
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

M
as

te
r’s

 th
es

is

Øyvind Paulsen Skaaden

System Integration of the HYPSO-2
SDR

Enabling Fault-Tolerant Payload Operations and
an Efficient Development Environment

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Milica Orlandic
Co-supervisor: Roger Birkeland
June 2023

Øyvind Paulsen Skaaden

System Integration of the HYPSO-2 SDR

Enabling Fault-Tolerant Payload Operations and an
Efficient Development Environment

Master’s thesis in Electronics Systems Design and Innovation
Supervisor: Milica Orlandic
Co-supervisor: Roger Birkeland
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Abstract

In this thesis, the author discusses how theHYPSO-2 Software-Defined Radio (SDR)
Flight Model (FM) is adapted and made ready for integration. The focus is on ease
of implementation and usability of the build systems from the developers’ perspec-
tive and ensuring system resilience during operations in space. The SDR is based
on the TOTEM SDR, developed by Alén Space, Spain.

An understandable, reusable, and maintainable development environment is
developed by utilizing Buildroot (BR) features, such as packages, external trees,
and toolchains. A clear separation of the original configuration by the TOTEM SDR
developers, and the adaptations made by the author and the Norwegian University
of Science and Technology (NTNU) SmallSat Lab (NSSL) are established to promote
reusability and maintainability. The resulting toolchain created by BR is further
utilized to develop and implement a framework for developing SDR applications
that are automatic, flexible, and easy to use.

The system’s resilience against adverse events and conditions is greatly impro-
ved by introducing a ”chained” startup script incorporating multiple locations for
mission-critical Software (SW). In the rare event of failure of all startup locations,
the system can disable the writable part of storage, resetting the system back to a
known state, increasing resilience, and prolonging the system’s expected lifetime.

The contributions implemented by the author will help other students focus on
developing SDR applications, promoting rapid development, and maximizing the
research potential of the TOTEM SDR.

iii

Sammendrag

I denne masteroppgaven vil forfatteren diskutere og forklare hvordan den pro-
gramvaredefinerte radioen (SDR) for HYPSO-2 satellitten er tilpasset og gjort klar
for integrasjon. Byggesystemene er tilpasset for å gjøre det enkelt å ta i bruk for an-
dre utviklere og studenter. I tillegg er systemets robusthet mot uønskede hendelser
og forhold, som for eksempel stråling, forbedret betraktelig i forhold til tidligere
versjoner. SDR systemet som brukes er Alén Spaces (Spania) TOTEM SDR plat-
tform.

Ved å benytte funksjoner fra byggesystemet BuildRoot (BR) som pakker, ek-
sterne katalogtrær og verktøykjeder, er det etablert et utviklingsmiljø som er enkelt
å forstå og vedlikeholde. For å øke brukervennligheten og potensialet for gjenbruk
av kode, er det nå et tydelig skille mellom den originale konfigurasjonen fra Alén
Space og tilpasningene gjort av forfatteren og NTNU SmallSat Lab (NSSL). Verk-
tøykjeden BR lager brukes videre for å utvikle og implementere et automatisk og
fleksibelt rammeverk for effektiv utvikling av SDR applikasjoner.

Systemets robusthet mot uønskede hendelser og forhold er betraktelig forbedret
ved å ta i bruk et oppstartskript som har mulighet for flere ”oppstartssteder” for
operasjonskritisk programvare (SW). Dersom oppstartsskriptet ikke klarer å starte
kritisk programvare fra noen av oppstartsstedene, kan systemet gjøre nødvendige
endringer for å koble ut den skrivbare delen av lagringsenheten. Dette vil tvinge
systemet inn i en kjent tilstand som igjen vil føre til økt robusthet og øke den for-
ventede levetiden til systemet.

Forfatterens bidrag vil hjelpe utviklere og studenter til å fokusere på utviklin-
gen av SDR applikasjoner. Dette vil bidra til en høyere utnyttelse av forskningspot-
ensialet til HYPSO-2 SDR systemet.

v

Preface

Contributions and Aims

The contributions from this thesis are mostly qualitative enhancements to the us-
ability andmaintainability of the build systems associatedwith the Hardware (HW)
and Software (SW) for the HYPerspectral Smallsat for Ocean observation (HYPSO)-
2 Software-Defined Radio (SDR) payload subsystem. These changes are hard to
measure directly other than feedback from the developers that utilize the build
systems. Enhancements have been implemented incrementally and discussed thor-
oughly within the Norwegian University of Science and Technology (NTNU) Small-
Sat Lab (NSSL) to explore what works and what does not.

Private GitHub repositories and Internal Documents

During the development of this thesis, GitHub was used extensively for version
control, collaboration, and source code sharing. The NSSL manages and owns an
organization on GitHub https://github.com/NTNU-SmallSat-Lab, having nu-
merous private repositories.

https://github.com/NTNU-SmallSat-Lab/sdr-system

The primary repository contains the original build system for the EM TOTEM.

https://github.com/NTNU-SmallSat-Lab/sdr-system-h2

Fork of the primary repository containing the build system for the HYPSO-2
TOTEM.

https://github.com/NTNU-SmallSat-Lab/sdr-system-hypso-shared

Shared Buildroot external tree. Shared between the different TOTEM build sys-
tems.

https://github.com/NTNU-SmallSat-Lab/sdr-applications

SDR application development repository can utilize the different build sys-
tems/toolchains.

https://github.com/NTNU-SmallSat-Lab/hypso-sw

NSSL repository containing SW for enabling communications on the satellite and
payload operations.

The first four repositories were developed extensively during the thesis. To ac-
cess the above repositories, contact Roger Birkeland by email
roger.birkeland@ntnu.no.

vii

https://github.com/NTNU-SmallSat-Lab
https://github.com/NTNU-SmallSat-Lab/sdr-system
https://github.com/NTNU-SmallSat-Lab/sdr-system-h2
https://github.com/NTNU-SmallSat-Lab/sdr-system-hypso-shared
https://github.com/NTNU-SmallSat-Lab/sdr-applications
https://github.com/NTNU-SmallSat-Lab/hypso-sw
mailto:roger.birkeland@ntnu.no

viii

Previous Work

Before working on this masters thesis, the author wrote a specialization project
report [1]. Some chapters and figures from the specialization project report are
relevant to this masters thesis. The sections listed below can be found with varying
degrees of similarity in the specialization project report:

Chapter 1: Introduction Sections 1.1 to 1.3 is based on the same sections as in [1].

Chapter 2: Background Sections 2.1 and 2.2 contains material similar to [1] ex-
cept for Section 2.2.2: External Trees. The subsections Unsorted Block Images
and Overlay Filesystems in Section 2.1.2 are from [1]. The section Section 2.4:
The TOTEM SDR System describing the TOTEM contain parts from [1], most
notably Section 2.4.2: Storage Layout.

Chapter 3: Methods and Tools Sections 3.1, 3.3 and 3.4 contain parts that are simi-
lar to the same sections in [1]. Section 3.3.2: Stable Environment with Docker is
from the specialization project [1].

Conventions

File Paths

In this thesis, file paths and directory paths will be referenced. Both Linux File
System (FS) paths and repository paths will be used.

Linux Files File paths in the Linux FS will be written /etc/environment .

Linux Directories Directory paths in the Linux FSwill be written /etc/init.d/.

Repository Files File paths in a repository will be written directory/file .

Repository Directories Directory paths in a repository will be written
directory/directory/ .

All directories end with a ”/”, all Linux paths start with the Linux Tux and a
”/”, and all repositories start with a small folder .

Code Blocks

Multiple code blocks will be used. An inline code block looks like this! . This
is used for configuration entries and commands like this rm -rf /* .

A listing will be written like this:

1 def main()

2 print("Hello, HYPSO!")

ix

Acknowledgments

I want to thank the entire HYPSO team for being awesome. Simen Berg, Dennis
Lager, and Sivert Bakken have always been at the Lab, available for questions a
discussion. The SDR team, Giacomo Melloni and Magnhild Eeg, for great discus-
sions on the SDR. Thank you to Roger Birkeland and Milica Orlandic for being my
supervisors, constantly answering my silly questions, and engaging in discussions.

And last but not least, a huge thank you to my family and friends for helping
and supporting me through this thesis.

Contents

Abstract iii

Sammendrag v

Preface vii

Abbreviations xv

Terms xix

1 Introduction 1

1.1 The HYPSO Mission . 1
1.2 CubeSats . 2
1.3 Software-defined Radios (SDR) . 3
1.4 Aims and Objectives . 4
1.5 Outline . 4

2 Background 7

2.1 Embedded Systems and Operating Systems 7
2.1.1 Embedded Linux . 8
2.1.2 Storage Devices and File Systems 10

2.2 Build System for Embedded Systems 13
2.2.1 Packages . 15
2.2.2 External Trees . 16
2.2.3 Cross-compilation and Toolchains 17

2.3 The HYPSO Satellite(s) . 17
2.3.1 Hyperspectral Imager (HSI) 18
2.3.2 Software-Defined Radio (SDR) 18

2.4 The TOTEM SDR System . 18
2.4.1 Embedded Linux . 19
2.4.2 Storage Layout . 21
2.4.3 The sdr-system Development Repository 22

2.5 System Resilience . 23
2.6 Satellite Mission Development . 24

3 Methods and Tools 27

xi

xii CONTENTS

3.1 Distributed Version Control using Git 27
3.1.1 Submodules . 28
3.1.2 GitHub . 29

3.2 Development Cycles in the HYPSO-Project 30
3.2.1 Identified Issues . 31
3.2.2 Pull-Requests During Development 33
3.2.3 Spacecraft Development Reviews 35

3.3 Development Environment . 35
3.3.1 Remote Development With VS Code and SSH 35
3.3.2 Stable Environment with Docker 35
3.3.3 LidSat Communication With hypso-cli 36

3.4 Lab Setup, Testbed, and Equipment 36
3.4.1 The NSSL FlatSat: The LidSat 36
3.4.2 Testbed for SDR application development 38

4 Implementation, Results, and Discussion 39

4.1 Designing a Flexible and Usable Procedure for Development of Mul-
tiple Firmware and Toolcains . 39
4.1.1 KeepingHYPSOAdaptations Outside The Original Build Sys-

tem . 40
4.1.2 Shared Repository for Shared Files 44
4.1.3 Multiple sdr-system Repositories 45
4.1.4 Imlementation for the current EM and HYPSO-2 FM SDRs . 47

4.2 Ensuring Resilient and Fault-Tolerant Operations for the TOTEM SDR 48
4.2.1 Chained Start-Up Script to Start Services 48
4.2.2 Including sdr-services in the Read-Only Filesystem 54
4.2.3 Disabling the Overlay File System as a Last Resort 56
4.2.4 Testing of the S99HypsoTotem Startup Script 59

4.3 Utilizing the BR Toolchain for a flexible and easy-to-use SDR appli-
cations development environment . 61
4.3.1 Optmizing the Structure for Agile and Easy Development . . 61
4.3.2 Utilizing Multiple Toolchains for Compilation 63

4.4 Designing a Safe Development Environment for the Flight Model SDR 64

5 Conclusion 67

5.1 Contributions and Impact . 67
5.2 Future Work . 68

Bibliography 69

A Selected Source Code Listings 75

A.1 S99HypsoTotem Initialization Script 75
A.2 build_config.sh Configuration Combiner/Merger 81
A.3 Makefile Root Makefile in sdr-applications 82
A.4 Makefile Apps Makefile in sdr-applications 83
A.5 Makefile for make Applications in sdr-applications 85

CONTENTS xiii

A.6 Makefile for cmake Applications in sdr-applications 85

B Logs from Testing S99HypsoTotem 87

B.1 Overlay Enabled . 87
B.2 Overlay Disabled . 90
B.3 Missing Environment Variables . 92

C Issues 93

C.1 sdr-system#11 . 93
C.2 sdr-system#20 . 94
C.3 sdr-system#23 . 95
C.4 sdr-system#24 . 96
C.5 sdr-system#26 . 97
C.6 sdr-system#28 . 98
C.7 sdr-system#29 . 99
C.8 sdr-system#39 . 100
C.9 sdr-system#40 . 101
C.10 sdr-system-h2#3 . 102
C.11 sdr-applications#1 . 103
C.12 sdr-applications#5 . 104
C.13 hypso-sw#754 . 105
C.14 hypso-sw#790 . 106

D Pull-Requests 107

D.1 sdr-system#25 . 107
D.2 sdr-system#37 . 108
D.3 sdr-system#38 . 109
D.4 sdr-system#41 . 110
D.5 sdr-system#42 . 111
D.6 sdr-system#44 . 112
D.7 sdr-system#45 . 113
D.8 sdr-system#46 . 114
D.9 sdr-system-h2#4 . 115
D.10 sdr-system-h2#6 . 116
D.11 sdr-system-h2#8 . 117
D.12 sdr-system-h2#9 . 118
D.13 sdr-system-hypso-shared#1 . 119
D.14 sdr-applications#6 . 120
D.15 hypso-sw#765 . 121

