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Abstract 

Background  High-sensitivity cardiac troponin testing is a promising tool for cardiovascular risk prediction, but 
whether serial testing can dynamically predict risk is uncertain. We evaluated the trajectory of cardiac troponin I in the 
years prior to a cardiovascular event in the general population, and determine whether serial measurements could 
track risk within individuals.

Methods  In the Whitehall II cohort, high-sensitivity cardiac troponin I concentrations were measured on three occa‑
sions over a 15-year period. Time trajectories of troponin were constructed in those who died from cardiovascular dis‑
ease compared to those who survived or died from other causes during follow up and these were externally validated 
in the HUNT Study. A joint model that adjusts for cardiovascular risk factors was used to estimate risk of cardiovascular 
death using serial troponin measurements.

Results  In 7,293 individuals (mean 58 ± 7 years, 29.4% women) cardiovascular and non-cardiovascular death 
occurred in 281 (3.9%) and 914 (12.5%) individuals (median follow-up 21.4 years), respectively. Troponin concentra‑
tions increased in those dying from cardiovascular disease with a steeper trajectory compared to those surviving or 
dying from other causes in Whitehall and HUNT (Pinteraction < 0.05 for both). The joint model demonstrated an inde‑
pendent association between temporal evolution of troponin and risk of cardiovascular death (HR per doubling, 1.45, 
95% CI,1.33–1.75).

Conclusions  Cardiac troponin I concentrations increased in those dying from cardiovascular disease compared to 
those surviving or dying from other causes over the preceding decades. Serial cardiac troponin testing in the general 
population has potential to track future cardiovascular risk.
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Background
With approximately 17.6 million deaths each year, car-
diovascular disease remains the leading cause of mortal-
ity worldwide [1]. Novel approaches to estimate risk are 
needed to help target effective primary prevention thera-
pies to individuals at high risk of developing cardiovas-
cular disease. High-sensitivity cardiac troponin assays 
have raised the possibility that troponin testing could be 
used to guide therapeutic approaches beyond diagnosis 
of myocardial infarction in those who have not yet devel-
oped symptomatic cardiovascular disease. Previous stud-
ies have consistently demonstrated that cardiac troponin 
is a strong independent predictor of future cardiovascu-
lar events in the general population [2–12].

How cardiac troponin testing should be used for car-
diovascular risk estimation and whether serial testing 
would help track risk within individuals is uncertain. 
Lyngbakken et  al. showed that the absolute and rela-
tive increases in cardiac troponin concentrations are 
independently associated with cardiovascular risk [13]. 
We demonstrated that cardiac troponin concentrations 
decline following statin therapy and the magnitude of 
the decline is an independent predictor of future cardiac 
events [3]. The dynamic behavior of cardiac troponin 
suggests it may be a sensitive and responsive risk marker 
that could be used in cardiovascular risk management, 
and the prevention of cardiovascular disease. However, 
the trajectory of cardiac troponin in the years prior to 
cardiovascular events is unknown, and insights here are 
needed to inform the role for serial measurements to 
track risk in practice.

Using the Whitehall II longitudinal cohort, our objec-
tive was to evaluate the trajectories of cardiac troponin 
I in middle aged individuals who died from cardiovas-
cular disease compared to those who survived or died 
from non-cardiovascular causes during 21  years of fol-
low up using retrospective trajectory analyses. Further-
more, we externally validate this analysis and determine 
prospectively whether the rate of change between car-
diac troponin measurements is associated with risk of 
cardiovascular death, and if serial measuresments can 
be used to dynamically track cardiovascular risk within 
individuals.

Methods
Study population
The Whitehall II study is an ongoing longitudinal obser-
vational cohort of 10,308 civil servants based in London, 
who were first recruited in 1985 when aged between 
35–55  years old [14]. Follow-up has continued over 12 
phases, with the most recent assessment completed in 
2016. Stored samples were available for cardiac troponin 

testing from participants assessed in 1997–1999, 2007–
2009 and 2012–2013. We included participants who 
had at least one measure of cardiac troponin and out-
come data, and we considered each participant’s first 
cardiac troponin measurement as baseline. That means 
that the first cardiac troponin measurement could have 
been taken in the time period 1997–1999, 2007–2009 
or 2012–2013. For each participant, we collected clini-
cal characteristics at baseline, and each participant’s first 
cardiac troponin measurement was defined as baseline. 
The study was approved by University College London 
Hospital Committee on Ethics of Human Research (refer-
ence 85/0938), and conducted according to declaration of 
Helsinki.

Cardiac troponin measurements
Blood samples for each phase were handled according 
to a standardized protocol. Fasting venous blood sam-
ples were collected, centrifuged, and serum was stored 
in aliquots at − 80 °C until batch analysis was performed. 
Cardiac troponin I concentrations were measured using 
Siemens Atellica IM High Sensitivity Troponin I assay 
(Siemens Healthineers, Erlangen, Germany). This assay 
has a limit of blank of 0.5  ng/L, limit of detection of 
1.6  ng/L and a limit of quantitation (LoQ) of 2.5  ng/L. 
The sex-specific 99th percentiles are 34 ng/L and 53 ng/L 
in women and men, respectively.

