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Executive summary

The company CFEED produces copepod eggs of the species Acartia tonsa for use as live
feed in the production of marine species. Monitoring the hatching rate is essential to
the production and quality assurance of the copepod eggs. Today, this is performed with
manual counting tests, which are time-consuming and physically straining for the human
observer, but also exposed to inaccuracies due to factors such as observer patience and
experience in deciding the distinct stages of Acartia tonsa development. In this thesis,
a sensor will be investigated to monitor the hatching process using machine vision and
machine learning to classify the proportion of eggs and hatched copepods at the nauplii
stage.

A monochrome camera was employed for image acquisition, capturing high-resolution
images of the copepods. Annotation and pre-processing of the images were conducted to
generate datasets. The generated datasets were used to train VGG networks and evaluate
the performance of the trained network. An accuracy of 99% was obtained on a validation
set during training. The trained network struggles to classify images from other distribu-
tions, which is necessary for a hatching sensor to monitor a hatching process.

The research has highlighted the importance of dataset quality for the performance of the
trained model, which factors including the quality of the annotations and the variability in
the images can influence. Several variables related to the quality of the images, hatching
tank design, and camera setup have influenced this project’s results. Several challenges
were identified and need to be addressed in future studies, such as investigations related to
depth of field, handling of image noise, network architecture, and hyperparameter tuning.

In conclusion, the test setup of the hatching sensor can classify with satisfactory accuracy.
The setup needs further improvement to make a functional prototype.
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Sammendrag

Selskapet CFEED produserer copepod-egg av arten Acartia tonsa for bruk som levende fôr
i produksjonen av marine arter. En vesentlig del av både produksjon og kvalitetssikring av
copepod-egg er å overvåke klekkeprosessen. I dag utføres dette med manuelle telleprøver,
som er tidkrevende og fysisk belastende for mennesket som utfører den. Telleprøvene er
utsatt for unøyaktigheter grunnet faktorer som tellerens tålmodighet og erfaringsnivå med
å skille forskjellige stadier av utviklingen til copepodene. I denne oppgaven vil en sensor
bli undersøkt for å overvåke klekkeprosessen ved bruk av maskinsyn og maskinlæring for
å måle andelen av egg og klekkede copepoder i nauplii-stadiet.

Et monokromt kamera ble benyttet for bildeinnhenting for å ta høyoppløselige bilder av
copepodene. Annotering og forbehandling ble utført for å generere forskjellige datasett.
De genererte datasettene ble brukt for å trene et VGG-nettverk og evaluere ytelsen til
det trente nettverket. En nøyaktighet på 99% ble oppnådd på et valideringssett under
treningen. Det trente nettverket sliter med å klassifisere bilder fra andre distribusjoner,
noe som er nødvendig for å tilfredsstille kravene til en klekkesensor for å overvåke en
klekkeprosess.

Arbeidet i denne oppgaven har fremhevet betydningen av kvaliteten til datasettene for den
opptrente modellens ytelse, noe som påvirkes av ulike faktorer, inkludert kvaliteten på
annotasjonene og variabiliteten i bildene. Det er flere variabler relatert til bildekvaliteten.
Design av klekketanken og kameraoppsettet har påvirket resultatene i dette prosjektet.
Flere utfordringer ble identifisert og må adresseres i fremtidige studier, som undersøkelser
relatert til dybdeskarphet, håndtering av bildestøy, og justering av nettverksstruktur og
hyperparametre.

Konklusjonen er at testoppsettet av klekkesensoren klarer å klassifisere med tilfredsstil-
lende treffsikkerhet. Det er behov for ytterligere forbedringer for å lage en funksjonell
prototype.
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1
Introduction

1.1 Background
Copepods play a significant role in aquaculture as a healthier and more optimal feed source
for marine species, particularly during the larval rearing phase. Studies have demonstrated
that feeding cod larvae with intensively cultivated copepod nauplii, specifically Acartia
tonsa, for the first 28 days post-hatching leads to improved survival, growth, and larval
quality compared to using rotifers as a food source (Hansen, 2011). Consequently, cope-
pods have become a valuable resource in the aquaculture industry and have been com-
mercially produced by companies such as CFEED. An essential aspect of production and
quality assurance of the eggs is to monitor the hatching rate and percentage. This thesis is
written in collaboration with CFEED. The input on the challenges related to the hatching
process is from conversations and e-mails with employees from CFEED.

The production methods of copepod eggs are labour-intensive and prone to human er-
ror. The process of breeding copepods involves manually conducting daily hatching tests,
which require examining samples under a microscope to count and identify the develop-
mental stages of 200 to 250 individual copepods. This task is time-consuming and phys-
ically straining for the human observer and exposed to inaccuracies due to the observer’s
patience and experience in deciding the distinct stages of Acartia tonsa development.

Maintaining an overview of the hatching process is essential. The hatching rate and per-
centage obtained from manual counting samples today are crucial for understanding pro-
duction volumes and inventory levels and ensuring the quality of the copepods delivered to
the customers. To address these challenges, this master thesis presents a hatching sensor,
including a novel approach that utilises a Visual Geometry Group (VGG) (Simonyan and
Zisserman, 2014) neural network for the classification of eggs, copepods and undesired
items such as air bubbles. A monochrome camera was utilised to obtain high-resolution
images of the copepods. These images were improved using image pre-processing meth-

1



1 Introduction 1.2 Problem description

ods. This study investigates using a machine learning (ML) network trained on the pro-
vided images. This approach seeks to reduce the need for manual labour, increase opera-
tional efficiency and minimise human error in the copepod classification process.

1.2 Problem description

1.2.1 Hatching-sensor
This master thesis aims to develop a concept for a hatching sensor that employs a monochrome
camera from FLIR to monitor the hatching process in producing copepod eggs. The focus
will be on utilising a light source, camera settings, and optics to ensure high-quality image
acquisition for ML classification.

• Camera settings: To obtain images suitable for machine vision analysis, the camera
settings must be adjusted to account for factors such as exposure and aperture. These
settings will be tuned to get sharp images and minimise noise, allowing for further
image processing and use in a ML network.

• Light source: The selection of an appropriate light source is crucial for capturing
sharp images. A light source should provide consistent and uniform illumination to
minimise shadows and reflections, ensuring the visibility of the particles during the
hatching process.

• Image acquisition and labelling: Images of the hatching process will be acquired
using a tuned camera to capture images at various stages of the hatching process.
The acquired images will be labelled and used to train and validate the ML algo-
rithm.

1.2.2 Machine vision algorithm
• Image processing: The images will be processed to facilitate use in a neural net-

work. It includes techniques used in digital image processing. The images will
be labelled according to the developmental stage of the copepod, providing ground
truth for the algorithm to be trained on.

• Train a machine learning algorithm: A VGG network will be trained with the
processed images. The training process will involve adjusting hyperparameters such
as the number of learning rates, epochs and batch size to achieve the best possible
accuracy. The trained model will be able to classify between egg and nauplii stages,
providing real-time monitoring of the hatching rate and percentage.

1.3 Structure of the report
The report is organised as follows:

• In chapter 2, relevant theoretical background is presented.

• In chapter 3, the hardware of the hatching-sensor is described.

2



1 Introduction 1.3 Structure of the report

• In chapter 4, the building-blocks of the machine vision algorithm is presented.

• In chapter 5, various experiments and tests of the image acquiring and machine
vision algorithm are presented.

• In chapter 6, the project results are discussed and further work is presented.

• In chapter 7, a conclusion is made.

3



2
Theory

This chapter will review and present the relevant theory used in this master thesis.

2.1 Copepods

2.1.1 Acartia Tonsa
Copepods are the natural initial feed for marine organisms and are considered to possess an
optimal nutritional profile. This results in increased survival, improved quality, and faster
growth compared to traditionally cultivated plankton such as rotifers and Artemia (Hansen,
2011). Acartia tonsa is a copepod species used in aquaculture due to its optimal nutritional
profile for larval rearing. The life cycle of the copepods consists of several developmen-
tal stages. Acartia tonsa undergoes six naupliar stages and five copepodite stages before
adulthood, totalling twelve distinct developmental stages (Hansen et al., 2010). Copepod
eggs are relatively small, with an average length of 80 micrometres. Upon hatching, the
nauplii are, on average, 110 micrometres in size (Leandro et al., 2006). An image of an
egg to the left and newly hatched nauplii to the right can be seen in Figure 2.1.