Abbreviations

ADC Analog-to-Digital Converter. 19

ADCS Attitude Determination and Control System. 17, 36

AMOS Autonomous Marine Operations and Systems. 2, 18

AR Acceptance Review. 25

BR Buildroot. iii, 13–17, 19, 22, 28, 32, 33, 40–47, 54–56, 63, 67

CAN Controller Area Network. 18, 36–38, 48, 65, 66

CD Compact Disc. 10

CDR Critical Design Review. 25, 35

COM Communications System. 3, 17, 36

CONOPS Concept of Operations. 2

COTS Commercial Off-The-Shelf. 2–4

CPCL Cal Poly CubeSat Laboratory. 2

CRR Commissioning Result Review. 25

CSP CubeSat Protocol. 18, 21, 36–38

DAC Digital-to-Analog Converter. 19

DTB Device Tree Blob. 10, 14, 22, 41

DVD Digital Video Disc. 10

ECSS European Cooperation for Space Standardization. 24

EEPROM Electrically Erasable Programmable Read-Only Memory. 40, 47, 48

xv

xvi List of Abbreviations

ELR End-of-Life Review. 25

EM Engineering Model. 38, 40, 46, 56, 61, 63, 64

EO Earth Obeservation. 1

EPS Electrical Power System. 3, 18, 36, 37, 48

ESA European Space Agency. 1

ESD Electrostatic Discharge. 64, 65

FC Flight Computer. 17, 36

FM Flight Model. iii, 4, 39, 40, 43, 45, 64–66

FOSS Free and Open-Source Software. xx, 9

FPGA Field-Programmable Gate Array. 3, 10, 19, 21

FRR Flight Readiness Review. 25

FS File System. viii, 4, 8, 10, 12–15, 21, 22, 33, 36, 41, 42, 44, 54–60, 68

FSBL First-Stage Bootloader. 9, 10, 21

FW Firmware. 4, 10, 32, 39, 40, 44, 45, 48, 61, 68

GPOS General-Purpose Operating System. 8

GPU Graphics Processing Unit. 8

GUI Graphical User Interface. 8

HAB Harmful Algal Bloom. 2

HDD Hard Disk Drive. 10, 11

HID Human Interface Device. 8

HSI Hyperspectral Imager. 1, 2, 18, 33, 35, 37, 54

HW Hardware. vii, xix, 3, 8–10, 13–15, 41, 48, 64

HYPSO HYPerspectral Smallsat for Ocean observation. vii, 1, 2, 4, 17–19, 21, 31–
33, 35–37, 39–48, 61, 64, 66, 68

ICD Interface Control Documents. 65

IO Input/Output. 48

List of Abbreviations xvii

IoT Internet of Things. 18

IP Internet Protocol. 32, 41, 42, 44, 48, 65

ISS International Space Station. 3

LEB Logical Erase Block. 11, 12

LRR Launch Readiness Review. 25

LTP Latest Takes Precedence. 41, 42

LV Launch Vehicle. 3

MCR Mission Close-out Review. 25

MDR Mission Definition Review. 24

MRD Mission Requirements Document. 1

MTD Memory Technology Device. 11, 21

MVP Minium Viable Product. 40

NA Kongsberg NanoAvionics. 3, 4, 17, 18, 35–37, 65

NASA National Aeronautics and Space Administration. 24

NFR Norges forskningsråd (The Research Council of Norway). 1

NSA Norwegian Space Agency. 1

NSSL NTNU SmallSat Lab. iii, vii, 1, 17–19, 21, 24, 30, 35–37, 40–42, 45, 56, 59,
61, 64, 66, 67

NTNU Norwegian University of Science and Technology. iii, vii, xvii, 1, 17, 18

OPU On-board Processing Unit. 33, 35–37

ORR Operational Readiness Review. 25

OS Operating System. xx, 8–10, 12–15, 17–19, 22, 35, 36, 51, 56, 68

PC Payload Controller. 18, 36, 37

PCB Printed Circuit Board. 18, 19

PDR Preliminary Design Review. 25, 35

PEB Physical Erase Block. 11, 12, 22

xviii List of Abbreviations

PR Pull Request. xix, 29–34, 61, 62

PRR Preliminary Requirements Review. 25

QR Qualification Review. 25

RAM Random-Access Memory. 9, 10, 21, 56

RF Radio Frequency. xix, 3, 4, 18, 19, 21, 37

RGB Red-Green-Blue. 1, 2, 18, 37

RO Read-Only. 10, 13, 33, 42, 54–56, 59, 68

ROM Read-Only Memory. 9, 10

RTOS Real-Time Operating System. 9

RW Read-Write. 13, 56–58

SCM Source-Control Management. 27

SD Secure Digital. xix

SDR Software-Defined Radio. iii, vii, xx, 2–5, 7, 14, 17–19, 21, 31–48, 50–52, 56,
59, 61–64, 66–68

SoC System-on-Chip. xx, 18–20, 47, 65

SRR System Requirements Review. 25

SSBL Second-Stage Bootloader. 10

SSD Solid-State Drive. 10, 11

SSH Secure Shell. 34, 35, 38

SW Software. iii, vii, xx, 3, 4, 7–9, 13–18, 22, 27, 31, 32, 35, 36, 39, 52, 53, 56, 63,
66, 68

UART Universal Asynchronous Receiver/Transmitter. 65, 66

UBI Unsorted Block Image. 11, 12, 21, 22

UHF Ultra High Frequency. 17, 37

VCS Version Control System. 27, 36

WS Workstation. 35, 38

Terms

cross-compilation Compilation to different architectures than the system currently
compiling the software. 13

firmware A small program that enables a device to run and control its HW and
communicate with other devices. xvi, 4, 10

flatsat Device connecting the different subsystems in a satellite together on the
ground. Instead of stacking the subsystems, they are laid out on a flat device.
Used to test, verify, and develop satellite buses on a tabletop. 36, 37

Flight Model The flight-ready model intended for use in space. iii, xvi, 4, 39

fork A forked repository shares the same code as the repository being forked, the
”upstream”. The fork can pull changes from the upstream and create Pull
Requests (PRs) to the upstream. 46

front-end An intermediate device between the antenna and the RF interface. 3, 4,
19, 20, 37

git System to perform distributed source version control. 17, 22, 27–29, 32, 34, 44,
45, 61, 67

JTAG Protocol for developing, testing, and verifying electronic circuits after man-
ufacturing. Named after the Joint Test Action Group. 65

kernel The core of an operating system. Handles and manages hardware and soft-
ware resources. 9, 10

lidsat Collection of the different subsystems in the HYPSO satellites for develop-
ment purposes. Used to test, verify, and develop satellite buses on a tabletop.
35, 36, 40, 61

NAND Logic gate or flash storage device, enabling non-volatile storage. Alterna-
tive to other storage mediums like a Secure Digital (SD) card. In this context,
NAND refers to the storage medium. 4, 11, 12, 21, 22, 54

xix

xx List of Terms

submodule A git repository within a repository that is linked to another git repos-
itory. Operates as a subdirectory when placed in a parent repository. The sub-
module is linked to a specific commit or git tag. 17, 22, 32, 44, 45

TOTEM SDR developed by Alén Space, Spain. Based on the Xilinx Zynq-7020 SoC
and the AD9364 Transceiver. iii, viii, 4, 11, 18–22, 31–52, 54–57, 59, 61, 63–
68

toolchain A toolchain is a set of tools used to compile, link, and build source code
into an executable program. iii, 14, 15, 17, 22, 34, 39, 40, 54–56, 61, 63, 64,
68

U-Boot Das U-Boot (The universal bootloader) is a Free and Open-Source Software
bootloader used in embedded devices. This is the first Software that runs on
a system and loads the rest of the Operating System. 21, 57, 68

virtual memory An abstraction layer for the physical memory space for a sys-
tem. Each process has its own virtual memory that simplifies and stream-
lines memory management. This creates the illusion of a large memory space
where the actual hardware is mapped. The virtual memory space is often
much large than the physical memory space. 8

Chapter 1

Introduction

Haven’t you ever wondered what else
is out there? There’s wonders in this
world beyond our wandering.
... I can feel it.

Elanor ”Nori” Brandyfoot

We have wondered what’s out there since the dawn of man. Beyond the stars,
away from Earth. Recently humans have started looking back at the Earth for an-
swers. Earth Obeservation (EO) from space have proved useful in studying how
land, air, and sea develop over time. Using a satellite to acquire a quick overview
and autonomous vehicles closer to the ground to acquire the details. This requires a
concert of vehicles and a simple way of communication to coordinate observations
and their results.

1.1 The HYPSOMission

The HYPerspectral Smallsat for Ocean observation (HYPSO) missions are multi-
disciplinary research and educational satellite program organized by Norwegian
University of Science and Technology (NTNU) SmallSat Lab (NSSL) [2], mainly
funded by various entities at NTNU, Norges forskningsråd (The Research Coun-
cil of Norway) (NFR), and with partial contributions from the industry, European
Space Agency (ESA) and the Norwegian Space Agency (NSA). Its primary mis-
sion statement from the HYPSO Mission Requirements Document (MRD) [3] is
as stated.

”To provide and support ocean color mapping through a Hyperspectral Im-
ager (HSI) payload, autonomously processed data, and on-demand autono-
mous communications in a concert of robotic agents at the Norwegian coast.”

In January 2022, the first satellite, the HYPSO-1, was launched. A 6U CubeSat
comprised all the necessary subsystems and a custom NSSL developed payload.
The payload is a Hyperspectral Imager (HSI) with a complimentary Red-Green-

1

2 CHAPTER 1. INTRODUCTION

Blue (RGB) camera for geo-referencing and the payload computer for controlling
the HSI and RGB camera.

By analyzing the HSI data, two hypotheses are that it should be possible to de-
tect Harmful Algal Blooms (HABs) before they become a threat to fish farms and
to monitor the health of the oceans.

As part of the greater Autonomous Marine Operations and Systems (AMOS)
project, the HYPSO mission aims at observing the oceans and provide a platform
for near real-time oceanographic observation of the coastal areas [4], and autono-
mously control different autonomous vehicles closer to the sea.

To conduct radiometric and communication research, the next iteration of the
satellite, the HYPSO-2 satellite, will add an Software-Defined Radio (SDR) pay-
load to the existing payload. Communication with autonomous vessels in the air
or at sea is also enabled by the SDR. The planned launch for the HYPSO-2 satel-
lite is in mid-2024, with an expected lifetime of 5 years. A Concept of Operations
(CONOPS) for the HYPSO-2 satellite, showcasing the different stages and modes,
is shown in Figure 1.1.

Figure 1.1: Concept of operations of the HYPSO-2 mission. Figure from [5].

1.2 CubeSats

The original CubeSat concept is a small cube-shaped satellite developed by Cal
Poly CubeSat Laboratory (CPCL) [6]. CubeSats are comprised of unit (U) cubes
with a side length of 10 cm and a maximum unit weight of 2 kg [7]. The units can
be combined into compound sizes ranging from 1U (1x1x1) up to a maximum of
12U (2x2x3) as seen in Figure 1.2a.

The CubeSat developer’s extensive use of Commercial Off-The-Shelf (COTS)

1.3. SOFTWARE-DEFINED RADIOS (SDR) 3

1U

3U

6U

12U

2U

(a) Different size cube satellites. Range
from 1U to 12U.

(b) A 6U CubeSat satellite. Picture by
Kongsberg NanoAvionics (NA) [8].

Figure 1.2:Different size theoretical cube satellites. A realization of a 6 unit by NA
is shown.

components lowers the cost. It optimizes integration, making it highly sought af-
ter to conduct educational projects, science experiments, commercial applications,
and technology demonstrators. As with the more conventional satellites, the Cube-
Sat includes similar subsystems such as Communications System (COM), Electrical
Power System (EPS), computers, and payload. Figure 1.2b shows a complete satel-
lite platform by Kongsberg NanoAvionics (NA). The smaller size and use of COTS
in the CubeSat contributes to a significantly shorter development time [9]. To get
into space, CubeSats are either deployed by deployers on the International Space
Station (ISS), from a Launch Vehicle (LV) as a secondary payload on a conventional
satellite, or as part of a ride-share program like the ”SpaceX Transporter Program”
[10].

1.3 Software-defined Radios (SDR)

Analog radio was first invented in the early 20th century, and since then, the world
has gone through a technological revolution. Miniaturization of devices and a sig-
nificant shift from analog circuitry to digital provide new capabilities and use cases.
Utilizing a microprocessor, an embedded system, or even a general-purpose com-
puter to do much of the computing in Software (SW) that normally would be done
in Hardware (HW) results in more flexibility.

A Software-Defined Radio (SDR) is a state-of-the-art radio device, replacing
most analog circuits like filters, amplifiers, mixers, and other components with
SW to extract and modulate information in a signal [11, Introduction, p. xxxiii–
xxxvii]. This makes for a highly configurable and flexible radio with rapid recon-
figuration capability to adapt different frequencies, modulation schemes, and pro-
tocols [12]. Some implementations of an SDR include a Field-Programmable Gate
Array (FPGA) to do some of the concurrent parallel processing of the signal. Ana-
log circuitry is still required for the Radio Frequency (RF) front-end to amplify and
condition the signal acquired by the antenna. A simplified illustration of an SDR is
shown in Figure 1.3.

4 CHAPTER 1. INTRODUCTION

SDR Motherboard

Antenna

RF Front-end
Amplifiers and filters

DAC

ADC

Analog and digital
conversion

DSP

Digtal Signal
Processing

User

Figure 1.3: A simplified SDR schematic comprising an antenna, RF front-end and
the SDR motherboard. Figure from [1].

1.4 Aims and Objectives

Through this thesis, the author will showcase the improvements and further de-
velopment of the build system and toolchain for the SDR payload included on the
HYPSO-2 satellite. The primary focus is on ensuring a robust, maintainable, re-
creatable system to develop and build Firmware (FW) and SW for the COTS SDR
developed by Alén Space, Spain [13] which will be carried by the HYPSO-2 satel-
lite. One essential goal is the ease of use, simplicity, and a gentle learning curve to
utilize the build system and tools for SW development, for current and future team
members.

A second goal is to ensure robust, resilient, and fault-tolerant operations of
the SDR. The thesis will explore possibilities to achieve the above goals while
complying with the limitations of the COTS SDR. This includes storing mission-
critical SW in multiple redundant locations, fail-safe mechanisms, and dynamic
re-configuration of the NAND flash storage and File Systems (FSs).

This work will prove essential for the continued operation of the SDR through-
out the lifetime of the HYPSO-2 satellite. Preparations, testing, and development
reviews for the Flight Model (FM) TOTEM are conducted before shipping for fi-
nal integration on the satellite bus developed by Kongsberg NanoAvionics (NA),
Lithuania [8].