Clinical outcomes
Outcomes were collected throughout the study period 
until September 2019 using National Health Service 
(NHS) Central Registry [15]. Cardiovascular death, 
including coronary heart disease and stroke, was the pri-
mary outcome. Secondary outcomes were cardiac death, 
non-cardiovascular death, and all-cause death. Clinical 
outcomes were defined using the 9th and 10th revision of 
the International Classification of Diseases (ICD-9 and 
ICD-10): cardiovascular death (ICD 9: 340–459 or ICD-
10: I00-I99), cardiac death (ICD 9: 410–414 or ICD-10: 
I20-I25) and non-cardiovascular death (all other ICD 
codes). Non-fatal myocardial infarction was defined 
using Hospital Episode Statistics (HES) database records 
up to March 2019 using ICD-9 and ICD-10 codes (ICD-
9: 410 or ICD-10 codes: I21) where listed in primary or 
secondary position [16].

Validation cohort
External validation was undertaken using the Trøndelag 
Health (HUNT) Study. The HUNT Study is a longitudi-
nal observational population-based cohort study with 
over 120,000 individuals from Nord-Trøndelag county, as 
previously described [13, 17]. For this study, we included 
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9,711 individuals who had at least one cardiac troponin 
I measurement available (HUNT 2, 1995–1997) using 
the ARCHITECT i2000SR high-sensitivity cardiac tro-
ponin I assay (Abbott Diagnostics). This assay has a 
limit of blank of 0.7  ng/L, limit of detection 1.2  ng/L 
and LoQ of 3.2  ng/L [18]. The sex-specific 99th percen-
tiles are 16 ng/L in women and 34 ng/L in men [19]. Of 
these individuals, 5,337 (55.0%) had a second troponin 
measurement (HUNT 3, 2006–2008). Follow-up data was 
available until the end of December 2016. The HUNT 
Study was approved by Regional Committee for Medi-
cal Research Ethics (REC 2012/859, REC 2016/801) and 
Norwegian Data Inspectorate Board, and all participants 
provided informed written consent.

Statistical analysis
Continuous variables are presented as mean ± standard 
deviation (SD) or median, 25th-75th percentile, as appro-
priate. Categorical variables are presented as absolute 
number (%). For the primary analyses, cardiac troponin 
values below the limit of blank of 0.5 ng/L were assigned 
a value at the limit of blank.

We conducted analysis of trajectories to evaluate the 
temporal pattern of cardiac troponin prior to the primary 
outcome of cardiovascular death using linear mixed-
effects modeling. Participants were classified accord-
ing to whether they did or did not have a cardiovascular 
death during follow-up. Date of event, or end of follow-
up in those where the event did not occur was considered 
as time point 0. In a backward fashion, cardiac troponin 
levels from each phase were used to estimate average 
cardiac troponin pattern of the groups over time using 
fixed-effect coefficients of the linear mixed-effects model. 
We applied log2 transformation to achieve normal dis-
tribution for troponin. Time was entered into fixed- and 
random effects part of the model. We used natural cubic 
splines to assess non-linear associations and final model 
was chosen based on lowest Akaike Information Crite-
ria. The model was adjusted for age and sex and included 
an interaction term for cardiovascular death and time-
to-event for estimation of average troponin trajectories 
stratified by event.

To evaluate whether baseline cardiac troponin level in 
combination with relative or absolute rate of change of 
cardiac troponin concentrations over time was prospec-
tively associated with cardiovascular death, we classified 
those individuals where first two cardiac troponin meas-
urements were obtained 10-years apart into the following 
four groups: Group 1 = baseline level ≤ LoQ and ≤ median 
change, Group 2 = baseline level ≤ LoQ and > median 
change, Group 3 = baseline level > LoQ and ≤ median 
change and Group 4 = baseline level > LoQ and > median 

change (LoQ = 2.5  ng/L, median relative change = 49.3% 
increase, median absolute change = 1.4  ng/L increase). 
For each group, we estimated cumulative incidence of 
cardiovascular death at 10 years after the second meas-
urement and group comparisons were made using the 
log-rank test. Non-cardiovascular death was considered 
as competing risk.

Joint multistate modeling was used to evaluate the 
association between individual cardiac troponin trajec-
tories and cardiovascular death. Joint modeling is based 
on the principle that it combines a linear mixed-effects 
model for repeated measurements of cardiac troponin 
with a time-to-event relative risk model for time-to-event 
data to evaluate the temporal pattern of a predictor in 
relation to hazard of an outcome (Additional file: Appen-
dix) [20, 21]. Hence, a joint model relates the individual’s 
trajectory of cardiac troponin to his/her prognosis while 
accounting for different follow-up durations between 
individuals. In the context of repeated measurements, 
we not only studied the predictive value of cardiac tro-
ponin levels, but we also studied the predictive value of 
the slope of longitudinal trajectory (rate of change) and 
area under trajectory of cardiac troponin (Additional file: 
Appendix). The linear mixed-effects model was adjusted 
for sex and age. Crude and multivariable relative risk 
models were used with cardiovascular death as depend-
ent variable. Non-cardiovascular death was included in 
the model as a competing risk to cardiovascular death. 
In the multivariable models, we adjusted for age and 
sex, and subsequently for known cardiovascular risk fac-
tors (sex, age, diabetes mellitus, total cholesterol levels, 
high-density lipoprotein levels, low-densitity lipoprotein 
levels, systolic blood pressure, and smoking status). The 
results are presented as hazard ratios (HRs) and 95% con-
fidence intervals (95% CI) per doubling increase in car-
diac troponin levels, slope (delta of the cardiac troponin’s 
levels/ 5 years) and area.

