+00, with pixels of interest marked in red.

Figure 4.18: Raw RGB image and image with pixels of interest (marked in red) from
capture on March 17th, 01:25 UTC+00.

To further use the moon capture for analysis of the HSI’s wavelengths, we calculate
the average radiance of the pixels of interest. The radiance is determined by con-
ducting radiometric calibration on the image cube, using the calibration pipeline as
prescribed by NTNU’s SmallSat Lab Cal-Char-Corr scripts [36]. The complete cube
with radiometric calibration applied is shown in figure 4.19 below.
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Figure 4.19: Radiometric calibration applied to capture at March 17th, 01:25 UTC+00,
illustrated at 550 nm wavelength. The radiance values are shown in the grayscale bar on
the right.

The average radiance of the moon at each wavelength is shown in figure 4.20 below.

Figure 4.20: The average radiance of the pixels of interest at each wavelength, calculated
from the capture on March 17th, 01:25 UTC+00.

Doing this for all successful captures, we can visualize how the lunar phase affects
the average radiance of the moon throughout the lunar phase. In figure 4.21 below,
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the lunar irradiance of the moon at the corresponding lunar phases is visualized for
both the HYPSO-1 measurements and the LIME model measurements, as obtained
from the 1088 and 933 instruments as discussed in 4.1.7.

(a) Irradiance values of 1088 and 933 instruments.

(b) Irradiance values of successful captures at 440 nm.

Figure 4.21: Irradiance values of HYPSO-1 captures vs 1088 and 933 instruments at dif-
ferent wavelengths

It can be observed that the irradiance values for the corresponding lunar phases form
a similar curve in the LIME model and the HYPSO-1 measurements, although there
are deviations in the measured irradiance. These differences are what shall be used
further to calculate the difference between the measured values and the modelled
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values, to finally calculate the calibration table for our system. In figure 4.22 below,
we see the spectral signature across all wavelengths for each of the captures. The
lunar phase of the corresponding capture is denoted in the legends to the right of
the graph. Similarly to what we see in figure 4.21, it is clear that a lower lunar
zenith angle results in a higher overall radiance value.

Figure 4.22: Radiance across all wavelengths for each successful capture, with lunar phase
angle.

To get the calibration table for our system, the Measurement and Model comparison
procedure from LIME needs to be used. Despite multiple attempts to get in contact
with Flemish Institute for Technological Research (VITO), the institute responsible
for the LIME model development, the pipeline for Measurement and Model com-
parison procedure has not yet been obtained at the time of completing this thesis.
The Pleiades-1B HR instrument, also called PHR1B, has been used to verify the
comparison procedure of LIME [34]. We will therefore introduce the procedure of
this instrument instead, with the aim of applying the same procedure to our mea-
surements in the future.

PLEIADES instrument

The PHR1B instrument is a high-resolution multi-spectral imager, with five spectral
bands in the Visible and Near-Infrared (VNIR) region, with the fifth band being a
pan-chromatic band. The PHR1B instrument has in the period between February
18th 2023 and April 7th 2017 acquired 68 lunar observations. In figure 4.23 we can
observe the sparsity of the measurements with respect to the lunar phase angle,
similarly as shown in figure 4.21.
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Figure 4.23: Pleiades lunar irradiance acquisitions.

The official calibration table for the PHR1B instrument is as shown in table 4.1
below:

Date B0 B1 B2 B3 PAN
01/12/2012 1.117 1.085 1.075 1.015 1.034
01/09/2013 1.112 1.079 1.071 1.013 1.034
01/12/2013 1.110 1.078 1.070 1.012 1.034
01/03/2014 1.108 1.076 1.069 1.011 1.034
01/06/2014 1.106 1.074 1.067 1.011 1.034
01/09/2014 1.104 1.072 1.066 1.010 1.034
01/12/2014 1.103 1.070 1.065 1.009 1.034
01/03/2015 1.100 1.068 1.064 1.008 1.034
01/06/2015 1.099 1.066 1.062 1.008 1.034
01/09/2015 1.097 1.064 1.062 1.007 1.034
01/12/2015 1.095 1.061 1.062 1.006 1.034
01/03/2016 1.093 1.061 1.062 1.006 1.034
01/06/2016 1.090 1.056 1.054 1.003 1.032
01/09/2016 1.089 1.055 1.053 1.003 1.031
01/01/2017 1.087 1.053 1.050 1.001 1.029
01/03/2017 1.085 1.051 1.048 1.000 1.028

Table 4.1: PHR1B calibration table, given by [34].

For all Pleiades observations and spectral bands, a model output is generated. The
difference, in %, is calculated and plotted against the phase angle in figure 4.24
below. With the Pleiades data, the results of the CNES implementation of the
ROLO model are delivered as well, and the comparison with these results is plotted
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as well (in blue) as an extra reference.

(a) PHR1B band 1 (blue) result – 1088+933 model

(b) PHR1B band 2 (green) result – 1088+933 model

(c) PHR1B band 3 (red) result – 1088+933 model
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(d) PHR1B band 4 (nir) result – 1088+933 model

(e) PHR1B band 5 (pan) result – 1088+933 model

Figure 4.24: Difference in % between Pleiades observations and model output for each
band. From [34].

The table of averages and standard deviations of Pleiades data against the 1088+933
model is shown in table 4.2.

% Blue Green Red NIR PAN
AVG 3.099 4.614 4.342 6.630 5.773

STDEV 1.414 1.138 0.940 1.173 9.505

Table 4.2: Average and Stdev of Pleiades data against the 1088+933 model, given
by [34].

In conclusion, this section has elucidated the process of using lunar observations for
hyperspectral imaging calibration. This radiance information, coupled with the Cal-
Char-Corr scripts and LIME model, provided useful calibration data. The Pleiades
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instrument serves as a valuable reference for the further application of our proce-
dure. Although we faced challenges in obtaining the complete LIME measurement
and model comparison procedure, we expect it to further improve our calibration
process. Future work will be aimed at obtaining this procedure and applying it to
our measurements.
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This chapter is intended to interpret and discuss the findings of this thesis, with
a particular focus on the research questions that guided the study. By considering
the results in relation to the initial hypotheses and the body of existing literature,
we hope to offer a comprehensive understanding of the implications and potential
applications of the research.

5.1 Celestial Bodies

The choice of Python and the Skyfield library [16] for the calculations involving
celestial bodies was driven by several factors. First and foremost, Python is a high-
level programming language that has wide acceptance in the scientific community.
This is partly due to its readability, flexibility and a vast array of scientific libraries
that make it a perfect fit for such complex calculations.

Alternatives to Python include other programming languages such as MATLAB
or Java. MATLAB, for example, is frequently used in academic and research en-
vironments for complex mathematical operations and simulations. It provides a
broad range of toolboxes for various applications, including astronomy and space
exploration, and is noted for its robust performance in matrix operations. However,
Python was chosen over MATLAB due to its open-source nature, the availability
of multiple free astronomical libraries, and its general-purpose application which
ensures the study’s broader accessibility beyond the MATLAB community.

The Skyfield library in Python was selected as it provides a simple yet powerful
API for astronomical calculations. Skyfield’s ability to handle time and spatial
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computations using different frames of reference, such as the International Celestial
Reference System (ICRS) and Geocentric Celestial Reference System (GCRS), is
critical to our research. Skyfield also seamlessly integrates with the TLE datasets,
which is an essential aspect of satellite tracking and monitoring.

Possible alternatives to Skyfield include the Astropy library [37], another open-
source Python library for astronomy, or the SPICE toolkit [? ] by NASA’s Nav-
igation and Ancillary Information Facility (NAIF). Astropy has a similar scope to
Skyfield but is considered more complex and might be more suitable for projects
requiring advanced features that are beyond the scope of this study. The SPICE
toolkit, on the other hand, provides a robust system for handling space mission ge-
ometry but requires more effort to set up and is less intuitive for those unfamiliar
with its working principles.

The custom functions developed for this research, including the distance_obj_to_target(),
get_minimum_distance(), get_off_nadir_angle(), and get_maximum_off_nadir_angle()
functions, represent a methodology designed to leverage the features of Python and
Skyfield to achieve the research objectives. These functions were developed to auto-
mate and streamline the complex calculations required to study the distances and
angles between celestial bodies. While these calculations could have been performed
manually or using less automated methods, the custom functions enhance the effi-
ciency, accuracy, and repeatability of the calculations. They also offer flexibility as
they can be easily adjusted to suit different celestial bodies, targets, and observation
times.

In conclusion, while there are alternative programming languages and libraries that
could have been used for this research, the selection of Python and the Skyfield
library was a strategic decision that balanced the need for precision, efficiency, flex-
ibility, and accessibility. The custom functions developed for this study further cap-
italized on these features to facilitate the study of the relationship between celestial
bodies in the context of our research.

5.2 Pointing

The section on pointing represents a critical aspect of the study, with quaternion-
based pointing methodology chosen for HYPSO-1 due to its advantages in handling
orientation in three-dimensional space. Using quaternions over alternatives like Eu-
ler angles can help evade certain problems, such as gimbal lock, and results in
smoother and continuous rotations. This enhances the precision and flexibility of
satellite alignment with intended targets, an essential attribute when performing
high-precision operations like monitoring and imaging.

A significant portion of the pointing section revolves around functions developed
for quaternion calculations, which underpin the satellite’s pointing strategy. These
functions enable the determination of the optimal orientation relative to the Earth,
target objects, and other frames of reference. For instance, the get_quaternion()
function is central to achieving the desired orientation. This function employs nu-
merous mathematical transformations and calculations, highlighting the importance
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of understanding quaternion mathematics and the complex interplay between dif-
ferent coordinate systems in satellite pointing operations.

In support of this purpose, the eci2LVLH() function plays a vital role in transforming
the position and velocity vectors from the Earth-Centered Inertial (ECI) frame to
the Local Vertical Local Horizontal (LVLH) frame. This transformation allows for
better comprehension of satellite positioning in relation to Earth, which is crucial
when planning the satellite’s orientation towards any given target.

To ensure a smooth rotation from one vector to another, the rot_rodrigues()
function uses the Rodrigues rotation formula. This approach leverages the concept
of rotation around an axis, which is more intuitive in certain applications compared
to traditional rotation matrices. Rodrigues’ rotation formula, by its direct applica-
tion of the rotation axis and angle, enhances the interpretability of the satellite’s
orientation.

Lastly, the rot2q() function emphasizes the relevance of quaternion representations
in the context of satellite orientation. The use of quaternions in rotation applications
provides several computational advantages, including but not limited to numerical
stability, ease of interpolation, and simpler calculations for compounded rotations.
Quaternions also circumvent the issue of gimbal lock, which is inherent in Euler
angle rotations, and are thus more suitable for a three-dimensional and continuous
rotation scenario like satellite pointing.

Overall, the methodologies and functions developed in this study highlight the
importance and complexity of satellite pointing, emphasizing the robust math-
ematical techniques required to handle this issue. While the methods chosen -
quaternion-based pointing and the transformation of coordinates to LVLH frames
- offer significant benefits, they also highlight the intricate nature of spatial orien-
tation in satellite navigation and control. The development and usage of functions
like get_quaternion(), eci2LVLH(), rot_rodrigues(), and rot2q() provide a
practical means of managing these complexities, giving us the tools necessary to
accurately determine and control HYPSO-1’s orientation.

5.3 Timing

The exploration of timing in satellite imaging, as outlined in section 4.3, presents
important insights into the operational efficiency of these processes. The interplay
between off-nadir angles, total capture time, and FPS offers a detailed understanding
that is essential for optimizing imaging operations.

Beginning with the off-nadir angles and the total capture time, this analysis unveils
a somewhat counterintuitive relationship. Larger off-nadir angles, contrary to what
one might initially anticipate, result in shorter total capture times. This is due to an
increase in the rotational speed of the satellite imaging sensor as the off-nadir angle
increases, as the satellite has a constant orientation wrt. the earth, consequently
reducing the total capture time. This understanding prompts a reassessment of how
satellite imaging, particularly when targeting celestial bodies like the moon, can be
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more efficiently planned and conducted.

Likewise, the approach to calculating FPS within this analysis presents an impor-
tant consideration for satellite imaging operations. While the instinct might be to
maximize FPS for the highest possible detail, this study highlights the necessity of a
balance to ensure the full coverage of the moon within each frame. This knowledge
reinforces the requirement for thorough planning and informed decisions in satellite
imaging operations.

The results obtained align with the existing literature on satellite imaging opti-
mization, which also emphasizes efficient timing and careful FPS calculations for
achieving optimal image quality. The understanding of the impact of off-nadir an-
gles on total capture time and the trade-offs required for determining optimal FPS
adds to the current body of knowledge in this area.

In conclusion, the discussion on timing in chapter 4 is not only a technical exploration
but also a practical guide for satellite imaging. It emphasizes the need for careful
planning and calculation to enhance the efficiency and quality of satellite imaging
operations, reinforcing the thesis’s overall argument.

5.4 Execution

The ’Execution’ section of chapter 4 outlines two main executable scripts: SatNav
and the Hypso Moon Script Command Generator. These scripts signify a signifi-
cant contribution to the field of satellite imaging, with a focus on ease of use and
adaptability.

The SatNav script introduces a flexible solution for a variety of satellite imaging
requirements. Its capability to calculate optimal capture times and pointing quater-
nions for a range of celestial bodies is a key feature that adds value to its users.
This function responds to the need for a tailored approach in satellite imaging op-
erations, accommodating different requirements based on the celestial body under
study. The application of this script, as evidenced by the execution demonstrated,
efficiently produces the desired outcomes, making it a practical tool for satellite
imaging.

The Hypso Moon Script Command Generator provides a more specialized solution,
focusing on the HYPSO-1 satellite’s moon capture operations. This specialized
script indicates the appreciation of the unique requirements of lunar imaging op-
erations for HYPSO-1. As shown in the execution, the script not only calculates
the necessary parameters but also presents them in a format that is directly usable
for planning and controlling HYPSO-1 satellite operations. This reduces the steps
necessary for satellite operators, thus simplifying their work.

The significance of these tools lies in their user-friendly design and efficient execution,
reducing the complexity of the satellite imaging planning process. The scripts deliver
a user-oriented solution that directly impacts the effectiveness of satellite imaging
operations, presenting a unique contribution to the field. Moreover, the capacity of
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these scripts to automate complex calculations and processes, specifically tuned to
the needs of the user, demonstrates a clear understanding of the real-world challenges
of satellite imaging. This reflects the broader aim of this thesis: to deliver practical
solutions that enhance operational efficiency in satellite imaging.

On a more critical note, although these scripts provide a significant step forward in
simplifying satellite imaging planning and execution, the possibility of further re-
finements should not be overlooked. Future work may focus on expanding the range
of supported satellites and celestial bodies and integrating these scripts into larger,
more comprehensive satellite operation planning systems. Such enhancements would
broaden the applicability and usefulness of the tools, cementing their contribution
to the field of satellite imaging.

5.5 Observing the Moon and Results

In sections 4.5 and 4.6 of the ’Work and Results’ chapter, the complexity and del-
icacy of image capture and retrieval were addressed. The hyperspectral imager
onboard the satellite had to accurately capture images of the moon, which were
then successfully downlinked to a ground station for analysis. Failures in this pro-
cess could occur due to improper synchronization between the image buffering and
downlinking processes, an unexpected Payload Controller (PC) reboot, or disrup-
tions in the downlinking process, among other reasons. Each of these components,
if not properly executed, could potentially hinder the successful retrieval of images,
despite a successful capture.

During the image-capturing process, the issues encountered, as depicted in figures
4.16 and 4.17, underlined the importance of stable operations and error-free process-
ing. The images clearly showcased how a simple malfunction or disruption in any
part of the process could lead to significant data loss and image degradation. These
findings suggest that a more robust system, designed to handle such complications,
could potentially improve the accuracy and reliability of the hyperspectral imager.
However, the detailed development of such a system lies outside the scope of this
thesis but forms a compelling avenue for further research and investigation.

Section 4.6.3 detailed the process of pixel identification and radiance calculation
for the lunar images captured by the hyperspectral imager. A script systematically
examined each pixel to distinguish between those representing the moon and those
representing deep space and calculated the average radiance for the pixels of interest.
This process allowed for a clear visualization of how the lunar phase affected the
radiance, as shown in figure 4.21b and 4.22.

The data obtained from these image analyses were compared with the LIME model
measurements, with discrepancies between the two being used to derive a calibration
table for the hyperspectral imager. The detailed procedure for this comparison was
unfortunately not obtained at the time of completing the thesis, but the PHR1B
instrument’s procedure was instead reviewed for reference. Figures and tables show-
ing the Pleiades lunar irradiance acquisitions and the PHR1B instrument calibration
table, along with a comparison of Pleiades data against the 1088+933 model, all pro-
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vided critical information for the eventual calibration process.

Despite the challenges faced in the image capturing and downlinking processes and
the lack of access to the complete LIME comparison procedure, the analyses con-
ducted in this thesis were robust and provided valuable insights for the hyperspec-
tral imaging process. Future work should focus on the development of more reliable
image-capturing and downlinking processes, and on gaining access to and imple-
menting the LIME comparison procedure to improve calibration methods. This
would enable a more accurate and reliable analysis of hyperspectral images cap-
tured by the satellite, thereby advancing our understanding of lunar observations
and their implications.

5.6 Research Questions

5.6.1 Hyperspectral Imaging for Lunar Observation

The first research question posed was: How can hyperspectral imaging be used to
capture and analyze the full moon phases, and what benefits does this provide for
lunar observation?

Hyperspectral imaging (HSI) offers the ability to capture a much broader range
of the electromagnetic spectrum than traditional imaging techniques. This allows
for a highly detailed analysis of lunar surface features and compositions. However,
a key insight of this study is that hyperspectral imaging of full moon phases can
be particularly beneficial for calibrating hyperspectral imaging sensors. Given the
constant radiance of the moon, these data can be used as a consistent reference
point to adjust and fine-tune satellite sensors, thereby improving the quality and
accuracy of readings for their primary missions.

Figure 5.1: Example of a hyperspectral image of the moon.

For example, in the context of HYPSO-1, the primary mission objective is to observe
ocean colour along the coast of Norway. By calibrating the HSI, we can ensure more
accurate data collection for this task. Furthermore, the benefits extend beyond this
specific mission; other satellites with different mission objectives could also employ
similar calibration techniques to enhance their data quality.

5.6.2 Automation Challenges

The second research question was: What are the technical challenges involved in
automating moon captures with a HSI, and how can these be overcome?

Automation of moon captures involves the technical challenges of precise lunar track-
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ing, handling large volumes of data, and effectively processing and interpreting this
data. Given the dynamic nature of space and the movement of celestial bodies, de-
termining the exact location and trajectory of the moon in relation to the satellite
is a significant challenge. Additionally, the volume of data generated by HSI can be
substantial, demanding efficient methods for data management and analysis.

To overcome these challenges, we developed a set of scripts that can predict the
positions of relevant bodies at given times in the future. This enables us to identify
optimal capture times and calculate the necessary pointing quaternions to align
the sensor accurately. This approach offers a practical and effective method for
automating moon captures with a HSI.

5.6.3 Applications of Findings

The third research question asked: How can the findings from this research be
applied to other applications or systems, such as small satellite missions or other
planetary observation missions?

The methodologies and tools developed during this research could be of significant
benefit to other satellite missions. The scripts for predicting celestial body positions
and calculating pointing quaternions can be used by any satellite tasked with ob-
serving a specific celestial body. Further, the approach to calibrating hyperspectral
imaging sensors can be applied to enhance the accuracy of data collection for a
broad range of remote sensing applications.

Furthermore, the methodologies developed during this research, and their resulting
findings, can provide a solid foundation for future research and development in
related areas. Specifically, the insights gleaned about the timing and process of
automating lunar observations can serve as a guide for other applications or systems
that might require a similar setup. In addition, the experience and knowledge gained
from creating scripts for prediction and automation, while somewhat specific to our
use case, certainly opens up a path of exploration for researchers in the field of
satellite observation planning and autonomous task execution.