1.5 Outline

The structure of this thesis is divided into five chapters. This, Chapter 1: Introduc-
tion, contains a brief overview of the main topics contributed to and the goals and
objectives of this thesis. Chapter 2: Background briefly explains the topics needed to
understand and realize the work done for this thesis. Some of the topics could be
moved to Chapter 3 as they are tools to perform the work, but are more useful to
include in Chapter 2. Chapter 3: Methods and Tools includes the tools and techniques
to structure and perform the work. This includes multiple development tools and
activities to work on large projects efficiently. Some topics could have been placed
in Chapter 2, but as they are primarily used as tools, it is most appropriate to keep
them in this chapter. The implementation, results, and discussion are combined
into one chapter, Chapter 4: Implementation, Results, and Discussion, as most of the
work done in this thesis is to create a maintainable, repeatable, and robust system

1.5. OUTLINE 5

and environment to support the SDR throughout its lifetime. Some results and
implementation are derived from a discussion on related topics and are therefore
combined in one chapter. Conclusion and further work are presented in the last
chapter, Chapter 5: Conclusion. The bibliography and appendices are placed after
Chapter 5.

Chapter 2

Background

True education is a kind of never
ending story a matter of continual
beginnings, of habitual fresh starts, of
persistent newness.

J.R.R. Tolkien

In this chapter, the essential concepts and terms needed to understand and real-
ize the work performed in this thesis are described. The selected topics have been
carefully studied and are utilized to make the final product.

2.1 Embedded Systems and Operating Systems

Embedded systems are a central part of many payload systems. These are special-
ized computer systems designed to perform a specific function or set of functions,
like an Software-Defined Radio (SDR).

One of the defining features of embedded systems is that they are typically de-
signed to operate without user intervention. They are often pre-programmed with
simple yet effective Software (SW) to perform their functions automatically.

Embedded systems vary widely in terms of their complexity and capabilities.
This ranges from control systems in airplanes and cars to washing machines and
ovens. Still, they all share the characteristic of being tightly integrated with the
device or system they are embedded into. They are typically designed to be small,
power-efficient, and reliable and may use specialized hardware and software com-
ponents to achieve these goals [14, Chapter 1.2].

As embedded systems are computers, many use an operating system to manage
the system’s resources and take them efficiently into use. Embedded Linux is one
of the many operating systems to choose from. Many tools and other SW already
exist for Linux, which makes Embedded Linux an attractive alternative.

7

8 CHAPTER 2. BACKGROUND

2.1.1 Embedded Linux

Most people have ultimately interacted with an electronic device or system that
can be programmed, for instance, a computer or smartphone. These have a lot of
different Hardware (HW) systems and oftenmultiple pieces of SW running simulta-
neously. Managing the HW and SW to work as efficiently as possible is challenging.
The Operating System (OS) is the solution to optimizing and managing the system
resources effectively.

The concept of a General-Purpose Operating System (GPOS) is dominant when-
ever flexibility and ease-of-use are essential [15]. These OSs can handle a wide
range of HW, include many user applications and SW libraries to aid in both de-
velopment of other applications and make it easy to operate and use. The penalty
for the flexibility is the overhead needed to run the GPOS, both in processing and
storage. This overhead might not be ideal for a resource-limited system like an
embedded system.

OSs for embedded systems are usually highly tailored. This often includes a
specific task or a small number of tasks with a limited power and resource budget
[16]. The embedded OSs still have a handful of basic functionality shared with
GPOSs [14, p. 2–3]; where some are listed below.

Process Management The OS keeps track of the different executed processes [17].
When different programs are executing, the OS schedules when the differ-
ent processes can run. An illusion of executing multiple programs simultane-
ously/concurrently can be obtained by switching between the different pro-
grams fast and often.

Memory Management OSs manages the memory in a system. This is a complex
task, and most modern OSs simplifies this by implementing virtual memory
[18, p. 21-24][19]. The virtual memory lets the process ”believe” that it has
more memory than available and homogenizes the system.

File System (FS) The FS enables a system to store data and structures efficiently
on a storage device [20]. It keeps track of where and how large the files are.
Some file systems will be discussed more in Section 2.1.2.

Device Management A system rarely exists in a ”vacuum”1. Most systems have
some devices and peripherals. The OS keep track of these devices, such as
networking/communication devices, storage, and input/output devices.

The more resource-demanding functions and processes in a GPOS are often
omitted in an embedded OS. By removing the Graphics Processing Unit (GPU),
Graphical User Interface (GUI), Human Interface Devices (HIDs), and other resource-
demanding devices, the system does not need to include the drivers and libraries
needed to support these devices.

As the embedded OS usually is tailor-made for a specific task or tasks, the OS

1Completely isolated, with only processor and memory. No peripherals, communication capabili-
ties, and no devices.

2.1. EMBEDDED SYSTEMS AND OPERATING SYSTEMS 9

only need to include necessary drivers and libraries to support the custom HW
and SW included in the embedded system. In many cases, real-time capabilities
are necessary and built into the kernel, making it a Real-Time Operating System
(RTOS). This enables the device to adhere to timing constraints needed in some
applications and handle exceptions well. By monitoring the system using built-in
and external sensors, the system can react accordingly by utilizing kernel drivers,
real-time capabilities, and SW to increase robustness.

Linux is one of many bases for an embedded OS. QNX [21], FreeRTOS [22],
and Windows for IoT [23] are among the other widely used embedded OS [24].
While QNX and Windows held around 13.5% market share in 2019, Linux is by
far the most popular, with a market share of around 38.5% [24]. There are many
reasons for the market dominance, but the key factors are Linux being Free and
Open-Source Software (FOSS), lightweight, robust, flexible, and customizable. Due
to the open-source nature of Linux, adopting a wide range of HW architectures has
dramatically increased the use of Linux in embedded systems [25].

In Figure 2.1, the different layers of the embedded Linux are visualized. A dif-
ferent color separates the layers, which might contain ”sublayers”. The general ap-
proach for the boot procedure at system boot is described below.

Embedded system

Hardware

GPIOCPU/
Microcontroller

Other

Linux Embedded

Bootloader

Linux Kernel
+ system drivers

File system

Root File
System

Optional
Overlay File

System

Other
file

systems

Applications Shared
Libraries

Figure 2.1: Different parts of the Linux Embedded system. Colors are to differenti-
ate between sublayers. Figure from [1].

Bootloader During the start of a system, the First-Stage Bootloader (FSBL) is the
first SW that is loaded from Read-Only Memory (ROM) or other non-volatile
memory. It will initialize the HW, the Random-Access Memory (RAM), and

10 CHAPTER 2. BACKGROUND

hand over the execution to the OS or the Second-Stage Bootloader (SSBL) or
just ”bootloader”2. In contrast to the FSBL, which can boot a single OS, the
SSBL or bootloader can boot different OSs or different versions of the same
OS.

In the case of HW needing a Firmware (FW) or other data from the ROM
or other non-volatile memory, for instance, a bitstream to program a Field-
Programmable Gate Array (FPGA), the SSBL will perform this task while
loading the OS. The FPGA or other devices will then be loaded and pro-
grammed during the boot of the OS.

Linux Kernel The Linux kernel handles the HW after the bootloader has handed
the execution over to the kernel. The kernel has drivers and support libraries
to operate a system’s devices and peripherals. Only the necessary drivers and
libraries are included to obtain the most efficient use of storage and resources.
Non-supported device drivers must be added to the kernel during the build
or afterward.

Accompanying the kernel is the Device Tree Blob (DTB). The DTB describes
the structure and architecture of the system, including memory locations for
ROM, RAM, storage devices, and other devices like an FPGA. For instance, a
DTB describes the structure in Figure 2.9a.

To mount and utilize other storage devices with different types of FSs is also
the kernels job.

File Systems (FSs) The root FS contains all the necessary files, libraries, and exe-
cutables to create a functional user space. The user space is where applica-
tions run and execute. In embedded Linux, the root FS is usually compressed
to a small file with the squashFS FS. This FS is Read-Only (RO) and expands
and loads the entire image into RAM. Right before or after the user space has
initialized, the kernel might mount multiple other FSs, where OverlayFS is
one of them. This is discussed more in Section 2.1.2.

2.1.2 Storage Devices and File Systems

Storage devices are used in computing to store digital data and information. Hard
Disk Drives (HDDs), Solid-State Drives (SSDs), flash memory (like USB flash drive),
and optical storage mediums like Compact Discs (CDs) and Digital Video Discs
(DVDs) are just a few examples of storage devices. The different storage devices
have the same goal of storing data, but every device has advantages and disadvan-
tages. Some (like DVDs and HDDs) are suitable for long-term storage but are slow.
SSDs and flash memory are faster but have a shorter lifetime and are more error-
prone [26].

However, the way that data is structured and kept on a storage device is thro-
ugh file systems. The file system controls how directories and files are stored on

2In modern systems the SSBL is commonly referred to as the bootloader.

2.1. EMBEDDED SYSTEMS AND OPERATING SYSTEMS 11

the storage device, how they are named, and how software programs and the op-
erating system may access and work with them [27, Chapter 5.10]. There are dif-
ferences amongst file systems regarding the largest file size they can support, how
they manage file permissions, and how they handle errors or corruption. Some file
systems are even tailor-made for a particular type of storage device like Unsorted
Block Image (UBI) file-system (explained in Section 2.1.2 for NAND flash storage
[28]).

A suitable file system must be selected for optimal usage, data storage, access,
and retrieval. Fast access to commonly used data, reliable backups, and effective
use of available storage space can all be provided by a well-designed storage sys-
tem.

The following sections will describe NAND flash, UBI/Memory Technology De-
vice (MTD), and ”Overlay File System” in more detail as the TOTEM system (more
detail in Section 2.4) leverage heavily on these principles.

The two next sections Unsorted Block Images and Overlay Filesystems are from the
author’s specialization project [1] written prior to this thesis. The sections include some

slight modifications to suit this thesis’ scope.

Unsorted Block Images

This section is from the author’s specialization project [1], with some slight
modifications to suit this thesis’ scope.

In contrast to office computers, which use HDDs and SSDs as mass storage, most
embedded systems use various forms of simple flash memory. Through an MTD
[29] abstraction layer, UBI [30] is a management system to handle raw NAND flash
storage [31]. The UBI/MTD system has logical and physical devices. A physical
device is a working device that stores data in the UBI/MTD instance as opposed to a
logical device that the kernel sees and manages. The number of times the block has
been erased is stored in a tiny portion (a header) that separates erase blocks from
other types of storage. Because of this, Logical Erase Blocks (LEBs) and Physical
Erase Blocks (PEBs) are used to construct the UBI/MTD system.

Used
PEB

Used
PEB

Free
PEB

Used
PEB

Free
PEB

Used
PEB

LEB

Used
PEB

Used
PEB

LEB LEB LEB LEB LEB

0 1 2 3 4 5 6 7

0 1 2 3 4 5

UBI

MTD (NAND)

Logical Erase Blocks
(LEB)

Physical Erase Blocks
(PEB)

Volume 0 Volume 1

Figure 2.2:Normal operation of a UBI device with two volumes. Note the mapping
between the LEB and PEB is unsorted. Figure from [1].

12 CHAPTER 2. BACKGROUND

As shown in Figure 2.2, each of the LEBs are dynamically 3 mapped to physical
erase blocks, hence the ”Unsorted” part of UBI. A volume comprises a single or
multiple LEBs; this is what the OS works with. As NAND flash only has a limited
lifetime4 [32, 33], this system of dynamically assigning LEBs to PEBs can help mit-
igate data loss and prolong the life of the device. The UBI system accomplishes this
through three main processes [30]:

Wear-leveling Move the data in the PEB around to ensure the erased amounts per
block remain homogeneous.

Bad block handling The UBI system can detect bad blocks and seamlessly move
the data from a bad PEB to a good one. This is demonstrated in Figure 2.3.

Scrubbing The UBI system can detect bit-flips and seamlessly move the data from
another PEB to prevent data loss. The old PEB can then be reused.

Used
PEB

Bad
PEB

Free
PEB

Used
PEB

Free
PEB

Used
PEB

LEB

Used
PEB

Used
PEB

LEB LEB LEB LEB LEB

0 1 2 3 4 5 6 7

0 1 2 3 4 5

UBI

MTD (NAND)

Logical Erase Blocks
(LEB)

Physical Erase Blocks
(PEB)

Volume 0 Volume 1

(a) A single PEB goes bad. PEB1 in this case.

Used
PEB

Bad
PEB

Used
PEB

Free
PEB

Used
PEB

LEB

Used
PEB

Used
PEB

LEB LEB LEB LEB LEB

0 1 2 3 4 5 6 7

0 1 2 3 4 5

UBI

MTD (NAND)

Logical Erase Blocks
(LEB)

Physical Erase Blocks
(PEB)

Used
PEB

Volume 0 Volume 1

(b)A PEB has gone bad, and the UBI system retargets the LEB to use another PEB.
In this case, retarget LEB2 to use PEB2 instead of PEB1.

Figure 2.3: How the UBI operates and recovers from bad blocks. Figures from [1].

Overlay Filesystems

This section is from the author’s specialization project [1], with some slight
modifications to suit this thesis’ scope.

Overlay FS is a FS that merges at minimum two FSs into one final FS [34]. Fig-
ure 2.4 shows how the overlay FS takes at least one ”lower” FS (Figure 2.4a) and an

3The mapping is not necessarily in order and can change during operation.
4A certain number of times it can perform a write-erase cycle to a block.

2.2. BUILD SYSTEM FOR EMBEDDED SYSTEMS 13

optional ”upper” FS (Figure 2.4b) and merges them into the final FS (Figure 2.4c).
The FS term can be somewhat misleading, and the wording ”directory tree” might
be more correct as the directory trees are the systems being merged in Overlay FS.

Lower The lower FS/directory tree can consist of an arbitrary number of FSs and
will result in a single read-only FS, even though the FSs were writable. The
order of FS is essential, as the later FSs takes precedence. This creates the
basis of the overlay FS.

Upper The upper FS/directory tree can be any FS, both RO and Read-Write (RW).
However, only the upper FS/directory tree can be writable. This is imple-
mented this way to prevent conflicts on where to write.

The upper system takes precedence over the lower system when merge con-
flicts5 occur. That means that if a file exists in both the lower and the upper
systems, the file in the upper system is used. Equal directory trees that exist
in both upper and lower are merged.

