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Abstract

The commercial market has witnessed a remarkable surge in the prevalence
of small, low-cost unmanned aerial vehicles (UAVs) in recent times. However,
this rapid growth raises a crucial concern: ensuring the safe operation of these
UAVs. Among the various hazards they face, in-flight icing emerges as a signi-
ficant threat that can seriously impact the performance and stability of UAVs.
Consequently, it poses an escalating risk to their overall safety. To address this
issue, the primary objective of this master’s thesis is to devise a cost-effective
and efficient methodology for model-based in-flight icing detection specifically
designed for fixed-wing UAVs.

The research begins with the design of preliminary system identification
experiments optimized for the identification of the dynamics at the dominant
frequencies in the lateral and longitudinal modes. The data gathered is ana-
lyzed by utilizing conventional aircraft system identification algorithms such
as the equation-error method and the output error method. These methods
are designed to identify stability and control derivatives of the Skywalker X8
fixed-wing UAV in order to model its dynamics in normal and icing conditions.
Despite the basic sensor suite and strong winds during the flight experiments,
the equation-error method resulted in models with R2 scores of around 0.6
when compared with the observed dynamics.

The methodology investigated in this thesis combines the identified models
of clean and iced airframes with a multiple-model adaptive estimation frame-
work. This is driven by a bank of extended Kalman filters (EKFs) in order to
detect and quantify the presence of icing in flight. Due to the UAV crashing
during flight experiments, the iced airframe model was not identified. Instead,
the icing detection scheme proved its potential in simulations using other sets
of coefficients. It was able to correctly detect and quantify icing levels in a
selection of simulated scenarios of flight in icing conditions, identifying the
correct icing severity after about 5 s on average.
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Sammendrag

Det kommersielle markedet har vært vitne til en bemerkelsesverdig økning i
forekomsten av ubemannede fly (UAV-er) i nyere tid. Denne raske veksten
har ført til økende bekymring rundt sikker bruk av UAV-er. Blant de ulike
farene knyttet til bruken av UAV-er, er ising under flygning en trussel som kan
få alvorlige konsekvenser for UAV-ers ytelse og stabilitet. Målet med denne
masteroppgaven er å utvikle en modellbasert metode for å detektere ising på
UAV-er under flyging.

Det første steget i denne prosessen omhandler utformingen av optimal-
iserte eksperimenter der hensikten er å samle data som best beskriver den
laterale og longitudinale dynamikken. Dataen som samles inn, analyseres ved
hjelp av konvensjonelle metoder for systemidentifikasjon av flydynamikk, som
equation-error-metoden og output-error-metoden. Disse metodene anvendes til
å estimere stabilitets- og kontrollderivatene til Skywalker X8 UAV-en, som
modellerer den underliggende dynamikken i nominell og iset tilstand. Til tross
for den primitive sensorpakken ombord på UAV-en og den sterke vinden un-
der flyeksperimentene, resulterte modellene fra equation-error metoden i R2-
verdier på rundt 0,6 sammenliknet med den observerte dynamikken.

Metoden som brukes i denne masteroppgaven kombinerer de identifiserte
modellene av flyet med og uten ising med en multi-modell adaptiv estimer-
ingsstrategi. Denne metoden er drevet av en bank av utvidede Kalman-filtre
(EKF-er) for å detektere og kvantifisere graden av ising under flyging. På grunn
av at UAV-en krasjet og brant opp under forsøket, ble ikke den isede flymodel-
len identifisert. I stedet viste isdeteksjonsmetoden sitt potensial i simuleringer
ved bruk av tidligere identifiserte koeffisienter. Estimatoren var i stand til å
oppdage og kvantifisere isingsnivåer i ulike simulerte flyscenarier under isede
forhold og identifisere riktig alvorlighetsgrad av ising med en gjennomsnittlig
forsinkelse på ca. 5 s.
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Chapter 1
Introduction

The first chapter of this thesis will provide the motivation behind the explor-
ation of model-based in-flight icing detection for fixed-wing UAVs and why
it is a relevant research topic. Recent accomplishments in the research com-
munity and the current state of the art are presented and reviewed. Finally, the
research objective is defined, and the contributions made toward it through-
out the study are highlighted. Section 1.5 provides a concise overview of the
remaining components outlined in the thesis.

1.1 Motivation

UAVs have gained immense popularity in recent years due to their adaptability
and extensive uses in a variety of industries. UAVs cover a wide range of air-
craft that are remotely controlled or autonomously operated without a human
onboard. These range from small handheld drones to large fixed-wing aircraft
with long-range capabilities. UAVs are mostly known for their uses in military
surveillance and reconnaissance, aerial photography, scientific research and ag-
riculture, and more recently, in the emerging field of drone delivery services.
The latter technology allows autonomous drone operation in populated areas,
posing a direct threat to the safety of customers unless all failure modes of the
drones have been properly addressed.

The usage of UAVs in adverse weather conditions can pose serious safety
risks, especially in cold climates. One significant challenge is the accumulation
of ice on the airframe due to encounters with supercooled water droplets. This
phenomenon modifies the shape of the airframe and adds mass, altering the
aerodynamic capabilities of the UAV, degrading performance. This is especially
problematic for small aircraft due to their absolute size [2]. Hence, autonomous
operation of UAVs beyond visual line of sight is not common if there is a risk
of icing.

With manned aerial vehicles, such as passenger airplanes, ice is removed

1



Chapter 1. Introduction

and prevented in-flight by routing bleed air from the combustion engines to the
wings [3]. For most small fixed-wing UAVs, the propulsion system is electric
and does not generate enough excess thermal energy for ice shedding and anti-
icing. Instead, anti-icing systems for electric fixed-wing UAVs require valuable
battery power for thermocouples [4], directly reducing flight time. Autonom-
ous operation in icing conditions would instead need compensation in terms of
model-based adaptive control laws, capable of handling changes in the under-
lying dynamics of the UAV. A necessary condition for this is a reliable icing
detection system that can estimate model parameters in icing conditions in
real-time.

For many years, commercial manned aircraft have utilized various special-
ized systems to detect icing. These systems can range from visually observing
ice accumulation on a specific probe located outside the cockpit window to
sensors that detect changes in the airframe’s resonant frequency when in icing
conditions [5]. However, these icing detection systems typically require pilot in-
tervention or are specialized and costly. This poses a challenge for the emerging
field of commercial, low-cost UAVs equipped with basic sensor suites. Instead,
indirect ice detection systems based on the changing dynamics in icing con-
ditions are currently being researched as a low-cost solution to the problem.
This will be reviewed in the next section.

This thesis aims to contribute to the recently emerging icing detection
and anti-icing research field. The particular issue examined is the model-based
in-flight icing detection of fixed-wing UAVs using low-cost sensor suites. The
specific UAV used in this thesis is the Skywalker X8 fixed-wing UAV, shown
Figure 1.1.

Figure 1.1: Skywalker X8 flying wing UAV. Source: NTNU UAV-Lab

2



1.2 Literature Review

1.2 Literature Review

As this research aims at developing a model-based approach to icing detec-
tion, the underlying equations and parameters defining the aircraft dynamics
have to be identified. Literature regarding system identification of fixed-wing
UAVs is particularly relevant for this. This section will review and present
the current state of the art and how it has been tied to the problem of de-
tecting ice accumulation on the airframe. The main sources of information on
system identification in this thesis are Klein and Morelli [6] and Jategaonkar
[7]. Modeling of aircraft dynamics necessary to perform system identification
is well described in Beard and McLain [8], which is the primary source for the
modeling in this thesis.

System identification of fixed-wing aircraft is a widely covered topic in the
literature, with methods ranging from computational fluid dynamics (CFD)
to neural network-based approaches. To better understand the applications
and requirements of the various methods, the most interesting aspects of re-
cent research are summarized in Table 1.1. The survey table highlights which
payloads are mainly used for the different identification methods and which
parameters in the dynamic model they are able to estimate. The input signal
chosen for experimental flights determines the information contained in the
measured dynamic response and is also included in the table. Note that sys-
tem identification of fixed-wing UAVs is mainly performed with time-domain
(TD) methods using multistep signals as control surface inputs. This is the
most viable option when the system dynamics can be approximated, such that
the frequency content of the multistep input signals can be optimized for the
frequency response of the dynamic modes [6, 7]. Another approach is to use
frequency sweep signals as input to the control surfaces. This provides a wide
band of frequencies in the input signal but is not optimized for the aircraft
dynamics, yielding less accurate identification estimates. However, this is a
good approach when there is little to no a priori information about the system
dynamics [6]. Frequency sweeps are mainly used with frequency-domain (FD)
system identification methods.

When the desired frequencies have been excited in the preliminary model,
the output data has to be measured with the tools necessary to describe and re-
construct the key dynamics of the aircraft properly. The most primitive sensor
suite that has been successfully used with system identification of both longit-
udinal and lateral dynamics of fixed-wing UAVs consists of global navigation
satellite system (GNSS), inertial measurement unit (IMU), and an air pressure
sensor for measuring the airspeed. The latter sensor varies a lot in air meas-
uring capabilities, from simple pressure sensors to advanced air data systems
(ADSs). Simple pressure sensors, such as pitot-static tubes, are only capable
of measuring the relative air velocity in the body x-direction (ur), while 5-
hole ADSs can also measure the angle of attack (α) (AOA) and side-slip angle
(β) (SSA). Many avionic configurations, such as in [9, 10, 11, 12] also include

3



Chapter 1. Introduction

an inertial navigation system (INS) based on EKFs for estimating the Euler
angles. Others [13, 14, 15] employ an attitude and heading reference system
(AHRS) for estimating the Euler angles.

Verification of the system identification varies a lot, from the general root-
mean-square error (RMSE) to Theil’s inequality coefficient (TIC), which is
frequently used in the validation of simulated models. Klein and Morelli [6]
use the t-statistic, standard error, and the R2-score to evaluate all system
identification results. As this thesis mainly focuses on data gathered from real
flight experiments, similar metrics to Klein and Morelli are more relevant.

The NTNU UAV Icing Lab works with research in a multitude of topics
concerning icing prevention, detection, and removal [16, 17, 18]. Wenz and
Johansen [19] studied the application of a moving horizon estimator and un-
scented Kalman filter (UKF) to estimate lift coefficients for icing detection.
Their payload consisted of a basic sensor suite, and simulations showed that
their estimator is able to detect changes in lift coefficients due to icing.

Seron et al. [20] employed a bank of unknown input observers represent-
ing the variety in dynamics imposed by various levels of icing severity. It was
designed to exploit the varying operating points in icing conditions. The icing
severity was estimated with an accuracy inversely proportional to the quant-
ization level by selecting the model with the smallest residual. Their model is
based on the linearized longitudinal state-space model developed in Beard and
McLain [8, Chapter 5], where the structural effects of icing are added to the
state-space model to generate the bank of unknown input observers.

Cristofaro et al. [21] proposed a nested multiple-model framework for icing
detection for the Aerosonde UAV. This method was based on a bank of possible
system models for different icing severities, and the estimators were based on
Krener min-max observers. Their method showed a fast transient response to
changes in the unknown parameters.

Rotondo et al. [22] proposed a linear parameter varying proportional integ-
ral unknown input observer for detection of icing and actuator faults in UAVs.
Their method correctly identified unexpected changes in the aircraft dynamics,
both due to actuator fault and icing.

4
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Chapter 1. Introduction

1.3 Purpose and Objectives

With the insights gained from reviewing recent accomplishments in the field,
the research objectives for this thesis can be defined. The main objective of this
thesis is to investigate whether icing can be indirectly detected and estimated
in flight based on changes in the observed dynamics of UAVs using a basic
sensor suite. The thesis focuses on analyzing the dynamics of UAVs in icing
conditions and aims to develop a methodology for detecting and estimating
the severity of icing using the observed changes in the UAV’s dynamics. This
is achieved through system identification, which models the differences in dy-
namics between clean and iced airframes. The system identification is carried
out on data gathered from flight experiments where the inputs are designed to
optimize the information content in the data based on a preliminary model of
the UAV. Based on the insights gained from system identification, an estima-
tion algorithm is then developed and applied to correctly identify the severity
of icing encountered during UAV flight.

1.4 Contributions

This thesis consists of three main parts, starting with the design of maneuvers
for experimental flights optimizing the information content in the measured
response of the UAV dynamics. The second part regards data processing and
system identification of the data gathered from experimental flights. Lastly,
a multiple model adaptive estimation (MMAE) framework for detecting and
quantifying the effects of icing on the UAV dynamics is developed. The contri-
butions made by the work during these stages are:

• An improved interface for simple configuration and execution of flight test
maneuvers in-flight using the onboard single-board computer running the
DUNE environment through the Neptus infrastructure. This builds on
the foundational work accomplished by Coates et al. [34].

• Frequency analyses of dynamic modes in the decoupled longitudinal and
lateral dynamics of the Skywalker X8 UAV development platform for
the design of optimal inputs for maneuvers. This improves the system
identification accuracy by exciting the UAV dynamics at its dominant
frequencies, increasing the information content for system identification.

• A multiple-model adaptive estimation scheme employing a bank of EKFs.
This leverages the variations in the dynamical system model in icing
conditions for in-flight icing detection and icing severity estimation. The
variations in the system model are described by the stability and con-
trol derivatives, which determine the response to the environment and
actuator inputs in flight.
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1.5 Thesis Outline

1.5 Thesis Outline

• Chapter 1 presents the motivation for pursuing the research topic of
this thesis and presents the current state of the art and recent relevant
accomplishments in the fixed-wing UAV research field.

• Chapter 2 presents the foundational theoretical material which the re-
search conducted in this thesis builds upon.

• Chapter 3 describes the development platform and the methods applied
in the data acquisition and analysis for the simulations and experiments.
This chapter also describes the post-processing techniques applied to the
experimental data to synchronize and transform the data into a format
compatible with system identification.

• Chapter 4 presents and discusses the results from the flight experiments
conducted at Breivika and from simulations with a multiple-model ad-
aptive estimator for icing detection and severity estimation.

• Chapter 5 concludes and discusses the experiences gathered about sys-
tem identification and model-based in-flight icing detection for fixed-wing
UAVs.

• Appendix A describes the experiment plan and how the maneuvers are
executed.

• Appendix B contains results from system identification of data from
various maneuvers.
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Chapter 2
Theoretical Background

The relevant theoretical background for model-based in-flight icing detection
for fixed-wing UAVs is presented here, starting with airframe ice formation.
The theory on aircraft modeling, coordinate frames and aerodynamic forces is
mostly derived from Beard and McLain [8]. Theory on various techniques for
system identification is mostly based on Klein and Morelli [6] and Jategaonkar
[7]. This chapter is mostly directly taken from the project thesis [1], with some
additions related to state estimation and icing detection.

2.1 Airframe Ice Formation

When an aircraft’s airframe encounters supercooled water droplets, they freeze
upon impact, leading to in-flight icing. The resulting ice accretion takes on
different shapes, with rime ice and glaze ice being the two main types of icing
observed on the airframe, as well as mixed ice, which is a combination of the
two.

At the lowest temperatures, supercooled water droplets freeze almost im-
mediately on impact with the airframe. This causes the water to freeze before
fully settling on the airframe, trapping small air pockets between the freezing
water droplets, resulting in a rough and opaque surface. This type of icing
is called rime ice. As the ice is not allowed to travel along the wing before
freezing. It usually occurs only on the tip of the leading edge of the wing, ac-
cumulating in a streamlined manner. The implications of rime ice on the airfoil
characteristics are therefore limited under normal conditions [35].

Glaze ice, however, occurs at higher temperatures. Unlike rime ice, the
water droplets travel along the airframe before freezing gradually, resulting in
a smooth and transparent film of ice. This has a tendency to form irregular
shapes called horn ice that can significantly degrade the aerodynamics of the
airfoil [35], separating the airflow across the airfoil.

In normal icing conditions a combination of these types is often observed.
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Chapter 2. Theoretical Background

This is characterized by the streamlined, rough leading edge icing as well as
the slowly freezing glaze ice on the surface. Similarly to glaze icing conditions,
this combination of ice accretion has the tendency to grow large horns that
can have a substantial impact on the aerodynamics [16].

For fixed-wing UAVs, the most critical aspect of ice accretion is on the
wings and propeller. The main concern is the degradation of aerodynamic
performance due to the changing geometry introduced by the icing, increasing
drag and decreasing lift. Due to the relative size of small UAVs, large amounts
of airframe ice can shift the center of gravity (CG) and the pitching moment
[16]. The geometrical implications of ice accretion can cause the airfoil of a
fixed-wing aircraft to suffer from flow separation, leading to lower stall AOAs
[16, 35].

Bragg et al. [36] developed an additive model for modeling the effect of icing
on the various aerodynamic coefficients. The model is based on the nominal
flight conditions. The effect on each coefficient is then modeled in terms of
the nominal coefficients C(·), an icing severity parameter ηice and the constant
KC(·) which is dependent on each aerodynamic coefficient C(·) and the specific
aircraft [36]. The notation (·) is a placeholder for various states and inputs of
an aircraft, which will be explained later in this chapter. This model is provided
in Equation (2.1).