2.1.2 Breeding
Although copepods exhibit superior nutritional values compared to rotifers and artemia,
only a few commercial hatcheries utilise them as live feed (Drillet et al., 2011). Culti-
vation of copepods has presented significant challenges, and wild harvests are subject to
unpredictable factors, such as weather conditions, handling, and storage. The species of
Acartia Tonsa has shown the highest cultivation potential (Drillet et al., 2006) and is mass
cultivated by the company CFEED AS. To ensure optimal growth, it is essential to main-
tain proper water circulation in the production tank (Jepsen, 2014). Aeration should be
incorporated in the hatching tanks to prevent sedimentation of the eggs and the copepods

4



2 Theory 2.2 Photography

Figure 2.1: An image from a microscope of an egg and a nauplius acquired through a microscope
by CFEED.

from clustering. During their life cycle, Acartia Tonsa copepods primarily feed on algae,
which provide essential nutrients for their growth and development. The growth conditions
play a crucial role in their cultivation success (Jepsen, 2014). Maintaining a temperature
of 26 °Cenables the completion of the hatching process within 24 hours (Appendix B).

2.2 Photography
The theory in this section is based on Solomon and Breckon (2011) unless other is stated.

2.2.1 Photography and optics

Pixels

A pixel is the smallest unit that makes up a digital image. Pixels are images’ building
blocks, representing each point’s colour and light intensity. The resolution of a digital
image is often expressed in terms of the number of pixels along its width and height—an
image with a resolution of 2448x2048 results in a total of 5 013 504 pixels. A higher
number of pixels results in a more detailed image but requires more storage space and

5



2 Theory 2.2.2 Colour models

processing power to handle the data. By manipulating the pixels through processing tech-
niques, images can be enhanced and analysed to extract valuable information.

Exposure time

In photography and digital imaging, exposure time, also known as shutter speed, is a
parameter that determines the amount of light captured by the camera sensor during image
acquisition. Exposure time is typically measured in fractions of a second. Short exposure
time ranges from 1/4000th of a second (0.2ms), and long exposure time such as several
seconds. The choice of exposure time depends on the lighting conditions, the subject being
photographed, and the desired outcome of the image. A short exposure time captures fast-
moving objects effectively and reduces the chances of motion blur. Balancing exposure
time with other camera settings, such as aperture, is crucial for obtaining desired image
quality in different environments.

Aperture

Aperture refers to the opening camera’s lens size that allows light to pass through and
reach the image sensor. The gap impacts the depth of field, which is the distance range in
a scene that appears sharp and in focus. A larger aperture results in a shallower depth of
field, meaning that only a small portion of the scene will be in focus, while the rest will
appear blurred. Vice versa for smaller apertures making more of the scene appear sharp
and in focus. Aperture is typically expressed as an f-number, for instance, f/1.8, f/2.8, f/4
(Potmesil and Chakravarty, 1982). It represents the lens’s focal length ratio to the diameter
of the aperture opening. A low f-number corresponds to a larger aperture opening, while a
high f-number indicates a smaller aperture. By adjusting the aperture, photographers can
control the amount of light reaching the sensor and manipulate the depth of field to achieve
the desired outcome.

Gain

Gain is an essential parameter in photography that affects the image quality, particularly in
low-light conditions or when capturing fast-moving subjects. In photography, gain refers
to the amplification factor applied to each pixel value. It can improve the brightness of
an image. In dimly lit environments or with fast shutter speeds, the gain can improve the
imaging. However, increasing the gain can introduce noise to the image, which can affect
the clarity and detail of the captured subjects.

2.2.2 Colour models

The purpose of a colour model (also called colour space or colour system) is to facilitate
the specification of colours in some standard, generally accepted way. A colour model
defines a coordinate system in which each colour corresponds to a unique point within
a specific subspace (Gonzalez et al., 2022). Image classification for specific objects is
widely used with a ML algorithm (Pak and Kim, 2017). The experimental findings by Bui
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et al. (2016) demonstrated that utilising greyscale images for classification led to higher
accuracy across various types of classifiers compared to employing RGB images.

Grey-scale

A greyscale image is a visual representation in which each pixel’s value corresponds to a
single sample, conveying the quantity of light. This type of image encompasses solely
the intensity information (Sonka et al., 2013). Greyscale images, categorised as grey
monochrome or black-and-white, only consist of diverse shades of grey. Each pixel’s
brightness or darkness is represented by a discrete numerical value, varying from 0, in-
dicative of black, to 255, representative of white (Johnson, 2006). This spectrum of grey
shades allows for a nuanced depiction of image features.

RGB

For RGB colour models, each colour appears in its primary spectral components of red,
green and blue. This model is based on a cartesian coordinate system (Gonzalez et al.,
2022). By combining the three components with different intensities ranging from 0, (ab-
sence of colour) to 255 (maximum intensity of colour) Pratt (2007). Images represented
in the RGB colour model consist of three component images, one for each colour. In Fig-
ure 2.2 1, a representation of an RGB image is of the left, with the greyscale equivalence.

Figure 2.2: Copmosition of RGB from three greyscale images.

1Accessed: 10.05.23. Available at: https://en.wikipedia.org/wiki/Grayscale#/media/
File:Beyoglu_4671_tricolor.png.
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2.3 Machine vision and machine learning

2.3.1 Image processing

The theory presented in this section is based on Solomon and Breckon (2011) unless other
is stated. Image processing involves manipulating and analysing digital images to im-
prove their quality or extract valuable information. It can be divided into two categories:
pre-processing and post-processing. Pre-processing enhances the image quality, while
post-processing focuses on extracting relevant information or features from the processed
images.

Thresholding

Thresholding is a technique in which a specific threshold value is chosen to categorise
pixels into separate regions. Pixels with values greater than the threshold are assigned to
one region, while those below the threshold are assigned to another (adjacent) region. This
process creates a binary image b(x, y) from an intensity image I(x, y) based on a criterion:

b(x, y) =

{
1, if I(x, y) > T

0, otherwise
(2.1)

where T represents the threshold value (Solomon and Breckon, 2011). Thresholding is
used to segment or separate objects of interest from the background in a digital image.
Simplifying the image makes it easier to identify and analyse the objects of interest.

Image subtraction

The method involves subtracting one image’s pixel values from another’s corresponding
pixel values. This operation can result in negative pixel values, which will be clamped
to zero. The result of the operation is a third image highlighting the differences between
the two input images. By subtracting one image from another, the information about
differences becomes visible.

Image segmentation

In computer vision, segmentation is the generic process of subdividing an image into re-
gions or objects. The goal is to localise desired objects or regions and attach labels. Two
primary routes are used to detect the objects: edge/boundary methods or region-based
methods, either by looking for sharp differences between groups of pixels or assigning
pixels to a given region based on their degree of similarity. Blob detection is used for
identifying and segmenting distinct regions in an image where a set of pixels differ in
properties compared to the surroundings. The blob refers to a region where some prop-
erties are constant or vary within a predetermined range. It could be a set of pixels in an
area connected, sharing some common properties. An image segmentation technique can
detect specific shapes, which can be valuable for further analysis or processing.
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2.3.2 Machine learning
The theory in this section is based on Goodfellow et al. (2016), unless other is stated.

A computer program is said to learn from experience E with respect to some class of task
T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E. -Mitchell (1997)

Machine learning (ML) refers to the study of computer algorithms that improve automati-
cally through experience and is a branch of artificial intelligence (AI).

Dataset

The first step in a ML project is to obtain knowledge about the problem domain and to
gather or generate relevant data. A common practice in ML is setting aside some data for
validation. A data-generating process will result in a dataset, D. The training set, Dtrain,
is the data available for model training (learning). The validation set, Dval, is the data
used for model validation, which is used to tune parameters, select features, and make
other decisions regarding the learning algorithm. A holdout set, Dtest, is used to evaluate
the performance of the algorithm without making any decisions regarding what network
or parameters to use. If the holdout set is used to adjust the learning algorithm or the
parameters, data leakage/snooping occurs (Yaser, 2012), which is undesirable. A balanced
dataset is crucial for the network to learn the features of all the classes effectively and to
avoid bias of classes which are over- or underrepresented. To ensure a balanced dataset,
the represented classes should have even distribution of samples.

Learning task and performance measures

The learning task for a ML network is often to make a model to predict, gain insight,
optimise or control. A ML task refers to the specific prediction determined by the problem
and the available data. The two most common are:

• Regression: used to predict a numerical value y given a data point x.

• Classification: used to specify which of k categories a data point x belongs to.

A performance measure is a designed, quantitative measure used to evaluate the perfor-
mance of a ML algorithm on a learning task. Performance measures are often defined as
an error where the goal is to minimise errors during training. For classification, the model
accuracy is often used as a performance measure.