5.7 Limitations

Despite the promising findings and contributions of this study, certain limitations
need to be acknowledged, which have the potential to impact the generalizability
and applicability of the results.

One of the primary limitations relates to the challenges encountered during the au-
tomation process, particularly with respect to precise lunar and satellite tracking.
The implemented solution is effective but does not completely eliminate potential
inaccuracies caused by orbital deviations, perturbations, or inherent errors in celes-
tial body positioning models. Thus, while we can predict optimal capture times and
calculate the necessary pointing quaternions with reasonable accuracy, there remains
a certain degree of uncertainty that might impact the quality of moon captures.
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Moreover, the challenge of handling the large volumes of data generated by hyper-
spectral imaging persists. Despite implementing efficient methods for data manage-
ment and analysis, the sheer size of the data sets can occasionally lead to issues
such as downlink-related failures in image capturing and buffering errors. This can
potentially limit the volume of successful image acquisitions and ultimately affect
the quality and reliability of calibration.

Another limitation of the study pertains to the scope of its application. While
the methodologies and tools developed in this research are broadly applicable, they
are tailored to the specific case of HYPSO-1 and its mission objectives. Thus,
applying these methods to other satellite missions or different hyperspectral imaging
applications may require additional customization and validation to ensure optimal
results.

Lastly, there is the limitation associated with the use of the Lunar Irradiance Model
ESA (LIME) for calibration. Despite our attempts to obtain the complete LIME
measurement and model comparison procedure, this was not obtained during the
time frame of this thesis. While the Pleiades instrument provides a valuable refer-
ence, the absence of a complete model comparison procedure could limit the appli-
cability of our calibration approach.

Acknowledging these limitations is essential for understanding the context and scope
of the results and provides a foundation for future work to address these issues.
Despite these limitations, the results presented in this thesis contribute valuable in-
sights to the field of hyperspectral imaging for lunar observations, sensor calibration,
and satellite automation.
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Conclusion

The objective of this thesis was to explore the applications and challenges of hyper-
spectral imaging for lunar observations, primarily in the context of the HYPSO-1
mission. The research was directed towards examining how hyperspectral imaging
could be used to capture and analyze full moon phases, the technical challenges in-
volved in automating moon captures, and the applicability of these findings to other
systems.

The study confirmed that hyperspectral imaging can provide a detailed analysis of
lunar surface features and compositions. Importantly, it highlighted the potential
for using the full moon phase data as a consistent reference point for calibrating
hyperspectral imaging sensors. This finding is particularly significant for improving
the quality and accuracy of readings in various satellite missions, beyond the primary
objective of observing ocean color along the coast of Norway.

The technical challenges of automation, such as precise lunar tracking and handling
large volumes of data, were also addressed. Scripts were developed that could predict
celestial body positions and calculate the necessary pointing quaternions to align the
sensor accurately. Although some uncertainties remained due to inherent errors in
celestial body positioning models and orbital deviations, the implemented solution
proved practical and effective for the automation of moon captures.

Moreover, the thesis demonstrated that the methodologies and tools developed could
be beneficial for other satellite missions and broader remote sensing applications.
These methods, while specifically tailored for the HYPSO-1 mission, provided a
basis for enhancing the accuracy of data collection in a variety of contexts.

However, despite these promising results, the study encountered several limitations
that impacted its outcomes. These limitations ranged from uncertainties in lu-
nar and satellite tracking to difficulties in handling large volumes of hyperspectral
data, along with the specific tailoring of methodologies to the HYPSO-1 mission.
Additionally, the absence of the complete LIME comparison procedure limited the
applicability of our calibration approach.

Nevertheless, the research undertaken in this thesis represents a substantial con-
tribution to the field of hyperspectral imaging for lunar observations. It provides
valuable insights into sensor calibration and satellite automation, acknowledging the
complexities and challenges involved, and offering practical solutions to overcome
them.
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Future Work

This study has opened several avenues for future research. Future work should focus
on improving the robustness and reliability of the image-capturing and downlinking
processes. Enhancements in these areas would reduce data loss, improve image
quality, and consequently lead to better calibration results.

Additionally, future investigations are needed to obtain the complete LIME com-
parison procedure. Access to this information would significantly augment the cali-
bration process, providing a more reliable reference for adjusting the hyperspectral
sensors.

The scripts developed in this study for predicting celestial body positions and au-
tomating captures could be further refined. Future work should consider improve-
ments in prediction accuracy, factoring in elements such as orbital deviations, per-
turbations, and potential errors in celestial body positioning models.

Moreover, there is considerable scope for the application of the methodologies de-
veloped in this research to other satellite missions and hyperspectral imaging ap-
plications. Customizing and validating these methods for different contexts is an
interesting path for future research.

Lastly, future work should explore more efficient methods for handling the large
volumes of data generated by hyperspectral imaging. This could involve developing
improved data management and analysis strategies or designing advanced imaging
systems with higher downlink capacities.

By addressing these potential improvements and conducting future research in the
outlined areas, we can enhance the accuracy and reliability of hyperspectral imaging
for lunar observations, thereby contributing to advancements in this field.
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Attachments
The entire program structure, including the code for the SatNav repository, is
available on GitHub. You can access the repository through the following link:
https://github.com/NTNU-SmallSat-Lab/SatNav

Additionally, you can download a compressed file of the repository by clicking on
one of the paperclip icons below. There is a paperclip icon for the file type ’.zip’ and
another paperclip icon for the file type ’.7z’. This is because different PDF readers
support different file formats. To determine which one works with your PDF reader,
you can double-click on the paperclip icon and see if it opens or not. If none of
them work, it is recommended to download Adobe Acrobat Reader DC, as it is
the most common PDF reader and it has been confirmed to allow attachments and
downloads of files with the ’.7z’ file type.

Click on the paperclip icon to download the repository as a .zip file:
Click on the paperclip icon to download the repository as a .7z file:
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SatNav/LICENSE

                                 Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "[]"
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate
      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.

   Copyright [yyyy] [name of copyright owner]

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.
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skyfield
numpy
scipy
config_reader
argparse
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# SatNav

SatNav is a Python program designed to calculate the precise UTC time when a satellite is closest to a target (e.g., the Moon) and then generate a quaternion to point the satellite's sensors towards that target.

## Installation

To install the program, clone the repository to your local machine:

`git clone https://github.com/NTNU-SmallSat-Lab/SatNav.git`

Then navigate to the root directory of the project and install the required dependencies using pip:

`pip3 install -r requirements.txt`

## Usage

### HYPSO-1 specific planning:
To plan for a capture of the Moon by HYPSO-1, run `python3 src/hypso_moon_script_cmd_generator.py`. 
For help on the script, run `python3 src/hypso_moon_script_cmd_generator.py -h`.
This script creates the necessary commands to create FC- and PC-scripts through NTNU-SmallSat_Lab's script generator, see https://github.com/NTNU-SmallSat-Lab/flight-scripts/tree/main/script_generator for more information.

### General usage:

To run the program, run `python3 src/main.py`.

The program will ask for the following parameters, empty inputs will use the default values:

* If the goal is to calculate a single capture, or plan a range of captures. 

**Default = 1**, i.e. single capture.

* The satellite catalog number (e.g. 25544 for the ISS). 

**Default = 51053**, i.e. HYPSO-1.

* The start time delta (in hours) for search from the current time. 

**Default = 0**, i.e. now.

* The end time delta (in hours) for search from the current time. 

**Default = 24**, i.e. 1 day from now.

* If the goal is to plan a range of captures, the interval (in hours) between each capture.

**Default = end_time-start_time/24**, i.e. one capture per day.

* The search interval (in days) for minimum time distance of search. 

**Default = 1/24/60**, i.e. 1 minute.

* Force flag to force download of TLE files. 

**Default = False**.

TLE files are required to calculate the satellites's position and velocity. These are automatically downloaded from Celestrak if they are not present in the 'data' directory, or if it is more than 24 hours since the last download. Else it is assumed that the TLE files are up to date.

The program will calculate the precise UTC time when the satellite is closest to the target and generate the quaternion to point the satellite's sensors. These are printed to the console. If the goal is to plan a range of captures, the program will generate a file called `plan.txt` in the root directory of the project. This file contains the UTC time, quaternion and off nadir angle for each capture.

## Supported Celestial Bodies
* 301 -> MOON
* 399 -> EARTH 
* 199 -> MERCURY
* 299 -> VENUS
* 499 -> MARS

## Known Issues

* There is no check to ensure that the target is not obscured by the Earth. This should not happen as it then clearly is not in it's closes point in orbit, but can happen if the search interval parameter is too low. This check will be added in the future.

* The program is under development, and unknown bugs are to be expected.

## License

This program is licensed under the Apache-2.0 License. See the `LICENSE` file for more information.







SatNav/.gitignore

# Ignore the contents of the config.json file
src/data/config/config.json

# Ignore all files in the tle_files directory
src/data/tle_files/*
!src/data/tle_files/.gitkeep

# Ignore the de421.bsp file
/de421.bsp

# Ignore plan.txt
/plan.txt

# From here on out is default python .gitignore file
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

# C extensions
*.so

# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST

# PyInstaller
#  Usually these files are written by a python script from a template
#  before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

# Installer logs
pip-log.txt
pip-delete-this-directory.txt

# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/

# Translations
*.mo
*.pot

# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal

# Flask stuff:
instance/
.webassets-cache

# Scrapy stuff:
.scrapy

# Sphinx documentation
docs/_build/

# PyBuilder
target/

# Jupyter Notebook
.ipynb_checkpoints

# IPython
profile_default/
ipython_config.py

# pyenv
.python-version

# pipenv
#   According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
#   However, in case of collaboration, if having platform-specific dependencies or dependencies
#   having no cross-platform support, pipenv may install dependencies that don't work, or not
#   install all needed dependencies.
#Pipfile.lock

# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/

# Celery stuff
celerybeat-schedule
celerybeat.pid

# SageMath parsed files
*.sage.py

# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/

# Spyder project settings
.spyderproject
.spyproject

# Rope project settings
.ropeproject

# mkdocs documentation
/site

# mypy
.mypy_cache/
.dmypy.json
dmypy.json

# Pyre type checker
.pyre/
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SatNav/.git/config

[core]
	repositoryformatversion = 0
	filemode = true
	bare = false
	logallrefupdates = true
	ignorecase = true
	precomposeunicode = true
[remote "origin"]
	url = https://github.com/NTNU-SmallSat-Lab/SatNav.git
	fetch = +refs/heads/*:refs/remotes/origin/*
[branch "main"]
	remote = origin
	merge = refs/heads/main
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ref: refs/heads/main
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SatNav/.git/description

Unnamed repository; edit this file 'description' to name the repository.
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SatNav/.git/packed-refs

# pack-refs with: peeled fully-peeled sorted 
0f99165fd7935c3b3a68ae9b6b74c437a419fabc refs/remotes/origin/development
0d516d876114f7bd86d1c01b24bd371931ba1684 refs/remotes/origin/main







SatNav/src/planner.py

from distances import get_minimum_distance
from quaternions import get_quaternion, get_off_nadir_angle, get_maximum_off_nadir_angle

from logger import logger as log

def multi_planner(t_start, t_end, sat, target, observer, intervals, search_interval, ts):
    """
    Calculates the minimum distance between the satellite and target for a given time frame and
    the corresponding quaternion for each time frame.

    :param t_start: The start time of the time frame.
    :param t_end: The end time of the time frame.
    :param sat: The satellite object.
    :param target: The target object.
    :param observer: The observer object.
    :param intervals: The number of intervals to split the time frame into.
    :param search_interval: The search_interval for the minimum distance calculation.
    :param ts: The timescale object.
    :return: A list of tuples containing the minimum distance time and corresponding quaternion for
             each time frame.
    """
    
    duration = (t_end - t_start) / intervals
    
    results = []
    for i in range(intervals):
        # log.info('Completed {}%'.format(round(i / intervals * 100, 2)))
        log.info(f'Completed {i}/{intervals}')
        # Calculate the start and end times for the current time frame
        new_t_start = t_start + i * duration
        new_t_end = new_t_start + duration
        
        # # Calculate the minimum distance and corresponding quaternion for the current time frame
        # _, min_distance_time_datetime = get_minimum_distance(new_t_start, new_t_end, sat, target, observer, search_interval=search_interval)
        # min_distance_time_ts = ts.from_datetime(min_distance_time_datetime)
        # quaternion = get_quaternion(min_distance_time_ts, observer, target, sat)
        # off_nadir_angle = get_off_nadir_angle(min_distance_time_ts, observer, target, sat)
        
        # # Store the results for the current time frame
        # results.append((min_distance_time_datetime, quaternion, off_nadir_angle))
        
        # Calculate the maximum off nadir angle and corresponding quaternion for the current time frame
        off_nadir_angle, max_off_nadir_time_datetime = get_maximum_off_nadir_angle(new_t_start, new_t_end, sat, target, observer, search_interval=search_interval)
        max_off_nadir_time_ts = ts.from_datetime(max_off_nadir_time_datetime)
        quaternion = get_quaternion(max_off_nadir_time_ts, observer, target, sat)
        
        # Store the results for the current time frame
        results.append((max_off_nadir_time_datetime, quaternion, off_nadir_angle))
    
    return results

def single_planner(t_start, t_end, sat, target, observer, search_interval, ts):
    """
    Calculates the minimum distance between the satellite and target for a given time frame and
    the corresponding quaternion.

    :param t_start: The start time of the time frame.
    :param t_end: The end time of the time frame.
    :param sat: The satellite object.
    :param target: The target object.
    :param observer: The observer object.
    :param search_interval: The search_interval for the minimum distance calculation.
    :param ts: The timescale object.
    :return: The minimum distance time and corresponding quaternion.
    """
    
    # _, min_distance_time_datetime = get_minimum_distance(t_start, t_end, sat, target, observer, search_interval=search_interval) 
    # min_distance_time_ts = ts.from_datetime(min_distance_time_datetime)
    # quaternion = get_quaternion(min_distance_time_ts, observer, target, sat)
    # off_nadir_angle = get_off_nadir_angle(min_distance_time_ts, observer,target, sat)
    
    # return min_distance_time_datetime, quaternion, off_nadir_angle
    
    off_nadir_angle, max_off_nadir_time_datetime = get_maximum_off_nadir_angle(t_start, t_end, sat, target, observer, search_interval=search_interval)
    max_off_nadir_time_ts = ts.from_datetime(max_off_nadir_time_datetime)
    quaternion = get_quaternion(max_off_nadir_time_ts, observer, target, sat)
    
    return max_off_nadir_time_datetime, quaternion, off_nadir_angle
    






SatNav/src/hypso_moon_script_cmd_generator.py

import argparse
from celestial_bodies import get_satellite_from_catnr, get_target
from datetime import timedelta
from distances import distance_obj_to_target
import numpy as np
import math
from logger import logger as log
from logger import set_log_level
from planner import multi_planner

from skyfield.api import load

set_log_level('INFO')

def plan_hypso_moon_capture(t_start_delta=0, t_end_delta=72, intervals=3, search_interval=1):
    """
    Calculates the minimum distance between the satellite and target for a given time frame and
    the corresponding quaternion for each time frame.

    :param t_start_delta: The start time of the time frame.
    :param t_end_delta: The end time of the time frame.
    :param intervals: The number of intervals to split the time frame into.
    :param search_interval: The search_interval for the minimum distance calculation.
    :return: A list of tuples containing the minimum distance time and corresponding quaternion for
             each time frame.
    """
    
    ts = load.timescale()
    t_now = ts.now()

    tle_url = 'http://celestrak.org/NORAD/elements/gp.php?CATNR='
    sat = get_satellite_from_catnr(51053, tle_url, True)
    target = get_target(301)
    planets = load('de421.bsp')
    earth = planets['earth']
    moon = planets['moon']
    sun = planets['sun']
    
    t_start = t_now + timedelta(hours=t_start_delta)
    t_end = t_now + timedelta(hours=t_end_delta)
    
    results = multi_planner(t_start, t_end, sat, target, earth, intervals, search_interval, ts)

    results_dict = {}
    for i, result in enumerate(results):
        off_nadir_angle = result[2]
        quaternions = result[1]
        capture_time_utc = result[0]
        capture_start = int(result[0].timestamp())
        total_time = calculate_total_capture_time(off_nadir_angle)
        # capture_time_start = calculate_capture_start_time(capture_time, total_time)
        frames, fps = calculate_frames(total_time)
        t_start = ts.utc(capture_time_utc) 
        d_sun_moon = round(distance_obj_to_target(t_start, sun, moon, sun))
        d_sat_moon = round(distance_obj_to_target(t_start, sat, moon, earth))
        
        results_dict[f'capture_{i+1}'] = {'datetime_center': capture_time_utc, 'capture_start': capture_start, 'qs (r)': quaternions[0], 'qx (l)': quaternions[1], 'qy (j)': quaternions[2], 'qz (k)': quaternions[3], 'fps': fps, 'frames': frames, 'total_time': total_time, 'off_nadir_angle': off_nadir_angle, 'd_sun_moon': d_sun_moon, 'd_sat_moon': d_sat_moon}

    return results_dict
    
def calculate_total_capture_time(off_nadir_angle):
    """
    Calculates the total capture time for a given off-nadir angle.

    :param off_nadir_angle: The off-nadir angle.
    :return: The total capture time in seconds.
    """
    
    off_nadir_angle_rad = np.deg2rad(off_nadir_angle)
    extra_rotation_speed = (360/(95*60))*-np.cos(off_nadir_angle_rad)
    moon_fov = 0.52 # moon's field of view in degrees
    sat_speed = 7.6 # satellite's linear speed in km/s
    moon_diameter = 3474 # moon's diameter in km

    total_time = 1/(math.sqrt((sat_speed / moon_diameter)**2 + (extra_rotation_speed / moon_fov)**2))

    return total_time
    
def calculate_capture_start_time(capture_center_time, total_time):
    """
    Calculates the capture start time for a given capture time and off-nadir angle.

    :param capture_time: The capture time.
    :param total_time: The total capture time.
    :return: The capture start time.
    """
    
    capture_start_time = capture_center_time - timedelta(seconds=total_time/2)
    capture_start_time = capture_start_time.timestamp()

    return int(capture_start_time)

def calculate_frames(total_time):
    target_frames = 106
    target_fps = 20

    # Calculate the required FPS to capture the object in the given time
    required_fps = target_frames / total_time
    required_fps = max(min(required_fps, target_fps), 1)  # Ensure the FPS is between 1 and 20

    # Calculate the number of frames based on the required FPS
    num_frames = round(total_time * required_fps)

    return num_frames, required_fps

def create_script_generator_cmd(capture, buff_file=33, append=True):
    """ 
    Creates the command to run the script generator.
     