Ciced(·) = (1 + ηiceKC(·))C
clean
(·) (2.1)

These aerodynamic coefficients are also called stability and control derivatives,
as they relate changes in the states and actuator inputs to the forces and
moments acting on the aircraft. They are often related to either the longitudinal
or lateral dynamics. The longitudinal and lateral aerodynamics will later be
assumed separated. With this assumption in mind, Melody et al. [37] state that
icing on the tailplane of an aircraft mostly impacts the longitudinal dynamics
of the aircraft, while icing on wings primarily affects the lateral dynamics. On
conventional aircraft, the elevator is part of the tailplane, while this is part of
the fuselage of flying wing-type aircraft. This leads to the initial assumption
that icing on flying wing-type aircraft significantly impacts both longitudinal
and lateral dynamics, and both dynamics are interesting to examine.

2.2 Airspeed, Angle of Attack, and Sideslip Angle

Inertial forces experienced by an aircraft are related to the velocities and ac-
celerations relative to the inertial frame F i. However, the aerodynamic forces
acting on an aircraft are caused by the relative velocity and direction of the
surrounding airmass. It is therefore advantageous to express such quantities
relative to the body frame Fb, as this makes the derivation of aerodynamic
equations simpler. The relationship can be described by
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2.3 UAV Kinematics and Dynamics

Va = Vg −Vw =

u− uw
v − vw
w − ww

 =

urvr
wr

 (2.2)

This implies that when wind is absent, Va = Vg. Since the wind velocity
may have any direction relative to the airframe, the directional air motion is
described by the rotation matrix Rb

w, consisting of the AOA α and the SSA β:

Va = Rb
w

Va0
0

 =

cosβ cosα − sinβ cosα − sinα
sinβ cosβ − sinβ sinα

cosβ sinα 0 cosα

Va0
0

 (2.3)

This expression can now be inverted to find an expression for the Va, AOA,
and SSA. These are the quantities that will be used for calculating forces acting
on the aircraft and for estimating aerodynamic parameters and are given by

Va =
√
u2r + v2r + w2

r

α = tan−1

(
wr
ur

)
β = sin−1

(
vr
Va

) (2.4)

2.3 UAV Kinematics and Dynamics

2.3.1 State Variables

The kinematic state variables of an aircraft are position (pn), velocity (vbnb),
attitude (Θn

nb) and angular velocity (ωnnb), where

pn =
[
pn pe pd

]⊤ (2.5a)

vbnb =
[
u v w

]⊤ (2.5b)

Θn
nb =

[
ϕ θ ψ

]⊤ (2.5c)

ωnnb =
[
p q r

]⊤ (2.5d)

which results in a 6-degrees of freedom (DOF), 12 states dynamic model.
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Chapter 2. Theoretical Background

2.3.2 Kinematics

Since the position is often measured in the NED frame, while the translational
velocity is expressed in the body frame, a rotation matrix is needed to express
the kinematic relationship between the position and velocity.

d

dt

pnpe
pd

 = Rv
b

uv
w

 = (Rb
v)

⊤

uv
w


Inserting the rotation matrix using the shorthand notations cx ≜ cosx and
sx ≜ sinx, yields

ṗnṗe
ṗd

 =

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

uv
w

 [8, equation 3.1]. (2.6)

Similarly to translational kinematics, rotational kinematics needs rotation
matrices to express the relationship between position and velocity. The angu-
lar velocities are defined in the body frame, while the angular positions are
defined in three separate frames. The angles ϕ, θ, and ψ define the coordin-
ate frame transformations from the vehicle frame to the body frame by Rb

v2,
Rv2
v1, and Rv1

v , respectively. Using this information, we can define the rotational
kinematic relationship aspq

r

 =

ϕ̇0
0

+Rb
v2(ϕ)

0θ̇
0

+Rb
v2(ϕ)Rv2

v1(θ)

0
0

ψ̇


With some reordering, this can be used to express the Euler rates as a function
of the Euler angles and rotational velocities in the body frame:ϕ̇θ̇

ψ̇

 =

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ sec θ cosϕ sec θ

pq
r

 (2.7)

2.3.3 Rigid-Body Dynamics

The rigid-body dynamics of the UAV can be derived from Newton’s second
law on translational and rotational degrees of freedom. Translational motion
is described by the relationship

m

(
dVb

dtb
+ ωbb/i ×Vb

)
= fb (2.8)

where m is the aircraft’s mass, ωbb/i represents the angular velocity of the
UAV in the inertial frame, and Vb is the ground speed in Fb. fb = [fx, fy, fz]

⊤

12



2.3 UAV Kinematics and Dynamics

is the sum of forces acting on the UAV in each of the components of Fb. The
term dVb

dtb
represents the accelerations in each direction and can be written as

dVb
dtb

= [u̇, v̇, ẇ]⊤. ωbb/i is the vector of angular rates in the body frame [p, q, r]⊤.
With this information, Equation (2.8) can be rearranged to derive an expression
for the acceleration components in Fb asu̇v̇

ẇ

 =

rv − qw
pw − ru
qu− pv

+
1

m

fxfy
fz

 (2.9)

Similarly, rotational motion is expressed by applying Newton’s second law
for rotational motion about the CG of the UAV.

dhb
dtb

+ ωbb/i × hb = mb (2.10)

where hb ≜ Iωbb/i is the angular velocity vector and mb is the sum of
external moments. Here, I is the inertia matrix. The inertia matrix for the
Skywalker X8 used in this thesis was found by Gryte [38]:

I =

 Ixx −Ixy −Ixz
−Ixy Iyy Iyz
−Ixz −Iyz Izz

 =

 0.335 0 −0.029
0 0.140 0

−0.029 0 0.400

 (2.11)

The off-diagonal elements related to the y-axis are zero, which follows from the
assumption that the Skywalker X8 is symmetric about the x-z plane. Inserting
this information into Equation (2.10) and rearranging to express rotational
accelerations as a function of inertia and external forces, we get

ω̇bb/i = I−1[−ωbb/i × (Iωbb/i +mb)] (2.12)

Inverting the inertia matrix I results in a cumbersome expression, which can
be written more elegantly by defining a set of constants representing different
combinations of inertial constants. In the aerodynamics literature, it is common
to use the constants

Γ1 =
Ixz(Ixx − Iyy + Izz)

Γ
Γ2 =

Izz(Izz − Iyy) + I2xz
Γ

Γ3 =
Izz
Γ

Γ4 =
Ixz
Γ

Γ5 =
Izz − Ixx
Iyy

Γ6 =
Ixz
Iyy

Γ7 =
(Ixx − Iyy)Ixx + I2xz

Γ
Γ8 =

Ixx
Γ

(2.13)

with Γ = IxxIzz − I2xz, we can write the rotational accelerations asṗq̇
ṙ

 =

 Γ1pq − Γ2qr
Γ5pr − Γ6(p

2 − r2)
Γ7pq − Γ1qr

+

Γ3l + Γ5n
1
Iyy
m

Γ4l + Γ8n

 (2.14)
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Chapter 2. Theoretical Background

2.4 Forces and Moments

In this subsection the various forces and moments effecting a UAV during
flight are described. This includes the effects of gravity, aerodynamics and the
propulsion system.

2.4.1 Gravitational Forces

The gravitational force acting on the UAV in the vehicle frame is simply
fd = mg along the kv axis, assuming the earth’s CG is located in the earth
center. The gravitational force is often expressed in the body frame using the
transformation Rb

v:

f bg = Rb
v

 0
0
mg

 =

 −mg sin θ
mg cos θ sinϕ
mg cos θ cosϕ


2.4.2 Aerodynamic Forces and Moments

The lift, drag, and moment generated by the airfoil are dependent on the
dynamic pressure around the wing. The dynamic pressure is given by 1

2ρV
2
a ,

where ρ is the air density and Va is the airspeed. A key assumption when
developing the dynamic model of a UAV is that the longitudinal and lateral
dynamics are decoupled. In practice, this is not true, but it is widely used
in the literature and is generally accepted as a tolerable approximation when
performing mild maneuvers [8, 6, 39, 40]. This simplifies the equations for the
aerodynamic forces and moments in equations (2.15) and (2.19), and also allows
connecting lateral and longitudinal maneuvers to their respective dynamical
models, as described later in Chapter 3. The longitudinal aerodynamic model
consists of the forces and moments that impact translational motion along
the ib direction and rotational motion about the jbaxis. The notation for the
roll, pitch, and yaw moments will be borrowed from Fossen [41], which uses
K,M, and N , respectively. The lift force, drag force, and pitch moment are
usually defined as FliftFdrag

M

 =
1

2
ρV 2

a Swing

 CL(α, q, δe)
CD(α, q, δe)
cCm(α, q, δe)

 (2.15)

where CL, CD, and Cm are nondimensional aerodynamic coefficients. Swing is
the planform area of of the wing and c is the mean chord length. The parameters
α, q, and δe are the angle of attack, angular rate about the y-axis, and elevator
deflection, respectively. As the Skywalker X8 UAV only has a set of elevons as
control surfaces, the elevon deflection has to be converted to aileron-elevator
signals. This is done by [

δe
δa

]
=

1

2

[
1 1
−1 1

] [
δer
δel

]
(2.16)
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2.4 Forces and Moments

where δel and δer are the left and right elevons.
The forces and moments in Equation (2.15) are generally nonlinear, but

through the assumption of small angles of attack, can be approximated by
first-order Taylor series.

Flift =
1

2
ρV 2

a Swing
[
CL0 + CLαα+ CLq

c
2Va

q + CLδe
δe
]

(2.17a)

Fdrag =
1

2
ρV 2

a Swing
[
CD0 + CDαα+ CDq

c
2Va

q + CDδe
δe
]

(2.17b)

M =
1

2
ρV 2

a Swingc
[
Cm0 + Cmαα+ Cmq

c
2Va

q + Cmδe
δe
]

(2.17c)

Equations (2.17a), (2.17b), and (2.17c) form the longitudinal aerodynamic
model. The pitch rate q is expressed in rad s−1 and is nondimensionalized by
multiplicating with c

2Va
. The lift and drag forces are expressed in the stability

frame and can be expressed in the body frame through rotating by the AOA:[
fx
fz

]
=

[
cosα − sinα
sinα cosα

] [
−Fdrag
−Flift

]
(2.18)

The lateral aerodynamic model consists of the forces and moments that impact
translational motion along the jb direction and rotational motion about the ib

and kb axes. Similarly to the AOA affecting longitudinal motion, the SSA β
affects the lateral motion, along with the lateral angular velocities and the
aileron deflection angle δa:fyK

N

 =
1

2
ρV 2

a Swing

CY (β, p, r, δa, δr)bCl(β, p, r, δa, δr)
bCn(β, p, r, δa, δr)

 (2.19)

where b is the wingspan of the aircraft. Similarly to the longitudinal forces and
moments, the lateral forces and moments can be approximated by a first-order
Taylor series.

fy =
1

2
ρV 2

a Swing

[
CY0 + CYββ + CYp

b

2Va
p+ CYr

b

2Va
r

+CYδa δa + CYδr δr

] (2.20a)

K =
1

2
ρV 2

a Swingb

[
Cl0 + Clββ + Clp

b

2Va
p+ Clr

b

2Va
r

+Clδa δa + Clδr δr

] (2.20b)

N =
1

2
ρV 2

a Swingb

[
Cn0 + Cnβ

β + Cnp

b

2Va
p+ Cnr

b

2Va
r

+Cnδa
δa + Cnδr

δr

] (2.20c)
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Chapter 2. Theoretical Background

Equations (2.20a), (2.20b), and (2.20c) form the lateral aerodynamic model.
For flying wing UAVs such as the Skywalker X8, the rudder input δr is not
relevant.

The forces and moments acting on the UAV can now be nondimensionalized
and written in terms of nondimensional stability and control derivatives:

Cs = Cs0 + Csαα+ Csq
c

2Va
q + Csδe δe for s ∈ {L,D,m} (2.21a)

Cs = Cs0 + Csββ + Csp
b

2Va
p+ Csr

b

2Va
r + Csδa δa for s ∈ {Y, l, n} (2.21b)

2.4.3 Observed Forces and Moments

When performing system identification techniques derived later, the stability
derivatives in Equation (2.21) will be identified. It is therefore useful to com-
pare the estimated nondimensional forces and moments against the observed
forces and moments in flight. These are found by using measured accelera-
tions, angular rates, angular accelerations a = [ax, ay, az]

⊤, AOA α, SSA β,
and thrust forces T . The equations for these forces are found by applying New-
ton’s second law for an aircraft in-flight. This is done by Klein and Morelli [6,
equations 5.99 and 5.100], and are repeated here:

CX =
1

q̄Swing
(max − T ) (2.22)

CY =
may
q̄Swing

(2.23)

CZ =
maz
q̄Swing

(2.24)

CL = −CZ cosα+ CX sinα (2.25)
CD = −CX cosα− CZ sinα (2.26)

Cl =
1

q̄Swingb
[ixxṗ− ixz(pq + ṙ) + (izz − iyy)qr] (2.27)

Cm =
1

q̄Swing c̄
[iyy q̇ + (ixx − izz)pr + ixz(p

2 − r2)] (2.28)

Cn =
1

q̄Swingb
[izz ṙ − ixz(ṗ− qr) + (iyy − ixx)pq] (2.29)

where the torque generated by the propeller has been neglected.

2.4.4 Propulsion Forces and Moments

The thrust model for a propeller can be found by calculating the pressure
difference between the upstream and downstream wind velocities and applying
it to the propeller area using Bernoulli’s principles. The propeller and thrust
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vector of the Skywalker X8 is assumed to be aligned with the ib axis, resulting
in zero moments generated by the propulsion system. The torque generated by
the propeller is neglected. Coates et al. [42] discussed two models for propulsion
systems. The Fitzpatrick model gave satisfactory thrust estimates and was used
by Reinhardt [39]. This reduced-order model assumes a relationship between
thrust force, throttle, and airspeed given by

Fprop =
1

2
ρSpropCprop(Va + δt(kmotor − Va))δt(kmotor − Va) (2.30)

where Sprop is the area swept by the propeller, Cprop is the propeller aerody-
namic coefficient, ρ is the air density and kmotor = 37.5 is the motor coefficient.
The force vector generated by the propulsion can then be written as

fp =
1

2
ρSpropCprop

(Va + δt(kmotor − Va))δt(kmotor − Va)
0
0

 (2.31)

The forces acting on the UAV can be summarized by [8, eq. 4.18]fxfy
fz

 =

 −mg sin θ
mg cos θ sinϕ
mg cos θcosϕ

+

 CX(α) + CXq(α)
c

2Va
q + CXδe

(α)δe
CY0 + CYβ + CYp

b
2Va

p+ CYr
b

2Va
r + CYδa δa

CZ(α) + CZq(α)
c

2Va
q + CZδe

(α)δe


+
1

2
ρSpropCprop

(Va + δt(kmotor − Va))δt(kmotor − Va)
0
0


(2.32)

and the torques are summarized by [8, eq. 4.20]

KM
N

 =
1

2
ρV 2

a Swing

 b(Cl0 + Clβ + Clp
b

2Va
p+ Clr

b
2Va

r + Clδa δa)

c(Cm0 + Cmα + Cmq
c

2Va
p+ Cmδe

δe)

b(Cn0 + Cnβ
+ Cnp

b
2Va

p+ Cnr
b

2Va
r + Cnδa

δa)

 (2.33)

2.5 System Identification

According to Klein and Morelli [6], system identification, particularly in the
context of aircraft systems, refers to the process of quantitatively determining
the mathematical models that describe the behavior of the aircraft’s dynamic
systems. It involves analyzing the input-output relationships of the aircraft’s
various components and subsystems to derive accurate and reliable mathem-
atical representations of their dynamics. The goal of system identification is to
develop models that capture the essential characteristics of the aircraft system
[6]. System identification requires postulating the class or general structure
of the system under test to which the system is equivalent. Hence, the prob-
lem boils down to determining the set of equations and unknown parameters
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such that the model response matches the measured system response given the
same input signals [7]. The output error method (OEM) and equation-error
(EE) are two common methods for aircraft system identification, and their TD
implementations will be presented.