Loss function

In ML, loss functions measure the model performance by quantifying the difference be-
tween predicted and actual output (Rosasco et al., 2004). Cross-Entropy loss is commonly
used for multi-class classification problems (Hui and Belkin, 2020). This loss function,
also called logarithmic loss, compares the probability of the predicted classes with the ac-
tual label. A score/loss is calculated that penalises the probability based on how far it is
from the actual expected value.
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2.3.3 Neural networks
ML has undergone a significant transformation using Artificial Neural Networks (ANN).
These computational models, inspired by the human brain (Agatonovic-Kustrin and Beres-
ford, 2000), have outperformed traditional AI methods in standard ML tasks (Lecun et al.,
1998). Among the most notable architectures of ANNs is the Convolutional Neural Net-
works (CNN). It is utilised for complex image-based pattern recognition tasks.

Visual Geometry Group (VGG) (Simonyan and Zisserman, 2014) is a CNN for image
classification. The architecture uses small convolutional filters (3 x 3) and deep network
depth. The authors released a series of VGG networks with different layer lengths, from 11
to 19 (VGG-11, -13, -16 and -19). Figure 2.3 illustrates the architecture of a VGG neural
network. It consists of 13 convolutional layers, 5 max-pooling layers and three connected
layers.

.

Figure 2.3: An illustration of a VGG16 architecture (Sugata and Yang, 2017).

The structure of a CNN can be separated into two parts. The first convolution/pooling
layer(s) breaks up the image into features and analyses them. The fully connected takes
the output from the convolution/pooling and predicts the best label to describe the images.

Convolutional layers

Convolutional layers consist of a filter, also called kernel or convolution matrix, passing
over the image, scanning a few pixels at a time and creating a feature map which predicts
the class to which each feature belongs. As the convolution matrix slides over the image,
the dot product of the kernel and the image are computed at every spatial position. The
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convolutional layer is connected to an activation function. This operation is illustrated in
Figure 2.42.

.

Figure 2.4: An illustration of the convolution operation.

Max pooling layers

Max pooling layers downsample the information in each feature extracted from the con-
volutional layer. It partitions the image into sub-rectangles and only returns the maximum
value of the inside of that sub-region (Ozeki and Okatani, 2015). Figure 2.5 3 illustrates a
2 x 2 max pooling. A pooling layer acts as a form of regularisation by gradually decreas-
ing the spatial dimension and reducing the number of computations. Regularisation is the
act of tuning or selecting model complexity to avoid overfitting. An overfitted model has
trained with too much data, so it starts to learn from the noise and inaccurate data entries
in the dataset.

.

Figure 2.5: An illustration of a 2 x 2 max pooling.

2Accessed: 10.05.23. Available at: https://towardsdatascience.com/
beginners-guide-to-understanding-convolutional-neural-networks-ae9ed58bb17d.

3Accessed: 10.05.23. Available at: https://computersciencewiki.org/index.php/
Max-pooling_/_Pooling.
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Fully connected layers

In a fully connected layer, also called a dense layer, all the neurons in the previous layer are
connected to every neuron in the next layer. The fully connected layers often use activation
functions to determine the output of the neurons. Figure 2.6 illustrates a dense layer.

.

Figure 2.6: An illustration of a fully connected neural network.

Activation functions

Activation functions are applied to the input to have an output with a given character-
istic to improve the output (Nair and Hinton, 2010). Rectified Linear Unit (ReLu) is a
threshold at zero, such that it ensures positive values, yielding f(x) = max(x, 0). The
softmax function is often used as the final activation function in a CNN (Bishop, 2006). It
normalises the network’s output, creating a probability distribution over predicted output
classes, based on Luce’s choice axiom (Luce, 1977).

Batch size and epochs

Batch size and the number of epochs are hyperparameters in training a NN. The batch
size refers to the number of data samples that the network processes before the internal
parameters of the network are updated. It is a crucial determinant of how effectively the
network can learn from the data, striking a balance between computational efficiency and
the accuracy of the learning process. The number of epochs is the total number of iterations
where the network goes through the entire dataset. A high number of epochs could lead
to better learning up to a point, but beyond this, it may result in wasted computation or
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overfitting to the training data.

Generalisation is a central challenge in ML. It refers to the ability of a learning algorithm
to perform well on new, previously unseen data drawn from the same distribution used to
train the network. During hyperparameter tuning, there is a sweet spot for choosing the
model that does not over-or underfit.

Evaluation metrics

To evaluate the training of a NN several metrics can be used to evaluate the performance
of the model.

Classification accuracy is often referred to as the accuracy of the model. It is calculated
with the number of correct predictions divided by the total number of input samples. It
can provide misleading results if the dataset is unbalanced. If most samples in a dataset
belong to the same class (or classes), they could overshadow the samples from less frequent
classes. Accuracy is the most common evaluation metric, as it is the most intuitive.

Learning curves plots show changes in learning performance over time (epochs) in terms
of experience. A model’s optimal loss function value for a training set against the same
loss function value evaluated on a validation dataset using the same parameters which
obtained the optimal function (Mohr and van Rijn, 2022) is a learning curve. The metric
evaluates the training process and whether the network benefits from more training. If a
network is over- or underfitting, this could be observed in a learning curve by comparing
the convergence of the training- and validation loss. Studying learning curves and tuning
hyperparameters based on the output is valuable for choosing the best model.

Confusion matrix is a matrix that provides a visualisation of a ML performance. It is
used in supervised learning algorithms where the outputs are known and are compared
with the predicted outputs. This matrix includes information about actual and predicted
classifications made by the model. Each row of the matrix corresponds to the actual classes
of the objects, while each column corresponds to the predicted class. In a confusion matrix
for a multi-class classification task with classes A1, A2, ..., An, the entry in the i-th row
and j-th column, represented as Nij, indicates the number of samples that belong to the
actual class Ai, but are predicted as class Aj (Deng et al., 2016).
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3

Hatching-sensor

This chapter covers the various physical components that constitute the hatching sensor.
A review of two light sources, the setting and the parameters used for the camera are
conducted through testing. The chapter delves into the aspects of image acquisition. The
goal is to develop and evaluate a prototype hatching-sensor acquiring images to make a
dataset for training the machine vision algorithm. The test setup of the sensor can be seen
in Figure 3.1.
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Figure 3.1: The hatching-sensor setup utilising a camera, aeration and illumination.

3.1 Components

3.1.1 Camera
The FLIR BFS-PGE-50S5M-C PoE GigE Blackfly® S Monochrome Camera 1 provides
grey-scale images. The camera delivers images with 2448 x 2048 resolution. The frame
rate is 24 frames per second (fps). The Gigabit Ethernet (GigE) interface enables high-
speed data transfer from the camera to a computer. To achieve the correct focus, a Pentax
25mm lens was used with two extension rings (50mm each). The camera was employed
to capture the images.

SPINVIEW was used to manage image acquisition. This software can adjust camera set-
tings, such as exposure time, aperture, and gain, to test and improve the image quality
under different experimental conditions. By tuning these variables, consistently clear and
well-lit images of the copepods were obtained. Figure 5.8 provides a screenshot of the
settings which can be adjusted in the software.

3.1.2 Illumination
A black fabric created a ”light tent” for accurate and consistent lightning. The purpose was
to provide a controlled environment with consistent lighting conditions. Various variations

1Accessed: 28.04.23. Available at: https://www.flir.com/products/blackfly-s-gige/
?model=BFS-PGE-50S5M-C&vertical=machine+vision&segment=iis.
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of indirect lighting were tested. Two different light sources and their placement were
tested.

• LED Ring Light2

• IKEA Myrvarv LED lightstrip3

The goal was to obtain a sharp image with clear contours of both eggs and nauplii.

3.1.3 Aeration
The hatching tanks need to be stirred to prevent the eggs from clustering and sedimentation
to the bottom of the tank. Aeration makes the water move, which is also vital for successful
hatching. A pump with a serological pipette was used to create aeration. Eheim Air Pump
1004 was used in the project. The maximum amount of air it can produce is 100 litres/hour.
An experimental test was conducted to examine the impact of aeration on the homogeneity
of the mixture. Details of this Test can be found in section 5.5.

3.1.4 Biology lab equipment
Biological equipment is necessary to carry out a hatching process and subsequent testing.
Table 3.1 contains the required components to conduct a hatching process of copepods.

Item Description
Disinfected seawater The environment in which the hatching process will

take place.
A mixture of copepod eggs Copepods is stored in a high seawater concentration.
NUNC™ EasyFlask™ Serves as the actual hatching tank. A flat surface is

advantageous for achieving the correct focus for image
acquisition.

Pipette This is necessary to accurately measure the appropriate
volume of the egg mixture in millilitres.

Pump and serological pipette Prevent the eggs from sedimentation.
Stand for the NUNC flask Support structure for holding the NUNC flask. The

flask is angled to prevent sedimentation of the eggs.