If a file only exists in the lower FS/directory tree is ”removed”, the ”removal”
is stored in the upper FS/directory tree. By not overlaying the upper FS/dir-
ectory tree, the ”removed” file is ”restored”6.

The essential feature of overlay FS is to create a split FS where the lower FS is the
core and the upper FS contains the ”user-space”. This creates a sort of robustness
within the FS. A good example is that lower FS can be the RO root FS containing
the core operating system. The upper FS contains the user files and the data that
can be writable and persistent. The lower FS system will never be written to, and
since almost all storage errors happen when writing information, the system will
be more robust. The upper FS may become corrupt but will not affect the lower FS
system.

2.2 Build System for Embedded Systems

Embedded systems often require a highly tailored OS to suit different HW config-
urations and many specific packages and SW. There can be several thousand con-
figuration entries7, especially with Linux, as every part can be customized. This
is a good thing; Linux has many great features that are ultimately unnecessary in
an embedded system, which then can be disabled with configuration. The process
of organizing, compiling (and cross-compilation), and customizing while ensuring
maintainability and ease of use is challenging.

A build system is a collection of tools and scripts to handle the vast number
of configuration entries and customizations. The two most popular build systems
for embedded Linux are Buildroot (BR) [35] and Yocto [36]. Both provide a nearly

5If the same file/directory exists in both upper and lower FS.
6The file was never removed from the RO root FS, there was an instruction that told the OS that

the file was removed.
7Checked by visual inspection of the generated configuration file with the current build system,

with over 4000 configuration lines.

14 CHAPTER 2. BACKGROUND

Lower
filesystem/directory tree

File L4

File L3

File L2

File L1

(a) Lower FS/directory
tree. There can be multiple
lower parts. Becomes
read-only.

Upper
filesystem/directory tree

File U5

File U4

File U3

File U2

File U1

(b) Upper FS/directory
tree. Only one upper part,
but can also be omitted.
Normally writable.

Final
filesystem/directory tree

File L4

File L3

File L2

File L1

File U5

File U4

File U3

File U2

File U1

(c) Final FS/directory tree
is the combination of the
lower and upper
FS/directory trees.
Overlapping systems will
be merged, and files from
the upper will be used.

Figure 2.4: The three parts of an overlay FS. The lower and upper systems are com-
bined/merged to create the final FS. The upper system takes precedence over the
lower when there are conflicts. Figures from [1].

ready-to-run solution for most embedded systems. A few adaptations to suit the
specific HW, like the memory space and the DTB, are necessary for correct opera-
tion. Further customization to the Linux kernel, libraries, and SW follows a strict
but flexible configuration system.

BR will be the focus of this section. The name is based on the original task for
BR, creating the root FSs, which includes the necessary systems for a complete
Linux OS. While it primarily creates the root FSs, it requires a full toolchain for the
compilation of the SW for the target8 embedded system, which later can be used
to compile SW for the target. Creating custom packages, changing how the boot-
loader works, configuring the Linux kernel, how the different FSs are structured,
and much more [37, Chapter 6] can easily be configured in BR.

The general approach utilized by BR is shown in Figure 2.5. A target architec-
ture must be specified to ensure that BR creates the correct output. The process can
be broken down into a series of automated steps:

8The architecture that is the embedded system, like an SDR.

2.2. BUILD SYSTEM FOR EMBEDDED SYSTEMS 15

4 2

1

Host compiler

Target compiler

Open-source or closed
source packages from

online or local

In-house/external tree
source packages from

online or local

Source files

Package
configuration

Distribution
compiler Architechture

specific
compilers

Install scripts

Target toolchain

Target binaries Target image

Sources

Source files

Compilers

Target Binaries

Toolchain/SDK

Global
configuration

3

2

5

6

Figure 2.5: General BR build process. The block ”Package configuration” is de-
scribed further in Section 2.2.1. Figure adapted from [1].

1. Read the main or ”Global” configuration to define the target architecture for
the target compiler and what packages are to be compiled and installed.

2. Using the host compiler9, compile the target compiler based on the configu-
ration defined in ”Step 1”. In many cases, the target compiler can be down-
loaded from the internet.

3. Based on the packages defined in the main configuration, read the configu-
ration for each package and fetch the source from the internet or any other
predefined location.

4. Based on the package configuration, compile the source code with either the
host or target compiler. Only SW compiled with the target compiler might
run on the target HW.

This step creates the different FSs based on the main configuration.

5. Using the target compiler and toolchain, combine all the SW and FSs into
binaries and complete post-processing with install scripts. The final ”Target
Image” is the file ready to be flashed to the target embedded system.

6. The toolchain utilized in the previous steps are made available to be used to
compile other SW to be run on target HW.

2.2.1 Packages

At the heart of BR are ”packages”. They can be anything from a full OS like Linux,
SW libraries, general SW, and small packages only to include a small file. Each

9The compiler that is included in the system compiling SW.

16 CHAPTER 2. BACKGROUND

package must contain a configuration on how to fetch the sources and how to in-
stall them to the host or target. The configuration can also include dependencies
and variables, describe how to build and generate files, define custom downloading
processes, and custom install procedures. These are just some of the many capabil-
ities of a package. The general processing for a package is visualized in Figure 2.6,
with descriptions listed below.

1

For each
enabled package

Read Global/Main
configuration

Dependencies
not satisfied

Read package
description and
configuration

Process the
dependencies

(packages)

Need to download
source files?

Read the package
"makefile"

Download (and
unarchive) the

source files

Process/Compile
the package

according to the
makefile

Install binaries/files to
target specified in

makefile/configuration

Install binaries/files to
host specified in

makefile/configuration

2 3

4

5

Figure 2.6: Packages in BR are treated as subprojects. Figure adapted from [1].

The general steps are also described in the following list:

1. Read the global/main configuration to define the enabled packages.

2. For each enabled package, read their configuration and establish the depen-
dencies.

If there are dependencies, process the dependency first as packages.

3. Read the package ”makefile” to define where the package source files should
be fetched from, how to compile or process the package executable, andwhere
or how it should be installed in the system.

Download the sources if necessary.

4. Compile and build the package based on the configuration established in the
last step. A package can be compiled for both the host and the target.

5. Install or include the compiled SW or library based on the package configu-
ration.

2.2.2 External Trees

When creating a custom configuration, BR specifies two ways of storing and main-
taining the configuration. The first is to store everything in the root of BR. This has
several disadvantages, including the unclear separation between default BR and
the customizations and maintainability.

The second recommended way is to create a project-specific external tree to store
and maintain the configuration [37, Chapter 9.2 & 9.9]. An external tree is a sep-

2.3. THE HYPSO SATELLITE(S) 17

arate directory outside BR to store project-specific configuration, files, and pack-
ages. As the configuration of the external tree is applied after the default BR con-
figuration, it is possible to overwrite any configuration entry. Maintainability and
distributed development are a lot simpler with the external tree, as the entire BR
directory can be included as a git submodule (see Section 3.1.1). This enables the
project repository only to contain the project-related configuration.

2.2.3 Cross-compilation and Toolchains

Cross-compilation is the art of using a system with a specific architecture to com-
pile SW for a different processor architecture. This is essential for embedded sys-
tems, as a complete toolchain is extensive and resource demanding, therefore usu-
ally omitted in an embedded OS.

BR creates an extensive (and custom) toolchain to develop and compile software
capable of running on the target device [37, Chapter 6.1]. This toolchain is exten-
sively used by BR to compile packages and other software for the target device.

2.3 The HYPSO Satellite(s)

The HYPerspectral Smallsat for Ocean observation (HYPSO)-2 satellite is a small
6U CubeSat based on the M6P Platform by Kongsberg NanoAvionics (NA) [38].
The satellite bus is developed by Kongsberg NanoAvionics (NA), and the two pay-
loads are developed by Norwegian University of Science and Technology (NTNU)
SmallSat Lab (NSSL). A simplified block diagram of the HYPSO-2 satellite bus ar-
chitecture can be seen in Figure 2.7.

HYPSO-2 Satellite

SDR Payload

HSI Payload

On-board Processing
Unit (OPU)

PicoBoB

M6P Satellite Bus

Electrical Power
System (EPS)

Communications
System (COM)

UHF

RS-422CAN1

RS-422

Payload Controller
(PC)

eth

RFSoftware Defined
Radio (SDR)

TOTEM

UHF Frontend

Hyperspectral
Imager (HSI)

RGB Camera

Communications
System (COM)

S-Band

Attitude
Determination

and Control
System (ADCS)

USB

eth
Communications

System (COM)
X-Band

Power

Flight Controller (FC)

CAN2

Figure 2.7: Satellite architecture of the HYPSO-2 satellite. M6P is the satellite
bus/platform from Kongsberg NanoAvionics. HYPSO-1 is equivalent, but without
the SDR.

The satellite is comprised of four main parts.

• The M6P Satellite Bus from NA, including the Flight Computer (FC), Atti-
tude Determination and Control System (ADCS) (as part of the FC), Commu-
nications System (COM) with corresponding radios for Ultra High Frequency

18 CHAPTER 2. BACKGROUND

(UHF), S-band and X-band, and the Electrical Power System (EPS). The bus
protocol is CubeSat Protocol (CSP) over Controller Area Network (CAN) with
two networks, CAN1 and CAN2.

• The M6P Satellite Platform from NA supplies the Structural frame.

• The Hyperspectral Imager (HSI) developed by NSSL.

• The TOTEM SDR developed by Alén Space with SW further developed by
NSSL.

These parts comprise the HYPSO-2 satellite. Between the different subsystems
provided by NA, the CAN1 network is used for communications. The HSI and the
SDR communicate with the Payload Controller (PC) on a separate network, the
CAN2 network.

2.3.1 Hyperspectral Imager (HSI)

The Hyperspectral Imager (HSI) is the defining feature for the HYPSO mission.
The HSI is an in-house NSSL developed hyperspectral imager [5, Chapter III]. A
hyperspectral imager works like a normal Red-Green-Blue (RGB) camera but in-
cludes hundreds of spectral bands10 instead of only three. This enables the imager
to record a lot more data about an area. Studying the spectral band for each pixel
in the image makes detecting many different types of environments possible. An
urban environment has a different signature than a desert, the ocean, or, most in-
terestingly, algae in oceans for the HYPSO mission.

2.3.2 Software-Defined Radio (SDR)

Including an SDR on the HYPSO-2 satellite will enable the satellite to research com-
munications capabilities in the Arctic. As part of the Autonomous Marine Opera-
tions and Systems (AMOS) project by NTNU and SINTEF, the satellite will also be
a technology demonstrator for communications between sensor nodes and robots
in the ocean and land [39]. Even with the ever-growing number of communications
satellites from SpaceX and other Internet of Things (IoT) providers, there is still a
need to fill the gap for long-range-long-endurance sensor nodes and robots in the
Arctic [39]. The SDR will be used by the NSSL to gather knowledge and perform
research.

The SDR subsystem is further described in Section 2.4.

2.4 The TOTEM SDR System

The TOTEM SDR module, Figure 2.8a, developed by Alén Space, Spain [13], is
an all-in-one, space-proven SDR module (excluding the antenna). It comprises two
Printed Circuit Boards (PCBs). The first, Figure 2.8b, is themotherboard, comprises
an System-on-Chip (SoC) for running the Linux-based OS and an Radio Frequency

10Bands of the electromagnetic spectrum.

2.4. THE TOTEM SDR SYSTEM 19

(RF) transceiver. The second PCB, Figure 2.8c, contains the RF front-end. The moth-
erboard, shown in Figure 2.8b, is hereafter referred to as the TOTEM.

(a) TOTEM SDR module. Picture by Alén Space [40, p. 1].

(b) TOTEM SDR motherboard. Picture by
Alén Space [41, p. 1].

(c) TOTEM SDR front-end. Picture by Alén
Space [42, p. 1].

Figure 2.8: TOTEM SDR module.

The TOTEM, Figure 2.9a, is based on a Xilinx Zynq 7020 SoC, which contains a
dual-core ARM Cortex-A9 processor and an FPGA [43]. The TOTEM also make use
of the AD9364 Transceiver from Analog Devices [44] to generate and receive weak
RF signals.

Between the RF antenna and the RF transceiver is the RF front-end. The front-
end conditions, filters, and amplifies the signal in both directions, for both trans-
mitting and receiving RF signals. As shown in Figure 2.9b, a number of switches
are included in the front-end to control the signal flow between the RF transceiver
and the RF antenna. The AD9364 transceiver has a frequency range of 70MHz to
6.0GHz, and comprises multiple Digital-to-Analog Converters (DACs), Analog-to-
Digital Converter (ADC) for transmission, and data-ports for control with the SoC.
To comply with regulations and the permitted frequency range for the HYPSO satel-
lites, the front-end limits the frequency to between 395MHz and 410MHz [40].

2.4.1 Embedded Linux

The TOTEM uses a custom embedded OS managed by BR and developed by Alén
Space. It is based on the Linux version developed by Analog Devices [45] to in-
crease compatibility with devices like the AD9364 transceiver. The OS is further
customized by the NSSL to suit the HYPSO operations. BR configuration for the TO-
TEM OS is located in a BR external tree in the sdr-system repository, as described

20 CHAPTER 2. BACKGROUND

Zynq 7020

DDR3 DDR3

CAN
tranceiver

NAND Flash

MRAM

JT
A

G
Et

h
er

n
et

U
A

R
T

P7

P1

P3

RTC
AD9364

RF Transceiver

GPIOs TX RX

P8-P9 P11-
12-13

P15

Frontend
Interface

P
o

w
er m

o
n

ito
rin

g

P4-P5

P2

Power Distribution
Network

SYSTEM BUS

5V @ 1.3A

(a) TOTEM SoC/motherboard architecture. From [1], simplified version of [41,
Section 3.1, p. 6].