In secondary analyses, we assessed time trajectories of 
cardiac troponin in relation to cardiac death, non-car-
diovascular death, death from any cause, fatal and non-
fatal myocardial infarction. Furthermore, we investigated 
the association between individual cardiac troponin tra-
jectories and hazard of cardiovascular death in a popu-
lation without cardiovascular disease at baseline. We 
also explored the association of clinical characteristics 
at baseline (sex, age, ethnicity, diabetes status, systolic 
blood pressure, total cholesterol, high-density lipopro-
tein, low-density lipoprotein, smoking status, and body 
mass index) with repeated measures of cardiac troponin 
using univariable linear mixed-effects models. We illus-
trated how dynamic profiling of cardiovascular risk could 
be applied in practice while using individual cardiac 
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troponin trajectories. As dynamic risk prediction using  
joint multistate models is still under development, 
we estimated an individual’s risk based on a non-
competing joint model that was adjusted for known 
cardiovascular risk factors. Accuracy of the model was 
determined using a time-dependent area under curve 
methodology.

Single imputation was applied for clinical character-
istics with missing values using other individual’s clini-
cal and outcome data, and we used a single imputation 
technique where each incomplete variable was imputed 
by a separate model (fully conditional specification 
method). Statistical analysis was performed using R ver-
sion 3.6.2. We used the packages mice, nlme, survival 
and JMbayes2.

Results
Clinical characteristics of study population
There were 7,293 individuals (29.4% women, 
58 ± 7  years of age) with at least one cardiac troponin 
result available (Additional file: Fig. S1). The majority 

of individuals included in our study had their first tro-
ponin measurement in the time period 1997–1999 
(6,028/7,293 [82.7%]). The remaining individuals had 
their first troponin measurement in 2007–2009 or 
2012–2013 (1,117/7293 [15.3%], 148/7,293 [2.0%]), 
respectively. Of the total study population, 5,818 
(79.8%) and 4,045 (55.5%) individuals had a second and 
third measurement, respectively (Additional file: Table 
S1). A total of 6,524 (89.5%), 5,694 (97.9%) and 3,996 
(98.8%) individiuals had detectable cardiac troponin 
concentrations at their first, second and third measure-
ment, respectively. The median cardiac troponin con-
centration was lowest at baseline (3.3  ng/L [25th-75th 
percentile 2.2–5.3  ng/L]) and increased over time 
(second measurement, 4.6  ng/L [25th-75th percentile 
3.2–7.3  ng/L]: third measurement, 5.2  ng/L [25th-75th 
percentile 3.6–8.1  ng/L], Table  1). This was observed 
in all age groups and when stratified by sex (Additional 
file: Fig. S2). Sex and age, but not ethnicity, was asso-
ciated with longitudinal cardiac troponin I (Additional 
file: Table S2). We also found signifant associations with 

Table 1  Baseline characteristics

Continuous variables are presented as mean (SD) or median (25th to 75th percentile), as appropriate. Categorical variables are presented as number (%)

Abbreviations: ACE Angiotensin-converting enzyme. Proportion missing values: no missing values except for ethnicity (0.2%), systolic blood pressure (0.2%), high-
density lipoprotein (9.3%), low-density lipoprotein (10.4%), smoking (2.4%), lipid-modifying medication (0.9%), antihypertensive medication (0.9%), ACE inhibitors 
(0.9%), antiplatelets (0.9%), betablockers (0.9%) and body mass index (11.4%)
a Individuals, n = 5,818, median (25th to 75th percentile) time between baseline and second troponin measurement: 10.4 (10.0–10.8) years
b Individuals, n = 4,045, median (25th to 75th percentile) time between baseline and third troponin measurement: 14.6 (14.4–14.6) years

Clinical characteristic Study population (n = 7,293) No cardiovascular death 
(n = 7,012)

Cardiovascular 
death (n = 281)

Sex (female) 2,142 (29.4%) 2,066 (29.5%) 76 (27.0%)

Age (years) 58 (7) 57 (7) 61 (6)

Ethnic origin (other than white) 625 (8.6%) 585 (8.4%) 40 (14.2%)

Diabetes mellitus (yes) 333 (4.6%) 302 (4.3%) 31 (11.0%)

Systolic blood pressure (mmHg) 124 (17) 124 (17) 129 (18)

Total cholesterol (mmol/L) 5.8 (1.1) 5.8 (1.1) 5.9 (1.2)