Table 3.1: Equipment necessary to perform a hatching process of copepods.

3.2 Testing
Several tests have been performed in order to gain insight. Trial and error have been a part
of the project. The development process has evolved progressively, involving multiple iter-

2Accessed: 28.04.23. Available at: https://www.adafruit.com/product/4433.
3Accessed: 28.04.23. Available at: https://www.ikea.com/us/en/p/

myrvarv-led-light-strip-flexible-dimmable-90487191/.
4Accessed: 28.04.23. Available at: https://greenaqua.hu/en/eheim-air-100.html.
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ations of hatching experiments. The hatching process of copepods can be seen in Appendix
B. A sample of 3.5mL copepod eggs was given from CFEED for testing. The density was
approximately 400 000 eggs/mL mixed with approximately 11.5mL disinfected seawater.
The concentration was

400000eggs/mL ∗ 3.5mL

15mL
= 93333eggs/mL. (3.1)

in the sample. In Test I, II, III and IV (section 5.1, section 5.2, section 5.3 and sec-
tion 5.4respectively), this sample was used mixed with different amounts of disinfected
seawater, which gave different densities. In the hatching tanks, the density varies from
batch to batch in a range of 10-1000 eggs/mL, according to CFEED. For testing purposes,
an initial density range for the eggs was established to be between 100 and 1000 eggs/mL.
The hatching process performed in Trondheim was done in a NUNC flask 5, and the setup
can be seen in Figure 3.1. The NUNC flask was used because of its flat surface and avail-
ability of the flask. The hatching process in Vanvikan was performed in a soda bottle
according to CFEEDs hatching manual (Appendix B). A photograph in Figure 3.2 shows
the hatching processes and fetching a sample. The photo was acquired during the testing
in section 5.5.

5Accessed: 28.04.23. Available at: https://www.thermofisher.com/order/catalog/
product/156499.
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Figure 3.2: A photo of the hatching process performed at CFEEDs production facilities.

18



3 Hatching-sensor 3.3 Images

3.3 Images
There are some general considerations regarding the image format for machine vision
algorithms. Particle detection relies on the accuracy of the pixel. Therefore it is best to use
a lossless format that preserves the original pixel values of the image. The camera captures
23 FPS when using .bpm-file. The .bpm-file is of size 2448x2048 pixels and is the result
of the image acquisition. The process and the images acquired can be viewed in chapter 5.
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4

Machine vision algorithm

This chapter covers image labelling and enhancement, methods and techniques employed
to improve image quality for further analysis, and the machine vision algorithm, including
a deep neural network.

4.1 Image processing

The images generated by the hatching sensor are in the .bmp format and are ready for
further processing, allowing the ML algorithm to be trained. The pipeline can be viewed
in Figure 4.1.
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Figure 4.1: Flow diagram of the image processing.

4.1.1 Pre-processing

To detect and remove stationary noise, the previous image is subtracted from the current
image using OpenCV’s subtract function, cv.subtract. Figure 4.2 illustrates the process of
subtracting the second image from the first image, and the third image is the result. The
image is brightened to get better visualisation. Next, the cv.threshold function is applied
to set a binary threshold for the image. All pixels with values above 50, thresLevel, are
set to 255. Pixels with values less than or equal to 50 are set to the minimum intensity (0).
The result is a binary image suitable for detecting particles in areas of interest. Figure 4.3
illustrates the result of thresholding.

Figure 4.2: Image subtraction of the second image on the first image, resulting in the third image.
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Figure 4.3: thresholding on the image from the subtraction.

4.1.2 Blob Detection
The binary image is used to detect particles that may be of interest. OpenCV’s blob de-
tector1 is used. The function identifies a group of connected pixels called a ”blob.” The
number of pixels determines the area size of a blob. By specifying params.minArea and
params.maxArea, blobs that are too small or too large relative to the size of eggs or
nauplii, will be filtered out section 2.1.

4.1.3 Annotating
The result of the image processing presents individual particles so that a user can label the
images. Each particle is presented, the user determines what it is, and the image is saved
as a .png-file and a .csv-file containing the labelling information. Figure 4.4 presents the
images to the user. The labelled images form a dataset used to train the VGG. The dataset
was split into 70% for training and 30% for validation. The annotator converts the 1-
channel greyscale .bmp images to 3-channel RGB .png images. The conversion is done
prior to feeding them to the network. The VGG network expects 3-channel RGB images
as input. When a greyscale image in the .bmp format (1-channel) is converted to an RGB
.png image (3-channel), it retains its original information while expanding from a single
channel to three channels. Each of the three colour channels in RGB will contain the same

1Accessed: 08.05.23. Available at: https://learnopencv.com/
blob-detection-using-opencv-python-c/.
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intensity values as the original greyscale image. The result is an equivalent representation
of the original greyscale image in the RGB colour space.

Figure 4.4: The user is presented with a particle withdrawn by the blob detector and is manually
labelled with the keyboard input 0, 1, 2, 3 or 4.

4.2 Training process

The implementation of a VGG-network 2 makes it possible to change between the struc-
tures VGG11, -13, -16 and -19. The cross-entropy-loss and the accuracy were the per-
formance measures used in the training process. Learning curves and confusion matrices
were used to evaluate the performance. The learning task was to predict and gain insight
into a hatching process. Experimenting with the number of epochs and the batch size and
testing different VGG architectures was the main focus. This thesis does not focus on
hyperparameter tuning and optimising with the architecture of the network. The following
hyperparameters were used as a recommendation from the origin of the network:

• Validation split = 0.3

• Random seed = 42

• Learning rate = 0.001

• Momentum = 0.9

2Accessed: 28.04.23. Available at: https://www.analyticsvidhya.com/blog/2021/06/
build-vgg-net-from-scratch-with-python/.
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The data generating process was images acquired by the hatching sensor, resulting in a
dataset, D The dataset was split into Dtrain and Dval from the same distribution. Figure 4.5
illustrates how the network was trained, evaluated and tuned on the training and validation
set. Test sets containing independent and unseen data were obtained to test the trained
model and monitor the egg-nauplii ratio throughout hatching.

Figure 4.5: The pipeline of the training process of the network.

The training and test processes with the images acquired by the hatching sensor can be
viewed in section 5.7, section 5.8, section 5.9 and section 5.10.
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Experimental testing

This chapter will cover the experimental testing to develop the hatching sensor and the
machine vision algorithm. Camera settings and light sources have been the main focus in
the implementation of the sensor.

5.1 Test I

An initial test was conducted to familiarise with the hatching process and the equipment
involved. The hatching occurred in a small NUNC flask (175mL), with the ring light
attached to the camera lens. The setup can be seen in Figure 5.1. The small NUNC flask
was used to minimise the loss of copepod eggs. CFEED provided a 15mL sample for
testing purposes. 1mL of eggs was used and provided a concentration of 86 372eggs /
176mL = 490 eggs/mL.

Various camera settings were tested to familiarise with how they affected the quality of
the images. The exposure time, gain and aperture were the main focus. Acquiring images
while there is continuous aeration is desirable, as mentioned in section 2.1. However, it
was observed that bubbles occupied the entire image frame during continuous aeration, so
this approach was quickly ruled out using the small NUNC flask. The size and shape of
the flask affect the water circulation. In subsequent image acquisition, images were taken
approximately 2-5 seconds after stopping the aeration to see the particles more clearly.
Figure 5.2 presents images with different shutter speeds to investigate the boundary at
which particles appear sharp or blurred. The four images have a gain of 0dB.
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Figure 5.1: Initial hatching-sensor setup.
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Figure 5.2: Four images acquired with exposure time of 1.506ms, 2.000ms, 3.993ms and 7.005ms
respectively.

It can be observed that the sharpness of the particles gets worse with a higher exposure
time, and more of the particles become visible. A longer exposure time, higher gain, or
lower aperture could be applied to get a more visual representation of the particles.

5.1.1 Main findings
• The small NUNC flask was too small to acquire images with aeration. The geometry

of the hatching tanks influences the water movement and thereby influences the
hatching process.

• Make a setup where the surrounding light conditions are the same each time.

5.2 Test II
The setup in Figure 5.1 was tested using a large NUNC flask (855mL). In addition, a light
tent was used to reduce light pollution. The density of the eggs was approximately 200
eggs/mL. Initially, the ring light was placed on the camera’s extension rings, at the outer
edge of the lens, and on the opposite side of the NUNC flask. Placing the ring light at the
outer edge of the camera lens yielded the best results and was used for subsequent tests.
The other two options showed glare on the images, as shown in Figure 5.3.