Control

Frontend
Interface

PA

LNA

Additional RF I/O

395-410 MHz

Power supply

To RX
ports

P11-12-13

From TX
ports
P8-P9

UHF Antena

P4-P5

Filters

Power Amplifier

FiltersLow Noise
Amplifier

(b) TOTEM front-end architecture. From [1], simplified version of [42, Figure 1,
p. 4].

Figure 2.9: TOTEM system architecture. Note the connection points between the
SoC (marked with blue in Figure 2.9a) and the front-end. Figures from [1].

2.4. THE TOTEM SDR SYSTEM 21

in Section 2.4.3. This ensures a highly tailored and optimized Linux distribution
for the TOTEM.

The system includes several packages to improve the ease of development and
compatibility with other systems. Some of the notable packages included listed
below.

• CSP for communication with other systems usually used in a CubeSat [46].

• SDR support library SoapySDR [47].

• GNURadio [48] support libraries for developing SDR applications.

• General packages for interfacing with the FPGA and the RF transceiver.

The enhancements and customization developed by the NSSL and the author in
the specialization project [1] includes two packages aimed at the usability of the
TOTEM SDR. The two packages contain the two following contributions.

• Environment variables located in /etc/profile.d/hypso-sdr.sh . These
variables ensure that the developed SDR applications store files at the same
location and are a basis for the startup script.

• A startup script to launch the CSP daemon to enable communication between
the TOTEM and the other satellite subsystems. The startup script also enables
the SDR operations for the HYPSO mission.

2.4.2 Storage Layout

This subsection is from the author’s specialization project [1], as the storage layout have
not changed. Some slight modifications are performed to suit the scope.

The TOTEM uses a raw NAND flashmodule as a MTD to manage the 1GiB flash
storage. UBI, as described in Section 2.1.2, together with MTD, handles the storage
of data on the TOTEM to protect against data loss and storage failure. The MTD
subsystem is split into two parts. One containing the bootloaders (both FSBL and
U-Boot) with a size of 32MiB. The second part is 992MiB in size and contains the
UBI device, containing the rest of the system files.

As seen in Figure 2.10, 5 UBI volumes exist. The root0 and data0 volumes will
be combined into an OverlayFS. If data0 volume goes bad or becomes corrupt, the
system should still be possible to boot because the OverlayFS is created after Linux
has started.

bitstream0 The bitstream volume contains the bitstreams to program the FPGA
when the system boots.

kernel0 The binaries for the Linux kernel reside in this volume. This is the last
volume the bootloader loads into RAM before handing the operation over to
Linux. Linux then loads the root FS and the overlay FS.

22 CHAPTER 2. BACKGROUND

NAND Flash
1 GiB

MTD Subsystem

MTD Part 1
"ubi" - 992 MiB

MTD Part 0
"boot" - 32 MiB

FSBL +
U-boot

U-boot
env

UBI Device

UBI vol
bitsream0

UBI vol
kernel0

UBI vol
root0

UBI vol
dtb0

UBI vol
data0

SquashFS UBIFS

Unused
̴350 MiB

Figure 2.10:Current layout of the TOTEMNAND flash, including the different UBI
volumes and bootloader files, based on the TOTEM User Manual [41, Figure 2.3-1].
Figure from [1].

dtb0 The DTB describes the TOTEM architecture scheme to Linux, what drivers
to use, and their options.

root0 Volume containing the read-only (static) root FS. All critical and static Linux
files and configuration for a functioning OS reside in the root FS.

As this is a static volume, the risk of failure due to NAND wear is minimal
because most failures happen during the write-erase cycle [33].

After Linux has started, this volume is used as the lower FS in the OverlayFS.

data0 This volume is the only writable volume in the storage layout.
This is 512MiB in size and is used as the upper FS in the OverlayFS

When a file is written, this is where it is stored.

The unused space is essential so the UBI system can utilize its features discussed
in Section 2.1.2. UBI uses unused PEBs to ensure proper wear leveling, bad block
handling, and scrubbing of PEBs.

2.4.3 The sdr-systemDevelopment Repository

The sdr-system repository contains all the customization, configuration, and de-
velopment environments to build the customized embedded OS for the TOTEM.
As the build system is based on BR, a git submodule with the v2021.02.7 version
of BR is included in buildroot/ . The totem/ contains the BR external tree,
with the configuration and packages for the TOTEM OS.

artifacts/ contains a number of smaller archives to remove dependencies
from Alén Space. The docker/ provides the Dockerfile to describe the devel-
opment environment. Several scripts and files are included in the repository root.
The most notable is the cross-compile-env , which is used to set environment
variables to utilize the BR toolchain to compile SW outside BR.

2.5. SYSTEM RESILIENCE 23

sdr-system

artifacts

buildroot @ v2021.02.7

docker

totem

Makefile

README.md

cross-compile-env

run-docker.sh

Figure 2.11: Current structure of the sdr-syste repository.

2.5 System Resilience

System resilience has become increasingly important in systems engineering with
the expansion of data centers, cloud computing, and the usage of computers for
critical operations [49]. It is equally essential for a satellite operating in the harsh
and unavailable environment of space. The degree of resilience is not a boolean
value but rather a sliding scale of resilience. A system can also be more resilient
to certain threats or adverse events and conditions and less to others. [50] defines
system resilience as follows.

”A system is resilient to the degree to which it rapidly and effectively
protects its critical capabilities11 from disruption caused by adverse
events and conditions” [50]

As the quote states, it is how well the system responds to or prevents loss of crit-
ical capability. This raises some considerations regarding what type of threats there
are, how the system should recover, and what the outcome is if the threats occur
and the system cannot be recovered. Some adverse events or conditions will occur
and place the system in a degraded state. The system’s resilience is implemented
in its protection, comprising four important functions.

Resitance The system can passively prevent or minimize harm from adverse eve-
nts or conditions.

Detecction The system can actively detect adverse events and conditions, the harm
done, and the loss of capabilities.

Reaction The system can actively react and start recovery or stop the occurring or
occurred adverse event or condition.

Recovery The system can recover from an adverse event or condition after it has
occurred.

11A system’s ability to achieve the desired effects [49].

24 CHAPTER 2. BACKGROUND

2.6 Satellite Mission Development

As with any large-format project, satellite mission development is subject to stan-
dardization. This includes pre-defined mission phases and a limited number of
mission phases. There are two main standards used in satellite development, the
National Aeronautics and Space Administration (NASA) standard (NASA SP-2016-
6105 Rev2) [51] and the European Cooperation for Space Standardization (ECSS)
standard (ECSS-E-ST-10C) [52]. They are both similar, sharing many of the same
phases and milestone reviews. As the NSSL operates in Europe, the ECSS standard
is followed.

The ECSS standard includes 7 mission phases ranging from 0 to F and 13 mis-
sion reviews.

Mission Phases and Reviews A timeline of the different phases and their corre-
sponding reviews are visualized in Figure 2.12

Phases

Phase 0 Phase A Phase B Phase C Phase D Phase E Phase F

Mission/Function
/Feasibility

Requirements

Definition

Verification

Production

Utilization

Disposal

Activities

MDR PRR

SRR PDR

CDR

QR

AR
ORR

FRR CRR ELR

MCR

LRR

Figure 2.12:Different Phases of the ECSS standard, with the corresponding reviews.
Figure adapted and modified from [53].

Phase 0 This phase includes identifying the customer needs and proposing possi-
ble system concepts. Implements the Mission Definition Review (MDR) and
the MDR actions.

Phase A This phase conducts the feasibility of the proposed concepts and final-
izes the customer needs and requirements identified in Phase 0. Supports the

2.6. SATELLITE MISSION DEVELOPMENT 25

Preliminary Requirements Review (PRR) and the corresponding actions.

Phase B This phase establishes the system’s preliminary definition and system so-
lution selected after Phase A. A System Requirements Review (SRR) is con-
ducted to refine the requirements before a Preliminary Design Review (PDR)
is held. The approach to development and engineering is defined here.

Phase C The detailed definitions are set, and a Critical Design Review (CDR) is
conducted.

Phase D In this phase, the system development is finalized and is verified with a
Qualification Review (QR) and Acceptance Review (AR). The system is enter-
ing final preparation before utilization.

Phase E This is the phase where the mission is operational. This includes the lau-
nch and operation. A Flight Readiness Review (FRR), Operational Readiness
Review (ORR), Launch Readiness Review (LRR), Commissioning Result Re-
view (CRR), and End-of-Life Review (ELR) is conducted.

Phase F This phase handles the mission’s decommissioning, including the system’s
disposal. The mission is concluded with a Mission Close-out Review (MCR).

Chapter 3

Methods and Tools

You have my sword. And you have my
bow. And my axe.

Aragorn, Legolas, and Gimli

This chapter will explain and showcase the methods and tools used to realize,
structure, and aid in the work performed in this thesis. Development tools, devel-
opment environments, and the laboratory are essential.

3.1 Distributed Version Control using Git

During the development of SW, keeping track of what has been done is essential.
Both to see what has been done, or if the SW source needs to be reverted to an ear-
lier point. A Version Control System (VCS) or Source-Control Management (SCM)
is a tool that keeps track of development and changes of source code in a system-
atic and organized way. For smaller projects, this is a ”nice-to-have”1, but for larger
projects, it is crucial. Git is open source and is one of the most widely used VCSs
today, with over 90% of developers using git [54]. It features many excellent tools
for SW development [55] and is highly tailored towards managing source code.

The following features are essential tools provided by git.

Repositories The core of git is the repository. Each repository contains the history,
all the commits, information on branches, and more. But the most important
content is the source code itself.

Commits A commit is a ”statement” on a change in a file or files. It comprises
the delta2 of the file or files. By creating a commit, the edited file ”becomes”
the current, but as commits are stored as deltas, one can always roll back to
an earlier commit or even remove selected commits. This way of storing the
changes makes the changes unambiguous and interchangeable.

1Not necessary, but very smart.
2The difference between the last commit and the new commit.

27

28 CHAPTER 3. METHODS AND TOOLS

Branches Branching is a great tool to separate the development into an isolated
”path” or ”tree”. When branching, one can have multiple development trees
within one repository. This is useful when multiple developers work on the
same repository but with different issues and when compromising the ”main”
repository is not an option. Note in Figure 3.1 that the branch is separate from
the ”main” working tree and is merged to combine the trees at the end.

Merging Merging is the process of combining two development branches into one.
The commits from one branch are combined into the merged branch, and
conflicts are resolved.

Submodules Submodules enable the possibility of nesting multiple repositories.
This makes it easy to include large projects and implement shared reposito-
ries to be used with multiple repositories, like BR. This is explained in more
detail in Section 3.1.1.

Distributed When developing in a team, sharing and distributing source code is
essential. Git has this at its core. Repositories can be linked with remotes that
can be either local or a network (intranet and internet). As each copy of the
repository contains the history and branches, each developer in a team can
work on the same code from different locations, enabling an efficient way of
collaborating on the same project.

Repository

Merge

Commits

Branch

Figure 3.1: Simple view of the git workflow.

3.1.1 Submodules

Submodules are git’s implementation of nested repositories. When adding a sub-
module, a link to a specific repository version is included [56], effectively locking
the ”version” of the submodule, thus increasing the reproducibility. This enables
developers to create libraries or a repository with shared files, but as the submod-
ules are repositories, they can be modified. The modifications done in each sub-
module are stored in the parent repository, which enables customization of the
submodule in contrast to prepackaged libraries. The submodules are an effective
tool for modularization and maintainability of both small and large projects.

Figure 3.2 shows two different large projects, with ”repository 1” and ”reposi-
tory 2” respectively. They have different goals but are based on the same libraries
and subsystems ”Subsystem 1” to ”Subsystem n”. This project architecture is called

3.1. DISTRIBUTED VERSION CONTROL USING GIT 29

a ”Monolith”, like a monolith. As all the subsystems should be the same across the
two projects, keeping them equal is hard in this architecture. Another common
problem for monolith projects is that even small projects tend to have a large code-
base.

Project repository 1

Subsystem 2

Subsystem 1

Custom for repository 1

Subsystem n

Project repository 2

Subsystem 2

Subsystem 1

Custom for repository 2

Subsystem n

Figure 3.2:Monolith repositories, with overlapping code in the subsystems. Figure
from [1].

However, as shown in Figure 3.3, moving the subsystems into submodules al-
lows sharing of the codebase between the two more extensive projects. The project
repositories contain a reference to the smaller submodules, preferably with a tag
to the version of the submodule. Tagging ensures that if the submodule is updated
externally, it does not break the larger project. There are now multiple repositories
to maintain, but since the repositories are shared between the larger projects, those
are a lot more maintainable.

Moving the subsystems to separate repositories and including them as submod-
ules in the projects greatly improves the reusability of the codebase. As each sub-
module is locked to a specific commit or tag3, the possibility of breaking the project
if the submodule repository updates are minimal. Instead of having two project
repositories, there are now 5, as seen in Figure 3.3. But as each is smaller, the
reusability and maintainability are much improved.

3.1.2 GitHub

GitHub [57] is one of the largest git hosting services, with over 100 million develop-
ers, over 4 million organizations, and over 330 million repositories [58]. It supplies
complimentary features to plain git to make development easier, faster, and better.
The most notable additions are Issue tracking, Pull Requests (PRs), Project Plan-
ning, and Forks [59]

Issues Issues are created to address an issue, feature, enhancement, or start a dis-
cussion on a topic. An issue starts with a ”post” that describes the issue; the
following is a thread of comments and operations linked to that issue. This
can be creating a branch to implement or fix the issue or linking it to other
issues and PRs. When working in a team, most of the development should be
described in an issue for efficient project planning.

3Almost like a version, named point in the repository history.

30 CHAPTER 3. METHODS AND TOOLS

Project repository 1

Subsystem 2 reference

Subsystem 1 reference

Custom for repository 1

Subsystem n reference

Project repository 2

Subsystem 2 reference

Subsystem 1 reference

Custom for repository 2

Subsystem n reference

Subsystem 1 repository

Subsystem 1

Subsystem 2 repository

Subsystem 2

Subsystem n repository

Subsystem n

Figure 3.3: Project repositories are sharing a lot of subsystems. Shared code is
stored in separate repositories and as submodules in main projects. Figure from
[1].