High-density lipoprotein (mmol/L) 1.5 (0.4) 1.5 (0.4) 1.4 (0.4)

Low-density lipoprotein (mmol/L) 3.7 (1.0) 3.7 (1.0) 3.8 (1.0)

Smoker

  Never 3,451 (48.5%) 3,328 (48.6%) 123 (44.9%)

  Ex-smoker 3,000 (42.2%) 2,885 (42.2%) 115 (42.0%)

  Current 665 (9.3%) 629 (9.2%) 36 (13.1%)

Body mass index (kg/m2) 26.4 (4.2) 26.3 (4.1) 27.5 (4.9)

Lipid-modifying medication (yes) 616 (8.5%) 585 (8.4%) 31 (11.2%)

Antihypertensive medication (yes) 1,267 (17.5%) 1,165 (16.8%) 102 (36.8%)

ACE inhibitors (yes) 561 (7.8%) 525 (7.5%) 36 (13.0%)

Antiplatelets (yes) 518 (7.2%) 473 (6.8%) 45 (16.2%)

Betablockers (yes) 448 (6.2%) 409 (5.9%) 39 (14.1%)

Troponin I level at baseline (ng/L) 3.3 [2.2 to 5.3] 3.3 [2.2 to 5.1] 4.8 [3.0 to 9.3]

Troponin I level at second measurement (ng/L)a 4.6 [3.2 to 7.3] 4.6 [3.2 to 7.2] 7.4 [5.1 to 15.2]

Troponin I level at third measurement (ng/L)b 5.2 [3.6 to 8.1] 5.1 [3.6 to 8.1] 8.4 [5.9 to 18.0]
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conventional cardiovascular risk factors and repeated 
measures of cardiac troponin. Cardiovascular death 
occurred in 281 (3.9%) individuals during a median 
follow-up of 21.4 [25th-75th percentile, 15.8–21.8] years 
(Table 1). Cardiac death, non-cardiovascular death and 
all-cause death occurred in 143 (2.0%), 914 (12.5%), and 
1,195 (16.4%) individuals, respectively (Additional file: 
Table S3).

In those who experienced the primary outcome of car-
diovascular death, we observed a higher baseline risk 
profile, as they were older (61 ± 6 versus 57 ± 7  years, 
P < 0.001), more likely to have diabetes (11.0% versus 
4.3%, P < 0.001) and have a higher systolic blood pressure 
(129 ± 18  mmHg versus 124 ± 17  mmHg, P < 0.001). The 
group with cardiovascular death were also prescribed 
more cardiac medications including ACE inhibitors 
(13.0% versus 7.5%, P = 0.001), antihypertensives (36.8% 
versus 16.8%, P < 0.001) and beta-blockers (14.1% versus 
5.9%, P < 0.001).

Cardiac troponin trajectories in relation to cardiovascular 
death
We evaluated cardiac troponin trajectories in rela-
tion to cardiovascular death in all 7,293 individuals. 
At baseline, cardiac troponin concentrations were 
higher in the individuals who died from cardiovas-
cular disease as compared to those who did not (5 
[25th-75th percentile, 3–9] ng/L versus 3 [25th-75th 
percentile, 2–5] ng/L, P < 0.001, Table 1). Cardiac tro-
ponin concentrations were higher in those dying from 
cardiovascular disease and they had a steeper trajec-
tory as compared to those surviving or dying from 
other causes over the preceding decades (Pinteraction 
time*cvd death = 0.037, Fig.  1A). In contrast, we did 
not observe a significant difference in temporal pat-
tern of cardiac troponin between those who experi-
enced death from any cause (Pinteraction time*all-cause 
death = 0.055, Fig.  1B) or non-cardiovascular death 
(Pinteraction time*non-cvd death = 0.364, Additional file: 

Fig. 1  Average trajectories of troponin I with 95% CIs before cardiovascular death and death from any cause (n = 7,293). A, red line refers to 
troponin trajectory of those individuals who died due to cardiovascular causes, and the blue line refers to troponin trajectory of those individuals 
who survived or died due to non-cardiovascular causes. B, red line refers to troponin trajectory of those individuals who died from any cause, and 
the blue line refers to troponin trajectory of those individuals who survived
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Fig. S3-S4) as compared with individuals who did not. 
Higher cardiac troponin concentrations were observed 
over time in individuals who died due to cardiac dis-
ease compared to those who did not, but the trajectory 
of cardiac troponin was similar (Pinteraction time*chd 
death = 0.827, Additional file: Figure S5). Cardiac 
troponin concentrations were higher in individuals 
who experienced fatal myocardial infarction with no 
steeper trajectory observed as compared to individuals 
who did not experience the event (Pinteraction time*fatal 
MI = 0.510), while we did not observe higher cardiac 
troponin concentrations in those who experienced 
a non-fatal myocardial infarction event (Pinteraction 
time*non-fatal MI = 0.127, Additional file: Figure S6).