    :param capture: The capture dictionary.
    :param buff_file: The buff file.
    :return: The command to run the script generator.
    """
    
    capture_start = capture['capture_start']
    
    r = capture['qs (r)']
    l = capture['qx (l)']
    j = capture['qy (j)']
    k = capture['qz (k)']
    
    if k < 1e-15:
        k = 0.0
    
    fps = math.floor(capture['fps'])
    frames = capture['frames']
    
    # Adjust fps
    fps = fps/2
    fps = math.ceil(fps)
    
    # Add the datetime and off-nadir angle to the command after %
    if append:
        # cmd = f'-b {buff_file} -u {capture_start} -s -a -p nonbinned -n moon -d -e 50.0 -r {r} -l {l} -j {j} -k {k} -fps {fps} -fr {frames} % {capture["datetime_center"]}, off-nadir: {capture["off_nadir_angle"]}, d_sun_moon: {capture["d_sun_moon"]} km, d_sat_moon: {capture["d_sat_moon"]} km'
        cmd = f'-b {buff_file} -u {capture_start} -s -a -p nonbinned -n moon -d -e 50.0 -r {r} -l {l} -j {j} -k {k} -fps {fps} % {capture["datetime_center"]}, off-nadir: {capture["off_nadir_angle"]}, d_sun_moon: {capture["d_sun_moon"]} km, d_sat_moon: {capture["d_sat_moon"]} km'
    else:
        # cmd = f'-b {buff_file} -u {capture_start} -s -p nonbinned -n moon -d -e 50.0 -r {r} -l {l} -j {j} -k {k} -fps {fps} -fr {frames} % {capture["datetime_center"]}, off-nadir: {capture["off_nadir_angle"]}, d_sun_moon: {capture["d_sun_moon"]} km, d_sat_moon: {capture["d_sat_moon"]} km'
        cmd = f'-b {buff_file} -u {capture_start} -s -a -p nonbinned -n moon -d -e 50.0 -r {r} -l {l} -j {j} -k {k} -fps {fps} % {capture["datetime_center"]}, off-nadir: {capture["off_nadir_angle"]}, d_sun_moon: {capture["d_sun_moon"]} km, d_sat_moon: {capture["d_sat_moon"]} km'

    return cmd

def get_script_generator_cmds(start_time_delta, end_time_delta, intervals, search_interval, buff_file, append):
    t_now = load.timescale().now()
    t_start = t_now + timedelta(hours=start_time_delta)
    t_end = t_now + timedelta(hours=end_time_delta)
    log.info('Using start time: {} UTC'.format(t_start.tt_strftime('%Y-%m-%d %H:%M:%S')))
    log.info('Using end time: {} UTC'.format(t_end.tt_strftime('%Y-%m-%d %H:%M:%S')))
    log.info('Using {} intervals with {} seconds between each search'.format(intervals, round(search_interval*60)))

    plans = plan_hypso_moon_capture(start_time_delta, end_time_delta, intervals=intervals, search_interval=search_interval)

    # log.info('Generated the following plans:')
    # for key in plans:
    #     log.info('Capture {}:'.format(key))
    #     log.info('\tCapture time utc: {}'.format(plans[key]['datetime_center']))
    #     log.info('\tCapture time unix: {}'.format(plans[key]['capture_start']))
    #     log.info('\tOff-nadir angle: {}'.format(plans[key]['off_nadir_angle']))
    #     log.info('\tTotal capture time: {}'.format(plans[key]['total_time']))
    #     log.info('\tFrames: {}'.format(plans[key]['frames']))
    #     log.info('\tFPS: {}'.format(plans[key]['fps']))
    #     log.info('')
    
    append = True
    if len(plans) <= 1:
        append = False
        
    log.info('Generated the following commands:')
    for key in plans:
        cmd = create_script_generator_cmd(plans[key], append=append)
        print(cmd)

default_start_delta = 0
default_end_delta = 24
default_search_interval = 1
default_buff = 33
default_append = False

# Add the command line arguments
parser = argparse.ArgumentParser(description='Generate the script generator commands for moon captures.')
parser.add_argument('-s', '--start', type=int, default=0, help=(f'The start time delta in hours. Default is {default_start_delta}.'))
parser.add_argument('-e', '--end', type=int, default=24, help=(f'The end time delta in hours. Default is {default_end_delta}.'))
parser.add_argument('-i', '--intervals', type=int, default=None, help='The number of intervals to use. Default is (-e - -s)/24 (one capture per day).')
parser.add_argument('-t', '--time_interval', type=float, default=default_search_interval, help=(f'The time interval to use when searching. Default is {default_search_interval} (1, i.e. every minute).'))
parser.add_argument('-b', '--buff', type=int, default=default_buff, help=(f'The buff file to use. Defualt is {default_buff}.'))
parser.add_argument('-a', '--append', type=bool, default=default_append, help=(f'Set to true if you plan multiple captures. Default is {default_append}.'))

# Parse the command line arguments
args = parser.parse_args()
args.intervals = args.intervals if args.intervals is not None else int((args.end - args.start) / 24)
 
get_script_generator_cmds(args.start, args.end, args.intervals, args.time_interval, args.buff, args.append)






SatNav/src/moon_sun_earth_angle.py

from celestial_bodies import *
from distances import *
from skyfield.api import load
import numpy as np
from datetime import timedelta

def distance_pos(t, pos1, pos2):
    return np.linalg.norm(pos1 - pos2)

def position_body(t, body, observer):
    body_position = observer.at(t).observe(body).position.km
    
    return body_position

def calculate_angle(pos_sun, pos_earth, pos_moon):
    # Convert positions to numpy arrays for easier calculations
    pos_sun = np.array(pos_sun)
    pos_earth = np.array(pos_earth)
    pos_moon = np.array(pos_moon)

    # Calculate vectors from Earth to Sun and Moon
    vec_sun_earth = pos_sun - pos_earth
    vec_moon_earth = pos_moon - pos_earth

    # Calculate the dot product between the vectors
    dot_product = np.dot(vec_sun_earth, vec_moon_earth)

    # Calculate the magnitudes of the vectors
    magnitude_sun_earth = np.linalg.norm(vec_sun_earth)
    magnitude_moon_earth = np.linalg.norm(vec_moon_earth)

    # Calculate the angle in radians using the arccosine function
    angle_rad = np.arccos(dot_product / (magnitude_sun_earth * magnitude_moon_earth))

    # Convert the angle to degrees
    angle_deg = np.degrees(angle_rad)

    return angle_deg

def calculate_angle_2(pos_sun, pos_earth, pos_moon):
    # calculate the angle between the moon, earth and sun, so that on full moon the angle is 0 degrees
    # and on new moon the angle is 180 degrees. This is opposite of the angle calculated in calculate_angle()
    
    # Convert positions to numpy arrays for easier calculations
    pos_sun = np.array(pos_sun)
    pos_earth = np.array(pos_earth)
    pos_moon = np.array(pos_moon)
    
    # Calculate vectors from Earth to Sun and Moon
    vec_sun_earth = pos_sun - pos_earth
    vec_moon_earth = pos_moon - pos_earth
    
    # Calculate the dot product between the vectors
    dot_product = np.dot(vec_sun_earth, vec_moon_earth)
    
    # Calculate the magnitudes of the vectors
    magnitude_sun_earth = np.linalg.norm(vec_sun_earth)
    magnitude_moon_earth = np.linalg.norm(vec_moon_earth)
    
    # Calculate the angle in radians using the arccosine function
    angle_rad = np.arccos(dot_product / (magnitude_sun_earth * magnitude_moon_earth))
    
    # Convert the angle to degrees
    angle_deg = np.degrees(angle_rad)
    
    # Calculate the angle between the moon, earth and sun
    angle_deg = 180 - angle_deg
    
    return angle_deg

ts = load.timescale()
t_now = ts.now()
# t_var = t_now - timedelta(days = 1)
# 44 days, 21 hours, 34 minutes and 42 seconds
t_var = t_now - timedelta(days = 44, hours = 21, minutes = 34, seconds = 42)

planets = load('de421.bsp')
earth = planets['earth']
moon = planets['moon']
sun = planets['sun']

pos_sun = position_body(t_var, sun, earth)
pos_earth = position_body(t_var, earth, earth)
pos_moon = position_body(t_var, moon, earth)
print('pos_sun: ', pos_sun)
print('pos_earth: ', pos_earth)
print('pos_moon: ', pos_moon)

distance_earth_sun = distance_pos(t_var, pos_sun, pos_earth)
distance_earth_moon = distance_pos(t_var, pos_moon, pos_earth)

print('distance earth sun: ', distance_earth_sun)
print('distance earth moon: ', distance_earth_moon)

# Calculate the angle between sun, earth and moon at specific times
angle = calculate_angle(pos_sun, pos_earth, pos_moon)
angle_2 = calculate_angle_2(pos_sun, pos_earth, pos_moon)
print('Angle: ', angle)
print('Angle 2: ', angle_2)






SatNav/src/distances.py

import numpy as np
from skyfield.api import load, wgs84
from logger import logger as log

def distance_obj_to_target(t, obj, target, observer):
    """
    Compute the linear distance between an orbiting object and a target at time t.
    
    Arguments:
        t: skyfield time object
        obj: skyfield object
        target: skyfield object
        observer: skyfield object

    Returns:
        float, distance in km
    """
    
    target_position = observer.at(t).observe(target).position.km

    obj_position = obj.at(t).position.km
    
    return np.linalg.norm(target_position - obj_position)

def get_minimum_distance(t_start, t_end, obj, target, observer, search_interval=1):
    """
    Find the time when the distance between an object and a target is minimum within a timeframe.
    
    Arguments: 
        t_start: skyfield time object
        t_end: skyfield time object
        obj: skyfield object
        target: skyfield object
        observer: skyfield object
        search_interval: float, time step in minutes
        
    Returns:
        min_d: float, minimum distance in km
        min_t: datetime object, time of minimum distance
    """
    
    search_interval = search_interval * 1/24/60 # Transform from minutes to days
    
    min_d = distance_obj_to_target(t_start, obj, target, observer)
    min_t = t_start
    total_iterations = (t_end.tt - t_start.tt) / search_interval
    iter = 0
    
    log.debug('Looking for minimum distance between {} and {} from {} to {} with search_interval {}.'.format(obj.name, target, t_start.tt_strftime('%Y-%m-%d %H:%M:%S'), t_end.tt_strftime('%Y-%m-%d %H:%M:%S'), search_interval))
    while t_start.tt + search_interval*iter < t_end.tt:
        progress = iter / total_iterations * 100
        print(f"Progress: {progress:.1f}%", end='\r')
        # print('Completed ', progress, "%", end='\r')
        
        iter += 1
        t = t_start + search_interval*iter
        d = distance_obj_to_target(t, obj, target, observer)
        if d < min_d:
            min_t = t
            min_d = d
            
    log.debug('Minimum distance found at {} with distance {} km.'.format(min_t.utc_datetime(), min_d))
    min_t = min_t.utc_datetime()
    
    return min_d, min_t






SatNav/src/quaternions.py

import numpy as np
import scipy.linalg
from logger import logger as log
from celestial_bodies import get_positions, get_velocity
import math

def eci2LVLH(r_i, v_i):
    z_o = -r_i / np.linalg.norm(r_i)
    y_o = -np.cross(r_i, v_i)/np.linalg.norm(np.cross(r_i, v_i))
    x_o = np.cross(y_o, z_o)
    R_o_i = np.array([x_o, y_o, z_o])
    R_i_o = R_o_i.T
    r_o = np.dot(R_i_o, r_i) # position in orbit frame [km]
    v_o = np.dot(R_i_o, v_i) # velocity in orbit frame [km/s]
    
    return r_o, v_o, R_o_i

def rot_rodrigues(a, b, theta):
    a_hat = a/np.linalg.norm(a)
    b_hat = b/np.linalg.norm(b)
    lmbda = np.cross(a_hat, b_hat)
    lmbda_norm = np.linalg.norm(lmbda)
    if lmbda_norm < 1e-12:
        lmbda_hat = lmbda
    else:
        lmbda_hat = lmbda/lmbda_norm
    skew = skew_sym(theta*lmbda_hat)
    R = scipy.linalg.expm(skew)

    return R

        
def skew_sym(x):
    S = [[0, -x[2], x[1]],
        [x[2], 0, -x[0]],
        [-x[1], x[0], 0]]
    
    return S
    
def rot2q(R):  
    theta = np.arccos((np.trace(R)-1)/2)
    if np.isclose(theta, 0):
        e_hat = np.array([0, 0, 0])
    else:
        e_hat = 1/(2*np.sin(theta))*np.array([R[1,2]-R[2,1], R[2,0]-R[0,2], R[0,1]-R[1,0]])

    q_0 = np.cos(theta/2)
    q_1 = e_hat[0]*np.sin(theta/2)
    q_2 = e_hat[1]*np.sin(theta/2)
    q_3 = e_hat[2]*np.sin(theta/2)
    q = np.array([q_0, q_1, q_2, q_3])
    q = q/np.linalg.norm(q)
    
    return q

def get_quaternion(time, earth, target, sat):
    sat_pos, target_pos = get_positions(time, target, sat, earth)
    sat_vel = get_velocity(time, sat)
    log.debug('sat_pos: {}'.format(sat_pos))
    log.debug('sat_vel: {}'.format(sat_vel))

    [r_o, v_o, R_io] = eci2LVLH(sat_pos, sat_vel)

    target_pos_eci = target_pos

    relative_pos = target_pos_eci - sat_pos
    relative_pos_orbit = np.dot(R_io, relative_pos)

    target_unit_vector = relative_pos_orbit / np.linalg.norm(relative_pos_orbit)
    
    # Calculate the nadir vector in the orbit frame
    z_o_hat_o = np.array([0, 0, 1])

    cos_off_nadir_angle = np.dot(target_unit_vector, z_o_hat_o)
    off_nadir_angle = math.degrees(np.arccos(cos_off_nadir_angle))

    # Calculate the rotation quaternion
    z_b_hat_o = target_unit_vector
    R_bo = rot_rodrigues(z_o_hat_o, z_b_hat_o, np.radians(off_nadir_angle))
    R_ob = R_bo.T
    q_ob = rot2q(R_ob)
    
    # log.debug('off_nadir_angle: {}'.format(off_nadir_angle))

    return q_ob

def get_off_nadir_angle(time, earth, target, sat):
    sat_pos, target_pos = get_positions(time, target, sat, earth)
    sat_vel = get_velocity(time, sat)
    log.debug('sat_pos: {}'.format(sat_pos))
    log.debug('sat_vel: {}'.format(sat_vel))

    [r_o, v_o, R_io] = eci2LVLH(sat_pos, sat_vel)

    target_pos_eci = target_pos

    relative_pos = target_pos_eci - sat_pos
    relative_pos_orbit = np.dot(R_io, relative_pos)

    target_unit_vector = relative_pos_orbit / np.linalg.norm(relative_pos_orbit)
    
    # Calculate the nadir vector in the orbit frame
    z_o_hat_o = np.array([0, 0, 1])

    cos_off_nadir_angle = np.dot(target_unit_vector, z_o_hat_o)
    off_nadir_angle = math.degrees(np.arccos(cos_off_nadir_angle))

    return off_nadir_angle

def get_maximum_off_nadir_angle(t_start, t_end, obj, target, observer, search_interval = 1):
    """
    Find the time when the off nadir angle between a satellite and a target is at minimum within a timeframe.
    """
    
    search_interval = search_interval * 1/24/60 # Transform from minutes to days
    
    max_off_nadir = get_off_nadir_angle(t_start, observer, target, obj)
    max_t = t_start
    total_iterations = (t_end.tt - t_start.tt) / search_interval
    iter = 0
    
    log.debug('Looking for maximum off nadir angle between {} and {} from {} to {} with search_interval {}.'.format(obj.name, target, t_start.tt_strftime('%Y-%m-%d %H:%M:%S'), t_end.tt_strftime('%Y-%m-%d %H:%M:%S'), search_interval))
    while t_start.tt + search_interval*iter < t_end.tt:
        progress = iter / total_iterations * 100
        print(f"Progress: {progress:.1f}%", end="\r")
        
        iter += 1 
        t = t_start + search_interval*iter
        off_nadir = get_off_nadir_angle(t, observer, target, obj)
        if off_nadir > max_off_nadir:
            max_t = t
            max_off_nadir = off_nadir
    
    log.debug('Maximum off nadir angle found at {} with angle {} deg.'.format(max_t.utc_datetime(), max_off_nadir))
    max_t = max_t.utc_datetime()
    
    return max_off_nadir, max_t







SatNav/src/config_reader.py

import json
import os
from logger import logger as log

def read_config(config_file):
    # Check if config file exists or if contents are empty
    if not os.path.exists(config_file):
        log.info(f'Config file not found: {config_file}. Reading default config file.')
        
        # Read default config file
        default_config_path = os.path.join(os.path.dirname(config_file), 'defaults', os.path.basename(config_file))    
        config_file = create_config_from_default(default_config_path, save_path=config_file)
    elif os.path.getsize(config_file) == 0:
        log.info(f'Config file is empty: {config_file}. Reading default config file.')
        
        # Read default config file
        default_config_path = os.path.join(os.path.dirname(config_file), 'defaults', os.path.basename(config_file))    
        config_file = create_config_from_default(default_config_path, save_path=config_file)
    
    # Read the config file
    try:
        with open(config_file) as f:
            data = json.load(f)
    except(FileNotFoundError, json.JSONDecodeError) as e:
        log.error(f'Error reading config file: {e}')
        return None
    
    return data
    
def create_config_from_default(default_file, save_path=None):
    # Check if default config file exists
    if not os.path.exists(default_file):
        log.info(f'Default config file not found: {default_file}')
        return None
    
    # Read the default config file
    try: 
        with open(default_file) as f:
            data = json.load(f)
    except(FileNotFoundError, json.JSONDecodeError) as e:
        log.error(f'Error reading default config file: {e}')
        return None
    
    # Create config file
    config_file = os.path.join(os.path.dirname(default_file), os.path.basename(default_file).replace('default_', ''))
    try:
        with open(save_path, 'w') as f:
            json.dump(data, f, indent=4)
            log.info("Created config file from default at path " + config_file)
    except(FileNotFoundError, json.JSONDecodeError) as e:
        log.error(f'Error creating config file: {e}')
        return None
    
    return config_file






SatNav/src/gp.php

HYPSO-1                 
1 51053U 22002BX  23073.19446912  .00013866  00000+0  72186-3 0  9991
2 51053  97.4434 139.7613 0007722 211.9858 212.3735 15.16108932 64222







SatNav/src/logger.py

import logging

class CustomFormatter(logging.Formatter):

    grey = "\x1b[38;20m"
    blue = "\x1b[34;20m"
    yellow = "\x1b[33;20m"
    red = "\x1b[31;20m"
    bold_red = "\x1b[31;1m"
    reset = "\x1b[0m"
    format = "%(asctime).19s - %(levelname)s - %(message)s"

    FORMATS = {
        logging.DEBUG: format.replace("%(levelname)s", grey + "%(levelname)s" + reset),
        logging.INFO: format.replace("%(levelname)s", blue + "%(levelname)s" + reset),
        logging.WARNING: format.replace("%(levelname)s", yellow + "%(levelname)s" + reset),
        logging.ERROR: format.replace("%(levelname)s", red + "%(levelname)s" + reset),
        logging.CRITICAL: format.replace("%(levelname)s", bold_red + "%(levelname)s" + reset)
    }

    def format(self, record):
        log_fmt = self.FORMATS.get(record.levelno)
        formatter = logging.Formatter(log_fmt)
        return formatter.format(record)
    
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)

ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)

ch.setFormatter(CustomFormatter())

logger.addHandler(ch)

def set_log_level(level):
    logger.setLevel(level)
    ch.setLevel(level)






SatNav/src/celestial_bodies.py

from skyfield.api import load
import datetime
from logger import logger as log
import json

tle_path = 'src/data/tle_files/tle-CATNR-'
config_path = 'src/data/config/config.json'
tle_url = 'http://celestrak.org/NORAD/elements/gp.php?CATNR='

def get_satellite(config, force_update=False):
    catnr = config['catnr']

    configured_at = config['configured_at']
    try:
        configured_at = datetime.datetime.strptime(configured_at, '%Y-%m-%d %H:%M:%S.%f')
    except: 
        configured_at = datetime.datetime.strptime(configured_at, '%Y-%m-%d %H:%M:%S')
    
    now = datetime.datetime.now()
    time_diff = (now - configured_at).total_seconds()
    
    # If time is more than 24 hours or force_update = True, reload the TLE file from URL
    if abs(time_diff) > 24*60*60 or force_update:
        log.info('Reloading TLE file from URL...')
        url = tle_url + str(catnr)
        filename = tle_path + str(catnr) + '.txt'
        satellites = load.tle_file(url, filename=filename, reload=True)
        sat = satellites[0]
        
        # Update configured_at
        config['last_pulled_tle'] = str(now)
        
        # Save config file
        with open(config_path, 'w') as f:
            json.dump(config, f)
    else:
        try:
            log.info('Loading TLE file from local file...')
            filename = tle_path + str(catnr) + '.txt'
            satellites = load.tle_file(filename)
            sat = satellites[0]
        except FileNotFoundError:
            log.info('TLE file not found, reloading from URL...')
            url = tle_url + str(catnr)
            filename = tle_path + str(catnr) + '.txt'
            satellites = load.tle_file(url, filename=filename, reload=True)
            sat = satellites[0]
                