Pull-Requests When a development branch is ready to be merged into the ”main”
branch, a PR is created to conduct code review to ensure good quality. This
also comprises the same thread as in the issues, with linking and discussions.
Any problems with merging will also be revealed with the PR, as GitHub
checks if the branch can be merged before doing it. PRs are often linked to
specific issues to track the development and automate the project planning.

Project Planning Project planning is at the heart of any development project, small
and large. GitHub provides multiple tools for project planning, but the Kan-
ban Board is the choice of many.

Kanban Boards organizes issues and PRs into states (like ”Doing”, ”Done”,
”Backlog”, etc.). These go hand in hand with an agile development methodol-
ogy, like scrum [60].

Forks ”A fork is a new repository that shares the code and visibility with the original
”upstream” repository” [61]. Contrary to a separate repository, a fork and the
”upstream” can share code between them by issuing a PR to sync changes.
This mimics the functionality of a branch but as two independent reposito-
ries.

3.2 Development Cycles in the HYPSO-Project

Structuring and planning development in a large project is essential for high-qu-
ality code, meeting deadlines, and sharing the workload. At the NSSL, a modified
Scrum [60] methodology is utilized. Each development cycle, called a sprint, is
one week and starts with a planning meeting. Issues are generated throughout the
sprint, discussed at the meeting, and given an estimate on how much time the im-
plementation should take in days. The meeting ends with planning who’s working

3.2. DEVELOPMENT CYCLES IN THE HYPSO-PROJECT 31

on what issue and what should be postponed to the next development sprint. Dur-
ing the week, implementations are completed, and new issues are raised as relevant.
At the end of a sprint, the next planning meeting is held. Starting with a small pre-
sentation of what’s been done since the last time one attended. PRs and finished
issues are discussed before the cycle and then repeated.

GitHub is used to manage the issues, PRs, repositories, and project planning.
As mentioned in Section 3.1.2, GitHub provides several features directed at project
planning. The relevant issues listed in Appendix C, as well as PRs in Appendix D,
show how the workflow was applied in the project. These issues and PRs are also
discussed in the two following sections.

This is an important part of this master’s thesis, where most of the work is pre-
sented. Most of the work is qualitative to improve further and enable maintain-
ability, robustness, re-usability, and ease of use. This thesis had an end goal, as
discussed in Section 1.4, but how to reach this goal was unknown. The Issues and
PRs discussed in Sections 3.2.1 and 3.2.2 describe the author’s contributions to the
development for HYPSO-2 and the TOTEM SDR. Some of the Issues and PRs below
are related to testing and discussing related topics but are not directly part of this
thesis. They are shown as part of the contribution made by the author.

3.2.1 Identified Issues

Issues are essential to organize and discuss new features, enhancements, or bugs
that arise during development. The list below includes all the significant issues
created by the author and issues to which the author contributed significantly in
the discussions and/or development and testing. A short description of the author’s
contribution is included in each issue. Some issues include testing and compiling
specific SW on the TOTEM. Most issues are directly linked to a PR, other PRs may
relate to multiple issues, and some are merely discussions. The initial presentation
of all the issues below is included in Appendix C. A complete view of the individual
issues can be found following the link on the issues’ names.

sdr-system#11 Add sdr-service to the built image
This issue is essential in the improvement of the system’s resilience. The con-
tributions are implemented in PR sdr-system#37 and PR sdr-system#38

Section 4.2.2 goes into detail on this topic.

sdr-system#20 Separate out all HYPSO specific packages and configuration to
module
Separating the HYPSO specific adaptations into a separate external tree im-
proves the understandability and maintainability of the software architec-
ture. This is discussed in Section 4.1.1 and PR sdr-system#38 includes the
contributions related to this issue.

sdr-system#23 Change default values
As the HYPSO specific adaptations and configuration are separated from
Alén Space’s original configuration, new default values can be set to suit the
HYPSO project. These contributions were first introduced in PR sdr-sys

 https://github.com/NTNU-SmallSat-Lab/sdr-system/issues/11
 https://github.com/NTNU-SmallSat-Lab/sdr-system/issues/20
 https://github.com/NTNU-SmallSat-Lab/sdr-system/issues/23

32 CHAPTER 3. METHODS AND TOOLS

tem#25 and later moved with PR sdr-system#38 .

sdr-system#24 Create a wiki
This has been an ongoing activity throughout the thesis work. The author pro-
duced significant documentation during the development and implementa-
tion. This issue is partly documented in this thesis and partly in the sdr-sys
tem repository. The issue will be concluded/closed with the delivery of this
thesis. There are no PRs linked to this issue.

sdr-system#26 Decide file structure/repo structure to have control over firm-
ware for the FM TOTEM
Before the delivery of new FW from Alén Space, a discussion on how to struc-
ture the two BR build systems for the two TOTEM SDRs was completed.
The conclusion was implementing a fork as described and discussed in Sec-
tion 4.1.3. The contribution is implemented in PR sdr-system-h2#4 .

sdr-system#28 Make ”chained” startup-script
This is an essential topic regarding the resilience of the system. A chained
startup script enables the system to efficiently handle issues regarding SW
critical to the system’s operation. This is discussed in detail in Section 4.2.1.

sdr-system#29 Separate IP for the FM
A minor issue regarding the Internet Protocol (IP) address and hostname for
the HYPSO-2 TOTEM SDR. Implemented as part of PR sdr-system-h2#4 .

sdr-system#39 Move hypso-shared to a new repo and include as submodule
A minor issue where the goal is to move the hypso-shared/ BR external
tree to a git submodule. The implementation is discussed in Section 4.1.2, and
the contribution is included in PR sdr-system#41 .

sdr-system#40 Building/inclusion of sdr-services fail
”Bug” related to the inclusion of hypso-shared/ BR external tree. Fault
analyses by the author revealed that the cause was that the git submodule
were not initialized. Updates to documentation were included in PR sdr-sys

tem#41 .

sdr-system-h2#3 Update to H2 FM Firmware from Alén Space
Implement the new and updated version of the BR build system developed
by Alén Space. The contribution is a major part of PR sdr-system-h2#4 .

sdr-applications#1 Add compiling and compile all using the cross compiler
from sdr-system

Compiling the SDR applications can be greatly improved by creating a simple-
to-use and efficient environment. This is implemented as part of PR sdr-ap

plications#6 and is discussed in Section 4.3.2.

sdr-applications#5 Repository structure and example applications
A good repository structure is essential for efficiently developing SDR appli-
cations. By introducing a standardized structure, useability, maintainability,
and code quality can be ensured. This structure is introduced in Section 4.3.1

 https://github.com/NTNU-SmallSat-Lab/sdr-system/issues/24
 https://github.com/NTNU-SmallSat-Lab/sdr-system/issues/26
 https://github.com/NTNU-SmallSat-Lab/sdr-system/issues/28
 https://github.com/NTNU-SmallSat-Lab/sdr-system/issues/29
 https://github.com/NTNU-SmallSat-Lab/sdr-system/issues/39
 https://github.com/NTNU-SmallSat-Lab/sdr-system/issues/40
 https://github.com/NTNU-SmallSat-Lab/sdr-system-h2/issues/3
 https://github.com/NTNU-SmallSat-Lab/sdr-applications/issues/1
 https://github.com/NTNU-SmallSat-Lab/sdr-applications/issues/5

3.2. DEVELOPMENT CYCLES IN THE HYPSO-PROJECT 33

and PR sdr-applications#6 .

hypso-sw#754 Wrong format in m6p and sdr-services?
With the introduction of the new build system, some integer lengths were
changed. This issue describes where the issue is located and some solutions.
Contributions made by the author are included in PR hypso-sw#765 .

hypso-sw#790 Testing ethernet throughput on SDR
There were some issues regarding the Ethernet throughput between the On-
board Processing Unit (OPU) and the HSI. The author contributed to testing
Ethernet throughput on the TOTEM SDR. The framework introduced in Is-
sue sdr-applications#1 and PR sdr-applications#6 was used to compile
the Ethernet test tool. There are no linked PRs to this issue.

3.2.2 Pull-Requests During Development

The PRs listed below describes the author’s essential contributions towards the
HYPSO project and this thesis. PR sdr-system#37 , PR sdr-system#38 , PR
sdr-system#46 , PR sdr-system-h2#4 , PR sdr-system-hypso-shared#1 , and
PR sdr-applications#6 are the most significant contributions made by the au-
thor. These contain the basis for Sections 4.1 to 4.3 in this thesis.

The presentation of the PRs is included in Appendix D, whilst a complete view
of the individual PRs can be viewed when following the link on the PR name be-
low4.

sdr-system#25 Change default values
This contribution introduces a solution where default values were changed to
suit the HYPSO operations.

sdr-system#37 Add sdr-services to the build image and chained startup scri-
pt
Implementing the sdr-services executable into the RO FS on the TOTEM
SDRs will make them more resistant to adverse events and conditions. This
PR was ultimately closed before merging and was included in PR sdr-sys

tem#38 instead.

sdr-system#38 Separation of HYPSO specific changes
Complete separation of the external BR tree totem/ , the version-specific
HYPSO adaptations in hypso-em and the shared external tree

hypso-shared . Inclusion and compilation of sdr-services are a part of
this PR. This is presented and discussed in Sections 4.1.1, 4.2.1 and 4.2.2.

sdr-system#41 Move Shared External Tree To Submodule
Implementing hypso-shared/ as a submodule lays the foundation for
creating a maintainable and reusable system for multiple TOTEM SDRs. Es-
sential for an efficient structure discussed in Issue sdr-system#26 . The con-
tribution is described in Section 4.1.2.

4Access to the repositories described in the Preface is required.

 https://github.com/NTNU-SmallSat-Lab/hypso-sw/issues/754
 https://github.com/NTNU-SmallSat-Lab/hypso-sw/issues/790
 https://github.com/NTNU-SmallSat-Lab/sdr-system/pull/25
 https://github.com/NTNU-SmallSat-Lab/sdr-system/pull/37
 https://github.com/NTNU-SmallSat-Lab/sdr-system/pull/38
 https://github.com/NTNU-SmallSat-Lab/sdr-system/pull/41

34 CHAPTER 3. METHODS AND TOOLS

sdr-system#42 Update README.md with ssh based clone
Small fix to move from https based git cloning to Secure Shell (SSH) based.

sdr-system#44 Create issue templates
The ability to easily and quickly create good and descriptive issues is essential
for efficient development. This PR implements templates for issues in the
sdr-system repository.

sdr-system#45 Docker hotfix bug
The base for the Docker environment changed during the performance pe-
riod, leading to missing dependencies and errors. This PR implemented a fix
to lock the base to a version, removing all errors and future problems, making
the sdr-system Docker more robust.

sdr-system#46 Bump hypso shared and submodule update
Minor PR to update the submodule hypso-shared/ version to a newer
version.

sdr-system-h2#4 Update to newest FW version
This contributionwas completed after the completion of Issue sdr-system#26
and updated the forked repository sdr-system-h2. Includes multiple con-
tributions to remove dependencies created by Alén Space, discussed in [1,
Chapter 5.1.2]. This is part of the move to multiple repositories, discussed in
Section 4.1.3.

sdr-system-h2#6 Pull from upstream
To homologize the systems, update the sdr-system-h2 with updates from
”upstream” sdr-system. This includes the updates from PR sdr-system#41

.

sdr-system-h2#8 Upstream docker fix
To homologize the systems, update the sdr-system-h2 with updates from
”upstream” sdr-system. This includes the updates from PR sdr-system#45

.

sdr-system-h2#9 Update hypso-shared to v0.1.0 and fix some Docker depen-
dencies
To homologize the systems, update the sdr-system-h2 with updates from
”upstream” sdr-system. This includes the updates from PR sdr-system#46

, which is the v0.1.0 version of the shared hypso-shared/ .

sdr-system-hypso-shared#1 Detect stalled services
Included the detection of stalled execution of sdr-services during the start-
up to improve further the resilience and recovery of the TOTEM SDRs. This
is discussed in Section 4.2.

sdr-applications#6 New structure and some example apps
Implementation of the standardized SDR applications repository and projects.
A toolchain agnostic Docker environment is included to make the compila-
tion of SDR applications simple and efficient for multiple TOTEM SDRs. The

 https://github.com/NTNU-SmallSat-Lab/sdr-system/pull/42
 https://github.com/NTNU-SmallSat-Lab/sdr-system/pull/44
 https://github.com/NTNU-SmallSat-Lab/sdr-system/pull/45
 https://github.com/NTNU-SmallSat-Lab/sdr-system/pull/46
 https://github.com/NTNU-SmallSat-Lab/sdr-system-h2/pull/4
 https://github.com/NTNU-SmallSat-Lab/sdr-system-h2/pull/6
 https://github.com/NTNU-SmallSat-Lab/sdr-system-h2/pull/8
 https://github.com/NTNU-SmallSat-Lab/sdr-system-h2/pull/9
 https://github.com/NTNU-SmallSat-Lab/sdr-system-hypso-shared/pull/1
 https://github.com/NTNU-SmallSat-Lab/sdr-applications/pull/6

3.3. DEVELOPMENT ENVIRONMENT 35

contribution is presented and discussed in Section 4.3.

hypso-sw#765 Wrong format in m6p and sdr services & bad sdr-services ueye
dependency
Contributed to making hypso-sw more compiler agnostic by ensuring it will
compile without warnings. This is a collaboration with a PhD student.

3.2.3 Spacecraft Development Reviews

Project reviews, described in Section 2.6, were held during the development of
the HYPSO-2 spacecraft to ensure the proper system quality. Before this thesis,
the payload Preliminary Design Review (PDR) was completed during the author’s
specialization project. Some issues arise and are discussed regarding the payloads
on the HYPSO-2 satellite, including the HSI, the OPU, and the SDR.

During this thesis, the Critical Design Review (CDR) for the HYPSO-2 satellite
was held to ensure the satellite adheres to the specifications set. The payloads were
central as the satellite bus by NA has its own CDR. For discussions regarding the
SDR, the author was one of the key contributors together with another student and
the co-supervisor.