2.5.1 Simulation

Certain methods of system identification, such as the output-error method,
require simulation in order to determine a mathematical model of the system.
Simulations are performed by computing the next state given a differential
equation of the dynamics. In order to perform the simulation on a computer,
the continuous physical model of the dynamics needs to be discretized to con-
form to the digital framework of the computer. The most precise method for
the discretization of linear systems of the form

ẋ = Ax+Bu

y = Cx+Du
(2.34)

is the exact discretization

x[k + 1] = Adx[k] +Bdu[k]

y[k] = Cdx+Ddu[k]
(2.35)

where:

Ad = eAT , Bd =

(∫ T

0
eATdτ

)
B, Cd = C, Dd = D [43] (2.36)

Although this integration yields high accuracy for linear systems, it is not
applicable to nonlinear systems. Exact discretization is also problematic for
large linear system matrices due to the high computational cost of complex
matrix exponential integrals. In such cases, the discrete dynamics are approx-
imated, and the simplest alternative is the first-order forward Euler method:

ẋ ≈ x(t+ T )− x(t)

T
(2.37)

where T is the sampling period. This method explains the change in state x
between timesteps t and t + T , relative to the time difference. We can define
x[k] := x(kT ) = x(t) where kT ≤ t < (k + 1)T . Inserted into the forward
Euler approximation in Equation (2.37), the discretized system becomes

x[k + 1] = x[k] + Tf(x,u, k) (2.38)

The major limitation of the forward Euler method is the risk of being nu-
merically unstable, where the numerical solution diverges although the exact
solution does not. One solution to achieve higher stability is to evaluate mul-
tiple points between each sample. This leads to the family of Runge-Kutta
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methods. While the forward Euler is a first-order method due to the single
function evaluation, Runge-Kutta methods achieve higher orders by calculat-
ing multiple approximations of the function between each sample. Fourth-order
Runge-Kutta is usually recommended for aircraft dynamics, but reasonably
good results were achieved with real flight data with second and third-order
methods by both Jategaonkar [7] and Klein and Morelli [6]. The equations for
the second-order Runge-Kutta method are

k1 = f(x[k],u[k], k) (2.39)
k2 = f(x[k], Tk1,u[k], k + T ) (2.40)

x[k + 1] = x[k] +
T

2
(k1 + k2) (2.41)

2.5.2 Output-Error

The OEM is a method of system identification that adjusts the model paramet-
ers iteratively in order to minimize residuals between the measured variables
and the estimated model response. That is, it minimizes the error in output
between the model and the measurements [6]. This leads to a nonlinear optim-
ization problem, for which a nonlinear optimization method is required. This
makes the OEM a maximum likelihood estimator, as it attempts to maxim-
ize a likelihood function, making the observed data the most probable given
the model. It has been the most used time-domain method of aircraft system
identification since it was introduced in the 1960s [7].

Since the measurement noise is assumed Gaussian with probability p(z)
and R is the measurement covariance, the likelihood function is

L[zN ;θ] = (2π)N |R|−
1
2 exp

[
−1

2
v⊤R−1v

]
(2.42)

where zN = [z(1), z(2), . . . , z(N)] are measurements, v(i) = z(i) − ŷ(i) is the
residual and the estimate of the maximum likelihood is given by

θ̂ = max
θ

L(zN ;θ) (2.43)

Equation (2.42) is optimized by setting the derivative of the right-hand side
equal to zero, and solving for R:

R̂ =
1

N

N∑
i=1

(z(i)− y(i))(z(i)− y(i))⊤ (2.44)

For computational efficiency, the maximum likelihood (ML) estimator is
found by minimizing the negative logarithm of the likelihood function, such
that
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θ̂ = min
θ

N∑
i=1

− ln(L[z(i)|zi−1;θ])) (2.45)

where θ̂ minimizes the cost function

J(θ) =
1

2

N∑
i=1

(v)⊤R−1(v) (2.46)

Here, a linear observation model is assumed.
Klein and Morelli [6] use a modification of the Newton-Raphson nonlinear

optimization, as this yields good convergence rates. The modified Newton-
Raphson algorithm is developed by obtaining a two-term Taylor series expan-
sion of the cost function in Equation (2.46), as showed by Iliff and Taylor [44].
The goal is to find a θ such that ∇J(θ) = 0:

J(θo +∆θ) ≈ J(θo) + ∆θ⊤∂J

∂θ

∣∣∣∣
θ=θo

+∆θ⊤ ∂2J

∂θ∂θ⊤

∣∣∣∣
θ=θo

∆θ (2.47)

An optimum is obtained when

∂

∂θ
J(θo +∆θ) = 0 (2.48)

Solving this for ∆θ yields the Newton-Raphson algorithm

∆θ = −
[

∂2J

∂θ∂θ⊤

]−1
∂J

∂θ

∣∣∣∣
θ=θo

(2.49)

Comparing the Newton-Raphson algorithm in Equation (2.49) to the gradi-
ent descent optimization, which performs a step towards the fastest descending
direction, the Newton-Raphson algorithm attempts to predict the local min-
imum and steps directly towards it. This results in much better convergence
rates at the cost of computation of the Hessian [6, 44]. However, the Hessian
can be approximated by neglecting the second-order term:

∂2J(θ)

∂θj∂θk
=

N∑
i=1

∂y⊤(i)

∂θj
R̂

−1∂y(i)
∂θk

−
N∑
i=1

∂2y(i)
∂θjθk

R̂
−1

v(i)

≈
N∑
i=1

∂y⊤(i)

∂θj
R̂

−1∂y(i)
∂θk

(2.50)

This approximation removes the need to compute the second derivative,
saving computational power. Finally, inserting the terms for the first and
second derivative into the Newton-Raphson algorithm, the change in the para-
meter vector θ̂ is
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∆θ = −

[
N∑
i=1

∂y⊤(i)

∂θ
R̂

−1∂y(i)
∂θ

]−1

θ=θo

[
N∑
i=1

∂y⊤(i)

∂θ
R̂−1v(i)

]
θ=θo

(2.51)

The approximation gets more accurate as the innovations v(i) = z(i)−y(i)
go towards zero since the neglected Hessian matrix was multiplied with v(i).
Since the innovations are the residuals between the output and the model -
or the output errors, this estimation is called the output-error method. The
matrix ∂y(i)

∂θ in the Newton-Raphson equation describes the change in output
y(i) from a change in the parameter vector θ, and is also called the sensitivity
matrix. The partial derivative of y with respect to θ can be found numerically
by numerical partial differentiation,

∂y

∂θj
=

y(θo + δθj)− y(θo)

|δθj |
(2.52)

2.5.3 Equation-Error

Ordinary least squares (OLS) estimation is based on fitting curves to data
by minimizing the sum of the squared residuals between a model and the
corresponding measurements. Equation-error methods can be mathematically
simple, as the OLS method can be solved with matrix algebra operations.
Equation-error methods do not rely on probability theory, in contrast to the
output-error method derived earlier, making them much simpler to implement
and computationally efficient.

The model consisting of equations (2.17) and (2.20) is suited for linear
regression, as the approximation assumes constant aerodynamic coefficients in
CL(α, q, δe), CD(α, q, δe), CY (β, p, r, δa), Cl(β, p, r, δa), Cm(α, q, δe) and
Cn(β, p, r, δa).

By defining a vector z ∈ RN consisting of N measurements, a matrix
X ∈ RN×p consisting of regressors, and θ as a vector of the unknown model
parameters we can define a model of the form

z = Xθ + ν (2.53)

where ν is introduced as a residual to capture the measurement errors that
cannot be explained by the linearized model in (2.17) and (2.20). As is shown
by Klein and Morelli [6], the least squares estimator θ̂ can be found by min-
imizing the cost function of quadratic differences between the model outputs
and measured outputs:

J(θ) =
1

2
(z−Xθ)⊤(z−Xθ) (2.54)

The parameter θ̂ that minimizes the cost function must satisfy

∂J

∂θ
= −X⊤z+X⊤Xθ̂ = 0 (2.55)
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which leads to the least-square estimator

θ̂ = (X⊤X)−1X⊤z (2.56)

As an example, the setup for estimating the lift coefficient model CL(α, q, δe)
would be

XL =

1 α(1) c
2Va(1)

q(1) δe(1)
...

...
...

...
1 α(N) c

2Va(N)q(N) δe(N)

 , z =

CL(1)...
CL(N)

 (2.57)

where N is the number of samples and z consists of the observed, or measured,
nondimensional force coefficients given by CL from Equation (2.22).

As explained by Jategaonkar [7], least squares methods do not rely on
the temporal relation defining explicit, sequential ordering in time of states
and inputs. Therefore, it is well suited for data preprocessing methods related
to data partitioning and assembling data collected from multiple runs and
maneuvers.

2.5.4 Data Collinearity

If the vectors of the regressor in Equation (2.56) are linearly independent,
X⊤X is positive definite, and the inverse exists. However, in the case where
the regressors are linearly depended, collinearity is introduced. This means that
there are several ways to combine the regressors to model the same variation
in the dependent variable [6]. It is therefore difficult to compute (XTX)−1

for use in equation-error system identification. Collinearity can be detected by
examining the regressor matrix with standardized regressors [6]. The stand-
ardized regressors are scaled versions of the regressors and response variables,
with zero mean and unit length:

ξ∗j =
ξj(i)− ξ̄j√

Sjj
j = 1, 2, ..., N (2.58)

where

Sjj =
N∑
i=1

[ξj(i)− ξ̄j ]
2 i, j = 1, 2, ..., N (2.59)

The new regressor matrix X∗ = [ξ∗1 ξ∗2 . . . ξ∗n] consists of the stand-
ardized regressors, where n is the number of the regressor. X∗⊤X∗ now results
in a scaled correlation matrix with ones along the diagonal. Klein and Morelli
[6] recommends regressor correlations below 0.9 since the problems of collin-
earity become more prominent above this threshold.

Collinearity may be prevented by performing rank-deficient least squares
described in [6, Ch. 6.3.2]. This method calculates the inverse of the X∗⊤X∗
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matrix using singular value decomposition (SVD) and eliminates terms asso-
ciated with singular or near-singular values from the SVD decomposition. The
SVD is a unique decomposition

X = UΣV† (2.60)

for any complex-valued matrix X ∈ Cn×m [45], where U ∈ Cn×n and V ∈
Cm×m are unitary matrices with orthonormal columns, such that U†U =
V†V = I, where † denotes the complex conjuagate transpose. Σ ∈ Rn×m
is a diagonal matrix with positive values on the diagonal, which are called the
singular values of X. In the case of X⊤X, we have the following equality

X⊤X = VΣ⊤U⊤UΣV⊤ = VΣ2V⊤ (2.61)

where the singular values are the on the diagonal of Σ2. The singular values
are ordered from largest to smallest, and the number of nonzero singular values
is the rank of X. As described by Klein and Morelli [6], each element of Σ is
evaluated against the criterion

µj
µmax

< Nε (2.62)

where µj is an element on the diagonal of Σ, N is the number of data points,
and ε is the precision of the computing machine. When a singular value is
dropped, its element in Σ is set to zero before calculating the inverse of the
information matrix as

(XTX)−1 = VΣU⊤ (2.63)

As long as the regressors are linearly independent, this method is identical
to the normal information matrix inversion performed in Equation (2.56). How-
ever, when a singular value fails the criterion in Equation (2.62), the singular
value is dropped, and the related regressor is not a part of the least squares
estimate.

2.5.5 Model Validation

In order to measure and compare the quality of the parameter estimation,
mathematical methods for model validation are required. One common metric
for determining the closeness of an estimate to the true value that is commonly
used for aircraft system identification [6], is the coefficient of determination R2.
It is given by the equation

R2 =
SSR
SST

= 1− θ̂⊤X⊤z−Nz̄2

z⊤z−Nz̄2
(2.64)

where SSR and SST are the regression sum of squares, and the total sum
of squares, respectively. R2 is then a measure of the proportion of the variation
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that can be explained by the model and is a score between 0 and 1, where 1
indicates a perfect model for the data [6].

The t0-statistic is frequently used for evaluating the significance of a re-
gressor and can be seen as a test for a parameter θ̂ being significantly different
from zero [6]. It is defined by

t0 =
θ̂j

s(θ̂j)
(2.65)

where

s =

√
SSE
N − p

=

√∑N
i=1(z(i)− ŷ(i))2

N − p
(2.66)

is the standard deviation, N is the number of data samples, p is the number
of terms in the model and SSE is the sum of squared residuals.

Following the assumption that the measurement errors are normally dis-
tributed, the linearity of the OLS estimator with respect to the measurements,
together with the deterministic property of the OLS estimator, the estimated
parameters are

θ̂ ∼ N (θ, σ2(X⊤X)−1) (2.67)

This leads to the θ̂j being normally distributed, and consequently the t-statistic
of Equation (2.65) being t-distributed with N − p DOF. Confidence intervals
for the parameter θ̂j can then be calculated by

θ̂j − t(
α

2
, N − p)s(θ̂j) ≤ θj ≤ θ̂j + t(

α

2
, N − p)s(θ̂j) (2.68)

Klein and Morelli [6] also states that in flight testing and system identification
of flight test data, N − p≫ 100, such that the t-distribution approximates the
normal distribution following the central limit theorem.

2.6 State Estimation

EKFs are widely used for nonlinear state estimation and have a wide range
of uses in aircraft state estimation [6]. The EKF predicts the next state using
the nonlinear equations governing the dynamics of the aircraft and corrects
the state predictions using sensor measurements and a measurement model.
With the linearized state-space model of an aircraft available, it is used for
error covariance propagation [6]. Kalman filters (KFs) in general require tuning
of the covariance matrices Q and R, estimating the process noise and the
measurement noise, respectively.
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2.6.1 Tuning the Kalman Filters

EKFs are tuned in order to optimize performance by modifying the values along
the diagonals in the Q and R matrices, corresponding to the estimated process
noise and measurement noise, respectively [46]. Although time-consuming, this
is often done by trial and error as conventional optimization techniques for
tuning of EKFs can get stuck in local minima [47]. One systematic approach
for tuning the Q matrix is by evaluating the filter consistency. Brekke [46]
states that a filter is consistent if its errors, on average are well described by
the output of the filter. This is usually tested by checking that "The state
errors should have magnitude commensurate with the state covariance yielded
by the filter" (Brekke 2020 [46, p. 63]) and that "The innovations should have
magnitude commensurate with the innovation covariance yielded by the filter"
(Brekke 2020 [46, p. 63]). These conditions are assessed by examining the
normalized estimation error squared (NEES)

ϵk = (x̂k − xk)P
−1
k (x̂k − xk) (2.69)

and the normalized innovations squared (NIS)

ϵνk = (ν⊤
k )S

−1
k (νk) (2.70)

where P is the posterior covariance matrix, x̂k is the posterior state estimate,
xk is the ground truth, ν is the innovation yk − g(x̌k, 0) of the meaurement
and the predicted measurement, and S is the innovation covariance. Both the
NEES and the NIS can be shown to be chi-square distributed random variables
with N degrees of freedom [48], where N is the number of time steps.
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Chapter 3
Method and Data Acquisition Design

This chapter explains the method used for data acquisition and analysis in the
research performed. The experimental platform including the hardware and
the software for flight experiments is presented, as well as the specifications
used for its components and sensors. Both the hardware and software archi-
tectures are explained here to indicate the capabilities and limitations of the
experimental platform. The a priori frequency analysis using well-established
linearized modes of the aircraft model is performed in order to optimize the
inputs during flight testing and system identification. The data processing
techniques used on the data gathered from flight experiments are presented
to evaluate the quality and validity of the data employed in system identifica-
tion. This includes the estimation scheme for estimating the wind velocity, as
wind velocities are essential for calculating key states for system identification.
Finally, the EKF-based MMAE structure used for the detection of icing and
icing severity estimation is developed.

3.1 Experimental Platform

This section describes the experimental platform used for data gathering. The
hardware includes a single board computer (SBC), sensors, actuators, servo
drivers, telemetry, and the ground station, as shown in Figure 3.1. The soft-
ware includes DUNE: Unified Navigation Environment (DUNE) and Neptus
for control and execution. The experimental platform is highly influenced by
the setup used by Reinhardt [39], and most of the hardware is the exact same
used in his Ph.D. thesis.
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Figure 3.1: Payload and ground station hardware configuration of the ex-
perimental platform.

3.1.1 Skywalker X8 Fixed-Wing UAV

The UAV used in this thesis is the Skywalker X8 fixed-wing UAV. It is a flying
wing, as it does not have a tail or rudder. Instead of the normal configura-
tion of elevators, ailerons, and rudder, its control surfaces consist of elevons,
which combines the functionality of ailerons and elevators. For propulsion, it is
equipped with a brushless DC servo motor and a propeller. The relevant spe-
cifications are listed in Table 3.1. The servo motor constants used for mapping
actuation angles of the elevons to pulse width modulation (PWM) signals were
calculated by Reinhardt [39] in lab experiments using cameras. The mapping
from the desired angle to PWM signal is given by:

PWM =
δel − b0
b1

(3.1)

where δel is the desired elevon angle and the constants b0 and b1 are given in
Table 3.1.

28



3.1 Experimental Platform

Artificial ice shapes have been modeled by Richard Hann and Damiano
Varagnolo [49] and can be attached to the leading edge of the wings to simulate
flight in icing conditions. The profile was found through testing in an icing wind
tunnel and is designed to resemble mixed ice.

Figure 3.2: Right wing of the Skywalker X8 at Breivika equipped with 3D
printed ice models. The image is taken pre-flight during safety checks.

3.1.2 System Architecture

The system architecture illustrated in figure 3.1 includes two possibilities for
controlling the actuators; the Cube Orange Autopilot and DUNE through Nep-
tus on the ground station. The Cube Orange Autopilot runs the ArduPilot
[50] autopilot software where mission control can set waypoints in ArduPilot’s
Mission Planner software. The radio-control (RC) controller operated by the
pilot has a switch that is programmed to give control to DUNE using a MUX
switch. Similarly to Coates et al. [34], the fail-safe functionality included in
ArduPilot is augmented to handle fail-safe when the SBC running DUNE is in
control. This way, return to launch (RTL) is activated in the event of the RC
transmitter losing signal regardless of which entity is in control.
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Table 3.1: Specifications for the Skywalker X8 used for flight tests.