Rate of change and individual cardiac troponin trajectories 
in relation to cardiovascular death
We evaluated the absolute cardiac troponin level at base-
line combined with the relative- and absolute change in 
cardiac troponin levels over a 10-year period in relation 
to the cumulative incidence of cardiovascular death. In 
4,965 individuals, we had two troponin measurements 
available with a 10-year time frame between the first 
two measurements. We observed that those with low-
est cardiac troponin level at baseline and with the low-
est relative- or absolute cardiac troponin increase were at 
lowest risk, and those with highest cardiac troponin level 
at baseline and with highest relative- or absolute cardiac 
troponin increase were at highest risk (Fig.  2, P < 001 

Fig. 2  Baseline level and relative (A) or absolute change (B) in troponin levels and cardiovascular death (n = 4,695). Group 1 = baseline level ≤ LoQ 
and ≤ median change, Group 2 = baseline level ≤ LoQ and > median change, Group 3 = baseline level > LoQ and ≤ median change, Group 
4 = baseline level > LoQ and > median change
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for both relative- and absolute rate of change groups). 
Cumulative incidence of cardiovascular death at 10 years 
between relative- and absolute rate of change groups was 
similar (Group 1 to 4 for baseline cardiac troponin level 
combined with relative change over time: 0.5%, 1.1%, 
1.7%, 3.9% (Fig.  2A); Group 1 to 4 for cardiac troponin 
level combined with absolute change over time: 0.5%, 
1.4%, 1.5%, 3.6% (Fig. 2B)).

Accordingly, we evaluated in all individuals (n = 7,293) 
the relationship of individual cardiac troponin trajecto-
ries and cardiovascular death using the multi-state joint  
model approach. Using individual cardiac troponin tra-
jectories, we showed that doubling in cardiac troponin 
levels at any point in time during follow-up was associated  
with a higher risk of cardiovascular death (unadjusted  
HR 1.53, 95% CI 1.32–1.75, P < 0.001, Table 2). The association  

persisted when we included known cardiovascular risk 
factors in the model (adjusted HR 1.45, 95% CI 1.32–1.58, 
P < 0.001, Table 2, Additional file: Table S4). The slope in 
cardiac troponin was not associated with cardiovascular 
death (unadjusted HR 0.89, 95% CI 0.35–2.29, P = 0.809). 
In other words, independent of the cardiac troponin level, 
a doubling of the slope over 5-years at any point during 
follow-up does not differentiate between an individual 
with and without a cardiovascular death. In contrast, the 
area under trajectory of cardiac troponin at any point in 
time was independently associated with cardiovascular 
death with an adjusted HR of 1.41 (95% CI 1.29–1.53, 
P < 0.001) per doubling. The findings were consistent, 
although slightly attenuated, in a population without car-
diac disease at baseline showing a significant association 
between the cardiac troponin trajectory and cardiovascu-
lar death (Additional file: Fig. S7, Table S5-S6).

Dynamic profiling of cardiovascular risk using individual 
cardiac troponin trajectories
Here we illustrate two examples of dynamic profiling of 
cardiovascular risk using serial cardiac troponin meas-
urements. The accuracy of models to dynamically profile 
cardiovascular risk using individual cardiac troponin tra-
jectories is reported in Additional file: Table S7. We esti-
mated the probability of survival for a woman who was 
64 years old, who had no diabetes and was a non-smoker, 
and who had stable cardiac troponin measurements over 
time (Fig. 3A-C). With her initial cardiac troponin meas-
urement of 2 ng/L, her conditional survival probability to 
reach the 20-years follow-up period was 95.5%. Her con-
ditional survival probability remained similar when the 
risk model was updated with three measurements (sec-
ond measurement, 5  ng/L at 10.9  years, third measure-
ment, 5 ng/L at 14.9 years; survival probability of 97.8%). 
Additionally, we estimated the survival probability of a  
man with an initial low cardiac troponin level of 3 ng/L 
that increased to 59 ng/L at 10.8 years (Fig. 3D, E). The 
man was 64  years old, had no diabetes mellitus and 
was a current smoker. When only using information  
of first troponin measurement, his estimated survival  
probability for reaching the 20-years follow-up period 
was 87.4%, and with updated information of the  
second measurement, the survival probability declined 
to 75.5%.

External validation
The external validation cohort has been described pre-
viously [13, 17]. Of the 9,711 individuals (54.4% women, 
50 ± 17  years of age) included in this analysis, 5,337 
(55.0%) had a second troponin measurement after a 
10-year period. During a median follow-up of 19.9 
(25th-75th percentile, 19.8–20.2) years, 1,102 (11.3%) 

Table 2  Association between the temporal evolution of cardiac 
troponin I and cardiovascular death

a Individuals, n = 7,293
b Hazard ratios (HRs) and 95% confidence intervals (CIs) are given per doubling 
in cardiac troponin in level, slope (delta of the cardiac troponin’s levels/ 5 year) 
and area under the trajectory of cardiac troponin
c The model adjusted for known cardiovascular risk factors included age, sex, 
diabetes mellitus, total cholesterol, high-density lipoprotein, low-density 
lipoprotein, systolic blood pressure, smoking status and serial cardiac troponin 
measurements