3.3 Development Environment

Development environments are essential for testing and the rapid development
of high-quality. This section will describe the important development tools and
environments utilized to perform the work in this thesis.

3.3.1 Remote Development With VS Code and SSH

During development, testing SW and OS on the TOTEM SDR is essential. It was,
therefore, important to have a proper and flexible development environment wit-
hin the NSSL. Both for security reasons and the provided flexibility. The lidsat
Workstation (WS) is connected to the lidsat and the TOTEM SDR, which makes it
flexible and suitable for development on the TOTEM SDR.

A remote Visual Studio Code environment was instantiated, which also had the
benefit of being able to connect not only from inside the NSSL. This connection is
enabled with the SSH connection between the remote and the connected computer.

3.3.2 Stable Environment with Docker

This subsection is from the author’s specialization project [1], with some slight
modifications to suit this thesis’ scope.

When developing or running software, some critical technical roadblocks make
it hard to ensure the desired result. Some of the most important are dependen-
cies/environment and imprecise documentation [62].

 https://github.com/NTNU-SmallSat-Lab/hypso-sw/pull/765

36 CHAPTER 3. METHODS AND TOOLS

The dependencies can be hard to control as every development system/envir-
onment is different. Imprecise documentation can lead to the software not being
correctly set up.

Docker [63] is an open-source solution to, among other things, the problems
mentioned above. It is built on the concept of containers. Each container incorpo-
rates a VCS for versioning the Docker container images. A Dockerfile describes
how the Docker image should be built, including what OS the image should be
built from and what packages shall be included. The image is then run as a con-
tainer within the host OS but with an isolated FS to separate it from the host OS.
The host OS can be anything that can run Docker, and the Docker image will be
the same for every system because of the Dockerfile. This solves the first issue
with dependencies. The Dockerfile also solves the second problem with imprecise
documentation because it is written in a self-documenting fashion. Maintainability
should be more achievable when the environment is equal every time it is used.

Docker comprises the Docker client and the Docker host [63]. The client cre-
ates/build the Docker Image, while the Docker host runs the Docker Containers.
Only the Docker host is needed if a Docker image is already built. Because of this,
Docker can run completed software and ensures the correct environment for devel-
oping software. Flexibility and low overhead operations [64] obtained by Docker
consequently can ensure reproducibility between different host OSs.

3.3.3 LidSat Communication With hypso-cli

The communication and control between the different satellite systems on the
HYPSO satellites and the lidsats is done through hypso-cli. This is part of the SW
suite developed by the NSSL. The communication protocol is CSP [46] over CAN.

The HYPSO OPU and the TOTEM SDR run the counterparts of hypso-cli, the
opu-services and sdr-services. These enable the control and operations of the
OPU and the TOTEM SDR, both in the lab and in space.

3.4 Lab Setup, Testbed, and Equipment

An assembled satellite is a highly integrated and optimized device, making it chal-
lenging to develop, test, and debug. A flatsat comprises the same subsystems as the
assembled satellite but spread out on a ”tabletop” to enable rapid development,
testing, and debugging. NA is the satellite platform provider for the HYPSO satel-
lites, and also supplies a flatsat of the satellite bus used in HYPSO-1 and -2. It
integrates the same subsystems as described in Section 2.3, comprising the FC, the
EPS, the PC, the ADCS, and the COM. However, it does not comprise the payloads.

3.4.1 The NSSL FlatSat: The LidSat

The ”LidSat” is NSSL’s flatsat for the HYPSO-1 satellite. This is connected to the FC
at NA over the internet with a CAN bridge. The LidSat developed by NSSL, and the
development TOTEM SDR was integrated at a later stage by Gara Quintana-Diaz

3.4. LAB SETUP, TESTBED, AND EQUIPMENT 37

and Roger Birkeland [39, Section 5] for SDR development and testing. Systems,
computers, devices, and connections are shown in Figure 3.4. Even though this
describes the HYPSO-1 LidSat, this applies to the HYPSO-2 satellite, as these are
equivalent. The subsystems included in the LidSat are listed below.

UHF lab antenna

Flight Computer
(FC) 3

30 dB attenuator

Power splitter

Spectrum analyzerPower supplyTotem SDR

Computer #1

USRP SDR

Computer #2

USB

5VSSH

coax coax

coax coax

SSH

13

UHF transceiver

Onboard Processing
Unit (OPU)

Payload controller (PC)

Energy Power
Supply (EPS)

SDR TESTBED

5 V

4

12

12 V

1

3.3 V

6

3.3 V

C
S

P
ov

er
 C

A
N

2

CSP over CAN2

UHF Ground
Station (GS) 26

HYPSO FLATSAT

S-band Ground
Station (GS)

GROUND STATIONS

IP
 o

ve
r

E
T

H

C
S

P
ov

er

C
A

N
1

Computer #3

C
S

P
ov

er
 C

A
N

1

VILNIUS FLATSAT

C
S

P
ov

er
 C

A
N

1Hyperspectral
camera (HSI)

RGB camera

IP over ETH USB

CSP over CAN1
IP over
ETH

coax

RF

12V

7.5 V
5V

5V

Flatsat bridge

C
S

P
ov

er
 C

A
N

1

Operator station

IP
 o

ve
r

E
T

H

CSP over
CAN1

Figure 3.4:Arcitecture of the LidSat testbench and FlatSat system [39, Figure 6] for
both the HYPSO-1 and the HYPSO-2 satellites. The numbers in the small squares
are the CSP address for the device.

• The HSI camera.

• The RGB camera.

• The OPU to control and store data from the HSI and RGB camera.

• The TOTEM SDR module with a RF front-end and an antenna. A picture of
the TOTEM SDR as implemented in the LidSat is shown in Figure 3.5

• The EPS used to provide power. Note that there are two EPSs, one in the
LidSat and one in the flatsat at NA. NSSL only utilizes the one in the LidSat.

This gets its power from an external power supply.

• The PC.

• The UHF transceiver with the corresponding antenna.

• Multiple computers for development and testing.

The satellite uses two CAN busses to communicate between the subsystems with

38 CHAPTER 3. METHODS AND TOOLS

the CSP protocol. The payloads are connected to the CAN1 network, while the rest
is on the CAN2 network withmultiple operator-, development-, and test computers.
Some of the computers are possible to connect using SSH remotely. By using the
workflow discussed in Section 3.2 and git described in Section 3.1, rapid system
development and testing system ideas on the TOTEM SDR can be achieved.

Figure 3.5: The LidSat TOTEM SDR for test and development purposes. This is also
referred to as the Engineering Model (EM) version TOTEM SDR.

3.4.2 Testbed for SDR application development

To test and develop SDR applications, an SDR testbed is created. It creates a stable,
flexible and predictable environment where different applications can be rapidly
tested and developed. The testbed can be remotely accessed while still retaining
full functionality. The implementation of the Testbed for the TOTEM SDR is shown
in the blue area in Figure 3.4. It comprises the following equipment.

• The TOTEM SDR.

• A Powerful and flexible signal generator can create various signals and mod-
ulation schemes.

• Network analyzer capable of analysing frequencies from 395MHz and up.

• 2-way antenna splitter

• 30dB attenuator.

• USRP desktop SDR.

• Networked WS running a Docker container with a fully functioning develop-
ment environment for GNURadio [48].

Chapter 4

Implementation, Results, and
Discussion

Even the smallest person can change
the course of the future.

Galadriel

This chapter will explain and discuss the implementation, impacts, and results
of the work carried out in this thesis. The implementation, results, and discussion
are combined as the work performed is a baseline for further development for both
the current and future SDRs. The first three sections in this chapter include the pro-
cedure and architecture for developing FW for multiple TOTEMs in a sustainable
and maintainable manner, system resilience, and an easy compilation procedure
of SDR applications. The last section considers the physical development environ-
ment of the HYPSO-2 Flight Model (FM) TOTEM SDR. As mentioned in the Pref-
ace, these contributions are qualitative and hard to test or measure the impact of
directly. Some testing will be discussed in Sections 4.2 and 4.4 to ensure the proper
reaction to adverse events and how robust the physical development environment
for the HYPSO-2 FM TOTEM SDR is.

4.1 Designing a Flexible and Usable Procedure for Devel-
opment of Multiple Firmware and Toolcains

Maintaining and developing multiple different FW versions and variants can be
complex if not structured properly. By implementing a structure to promote mod-
ularization, reusability, and maintainability, the useability of the build systems can
greatly increase the simplicity of maintaining complex toolchains for multiple TO-
TEM SDR systems. As the development of SDR applications require testing and
development time, there is a desire only to develop one set of applications that
work on all the TOTEM SDRs. This enables the different satellites to perform iden-
tical measurements and research with equal SW. This requires the different build
systems to be equal for the developers.

39

40 CHAPTER 4. IMPLEMENTATION, RESULTS, AND DISCUSSION

Throughout these chapters the notation sdr-system, sdr-system-em, sdr-sys
tem-h2, etc. will be used. The suffix denotes the version of the FW referenced.
sdr-system is the general idea of the build system that is used to build the FW and
the toolchain for the different TOTEM SDRs. As the EM version of the TOTEM SDR
is the development version, sdr-system-em is often referred to as sdr-system. The
current development version is the sdr-system-em (or sdr-system), while sdr-sys
tem-h2 denotes the sdr-system used for the HYPSO-2. HYPSO-1 does not contain
an SDR so it does not have a designator. If a HYPSO-3 is developed containing an
SDR, the sdr-system will be named sdr-system-h3.

4.1.1 Keeping HYPSO Adaptations Outside The Original Build System

Maintainability and reproducibility are essential for achieving a highly homoge-
neous set of repositories across the different versions. By designing a structure
that enables the HYPSO developers to quickly customize the firmware package
provided by Alén Space, time spent on developing SDR applications can be maxi-
mized. This is achieved by utilizing BR external trees, multiple configuration files,
and multiple repositories.

The firmware received from Alén Space is a Minium Viable Product (MVP) that
works but does not contain any necessary adaptations to suit the HYPSO satellite
operations. During early development (2019-2022) of the HYPSO TOTEM SDR,
custom packages were added directly into the structure delivered by Alén Space,
and configuration entries were changed. This led to an unorganized structure con-
taining TOTEM configuration and packages and the custom HYPSO code adapta-
tions and packages, as both were located in the same directory with no clear dis-
tinction.

Figure 2.11 visualizes the original structure1 of the build system repository as
delivered by Alén Space. The only external BR tree is located in totem/ . By
expanding the external tree directory, as shown in Figure 4.1, there is a lack of a
clear separation between the packages for the TOTEM and the HYPSO packages,
as both types are in the same directory.

In early 2023, the NSSL received the FM version of the TOTEM SDR. This de-
vice will be included on the HYPSO-2 satellite. It will complement the EM version
included in the lidsat, currently used for development and testing purposes. Devel-
opment and testing on the EM have been conducted since the start of 2019.

Before receiving the FM TOTEM SDR, only one development environment and
build system was necessary to compile and build the FW and toolchain. With two
devices, a second build system became necessary as Alén Space changed three li-
braries and frameworks connected to usage of the Electrically Erasable Programma-
ble Read-Only Memory (EEPROM) and the SDR frontend. The upside was that the
build system was still based on BR.

Some configuration entries are changed to support the changed packages and

1Before the contributions from the author in this thesis.

4.1. DEVELOPMENT OF MULTIPLE FIRMWARES 41

totem

board

<FS overlays>

<Board configs like DTB>

<...>

config

<BR configuration files>

package

<TOTEM packages>

<HYPSO packages>

<...>

Config.in

external.desc

external.mk

Figure 4.1: Contents of the totem/ directory, the most important is the lack of
separation between TOTEM and HYPSO packages.

other differences in the TOTEM SDR HW.

For the maintainability and ease of adaptation for multiple versions of the TO-
TEM SDR, a clear separation of packages from Alén Space and NSSL is highly de-
sirable. Issue sdr-system#20 and Issue sdr-system#26 describes this in more
detail.

BR allows multiple external trees but limits the configuration files to one as
described in [37, Chapter 9]. A script to combine/merge configuration fragment2

files is supplied by BR at buildroot/support/kconfig/merge_config.sh . A
helper bash script, scripts/build_config.sh , Appendix A.2, that accepts an
arbitrary number of configuration files, is developed by the author and included in
the sdr-system repository. The bash script will combine all configuration files into
a single file that BR can read and use. The order of the configurations to be merged
is essential. The last configuration entry is used if two or more duplicate configura-
tion entries are defined, often referred to as Latest Takes Precedence (LTP).

As the latest configuration entry is used, the totem/ external tree can be
”reset” to how it was delivered from Alén Space. NSSL and the author can then in-
clude configuration entries to overwrite some configuration entries originally pro-
vided by Alén Space, to suit the HYPSO operations. Examples are the IP addresses
and passwords for the TOTEMs SDR.

2A fragment configuration file only contains a few configuration entries. Not the entire configura-
tion.

42 CHAPTER 4. IMPLEMENTATION, RESULTS, AND DISCUSSION

Inclusion of multiple BR root FS overlays are done similarly to the configuration.
The paths to the different overlays are defined in the BR2_ROOTFS_OVERLAY BR entry
and are combined and included in the RO FS during the build process. The order
of the paths is equally essential in the configuration, as the LTP principle affects
the combined files.

An essential contribution by the author was to define the best possible code and
repository structure and thus create a second BR external tree named hypso/
that includes only the adaptations necessary to suit the HYPSO project. This will
highlight the separation between the original totem/ by Alén Space and the
contributions made by NSSL and the author in hypso/ . The adaptations neces-
sary are the following.

• Three packages for correct operations of the HYPSO TOTEMs.

◦ hypso_env

◦ hypso_init

◦ sdr-services, this is discussed in more detail in Section 4.2.

hypso_init and hypso_env are described in detail in the author’s specializa-
tion project [1].

The start-up script included in hypso_init for executing the services needed
for communications between the satellite and the TOTEM SDR also handles
the fault-tolerance discussed in Section 4.2.