Figure 5.3: Two images acquired with the ring light placed on the opposite side of the NUNC-flask
and the camera’s extension rings, respectively.
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Images were taken at 0 hours and after approximately 48 hours at room temperature. The
images were captured with and without aeration (10 and 20 seconds pause) in the respec-
tive intervals of [0.2, 4]ms and [2, 10]ms. SPINVIEWS automatic gain tuning was set to
17.9 dB. The aperture was the same for the two first images. A smaller aperture for the two
last images was chosen to reduce the light intensity, thereby reducing noise. The images
were acquired at the start of the hatching process (0 hours), so the particles are either eggs,
dust or air bubbles. The result can be seen in Figure 5.4. It is possible to see particles in all
four images, but the clarity varies. The second image shows that noise is amplified when
using the same aperture but with a longer exposure time. In images three and four, the
particles start to become blurry. More light will be introduced for the next test to improve
visibility and get a more precise contour.

Figure 5.4: Four images acquired with different aperture and exposure time of 0.2ms, 1ms, 2ms and
3.0ms respectively and continuously aeration.

Images of nauplii were acquired with different shutter speeds. It is possible to see the con-
tours of what appears to be nauplii. The same observations were made here. In Figure 5.5,
it can be observed that the particles become sharp, even with a considerably longer shutter
speed of 8ms. The challenge with stopping the aeration is whether the mixture is homo-
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geneous or not. The mixture must be homogeneous to determine a representative hatching
rate and percentage.

Figure 5.5: One image acquired with an exposure time of 8.0ms and 20 seconds without aeration.

5.2.1 Main findings
• Use the automatic gain set by SPINVIEW to 17.9dB.

• Increase the illumination to visualise the contour of the particles by using an addi-
tional light source.

• The 850mL NUNC flask can be used with continuous aeration without disturbing
the acquired images.

• The images become clearer, particularly of nauplii, when the aeration has been
stopped. Stopping the aeration can affect whether the mixture is homogeneous or
not.
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Figure 5.6: Two images acquired to demonstrate the two light sources.

5.3 Test III

In this test, the focus is on the image quality of individual particles. The objective was to
test the placement of both light sources and finalise a test setup. Comprehensive testing
of the placement of the two light sources was performed. Various configurations of the
ring light and the light strip were tested. Figure 5.6 compare the led strip in the back
with- and without the ring light in the front. The best result was acquired with both light
sources. It resulted in the final setup in Figure 3.1. To determine an exposure time for the
setup, images in the interval of [0.1, 1]ms were conducted. It was challenging to decide
what would give the best result. There is a trade-off for what will achieve the best result.
In Figure 5.7, some selected images with different shutter speeds can be seen. It can be
observed in the images that the amount of noise increases when the aperture and exposure
time is increased. An exposure time of 0.2ms was chosen for further use. The choice was
based on the amount of noise and the clarity of the individuals’ contours. The final settings
of the camera can be seen in Figure 5.8, a screenshot from SPINVIEW.
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Figure 5.7: Four images acquired with exposure time of 0.1ms, 0.2ms, 0.6ms and 1ms respectively.

31



5 Experimental testing 5.3.1 Main findings

Figure 5.8: The camera settings from SPINVIEW.

5.3.1 Main findings
• The exposure time will be set to 0.2ms.

• Led strip behind the NUNC flask and ring light mounted on the lens’s edge will be
the light sources’ positions.

• A set up for the hatching sensor to achieve a similar image quality for all testing.

5.4 Test IV
This test aimed to collect test data to create a dataset that could be used for training the
machine vision algorithm with the setup in Figure 3.1. The camera’s aperture was set
to approximately 6. The egg density was approximately 600 eggs/mL. As mentioned in
section 2.1, a hatching process takes about 48 hours at room temperature. Images were
taken with shutter speeds of 0.2 ms, 0.4 ms, and 0.6 ms. Only 0.2 ms was used. Five
hundred images were taken with each of the three shutter speeds to gather enough data.
This was done 12 times over 51.5 hours. The acquired images formed the first Dataset
used for training the neural network. Figure 5.9 presents a set of images after using the
annotator. The images in the figure were acquired after 0 hours. The majority of the
images consist of eggs. Some images exhibit multiple eggs within a single frame.

A few of the images appear as noise. Instances of air bubbles are also observed. Fig-
ure 5.10 presents a set of images from approximately 21 hours into the hatching process.
Eggs, nauplii, noise and air bubbles can be observed. Figure 5.11 presents a set of images
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acquired after approximately 48 hours. The hatching process should be done at this stage.
Fewer eggs and several nauplii can be observed, which indicates hatching. The images
in the three figures have been processed with the annotator, and no discarding was done.
Some images of noise, dust and air bubbles are present. Approximately 13 000 - 15 000
images of particles were acquired using the annotator on 500 images.

Figure 5.9: A sample of images acquired approximately 0 hours into the hatching process. Eggs,
noise and air bubbles can be observed.
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Figure 5.10: A sample of images acquired approximately 21 hours into the hatching process. Eggs,
nauplii, noise and air bubbles can be observed.
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Figure 5.11: A sample of images acquired approximately 48 hours into the hatching process. Nau-
plii, noise and air bubbles can be observed.

Particles observed along the bottom of the NUNC flask indicate sedimentation, which
can adversely impact the hatching process. A photo of these sediments can be seen in
Figure 5.12.
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Figure 5.12: A photo of sedimentation during the hatching process.

5.4.1 Main findings
• Collecting images to create datasets.

• Perform a full hatching process.

5.5 Test V - Homogeneity test
The goal was to test how long the aeration could be turned off without resulting in a non-
homogeneous mixture. Turning off the aeration before taking the image could improve
image quality because of the smaller movement of the individuals. Two visits to CFEEDs
production facilities were necessary to obtain the knowledge to perform the test and the
actual execution of the test. A mixture was prepared in which the density of eggs and
nauplii was predetermined. Then, counting samples were taken: six parallels while the
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aeration was on and ten parallels while trying 3, 6, 10, 15 and 20 seconds without aera-
tion. Considering the changes in variance and measured density, an opinion can be made
regarding the duration for which aeration can be switched off without compromising the
homogeneity of the mixture. Parts of the data collected can be seen in Appendix A.

The highest and lowest values have been removed from the Dataset, as it is common prac-
tice to reduce noise from randomly high or low samples. The standard deviation in the
Dataset is relatively consistent, generally around +/- 5, which can be observed in Fig-
ure 5.13. The percentage deviation from the count with aeration mainly remains within
+/- 5% up to 15 seconds after the bubbling has stopped. Figure 5.13 presents the deviation
from counting. Some percentage deviation is expected when taking samples, but devia-
tions exceeding 5% may significantly impact the hatching percentage, especially if values
diverge in opposite directions. Based on the collected data, there is potential for collecting
images while stopping the aeration. More than relying on a single dataset for analysis may
be required, as the resulting values could be subject to random variations. Three separate
tests would have been preferable to enhance the experiment’s validity.

Figure 5.13: Deviation from counting with aeration and the average value of eggs and nauplii with
standard deviation.
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5.5.1 Main findings
• Firsthand experience is why it is desirable to have a hatching sensor replacing man-

ual counting samples.

• There is potential to maintain a homogeneous mixture even when the aeration is
stopped for several seconds.

• A more extensive testing of how the aeration must be provided to increase the valid-
ity.
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5.6 Test VI - Shell or nauplii

It has proven most challenging to distinguish between empty eggshells and nauplii. This
sometimes makes labelling the images difficult, as there is uncertainty about what it is. To
investigate the visual differences between eggshells and nauplii, attempts were made to
take pictures of only shells and only nauplii. A hatching process was set, and after about
48 hours, the experiment was conducted. First, the aeration was turned off for about 1
hour, allowing the eggs to sediment. In Figure 5.14, the eggs can be observed in the cone
in the two pictures. The mixture was expected to consist of only shells and nauplii. The
aeration was put back in, and the rotifer floss was put in. After approximately 3 hours,
the rotifer floss was cleaned. The cleaned mixture was expected to only consist of shells.
In Figure 5.14, in the picture to the left, the brown colour on the rotifer floss are particles
which are attached to the white surface. The rotifer floss was cleaned in the picture to the
right, and the mixture of just expected shells was made.

Figure 5.14: Pictures from using rotifer floss to get mixtures of only shells and nauplii.

The mixture of just nauplii and shells was poured into a NUNC flask, and 1000 images
were acquired with the hatching setup in Figure 3.1. A sample of all the images acquired
from the mixture of just shells and just nauplii can be seen in Figure 5.15 and Figure 5.16,
respectively. The figure of ”just” eggs contains different classes. Eggs, nauplii, noise and
air bubbles can be observed in addition to shells, so it is not easy to separate them. The
images of nauplii are, on the other hand, more successful. The majority of the images
appear to have a distinct nauplii shape.
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Figure 5.15: Images of the mixture of ”just” shells.