Parameter Value Description

m 3.3600 kg Mass of the UAV with standard payload
b 2.1000m Wing span
c 0.3571m Mean chord width
kmotor 37.5 Motor constant describing the relation-

ship between throttle and propeller dis-
charge velocity at zero airspeed, kmotor =
Vd/δt [8]

Sprop 0.1018 Area swept by the propeller
Swing 0.7500 Area of wing
Cprop 0.5 Propeller constant for scaling propeller ef-

ficiency
b0,left 108.016 55◦ Left servo offset for 0◦ elevon actuation.
b1,left −0.072 64◦ Left servo angle change per PWM pulse

width.
b0,right −109.484 595 15◦ Right servo offset for 0◦ elevon actuation.
b1,right 0.072 871 62◦ Right servo angle change per PWM pulse

width.

3.1.3 SentiBoard

The sensor timing board (SentiBoard) is a user-configurable sensor-timing sys-
tem developed by Albreksen [51]. The initial purpose for the SentiBoard in
this development platform was to receive sensor output from both a STIM300
IMU and an Aeroprobe 5-hole ADS, synchronizing their measurements. How-
ever, the ADS at the UAV lab was not calibrated and cannot be used until it
is calibrated by Aeroprobe staff. Instead, only the STIM300 is connected to
the SentiBoard, depicted in Figure 3.3. The SentiBoard is still used as it is
supported by the SentiUtils package, with useful tools for logging and parsing
STIM data.
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Figure 3.3: Payload installed in the Skywalker X8 fixed-wing UAV at the
NTNU UAV lab.

3.1.4 STIM300

The STIM300 IMU was configured to sample data at a rate of 250MHz using
the Sensonor EVK configuration tool through a USB interface. The bit rate
was set to 921 600 bit s−1, which is the default bit rate.

Due to the limited space in the avionics bay of the Skywalker X8 UAV,
the IMU is mounted on the wall separating the avionics bay and the battery
area. This is shown in Figure 3.3. It is mounted firmly with screws instead of
velcro which is used for the rest of the payload. Although the velcro would
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serve as a lowpass filter, this is to prevent the IMU from wiggling on the
soft velcro. For the STIM300 IMU data to be comparable to the IMU in the
Cube Orange’s IMU, the pose relative to the Cube Orange has to be found.
The translational displacement between the STIM300’s measurement framemI

and the Cube Orange’s measurement frame mII was measured with calipers
assuming the inertial center of the STIM300 and the Cube Orange is in the
respective geometric centers. The measured displacement in meters was found
to be approximately

rmI
mII

= [0.239, 0.000, −0.008] (3.2)

The relative orientation is found by recording data with the same setup
as used in flight testing. Using an Error-State Kalman Filter (ESKF) in Mat-
lab, an estimate of the orientation was found. Then, the average orientation
was found according to [52] by minimizing the weighted sum of the squared
Frobenius norms of the difference of the attitude matrices:

q ≜ arg min
q∈S3

n∑
i=1

wi ∥A(q)−A (qi)∥2F (3.3)

where the attitude matrix is given by the equation

A(q) = (η2 − ||ε||2)I3×3 + 2εε⊤ − 2ηS(ε) (3.4)

In the latter equation, S(ε) is the cross-product matrix of the vector part of
the quaternion q =

[
η ε⊤

]⊤
= [η ε1 ε2 ε3]

⊤.
The average quaternion form the filtered data was normalized for both the

Cube Orange IMU and the STIM300 IMU. Then, the quaternion representing
the rotation from the Cube Orange IMU to the STIM300 IMU was found by

qmI
mII

= q∗
mII

⊗ qmI
(3.5)

where q∗ denotes the conjugate of the quaternion and ⊗ is the quaternion
multiplication operator. Transforming the quaternion to Euler angles using
[41, eq. 2.97-2.99] yields

ϕ = arctan 2(2(ε2ε3 + ε1η), 1− 2(ε21 + ε22)) = 0.372 56◦ (3.6)
θ = − arcsin(2(ε1ε3 − ε2η)) = 89.0008◦ (3.7)

ψ = arctan 2(2(ε1ε2 + ε3η), 1− 2(ε22 + ε23)) = −9.864◦ (3.8)

3.1.5 Accelerometer Position Correction

For the case of translational accelerometers, it is important to consider the
mounting positions relative to the CG. When these accelerometers are installed
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at locations other than the CG, they are susceptible to detecting both tangen-
tial and centripetal accelerations. These additional accelerations arise due to
the relative motion between the mounting position and the CG [6]. Gryte et
al. [40] found that the CG is located 44.0 cm behind the nose of the Skywalker
X8 based on experimental flight data. Measuring the position of the STIM300
IMU, it is found that it is located 30.0 cm behind the nose of the UAV’s hull.
It is assumed that the difference in payload does not significantly shift the CG.
A lever arm between the STIM300 IMU measurement frame {mI} and the CG
is then approximated to

rmIg =

−0.44
0.0
0.0

−

−0.30
0.0
0.0

 =

−0.14
0.0
0.0

 (3.9)

Using Fossen [41, eq. 14.5], the lever arm compensation of the linear accelera-
tion can be calculated by

abng = abnmI
+ ω̇bnb × rmIg + ωbnb × (ωbnb × rbmIg

) (3.10)

where ωbnb = ωbnmI
for a rigid body rotating about the inertial frame {n}. The

hardware configuration presented in Chapter 3 does not include any device for
directly measuring the angular acceleration ω̇bnb, and will have to be calculated.

Although the payload does not include sensors for measuring the angular
acceleration, Klein and Morelli [6] states that it can be estimated by differenti-
ation. The Matlab function gradient() uses central difference approximation

∂f

∂x
=
f(x+ h)− f(x− h)

2h
(3.11)

to calculate the derivative.

3.1.6 DUNE

The software framework of the Skywalker X8 at the NTNU UAV lab is based
on DUNE, developed by Laboratório de Sistemas e Tecnologia Subaquática
(LSTS) at the University of Porto [53]. DUNE is an onboard software for
running C++ code during unmanned operations. It encourages structuring
complex plans into smaller maneuvers consisting of smaller atomic tasks. In
this thesis, DUNE governs sensors, actuators, communication, and maneuvers
during flight experiments with the Skywalker X8 UAV and runs on the Khadas
VIM3 SBC. Multistep and chirp input signals for system identification man-
euvers can be generated by a DUNE task that is programmed to be highly
configurable during operation. This is needed, as the magnitudes of the input
signals have to be found while testing due to the stability of the UAV being
unknown and varying depending on the wind velocity and the impact of the
ice shapes.
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DUNE uses the Inter-Module Communication (IMC) protocol, also de-
veloped by LSTS at the University of Porto, for message passing onboard
unmanned vehicles. A redundant DUNE task passes data from ArduPilot run-
ning on the Cube Orange to DUNE running on the SBC over inter-module
communication (IMC) at 40Hz, in case the SD card of the Cube Orange is
corrupted or lost.

3.1.7 Neptus, Command and Control Framework

Neptus is a command and control software framework also developed by LSTS
at the University of Porto [54]. It can be used with all kinds of autonomous
and unmanned vehicles, as it utilizes IMC to communicate with DUNE run-
ning onboard unmanned vehicles. In this experiment, Neptus is used to modify
parameters in the onboard DUNE tasks to execute the aforementioned mul-
tisteps and chirp maneuvers after the pilot has transferred control of the UAV
to Neptus. Neptus runs on a ground control laptop computer, sending IMC
messages to the UAV through ethernet and radio communication, as depicted
in Figure 3.1.

3.2 Synchronization and Interpolation

The IMC messages containing various sensor data are sent irregularly due to
sensor drift and varying transmission delays. This has to be synchronized to a
universal time series such that the data can be evaluated at these time inter-
vals. Klein and Morelli [6] suggests different types of interpolation, from linear
interpolation to implementations of the sampling theorem. Linear interpola-
tion is a special case of polynomial interpolation and is defined by Cheney and
Kincaid [55] as

p(x) = y0 +

(
y1 − y0
x1 − x0

)
(x− x0) (3.12)

where x is the new query point between the points (x0, y0) and (x1, y1) [55].
This is done in Matlab using the interp1() function by inputting the sampled
data and timestamps, using tsync as the new sequence of query points. tsync
is defined as a time vector starting and ending at the same timestamps as
the sampled data but with a fixed frequency of 40Hz, corresponding to the
sampling rate of ArduPilot. Hence, all data will be synchronized with the
same sample times, making the system identification more accurate than the
alternative, which is to use the nearest samples.

The sampling theorem states that the value of the underlying continuous
function can be reconstructed at any time using the measured samples by:

z(t) =

N−1∑
k=0

z(k) sinc

(
π(

t

∆t
− k)

)
(3.13)
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if the underlying continuous function is bandwidth-limited such that all com-
ponents have frequencies below the Nyquist frequency fN = 1/(2∆t) [6]. Note
that Equation (3.13) is a simplification of the theorem, as the actual summa-
tion interval [−∞,∞] requires an infinite amount of data. sinc(x) is defined as
sin(x)
x . Although more rigorous, this method is sensitive to noise, as it does not

include any method for distinguishing the deterministic signal from stochastic
noise.

3.3 Linearization of the equations of motion

A linearized state-space model of equations (2.7), (2.9), and (2.14) is required
for the implementation of an EKF and for designing optimal input signals for
system identification. Linearization is performed in the same manner as in [6,
8, 7] by assuming that all states consist of a steady part with an added per-
turbation. Hence, all states can be written as x̄ ≜ x−x∗ where the superscript
asterisk denotes the steady part. The bar denotes the deviation from this steady
state. Different textbooks use different values for x∗, as Klein and Morelli [6]
use the average of the state time series, while Beard and McLain [8] use the
trim conditions. This disparity might be due to the application of the linear
model, as Klein and Morelli have a more practical approach with real flight data
generated from flight testing of an unknown system, while Beard and McLain
tend to focus on modeling and simulations, where trim conditions are easily
found in simulations. In this thesis, trim conditions for different airspeeds and
AOA are found easily in simulations in Simulink by setting an airspeed and
altitude reference and letting the simulator’s PID controllers make the UAV
reach a steady state.

The linearized models are only valid near the points of linearization. There-
fore, the maneuvers used in flight for system identification must not deviate too
far away from these trim conditions chosen as points of linearization. This prin-
ciple is also frequently used in control systems design [7]. The dynamic model
is developed using the equations of motion developed in Beard and McLain [8].
These are reduced-order modes developed under the assumptions. The longit-
udinal short-period mode assumes constant altitude and thrust input, while
the lateral roll mode assumes constant pitch angle and neglects heading dy-
namics. The linearization of longitudinal and lateral dynamics is performed
by computing the Jacobians of the respective longitudinal and lateral state
equations in (2.7), (2.9) and (2.14). The longitudinal Jacobians are calculated
by

Along. =
∂flong.
xlong.

=


∂u̇
∂u

∂u̇
∂w

∂u̇
∂q

∂u̇
∂θ

∂ẇ
∂u

∂ẇ
∂w

∂ẇ
∂q

∂ẇ
∂θ

∂q̇
∂u

∂q̇
∂w

∂q̇
∂q

∂q̇
∂θ

∂θ̇
∂u

∂θ̇
∂w

∂θ̇
∂q

∂θ̇
∂θ

 and B =
∂xlong.
∂ulong.


∂u̇
∂δe
∂ẇ
∂δe
∂q̇
∂δe
∂θ̇
∂δe

 (3.14)
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and the lateral Jacobians are found by calculating

Alateral =
∂flateral
xlateral

=


∂v̇
∂v

∂v̇
∂p

∂v̇
∂r

∂v̇
∂ϕ

∂ṗ
∂v

∂ṗ
∂p

∂ṗ
∂r

∂ṗ
∂ϕ

∂ṙ
∂v

∂ṙ
∂p

∂ṙ
∂r

∂ṙ
∂ϕ

∂ϕ̇
∂v

∂ϕ̇
∂p

∂ϕ̇
∂r

∂ϕ̇
∂ϕ

 and B =
∂flateral
ulateral


∂v̇
∂δa
∂ṗ
∂δa
∂ṙ
∂δa
∂ϕ̇
∂δa

 (3.15)

Calculating the Jacobians result in a set of model coefficients denoted as
X(·), Z(·),M(·), Y(·), L(·), and N(·), where (·) is a placeholder for the state which
the coefficient is related to. The resulting linearized longitudinal and lateral
state space equations can then be assembled as

Longitudinal
u̇
α̇
q̇

θ̇


︸ ︷︷ ︸

ẋ

=


Xu XwV

∗
a cosα∗ Xq −g cos θ∗

Zu
V ∗
a cosα∗ Zw

Zq

V ∗
a cosα∗

−g sin θ∗
V ∗
a cosα∗

Mu MwV
∗
a cosα∗ Mq 0

0 0 1 0


︸ ︷︷ ︸

A


u
α
q
θ


︸ ︷︷ ︸

x

+


Xδe
Zδe

V ∗
a cosα∗

Mδe

0


︸ ︷︷ ︸

B

[
δe
δt

]
︸︷︷︸

u

(3.16)

Lateral
β̇
ṗ
ṙ

ϕ̇


︸ ︷︷ ︸

ẋ

=


Yv

Yp
V ∗
a cosβ∗

Yr
V ∗
a cosβ∗

g cos θ∗ cosϕ∗

V ∗
a cosβ∗

LvV
∗
a cosβ∗ Lp Lr 0

NvV
∗
a cosβ∗ Np Nr 0
0 1 0 0


︸ ︷︷ ︸

A


β
p
r
ϕ


︸ ︷︷ ︸

x

+


Yδa

V ∗
a cosβ∗

Lδa
Nδa

0


︸ ︷︷ ︸

B

δa

︸︷︷︸
u

(3.17)
Here, the equations are written in terms of α and β instead of w and v, by the
relations α̇ = ẇ

V ∗
a cosα∗ and β̇ = v̇

V ∗
a cosβ∗ , respectively. The equations used for

calculating the stability and control derivatives are adopted from Beard and
McLain [8, Chapter 5].

3.4 A Priori Frequency Analysis of Dynamic Modes

This section aims to utilize the a priori linear model of the experimental plat-
form developed in the previous section to perform frequency analysis of the
dynamic modes to determine the frequency content of the longitudinal and
lateral dynamics. This is advantageous as it is possible to perform some pre-
liminary design of input signals for real-world experiments [7]. This section
mostly repeats the process followed in the project thesis [1]. However, the lin-
earized model has been updated with new and more accurate trim conditions,
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in addition to new stability and control derivatives. It is included here to in-
form the reader of the steps performed in choosing the input signal for the
experimental flights with the Skywalker X8 UAV, as it is nontrivial to the av-
erage reader, and since the results slightly differ from the results in the project
thesis.

According to Klein and Morelli [6] and Jategaonkar [7], there are two main
approaches for designing optimized input signals for system identification. One
approach operates with little to no a priori information about the system.
Here, it is not possible to provide information about the resonant frequencies
of the different dynamic modes of the system. When designing input signals
for system identification, it is beneficial to make sure the natural frequencies
are excited, as this provides the most information about the dynamics of the
aircraft [6, 7]. In this case, this is done by exciting a broad range of frequencies,
to make sure that the unknown natural frequencies are excited. This is done
by applying a sweep across a frequency spectrum as input to the actuators.
This frequency range can be defined as a range that is assumed to cover all
dominant frequencies of the UAV.

The other approach exploits any a priori information about the dynamic
modes in order to match the frequency spectrum of the input signal with the
expected natural frequencies of the aircraft’s dynamic modes. This provides the
most information about the underlying system dynamics, making the identi-
fied system more accurate. The a priori information to be used for the design
of the input signal consists of the linearized equations of motion in equations
(3.16) and (3.17). This is only possible when the trim conditions and specific-
ations of the UAV are available. This is the case for the Skywalker X8 UAV
due to analyses performed by Gryte [40] and Reinhardt [39]. Some commonly
used maneuvers for this category of system identification are multistep inputs,
which are square-wave inputs of customized periods. Some common types of
multisteps found in the survey in Table 1.1 are doublets, 1-2-1, and the 3-2-1-1
maneuver.