    # Update config
    config['configured_at'] = str(now)
    config['name'] = sat.name
    
    # Save config file
    with open(config_path, 'w') as f:
        json.dump(config, f)
        
    return sat 

def get_satellite_from_catnr(catnr, tle_url, save=True):
    url = tle_url + str(catnr)
    if save:
        filename = tle_path + str(catnr) + '.txt'
        satellites = load.tle_file(url, filename=filename, reload=True)
    else:
        satellites = load.tle_file(url)
    sat = satellites[0]
    
    return sat

def get_target(target):
    print(target)
    planets = load('de421.bsp')
    target = planets[target]
    if target is not None:
        return target
    else:
        log.error('Target not supported. Exiting.')
        return

def get_positions(time, target, object, observer):
    target_position = observer.at(time).observe(target).position.km
    obj_position = object.at(time).position.km
    
    positions = [obj_position, target_position]

    return positions

def get_velocity(time,  object):
    obj_velocity = object.at(time).velocity.km_per_s
    
    return obj_velocity







SatNav/src/main.py

from config_reader import read_config
from celestial_bodies import *
from distances import *
from quaternions import get_quaternion
from logger import logger as log
from logger import set_log_level
import planner
from skyfield.api import load
from datetime import timedelta
from pyfiglet import Figlet
import json

config_path = 'src/data/config/config.json'

planets = load('de421.bsp')
earth = planets['earth']

def single_planner(t_start, t_end, sat, target, observer, search_interval, ts):
    log.info('Single planner')
    min_distance_time_ts, q_ob, off_nadir = planner.single_planner(t_start, t_end, sat, target, observer, search_interval, ts)
    
    log.info('----------------------------------------------------')
    log.info('Time = {}'.format(min_distance_time_ts))
    log.info('Qx = {:.10f}'.format(q_ob[1]))
    log.info('Qy = {:.10f}'.format(q_ob[2]))
    log.info('Qz = {:.10f}'.format(q_ob[3]))
    log.info('Qs = {:.10f}'.format(q_ob[0]))
    log.info('Off-nadir angle = {:.10f} degrees'.format(off_nadir))
    log.info('----------------------------------------------------')
    
def multi_planner(t_start, t_end, sat, target, intervals, earth, search_interval, ts):
    log.info('Multi planner')
    plan = planner.multi_planner(t_start, t_end, sat, target, earth, intervals, search_interval, ts)
    
    log.info('----------------------------------------------------')
    count = 1
    for time, quaternion, off_nadir in plan:
        log.info('Capture nr. {}'.format(count))
        log.info('Time = {}'.format(time))
        log.info('Qx = {:.10f}'.format(quaternion[1]))
        log.info('Qy = {:.10f}'.format(quaternion[2]))
        log.info('Qz = {:.10f}'.format(quaternion[3]))
        log.info('Qs = {:.10f}'.format(quaternion[0]))
        log.info('Off-nadir angle = {:.10f} degrees\n'.format(off_nadir))
        count += 1
    
    log.info('----------------------------------------------------')
    
    # Save plan to txt file
    with open('plan.txt', 'w') as f:
        f.write('Capture nr. | Time | Qx | Qy | Qz | Qs | Off-nadir angle\n')
        count = 1
        for time, quaternion, off_nadir in plan:
            f.write('{} | {} | {:.10f} | {:.10f} | {:.10f} | {:.10f} | {:.10f}\n'.format(count, time, quaternion[1], quaternion[2], quaternion[3], quaternion[0], off_nadir))
            count += 1
    
if __name__ == '__main__':
    ts = load.timescale()
    t_now = ts.now()
    
    config = read_config(config_path)
    if not config:
        log.error('Error reading config file. Exiting.')
        exit
        
    set_log_level(config['log_level'])
    
    f = Figlet(font='slant')
    print(f.renderText('SatNav'))
    print('\033[34m' + '\033[1m' + '--------Satellite Targeting Tool--------\n' + '\033[0m', end='')
    print('Enter the following information to configure the tool. Press enter to use default value.\n', end='')
    
    mode = input('Enter ' + '\033[34m' + '1' + '\033[0m' + ' to run in single planner mode, or ' + '\033[34m' + '2' + '\033[0m' + ' to run in multi planner mode (default is ' + '\033[34m' + '1' + '\033[0m' + '): ') or '1'
    config['catnr'] = int(input('Enter satellite catalog number (default is ' + '\033[34m' + '51053' + '\033[0m' + ' (HYPSO-1)): ') or 51053)
    target = int(input('Enter target segment number (default is ' + '\033[34m' + '301' + '\033[0m' + ' (the moon). See README for supported bodies): ') or 301)
    start_time_delta = float(input('Enter hours in the future for start time of search (default is ' + '\033[34m' + '0' + '\033[0m' + ' (now)): ') or 0)
    end_time_delta = float(input('Enter hours in the future for end time of search (default is ' + '\033[34m' + '24' + '\033[0m' + ' (1 day from now)): ') or 24)
    if mode == '2':
        intervals = int(input('Enter number of intervals to search (default is ' + '\033[34m' + 'end_time_delta/24' + '\033[0m' + ' (one capture per day)): ') or round((end_time_delta-start_time_delta)/24))
        
    search_interval = float(input('Enter search_interval for minimum distance search (default is 1 (1 minute)): ') or 1)
    force = input('Enter ' + '\033[34m' + 'true' + '\033[0m' + ' to force update TLE data, or press Enter to skip: ').lower() == 'true'
    
    t_start = t_now + timedelta(hours=start_time_delta)
    t_end = t_now + timedelta(hours=end_time_delta)
    
    log.info('Using satellite catalog number: ' + str(config['catnr']))
    log.info('Using start time: {} UTC'.format(t_start.tt_strftime('%Y-%m-%d %H:%M:%S')))
    log.info('Using end time: {} UTC'.format(t_end.tt_strftime('%Y-%m-%d %H:%M:%S')))
    
    sat = get_satellite(config, force)
    target = get_target(target)
    log.info('Config: ' + json.dumps(config, indent=4))
    log.info('Epoch: ' + str(sat))
    
    if mode == '1':
        single_planner(t_start, t_end, sat, target, earth, search_interval, ts)
    elif mode == '2':
        multi_planner(t_start, t_end, sat, target, intervals, earth, search_interval, ts)






__MACOSX/SatNav/src/._data





__MACOSX/SatNav/.git/objects/._pack





__MACOSX/SatNav/.git/objects/._info





SatNav/.git/info/exclude

# git ls-files --others --exclude-from=.git/info/exclude
# Lines that start with '#' are comments.
# For a project mostly in C, the following would be a good set of
# exclude patterns (uncomment them if you want to use them):
# *.[oa]
# *~







SatNav/.git/logs/HEAD

0000000000000000000000000000000000000000 0d516d876114f7bd86d1c01b24bd371931ba1684 Markus Haldorsen <markushaldorsen@gmail.com> 1687438843 +0200	clone: from https://github.com/NTNU-SmallSat-Lab/SatNav.git







__MACOSX/SatNav/.git/logs/._refs





SatNav/.git/hooks/commit-msg.sample

#!/bin/sh
#
# An example hook script to check the commit log message.
# Called by "git commit" with one argument, the name of the file
# that has the commit message.  The hook should exit with non-zero
# status after issuing an appropriate message if it wants to stop the
# commit.  The hook is allowed to edit the commit message file.
#
# To enable this hook, rename this file to "commit-msg".

# Uncomment the below to add a Signed-off-by line to the message.
# Doing this in a hook is a bad idea in general, but the prepare-commit-msg
# hook is more suited to it.
#
# SOB=$(git var GIT_AUTHOR_IDENT | sed -n 's/^\(.*>\).*$/Signed-off-by: \1/p')
# grep -qs "^$SOB" "$1" || echo "$SOB" >> "$1"

# This example catches duplicate Signed-off-by lines.

test "" = "$(grep '^Signed-off-by: ' "$1" |
	 sort | uniq -c | sed -e '/^[ 	]*1[ 	]/d')" || {
	echo >&2 Duplicate Signed-off-by lines.
	exit 1
}







SatNav/.git/hooks/pre-rebase.sample

#!/bin/sh
#
# Copyright (c) 2006, 2008 Junio C Hamano
#
# The "pre-rebase" hook is run just before "git rebase" starts doing
# its job, and can prevent the command from running by exiting with
# non-zero status.
#
# The hook is called with the following parameters:
#
# $1 -- the upstream the series was forked from.
# $2 -- the branch being rebased (or empty when rebasing the current branch).
#
# This sample shows how to prevent topic branches that are already
# merged to 'next' branch from getting rebased, because allowing it
# would result in rebasing already published history.

publish=next
basebranch="$1"
if test "$#" = 2
then
	topic="refs/heads/$2"
else
	topic=`git symbolic-ref HEAD` ||
	exit 0 ;# we do not interrupt rebasing detached HEAD
fi

case "$topic" in
refs/heads/??/*)
	;;
*)
	exit 0 ;# we do not interrupt others.
	;;
esac

# Now we are dealing with a topic branch being rebased
# on top of master.  Is it OK to rebase it?

# Does the topic really exist?
git show-ref -q "$topic" || {
	echo >&2 "No such branch $topic"
	exit 1
}

# Is topic fully merged to master?
not_in_master=`git rev-list --pretty=oneline ^master "$topic"`
if test -z "$not_in_master"
then
	echo >&2 "$topic is fully merged to master; better remove it."
	exit 1 ;# we could allow it, but there is no point.
fi

# Is topic ever merged to next?  If so you should not be rebasing it.
only_next_1=`git rev-list ^master "^$topic" ${publish} | sort`
only_next_2=`git rev-list ^master           ${publish} | sort`
if test "$only_next_1" = "$only_next_2"
then
	not_in_topic=`git rev-list "^$topic" master`
	if test -z "$not_in_topic"
	then
		echo >&2 "$topic is already up to date with master"
		exit 1 ;# we could allow it, but there is no point.
	else
		exit 0
	fi
else
	not_in_next=`git rev-list --pretty=oneline ^${publish} "$topic"`
	/usr/bin/perl -e '
		my $topic = $ARGV[0];
		my $msg = "* $topic has commits already merged to public branch:\n";
		my (%not_in_next) = map {
			/^([0-9a-f]+) /;
			($1 => 1);
		} split(/\n/, $ARGV[1]);
		for my $elem (map {
				/^([0-9a-f]+) (.*)$/;
				[$1 => $2];
			} split(/\n/, $ARGV[2])) {
			if (!exists $not_in_next{$elem->[0]}) {
				if ($msg) {
					print STDERR $msg;
					undef $msg;
				}
				print STDERR " $elem->[1]\n";
			}
		}
	' "$topic" "$not_in_next" "$not_in_master"
	exit 1
fi

<<\DOC_END

This sample hook safeguards topic branches that have been
published from being rewound.

The workflow assumed here is:

 * Once a topic branch forks from "master", "master" is never
   merged into it again (either directly or indirectly).

 * Once a topic branch is fully cooked and merged into "master",
   it is deleted.  If you need to build on top of it to correct
   earlier mistakes, a new topic branch is created by forking at
   the tip of the "master".  This is not strictly necessary, but
   it makes it easier to keep your history simple.

 * Whenever you need to test or publish your changes to topic
   branches, merge them into "next" branch.

The script, being an example, hardcodes the publish branch name
to be "next", but it is trivial to make it configurable via
$GIT_DIR/config mechanism.

With this workflow, you would want to know:

(1) ... if a topic branch has ever been merged to "next".  Young
    topic branches can have stupid mistakes you would rather
    clean up before publishing, and things that have not been
    merged into other branches can be easily rebased without
    affecting other people.  But once it is published, you would
    not want to rewind it.

(2) ... if a topic branch has been fully merged to "master".
    Then you can delete it.  More importantly, you should not
    build on top of it -- other people may already want to
    change things related to the topic as patches against your
    "master", so if you need further changes, it is better to
    fork the topic (perhaps with the same name) afresh from the
    tip of "master".

Let's look at this example:

		   o---o---o---o---o---o---o---o---o---o "next"
		  /       /           /           /
		 /   a---a---b A     /           /
		/   /               /           /
	       /   /   c---c---c---c B         /
	      /   /   /             \         /
	     /   /   /   b---b C     \       /
	    /   /   /   /             \     /
    ---o---o---o---o---o---o---o---o---o---o---o "master"


A, B and C are topic branches.

 * A has one fix since it was merged up to "next".

 * B has finished.  It has been fully merged up to "master" and "next",
   and is ready to be deleted.

 * C has not merged to "next" at all.

We would want to allow C to be rebased, refuse A, and encourage
B to be deleted.

To compute (1):

	git rev-list ^master ^topic next
	git rev-list ^master        next

	if these match, topic has not merged in next at all.

To compute (2):

	git rev-list master..topic

	if this is empty, it is fully merged to "master".

DOC_END







SatNav/.git/hooks/pre-commit.sample

#!/bin/sh
#
# An example hook script to verify what is about to be committed.
# Called by "git commit" with no arguments.  The hook should
# exit with non-zero status after issuing an appropriate message if
# it wants to stop the commit.
#
# To enable this hook, rename this file to "pre-commit".

if git rev-parse --verify HEAD >/dev/null 2>&1
then
	against=HEAD
else
	# Initial commit: diff against an empty tree object
	against=$(git hash-object -t tree /dev/null)
fi

# If you want to allow non-ASCII filenames set this variable to true.
allownonascii=$(git config --type=bool hooks.allownonascii)

# Redirect output to stderr.
exec 1>&2

# Cross platform projects tend to avoid non-ASCII filenames; prevent
# them from being added to the repository. We exploit the fact that the
# printable range starts at the space character and ends with tilde.
if [ "$allownonascii" != "true" ] &&
	# Note that the use of brackets around a tr range is ok here, (it's
	# even required, for portability to Solaris 10's /usr/bin/tr), since
	# the square bracket bytes happen to fall in the designated range.
	test $(git diff --cached --name-only --diff-filter=A -z $against |
	  LC_ALL=C tr -d '[ -~]\0' | wc -c) != 0
then
	cat <<\EOF
Error: Attempt to add a non-ASCII file name.

This can cause problems if you want to work with people on other platforms.

To be portable it is advisable to rename the file.

If you know what you are doing you can disable this check using:

  git config hooks.allownonascii true
EOF
	exit 1
fi

# If there are whitespace errors, print the offending file names and fail.
exec git diff-index --check --cached $against --







SatNav/.git/hooks/applypatch-msg.sample

#!/bin/sh
#
# An example hook script to check the commit log message taken by
# applypatch from an e-mail message.
#
# The hook should exit with non-zero status after issuing an
# appropriate message if it wants to stop the commit.  The hook is
# allowed to edit the commit message file.
#
# To enable this hook, rename this file to "applypatch-msg".

. git-sh-setup
commitmsg="$(git rev-parse --git-path hooks/commit-msg)"
test -x "$commitmsg" && exec "$commitmsg" ${1+"$@"}
:







SatNav/.git/hooks/fsmonitor-watchman.sample

#!/usr/bin/perl

use strict;
use warnings;
use IPC::Open2;

# An example hook script to integrate Watchman
# (https://facebook.github.io/watchman/) with git to speed up detecting
# new and modified files.
#
# The hook is passed a version (currently 2) and last update token
# formatted as a string and outputs to stdout a new update token and
# all files that have been modified since the update token. Paths must
# be relative to the root of the working tree and separated by a single NUL.
#
# To enable this hook, rename this file to "query-watchman" and set
# 'git config core.fsmonitor .git/hooks/query-watchman'
#
my ($version, $last_update_token) = @ARGV;

# Uncomment for debugging
# print STDERR "$0 $version $last_update_token\n";

# Check the hook interface version
if ($version ne 2) {
	die "Unsupported query-fsmonitor hook version '$version'.\n" .
	    "Falling back to scanning...\n";
}

my $git_work_tree = get_working_dir();

my $retry = 1;

my $json_pkg;
eval {
	require JSON::XS;
	$json_pkg = "JSON::XS";
	1;
} or do {
	require JSON::PP;
	$json_pkg = "JSON::PP";
};

launch_watchman();

sub launch_watchman {
	my $o = watchman_query();
	if (is_work_tree_watched($o)) {
		output_result($o->{clock}, @{$o->{files}});
	}
}

sub output_result {
	my ($clockid, @files) = @_;

	# Uncomment for debugging watchman output
	# open (my $fh, ">", ".git/watchman-output.out");
	# binmode $fh, ":utf8";
	# print $fh "$clockid\n@files\n";
	# close $fh;

	binmode STDOUT, ":utf8";
	print $clockid;
	print "\0";
	local $, = "\0";
	print @files;
}

sub watchman_clock {
	my $response = qx/watchman clock "$git_work_tree"/;
	die "Failed to get clock id on '$git_work_tree'.\n" .
		"Falling back to scanning...\n" if $? != 0;

	return $json_pkg->new->utf8->decode($response);
}

sub watchman_query {
	my $pid = open2(\*CHLD_OUT, \*CHLD_IN, 'watchman -j --no-pretty')
	or die "open2() failed: $!\n" .
	"Falling back to scanning...\n";

	# In the query expression below we're asking for names of files that
	# changed since $last_update_token but not from the .git folder.
	#
	# To accomplish this, we're using the "since" generator to use the
	# recency index to select candidate nodes and "fields" to limit the
	# output to file names only. Then we're using the "expression" term to
	# further constrain the results.
	my $last_update_line = "";
	if (substr($last_update_token, 0, 1) eq "c") {
		$last_update_token = "\"$last_update_token\"";
		$last_update_line = qq[\n"since": $last_update_token,];
	}
	my $query = <<"	END";
		["query", "$git_work_tree", {$last_update_line
			"fields": ["name"],
			"expression": ["not", ["dirname", ".git"]]
		}]
	END

	# Uncomment for debugging the watchman query
	# open (my $fh, ">", ".git/watchman-query.json");
	# print $fh $query;
	# close $fh;

	print CHLD_IN $query;
	close CHLD_IN;
	my $response = do {local $/; <CHLD_OUT>};

	# Uncomment for debugging the watch response
	# open ($fh, ">", ".git/watchman-response.json");
	# print $fh $response;
	# close $fh;

	die "Watchman: command returned no output.\n" .
	"Falling back to scanning...\n" if $response eq "";
	die "Watchman: command returned invalid output: $response\n" .
	"Falling back to scanning...\n" unless $response =~ /^\{/;

	return $json_pkg->new->utf8->decode($response);
}

sub is_work_tree_watched {
	my ($output) = @_;
	my $error = $output->{error};
	if ($retry > 0 and $error and $error =~ m/unable to resolve root .* directory (.*) is not watched/) {
		$retry--;
		my $response = qx/watchman watch "$git_work_tree"/;
		die "Failed to make watchman watch '$git_work_tree'.\n" .
		    "Falling back to scanning...\n" if $? != 0;
		$output = $json_pkg->new->utf8->decode($response);
		$error = $output->{error};
		die "Watchman: $error.\n" .
		"Falling back to scanning...\n" if $error;

		# Uncomment for debugging watchman output
		# open (my $fh, ">", ".git/watchman-output.out");
		# close $fh;

		# Watchman will always return all files on the first query so
		# return the fast "everything is dirty" flag to git and do the
		# Watchman query just to get it over with now so we won't pay
		# the cost in git to look up each individual file.
		my $o = watchman_clock();
		$error = $output->{error};

		die "Watchman: $error.\n" .
		"Falling back to scanning...\n" if $error;

		output_result($o->{clock}, ("/"));
		$last_update_token = $o->{clock};

		eval { launch_watchman() };
		return 0;
	}

	die "Watchman: $error.\n" .
	"Falling back to scanning...\n" if $error;

	return 1;
}

sub get_working_dir {
	my $working_dir;
	if ($^O =~ 'msys' || $^O =~ 'cygwin') {
		$working_dir = Win32::GetCwd();
		$working_dir =~ tr/\\/\//;
	} else {
		require Cwd;
		$working_dir = Cwd::cwd();
	}

	return $working_dir;
}







SatNav/.git/hooks/pre-receive.sample

#!/bin/sh
#
# An example hook script to make use of push options.
# The example simply echoes all push options that start with 'echoback='
# and rejects all pushes when the "reject" push option is used.
#
# To enable this hook, rename this file to "pre-receive".

if test -n "$GIT_PUSH_OPTION_COUNT"
then
	i=0
	while test "$i" -lt "$GIT_PUSH_OPTION_COUNT"
	do
		eval "value=\$GIT_PUSH_OPTION_$i"
		case "$value" in
		echoback=*)
			echo "echo from the pre-receive-hook: ${value#*=}" >&2
			;;
		reject)
			exit 1
		esac
		i=$((i + 1))
	done
fi







SatNav/.git/hooks/prepare-commit-msg.sample

#!/bin/sh
#
# An example hook script to prepare the commit log message.
# Called by "git commit" with the name of the file that has the
# commit message, followed by the description of the commit
# message's source.  The hook's purpose is to edit the commit
# message file.  If the hook fails with a non-zero status,
# the commit is aborted.
#
# To enable this hook, rename this file to "prepare-commit-msg".