A comparison of the two was made to investigate how to distinguish between eggs and
shells. In Figure 5.17, a sample of images and the brightened images is provided. The first
50 images on the first five rows are shells. The following 50 images, on the last five rows,
are eggs. A difference can be observed between the two. The eggs stand out. However,
observing a clear trend in the images of shells is more complex. Five images of what could
be empty shells can be seen in Figure 5.18.

5.6.1 Main findings
• Challenging to distinguish shells.

• Images of distinct nauplii shape was acquired.
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Figure 5.16: Images of the mixture of ”just” nauplii.
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Figure 5.17: A comparison of eggs and shells, including a brightened version, where the first five
rows are shells, and the next five columns are eggs.

Figure 5.18: Five images of shells.
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5.7 Dataset I
A dataset was made with the images acquired from Test IV (section 5.4). 434 images were
annotated, with approximately the same number of images for each class - eggs, nauplii
and unwanted. The labelled images can be seen in Figure 5.19.

Figure 5.19: Dataset I consists of three classes - egg, nauplii and unwanted/noise.

The labelling was done by assuming eggs to be perfectly circular, nauplii to have a nauplii-
like shape and the unwanted class with the rest. The last class consisted of air bubbles,
noise, and an image of several eggs. VGG11, -13, -16 and -19 were tested with different
epochs and batch sizes on the Dataset. The results of parts of the training executed can
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Architecture Epochs Batch Size Accuracy Running time (min)

VGG11 30 16 84.5% 37
VGG11 30 32 86.8% 34
VGG11 35 16 89.9% 44
VGG11 40 16 93.8% 50
VGG11 500 16 93% 626

VGG13 4 64 33% 7
VGG13 30 16 81.4% 55
VGG13 35 16 88.3% 66
VGG13 40 16 92% 78

VGG16 25 16 94.6% 58
VGG16 30 16 90% 67
VGG16 35 16 95.3% 79
VGG16 40 16 94.6% 92
VGG16 100 16 93.8% 219

VGG19 30 16 93% 76
VGG19 35 16 91.5% 91
VGG19 40 16 90.7% 108
VGG19 100 16 93% 242

Table 5.1: Accuracy for different combinations of epochs and batch sizes for VGG11, VGG13,
VGG16, and VGG19, including running times.

be seen in Table 5.1. When increasing the batch size, the running time decreases, which
can be observed for VGG11, which was expected. VGG16 and -19 provide accuracy
exceeding 90% in all training instances.

Learning curves are presented in Figure 5.20, with VGG11, -13, -16 and -19, respectively,
to evaluate the network’s performance during training. The same trend for the four net-
works can be observed. A tendency of convergence of the validation loss can be seen.
A more noisy curve can be observed in the learning curves for the validation loss due to
fewer images in the validation set.
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Figure 5.20: Learning curves of VGG-11, -13, -16 and -19 with 35 epochs and batch size 16.

To illustrate the model of overfitting, a learning curve with a large batch size (500) was
made. In Figure 5.21, the validation loss curve is increasing, and the training loss is
converging. An observation like this is a typical sign of a model overfitting.

Figure 5.21: Learning curve illustrating overfitting of a VGG11-network with 500 epochs.
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There were errors in the labelling in the first Dataset. The algorithm predicted the image
to be unwanted, but the label was nauplii. A prediction of unwanted when the label was
egg also occurred. This is a weakness in the Dataset, as the network needs to be trained on
correct information.
Based on the results from Table 5.1, the learning curves, and the running times, the VGG16
structure was chosen as the ”best option”, with a batch size 16. The network structures per-
form well, with small margins between them. The different layers of the VGG16 network
are illustrated using Netron and can be shown in Appendix C.

5.8 Dataset II

A new dataset was made to improve the labelling and training. The knowledge acquired
from performing the training with Dataset I was a valuable experience in improving the
Dataset. Three classes were utilised during the annotation process - eggs, nauplii, and
air bubbles. Dataset II consists of 500 images of each, totalling 1500 images. Images
of eggs and air bubbles were taken from the image capture process described in Test VI
(section 5.4), and the images of nauplii came from Test VI (section 5.6). It was desirable
to ensure correct labelling to ensure the network trained on correct data. The images
constituting Dataset II can be viewed in Figure 5.22.
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Figure 5.22: Dataset II consists of three classes - egg, nauplii and air bubbles.

A VGG16 architecture was utilised with a batch size of 16 in all the training processes
for Dataset II. The only variable that changed across the runs was the number of epochs.
The outcomes from the training process can be viewed in Table 5.2. It can be observed
from the results that the network is capable of effectively learning when the images are
accurately labelled.

From Figure 5.23, it can be observed that the validation loss converges more quickly,
which may suggest that the network is learning at a faster rate. The observation implies
that fewer epochs are needed compared to Dataset I.
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Epochs Accuracy Running time (min)

5 95.11% 39
7 97.55% 55
10 98.67% 79
30 99.56% 234
35 99.56% 266

Table 5.2: Accuracy’s for different epochs with VGG16 network including running times, with
Dataset II.

Figure 5.23: Learning curves of the training process with Dataset II using VGG16 and epochs of 5
and 30 respectively.

5.9 Dataset III

A class to handle noise is necessary to add to create a dataset capable of dealing with
everything the blob detector extracts from the original images from the hatching sensor.
Dataset III is built upon Dataset II but includes a fourth class - noise. This class was meant
to contain everything that is neither egg, nauplii, or air bubble. Two hundred images of
noise were annotated, leading to a slightly imbalanced dataset. The images of the noise
added to the Dataset can be seen in Figure 5.24.
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Figure 5.24: Images of the fourth class consisting of noise.

The training with Dataset III can be seen in Table 5.3. The accuracy is decreasing com-
pared to Dataset II, but this is expected as a new class is involved. Some of the images of
the noise look like air bubbles, which can confuse the model when predicting the class.

A confusion matrix from training with 10 epochs can be seen in Figure 5.25, where 0 is
egg, 1 is nauplii, 2 is noise, and 3 is air bubbles. The matrix implies confusion for the
network regarding classifying nauplii when the actual label was noise and air bubbles.
This was a common trend observed in most of the confusion matrices. In Figure 5.26,
learning curves from the training with 10 and 15 epochs can be seen. Interpreting the
learning curves, epochs of 10-12 is reasonable.
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Epochs Accuracy Running time (min)

2 94.89% 18
3 96.66% 27
7 96.66% 59
10 98.62% 82
12 96.27% 103
15 97.84% 132
25 98.62% 220
30 98.04% 267

Table 5.3: Accuracy’s for different epochs with VGG16 network including running times, with
Dataset III.

Figure 5.25: A confusion matrix of the training process with Dataset III, VGG16 and 10 epochs.
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Figure 5.26: Learning curves of the training process with Dataset III using VGG16 and epochs of
10 and 15 respectively.

A lower learning rate was tested to improve the trained network’s performance. A decrease
in the learning rate allows the network to make finer adjustments to its weights, enabling
the network to learn more complex patterns in the data accurately. The final trained model
featured a change of the learning rate to 0.00025 and the number of epochs to 35. In
Figure 5.27, the learning curve of the training process can be seen. Smaller spikes in the
validation loss can be observed due to a lower learning rate. The training of the network
achieved an accuracy of 99.02%, and the classification of the various classes can be viewed
in Figure 5.28. It can be observed that the network is classifying all the instances of eggs
correctly, and one nauplius is misclassified.

Figure 5.27: Learning curve of the training process with Dataset III using VGG16 and epochs of 10
and learning rate of 0.00025.
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Figure 5.28: A confusion matrix from the training process with Dataset III used for testing the
trained network.
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5.10 Final test
Classifying the particles throughout a hatching process was desirable to test the trained
model. Test sets were created to use entirely unseen data on the trained network. Images
from Test 4 (section 5.4) and Test 6 (section 5.6) were utilised to generate these test sets.
For each test, 100 images were annotated to represent a counting sample. The annotated
particles in these datasets were labelled conservatively to avoid inaccuracies.

The trained model was first tested on the test data at 0 hours into the hatching process.
Figure 5.29 shows an accuracy of 80.80% and 3 out of 78 eggs were misclassified.

Figure 5.29: A confusion matrix from the classifications from 0 hours into the hatching process.

Twenty-six hours into the hatching process, eggs and nauplii were expected in the mixture.
Figure 5.30 shows an accuracy of 40.4% and 20 out of 44 nauplii misclassified, a more sig-
nificant proportion of misclassifications compared to eggs from 0h. The observed quantity
of eggs being significantly less than nauplii after 26 hours causes an invalid representation
of the hatching rate.
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Figure 5.30: A confusion matrix from the classifications from 26 hours into the hatching process.