Jategaonkar [7] estimates the optimal frequency ranges by utilizing Bode
diagrams. The contributions made by each parameter can then be synthesized
with this technique. For example, contributions from each term to the force in
the Z-direction in the short-period mode of Equation (3.16) can be found by

|Hu̇/δe(s)| = | u̇
δe
(s)|, |Hu/δe(s)| = |Xuu

δe
(s)|, |Hα/δe(s)| = |Xαα

δe
(s)|,

|Hq/δe(s)| = |Xqq

δe
(s)|, |Hθ/δe(s)| = |Xθθ

δe
(s)|, |Hδe/δe(s)| = |Xδeδe

δe
(s)|

where the transfer functions H(·/δe)(s) are found using the Laplace transform
of the linear time-invariant (LTI) state-space equations in equations (3.16) and
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(3.17) [56]

sx(s) = Ax(s) +Bu(s) (3.18)
y(s) = C(·)x+D(·)u(s) (3.19)

Solving the first equation of Equation (3.18) for x(s) and inserting into the
second equation, and then solving for H(·/δe) =

y(s)
u(s) yields

H(·/δe) =
y(s)

u(s)
= C(·)(sI−A)−1B+D(·) (3.20)

where the matrices C(·) and D(·) were defined as

Cu̇ =
[
Xu XwV

∗
a cosα∗ Xq −g cos θ∗

]
, Du̇ =

[
Xδe

]
Cu =

[
Xu 0 0 0

]
, Du =

[
0
]

Cα =
[
0 XwV

∗
a cosα∗ 0 0

]
, Dα =

[
0

]
Cq =

[
0 0 Xq 0

]
, Dq =

[
0
]

Cθ =
[
0 0 0 −g cos θ∗

]
, Dθ =

[
0
]

Cδe =
[
0 0 0 0

]
, Dδe =

[
Xδe

]
(3.21)

The resulting Bode diagrams describing the frequency contributions from
each derivative are found in Figures 3.4. At any given frequency, a large mag-
nitude for a term relative to the other terms indicates a dominant influence
of that specific derivative. This indicates good information content, which is
necessary for accurate identification of the parameter [7]. A rule of thumb for-
mulated by Jategaonkar [7] suggests that a derivative is identifiable when the
magnitude of the term is at least 10% of the magnitude of the largest term. The
same analysis was performed for all equations of the state-space formulations
in Equation (3.16) and (3.17).
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Figure 3.4: Bode magnitude plot of the force contributions made by each
derivative of the first equation in Equation (3.16).

By inspecting the Bode magnitude plots in Figure 3.4, it is noted that
most of the derivatives are identifiable in the range between 1 rad s−1 and
1 × 101 rad s−1. This indicates that it might be a good frequency range to
optimize the input signals to excite. The same applies to the Bode magnitude
plots for the other equations, as well as the Bode magnitude plots for the
equations in (3.17).

3.5 Optimal Input Signal Design for System Identi-
fication

The second step of designing input signals for system identification is to de-
termine the input signals such that they match the optimal frequency ranges
derived in the previous section. Multistep input signals are executed by a series
of step inputs in opposite directions with intervals of varying lengths. Both
Klein and Morelli [6] and Jategaonkar [7] recommend the doublet (1-1) and
the 3-2-1-1 multistep signals, where the numbers denote the number of peri-
ods in each direction. That is, the doublet maneuver will last for a total of
2∆t, while the 3-2-1-1 maneuver lasts for 7∆t. The doublet maneuver is very
common in the literature due to its simplicity in terms of design and execu-
tion. However, the 3-2-1-1 maneuver developed by the Deutsches Zentrum für
Luft- und Raumfahrt (DLR), has shown to be superior due to its wider band
of frequencies [7]. This is also true to a lesser extent for the 1-2-1 maneuver,
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which is more often used with lateral maneuvers due to its symmetry of two
excitation periods in each direction. Hence, the aircraft will return closer to its
initial position after the maneuver. This is arguably more important for the
lateral roll angle than the longitudinal pitch angle.

The duration of the different pulses in each direction of the maneuvers is
determined by placing the largest mass of the power spectrum of the signal in
the desired frequency range of the natural frequency of each dynamic mode.
For example, the power spectrum of different pulse widths ∆t for a doublet
maneuver is shown in the second plot in Figure 3.5.

The normalized frequency ω∆t of the doublet input signal is shown in the
third plot in Figure 3.5. By analyzing this power spectrum, it is seen that the
peak of the spectrum is located at ω∆tdoublet ≈ 2.3. Choosing ∆tdoublet = 0.4 s
results in placing the peak well within the optimal frequency range found
earlier. The equivalent analysis was performed for the 3-2-1-1 maneuver with
the longitudinal state-space model in Equation (3.16) and the 1-2-1 maneuver
with the lateral model in Equation (3.17). These periods are chosen slightly
lower, at ∆t3−2−1−1 = 0.3 s and ∆t1−2−1 = 0.3 s. These will be used as peri-
ods in the multisteps during the experimental flights. The shorter periods for
the more complex maneuvers are reasonable, as the power spectra are pushed
towards the lower frequencies due to the multiple consecutive periods in the
same direction. The 1-2-1 maneuver is used instead of the 3-2-1-1 maneuver in
the lateral direction. This is due to it being symmetrical, returning the UAV
closer to the initial roll angle after execution of the maneuver [7].
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Figure 3.5: The figure shows a doublet input signal with amplitude δ =
10◦ (top), and the power spectrum for varying ∆t (middle), as well as the
normalized frequency content (bottom).

3.6 Estimation of Wind Velocity, AOA, SSA, and
Airspeed

Without an air data system, such as a multi-hole air probe, it is impossible
to measure the wind-related states directly. However, these can be estimated
through sensor fusion. The estimation scheme proposed by Johansen et al.
[57], provides estimates of the wind velocity vector uw = [uw vw ww]

⊤,
AOA, SSA, and the airspeed Va. This method requires a pitot-static tube
for measuring the air velocity projected on the longitudinal axis of the UAV,
an AHRS using IMU, magnetometer, and GNSS measurements, as well as
velocity measurements from the GNSS. These measurements are used for a
wind velocity observer based on a Kalman filter.

3.6.1 Wind Velocity Observer

The wind velocity observer estimates the wind in all three directions. The
estimation scheme makes some assumptions about wind and UAV dynamics.
The wind is assumed slowly time-varying in the NED frame
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u̇nw = 0 (3.22)

The pitot-static sensor dynamic is also assumed slowly varying, with ur = γumr
being the measurement equation. umr is the raw measurement from the pitot-
static tube, and γ is a sensor scaling factor. The scaling factor is unknown
and estimated online. The slowly varying airspeed sensor dynamics can then
be modeled by

γ̇ = 0 (3.23)

The observer injection term uses the measurement equation

u = d⊤1 Rb
nu

n
w + umr γ (3.24)

where d1 = [1 0 0]⊤ and u is the measured velocity from the GNSS and
AHRS [57].
The state vector is then defined as x =

[
(unw)

⊤ γ
]⊤ with the system mat-

rix A = 04×4 due to the assumptions in equations (3.22) and (3.23). The
measurement matrix is time-varying and can be written as

C =
[
d⊤1 Rb

n umr

]⊤
(3.25)

The proposed observer by Johansen et al. [57] is given by[
˙̂unw
˙̂γ

]
= K

(
u− umr γ̂ − d⊤1 Rb

nû
n
w

)
(3.26)

where K is the Kalman gain vector.
The Kalman filter equations are then assembled as

Kk = P̂k−1C
⊤
k R

−1

P̂k = P̂k−1 +Q−KkCkP̂k−1

x̂k = x̂k−1 +Kk(u− umr γ̂ − d⊤1 Rb
nû

n
w)

(3.27)

where the matrix Ck is updated according to Equation (3.25) at each timestep
k.

Johansen et al. [57] also proved the observability of the wind velocity, as
long as sufficient attitude changes are satisfying the persistence of excitation
(PE) condition. As the flight experiments aim to perform longitudinal and
lateral maneuvers, this condition should be fulfilled without needing any ad-
justments to the experiment plan.

The same covariance matrices and initial estimates as in Johansen et al.
[57] were used, as they used a similar payload and UAV, with
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R = 1

P0 = diag(10−2, 10−2, 10−6, 10−4)

Q = diag(10−3, 10−3, 10−6, 10−8)

ûnw = [0, 0, 0]⊤

γ̂ = 1

(3.28)

3.6.2 Calculation of AOA, SSA, and Va

With the estimated wind velocities in the NED frame, the relative wind velo-
cities decomposed in the BODY frame can be calculated as in [8] byurvr

wr

 =

u− uw
v − vw
w − ww

 (3.29)

Finally, the states α, β and Va are found using Equation (2.4) with the estim-
ated relative velocities.

3.7 Maneuver Data Structure

The maneuvers are extracted from the data set using timestamps of IMC mes-
sages announcing the start of the maneuver. These messages contain the type
of maneuver performed as well as information about the duration of the man-
euver. Hence it was straightforward to extract the IMC messages with the
sampled data based on the start and end timestamps of the maneuver.

The data is ordered in Matlab structs by the entity it was sent from in
DUNE. The reason for this is that each entity has its own sampling times and
frequencies, resulting in unique and unsynchronized time series. Each entity
struct in the data structure contains its sampling times and the sampled data.
An overview of the maneuver data set is shown in Figure 3.6. The diagram
is color coded to distinguish the direct measurements, estimated and filtered
states, and metadata describing the configuration of the maneuver. The PWM
signals were measured and transmitted by three different entities in-flight due
to the DUNE task modifying the PWM signal in order to perform maneuvers.
The autopilot entity contains 8 PWM channels from the pilot’s RC-transmitter,
containing all manual control signals. The fourth PWM entity results from
the reconstruction of the throttle PWM signal from the low sampling rate
telemetry logs.
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Maneuver: struct
+ Airspeed Setpoint: value
+ Direction: str
+ Maneuver Type: string
+ Period: double
+ Magnitude: double
+ Start Time: float
+ End Time: float
+ IMU1: struct
+ IMU2 : struct
+ PWM1 (from Ardupilot): struct
+ PWM2 (from DUNE): struct
+ PWM3 (from autopilot): struct
+ PWM4 (throttle): struct
+ RPM: struct
+ EstimatedState: struct
+ Airspeed: struct
+ GPS: struct
+ Current: struct
+ Voltage: struct
+ Temperature: struct
+ Pressure: struct
+ EstimatedStreamVelocity: struct
+ EstimatedWind: struct

IMU1: struct
+ time: array
+ ax: array
+ ay: array
+ az: array
+ p: array
+ q: array
+ r: array

Maneuvers: struct
+ Maneuver Type 1: cell array
+ Maneuver Type 2: cell array
+ Maneuver Type 3: cell array

Maneuver Type: cell array

Rep. 1: structRep. 2: struct . . . Rep. M: struct

Legend
Metadata
Sampled Data
ArduPilot Estimate
Estimated in Post

EstimatedState: struct
+ time: array
+ u: array
+ v: array
+ w: array
+ phi: array
+ theta: array
+ alpha: array
+ beta: array
+ Va: array
+ PitotScaling: array

Figure 3.6: Visualization of the data structure of the maneuver data set.
Repetitions of maneuvers performed with the same configurations are ordered
in Matlab cell arrays. Each maneuver contains metadata, sampled data, and
estimated data.

The maneuver types are grouped into cell arrays by the airspeed setpoint,
direction (lateral or longitudinal), magnitude of the control surface deflection,
and the length of the excitation period ∆t. This data structure makes it easy
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to iterate over maneuvers with the same configuration and makes the data for
system identification easily accessible.

The EstimatedState struct in Figure 3.6 originally contains the states es-
timated by the ArduPilot’s INS and various EKFs. The AOA, SSA, Va, and
the pitot scaling γ estimated with the results from the wind velocity observer
in Equation (3.27) are inserted into the EstimatedState struct.

3.8 System Identification

The system identification methods applied to the flight data estimate the
nondimensional aerodynamic coefficients CL, CD, CY , Cl, Cm, and Cn from
equations (2.17) and (2.20). These are reconstructed as the sum of the identi-
fied stability and control derivatives multiplied with their respective stability
and control parameters, as in Equation (2.21):

CL(α, q, δe) = CL0 + CLαα+ CLq

c

2Va
q + CLδe

δe

CD(α, q, δe) = CD0 + CDαα+ CDq

c

2Va
q + CDδe

δe

Cm(α, q, δe) = Cm0 + Cmαα+ Cmq

c

2Va
q + Cmδe

δe

CY (β, p, r, δa) = CY0 + CYββ + CYp
b

2Va
p+ CYr

b

2Va
r + CYδa δa

Cl(β, p, r, δa) = Cl0 + Clββ + Clp
b

2Va
p+ Clr

b

2Va
r + Clδa δa

Cn(β, p, r, δa) = Cn0 + Cnβ
β + Cnp

b

2Va
p+ Cnr

b

2Va
r + Cnδa

δa

(3.30)

The two methods applied are the EE using the OLS algorithm and the OEM
based on simulating the linearized models in equations (3.16) and (3.17). These
are explained in Section 2.5.

3.8.1 Equation-Error Method for Flight Data

The flight data from each maneuver type is assembled into the regressor matrices
X from Section 2.5 according to Table 3.2.
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Table 3.2: Estimated coefficients, the regressor matrix, and the regressand
used for OLS in equation-error system identification. N is the number of
samples.

θ̂LS X z

[
CL0 CLα CLq CLδe

]⊤ 1 α(1) c
2Va(1)

q(1) δe(1)
...

...
...

...
1 α(N) c

2Va(N)q(N) δe(N)


CL(1)...
CL(N)


[
CD0 CDα CDq CDδe

]⊤ 1 α(1) c
2Va(1)

q(1) δe(1)
...

...
...

...
1 α(N) c

2Va(N)q(N) δe(N)


CD(1)...
CD(N)


[
Cm0 Cmα Cmq Cmδe

]⊤ 1 α(1) c
2Va(1)

q(1) δe(1)
...

...
...

...
1 α(N) c

2Va(N)q(N) δe(N)


Cm(1)...
Cm(N)


[
CY0 CYβ CYp CYr CYδa

]⊤ 1 β(1) b
2Va(1)

p(1) b
2Va(1)

r(1) δa(1)
...

...
...

...
...

1 β(N) b
2Va(N)p(N) b

2Va(N)r(N) δa(N)


CY (1)...
CY (N)


[
Cl0 Clβ Clp Clr Clδa

]⊤ 1 β(1) b
2Va(1)

p(1) b
2Va(1)

r(1) δa(1)
...

...
...

...
...

1 β(N) b
2Va(N)p(N) b

2Va(N)r(N) δa(N)


Cl(1)...
Cl(N)


[
Cn0 Cnβ

Cnp Cnr Cnδa

]⊤ 1 β(1) b
2Va(1)

p(1) b
2Va(1)

r(1) δa(1)
...

...
...

...
...

1 β(N) b
2Va(N)p(N) b

2Va(N)r(N) δa(N)


Cn(1)...
Cn(N)



Then the equation-error method is applied to data from both single man-
euvers and sets of identical maneuvers, according to Section 2.5.

3.8.2 Output-Error Method for Flight Data

According to Klein and Morelli [6], the initial estimates from the equation-
error method can be improved with the OEM. The modified Newton-Raphson
optimization algorithm presented in Section 2.5 is used to iteratively improve
the estimated coefficients θ from Table 3.2. The linearized state-space models
in equations (3.16) and (3.17) are simulated using the measured flight data as
states and inputs. This is done by 2nd order Runge-Kutta integration, similar
to Klein and Morelli [6]. In contrast to the EE method, the OEM relies on
the temporal relation between data points [7] and will only be applied to data
from single maneuvers.

3.9 Simulator

The simulator used for simulating flight in normal and icing conditions is based
on the Skywalker X8 simulator developed by Gryte [58], and the icing simu-
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lation was later added by Winter [59]. The dynamics model of the UAV is
based on Fossen [41], while the forces acting on the UAV are based on Beard
and McLain [8, Chapter 4] by implementing equations (2.17) and (2.20). The
simulator utilizes the default Simulink ode45 solver for simulating the dynamic
system, which is based on the explicit Runge-Kutta-Fehlberg 4(5) method [60].

3.10 Model-Based Estimation of Icing Severity

Now that the modeling of the UAV dynamics and the experimental platform
are determined, the final step required to meet the research objective is a state
estimation framework based on the UAV model and the sampled data. As
the full nonlinear state equations and the linearized state-space model have
already been introduced and utilized in the system identification, a natural
choice of state estimator would be the EKF. It is also the most widely used
tool for nonlinear state estimation. The main advantage of this is that both
the nonlinear state equations and the linearized state-space model include the
stability and control derivatives. Hence, multiple EKFs can run in parallel with
different sets of coefficients. The model fit errors of the different EKFs can then
be compared, giving an indication of which set of coefficients gives the best
approximation to the dynamics of the UAV. The different sets of coefficients
can be chosen as the coefficients representing different icing levels.

3.10.1 EKF for Estimation of UAV Dynamics

The UAV motion and observation models are linearized as follows.

f(xk−1,vk,wk) ≈ x̌+ Fk−1(xk−1 − x̂k−1) +w′
k (3.31)

g(xk,nk,wk) ≈ y̌ +Gk(xk − x̂k−1) + n′
k (3.32)

where
x̌k = f (x̂k−1,vk,0)

Fk−1 =
∂f (xk−1,vk,wk)

∂xk−1

∣∣∣∣
x̂k−1,vk,0

w′
k =

∂f (xk−1,vk,wk)

∂wk

∣∣∣∣
x̂k−1,vk,0

wk

(3.33)

and

y̌ = g (x̌k,0) ,Gk =
∂g (xk,nk)

∂xk

∣∣∣∣
x̌k,0

,n′
k =

∂g (xk,nk)

∂nk

∣∣∣∣
x̌k,0

nk (3.34)

where F is the same as the system matrices A of equations (3.16) and (3.17),
except that they are linearized for each iteration of the EKF rather than the
trimmed states.
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Then the classic recursive update equations for the EKF are applied [46]

Prediction: P̌k = Fk−1P̂k−1F
T
k−1 +Q′

k

x̌k = f (x̂k−1,vk,0)

Kalman gain: Kk = P̌kG
T
k

(
GkP̌kG

T
k +R′

k

)−1

Correction: P̂k = (1−KkGk) P̌k

x̂k = x̌k +Kk (yk − g (x̌k,0))︸ ︷︷ ︸
innovation

(3.35)

In the prediction step, the full nonlinear equations (2.9) and (2.14) for the
aircraft dynamics are used by applying the force and torque equations (2.32)
and (2.33).