# This hook includes three examples. The first one removes the
# "# Please enter the commit message..." help message.
#
# The second includes the output of "git diff --name-status -r"
# into the message, just before the "git status" output.  It is
# commented because it doesn't cope with --amend or with squashed
# commits.
#
# The third example adds a Signed-off-by line to the message, that can
# still be edited.  This is rarely a good idea.

COMMIT_MSG_FILE=$1
COMMIT_SOURCE=$2
SHA1=$3

/usr/bin/perl -i.bak -ne 'print unless(m/^. Please enter the commit message/..m/^#$/)' "$COMMIT_MSG_FILE"

# case "$COMMIT_SOURCE,$SHA1" in
#  ,|template,)
#    /usr/bin/perl -i.bak -pe '
#       print "\n" . `git diff --cached --name-status -r`
# 	 if /^#/ && $first++ == 0' "$COMMIT_MSG_FILE" ;;
#  *) ;;
# esac

# SOB=$(git var GIT_COMMITTER_IDENT | sed -n 's/^\(.*>\).*$/Signed-off-by: \1/p')
# git interpret-trailers --in-place --trailer "$SOB" "$COMMIT_MSG_FILE"
# if test -z "$COMMIT_SOURCE"
# then
#   /usr/bin/perl -i.bak -pe 'print "\n" if !$first_line++' "$COMMIT_MSG_FILE"
# fi







SatNav/.git/hooks/post-update.sample

#!/bin/sh
#
# An example hook script to prepare a packed repository for use over
# dumb transports.
#
# To enable this hook, rename this file to "post-update".

exec git update-server-info







SatNav/.git/hooks/pre-merge-commit.sample

#!/bin/sh
#
# An example hook script to verify what is about to be committed.
# Called by "git merge" with no arguments.  The hook should
# exit with non-zero status after issuing an appropriate message to
# stderr if it wants to stop the merge commit.
#
# To enable this hook, rename this file to "pre-merge-commit".

. git-sh-setup
test -x "$GIT_DIR/hooks/pre-commit" &&
        exec "$GIT_DIR/hooks/pre-commit"
:







SatNav/.git/hooks/pre-applypatch.sample

#!/bin/sh
#
# An example hook script to verify what is about to be committed
# by applypatch from an e-mail message.
#
# The hook should exit with non-zero status after issuing an
# appropriate message if it wants to stop the commit.
#
# To enable this hook, rename this file to "pre-applypatch".

. git-sh-setup
precommit="$(git rev-parse --git-path hooks/pre-commit)"
test -x "$precommit" && exec "$precommit" ${1+"$@"}
:







SatNav/.git/hooks/pre-push.sample

#!/bin/sh

# An example hook script to verify what is about to be pushed.  Called by "git
# push" after it has checked the remote status, but before anything has been
# pushed.  If this script exits with a non-zero status nothing will be pushed.
#
# This hook is called with the following parameters:
#
# $1 -- Name of the remote to which the push is being done
# $2 -- URL to which the push is being done
#
# If pushing without using a named remote those arguments will be equal.
#
# Information about the commits which are being pushed is supplied as lines to
# the standard input in the form:
#
#   <local ref> <local oid> <remote ref> <remote oid>
#
# This sample shows how to prevent push of commits where the log message starts
# with "WIP" (work in progress).

remote="$1"
url="$2"

zero=$(git hash-object --stdin </dev/null | tr '[0-9a-f]' '0')

while read local_ref local_oid remote_ref remote_oid
do
	if test "$local_oid" = "$zero"
	then
		# Handle delete
		:
	else
		if test "$remote_oid" = "$zero"
		then
			# New branch, examine all commits
			range="$local_oid"
		else
			# Update to existing branch, examine new commits
			range="$remote_oid..$local_oid"
		fi

		# Check for WIP commit
		commit=$(git rev-list -n 1 --grep '^WIP' "$range")
		if test -n "$commit"
		then
			echo >&2 "Found WIP commit in $local_ref, not pushing"
			exit 1
		fi
	fi
done

exit 0







SatNav/.git/hooks/update.sample

#!/bin/sh
#
# An example hook script to block unannotated tags from entering.
# Called by "git receive-pack" with arguments: refname sha1-old sha1-new
#
# To enable this hook, rename this file to "update".
#
# Config
# ------
# hooks.allowunannotated
#   This boolean sets whether unannotated tags will be allowed into the
#   repository.  By default they won't be.
# hooks.allowdeletetag
#   This boolean sets whether deleting tags will be allowed in the
#   repository.  By default they won't be.
# hooks.allowmodifytag
#   This boolean sets whether a tag may be modified after creation. By default
#   it won't be.
# hooks.allowdeletebranch
#   This boolean sets whether deleting branches will be allowed in the
#   repository.  By default they won't be.
# hooks.denycreatebranch
#   This boolean sets whether remotely creating branches will be denied
#   in the repository.  By default this is allowed.
#

# --- Command line
refname="$1"
oldrev="$2"
newrev="$3"

# --- Safety check
if [ -z "$GIT_DIR" ]; then
	echo "Don't run this script from the command line." >&2
	echo " (if you want, you could supply GIT_DIR then run" >&2
	echo "  $0 <ref> <oldrev> <newrev>)" >&2
	exit 1
fi

if [ -z "$refname" -o -z "$oldrev" -o -z "$newrev" ]; then
	echo "usage: $0 <ref> <oldrev> <newrev>" >&2
	exit 1
fi

# --- Config
allowunannotated=$(git config --type=bool hooks.allowunannotated)
allowdeletebranch=$(git config --type=bool hooks.allowdeletebranch)
denycreatebranch=$(git config --type=bool hooks.denycreatebranch)
allowdeletetag=$(git config --type=bool hooks.allowdeletetag)
allowmodifytag=$(git config --type=bool hooks.allowmodifytag)

# check for no description
projectdesc=$(sed -e '1q' "$GIT_DIR/description")
case "$projectdesc" in
"Unnamed repository"* | "")
	echo "*** Project description file hasn't been set" >&2
	exit 1
	;;
esac

# --- Check types
# if $newrev is 0000...0000, it's a commit to delete a ref.
zero=$(git hash-object --stdin </dev/null | tr '[0-9a-f]' '0')
if [ "$newrev" = "$zero" ]; then
	newrev_type=delete
else
	newrev_type=$(git cat-file -t $newrev)
fi

case "$refname","$newrev_type" in
	refs/tags/*,commit)
		# un-annotated tag
		short_refname=${refname##refs/tags/}
		if [ "$allowunannotated" != "true" ]; then
			echo "*** The un-annotated tag, $short_refname, is not allowed in this repository" >&2
			echo "*** Use 'git tag [ -a | -s ]' for tags you want to propagate." >&2
			exit 1
		fi
		;;
	refs/tags/*,delete)
		# delete tag
		if [ "$allowdeletetag" != "true" ]; then
			echo "*** Deleting a tag is not allowed in this repository" >&2
			exit 1
		fi
		;;
	refs/tags/*,tag)
		# annotated tag
		if [ "$allowmodifytag" != "true" ] && git rev-parse $refname > /dev/null 2>&1
		then
			echo "*** Tag '$refname' already exists." >&2
			echo "*** Modifying a tag is not allowed in this repository." >&2
			exit 1
		fi
		;;
	refs/heads/*,commit)
		# branch
		if [ "$oldrev" = "$zero" -a "$denycreatebranch" = "true" ]; then
			echo "*** Creating a branch is not allowed in this repository" >&2
			exit 1
		fi
		;;
	refs/heads/*,delete)
		# delete branch
		if [ "$allowdeletebranch" != "true" ]; then
			echo "*** Deleting a branch is not allowed in this repository" >&2
			exit 1
		fi
		;;
	refs/remotes/*,commit)
		# tracking branch
		;;
	refs/remotes/*,delete)
		# delete tracking branch
		if [ "$allowdeletebranch" != "true" ]; then
			echo "*** Deleting a tracking branch is not allowed in this repository" >&2
			exit 1
		fi
		;;
	*)
		# Anything else (is there anything else?)
		echo "*** Update hook: unknown type of update to ref $refname of type $newrev_type" >&2
		exit 1
		;;
esac

# --- Finished
exit 0







SatNav/.git/hooks/push-to-checkout.sample

#!/bin/sh

# An example hook script to update a checked-out tree on a git push.
#
# This hook is invoked by git-receive-pack(1) when it reacts to git
# push and updates reference(s) in its repository, and when the push
# tries to update the branch that is currently checked out and the
# receive.denyCurrentBranch configuration variable is set to
# updateInstead.
#
# By default, such a push is refused if the working tree and the index
# of the remote repository has any difference from the currently
# checked out commit; when both the working tree and the index match
# the current commit, they are updated to match the newly pushed tip
# of the branch. This hook is to be used to override the default
# behaviour; however the code below reimplements the default behaviour
# as a starting point for convenient modification.
#
# The hook receives the commit with which the tip of the current
# branch is going to be updated:
commit=$1

# It can exit with a non-zero status to refuse the push (when it does
# so, it must not modify the index or the working tree).
die () {
	echo >&2 "$*"
	exit 1
}

# Or it can make any necessary changes to the working tree and to the
# index to bring them to the desired state when the tip of the current
# branch is updated to the new commit, and exit with a zero status.
#
# For example, the hook can simply run git read-tree -u -m HEAD "$1"
# in order to emulate git fetch that is run in the reverse direction
# with git push, as the two-tree form of git read-tree -u -m is
# essentially the same as git switch or git checkout that switches
# branches while keeping the local changes in the working tree that do
# not interfere with the difference between the branches.

# The below is a more-or-less exact translation to shell of the C code
# for the default behaviour for git's push-to-checkout hook defined in
# the push_to_deploy() function in builtin/receive-pack.c.
#
# Note that the hook will be executed from the repository directory,
# not from the working tree, so if you want to perform operations on
# the working tree, you will have to adapt your code accordingly, e.g.
# by adding "cd .." or using relative paths.

if ! git update-index -q --ignore-submodules --refresh
then
	die "Up-to-date check failed"
fi

if ! git diff-files --quiet --ignore-submodules --
then
	die "Working directory has unstaged changes"
fi

# This is a rough translation of:
#
#   head_has_history() ? "HEAD" : EMPTY_TREE_SHA1_HEX
if git cat-file -e HEAD 2>/dev/null
then
	head=HEAD
else
	head=$(git hash-object -t tree --stdin </dev/null)
fi

if ! git diff-index --quiet --cached --ignore-submodules $head --
then
	die "Working directory has staged changes"
fi

if ! git read-tree -u -m "$commit"
then
	die "Could not update working tree to new HEAD"
fi
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SatNav/.git/logs/refs/heads/main

0000000000000000000000000000000000000000 0d516d876114f7bd86d1c01b24bd371931ba1684 Markus Haldorsen <markushaldorsen@gmail.com> 1687438843 +0200	clone: from https://github.com/NTNU-SmallSat-Lab/SatNav.git
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ref: refs/remotes/origin/main







SatNav/src/data/config/defaults/config.json

{
    "configured_at": "1970-01-01 00:00:00",
    "last_pulled_tle": "1970-01-01 00:00:00",
    "configured_by": "admin",
    "log_level": "INFO",
    "name": "Hypso-1",
    "catnr": "51053"
}
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0000000000000000000000000000000000000000 0d516d876114f7bd86d1c01b24bd371931ba1684 Markus Haldorsen <markushaldorsen@gmail.com> 1687438843 +0200	clone: from https://github.com/NTNU-SmallSat-Lab/SatNav.git
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ref: refs/heads/main







SatNav/.git/config

[core]
	repositoryformatversion = 0
	filemode = true
	bare = false
	logallrefupdates = true
	ignorecase = true
	precomposeunicode = true
[remote "origin"]
	url = https://github.com/NTNU-SmallSat-Lab/SatNav.git
	fetch = +refs/heads/*:refs/remotes/origin/*
[branch "main"]
	remote = origin
	merge = refs/heads/main







SatNav/.git/description

Unnamed repository; edit this file 'description' to name the repository.







SatNav/.git/hooks/applypatch-msg.sample

#!/bin/sh
#
# An example hook script to check the commit log message taken by
# applypatch from an e-mail message.
#
# The hook should exit with non-zero status after issuing an
# appropriate message if it wants to stop the commit.  The hook is
# allowed to edit the commit message file.
#
# To enable this hook, rename this file to "applypatch-msg".

. git-sh-setup
commitmsg="$(git rev-parse --git-path hooks/commit-msg)"
test -x "$commitmsg" && exec "$commitmsg" ${1+"$@"}
:







SatNav/.git/hooks/commit-msg.sample

#!/bin/sh
#
# An example hook script to check the commit log message.
# Called by "git commit" with one argument, the name of the file
# that has the commit message.  The hook should exit with non-zero
# status after issuing an appropriate message if it wants to stop the
# commit.  The hook is allowed to edit the commit message file.
#
# To enable this hook, rename this file to "commit-msg".

# Uncomment the below to add a Signed-off-by line to the message.
# Doing this in a hook is a bad idea in general, but the prepare-commit-msg
# hook is more suited to it.
#
# SOB=$(git var GIT_AUTHOR_IDENT | sed -n 's/^\(.*>\).*$/Signed-off-by: \1/p')
# grep -qs "^$SOB" "$1" || echo "$SOB" >> "$1"

# This example catches duplicate Signed-off-by lines.

test "" = "$(grep '^Signed-off-by: ' "$1" |
	 sort | uniq -c | sed -e '/^[ 	]*1[ 	]/d')" || {
	echo >&2 Duplicate Signed-off-by lines.
	exit 1
}







SatNav/.git/hooks/fsmonitor-watchman.sample

#!/usr/bin/perl

use strict;
use warnings;
use IPC::Open2;

# An example hook script to integrate Watchman
# (https://facebook.github.io/watchman/) with git to speed up detecting
# new and modified files.
#
# The hook is passed a version (currently 2) and last update token
# formatted as a string and outputs to stdout a new update token and
# all files that have been modified since the update token. Paths must
# be relative to the root of the working tree and separated by a single NUL.
#
# To enable this hook, rename this file to "query-watchman" and set
# 'git config core.fsmonitor .git/hooks/query-watchman'
#
my ($version, $last_update_token) = @ARGV;

# Uncomment for debugging
# print STDERR "$0 $version $last_update_token\n";

# Check the hook interface version
if ($version ne 2) {
	die "Unsupported query-fsmonitor hook version '$version'.\n" .
	    "Falling back to scanning...\n";
}

my $git_work_tree = get_working_dir();

my $retry = 1;

my $json_pkg;
eval {
	require JSON::XS;
	$json_pkg = "JSON::XS";
	1;
} or do {
	require JSON::PP;
	$json_pkg = "JSON::PP";
};

launch_watchman();

sub launch_watchman {
	my $o = watchman_query();
	if (is_work_tree_watched($o)) {
		output_result($o->{clock}, @{$o->{files}});
	}
}

sub output_result {
	my ($clockid, @files) = @_;

	# Uncomment for debugging watchman output
	# open (my $fh, ">", ".git/watchman-output.out");
	# binmode $fh, ":utf8";
	# print $fh "$clockid\n@files\n";
	# close $fh;

	binmode STDOUT, ":utf8";
	print $clockid;
	print "\0";
	local $, = "\0";
	print @files;
}

sub watchman_clock {
	my $response = qx/watchman clock "$git_work_tree"/;
	die "Failed to get clock id on '$git_work_tree'.\n" .
		"Falling back to scanning...\n" if $? != 0;

	return $json_pkg->new->utf8->decode($response);
}

sub watchman_query {
	my $pid = open2(\*CHLD_OUT, \*CHLD_IN, 'watchman -j --no-pretty')
	or die "open2() failed: $!\n" .
	"Falling back to scanning...\n";

	# In the query expression below we're asking for names of files that
	# changed since $last_update_token but not from the .git folder.
	#
	# To accomplish this, we're using the "since" generator to use the
	# recency index to select candidate nodes and "fields" to limit the
	# output to file names only. Then we're using the "expression" term to
	# further constrain the results.
	my $last_update_line = "";
	if (substr($last_update_token, 0, 1) eq "c") {
		$last_update_token = "\"$last_update_token\"";
		$last_update_line = qq[\n"since": $last_update_token,];
	}
	my $query = <<"	END";
		["query", "$git_work_tree", {$last_update_line
			"fields": ["name"],
			"expression": ["not", ["dirname", ".git"]]
		}]
	END

	# Uncomment for debugging the watchman query
	# open (my $fh, ">", ".git/watchman-query.json");
	# print $fh $query;
	# close $fh;

	print CHLD_IN $query;
	close CHLD_IN;
	my $response = do {local $/; <CHLD_OUT>};

	# Uncomment for debugging the watch response
	# open ($fh, ">", ".git/watchman-response.json");
	# print $fh $response;
	# close $fh;

	die "Watchman: command returned no output.\n" .
	"Falling back to scanning...\n" if $response eq "";
	die "Watchman: command returned invalid output: $response\n" .
	"Falling back to scanning...\n" unless $response =~ /^\{/;

	return $json_pkg->new->utf8->decode($response);
}

sub is_work_tree_watched {
	my ($output) = @_;
	my $error = $output->{error};
	if ($retry > 0 and $error and $error =~ m/unable to resolve root .* directory (.*) is not watched/) {
		$retry--;
		my $response = qx/watchman watch "$git_work_tree"/;
		die "Failed to make watchman watch '$git_work_tree'.\n" .
		    "Falling back to scanning...\n" if $? != 0;
		$output = $json_pkg->new->utf8->decode($response);
		$error = $output->{error};
		die "Watchman: $error.\n" .
		"Falling back to scanning...\n" if $error;

		# Uncomment for debugging watchman output
		# open (my $fh, ">", ".git/watchman-output.out");
		# close $fh;

		# Watchman will always return all files on the first query so
		# return the fast "everything is dirty" flag to git and do the
		# Watchman query just to get it over with now so we won't pay
		# the cost in git to look up each individual file.
		my $o = watchman_clock();
		$error = $output->{error};

		die "Watchman: $error.\n" .
		"Falling back to scanning...\n" if $error;

		output_result($o->{clock}, ("/"));
		$last_update_token = $o->{clock};

		eval { launch_watchman() };
		return 0;
	}

	die "Watchman: $error.\n" .
	"Falling back to scanning...\n" if $error;

	return 1;
}

sub get_working_dir {
	my $working_dir;
	if ($^O =~ 'msys' || $^O =~ 'cygwin') {
		$working_dir = Win32::GetCwd();
		$working_dir =~ tr/\\/\//;
	} else {
		require Cwd;
		$working_dir = Cwd::cwd();
	}

	return $working_dir;
}







SatNav/.git/hooks/post-update.sample

#!/bin/sh
#
# An example hook script to prepare a packed repository for use over
# dumb transports.
#
# To enable this hook, rename this file to "post-update".

exec git update-server-info







SatNav/.git/hooks/pre-applypatch.sample

#!/bin/sh
#
# An example hook script to verify what is about to be committed
# by applypatch from an e-mail message.
#
# The hook should exit with non-zero status after issuing an
# appropriate message if it wants to stop the commit.
#
# To enable this hook, rename this file to "pre-applypatch".