Two misclassified nauplii can be seen in Figure 5.31. The network is labelling nauplii as
both egg and unwanted.

Figure 5.31: Misclassification of two images of nauplii after 26 hours. 0 is egg, 1 is nauplii, and 3
is unwanted.
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Given the poor classification of nauplii, the data distribution was investigated. A test set
consisting only of nauplii from Test IV (section 5.6) was created to examine how the same
trained network performs on these images, which come from the same distribution the
network was trained on. Figure 5.32 displays an accuracy of 86.87%, with 7 out of 87
nauplii misclassified. The accuracy is higher on the test set where the data has the same
distribution compared to the test dataset from 26 hours into the hatching process.

Figure 5.32: A confusion matrix from the classifications on nauplii from Test VI (section 5.6).

In Figure 5.33, a comparison of nauplii from different distributions can be seen. The left
image is from testing done in Test VI (section 5.4), and the right image is from testing done
in Test IV (section 5.6). A visual inspection of the two images presents minor differences
in the image quality. The inspection indicates that the network is sensitive to differences
in image quality.
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Figure 5.33: A comparison of images of nauplii from Test IV (section 5.4) and Test VI (section 5.6)
respectively.
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Discussion

6.1 Discussion

6.1.1 Image acquisition
The motion within the hatching tank during image acquisition significantly influences the
quality. The exposure time and aperture needed depend on the movement of the particles.
Water movement is necessary to create an environment conducive to copepod hatching.
Several factors influence the water movement, impacting the quality of the acquired im-
ages.

In this project, aeration was used to make water movement. The degree of aeration was not
quantitatively measured during testing. No tests were conducted to examine the intensity
of the aeration. The turbidity influences the water circulation, which could lead to motion
blur, resulting in blurry images, the air bubbles’ size, and the hatching process’s outcome.

When using aeration in combination with a NUNC flask as a hatching tank, sedimentation
was observed in Figure 5.12. The tank’s geometry influences the water circulation. Ap-
pendix B describes how to use a soda bottle upside down to prevent sedimentation during
hatching, which is better suited to avoid sedimentation. A soda bottle has a curved surface,
while a NUNC flask has a flat surface better suited for image acquisition. The depth of
field provided by the NUNC flask presents a challenge associated with image acquisition.
The flask’s thickness, combined with the camera, led to a situation where not all particles
within the tank could be in focus at the same time. This challenge results in certain par-
ticles falling out of focus. Ensuring that the camera and the hatching tank are parallel is
essential to achieve the correct focus in the image.

Test V (section 5.5) investigated the effect of reduced motion in the tank and how it affects
the homogeneity of the mixture. A homogeneous mixture is crucial when capturing im-
ages to ensure a representative depiction of the egg-to-nauplii ratio. Findings from this test
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suggest a potential to pause aeration during image capture, which may lead to longer expo-
sure times and improved image quality. More than relying on a single dataset for analysis
may be required, as the resulting values could be subject to random variations. Ideally,
utilising three separate datasets would provide a more robust foundation for concluding
how stopping the aeration affects a homogeneous mixture.

6.1.2 Annotating
An essential step in a ML process is the creation of a robust dataset. This project involved
annotating images based on personal knowledge of copepods. Many images were dis-
carded during the creation of the datasets. The discarding was done to avoid training the
network with incorrect information.

Classifying nauplii proved challenging due to their orientation within the hatching tank.
Nauplii could be misidentified as noise or undesired particles as dust, and vice versa. Egg
shells were challenging to get a clear understanding of the shape. Therefore, dataset 2 was
created based on particles identifiable as eggs, nauplii, or air bubbles. This ensured that the
network did not train on inaccurate data. A hatching sensor must be capable of managing
noise. Hence, in Dataset 3, a class for unwanted items was introduced. The intention
behind this class was to contain anything that was not an egg, nauplii, or air bubble. The
sensor should be able to classify everything that the blob detector captures. Annotation
errors can occur, resulting in network training on incorrect data.

Motion blur and depth of field present challenges in accurate annotation and classification.
It can be observed that some of the particles at the edges of the images are blurry, which
makes it challenging. The lack of clarity in these images makes it particularly difficult
to identify the actual objects. There are instances where the depth of field of the particle
results in being out of focus. This applies to all particles so that the model can classify
noise as an air bubble.

If clusters of eggs frequently appear, it might be necessary to count them accurately. In
such cases, one could create categories for ”two eggs” and ”three eggs”. However, if these
scenarios occur more often, it becomes easier to train such classes effectively. Alterna-
tively, these clusters of eggs could be categorised within the ”one egg” class to at least
account for one of the eggs. The accuracy of detecting these cases depends on the num-
ber of examples available during training. If these instances are rare, it might be wisest
to overlook them. A better-suited hatching tank should reduce the amount of double and
triple eggs.

Refining the parameters used by the blob detector could have narrowed down the parti-
cles selected by the annotator. This could have reduced the variation in image quality by
excluding out-of-focus particles.

6.1.3 Machine vision
Hyperparameter tuning varies depending on the specifics of the task and the data being
used. No extensive hyperparameter tuning has been conducted in the work of this the-
sis. It is common to start with a basic set of parameters as a starting point. The model
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performs with accuracies that can be used for a hatching sensor, so the focus was not to
tune the model with the optimal hyperparameters. To improve the model’s performance,
data-augmentation techniques, pre-trained models, optimising the architecture, and adding
regularisation and hyperparameter tuning could be performed.

It proved challenging to accurately label everything that the blob detector found without
the certainty of giving the correct label. This is mainly due to the orientation of the nauplii,
as discussed in subsection 6.1.2. While an attempt was made to annotate everything, much
guessing was involved about what certain particles could be. As a result, a test dataset
featuring labels for all detected particles in the annotator was not constructed. Narrowing
the blob detector, as discussed in subsection 6.1.2, could benefit the ability of the model to
classify all the particles. This could be done prior to fully automating the process.

The observations from the Final Test (section 5.10) indicate that the model is sensitive to
variations in image quality. Theoretically, identical image quality should be maintained
with an identical setup. However, testing demonstrated that the hatching sensor setup in
chapter 3 does not produce consistent quality images. Factors such as the orientation of
particles and depth of field affect the image results, as previously discussed. Training
the network on a broad range of data is desirable to make it as robust as possible. This
approach will create a generalised model resilient to new and unseen data, resulting in a
robust hatching sensor.

6.1.4 Sources of error

This project has various potential sources of error, primarily due to its biological aspect.
The work performed in this master’s thesis depends on knowledge and expertise related
to biology, which might have influenced the testing processes, particularly those involving
taking samples and microscope usage.

Counting tests demand patience, and their validity can rely on the experience level of the
person conducting the test. This could have affected the results from Test V (section 5.5).
Distinguishing between eggs, shells, and nauplii can pose a challenge in a counting test,
especially when they are closely packed and difficult to differentiate. On the other hand,
the counting tests were conducted by the same person. Hence, all particles have been
evaluated equally, so the ratio should be representative.

The hatching process was carried out in a NUNC flask for most of the experimental testing,
which led to sedimentation (Figure 5.12) and non-optimal conditions for the copepods to
hatch. Multiple double and triple eggs stuck together occurred (Figure 5.9). Such instances
would be significantly reduced by conducting a hatching process where the aeration and
hatching tank is optimal.

6.1.5 Final test

The purpose of the hatching sensor was to monitor the hatching process. To test the per-
formance of the trained model, final testing was executed.
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The idea behind the annotation of Dataset 3 was to use only 100% certain labels. There-
fore, the images of nauplii were collected from Test 8, while the remaining images came
from Test 4. An independent test set was created using only images from Test 6 to see if
it improved the quality of the nauplii classification. As it turned out, the model performed
more accurately on the images from the same distribution.

Consistency in the setup was prioritised each time data was collected to maintain similar
image quality across the dataset. This was done because it was essential to have data as
similar as possible, to ensure that new and unseen data was as close as possible to the data
the model was trained on. Based on the tests, identical results were not achieved, and the
model was sensitive to differences in image quality. This may indicate that the trained
model needs to be generalised.

The observed quantity of eggs being significantly less than nauplii after 26 hours causes
an invalid representation of the hatching percentage. More eggs were expected at this
time of the hatching process. Observing this, along with the sedimentation observed in
Figure 5.12, it is apparent that the NUNC flask and aeration do not serve as an adequate
hatching tank where the mixture remains homogeneous. The hatching percentage was not
reliable in this test.

The test dataset should consist of 200-250 images with approximately the same number of
particles as in the manual counting samples to achieve a comprehensive counting sample.