3.10.2 Multiple Model Adaptive Estimation for Icing Detec-
tion

The EKF implementation proposed in the previous section can easily be cus-
tomized for different sets of known stability and control derivatives. This is true
for both the coefficients used to calculate the linearized propagation model in
equations (3.16) and (3.17), as well as the full nonlinear state propagation
model. Combining this with the system identification performed for the UAV
in normal and iced flight conditions, it is possible to simultaneously evaluate
the performance of different EKFs loaded with different sets of coefficients.
This is the idea behind the MMAE scheme used in this research.
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3.10 Model-Based Estimation of Icing Severity

Figure 3.7: MMAE structure for icing detection and classification. The bank
of possible models is marked in the area towards the left.

The MMAE will here be adopted from [61] by employing a bank of N dif-
ferent EKFs, each performing state estimation for different models. The chosen
models represent the sets of the identified stability and control derivatives with
and without icing. These are supplemented by intermediate models that are
created through interpolation between the identified parameter sets. The sta-
bility and control derivatives are chosen to vary according to the model by
Bragg in Equation (2.1), using identified parameters from the clean airframe
(Cclean(·) ) and the iced airframe (Ciced(·) ):

C(·) = (1− ηice)C
clean
(·) + ηiceC

iced
(·) (3.36)

where ηice ∈ [0, 1] is the icing severity factor. This model assumes that each
stability and control derivative varies linearly between the clean and iced val-
ues.

Figure 3.7 describes the structure of the MMAE for N models. The pos-
terior probability is calculated with the using the innovations ν

(i)
k and the

innovation covariance S
(i)
k for each model i ∈ {1, ..., N} at each timestep k.

The dynamic weights p(i)k+1 are generated with the dynamic recursion
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p
(i)
k+1 =

βie
−σi

k∑N
j=1 p

j
kβje

−σi
k

pik for i = {1, ..., N} (3.37)

where βi is a positive constant coefficient given by

βj =
1√
||Sik||

(3.38)

and σik is called an error measuring function and is defined by

σik =
1

2
||νik||(Si

k)
−1 (3.39)

where the notation ||x||Q =
√
x⊤Qx is used. As shown by Cristofaro et al.

[21], one property of this recursion is the convergence of the weights:

pi
⋆

k → 1, pjk → 0 ∀j ̸= i⋆ (3.40)

with
i⋆ := arg max

i∈{1,...,N}
pik (3.41)

The icing conditions represented by the icing severity factor η are usually
continuous and time-variant. For the dynamic weights being able to respond
to changing η, the saturation of Equation (3.40), where pjk = 0 is undesirable.
Cristofaro et al. [21] provide an updated procedure that restricts saturation
and hence is able to adapt to changing icing severity in all situations. This
method can be described by

q
(i)
k+1 =

βie
−σi

k∑N
j=1 p

j
kβje

−σi
k

pik (3.42)

r
(i)
k+1 =

∑
j ̸=i

dead1−ϵ(q
(j)
k+1) (3.43)

p
(i)
k+1 = sat1−ϵ(q

(i)
k+1) +

r
(i)
k+1

N − 1
(3.44)

where the operators

sat∆(s) = min(∆,max(s,−∆)) (3.45)
dead∆(s) = s− sat∆(s) (3.46)

have been defined, and ϵ > 0 is acting as a buffer preventing saturation. ϵ must
be chosen sufficiently small, i.e. ϵ < 1/N .
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Chapter 4
Results and Discussion

The results from all phases of the project are presented here, starting with
analyzing and discussing the execution of the flight experiments at Breivika.
The data gathered in the flight tests was used for estimating the wind velocity
at the experiment location, as this is needed for the system identification of
the UAV. Finally, the results from simulations with an icing detection MMAE
are presented.

4.1 Flight Experiments at Breivika

Flight experiments were conducted on the 9th of May 2023 at Agdenes Flyplass
in Breivika. The purpose was to gather data for system identification using
the methods described in the previous chapter. The pilot programmed the
autopilot in Mission Planner to follow a racetrack pattern, seen in Figure 4.1.
The maneuvers were performed on the long edges of the racetrack after the
pilot gave the control to DUNE by toggling a switch on the RC-controller.
These edges were about 500m long when measured with the measurement
tool in Google Maps, effectively translating to about 20 seconds of time for
maneuvering assuming airspeeds of 20m s−1 and zero wind.

The experimentation started with a calibration flight, where the intention
was to gradually increase the amplitude of all maneuvers to find how large
the amplitudes could become before unintended behavior was provoked. A
threshold of 45 deg in both pitch and roll was set, as the pilots regarded that
as an upper limit of what could be deemed safe. The maximum amplitudes
of the different maneuvers can be found in Table 4.1. Also, normal flights at
various airspeeds were performed in the same run in order to get some reference
data.

After the calibration flight, the next flight was performed to collect data for
system identification under normal conditions, to serve as a baseline model for
comparison with the iced model. A maneuver plan can be found in Appendix
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Figure 4.1: The racetrack pattern for the system identification experiments.
Reconstructed by Ardupilot estimates during flight experiments. Maneuvers
were performed on the long sides of the rectangle.

A.2, where the purpose is to collect data from 3 to 5 maneuvers of each type,
depending on the time frame and battery level. The same maneuvers were per-
formed at different airspeeds. Varying the airspeed changes the trim condition
due to the dependency of the aerodynamic coefficients on the AOA, which in
turn is dependent on the airspeed. Also, the maneuvers were performed with
different magnitudes, one normal and one high. The reason for this is that the
high amplitudes have the same frequency content but with a higher power,
which could make the stability and control derivatives easier identifiable. Nor-
mal amplitudes were used in case the high amplitudes shifted the UAV too far
away from the linearization points for working with the linearized state-space
model in equations (3.16) and (3.17). Additionally, the low-magnitude man-
euvers are more comparable in case the high magnitudes are too aggressive for
the icing runs.
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Table 4.1: Summary of maneuver magnitudes and periods used for system
identification experiments. The large magnitudes were found experimentally
by ensuring that the angles did not exceed 45◦.

Maneuver Normal Mag. Large Mag. ∆t Max angle [state]

Elevator Doublet 15◦ 25◦ 0.4 s 30◦ [θ]
Elevator 3-2-1-1 10◦ 20◦ 0.3 s 40◦ [θ]
Aileron Doublet 15◦ 25◦ 0.4 s 35◦ [ϕ]
Aileron 1-2-1 15◦ 25◦ 0.3 s 35◦ [ϕ]

The 3D-printed ice shapes were attached firmly to the leading edge of the
wing using double-sided tape. The profile of the ice imitates the shape of mixed
ice in Figure 4.2, representing flight in the most intrusive icing conditions.
After takeoff, the UAV seemed to be highly unstable and was doing erratic
and uncontrolled movements. It was too unreliable for the pilot to give control
to DUNE, and the onboard autopilot was not able to stick to the trajectory
programmed in Mission Planner. Shortly later, contact with the UAV was lost
from ground control. A few minutes later, the UAV was found crashed and
burning in a nearby gravel pit, as seen in Figure 4.3 and 4.4. All parts and
components of the payload of the UAV were then already burnt beyond repair
and recovery, and the Skywalker X8 UAV was discarded in its entirety.

53



Chapter 4. Results and Discussion

Figure 4.2: Profile of the 3D-printed ice mockup attached to the leading
edge of the Skywalker X8’s airfoil. The figure is based on images of the actual
ice mockups.

The data collected prior to the crash was limited to multistep maneuvers
conducted under normal flight conditions. This data was primarily intended as
reference information for comparing with the data collected in icing conditions.
As a result, no usable data for system identification could be obtained from
the icing run. This was due to the absence of maneuvers performed during the
very short icing run and the fact that the only available data was from the
telemetry log, which had lower sampling rates.
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Figure 4.3: The image shows the final telemetry log updates from the Sky-
walker X8 in the gravel pit by the ground station. The red circle shows the
crash site where it was found burning.

Figure 4.4: The burning Skywalker X8 UAV post-flight, with the 3D-printed
ice shapes attached to the leading edge of the wing.
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4.2 Synchronization of Experiment Data

Unfortunately, the SD card containing the high-resolution data with the least
delay was unsalvageable, as it crumbled upon inspection in the burned ruins
of the Skywalker X8 pictured in Figure 4.4.

Luckily, the redundant IMC messages passed from ArduPilot to DUNE
contain most of the data required by the system identification. This data has a
slightly lower resolution and is expected to have some more transmission delay.
However, some messages, such as the state estimation from ArduPilot had a
quite high sample rate of about 40Hz. After each flight, the DUNE data was
transferred to Neptus and saved securely on the ground station computer. The
DUNE data also contained the high-resolution STIM300 IMU data sampled at
250Hz from the SenTiBoard DUNE task.

The only data that was not transmitted and saved through the redundant
IMC messages is the throttle PWM signal. This is likely due to an error in the
DUNE task, where the PWM messages listened to the wrong PWM channel
on the Cube Orange. This was instead gathered from the telemetry log and
needs to be synchronized with the DUNE log. Luckily, the elevon servo PWM
signals were transmitted by both the redundant logs, such that this signal can
be used to synchronize the telemetry log with the DUNE log.

4.3 Wind Data Estimation

The wind velocity observer in Section 3.6 was used to estimate the wind at
Breivika during the flight tests. The measurements from the pitot-static tube,
the estimated Euler angles, and the velocities from ArduPilot were used for
this. The Euler angles estimated by ArduPilot were in the interval [−180◦, 180◦].
These were remapped to the interval [0◦, 360◦] by using the Matlab functions
unwrap() to unwrap the Euler angles, followed by wrapTo2Pi() to wrap the
angles around the desired interval. The estimated wind velocities are shown
in Figure 4.5. To assess the quality of the estimated wind velocity, it can be
compared to the weather data from the time period at the location. Weather
history data from http://yr.no reports north-western winds of 8.1m s−1 at
12:00, to 7.2m s−1 at 13:00 at the Ørland III weather station, This is the
nearest weather station to Breivika with a distance of approximately 10.8 km
across the Trondheim Fjord. The absolute wind velocity of the estimates in
Figure 4.5 are shown in Figure 4.6. The average estimated wind velocity lies
between 8m s−1 and 10m s−1 during the period the experiments were con-
ducted. This fits well with the reports from Ørland III, considering the high
uncertainty in the weather report due to the long distance. While the weather
report says that the wind is north-western, the estimated winds are in the
north-eastern direction. This disagreement is hard to settle, as this could be
caused by local variations in wind direction. This is magnified by the geography
at Breivika, where the airfield lies by a rocky outcrop, pictured towards the
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top of Figure 4.3, which affects both wind direction and turbulence.
The scaling factor γ̂ is close to 1 during the experimental flight, indicating

a good calibration of the pitot-static tube and that it is operating without
faults.

The estimated wind velocities were used to calculate the estimated AOA,
SSA, and Va according to Equation (2.4). The results are shown in Figure 4.7,
along with a more detailed view of two consecutive longitudinal doublet man-
euvers at Va = 18m s−1 in Figure 4.9. The SSA seems very large, fluctuating
between 50◦ and −50◦. However, this is expected considering the strong wind.
The AOA is highly correlated to the pitch angle, as expected. This is seen in
Figure 4.8 and the more detailed Figure 4.9. It is also generally quite low com-
pared to the findings by Winter [59] at similar airspeeds. This should lead to a
weaker lift force according to Equation (2.17a). Since the UAV could still fly at
a constant height, this must have been compensated for by some other factor,
assuming the estimate is accurate. Looking at the wind estimation plot in Fig-
ure 4.5, a negative wind velocity would hit the UAV’s airframe from below. It
could help explain the lower AOA as sufficiently strong upward winds could
compensate for the lift. The reference value for the Va started at 18m s−1 after
takeoff, lowering to 16m s−1, before increasing to 24m s−1 in the final stage
of the flight. The estimated Va is slightly higher than these values during the
experimental flight, which seem to lie about 2m s−1 above.
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Figure 4.5: Estimated wind velocities in the north-east-down (NED) dir-
ections, and the pitot scaling factor γ̂, which provides an estimate of the
calibration of the pitot-static tube sensor.
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Figure 4.6: The absolute estimated wind velocity at Breivika during the
entire experiment flight from takeoff to landing.
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Figure 4.7: Estimated AOA, SSA and Va.
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Figure 4.8: Comparison of the pitch angle and the estimated AOA for the
entire experimental flight.
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Figure 4.9: Detailed view of the estimated AOA, pitch angle, SSA and Va
for two consecutive longitudinal doublet maneuvers.
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Validation of the estimated AOA and SSA is difficult without any reference
data of local wind direction or measurements with a 5-hole ADS. However, for
the AOA, the relationship between the AOA and the specific force fz from
Equation (2.18) measured by the IMU can be investigated. Combining fz with
the simplified model for the lift coefficient CL(α) = CL0 + CLαα from Beard
and McLain [8, eq. 4.12], the fz can be approximated by the linear relationship

fz = k0 + k1α (4.1)

where k0 and k1 are paramters dependent on the airspeed Va, rotational velocity
q and the elevator deflection δe [57]. This approximation is valid for low AOA
[8]. fz and the AOA α are plotted against each other in Figure 4.10. The plot
indicates a linear relationship between fz and α, which would be expected. The
highest concentration of markers lies about fz ≈ 10m/s2, which stems from
most of the data being collected in trimmed flight between the maneuvers.
In this case, the accelerometer should measure a specific force close to the
gravitational acceleration g = 9.81m/s2.
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Figure 4.10: AOA correlations from the set of longitudinal doublet man-
euvers at Va = 18m s−1 with 15◦ deflection angles.

The same linear approximation can be used for fy and its dependency on
the SSA β for low β. However, as the data was collected in strong sideways
winds, the magnitude of β mostly lies between 35◦ and 50◦, which is too large.
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4.4 System Identification of Flight Data

The flight data was exported to Matlab and assembled into the data structure
presented in Figure 3.6. All different configurations of maneuvers are listed
in Appendix A, where they are separated by airspeed, deflection angle, and
actuated control surface. The maneuvers were performed by stabilizing the
UAV in trim at a desired airspeed before executing the maneuvers. These were
executed by sending maneuver configurations to the onboard DUNE software
through Neptus on the ground station computer, depicted in Figure 3.1. The
maneuvers were executed both upwind and downwind in case there are signi-
ficant differences in the aerodynamics in each direction.

4.4.1 Equation-Error

The EE system identification was performed according to Section 3.8 on the
compiled data from maneuvers of the same configuration to help prevent over-
fitting to the data from a single maneuver.

Starting with the most basic maneuver, the estimated stability and control
derivatives from the EE method applied to the dataset of longitudinal and
lateral doublet maneuvers are listed in Table 4.2. The commanded airspeed for
this maneuver is Va = 18m s−1, which is the nominal cruise speed according to
the pilot. The nondimensional force and moment coefficients were calculated
according to Equation (3.30) and are plotted in Figure 4.11. The estimated
CL and Cm fit the observed data quite well, with R2 score of 0.65 and 0.67,
respectively, displayed in the residual plot in Figure 4.13. The CD is less ac-
curate in matching the observed force coefficients with an R2 score of 0.39. It
becomes negative at the largest excitations, meaning that it somehow models a
negative drag force at certain points, which makes no sense physically. Hence,
all drag derivatives should be positive, which is not the case in Table 4.2. The
drag force coefficient is more dependent on the airspeed Va and the modeled
propulsion force Fprop from Equation (2.30). Hence, the bad model fit might
be explained by either inaccurate estimates of the Va or inaccurate modeling
of the propulsion force. The residual plot shows that the residuals are signific-
antly larger during the rapid increase in AOA as the maneuvers are executed.
The linearized force coefficients in Equation (2.32) are only valid for small per-
turbations in AOA, which could explain the bad model fit when far away from
these conditions. Analyzing the collinearity of the regressor data according to
Equation (2.58) reveals low linear dependency, where all off-diagonal elements
are far below the recommended maximum absolute value of 0.9 by Klein and
Morelli [6].

X∗⊤X∗ =

 1 −0.3189 0.0077
−0.3189 1 −0.4857
0.0077 −0.4857 1

 (4.2)
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where

X =


α(1) c

2Va(1)
q(1) δe(1)

α(2) c
2Va(2)

q(2) δe(2)
...

...
...