. git-sh-setup
precommit="$(git rev-parse --git-path hooks/pre-commit)"
test -x "$precommit" && exec "$precommit" ${1+"$@"}
:







SatNav/.git/hooks/pre-commit.sample

#!/bin/sh
#
# An example hook script to verify what is about to be committed.
# Called by "git commit" with no arguments.  The hook should
# exit with non-zero status after issuing an appropriate message if
# it wants to stop the commit.
#
# To enable this hook, rename this file to "pre-commit".

if git rev-parse --verify HEAD >/dev/null 2>&1
then
	against=HEAD
else
	# Initial commit: diff against an empty tree object
	against=$(git hash-object -t tree /dev/null)
fi

# If you want to allow non-ASCII filenames set this variable to true.
allownonascii=$(git config --type=bool hooks.allownonascii)

# Redirect output to stderr.
exec 1>&2

# Cross platform projects tend to avoid non-ASCII filenames; prevent
# them from being added to the repository. We exploit the fact that the
# printable range starts at the space character and ends with tilde.
if [ "$allownonascii" != "true" ] &&
	# Note that the use of brackets around a tr range is ok here, (it's
	# even required, for portability to Solaris 10's /usr/bin/tr), since
	# the square bracket bytes happen to fall in the designated range.
	test $(git diff --cached --name-only --diff-filter=A -z $against |
	  LC_ALL=C tr -d '[ -~]\0' | wc -c) != 0
then
	cat <<\EOF
Error: Attempt to add a non-ASCII file name.

This can cause problems if you want to work with people on other platforms.

To be portable it is advisable to rename the file.

If you know what you are doing you can disable this check using:

  git config hooks.allownonascii true
EOF
	exit 1
fi

# If there are whitespace errors, print the offending file names and fail.
exec git diff-index --check --cached $against --







SatNav/.git/hooks/pre-merge-commit.sample

#!/bin/sh
#
# An example hook script to verify what is about to be committed.
# Called by "git merge" with no arguments.  The hook should
# exit with non-zero status after issuing an appropriate message to
# stderr if it wants to stop the merge commit.
#
# To enable this hook, rename this file to "pre-merge-commit".

. git-sh-setup
test -x "$GIT_DIR/hooks/pre-commit" &&
        exec "$GIT_DIR/hooks/pre-commit"
:







SatNav/.git/hooks/pre-push.sample

#!/bin/sh

# An example hook script to verify what is about to be pushed.  Called by "git
# push" after it has checked the remote status, but before anything has been
# pushed.  If this script exits with a non-zero status nothing will be pushed.
#
# This hook is called with the following parameters:
#
# $1 -- Name of the remote to which the push is being done
# $2 -- URL to which the push is being done
#
# If pushing without using a named remote those arguments will be equal.
#
# Information about the commits which are being pushed is supplied as lines to
# the standard input in the form:
#
#   <local ref> <local oid> <remote ref> <remote oid>
#
# This sample shows how to prevent push of commits where the log message starts
# with "WIP" (work in progress).

remote="$1"
url="$2"

zero=$(git hash-object --stdin </dev/null | tr '[0-9a-f]' '0')

while read local_ref local_oid remote_ref remote_oid
do
	if test "$local_oid" = "$zero"
	then
		# Handle delete
		:
	else
		if test "$remote_oid" = "$zero"
		then
			# New branch, examine all commits
			range="$local_oid"
		else
			# Update to existing branch, examine new commits
			range="$remote_oid..$local_oid"
		fi

		# Check for WIP commit
		commit=$(git rev-list -n 1 --grep '^WIP' "$range")
		if test -n "$commit"
		then
			echo >&2 "Found WIP commit in $local_ref, not pushing"
			exit 1
		fi
	fi
done

exit 0







SatNav/.git/hooks/pre-rebase.sample

#!/bin/sh
#
# Copyright (c) 2006, 2008 Junio C Hamano
#
# The "pre-rebase" hook is run just before "git rebase" starts doing
# its job, and can prevent the command from running by exiting with
# non-zero status.
#
# The hook is called with the following parameters:
#
# $1 -- the upstream the series was forked from.
# $2 -- the branch being rebased (or empty when rebasing the current branch).
#
# This sample shows how to prevent topic branches that are already
# merged to 'next' branch from getting rebased, because allowing it
# would result in rebasing already published history.

publish=next
basebranch="$1"
if test "$#" = 2
then
	topic="refs/heads/$2"
else
	topic=`git symbolic-ref HEAD` ||
	exit 0 ;# we do not interrupt rebasing detached HEAD
fi

case "$topic" in
refs/heads/??/*)
	;;
*)
	exit 0 ;# we do not interrupt others.
	;;
esac

# Now we are dealing with a topic branch being rebased
# on top of master.  Is it OK to rebase it?

# Does the topic really exist?
git show-ref -q "$topic" || {
	echo >&2 "No such branch $topic"
	exit 1
}

# Is topic fully merged to master?
not_in_master=`git rev-list --pretty=oneline ^master "$topic"`
if test -z "$not_in_master"
then
	echo >&2 "$topic is fully merged to master; better remove it."
	exit 1 ;# we could allow it, but there is no point.
fi

# Is topic ever merged to next?  If so you should not be rebasing it.
only_next_1=`git rev-list ^master "^$topic" ${publish} | sort`
only_next_2=`git rev-list ^master           ${publish} | sort`
if test "$only_next_1" = "$only_next_2"
then
	not_in_topic=`git rev-list "^$topic" master`
	if test -z "$not_in_topic"
	then
		echo >&2 "$topic is already up to date with master"
		exit 1 ;# we could allow it, but there is no point.
	else
		exit 0
	fi
else
	not_in_next=`git rev-list --pretty=oneline ^${publish} "$topic"`
	/usr/bin/perl -e '
		my $topic = $ARGV[0];
		my $msg = "* $topic has commits already merged to public branch:\n";
		my (%not_in_next) = map {
			/^([0-9a-f]+) /;
			($1 => 1);
		} split(/\n/, $ARGV[1]);
		for my $elem (map {
				/^([0-9a-f]+) (.*)$/;
				[$1 => $2];
			} split(/\n/, $ARGV[2])) {
			if (!exists $not_in_next{$elem->[0]}) {
				if ($msg) {
					print STDERR $msg;
					undef $msg;
				}
				print STDERR " $elem->[1]\n";
			}
		}
	' "$topic" "$not_in_next" "$not_in_master"
	exit 1
fi

<<\DOC_END

This sample hook safeguards topic branches that have been
published from being rewound.

The workflow assumed here is:

 * Once a topic branch forks from "master", "master" is never
   merged into it again (either directly or indirectly).

 * Once a topic branch is fully cooked and merged into "master",
   it is deleted.  If you need to build on top of it to correct
   earlier mistakes, a new topic branch is created by forking at
   the tip of the "master".  This is not strictly necessary, but
   it makes it easier to keep your history simple.

 * Whenever you need to test or publish your changes to topic
   branches, merge them into "next" branch.

The script, being an example, hardcodes the publish branch name
to be "next", but it is trivial to make it configurable via
$GIT_DIR/config mechanism.

With this workflow, you would want to know:

(1) ... if a topic branch has ever been merged to "next".  Young
    topic branches can have stupid mistakes you would rather
    clean up before publishing, and things that have not been
    merged into other branches can be easily rebased without
    affecting other people.  But once it is published, you would
    not want to rewind it.

(2) ... if a topic branch has been fully merged to "master".
    Then you can delete it.  More importantly, you should not
    build on top of it -- other people may already want to
    change things related to the topic as patches against your
    "master", so if you need further changes, it is better to
    fork the topic (perhaps with the same name) afresh from the
    tip of "master".

Let's look at this example:

		   o---o---o---o---o---o---o---o---o---o "next"
		  /       /           /           /
		 /   a---a---b A     /           /
		/   /               /           /
	       /   /   c---c---c---c B         /
	      /   /   /             \         /
	     /   /   /   b---b C     \       /
	    /   /   /   /             \     /
    ---o---o---o---o---o---o---o---o---o---o---o "master"


A, B and C are topic branches.

 * A has one fix since it was merged up to "next".

 * B has finished.  It has been fully merged up to "master" and "next",
   and is ready to be deleted.

 * C has not merged to "next" at all.

We would want to allow C to be rebased, refuse A, and encourage
B to be deleted.

To compute (1):

	git rev-list ^master ^topic next
	git rev-list ^master        next

	if these match, topic has not merged in next at all.

To compute (2):

	git rev-list master..topic

	if this is empty, it is fully merged to "master".

DOC_END







SatNav/.git/hooks/pre-receive.sample

#!/bin/sh
#
# An example hook script to make use of push options.
# The example simply echoes all push options that start with 'echoback='
# and rejects all pushes when the "reject" push option is used.
#
# To enable this hook, rename this file to "pre-receive".

if test -n "$GIT_PUSH_OPTION_COUNT"
then
	i=0
	while test "$i" -lt "$GIT_PUSH_OPTION_COUNT"
	do
		eval "value=\$GIT_PUSH_OPTION_$i"
		case "$value" in
		echoback=*)
			echo "echo from the pre-receive-hook: ${value#*=}" >&2
			;;
		reject)
			exit 1
		esac
		i=$((i + 1))
	done
fi







SatNav/.git/hooks/prepare-commit-msg.sample

#!/bin/sh
#
# An example hook script to prepare the commit log message.
# Called by "git commit" with the name of the file that has the
# commit message, followed by the description of the commit
# message's source.  The hook's purpose is to edit the commit
# message file.  If the hook fails with a non-zero status,
# the commit is aborted.
#
# To enable this hook, rename this file to "prepare-commit-msg".

# This hook includes three examples. The first one removes the
# "# Please enter the commit message..." help message.
#
# The second includes the output of "git diff --name-status -r"
# into the message, just before the "git status" output.  It is
# commented because it doesn't cope with --amend or with squashed
# commits.
#
# The third example adds a Signed-off-by line to the message, that can
# still be edited.  This is rarely a good idea.

COMMIT_MSG_FILE=$1
COMMIT_SOURCE=$2
SHA1=$3

/usr/bin/perl -i.bak -ne 'print unless(m/^. Please enter the commit message/..m/^#$/)' "$COMMIT_MSG_FILE"

# case "$COMMIT_SOURCE,$SHA1" in
#  ,|template,)
#    /usr/bin/perl -i.bak -pe '
#       print "\n" . `git diff --cached --name-status -r`
# 	 if /^#/ && $first++ == 0' "$COMMIT_MSG_FILE" ;;
#  *) ;;
# esac

# SOB=$(git var GIT_COMMITTER_IDENT | sed -n 's/^\(.*>\).*$/Signed-off-by: \1/p')
# git interpret-trailers --in-place --trailer "$SOB" "$COMMIT_MSG_FILE"
# if test -z "$COMMIT_SOURCE"
# then
#   /usr/bin/perl -i.bak -pe 'print "\n" if !$first_line++' "$COMMIT_MSG_FILE"
# fi







SatNav/.git/hooks/push-to-checkout.sample

#!/bin/sh

# An example hook script to update a checked-out tree on a git push.
#
# This hook is invoked by git-receive-pack(1) when it reacts to git
# push and updates reference(s) in its repository, and when the push
# tries to update the branch that is currently checked out and the
# receive.denyCurrentBranch configuration variable is set to
# updateInstead.
#
# By default, such a push is refused if the working tree and the index
# of the remote repository has any difference from the currently
# checked out commit; when both the working tree and the index match
# the current commit, they are updated to match the newly pushed tip
# of the branch. This hook is to be used to override the default
# behaviour; however the code below reimplements the default behaviour
# as a starting point for convenient modification.
#
# The hook receives the commit with which the tip of the current
# branch is going to be updated:
commit=$1

# It can exit with a non-zero status to refuse the push (when it does
# so, it must not modify the index or the working tree).
die () {
	echo >&2 "$*"
	exit 1
}

# Or it can make any necessary changes to the working tree and to the
# index to bring them to the desired state when the tip of the current
# branch is updated to the new commit, and exit with a zero status.
#
# For example, the hook can simply run git read-tree -u -m HEAD "$1"
# in order to emulate git fetch that is run in the reverse direction
# with git push, as the two-tree form of git read-tree -u -m is
# essentially the same as git switch or git checkout that switches
# branches while keeping the local changes in the working tree that do
# not interfere with the difference between the branches.

# The below is a more-or-less exact translation to shell of the C code
# for the default behaviour for git's push-to-checkout hook defined in
# the push_to_deploy() function in builtin/receive-pack.c.
#
# Note that the hook will be executed from the repository directory,
# not from the working tree, so if you want to perform operations on
# the working tree, you will have to adapt your code accordingly, e.g.
# by adding "cd .." or using relative paths.

if ! git update-index -q --ignore-submodules --refresh
then
	die "Up-to-date check failed"
fi

if ! git diff-files --quiet --ignore-submodules --
then
	die "Working directory has unstaged changes"
fi

# This is a rough translation of:
#
#   head_has_history() ? "HEAD" : EMPTY_TREE_SHA1_HEX
if git cat-file -e HEAD 2>/dev/null
then
	head=HEAD
else
	head=$(git hash-object -t tree --stdin </dev/null)
fi

if ! git diff-index --quiet --cached --ignore-submodules $head --
then
	die "Working directory has staged changes"
fi

if ! git read-tree -u -m "$commit"
then
	die "Could not update working tree to new HEAD"
fi







SatNav/.git/hooks/update.sample

#!/bin/sh
#
# An example hook script to block unannotated tags from entering.
# Called by "git receive-pack" with arguments: refname sha1-old sha1-new
#
# To enable this hook, rename this file to "update".
#
# Config
# ------
# hooks.allowunannotated
#   This boolean sets whether unannotated tags will be allowed into the
#   repository.  By default they won't be.
# hooks.allowdeletetag
#   This boolean sets whether deleting tags will be allowed in the
#   repository.  By default they won't be.
# hooks.allowmodifytag
#   This boolean sets whether a tag may be modified after creation. By default
#   it won't be.
# hooks.allowdeletebranch
#   This boolean sets whether deleting branches will be allowed in the
#   repository.  By default they won't be.
# hooks.denycreatebranch
#   This boolean sets whether remotely creating branches will be denied
#   in the repository.  By default this is allowed.
#

# --- Command line
refname="$1"
oldrev="$2"
newrev="$3"

# --- Safety check
if [ -z "$GIT_DIR" ]; then
	echo "Don't run this script from the command line." >&2
	echo " (if you want, you could supply GIT_DIR then run" >&2
	echo "  $0 <ref> <oldrev> <newrev>)" >&2
	exit 1
fi

if [ -z "$refname" -o -z "$oldrev" -o -z "$newrev" ]; then
	echo "usage: $0 <ref> <oldrev> <newrev>" >&2
	exit 1
fi

# --- Config
allowunannotated=$(git config --type=bool hooks.allowunannotated)
allowdeletebranch=$(git config --type=bool hooks.allowdeletebranch)
denycreatebranch=$(git config --type=bool hooks.denycreatebranch)
allowdeletetag=$(git config --type=bool hooks.allowdeletetag)
allowmodifytag=$(git config --type=bool hooks.allowmodifytag)

# check for no description
projectdesc=$(sed -e '1q' "$GIT_DIR/description")
case "$projectdesc" in
"Unnamed repository"* | "")
	echo "*** Project description file hasn't been set" >&2
	exit 1
	;;
esac

# --- Check types
# if $newrev is 0000...0000, it's a commit to delete a ref.
zero=$(git hash-object --stdin </dev/null | tr '[0-9a-f]' '0')
if [ "$newrev" = "$zero" ]; then
	newrev_type=delete
else
	newrev_type=$(git cat-file -t $newrev)
fi

case "$refname","$newrev_type" in
	refs/tags/*,commit)
		# un-annotated tag
		short_refname=${refname##refs/tags/}
		if [ "$allowunannotated" != "true" ]; then
			echo "*** The un-annotated tag, $short_refname, is not allowed in this repository" >&2
			echo "*** Use 'git tag [ -a | -s ]' for tags you want to propagate." >&2
			exit 1
		fi
		;;
	refs/tags/*,delete)
		# delete tag
		if [ "$allowdeletetag" != "true" ]; then
			echo "*** Deleting a tag is not allowed in this repository" >&2
			exit 1
		fi
		;;
	refs/tags/*,tag)
		# annotated tag
		if [ "$allowmodifytag" != "true" ] && git rev-parse $refname > /dev/null 2>&1
		then
			echo "*** Tag '$refname' already exists." >&2
			echo "*** Modifying a tag is not allowed in this repository." >&2
			exit 1
		fi
		;;
	refs/heads/*,commit)
		# branch
		if [ "$oldrev" = "$zero" -a "$denycreatebranch" = "true" ]; then
			echo "*** Creating a branch is not allowed in this repository" >&2
			exit 1
		fi
		;;
	refs/heads/*,delete)
		# delete branch
		if [ "$allowdeletebranch" != "true" ]; then
			echo "*** Deleting a branch is not allowed in this repository" >&2
			exit 1
		fi
		;;
	refs/remotes/*,commit)
		# tracking branch
		;;
	refs/remotes/*,delete)
		# delete tracking branch
		if [ "$allowdeletebranch" != "true" ]; then
			echo "*** Deleting a tracking branch is not allowed in this repository" >&2
			exit 1
		fi
		;;
	*)
		# Anything else (is there anything else?)
		echo "*** Update hook: unknown type of update to ref $refname of type $newrev_type" >&2
		exit 1
		;;
esac

# --- Finished
exit 0
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SatNav/.git/info/exclude

# git ls-files --others --exclude-from=.git/info/exclude
# Lines that start with '#' are comments.
# For a project mostly in C, the following would be a good set of
# exclude patterns (uncomment them if you want to use them):
# *.[oa]
# *~







SatNav/.git/logs/HEAD

0000000000000000000000000000000000000000 0d516d876114f7bd86d1c01b24bd371931ba1684 Markus Haldorsen <markushaldorsen@gmail.com> 1687438843 +0200	clone: from https://github.com/NTNU-SmallSat-Lab/SatNav.git







SatNav/.git/logs/refs/heads/main

0000000000000000000000000000000000000000 0d516d876114f7bd86d1c01b24bd371931ba1684 Markus Haldorsen <markushaldorsen@gmail.com> 1687438843 +0200	clone: from https://github.com/NTNU-SmallSat-Lab/SatNav.git
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0000000000000000000000000000000000000000 0d516d876114f7bd86d1c01b24bd371931ba1684 Markus Haldorsen <markushaldorsen@gmail.com> 1687438843 +0200	clone: from https://github.com/NTNU-SmallSat-Lab/SatNav.git
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SatNav/.git/objects/pack/pack-f28d76ac41183cb4f2f685bb2a59970fc87b4051.pack

SatNav/.git/objects/pack/pack-f28d76ac41183cb4f2f685bb2a59970fc87b4051









SatNav/.git/packed-refs

# pack-refs with: peeled fully-peeled sorted 
0f99165fd7935c3b3a68ae9b6b74c437a419fabc refs/remotes/origin/development
0d516d876114f7bd86d1c01b24bd371931ba1684 refs/remotes/origin/main







SatNav/.git/refs/heads/main

0d516d876114f7bd86d1c01b24bd371931ba1684







SatNav/.git/refs/remotes/origin/HEAD

ref: refs/remotes/origin/main







SatNav/.gitignore

# Ignore the contents of the config.json file
src/data/config/config.json

# Ignore all files in the tle_files directory
src/data/tle_files/*
!src/data/tle_files/.gitkeep

# Ignore the de421.bsp file
/de421.bsp

# Ignore plan.txt
/plan.txt

# From here on out is default python .gitignore file
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

# C extensions
*.so

# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST

# PyInstaller
#  Usually these files are written by a python script from a template
#  before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

# Installer logs
pip-log.txt
pip-delete-this-directory.txt

# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/

# Translations
*.mo
*.pot

# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal

# Flask stuff:
instance/
.webassets-cache

# Scrapy stuff:
.scrapy

# Sphinx documentation
docs/_build/

# PyBuilder
target/

# Jupyter Notebook
.ipynb_checkpoints

# IPython
profile_default/
ipython_config.py

# pyenv
.python-version

# pipenv
#   According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
#   However, in case of collaboration, if having platform-specific dependencies or dependencies
#   having no cross-platform support, pipenv may install dependencies that don't work, or not
#   install all needed dependencies.
#Pipfile.lock

# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/

# Celery stuff
celerybeat-schedule
celerybeat.pid

# SageMath parsed files
*.sage.py

# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/

# Spyder project settings
.spyderproject
.spyproject

# Rope project settings
.ropeproject

# mkdocs documentation
/site

# mypy
.mypy_cache/
.dmypy.json
dmypy.json

# Pyre type checker
.pyre/







SatNav/LICENSE

                                 Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "[]"
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate
      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.