HR (95% CI) P-value

Crude Modela

  Temporal evolution of cardiac troponin Ib

    Level 1.53 (1.32 to 1.75)  < 0.001

    Slope 0.89 (0.35 to 2.29) 0.809

    Area 1.53 (1.32 to 1.74)  < 0.001

Adjusted model (age and sex)a

  Temporal evolution of cardiac troponin Ib

    Level 1.47 (1.34 to 1.60)  < 0.001

    Slope 0.95 (0.40 to 2.36) 0.893

    Area 1.46 (1.34 to 1.60)  < 0.001

    Age, years 1.10 (1.08 to 1.13)  < 0.001

    Sex, female 1.06 (0.80 to 1.40) 0.663

Adjusted model (known CVD risk factorsc)a

  Temporal evolution of cardiac troponin Ib

    Level 1.45 (1.32 to 1.58)  < 0.001

    Slope 0.97 (0.41 to 2.30) 0.947

    Area 1.41 (1.29 to 1.53)  < 0.001

    Age, years 1.10 (1.07 to 1.13)  < 0.001

    Sex, female 1.04 (0.76 to 1.40) 0.786

    Diabetes mellitus, yes 2.41 (1.57 to 3.60)  < 0.001

    Total cholesterol, mmol/L 1.15 (0.86 to 1.51) 0.360

    High-density lipoprotein, mmol/L 0.73 (0.51 to 1.06) 0.096

    Low-density lipoprotein, mmol/L 0.93 (0.69 to 1.29) 0.666

    Systolic blood pressure, 10 mmHg 1.09 (1.01 to 1.16) 0.025

    Smoking status, current 1.95 (1.34 to 2.78) 0.001
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cardiovascular deaths were registered. Consistent with 
trajectory analysis in Whitehall II cohort, we observed 
that the cardiac troponin trajectories were differ-
ent in those individuals who died due to cardiovascu-
lar disease as compared to those who survived or died 
due to non-cardiovascular causes (Pinteraction time*cvd 
death = 0.049, Additional file: Fig. S8). As only two car-
diac troponin measurements were available, joint mod-
eling analysis to evaluate the individual trajectories of 
cardiac troponin in relation to cardiovascular death was 
not possible. Instead, a time-dependent Cox regression 
analysis was conducted to evaluate the association with 
serial cardiac troponin measurements and cardiovas-
cular death. Serial measurements of cardiac troponin 
was independently associated with cardiovascular death 
(adjusted HR 1.33, 95% CI 1.25–1.40, P < 0.001, Addi-
tional file: Table S8).

Discussion
Using serial measurements, we evaluated the relation-
ship between the trajectory of cardiac troponin I and 
cardiovascular death over 20  years. Our study has two 
main findings. First, in a retrospective analysis individu-
als who died from cardiovascular disease had different 
cardiac troponin trajectories with higher and increasingly 

divergent concentrations over two decades prior to death, 
when compared to those who survived or died from 
non-cardiovascular causes. In contrast, there was no dif-
ference in the cardiac troponin trajectory or concentra-
tions in those with non-cardiovascular or death from 
any cause. Second, using joint modeling techniques we 
demonstrate that cardiac troponin can be used to track 
risk dynamically over time within an individual, raising 
the possibility that serial high-sensitivity measurements 
could be used to monitor and refine estimates of cardio-
vascular risk in the general population.

Our study has three main strengths and areas of nov-
elty. First, our study is the first to assess cardiovascular 
risk using the Siemens Atellica high-sensitivity cardiac 
troponin I assay outside the setting of acute coronary 
syndrome [22]. Second, the trajectory of cardiac troponin 
prior to cardiovascular events was unknown. We provide 
the first description by harnessing three serial measure-
ments and 20 years of follow up to demonstrate that the 
cardiac troponin trajectories of individuals who die from 
cardiovascular disease differ from those who survive or 
die to due non-cardiovascular conditions. Furthermore, 
we validate this observation in an external cohort using a 
different cardiac troponin assay confirming that our find-
ings are generalisable. Third, the use of repeated cardiac 

Fig. 3  Dynamic cardiovascular risk profiling using individual troponin trajectories. Dynamic profiling of an individual’s risk using troponin trajectory 
for an individual with (A-C, blue line) and without stable cardiac troponin levels (D, E, red line) over time. The individual-specific cardiac troponin 
trajectory (per ng/L) is shown on the left Y-axis and survival probability with 95% confidence intervals (%) is shown on the right Y-axis. Up to three 
measurements, the survival probability curve is dynamically updated
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troponin measurements for cardiovascular risk estima-
tion has been limited by the lack of availability of suit-
able modeling techniques that can account for missing 
data and competing risks from non-cardiovascular death. 
To date only the BiomarCaRE study has applied joint 
modelling to evaluate the association between repeated 
cardiac troponin measurements and cardiovascular out-
comes [23]. Since this analysis joint model techniques 
have undergone further development and it has become 
possible to account for competing risk. In our study, we 
have used multistate joint modeling to address com-
peting risk and relate cardiac troponin trajectories to a 
range of important outcomes within an individual. Our 
approach goes beyond traditional static prediction mod-
els such as the Framingham risk score and SCORE2 [24, 
25], and enables dynamic tracking of cardiovascular risk 
over time. Together our observations and novel meth-
odological approach provide insights that will inform the 
development of the next generation of cardiovascular risk 
estimation systems.