α(N) c
2Va(N)q(N) δe(N)

 (4.3)

and N is the number of samples.
The same maneuver was performed in the lateral direction by applying

the same input to the aileron. The estimated stability and control derivatives
are also listed in Table 4.2. The resulting lateral force coefficients calculated
according to Equation (3.30) are shown in Figure 4.12. From the residual plot
in Figure 4.13, it is seen that the resulting model fit from lateral doublet
maneuvers with δa = 15◦ are generally better than for the longitudinal models,
and the residuals are more distributed in the 95% confidence interval. As
these are not directly dependent on the Fprop and are assumed decoupled from
the AOA, this strengthens the hypothesis about the bad modeling of these.
Similarly to the longitudinal regressors, the lateral regressors also show low
collinearity, with

X∗⊤X∗ =


1 −0.0119 −0.0012 0.0731

−0.0119 1 0.2009 0.1214
−0.0012 0.2009 1 −0.4392
0.0731 0.1214 −0.4392 1.0000

 (4.4)

where

X =


β(1) b

2Va(1)
p(1) b

2Va(1)
r(1) δa(1)

β(2) b
2Va(2)

p(2) b
2Va(2)

r(2) δa(2)
...

...
...

...
β(N) b

2Va(N)p(N) b
2Va(N)r(N) δa(N)

 (4.5)

and N is the number of samples.
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Figure 4.11: Longitudinal aerodynamic coefficients calculated according to
Equation (3.30) using least squares estimates. They are plotted against the
observed coefficients calculated with Equation (2.22) using flight data from
elevator doublets with |δe| = 15◦ at Va = 18m s−1.
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Figure 4.12: Estimated and measured lateral force coefficients from least
squares estimation of doublet maneuvers with |δa| = 15◦.
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Figure 4.13: Residuals and R2 scores from longitudinal and lateral least
squares estimation of force coefficients of doublet maneuvers with amplitudes
δe = δa = 15◦. The red lines show the bounds of the 95% confidence interval.

Moving on to the more complex 3-2-1-1 longitudinal and the 1-2-1 lateral
maneuvers, the results are very similar to the results from the doublet man-
euvers. Only the R2 scores of Cm = 0.71 and Cn = 0.67 differ from the pre-
vious least squares estimates with any significance, where the pitch moment
force coefficient model fit improved, while the yaw moment force coefficient
worsened. The lateral residuals are in this case more similar to the longitud-
inal residuals, with larger errors during maneuvers. Comparing the standard
errors of the doublets in Table 4.2 with the new standard errors in Table B.1,
there is a general improvement in the confidence in the estimates, while the
values of the estimated coefficients are very similar.
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Figure 4.14: Estimated and measured longitudinal force coefficients from
least squares estimation of 3-2-1-1 maneuvers with |δa| = 10◦.
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Figure 4.15: Estimated and measured lateral force coefficients from least
squares estimation of 1-2-1 maneuvers with |δa| = 15◦.
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Figure 4.16: Residuals and R2 scores from longitudinal and lateral least
squares estimation of force coefficients from longitudinal 3-2-1-1 and lateral 1-
2-1 maneuvers. The actuator deflection angles were 10◦ and 15◦, respectively.
The red lines show the bounds of the 95% confidence interval.
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Table 4.2: Identified derivatives from EE and OEM system identification
based on longitudinal and lateral doublet maneuvers with 15◦ amplitude and
∆t = 0.4 s. The reference values are taken from wind tunnel and XFLR5
analyses by Gryte et al. [40].

Reference EE σ2 |t0| OEM

CL0 0.0867 -0.2382 0.0017 144.27 2.7206
CLα 4.02 0.1737 0.0198 8.7858 0.2032
CLq 3.87 -20.9666 0.3293 63.6708 17.9577
CLδe

0.278 -0.6828 0.0224 30.4266 1.9206
CD0 0.0197 0.0837 0.0008 108.0128 0.3450
CDα 0.0791 -0.2767 0.0083 33.1704 0.0175
CDq - -3.3025 0.1215 27.1791 0.1670
CDδe

0.0633 0.1902 0.0097 19.6728 3753
Cm0 0.0302 -0.0016 0.0001 10.8699 0735
Cmα -0.126 0.0135 0.0017 7.7792 -0.456
Cmq -1.3 1.3018 0.0288 45.1843 -0.5873
Cmδe

-0.206 -0.0549 0.0020 27.9751 -0.0083

CY0 0.0032 0.0033 55.5× 10−4 5.9295 0.0034
CYβ -0.224 -0.0019 8.06× 10−4 2.3548 -0.0574
CYp -0.137 1.0365 0.0545 19.0318 1.0220
CYr 0.0839 0.1409 0.0165 8.5561 0.1673
CYδa 0.0433 0.0028 9.8× 10−5 28.9924 0.0027
Cl0 0.0041 −6.5× 10−5 2.7× 10−5 2.3859 -0.0001
Clβ -0.0849 −6.2× 10−6 3.95× 10−5 0.1579 -0.0755
Clp -0.404 -0.0036 0.0027 1.3395 -0.8839
Clr 0.0555 0.0243 8.1× 10−4 30.1471 0.1013
Clδa 0.12 −7.3× 10−7 4.8× 10−6 0.1511 -0.0026
Cn0 −4.7× 10−4 −8.6× 10−4 1.1× 10−4 7.9461 -0.0009
Cnβ

0.0283 2.4× 10−4 1.6× 10−4 1.5078 0.0076
Cnp 0.0044 -0.2447 0.0106 23.1419 -0.0992
Cnr -0.012 0.0840 0.0032 26.2654 0.0652
Cnδa

-0.0034 −5.0× 10−4 1.9× 10−5 26.1157 -0.0003

Equation error system identification was also performed on the same man-
euvers with larger control surface deflection angles. The results from these are
listed in Appendix B. The R2 scores were generally slightly lower than for the
low-amplitude maneuvers, with higher standard deviations for the estimated
derivatives, especially for the longitudinal maneuvers. The same applied to the
maneuvers executed with an airspeed Va = 24m s−1. The explanation is likely
that these more aggressive maneuvers drove the UAV even further away from
the linearization points, making the inherent assumption of small AOA from
the Taylor series expansion from the equations in (2.17) invalid. The maneuvers
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from the flights at Va = 16m s−1 with the low amplitudes were very similar to
the results above at Va = 18m s−1. This makes sense, as the only difference is
2m s−1 in airspeed. Since the results were so similar, only the results at the
nominal airspeed Va = 18m s−1 will be considered.

4.4.2 Output-Error Method

The estimated stability and control derivatives from the EE method in Table
4.2 were used as initial estimates for the OEM. Since the OEM requires simu-
lation of a dynamical system, the state-space equations (3.16) and (3.17) were
used, linearized around trim conditions. Since these were not found during
flight experiments due to the strong winds, the mean values of the measured
states were used, similarly to Klein and Morelli [6].

The OEM was applied to the data from a longitudinal and a lateral doublet
maneuver at Va = 18m s−1 using control surface deflections of 15◦. The estim-
ated coefficients are shown in Table 4.2 and differ vastly from the EE estimates.
The estimated longitudinal states in Figure 4.17 show that the model fits the
data well with R2 scores well above 0.8 for all estimated states. Reconstructing
the nondimensional force and moment coefficients, and comparing them with
the EE estimates and the observed coefficients, reveals that the OEM estim-
ates differ drastically. Figure 4.18 and Table 4.2 show that the constant terms
from the OEM estimation CL0 , CD0 , and Cm0 have lifted the force coefficients
away from the observed estimates. This indicates that the linearized model
used does not fit the measured data well.

The same was also true for the lateral linearized model, where the R2 scores
were negative, implying a bad fit. This is likely due to the large SSA, which
deviates far away from the small angles assumed when linearizing the nonlinear
model.

The linear models were simulated with an RK2 integrator in the OEM, as
in Klein and Morelli [6]. For most of the maneuvers, these simulations diverged,
with only the simulations of doublet maneuvers at low deflection angles being
stable. For that reason, the coefficients estimated by OEM for other maneuvers
are not included with the EE estimates in Appendix B. Other ordinary dif-
ferential equation (ODE) solvers, such as Matlab’s ode45, were tested. These
simulations generally did not diverge, but the estimated stability and control
derivatives were abnormally large as well as the simulation times grew signi-
ficantly. Hence, the OEM was not usable for this data, and the EE estimates
are assumed to be the most reliable estimates.
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Figure 4.17: Model fit and R2 score from the output-error method based on
the linearized state-space model in Equation (3.16).
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Figure 4.18: Estimated longitudinal nondimensional force coefficients from
the output-error method compared to the EE estimates and the observed
values.

4.4.3 Compatibility with the Simulink Simulator

The identified parameters from the flight experiments in nominal conditions
were tested in the simulator implemented in Simulink from Section 3.9. Unfor-
tunately, the simulations with these parameters inserted were highly unstable,
as the control systems were not designed for this configuration. Major upgrades
to the simulator are outside the scope of this thesis, and the usage of the para-
meters identified from real flight experiments will not be pursued further.

4.5 Multiple Model Adaptive Estimator for Icing De-
tection

As the parameters from the flight experiment with ice mockups from Section
4.4 could not be identified, other parameters were chosen for simulations with
the MMAE. Winter [59] has performed system identification experiments of
the Skywalker X8 in software-in-the-loop (SITL) simulations using a similar
Simulink setup as in this project. The values used for the clean and iced sta-
bility and control derivatives are borrowed from his work and are presented in
Table 4.3. For the proof of concept in this research, only the longitudinal model
will be considered. The nonlinear equations for the longitudinal dynamics, to-
gether with the linearized short-period mode state-space model from Equation
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(3.16) are used in the bank of EKFs.

Table 4.3: Clean and iced stability and control derivatives based on the
simulations by Winter [59].

Derivative Clean Iced

CL0 0 0
CLα 0.2654 0.2194
CLq 4.6323 -3.3484
CLδe

0.2780 0.2780
CD0 0 0
CDα 0.0188 0.0539
CDq 0 0
CDδe

0.0633 0.0633
Cm0 0 0
Cmα -0.331 -0.0147
Cmq -1.9920 -2.0407
Cmδe

-0.2060 -0.2060

With these parameters, the MMAE detection strategy presented in Section
3.10 was implemented in Matlab and Simulink. Band-limited white Gaussian
measurement noise was added to the simulations according to [19], with

σ2acc = 0.001m2/s4 σ2gyro = 0.001 rad2/s2 σ2GPS = 0.1m2/ second2 (4.6)

in addition to the noise on the simulated airspeed measurements by a pitot-
static tube σ2pitot = 0.001m2/s2. As in [19], it is assumed that the AHRS
estimates noise-free attitude angles.

Each EKF in the bank of models was tuned with the same covariance
matrices and initial conditions. These were found experimentally by trial and
failure. The values used in the simulations for all test scenarios were

R = diag(1× 10−1, 1× 10−1, 1× 10−1, 1× 10−1)

Q = diag(7× 10−7, 1.5× 10−7, 3.5× 10−5, 1× 10−6)

P0 = diag(1, 1, 1, 1)

(4.7)

The ground truth icing level in the simulations ηgt was set to vary with
time in several different icing scenarios. This icing level was used to determ-
ine the stability and control derivatives according to Equation (3.36) using
the parameters from Table 4.3. The dynamic weights were initialized with
pi = 1/N for i ∈ {1, 2, . . . , N}. The estimation works by assuming that the
model with the highest dynamic weight at any given time is the one that best
approximates the actual dynamics. The method was tested in three different
hypothetical icing detection or estimation scenarios, demonstrating different
possible applications. Results from the different scenarios are presented below.
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4.5.1 Scenario 1: Binary Icing Detection

The first and simplest scenario regards detecting whether the airframe is suf-
fering from icing or not. Icing conditions are, in this case, defined as flight with
any icing severity above η̂ > 0.25 to allow some buffer in case of other disturb-
ances, such as small modeling errors due to actuator inputs. This setup uses
the MMAE estimator with a bank of only N = 2 models, which are configured
with control and stability derivatives corresponding to icing severities of η1 = 0
and η2 = 0.25.

The ground truth icing severity factor ηgt is chosen to start at 0 before
linearly increasing to 1 to represent a gradual accumulation of ice. Then it is
kept constant for a while before decreasing linearly back to zero, simulating
the ice melting off due to flight in warmer air masses. The simulation was
performed by keeping the UAV in trimmed flight for 300 s. The result from
the estimation presented in Figure 4.19 shows that the MMAE detector is able
to detect almost exactly when the ground truth icing exceeds the threshold
of where icing occurs. This is explained by the dynamic weights in Figure
4.20, calculated by Equation (3.42). The weights quickly adapt to the changing
estimation accuracies of the EKFs due to the changing ground truth icing
severity ηgt. It is noted that the detector is only detecting a fully clean airframe
after the ground truth icing severity has fallen to zero. The desired behavior
would be to detect changes in the icing earlier.

Figure 4.19: MMAE for icing detection with threshold η̂ ≥ 0.25. The red
area marks the area where icing is detected. The vertical lines represent the
icing severities of the two EKFs, where the estimated icing severity η̂ will
always attach to one of these.
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Figure 4.20: The dynamic weights during icing detection in the case of two
MMAE models. The weights quickly swap places around t = 50 s and t = 260 s
due to the two EKFs varying in accuracy as the icing severity changes.

4.5.2 Scenario 2: Estimation of Icing Severity

This scenario simulates a flight in icing conditions with gradual ice accretion
and gradual ice decretion to simulate the ice melting off again due to encounter-
ing warmer air masses, similar to Scenario 1. This is repeated with two different
icing severity peaks of η = 0.6 and η = 1. These were selected to assess the per-
formance when dealing with the icing severity stabilizing between two levels,
and when the icing severity changes across the range from no icing to fully
iced. The result in Figure 4.21 shows that the discrete icing severity estimator
with a bank of N = 5 EKFs with icing severities ηice = {0, 0.25, 0.5, 0.75, 1} is
able to follow the continuous ground truth icing severity. An optimal behavior
needs to be defined to quantify the performance of the discrete state estima-
tion of the continuous signal. One possibility is to define the optimal estimate
as the nearest icing severity to the ground truth ηgt in the predefined bank of
possible icing severities ηice at any time

η̂∗t = min(|ηgt,t − ηiice|) for i = {1, 2, . . . , N} (4.8)

where t is the timestep and N is the number of icing severities in the MMAE
model bank. The residual between the optimal and actual estimates is plotted
in Figure 4.23. It is seen that the estimate is almost always slower than the op-
timal behavior, but it always finds the correct icing severity. The identification
time difference between the optimal transitions in estimated icing severities
and the actual transitions in estimated icing severity is included in the figure.
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These confirm the time difference observation, as the average time difference
is approximately ∆t = 4.45 s, with the average of the absolute time differences
being 5.47 s. This indicates that the estimation is lagging behind the optimal
behavior. Although lagging by some seconds, the estimator’s performance can
be considered good.
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Figure 4.21: Estimated and ground truth icing severity factors for linear
accretion and melting of ice. The horizontal lines display the icing severity
factors of each model in the MMAE bank of models.

75



Chapter 4. Results and Discussion

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dynamic Weight p
1

Dynamic Weight p
2

Dynamic Weight p
3

Dynamic Weight p
4

Dynamic Weight p
5

Figure 4.22: The dynamic weights during a simulated icing run with a linear
accretion and melting of ice. The dominant dynamic weight at each timestep
is assumed to represent the best-fitting icing severity factor.
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Figure 4.23: The residual between the estimated icing level and the optimal
estimate.
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4.5.3 Scenario 3: Estimation of Icing Severity With Shedding

In this scenario, the icing gradually builds up from ηice = 0 at a steady rate and
is held constant for a while before suddenly falling back to zero. This leads to a
sudden change in dynamics due to the virtual ice shedding off. This simulates
icing being actively removed by heating the airframe in-flight. For this case,
the same bank of N = 5 icing models from the previous scenario were chosen
with the icing severities set to ηice = {0, 0.25, 0.5, 0.75, 1}. The resulting icing
estimation is shown in Figure 4.24, with the corresponding dynamic weights
displayed in Figure 4.25.
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Figure 4.24: Estimated and ground truth icing severity factors for a linear ice
buildup with shedding. The horizontal lines display the icing severity factors
of each model in the MMAE bank of models.
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Figure 4.25: The dynamic weights during a simulated icing run with a linear
ice buildup with shedding. The dominant dynamic weight at each timestep is
assumed to represent the best-fitting icing severity factor.

The figures show that the MMAE estimator is robust towards rapid changes
in the dynamics caused by ice shedding. The estimated icing severity factor
η̂ responds rapidly to the falling ηgt and correctly identifies the icing severity.
The response to the linearly increasing ηgt is a bit slower, with the average
time difference between the optimal estimator and the estimated icing severity
of around 5 s. Preferably, it should always switch to the model with the icing
severity closest to the ground truth. However, the response in Figure 4.24 shows
that it often only switches to the model closest to the ground truth after it
has surpassed this icing severity. This means that the estimator almost always
underestimates the icing severity, which is undesirable. The residual between
the optimal and actual estimates is plotted in Figure 4.26.

The outputs from every EKF in the model bank between the two cases of
ice shedding are displayed in Figure 4.27. The progression of the estimates is
clearly shown in the slope between t = 130 s and t = 230 s where the ground
truth icing severity increases from ηice = 0 to ηice = 1, before the rapid fall
back to ηice = 0 shortly after. This leads to a progression in the residual of each
EKF, leading to changes in the dynamic wing. The estimated pitch angles θ of
the EKFs seem mostly identical except for being shifted vertically in relation
to each other. This could be due to bad modeling or tuning, as the behavior
would be expected to be more similar to the AOA α.