   Copyright [yyyy] [name of copyright owner]

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.
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# SatNav

SatNav is a Python program designed to calculate the precise UTC time when a satellite is closest to a target (e.g., the Moon) and then generate a quaternion to point the satellite's sensors towards that target.

## Installation

To install the program, clone the repository to your local machine:

`git clone https://github.com/NTNU-SmallSat-Lab/SatNav.git`

Then navigate to the root directory of the project and install the required dependencies using pip:

`pip3 install -r requirements.txt`

## Usage

### HYPSO-1 specific planning:
To plan for a capture of the Moon by HYPSO-1, run `python3 src/hypso_moon_script_cmd_generator.py`. 
For help on the script, run `python3 src/hypso_moon_script_cmd_generator.py -h`.
This script creates the necessary commands to create FC- and PC-scripts through NTNU-SmallSat_Lab's script generator, see https://github.com/NTNU-SmallSat-Lab/flight-scripts/tree/main/script_generator for more information.

### General usage:

To run the program, run `python3 src/main.py`.

The program will ask for the following parameters, empty inputs will use the default values:

* If the goal is to calculate a single capture, or plan a range of captures. 

**Default = 1**, i.e. single capture.

* The satellite catalog number (e.g. 25544 for the ISS). 

**Default = 51053**, i.e. HYPSO-1.

* The start time delta (in hours) for search from the current time. 

**Default = 0**, i.e. now.

* The end time delta (in hours) for search from the current time. 

**Default = 24**, i.e. 1 day from now.

* If the goal is to plan a range of captures, the interval (in hours) between each capture.

**Default = end_time-start_time/24**, i.e. one capture per day.

* The search interval (in days) for minimum time distance of search. 

**Default = 1/24/60**, i.e. 1 minute.

* Force flag to force download of TLE files. 

**Default = False**.

TLE files are required to calculate the satellites's position and velocity. These are automatically downloaded from Celestrak if they are not present in the 'data' directory, or if it is more than 24 hours since the last download. Else it is assumed that the TLE files are up to date.

The program will calculate the precise UTC time when the satellite is closest to the target and generate the quaternion to point the satellite's sensors. These are printed to the console. If the goal is to plan a range of captures, the program will generate a file called `plan.txt` in the root directory of the project. This file contains the UTC time, quaternion and off nadir angle for each capture.

## Supported Celestial Bodies
* 301 -> MOON
* 399 -> EARTH 
* 199 -> MERCURY
* 299 -> VENUS
* 499 -> MARS

## Known Issues

* There is no check to ensure that the target is not obscured by the Earth. This should not happen as it then clearly is not in it's closes point in orbit, but can happen if the search interval parameter is too low. This check will be added in the future.

* The program is under development, and unknown bugs are to be expected.

## License

This program is licensed under the Apache-2.0 License. See the `LICENSE` file for more information.







SatNav/requirements.txt

skyfield
numpy
scipy
config_reader
argparse
pyfiglet






SatNav/src/celestial_bodies.py

from skyfield.api import load
import datetime
from logger import logger as log
import json

tle_path = 'src/data/tle_files/tle-CATNR-'
config_path = 'src/data/config/config.json'
tle_url = 'http://celestrak.org/NORAD/elements/gp.php?CATNR='

def get_satellite(config, force_update=False):
    catnr = config['catnr']

    configured_at = config['configured_at']
    try:
        configured_at = datetime.datetime.strptime(configured_at, '%Y-%m-%d %H:%M:%S.%f')
    except: 
        configured_at = datetime.datetime.strptime(configured_at, '%Y-%m-%d %H:%M:%S')
    
    now = datetime.datetime.now()
    time_diff = (now - configured_at).total_seconds()
    
    # If time is more than 24 hours or force_update = True, reload the TLE file from URL
    if abs(time_diff) > 24*60*60 or force_update:
        log.info('Reloading TLE file from URL...')
        url = tle_url + str(catnr)
        filename = tle_path + str(catnr) + '.txt'
        satellites = load.tle_file(url, filename=filename, reload=True)
        sat = satellites[0]
        
        # Update configured_at
        config['last_pulled_tle'] = str(now)
        
        # Save config file
        with open(config_path, 'w') as f:
            json.dump(config, f)
    else:
        try:
            log.info('Loading TLE file from local file...')
            filename = tle_path + str(catnr) + '.txt'
            satellites = load.tle_file(filename)
            sat = satellites[0]
        except FileNotFoundError:
            log.info('TLE file not found, reloading from URL...')
            url = tle_url + str(catnr)
            filename = tle_path + str(catnr) + '.txt'
            satellites = load.tle_file(url, filename=filename, reload=True)
            sat = satellites[0]
                
    # Update config
    config['configured_at'] = str(now)
    config['name'] = sat.name
    
    # Save config file
    with open(config_path, 'w') as f:
        json.dump(config, f)
        
    return sat 

def get_satellite_from_catnr(catnr, tle_url, save=True):
    url = tle_url + str(catnr)
    if save:
        filename = tle_path + str(catnr) + '.txt'
        satellites = load.tle_file(url, filename=filename, reload=True)
    else:
        satellites = load.tle_file(url)
    sat = satellites[0]
    
    return sat

def get_target(target):
    print(target)
    planets = load('de421.bsp')
    target = planets[target]
    if target is not None:
        return target
    else:
        log.error('Target not supported. Exiting.')
        return

def get_positions(time, target, object, observer):
    target_position = observer.at(time).observe(target).position.km
    obj_position = object.at(time).position.km
    
    positions = [obj_position, target_position]

    return positions

def get_velocity(time,  object):
    obj_velocity = object.at(time).velocity.km_per_s
    
    return obj_velocity







SatNav/src/config_reader.py

import json
import os
from logger import logger as log

def read_config(config_file):
    # Check if config file exists or if contents are empty
    if not os.path.exists(config_file):
        log.info(f'Config file not found: {config_file}. Reading default config file.')
        
        # Read default config file
        default_config_path = os.path.join(os.path.dirname(config_file), 'defaults', os.path.basename(config_file))    
        config_file = create_config_from_default(default_config_path, save_path=config_file)
    elif os.path.getsize(config_file) == 0:
        log.info(f'Config file is empty: {config_file}. Reading default config file.')
        
        # Read default config file
        default_config_path = os.path.join(os.path.dirname(config_file), 'defaults', os.path.basename(config_file))    
        config_file = create_config_from_default(default_config_path, save_path=config_file)
    
    # Read the config file
    try:
        with open(config_file) as f:
            data = json.load(f)
    except(FileNotFoundError, json.JSONDecodeError) as e:
        log.error(f'Error reading config file: {e}')
        return None
    
    return data
    
def create_config_from_default(default_file, save_path=None):
    # Check if default config file exists
    if not os.path.exists(default_file):
        log.info(f'Default config file not found: {default_file}')
        return None
    
    # Read the default config file
    try: 
        with open(default_file) as f:
            data = json.load(f)
    except(FileNotFoundError, json.JSONDecodeError) as e:
        log.error(f'Error reading default config file: {e}')
        return None
    
    # Create config file
    config_file = os.path.join(os.path.dirname(default_file), os.path.basename(default_file).replace('default_', ''))
    try:
        with open(save_path, 'w') as f:
            json.dump(data, f, indent=4)
            log.info("Created config file from default at path " + config_file)
    except(FileNotFoundError, json.JSONDecodeError) as e:
        log.error(f'Error creating config file: {e}')
        return None
    
    return config_file






SatNav/src/data/config/defaults/config.json

{
    "configured_at": "1970-01-01 00:00:00",
    "last_pulled_tle": "1970-01-01 00:00:00",
    "configured_by": "admin",
    "log_level": "INFO",
    "name": "Hypso-1",
    "catnr": "51053"
}






SatNav/src/distances.py

import numpy as np
from skyfield.api import load, wgs84
from logger import logger as log

def distance_obj_to_target(t, obj, target, observer):
    """
    Compute the linear distance between an orbiting object and a target at time t.
    
    Arguments:
        t: skyfield time object
        obj: skyfield object
        target: skyfield object
        observer: skyfield object

    Returns:
        float, distance in km
    """
    
    target_position = observer.at(t).observe(target).position.km

    obj_position = obj.at(t).position.km
    
    return np.linalg.norm(target_position - obj_position)

def get_minimum_distance(t_start, t_end, obj, target, observer, search_interval=1):
    """
    Find the time when the distance between an object and a target is minimum within a timeframe.
    
    Arguments: 
        t_start: skyfield time object
        t_end: skyfield time object
        obj: skyfield object
        target: skyfield object
        observer: skyfield object
        search_interval: float, time step in minutes
        
    Returns:
        min_d: float, minimum distance in km
        min_t: datetime object, time of minimum distance
    """
    
    search_interval = search_interval * 1/24/60 # Transform from minutes to days
    
    min_d = distance_obj_to_target(t_start, obj, target, observer)
    min_t = t_start
    total_iterations = (t_end.tt - t_start.tt) / search_interval
    iter = 0
    
    log.debug('Looking for minimum distance between {} and {} from {} to {} with search_interval {}.'.format(obj.name, target, t_start.tt_strftime('%Y-%m-%d %H:%M:%S'), t_end.tt_strftime('%Y-%m-%d %H:%M:%S'), search_interval))
    while t_start.tt + search_interval*iter < t_end.tt:
        progress = iter / total_iterations * 100
        print(f"Progress: {progress:.1f}%", end='\r')
        # print('Completed ', progress, "%", end='\r')
        
        iter += 1
        t = t_start + search_interval*iter
        d = distance_obj_to_target(t, obj, target, observer)
        if d < min_d:
            min_t = t
            min_d = d
            
    log.debug('Minimum distance found at {} with distance {} km.'.format(min_t.utc_datetime(), min_d))
    min_t = min_t.utc_datetime()
    
    return min_d, min_t






SatNav/src/gp.php

HYPSO-1                 
1 51053U 22002BX  23073.19446912  .00013866  00000+0  72186-3 0  9991
2 51053  97.4434 139.7613 0007722 211.9858 212.3735 15.16108932 64222







SatNav/src/hypso_moon_script_cmd_generator.py

import argparse
from celestial_bodies import get_satellite_from_catnr, get_target
from datetime import timedelta
from distances import distance_obj_to_target
import numpy as np
import math
from logger import logger as log
from logger import set_log_level
from planner import multi_planner

from skyfield.api import load

set_log_level('INFO')

def plan_hypso_moon_capture(t_start_delta=0, t_end_delta=72, intervals=3, search_interval=1):
    """
    Calculates the minimum distance between the satellite and target for a given time frame and
    the corresponding quaternion for each time frame.

    :param t_start_delta: The start time of the time frame.
    :param t_end_delta: The end time of the time frame.
    :param intervals: The number of intervals to split the time frame into.
    :param search_interval: The search_interval for the minimum distance calculation.
    :return: A list of tuples containing the minimum distance time and corresponding quaternion for
             each time frame.
    """
    
    ts = load.timescale()
    t_now = ts.now()

    tle_url = 'http://celestrak.org/NORAD/elements/gp.php?CATNR='
    sat = get_satellite_from_catnr(51053, tle_url, True)
    target = get_target(301)
    planets = load('de421.bsp')
    earth = planets['earth']
    moon = planets['moon']
    sun = planets['sun']
    
    t_start = t_now + timedelta(hours=t_start_delta)
    t_end = t_now + timedelta(hours=t_end_delta)
    
    results = multi_planner(t_start, t_end, sat, target, earth, intervals, search_interval, ts)

    results_dict = {}
    for i, result in enumerate(results):
        off_nadir_angle = result[2]
        quaternions = result[1]
        capture_time_utc = result[0]
        capture_start = int(result[0].timestamp())
        total_time = calculate_total_capture_time(off_nadir_angle)
        # capture_time_start = calculate_capture_start_time(capture_time, total_time)
        frames, fps = calculate_frames(total_time)
        t_start = ts.utc(capture_time_utc) 
        d_sun_moon = round(distance_obj_to_target(t_start, sun, moon, sun))
        d_sat_moon = round(distance_obj_to_target(t_start, sat, moon, earth))
        
        results_dict[f'capture_{i+1}'] = {'datetime_center': capture_time_utc, 'capture_start': capture_start, 'qs (r)': quaternions[0], 'qx (l)': quaternions[1], 'qy (j)': quaternions[2], 'qz (k)': quaternions[3], 'fps': fps, 'frames': frames, 'total_time': total_time, 'off_nadir_angle': off_nadir_angle, 'd_sun_moon': d_sun_moon, 'd_sat_moon': d_sat_moon}

    return results_dict
    
def calculate_total_capture_time(off_nadir_angle):
    """
    Calculates the total capture time for a given off-nadir angle.

    :param off_nadir_angle: The off-nadir angle.
    :return: The total capture time in seconds.
    """
    
    off_nadir_angle_rad = np.deg2rad(off_nadir_angle)
    extra_rotation_speed = (360/(95*60))*-np.cos(off_nadir_angle_rad)
    moon_fov = 0.52 # moon's field of view in degrees
    sat_speed = 7.6 # satellite's linear speed in km/s
    moon_diameter = 3474 # moon's diameter in km

    total_time = 1/(math.sqrt((sat_speed / moon_diameter)**2 + (extra_rotation_speed / moon_fov)**2))

    return total_time
    
def calculate_capture_start_time(capture_center_time, total_time):
    """
    Calculates the capture start time for a given capture time and off-nadir angle.

    :param capture_time: The capture time.
    :param total_time: The total capture time.
    :return: The capture start time.
    """
    
    capture_start_time = capture_center_time - timedelta(seconds=total_time/2)
    capture_start_time = capture_start_time.timestamp()

    return int(capture_start_time)

def calculate_frames(total_time):
    target_frames = 106
    target_fps = 20

    # Calculate the required FPS to capture the object in the given time
    required_fps = target_frames / total_time
    required_fps = max(min(required_fps, target_fps), 1)  # Ensure the FPS is between 1 and 20

    # Calculate the number of frames based on the required FPS
    num_frames = round(total_time * required_fps)

    return num_frames, required_fps

def create_script_generator_cmd(capture, buff_file=33, append=True):
    """ 
    Creates the command to run the script generator.
     
    :param capture: The capture dictionary.
    :param buff_file: The buff file.
    :return: The command to run the script generator.
    """
    
    capture_start = capture['capture_start']
    
    r = capture['qs (r)']
    l = capture['qx (l)']
    j = capture['qy (j)']
    k = capture['qz (k)']
    
    if k < 1e-15:
        k = 0.0
    
    fps = math.floor(capture['fps'])
    frames = capture['frames']
    
    # Adjust fps
    fps = fps/2
    fps = math.ceil(fps)
    
    # Add the datetime and off-nadir angle to the command after %
    if append:
        # cmd = f'-b {buff_file} -u {capture_start} -s -a -p nonbinned -n moon -d -e 50.0 -r {r} -l {l} -j {j} -k {k} -fps {fps} -fr {frames} % {capture["datetime_center"]}, off-nadir: {capture["off_nadir_angle"]}, d_sun_moon: {capture["d_sun_moon"]} km, d_sat_moon: {capture["d_sat_moon"]} km'
        cmd = f'-b {buff_file} -u {capture_start} -s -a -p nonbinned -n moon -d -e 50.0 -r {r} -l {l} -j {j} -k {k} -fps {fps} % {capture["datetime_center"]}, off-nadir: {capture["off_nadir_angle"]}, d_sun_moon: {capture["d_sun_moon"]} km, d_sat_moon: {capture["d_sat_moon"]} km'
    else:
        # cmd = f'-b {buff_file} -u {capture_start} -s -p nonbinned -n moon -d -e 50.0 -r {r} -l {l} -j {j} -k {k} -fps {fps} -fr {frames} % {capture["datetime_center"]}, off-nadir: {capture["off_nadir_angle"]}, d_sun_moon: {capture["d_sun_moon"]} km, d_sat_moon: {capture["d_sat_moon"]} km'
        cmd = f'-b {buff_file} -u {capture_start} -s -a -p nonbinned -n moon -d -e 50.0 -r {r} -l {l} -j {j} -k {k} -fps {fps} % {capture["datetime_center"]}, off-nadir: {capture["off_nadir_angle"]}, d_sun_moon: {capture["d_sun_moon"]} km, d_sat_moon: {capture["d_sat_moon"]} km'

    return cmd

def get_script_generator_cmds(start_time_delta, end_time_delta, intervals, search_interval, buff_file, append):
    t_now = load.timescale().now()
    t_start = t_now + timedelta(hours=start_time_delta)
    t_end = t_now + timedelta(hours=end_time_delta)
    log.info('Using start time: {} UTC'.format(t_start.tt_strftime('%Y-%m-%d %H:%M:%S')))
    log.info('Using end time: {} UTC'.format(t_end.tt_strftime('%Y-%m-%d %H:%M:%S')))
    log.info('Using {} intervals with {} seconds between each search'.format(intervals, round(search_interval*60)))

    plans = plan_hypso_moon_capture(start_time_delta, end_time_delta, intervals=intervals, search_interval=search_interval)

    # log.info('Generated the following plans:')
    # for key in plans:
    #     log.info('Capture {}:'.format(key))
    #     log.info('\tCapture time utc: {}'.format(plans[key]['datetime_center']))
    #     log.info('\tCapture time unix: {}'.format(plans[key]['capture_start']))
    #     log.info('\tOff-nadir angle: {}'.format(plans[key]['off_nadir_angle']))
    #     log.info('\tTotal capture time: {}'.format(plans[key]['total_time']))
    #     log.info('\tFrames: {}'.format(plans[key]['frames']))
    #     log.info('\tFPS: {}'.format(plans[key]['fps']))
    #     log.info('')
    
    append = True
    if len(plans) <= 1:
        append = False
        
    log.info('Generated the following commands:')
    for key in plans:
        cmd = create_script_generator_cmd(plans[key], append=append)
        print(cmd)

default_start_delta = 0
default_end_delta = 24
default_search_interval = 1
default_buff = 33
default_append = False

# Add the command line arguments
parser = argparse.ArgumentParser(description='Generate the script generator commands for moon captures.')
parser.add_argument('-s', '--start', type=int, default=0, help=(f'The start time delta in hours. Default is {default_start_delta}.'))
parser.add_argument('-e', '--end', type=int, default=24, help=(f'The end time delta in hours. Default is {default_end_delta}.'))
parser.add_argument('-i', '--intervals', type=int, default=None, help='The number of intervals to use. Default is (-e - -s)/24 (one capture per day).')
parser.add_argument('-t', '--time_interval', type=float, default=default_search_interval, help=(f'The time interval to use when searching. Default is {default_search_interval} (1, i.e. every minute).'))
parser.add_argument('-b', '--buff', type=int, default=default_buff, help=(f'The buff file to use. Defualt is {default_buff}.'))
parser.add_argument('-a', '--append', type=bool, default=default_append, help=(f'Set to true if you plan multiple captures. Default is {default_append}.'))