The association between cardiac troponin measured 
at a single timepoint and future cardiovascular risk is 
well established [26, 27]. Welsh et  al. demonstrated a 
56% increase in the risk of cardiovascular death over a 
median 7.8 years of follow-up for each standard deviation 
increase in cardiac troponin I, after adjustment for age, 
sex and known cardiovascular risk factors [2]. Similar 
observations were noted within the BiomarCaRE project 
[7]. These findings suggest a potentially important role 
for cardiac troponin measurement in cardiovascular risk 
assessment. However, if this approach were implemented 
it is likely that serial measurements will be performed in 
practice but few studies have evaluated changes within an 
individual [28].

The HUNT Study included 4,805 participants with two 
measures of high-sensitivity cardiac troponin I separated 
by 10 years [13]. Participants were categorized into three 
groups according to change in cardiac troponin with 
both absolute and relative change related to increased 
cardiovascular death, myocardial infarction or heart 
failure [13]. This is broadly consistent with our findings 
from up to three samples over a longer follow-up period. 
Similar relationships with cardiovascular risk were noted 
in the WOSCOPS study, but this was an exclusively male 
population with just one year between the two cardiac 
troponin measures [3]. However, the methods of clas-
sification applied in both studies have limited value for 
individual risk prediction, where identifying someone as 
‘low’ or ‘high’ risk is too simplistic. Precision medicine 
advocates for individualized estimates of risk that may be 
updated as further information, including additional car-
diac troponin measurements, become available. With fur-
ther development our proposed dynamic risk estimation 

system and serial measurements to update estimates of 
cardiovascular risk could provide a more individualised 
approach. A dynamic measure of risk could encour-
age patients to remain on therapy, or guide clinicians to 
escalate therapy where risk remains elevated. In previous 
work, we demonstrated that cardiac troponin concentra-
tions decline following the initiation of statin therapy, 
and the magnitude of this decline was an independent 
predictor of future cardiac events, even after adjustment 
for baseline or change in cholesterol concentration [3]. 
Incorporating serial measures of cardiac troponin into a 
dynamic risk estimation system would represent a sub-
stantial change in approach to the prevention of cardio-
vascular disease with the potential to improve outcomes 
and provide additional public health benefits.

We propose joint modeling as a novel approach that 
uses individual troponin trajectories to estimate risk. 
Although we acknowledge that our study only shows a 
conceptual design of this technique at present. A dynamic 
risk estimation system would represent a substantial 
change in approach to the prevention of cardiovascular 
disease, but such an approach would have major poten-
tial to improve outcomes and provide additional public 
health benefits. We recommend that a comprehensive 
evaluation on risk factor selection should take place on 
the trajectories of both traditional and non-traditional 
risk factors for dynamic prediction of cardiovascular risk. 
Further development including serial measures of life-
style factors (e.g., diet and physical activity), traditional 
cardiovascular risk factors (e.g., blood pressure and cho-
lesterol), non-traditional risk factors (e.g., social depriva-
tion) and other biomarkers (e.g.. N-terminal pro-B-type 
natriuretic peptide, C-reactive protein and creatinine), 
could create a more specific, interactive and dynamic 
clinical tool to improve cardiovascular risk prediction. 
It would be important to identify which of these mark-
ers benefit from serial measurement and to identify the 
optimum frequency. As the availability of cardiac imag-
ing increases with automated methods for the quantifica-
tion of coronary plaque it may become feasible to further 
stratify risk using imaging biomarkers. As the release and 
clearance of cardiac troponin is a dynamic process [29, 
30], further research is required to identify the optimum 
time for blood sampling when serial measures of cardiac 
troponin or other biomarkers are obtained for cardio-
vascular risk prediction. Furthermore, we showed previ-
ously in WOSCOPS that cardiac troponin concentrations 
decline following statin therapy [3], and future research 
on the impact of preventative therapies on biomarker 
trajectories is necessary to ensure optimal precision for 
cardiovascular risk estimates. Further research is also 
needed to determine whether multistate joint models can 
provide dynamic risk prediction for composite endpoints 
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that combine fatal and non-fatal cardiovascular events 
and how this should be applied in practice. The addi-
tional value of a dynamic risk estimation system over a 
static risk estimation system cannot be captured by a sin-
gle performance metric and needs a broader perspective 
encompassing quantitative (c-statistic, calibration plots, 
brier score) and qualitative (behavioural change and 
adherence) measures.