A test to experiment on how the model performed on all the particles annotated by the
annotator was investigated. During the making of such a dataset, it was shown to be
challenging to annotate all the particles with certainty.

6.2 Further work
Throughout this project, several ideas for additional projects have emerged aimed at im-
proving, validating, and further developing a hatching sensor. Based on the results of this
study, several recommendations for future work have been compiled.

6.2.1 Hatching sensor
A more in-depth testing to validate the technique

1. Is it possible to train an adequately performing model on real images of objects with
the shape of a triangle, square, circle and out-of-focus unknown form? The ground
truth can be compared in this case since the exact number of particles is known.

2. Is it possible to train an adequately performing model on real images of objects
with the shape of a sphere (egg), ”open” sphere (hatched egg), dust, air bubble, and
out-of-focus unknown form?

3. Can an adequately performing model be trained on real images of real eggs, shells,
nauplii, dust, air bubbles, and out-of-focus unknown form?
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Camera, optics and image acquisition

• Use a non-circular aperture, creating a distinct non-circular shape when out of focus
to filter out particles.

• Make a limitation on maximum size or brightness to filter out objects that are too
large or out of focus.

• Test with different lenses and cameras to change the depth of field.

• Implement video analysis to classify particles using motion patterns and appearance.

• Capture images from a narrower depth range to mitigate the challenges posed by the
depth of field.

• Validate the homogeneity test with three separate tests.

• Conduct how the amount of aeration influences the movement of the particles.

• Use a hatching tank with a shape where the mixture is homogeneous to avoid sedi-
mentation.

Different illumination

• : Using light with different wavelengths, such as infrared or coloured light, could
reveal information not apparent with visible light.

• Direct light might provide clearer particle contours and brightfield images.

The study by Braggins (2000) could serve as a starting point for investigating alternative
light sources.

6.2.2 Machine vision
• Refine the blob detector to examine what particles are drawn from the annotator.

• The network should be trained on images from several different tests to improve its
ability to generalise on new unseen data.

• Utilise a pre-trained model to label more efficiently, in which the pre-trained model
can propose labels.

• Use transfer learning to train the network for the hatching sensor.

• Test other network architectures such as AlexNet, GoogleNet, ResNet-18, and DenseNet-
201 (Alom et al., 2018).

6.2.3 Other
• Finalise the setup for the hatching sensor soft- and hardware to fully automate the

process.
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6 Discussion 6.2.3 Other

• Explore the possibility of predicting factors such as hatching success based on mea-
surements from only the initial part of the hatching process.

• Consider expanding the application of the hatching sensor to other areas within bi-
ology that currently require manual counting tests.
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7
Conclusion

The aim of this thesis was to explore, develop, and evaluate image acquisition and apply
a VGG16 network to form a hatching sensor. The objective was to identify and classify
copepod eggs and nauplii, to be able to monitor the hatching process. The work has con-
tained image acquisition and annotation of images to form a dataset to train the network.
The findings of 99% accuracy on a validation set suggest promising results.

The research has highlighted the importance of dataset quality for the performance of the
model, which can be influenced by various factors including the quality of the annotations
and the variability in the images. There are several variables related to the quality of
the images, hatching tank design, and camera setup that have influenced the results of this
project. Several challenges were identified and need to be addressed in future studies, such
as investigations related to depth of field, handling of image noise, and hyperparameter
tuning.

The study has made progress in monitoring the hatching process more effectively. Fur-
ther improvements and refinements are needed to fully automate the process. This could
significantly reduce manual labour and improve the precision of the hatching process of
copepods. Future work should focus on addressing the identified challenges.
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Appendix

A Table of data collected for Test V - Homogeneity test

Tank Eggs Shells Nauplii Hatching Rate (%)
4 mL (not used) 25.67 81.00 98.00 79.25

4.5 mL tank (Original density: 276.6 eggs/mL)
Continuous aeration 70.33 173.33 149.33 67.98
3 s without aeration 66.40 153.80 155.00 70.01
6 s without aeration 68.20 169.20 148.00 68.46
10 s without aeration 57.80 152.00 163.40 73.87
15 s without aeration 76.40 140.00 158.00 67.41
20 s without aeration 70.40 148.40 165.60 70.17

5 mL tank (Original density: 307.3 eggs/mL)
Continuous aeration 65.00 178.00 167.00 71.98

Table 7.1: Summary of occurrences of eggs, shells and nauplii, and the hatching rates for different
conditions.

B User manual - how to hatch and harvest your copepods

67



Hatching time depends on the 
water  temperature:

26 °C: 24h hatching
21 °C: 48h hatching

Choose the temperature closest 
to what is in your production tank

COPEPOD EGGS sediment 
easy, and sedimentation of eggs 
may lead to reduced hatching. 
To prevent the eggs from 
sedimenting, pay attention to:

• Tank design
• Aeration
• Blocking all entrances

PREPARING YOUR HATCHING TANK

26 °C / 79 °F 21 °C / 70 °F
Harvest copepods after: 24 hours 48 hours

Salinity 15 – 40 ppt 15 – 40 ppt

pH 7,8 – 8,5 7,8 – 8,5

Oxygen > 80% saturation > 80% saturation

Light Not necessary Not necessary

Density < 1000 ml-1 < 1000 ml-1

Water exchange 0 % 0 %

User manual

How to hatch and harvest your copepods

Blocking all entrances:
Eliminate ALL openings 
where eggs can sediment

HATCHING CONDITIONS

Tank design:
Use tanks with a conical or 
rounded bottom to ensure 
good circulation.
• Avoid tanks with a flat 

bottom

Aeration:
Heavy aeration, similar to 
when hatching Artemia, 
ensures a good circulation
in your tank and prevent 
sedimentation of eggs:
• Use an open-ended tube 

to create big bubbles
• Place the tube at the 

lowest part of the tank

Page 1 of 2
www.cfeed.no
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1: RECEIVING AND STORING EGGS
The eggs are transported on ice in a Styrofoam box. Upon 
arrival:

• Check that ice is still present in the box to ensure that 
the cool chain has been intact. 

• Store the eggs at 1-4 °C / 34-39 °F. 
• Use the eggs within a month after arrival.

• For longer storage, contact CFEED.

2: REMOVAL OF STORAGE MEDIUM
The eggs come in a storage solution containing clay that needs to be removed:
• Remove the bottle you would like to hatch from the cool storage.

• If hatching only part of a bottle: Shake the bottle until the clay and eggs are evenly mixed. While it is mixed, 
transfer the amount of eggs you want to hatch to a separate container. Place the rest of the bottle back into 
cool storage.

• Pour the clay mixture into  a 50 µm sieve that will allow the clay to pass through while the eggs 
remain in the sieve.

• Rinse with seawater until the eggs are clean. Transfer the eggs to a bucket.

3: DISINFECTION

5: CONCENTRATING AND HARVESTING YOUR COPEPODS

Tip! Giving the copepods microalgae is a great way 
to increase the visibility for the hunting fish larvae:

• Add a small amount of live microalgae when the 
copepods are in the concentrator and wait for 10-
15 minutes. The guts will be filled and the nauplii 
are ready to be fed to the fish.

• Contact CFFED if you would like to know more 
about which types of microalgae to use.

Concentrate the hatched copepods before 
transferring them to your fish larval tank:

• Close off aeration for 20 minutes to let 
unhatched eggs sediment. Flush quickly.

• Transfer the copepods to you concentrator.
• Mesh size: < 65 µm.

• Aerate well while concentrating:
• Prevent the copepods from clogging the mesh. 
• No addition of O2 is necessary.

• If the aeration is good the nauplii can be kept at a 
density of 15000 ml-1 for up to 24 hours at 5-6 °C.

• For longer storage time, do not exceed the limit of 
500 per ml. Use the copepods within 24 hours.

EQUIPMENT:
• A bucket filled with 10L 

temperate sea water.
• Clean eggs where the storage 

medium has been removed.
• Aeration for  mixing the eggs and  

chemicals.

DISINFECTION PROCESS:
• Disinfect for 10 minutes using 4 ml NaOCl (14%). Aerate and stir to ensure 

that all eggs are  in contact with the chlorine.
• Add dissolved Na2SO3 (8g) to neutralize the  chlorine. Aerate and stir to 

ensure that all eggs are in contact with the Na2SO3. Leave for 10 minutes.
• Transfer your disinfected eggs into your prepared hatching tank (see 

page 1 for more information).

4: LEAVE THE EGGS TO HATCH

Page 2 of 2
www.cfeed.no

Hatching time is dependent on water temperature. See page 1 for more information.
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C VGG16 architecture

Figure 7.1: The structure of the VGG16 network used.
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