# Parse the command line arguments
args = parser.parse_args()
args.intervals = args.intervals if args.intervals is not None else int((args.end - args.start) / 24)
 
get_script_generator_cmds(args.start, args.end, args.intervals, args.time_interval, args.buff, args.append)






SatNav/src/logger.py

import logging

class CustomFormatter(logging.Formatter):

    grey = "\x1b[38;20m"
    blue = "\x1b[34;20m"
    yellow = "\x1b[33;20m"
    red = "\x1b[31;20m"
    bold_red = "\x1b[31;1m"
    reset = "\x1b[0m"
    format = "%(asctime).19s - %(levelname)s - %(message)s"

    FORMATS = {
        logging.DEBUG: format.replace("%(levelname)s", grey + "%(levelname)s" + reset),
        logging.INFO: format.replace("%(levelname)s", blue + "%(levelname)s" + reset),
        logging.WARNING: format.replace("%(levelname)s", yellow + "%(levelname)s" + reset),
        logging.ERROR: format.replace("%(levelname)s", red + "%(levelname)s" + reset),
        logging.CRITICAL: format.replace("%(levelname)s", bold_red + "%(levelname)s" + reset)
    }

    def format(self, record):
        log_fmt = self.FORMATS.get(record.levelno)
        formatter = logging.Formatter(log_fmt)
        return formatter.format(record)
    
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)

ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)

ch.setFormatter(CustomFormatter())

logger.addHandler(ch)

def set_log_level(level):
    logger.setLevel(level)
    ch.setLevel(level)






SatNav/src/main.py

from config_reader import read_config
from celestial_bodies import *
from distances import *
from quaternions import get_quaternion
from logger import logger as log
from logger import set_log_level
import planner
from skyfield.api import load
from datetime import timedelta
from pyfiglet import Figlet
import json

config_path = 'src/data/config/config.json'

planets = load('de421.bsp')
earth = planets['earth']

def single_planner(t_start, t_end, sat, target, observer, search_interval, ts):
    log.info('Single planner')
    min_distance_time_ts, q_ob, off_nadir = planner.single_planner(t_start, t_end, sat, target, observer, search_interval, ts)
    
    log.info('----------------------------------------------------')
    log.info('Time = {}'.format(min_distance_time_ts))
    log.info('Qx = {:.10f}'.format(q_ob[1]))
    log.info('Qy = {:.10f}'.format(q_ob[2]))
    log.info('Qz = {:.10f}'.format(q_ob[3]))
    log.info('Qs = {:.10f}'.format(q_ob[0]))
    log.info('Off-nadir angle = {:.10f} degrees'.format(off_nadir))
    log.info('----------------------------------------------------')
    
def multi_planner(t_start, t_end, sat, target, intervals, earth, search_interval, ts):
    log.info('Multi planner')
    plan = planner.multi_planner(t_start, t_end, sat, target, earth, intervals, search_interval, ts)
    
    log.info('----------------------------------------------------')
    count = 1
    for time, quaternion, off_nadir in plan:
        log.info('Capture nr. {}'.format(count))
        log.info('Time = {}'.format(time))
        log.info('Qx = {:.10f}'.format(quaternion[1]))
        log.info('Qy = {:.10f}'.format(quaternion[2]))
        log.info('Qz = {:.10f}'.format(quaternion[3]))
        log.info('Qs = {:.10f}'.format(quaternion[0]))
        log.info('Off-nadir angle = {:.10f} degrees\n'.format(off_nadir))
        count += 1
    
    log.info('----------------------------------------------------')
    
    # Save plan to txt file
    with open('plan.txt', 'w') as f:
        f.write('Capture nr. | Time | Qx | Qy | Qz | Qs | Off-nadir angle\n')
        count = 1
        for time, quaternion, off_nadir in plan:
            f.write('{} | {} | {:.10f} | {:.10f} | {:.10f} | {:.10f} | {:.10f}\n'.format(count, time, quaternion[1], quaternion[2], quaternion[3], quaternion[0], off_nadir))
            count += 1
    
if __name__ == '__main__':
    ts = load.timescale()
    t_now = ts.now()
    
    config = read_config(config_path)
    if not config:
        log.error('Error reading config file. Exiting.')
        exit
        
    set_log_level(config['log_level'])
    
    f = Figlet(font='slant')
    print(f.renderText('SatNav'))
    print('\033[34m' + '\033[1m' + '--------Satellite Targeting Tool--------\n' + '\033[0m', end='')
    print('Enter the following information to configure the tool. Press enter to use default value.\n', end='')
    
    mode = input('Enter ' + '\033[34m' + '1' + '\033[0m' + ' to run in single planner mode, or ' + '\033[34m' + '2' + '\033[0m' + ' to run in multi planner mode (default is ' + '\033[34m' + '1' + '\033[0m' + '): ') or '1'
    config['catnr'] = int(input('Enter satellite catalog number (default is ' + '\033[34m' + '51053' + '\033[0m' + ' (HYPSO-1)): ') or 51053)
    target = int(input('Enter target segment number (default is ' + '\033[34m' + '301' + '\033[0m' + ' (the moon). See README for supported bodies): ') or 301)
    start_time_delta = float(input('Enter hours in the future for start time of search (default is ' + '\033[34m' + '0' + '\033[0m' + ' (now)): ') or 0)
    end_time_delta = float(input('Enter hours in the future for end time of search (default is ' + '\033[34m' + '24' + '\033[0m' + ' (1 day from now)): ') or 24)
    if mode == '2':
        intervals = int(input('Enter number of intervals to search (default is ' + '\033[34m' + 'end_time_delta/24' + '\033[0m' + ' (one capture per day)): ') or round((end_time_delta-start_time_delta)/24))
        
    search_interval = float(input('Enter search_interval for minimum distance search (default is 1 (1 minute)): ') or 1)
    force = input('Enter ' + '\033[34m' + 'true' + '\033[0m' + ' to force update TLE data, or press Enter to skip: ').lower() == 'true'
    
    t_start = t_now + timedelta(hours=start_time_delta)
    t_end = t_now + timedelta(hours=end_time_delta)
    
    log.info('Using satellite catalog number: ' + str(config['catnr']))
    log.info('Using start time: {} UTC'.format(t_start.tt_strftime('%Y-%m-%d %H:%M:%S')))
    log.info('Using end time: {} UTC'.format(t_end.tt_strftime('%Y-%m-%d %H:%M:%S')))
    
    sat = get_satellite(config, force)
    target = get_target(target)
    log.info('Config: ' + json.dumps(config, indent=4))
    log.info('Epoch: ' + str(sat))
    
    if mode == '1':
        single_planner(t_start, t_end, sat, target, earth, search_interval, ts)
    elif mode == '2':
        multi_planner(t_start, t_end, sat, target, intervals, earth, search_interval, ts)






SatNav/src/moon_sun_earth_angle.py

from celestial_bodies import *
from distances import *
from skyfield.api import load
import numpy as np
from datetime import timedelta

def distance_pos(t, pos1, pos2):
    return np.linalg.norm(pos1 - pos2)

def position_body(t, body, observer):
    body_position = observer.at(t).observe(body).position.km
    
    return body_position

def calculate_angle(pos_sun, pos_earth, pos_moon):
    # Convert positions to numpy arrays for easier calculations
    pos_sun = np.array(pos_sun)
    pos_earth = np.array(pos_earth)
    pos_moon = np.array(pos_moon)

    # Calculate vectors from Earth to Sun and Moon
    vec_sun_earth = pos_sun - pos_earth
    vec_moon_earth = pos_moon - pos_earth

    # Calculate the dot product between the vectors
    dot_product = np.dot(vec_sun_earth, vec_moon_earth)

    # Calculate the magnitudes of the vectors
    magnitude_sun_earth = np.linalg.norm(vec_sun_earth)
    magnitude_moon_earth = np.linalg.norm(vec_moon_earth)

    # Calculate the angle in radians using the arccosine function
    angle_rad = np.arccos(dot_product / (magnitude_sun_earth * magnitude_moon_earth))

    # Convert the angle to degrees
    angle_deg = np.degrees(angle_rad)

    return angle_deg

def calculate_angle_2(pos_sun, pos_earth, pos_moon):
    # calculate the angle between the moon, earth and sun, so that on full moon the angle is 0 degrees
    # and on new moon the angle is 180 degrees. This is opposite of the angle calculated in calculate_angle()
    
    # Convert positions to numpy arrays for easier calculations
    pos_sun = np.array(pos_sun)
    pos_earth = np.array(pos_earth)
    pos_moon = np.array(pos_moon)
    
    # Calculate vectors from Earth to Sun and Moon
    vec_sun_earth = pos_sun - pos_earth
    vec_moon_earth = pos_moon - pos_earth
    
    # Calculate the dot product between the vectors
    dot_product = np.dot(vec_sun_earth, vec_moon_earth)
    
    # Calculate the magnitudes of the vectors
    magnitude_sun_earth = np.linalg.norm(vec_sun_earth)
    magnitude_moon_earth = np.linalg.norm(vec_moon_earth)
    
    # Calculate the angle in radians using the arccosine function
    angle_rad = np.arccos(dot_product / (magnitude_sun_earth * magnitude_moon_earth))
    
    # Convert the angle to degrees
    angle_deg = np.degrees(angle_rad)
    
    # Calculate the angle between the moon, earth and sun
    angle_deg = 180 - angle_deg
    
    return angle_deg

ts = load.timescale()
t_now = ts.now()
# t_var = t_now - timedelta(days = 1)
# 44 days, 21 hours, 34 minutes and 42 seconds
t_var = t_now - timedelta(days = 44, hours = 21, minutes = 34, seconds = 42)

planets = load('de421.bsp')
earth = planets['earth']
moon = planets['moon']
sun = planets['sun']

pos_sun = position_body(t_var, sun, earth)
pos_earth = position_body(t_var, earth, earth)
pos_moon = position_body(t_var, moon, earth)
print('pos_sun: ', pos_sun)
print('pos_earth: ', pos_earth)
print('pos_moon: ', pos_moon)

distance_earth_sun = distance_pos(t_var, pos_sun, pos_earth)
distance_earth_moon = distance_pos(t_var, pos_moon, pos_earth)

print('distance earth sun: ', distance_earth_sun)
print('distance earth moon: ', distance_earth_moon)

# Calculate the angle between sun, earth and moon at specific times
angle = calculate_angle(pos_sun, pos_earth, pos_moon)
angle_2 = calculate_angle_2(pos_sun, pos_earth, pos_moon)
print('Angle: ', angle)
print('Angle 2: ', angle_2)






SatNav/src/planner.py

from distances import get_minimum_distance
from quaternions import get_quaternion, get_off_nadir_angle, get_maximum_off_nadir_angle

from logger import logger as log

def multi_planner(t_start, t_end, sat, target, observer, intervals, search_interval, ts):
    """
    Calculates the minimum distance between the satellite and target for a given time frame and
    the corresponding quaternion for each time frame.

    :param t_start: The start time of the time frame.
    :param t_end: The end time of the time frame.
    :param sat: The satellite object.
    :param target: The target object.
    :param observer: The observer object.
    :param intervals: The number of intervals to split the time frame into.
    :param search_interval: The search_interval for the minimum distance calculation.
    :param ts: The timescale object.
    :return: A list of tuples containing the minimum distance time and corresponding quaternion for
             each time frame.
    """
    
    duration = (t_end - t_start) / intervals
    
    results = []
    for i in range(intervals):
        # log.info('Completed {}%'.format(round(i / intervals * 100, 2)))
        log.info(f'Completed {i}/{intervals}')
        # Calculate the start and end times for the current time frame
        new_t_start = t_start + i * duration
        new_t_end = new_t_start + duration
        
        # # Calculate the minimum distance and corresponding quaternion for the current time frame
        # _, min_distance_time_datetime = get_minimum_distance(new_t_start, new_t_end, sat, target, observer, search_interval=search_interval)
        # min_distance_time_ts = ts.from_datetime(min_distance_time_datetime)
        # quaternion = get_quaternion(min_distance_time_ts, observer, target, sat)
        # off_nadir_angle = get_off_nadir_angle(min_distance_time_ts, observer, target, sat)
        
        # # Store the results for the current time frame
        # results.append((min_distance_time_datetime, quaternion, off_nadir_angle))
        
        # Calculate the maximum off nadir angle and corresponding quaternion for the current time frame
        off_nadir_angle, max_off_nadir_time_datetime = get_maximum_off_nadir_angle(new_t_start, new_t_end, sat, target, observer, search_interval=search_interval)
        max_off_nadir_time_ts = ts.from_datetime(max_off_nadir_time_datetime)
        quaternion = get_quaternion(max_off_nadir_time_ts, observer, target, sat)
        
        # Store the results for the current time frame
        results.append((max_off_nadir_time_datetime, quaternion, off_nadir_angle))
    
    return results

def single_planner(t_start, t_end, sat, target, observer, search_interval, ts):
    """
    Calculates the minimum distance between the satellite and target for a given time frame and
    the corresponding quaternion.

    :param t_start: The start time of the time frame.
    :param t_end: The end time of the time frame.
    :param sat: The satellite object.
    :param target: The target object.
    :param observer: The observer object.
    :param search_interval: The search_interval for the minimum distance calculation.
    :param ts: The timescale object.
    :return: The minimum distance time and corresponding quaternion.
    """
    
    # _, min_distance_time_datetime = get_minimum_distance(t_start, t_end, sat, target, observer, search_interval=search_interval) 
    # min_distance_time_ts = ts.from_datetime(min_distance_time_datetime)
    # quaternion = get_quaternion(min_distance_time_ts, observer, target, sat)
    # off_nadir_angle = get_off_nadir_angle(min_distance_time_ts, observer,target, sat)
    
    # return min_distance_time_datetime, quaternion, off_nadir_angle
    
    off_nadir_angle, max_off_nadir_time_datetime = get_maximum_off_nadir_angle(t_start, t_end, sat, target, observer, search_interval=search_interval)
    max_off_nadir_time_ts = ts.from_datetime(max_off_nadir_time_datetime)
    quaternion = get_quaternion(max_off_nadir_time_ts, observer, target, sat)
    
    return max_off_nadir_time_datetime, quaternion, off_nadir_angle
    






SatNav/src/quaternions.py

import numpy as np
import scipy.linalg
from logger import logger as log
from celestial_bodies import get_positions, get_velocity
import math

def eci2LVLH(r_i, v_i):
    z_o = -r_i / np.linalg.norm(r_i)
    y_o = -np.cross(r_i, v_i)/np.linalg.norm(np.cross(r_i, v_i))
    x_o = np.cross(y_o, z_o)
    R_o_i = np.array([x_o, y_o, z_o])
    R_i_o = R_o_i.T
    r_o = np.dot(R_i_o, r_i) # position in orbit frame [km]
    v_o = np.dot(R_i_o, v_i) # velocity in orbit frame [km/s]
    
    return r_o, v_o, R_o_i

def rot_rodrigues(a, b, theta):
    a_hat = a/np.linalg.norm(a)
    b_hat = b/np.linalg.norm(b)
    lmbda = np.cross(a_hat, b_hat)
    lmbda_norm = np.linalg.norm(lmbda)
    if lmbda_norm < 1e-12:
        lmbda_hat = lmbda
    else:
        lmbda_hat = lmbda/lmbda_norm
    skew = skew_sym(theta*lmbda_hat)
    R = scipy.linalg.expm(skew)

    return R

        
def skew_sym(x):
    S = [[0, -x[2], x[1]],
        [x[2], 0, -x[0]],
        [-x[1], x[0], 0]]
    
    return S
    
def rot2q(R):  
    theta = np.arccos((np.trace(R)-1)/2)
    if np.isclose(theta, 0):
        e_hat = np.array([0, 0, 0])
    else:
        e_hat = 1/(2*np.sin(theta))*np.array([R[1,2]-R[2,1], R[2,0]-R[0,2], R[0,1]-R[1,0]])

    q_0 = np.cos(theta/2)
    q_1 = e_hat[0]*np.sin(theta/2)
    q_2 = e_hat[1]*np.sin(theta/2)
    q_3 = e_hat[2]*np.sin(theta/2)
    q = np.array([q_0, q_1, q_2, q_3])
    q = q/np.linalg.norm(q)
    
    return q

def get_quaternion(time, earth, target, sat):
    sat_pos, target_pos = get_positions(time, target, sat, earth)
    sat_vel = get_velocity(time, sat)
    log.debug('sat_pos: {}'.format(sat_pos))
    log.debug('sat_vel: {}'.format(sat_vel))

    [r_o, v_o, R_io] = eci2LVLH(sat_pos, sat_vel)

    target_pos_eci = target_pos

    relative_pos = target_pos_eci - sat_pos
    relative_pos_orbit = np.dot(R_io, relative_pos)

    target_unit_vector = relative_pos_orbit / np.linalg.norm(relative_pos_orbit)
    
    # Calculate the nadir vector in the orbit frame
    z_o_hat_o = np.array([0, 0, 1])

    cos_off_nadir_angle = np.dot(target_unit_vector, z_o_hat_o)
    off_nadir_angle = math.degrees(np.arccos(cos_off_nadir_angle))

    # Calculate the rotation quaternion
    z_b_hat_o = target_unit_vector
    R_bo = rot_rodrigues(z_o_hat_o, z_b_hat_o, np.radians(off_nadir_angle))
    R_ob = R_bo.T
    q_ob = rot2q(R_ob)
    
    # log.debug('off_nadir_angle: {}'.format(off_nadir_angle))

    return q_ob

def get_off_nadir_angle(time, earth, target, sat):
    sat_pos, target_pos = get_positions(time, target, sat, earth)
    sat_vel = get_velocity(time, sat)
    log.debug('sat_pos: {}'.format(sat_pos))
    log.debug('sat_vel: {}'.format(sat_vel))

    [r_o, v_o, R_io] = eci2LVLH(sat_pos, sat_vel)

    target_pos_eci = target_pos

    relative_pos = target_pos_eci - sat_pos
    relative_pos_orbit = np.dot(R_io, relative_pos)

    target_unit_vector = relative_pos_orbit / np.linalg.norm(relative_pos_orbit)
    
    # Calculate the nadir vector in the orbit frame
    z_o_hat_o = np.array([0, 0, 1])

    cos_off_nadir_angle = np.dot(target_unit_vector, z_o_hat_o)
    off_nadir_angle = math.degrees(np.arccos(cos_off_nadir_angle))

    return off_nadir_angle

def get_maximum_off_nadir_angle(t_start, t_end, obj, target, observer, search_interval = 1):
    """
    Find the time when the off nadir angle between a satellite and a target is at minimum within a timeframe.
    """
    
    search_interval = search_interval * 1/24/60 # Transform from minutes to days
    
    max_off_nadir = get_off_nadir_angle(t_start, observer, target, obj)
    max_t = t_start
    total_iterations = (t_end.tt - t_start.tt) / search_interval
    iter = 0
    
    log.debug('Looking for maximum off nadir angle between {} and {} from {} to {} with search_interval {}.'.format(obj.name, target, t_start.tt_strftime('%Y-%m-%d %H:%M:%S'), t_end.tt_strftime('%Y-%m-%d %H:%M:%S'), search_interval))
    while t_start.tt + search_interval*iter < t_end.tt:
        progress = iter / total_iterations * 100
        print(f"Progress: {progress:.1f}%", end="\r")
        
        iter += 1 
        t = t_start + search_interval*iter
        off_nadir = get_off_nadir_angle(t, observer, target, obj)
        if off_nadir > max_off_nadir:
            max_t = t
            max_off_nadir = off_nadir
    
    log.debug('Maximum off nadir angle found at {} with angle {} deg.'.format(max_t.utc_datetime(), max_off_nadir))
    max_t = max_t.utc_datetime()
    
    return max_off_nadir, max_t
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