The MORGAM/BiomarCaRE study also evaluated 
serial cardiac troponin testing for primary prevention in 
the general population [23]. Although they did not per-
form a trajectory analysis or undertake dynamic profil-
ing on an individual level, their observations from joint 
modelling were broadly consistent with ours suggesting 
greater importance for the cardiac troponin level than 
rate of change over time. However, they observed that 
discriminative ability improved with updated informa-
tion provided by repeated measurement. In both stud-
ies three cardiac troponin measurements were available 
over a 15-years time period. It is possible that more 
frequent sampling than available in our study would 
improve precision of our calculation of slope within our 
model and further improve our estimation of individual 
risk [31]. In clinical practice more frequent measure-
ments would be needed to guide an individual’s risk 
and management than once every 10  years. Electronic 
patient record systems also allow the assimilation of 
multiple measurements, including important non-labo-
ratory parameters, within risk estimation tools to enable 
dynamic monitoring of cardiovascular risk using joint 
modelling in practice. We cannot address in our analysis 
how often serial measurements of a biomarker or risk 
factor should be obtained for optimal performance of 
a dynamic risk estimation system to predict cardiovas-
cular disease. Future work is required to determine the 
impact of increasing the frequency of measurement on 
performance.

It is assumed that detectable cardiac troponin concen-
trations in apparently healthy individuals are due to car-
diomyocyte apoptosis or necrosis [32]. However, cardiac 
troponin release may also occur in the setting of revers-
ible myocardial ischemia [33]. Furthermore, associations 
have been observed between cardiac troponin concentra-
tions and a range of cardiac- and non-cardiac conditions 
other than coronary heart disease or myocardial infarc-
tion [34, 35]. In our study, we demonstrate that cardiac 
troponin concentrations increase as individuals age, even 
in those without cardiovascular events. This is important 
for the proposed clinical translation of high-sensitivity 
cardiac troponin where thresholds have been defined 
that identify individuals as low- or high-risk of future car-
diovascular events [36]. Such thresholds would be chal-
lenging to apply in older populations, where specificity 

would be compromised by the trajectories observed in 
our study. It is also important to recognise that cardiac 
troponin concentrations may decrease following effective 
therapy or lifestyle changes [3, 37]. A threshold approach 
will always be inferior compared to the use of dynamic 
models that incorporate continuous measures and serial 
testing. We observed a significant association with sex 
and repeated measures of cardiac troponin indicating 
that a sex-specific approach may be required. Also asso-
ciations with other important cardiovascular risk factors 
are found. To understand the clinical implications of our 
findings, additional research is needed into the under-
lying mechanisms of cardiac troponin release with age 
prior to the onset of cardiovascular disease. These studies 
would benefit from serial assessments with cardiac imag-
ing and additional biomarkers, such as high-sensitivity 
C-reactive protein.

Our study has several limitations. First, cardiac tro-
ponin measurements were available over a 15-year 
period and the time between last cardiac troponin meas-
urement and end of follow-up was on average 5  years. 
Therefore, trajectory analysis involved extrapolation of 
the linear-mixed effects models in indidivuals who sur-
vived. Second, up to three cardiac troponin measure-
ments were available for an individual and it is likely that 
more repeated measures would have led to a higher pre-
cision of estimated cardiac troponin trajectories. Third, 
external validation of our joint model using the Siemens 
high-sensitivity cardiac troponin I assay is required prior 
to implementation into practice. However, no other lon-
gitudinal population-based cohorts with this specific 
assay were available which precluded an external valida-
tion for this assay at this point. We were able to externally 
validate our findings in HUNT using another high-sen-
sitivity cardiac troponin I assay, and we demonstrated 
that for both assays the trajectories of cardiac troponin 
prior to cardiovascular death differed to those individuals 
who died due to non-cardiovascular disease or survivors. 
Fourth, it should be acknowledged that we have evalu-
ated two high-sensitivity assays and our findings cannot 
be extended to other high-sensitivity cardiac troponin 
assays. Future work on the development of dynamic risk 
models should assess whether cardiac troponin measures 
could be standardised within the model so that it could 
be applied across different health care systems using dif-
ferent assays. Fifth, assay imprecision at low concentra-
tions may impact on model performance, however only 
10.5% of persons had initial cardiac troponin concentra-
tions below the limit of detection. Sixth, our participants 
are largely Caucasian in origin and men are overrep-
resented in the study. Validation in other ethnic groups 
with more female participants is needed to broaden gen-
eralizability. Seventh, evaluation of baseline level and 
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rate over change over 10-year period was restricted to 
individuals who had two measures available which has 
introduced immortal bias for this analysis. Finally, it is 
possible that participants with positive health seeking 
behaviours were more likely to remain within the longi-
tudinal study and have repeated measurements, which 
may have introduced a bias.

Conclusions
In conclusion, cardiac troponin I concentrations increase in 
those dying from cardiovascular disease compared to those 
surviving or dying from other causes over the preceding 
decades. Serial cardiac troponin testing with joint modeling 
techniques have potential to dynamically track cardiovas-
cular risk within individuals in the general population.

Abbrevations
ACE	� Angiotensin-converting enzyme inhibitors
CI	� Confidence interval
HES	� Hospital episode statistics
HR	� Hazard ratio
HUNT	� The Trøndelag Health Study
ICD	� International classification of diseases
LoQ	� Limit of quantitation
NHS	� National health service
SD	� Standard deviation
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