Overall, the result is very promising as the lagging identification times of
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the MMAE estimator would likely be solved with a better tuning of the EKFs.
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Figure 4.26: The residual between the estimated icing level and the optimal
estimate.
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Figure 4.27: EKF estimates from the bank of N = 5 models. Each EKF is
running with a different set of stability and control derivatives corresponding
to the icing severity it evaluates.
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Chapter 5
Conculsions and Future Work

This final part of the thesis aims at drawing final conclusions about the most
significant results from the experiments and analyses performed during the re-
search of model-based in-flight icing detection for fixed-wing UAVs. A selection
of recommendations and some necessary considerations for further exploration
of the matter are also discussed.

5.1 Conclusion

The main goal of this thesis was to investigate whether icing can be indirectly
detected and estimated in flight based on changes in the observed dynam-
ics of UAVs using a basic sensor suite. To develop a model that incorporates
parameters varying with icing, it was essential to perform system identifica-
tion through real flight tests conducted in both nominal and artificial icing
conditions. The experiments were carefully designed to optimize system iden-
tification by exciting the decoupled longitudinal and lateral dynamics near
their dominant frequencies. This step required an a priori linearized model of
the UAV, which was based on wind tunnel testing performed by the NTNU
UAV-Lab, and trim conditions found in simulations. This a priori model does
not accurately represent real flight experiments, resulting in some uncertainty
in the optimal input design. This is partially compensated for by the richer
frequency content of the more complex maneuvers, and the input design is
assumed to excite the relevant frequencies sufficiently for identifiability. The
conditions at Beivika were not ideal for system identification, especially with
the primitive pitot tube in the strong winds. As a result, the experimental setup
led to different conditions in each direction of the maneuver space, which were
not initially considered in the design. A more customized input design, with
different excitation periods and amplitudes for different icing and trim condi-
tions, would be difficult to execute during flight tests. This is mainly due to
the framework chosen for setting up maneuvers in Neptus and sending them
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to DUNE in-flight was slow even with the few maneuver configurations chosen
for this experiment.

Artificial icing mockups were mounted on the leading edges of the flying
wing to emulate flight in icing conditions. Combined with the strong winds,
this made the Skywalker X8 highly unstable, leading to an inevitable crash
shortly after. Hence, only the data from the experiments in nominal conditions
were available for analysis and system identification. The wind, and in turn,
the AOA, SSA, and airspeed were estimated by implementing the wind velo-
city observer proposed by Johansen et al. [57]. This proved successful, almost
matching the wind conditions at the nearest weather station. Although the
wind direction was not matching the weather data, local winds are assumed to
differ slightly from the weather station across the Trondheim Fjord. The es-
timated AOA was surprisingly low, which might have been caused by upward
winds during flight experiments. The entire wind estimation could be avoided
by including a 5-hole ADS instead of a pitot-static tube. Then, the AOA, SSA,
and airspeed would be easily measured. This would also significantly increase
the cost of the development platform but could be justified by the higher data
quality for the system identification step. An improved model of the stability
and control derivatives in normal and icing conditions would make the real-
time state estimation more accurate in flight. Hence, only one 5-hole ADS could
suffice for a whole fleet of aircraft with the same aerodynamic characteristics.

The system identification was unfortunately incomplete due to the lack of
data from flights in artificial icing conditions. The quality of the data collected
in normal conditions was good, although more favorable wind conditions would
be preferred. The need for data processing for synchronization, transformations
of sensor frames, and estimation highly influenced system identification, which
increased the number of sources of error. The IMU data would be more accurate
with proper mounting in the CG of the UAV, removing the need for transform-
ation of the measurement frame. Instead, the CubeOrange’s embedded IMU
could be used to estimate the relative orientation of the coordinate frames,
and the translational displacement could be approximated with measurements.
After data processing, the data was synchronized and ready for system identi-
fication. Analysis of the regressors in the EE method revealed low collinearity,
which is favorable as the estimated parameters are more identifiable. Although
having low collinearity, the variances of the estimated longitudinal derivatives
were a bit high, and the coefficient of determination R2 was particularly low for
the nondimensional drag force coefficient CD, implying that the model does
not fit the data well. This might be due to bad modeling of the propulsion
force.

System identification with the OEM revealed that the linearized state-
space model did not fit well with the data collected from the experiments, and
the estimated stability and control derivatives were not used. This was likely
caused by too large deviations from the linearization points, especially for the
AOA.
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The final step in the proposed strategy for in-flight icing detection was to
perform real-time state estimation based on the identified stability and control
derivatives. The simulator by Winter [59] proved to be incompatible with the
identified derivatives from the flight testing, as the controllers were unable to
achieve stable flight with this set of parameters. Without the iced model avail-
able, the stability and control derivatives already implemented by Winter in
the simulator were used for demonstration. The MMAE proved successful with
these sets of parameters and was able to detect icing, as well as estimate the
icing severity in simulated icing scenarios. These scenarios were chosen to simu-
late the gradual accumulation and melting of ice, as well as the rapid shedding
of ice, causing a significant change in dynamics. Although the simulated icing
conditions were approximated to vary linearly with the icing severity, this is
often considered sufficient when the goal is the detection of icing rather than
a detailed description of the icing progression. The simulated cases were also
only focused on flights in straight lines without any intended maneuvering,
which is not representative of actual UAV operations. The performance during
regular maneuvering and capability analyses in more extreme conditions is yet
to be examined.

The approach of creating a multiple-model adaptive estimator by utilizing
a bank of N extended Kalman filters to take advantage of the variations in
identified nondimensional stability and control derivatives has demonstrated
promising results. Despite identifying numerous opportunities for improvement
at every stage of the process, the outcomes have been encouraging.

5.2 Recommendations for Future Work

An obvious next step in the continuation of the development of the icing de-
tection methodology proposed is to connect the system identification with the
multiple-model adaptive icing estimation and eventually perform real flight
experiments.

Perhaps the most beneficial first step towards further research with the
current development platform would be to improve the simulator. A necessary
addition would be to implement similar control systems to the ones onboard
the Ardupilot autopilot, such that better maneuvers for system identification
can be found and tested in simulations. This could also make the identified
models compatible with the simulations of the added MMAE in Simulink. The
linearized model used for the OEM proved to fit badly with the measured data
and should be improved or replaced.

Exploration of other fault detection methods might therefore also be in-
teresting, such as performance-based ice detection methodologies proposed by
Deiler et al. [62]. In the project thesis [1], sparse identification of nonlinear
dynamics (SINDy), proposed by Brunton et al. [63] showed promising results
in the identification of the nonlinear dynamics of the UAV in simulations and
could be investigated further. However, this method was far less explainable
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due to the large, although sparse, identified model. The main issue was the
many dynamical couplings which are usually neglected in more traditional air-
craft system identification techniques. Hence, this method was not pursued
further in this thesis.

It has been established that the quality of the system identification could
be improved by adding a 5-hole ADS to measure the AOA accurately, SSA,
and airspeed without the need for estimation. The development platform used
in the experimentation of this thesis was readily available for the addition of a
more advanced air data system as the SentiBoard was also able to parse and
synchronize Aeroprobe ADS data from one of the many free interfaces. This
could be beneficial, especially during flight testing in the Trondheim area,
where wind conditions can be challenging for conducting system identification.
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Appendix A
Experiment Plan

This appendix provides the planned maneuvers and executions of maneuvers
for system identification. It consists of separate longitudinal and lateral man-
euvers that build on the assumption that they excite each of these dynamics
separately and uncoupled, as well as coupled maneuvers. Step sequences and
frequency sweeps are preprogrammed in DUNE and executed through Neptus
during flight. Maneuvers are performed with and without ice mockups attached
to the leading edge of the wings.

A.1 Execution of Maneuvers

Maneuvers are executed while in trimmed flight with interfering controllers
turned off. Other controllers can be left on, assuming decoupled dynamics
during the execution of maneuvers. The maneuvers are executed by applying
various inputs and input sequences to the elevators and ailerons. For the step
sequences the a priori optimal excitation period is found in Chapter 3.

Step Sequence Maneuvers

• Reach trim conditions with the desired airspeed.

• Configure the maneuver in Neptus and send to DUNE.

• Transfer control of control surfaces to DUNE.

• Wait for the UAV to stabilize at trim speed and record a couple of seconds
of trimmed flight.

• Activate the maneuver through Neptus and apply the input step sequence
to elevons.

• Let the UAV move freely with the open-loop longitudinal dynamics for
5-10 seconds.

91



Chapter A. Experiment Plan

• Repeat 3-5 times.

Frequency Sweep

• Reach trim conditions with the desired airspeed.

• Configure the maneuver in Neptus and send to DUNE.

• Transfer control of control surfaces to DUNE.

• Wait for the UAV to stabilize at trim speed and record a couple of seconds
of trimmed flight.

• Apply frequency sweep input to elevons by activating the maneuver
through Neptus.

• Let the UAV move freely with the open-loop longitudinal dynamics for
5-10 seconds.

• Repeat 3-5 times.

A.2 Maneuver Plan

The maneuvers executed in the flight experiment are listed here. All maneuvers
are performed in normal conditions, repeated 3-5 times. The maximum elevator
and aileron control surface deflections δe/a were found experimentally. Due to
the crash, no frequency sweeps were performed.
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A.2 Maneuver Plan

Table A.1: Table of maneuvers executed in the flight experiments. All man-
euvers were performed with the clean airframe in nominal conditions.

Control Surface Maneuver Type Va[m s−1] ∆t [s] δe/a[
◦]

Elevator Doublet 16 0.4 15
Elevator Doublet 16 0.4 25
Elevator Doublet 18 0.4 15
Elevator Doublet 18 0.4 25
Elevator Doublet 24 0.4 15
Elevator Doublet 24 0.4 25
Elevator 3-2-1-1 16 0.3 10
Elevator 3-2-1-1 16 0.3 20
Elevator 3-2-1-1 18 0.3 10
Elevator 3-2-1-1 18 0.3 20
Elevator 3-2-1-1 24 0.3 10
Elevator 3-2-1-1 24 0.3 20
Aileron Doublet 16 0.4 15
Aileron Doublet 16 0.4 25
Aileron Doublet 18 0.4 15
Aileron Doublet 18 0.4 25
Aileron Doublet 24 0.4 15
Aileron Doublet 24 0.4 25
Aileron 1-2-1 16 0.3 10
Aileron 1-2-1 16 0.3 25
Aileron 1-2-1 18 0.3 10
Aileron 1-2-1 18 0.3 25
Aileron 1-2-1 24 0.3 10
Aileron 1-2-1 24 0.3 25
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Appendix B
Coefficient Tables

The results from equation-error system identification of maneuvers performed
at Va = 18m s−1 are shown in this appendix. The results from the OEM are
not displayed here, as discussed in Section 4.4.
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Equation-Error

Table B.1: Identified derivatives from EE system identification based on
longitudinal 3-2-1-1 and lateral 1-2-1 maneuvers with 10◦ and 15◦ amplitudes,
respectively. Both maneuvers used periods of ∆t = 0.3 s.

Derivative Value σ2 |t0| R2

CL0 -0.2374 0.0016 144.1655 0.6345
CLα 0.1943 0.0226 8.5993 0.6345
CLq -18.2091 0.2646 68.8115 0.6345
CLδe

-0.7054 0.0212 33.2541 0.6345
CD0 0.0837 6.8× 10−4 124.9206 0.3893
CDα -0.2743 0.0094 29.2972 0.3893
CDq -3.3214 0.1097 30.3803 0.3893
CDδe

0.0088 0.0097 16.2814 0.3893
Cm0 4.2× 10−4 1.5× 10−4 2.8180 0.7135
Cmα 0.0284 0.0020 13.8881 0.7135
Cmq 1.8936 0.0239 79.0673 0.7135
Cmδe

-0.0207 0.0019 10.7799 0.7135

CY0 0.0068 4.8× 10−4 14.0358 0.5861
CYβ -0.0015 6.5× 10−4 2.2239 0.5861
CYp 0.8700 0.0374 23.2782 0.5861
CYr 0.1027 0.0124 8.2909 0.5861
CYδa 0.0030 7.1× 10−5 42.1934 0.5861
Cl0 −9.8× 10−5 2.2× 10−5 4.0516 0.5732
Clβ −3.5× 10−5 3.00× 10−5 1.1904 0.5732
Clp -0.0160 0.0017 9.3253 0.5732
Clr 0.0245 5.7× 10−4 43.1129 0.5732
Clδa −1.4× 10−5 3.3× 10−6 6.0824 0.5732
Cn0 −0.0012 1.1× 10−4 11.0478 0.6663
Cnβ

1.8× 10−4 1.4× 10−4 1.2896 0.6663
Cnp -0.2425 0.0081 30.0017 0.6663
Cnr 0.0969 0.0027 36.1796 0.6663
Cnδa

−4.0× 10−4 1.5× 10−5 26.0342 0.6663
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Table B.2: Identified derivatives from EE system identification based on lon-
gitudinal and lateral doublet maneuvers with 25◦ amplitudes. Both maneuvers
used periods of ∆t = 0.4 s.

Derivative Value σ2 |t0| R2

CL0 -0.2366 0.0029 82.9783 0.7466
CLα 0.2113 0.0312 6.7605 0.7466
CLq -21.9648 0.3971 55.3134 0.7466
CLδe

-0.5715 0.0265 21.5777 0.7466
CD0 0.0949 0.0015 64.1148 0.4573
CDα -0.4418 0.0162 27.2335 0.4573
CDq -5.9125 0.2061 28.6826 0.4573
CDδe

-0.1328 0.0137 9.6623 0.4573
Cm0 -0.0023 3.2× 10−4 7.1758 0.6363
Cmα 0.0137 0.0035 3.9264 0.6363
Cmq 1.0909 0.0442 24.6660 0.6363
Cmδe

-0.0667 0.0029 22.6153 0.6363

CY0 0.0037 4.6× 10−4 8.0789 0.5467
CYβ -0.0019 6.7× 10−4 2.8410 0.5467
CYp 1.0467 0.0411 25.4595 0.5467
CYr 0.0730 0.0127 5.7662 0.5467
CYδa 0.0024 6.6× 10−5 37.2105 0.5467
Cl0 −1.3× 10−4 2.5× 10−5 5.2271 0.3975
Clβ −3.6× 10−6 3.7× 10−5 0.0988 0.3975
Clp -0.0210 0.0023 9.3230 0.3975
Clr 0.0196 6.9× 10−4 28.1900 0.3975
Clδa −2.2× 10−5 3.6× 10−6 6.0824 0.3975
Cn0 −8.3× 10−4 9.2× 10−4 9.0983 0.6909
Cnβ

3.4× 10−4 1.3× 10−4 2.5629 0.6909
Cnp -0.2449 0.0082 29.9515 0.6909
Cnr 0.0869 0.0025 34.5068 0.6909
Cnδa

−4.3× 10−4 1.3× 10−5 32.8374 0.6909
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Chapter B. Coefficient Tables

Table B.3: Identified derivatives from EE system identification based on
longitudinal 3-2-1-1 and lateral 1-2-1 maneuvers with 20◦ and 25◦ amplitudes,
respectively. Both maneuvers used periods of ∆t = 0.3 s.

Derivative Value σ2 |t0| R2

CL0 -0.2283 0.0022 103.3960 0.6693
CLα -0.1225 0.0207 5.9151 0.6693
CLq -19.4966 0.2728 71.4637 0.6693
CLδe

-0.3430 0.0177 19.3893 0.6693
CD0 0.0924 0.0013 70.6274 0.3908
CDα -0.3235 0.0123 26.3866 0.3908
CDq -4.7861 0.1616 29.6238 0.3908
CDδe

-0.0170 0.0105 1.6218 0.3908
Cm0 −3.8× 10−4 2.5× 10−4 1.4714 0.5354
Cmα 0.0112 0.0024 4.6499 0.5354
Cmq 1.4637 0.0316 46.2488 0.5354
Cmδe

-0.0215 0.0021 10.4978 0.5354

CY0 0.0069 4.9× 10−4 14.0380 0.5860
CYβ -0.0015 6.5× 10−4 2.2191 0.5860
CYp 0.8713 0.0373 23.3319 0.5860
CYr 0.1030 0.0125 8.2466 0.5860
CYδa 0.0030 7.0× 10−5 42.1437 0.5860
Cl0 −8.9× 10−5 2.2× 10−5 3.9743 0.5726
Clβ −3.5× 10−5 3.0× 10−5 1.1650 0.5726
Clp -0.0158 0.0017 9.2069 0.5726
Clr 0.0247 5.7× 10−4 43.0455 0.5726
Clδa −1.4× 10−5 3.2× 10−6 4.2415 0.5726
Cn0 -0.0012 1.1× 10−4 10.9888 0.6680
Cnβ

1.9× 10−4 1.4× 10−4 1.3150 0.6680
Cnp -0.2421 0.0081 30.0612 0.6680
Cnr 0.0981 0.0027 36.3989 0.6680
Cnδa

−3.9× 10−4 1.5× 10−5 25.9371 0.6680
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