• Network configuration with custom IPs addresses for the TOTEM SDR to suit
the network architecture of NSSL.

• Hostname following the naming conventions by NSSL. This is set by the
BR2_TARGET_GENERIC_HOSTNAME configuration entry.

• Password for the totem user, and potentially other users.

The BR2_ROOTFS_USERS_TABLES configuration entry defines a location for the
users_table file.

• Password for the root user.

Defined in the configuration entry BR2_TARGET_GENERIC_ROOT_PASSWD

• Configuration to enable the HYPSO packages, custom overlays, and other
configurations.

• Overlay FS configuration for BR.

Configuration entry BR2_ROOTFS_OVERLAY contains paths to the different over-
lays.

• Placeholder files to create folders in the FS on the TOTEM SDR.

4.1. DEVELOPMENT OF MULTIPLE FIRMWARES 43

The different configuration entries are already defined in the totem/ ex-
ternal tree, but the author included new values that overwrite the original values
when merged with the scripts/build_config.sh script.

Sensible and well-structured external trees follow the structure described in the
BR Manual [37, Chapter 18]. The resulting structure for the sdr-system repository
is visualized in Figure 4.2, with the two external trees hypso/ and totem/ .

sdr-system

buildroot @ v2021.02.7

hypso

board

<HYPSO overlays>

config

<HYPSO configuration fragments>

package

<HYPSO packages>

Config.in

external.desc

external.mk

scripts

<scripts to aid in compilation>

totem

board

<TOTEM overlays>

config

<TOTEM configuration fragments>

package

<TOTEM packages>

Config.in

external.desc

external.mk

<git files>

Makefile

README.md

Figure 4.2: Contents of the sdr-system repository after extracting the HYPSO con-
tents to a separate BR external tree.

As all the HYPSO configuration, files, and packages are included through an ex-
ternal BR tree, the totem/ external tree is ”reset” to the values and configura-
tion as delivered by Alén Space. The described structure will simplify the process of
adopting the FM TOTEM SDR to suit HYPSO requirements as only the totem/
external tree (and maybe the buildroot/ version) are changed. This allows the

44 CHAPTER 4. IMPLEMENTATION, RESULTS, AND DISCUSSION

HYPSO adaptations to remain the same between the different versions of TOTEM
SDRs. Someminor changes to ensure maintainability are implemented to fetch nec-
essary archives from HYPSO web servers instead of using Alén Space’s private git.
This is described more in detail in the author’s specialization project [1].

4.1.2 Shared Repository for Shared Files

The restructuration of the development repository in Section 4.1.1 aids in adopting
the FW delivered by Alén Space to the HYPSO requirements. But there is still a
lot to be desired. It is still challenging to differentiate what needs to be changed
between each version of the TOTEM SDRs and what is equal or shared between
them. One example of a version-specific change is the IP address for the TOTEM
SDR. Each one needs a unique IP to work correctly on a IP network. On the other
hand, it is desirable to standardize passwords between all the TOTEMs.

BR external trees are again coming to the rescue. By dividing the packages, con-
figurations, and overlays that are shared between the TOTEMs and the version-
specific adaptations, the maintainability and understandability of the build system
will improve. The single hypso/ external tree is substituted by the version spe-
cific hypso-em external tree and the shared hypso-shared external tree.
The two external trees follow the same structure defined in the BR Manual [37,
Chapter 18].

Contents of the hypso-em/ external tree are listed below.

• Network configuration

• Hostname

• Overlay FS configuration for BR.

Contents of the hypso-shared/ external tree are listed below. A preliminary
structure of the external tree is shown in Figure 4.3

• Placeholder files to create folders in the FS on the TOTEM SDR.

• Password for the totem user, and potentially other users.

• Password for the root user.

• The three packages for correct operations of the HYPSO TOTEMs.

◦ hypso_env

◦ hypso_init

◦ sdr-services, this is discussed in more detail in Section 4.2.

The restructure enables the hypso-shared external tree to be substituted
with a git submodule. This has several benefits, but portability and modularization
between the different TOTEMs are the most important contributions. Adopting the

4.1. DEVELOPMENT OF MULTIPLE FIRMWARES 45

hypso-shared

boards

hypso-shared

overlay

<...>

configs

hypso-shared.config

package

hypso_env

hypso_init

sdr-services

build-sdr-services.sh

Config.in

external.desc

external.mk

README.md

Figure 4.3: Preliminary structure and contents for the hypso-shared/ BR external
tree.

FW to a new TOTEM SDRwith a standard external tree for the shared functionality
and configuration will ensure a homogeneous system architecture. The inclusion of
a git submodule also has the benefit of ”locking” the version of the submodule. This
will make each build system repository more robust and keep the build systems
working longer using a known working version. The final structure of sdr-system
is shown in Figure 4.4.

This contribution solves the issue of sharing the standardized configuration
across the different TOTEM SDRs. By using submodules, the version of the shared
external tree can be locked, increasing the build system’s robustness by ensuring a
working external tree. Updating the shared external tree is equivalent to updating
a normal submodule.

4.1.3 Multiple sdr-system Repositories

With a clear separation between what Alén Space has done, what is shared between
the TOTEMs, and the version-specific adaptations make it trivial to adopt the new
FW for the HYPSO-2 FMTOTEM SDR. Changing the totem/ external tree (and
removing Alén Space’s private git dependency) is enough to make sure the FM FW
adheres to the NSSL structure. Because of the layering of the external trees, the
necessary adaptations for the system are ensured.

This functionality can be implemented in several ways, with pros and cons. The

46 CHAPTER 4. IMPLEMENTATION, RESULTS, AND DISCUSSION

sdr-system

buildroot @ v2021.02.7

hypso-em

<Version specific adaptations for HYPSO>

hypso-shared @ v0.1.0

<Shared adaptations for HYPSO>

scripts

<scripts to aid in compilation>

totem

<Almost unchanged external tree from Alén Space>

<git files>

Makefile

README.md

Figure 4.4: Structure of sdr-system repository after a separation be-
tween work done by Alén Space (totem/), shared HYPSO adaptations

(hypso-shared/), and adaptations specific to each version of the TOTEM SDR

(hypso-em/), in this case, the EM.

first way is to have a different branch for each version of the TOTEM SDR. This
approach has advantages such as shared issue tracking and synchronizing changes
between the branches. The disadvantage is that even though the different build
systems are similar, a complete rebuild of the BR build system is required. A change
in core libraries is one of the issues that typically will require a complete rebuild
every time a developer changes from one branch to another. The rebuilding process
is time-consuming, using around 40 minutes to complete.

Finally, a simpler and better solution is to take advantage of the GitHub func-
tionality, and this method was chosen. Forking the EM repository (the original
sdr-system repository) enables a clear separation between the different TOTEM
SDRs. Much of the same functionality that exists for branches also exist for forks.
Pulling changes from the ”upstream” repository and creating pull requests to the
”upstream” makes it possible to synchronize changes between forks.

The structure between the different versions will be the same, as they are forked
from the ”upstream” repository. To adopt a new build system for a new TOTEM
SDR, only the following steps are required.

1. Create a fork of the main repository (the EM repository).

4.1. DEVELOPMENT OF MULTIPLE FIRMWARES 47

2. Change the contents in the totem/ external tree for the new build system
supplied by Alén Space. Make sure there are no dependencies from internal
servers.

3. If the build system requires a newer version of BR, update BR.

4. Change some variables in the version-specific external tree and rename it. For
HYPSO-2, the external tree will be named hypso-h2 instead of

hypso-em .

The repository architecture and submodule linking are illustrated in Figure 4.5.

Buildroot
buildsystem

Shared files
between the

different systems
structured as a
BR external tree

sdr-system-em
totem-em

original "upstream" repository

buildroot
git submodule

scripts
subdirectory

totem
subdirectory

hypso-shared
git submodule

sdr-system-hypso-
shared

Common files

buildroot
buildsystem

hypso-em
subdirectory

sdr-system-h2
totem-h2

fork of sdr-system-em

buildroot
git submodule

scripts
subdirectory

totem
subdirectory

hypso-shared
git submodule

hypso-h2
subdirectory

sdr-system-h3
totem-h3

fork of sdr-system-em

buildroot
git submodule

scripts
subdirectory

totem
subdirectory

hypso-shared
git submodule

hypso-h3
subdirectory

Repository

Local Directory

Buildsystem

Local BR external tree

Submodule BR external tree

Version
specific
changes

Version
specific
changes

Version
specific
changes

Submodule links

Subdirectories

Original
TOTEM

external tree

Original
TOTEM

external tree

Original
TOTEM

external tree

Figure 4.5: The architecture and structure of the different repositories for the differ-
ent TOTEM SDR versions. The h* notation indicates what HYPSO satellite it will
be implemented on.

This contribution by the author is essential to differentiate between build sys-
tems for different TOTEM SDRs. Using forks enables a clear separation between
the systems while enabling shared issue tracking, synchronization, and ease of de-
velopment. This improves maintainability and understandability.

4.1.4 Imlementation for the current EM and HYPSO-2 FM SDRs

Both versions of the sdr-system follow the structure discussed in Sections 4.1.1
to 4.1.3. Some significant library changes are included in sdr-system-h2, which
includes a single, more capable package to handle the communication between the
SoC and the AD9364 transceiver. The library rx-tools in sdr-system-h2 replaces
the following packages in sdr-system.

• frontendctld Radio frontend daemon to control the frontend.

• i2c-slave-eeprom-ext I2C slave backend for Linux that implements a EEP-
ROM memory simulator.

48 CHAPTER 4. IMPLEMENTATION, RESULTS, AND DISCUSSION

• i2c-slave-iobuf I2C slave backend for Linux that implements a simple EEP-
ROM Input/Output (IO) buffer for the userspace.

Otherwise, the structure of each repository is the same, and is highly maintain-
able because of the use of forks. All references to hypso-em have been changed
with hypso-h2 , including the external tree directory name. The changes are
primarily in the version-specific external tree, hypso-h2 , changing IPs, host-
name, and overlay paths.

These contributions are essential to enable the operations on the HYPSO-2 TO-
TEM SDR. By using the structure described in Sections 4.1.1 to 4.1.3, the systems
are equivalent for the developer and SDR applications.

4.2 EnsuringResilient and Fault-TolerantOperations for the
TOTEM SDR

The design of both the HW, FW, and memory layout done by Alén Space ensure
that the system boots correctly. However, it is the program sdr-services that en-
able communications and provide SDR-capabilities to the HYPSO satellite, and
this cannot be guaranteed to start. Only one copy of the sdr-services executable
exists in the system memory, and by corrupting or moving the executable, the sys-
tem breaks beyond recovery. Communications with the satellite over CAN is not
started, and the SDR will only use power until the EPS shuts it down after about
43 minutes. In most circumstances, human error causes the file to be missing or
renamed. It is therefore critical that a3 version of the sdr-services starts.

The risk matrix in Table 4.1 is formed by conducting a risk analysis of the out-
come and likelihood of the most significant adverse events. As illustrated, no event
ends up in the red zone, some are ”high” up in the catastrophic column, but the
scale is hard to visualize. Some events, like a SDR application fail, or an update of
sdr-services fails, have little to no effect on the system’s capabilities.

4.2.1 Chained Start-Up Script to Start Services

Including multiple instances of the sdr-services executable in multiple paths can
help increase the system’s resilience. This will help in the passive resistance and aid
the recovery process. Implementing a script that tries to execute sdr-services in
a specified order increases the system’s passive resistance and aids the recovery
process.

The original start-up script, located in /etc/init.d/S99HypsoTotem , only ex-
ecutes the sdr-services located in /home/totem/hypso/sdr-services . With a
slight modification, the script can try multiple paths by moving the executing logic
to a function that executes based on a path given as an argument.

start_sdr_service () {$1/sdr-services -m $HYPSO_SDR_ROOT 13 can0 &}

3Any version that will start. It can be an old version.

4.2. FAULT-TOLERANT OPERATIONS 49

Table 4.1: Risk matrix analysis of the different scenarios.

Impact
Likelihood

Negligible Marginal Critical Catastrophic
Certain
Likely SDR application

crashes
Possible sdr-services

update fail
Unlikely sdr-services

can not start
from primary
path

Need to disable
OverlayFS

sdr-services

execution check
reports correct
execution, but is
not

Rare Cosmic ray bit-
flip

sdr-services

does not start
from any path
with OverlayFS
disabled

Where $1 is the path parameter supplied to the function, and $HYPSO_SDR_ROOT

is the environment variable discussed in Section 2.4.2 and [1, Chapter 5.2.1]. This
will work with both existing and non-existing files.

It would, however, be ideal to log the events with non-existing files. Bash [65]
and POSIX Shell [66] provide a way of checking if a file exists. The check is embed-
ded in the if-statement and can be used as in Listing 4.1.

1 # Test if FILE exists

2 FILE=$1/sdr-services

3 if [-f "$FILE"]; then

4 # As file exists, execute

5 echo "[MESSAGE] Starting sdr-services from $FILE".

6 $FILE -m $HYPSO_SDR_ROOT 13 can0 &

7 else

8 # As file does not exist, return and try next location

9 echo "[ERROR] $FILE does not exist. Trying next location"

10 return 1

11 fi

Listing 4.1: Statement to check if a file exists.

Listing 4.1 checks if the file exists. If it does, it tries to execute the file.

It is then also necessary to check that the executable is running. An existing
file does not necessarily mean correct execution; this can simply be detected by
checking the active processes with Linux commands. The command ps prints
all the current processes, that is, around 30 processes for the TOTEM. grep is
a command that can filter any text based on a couple of rules. The command

50 CHAPTER 4. IMPLEMENTATION, RESULTS, AND DISCUSSION

ps | grep -c '[s]dr-services*' will run grep on the output of ps 4. The
grep option -c makes it only return the number of lines that contains the search
string ”sdr-services”. ”Contains” is essential, as the process can run from any-
where in the system and have suffixes.

This can be combined with an if statement to check if the process started and
is running correctly. If the output of the above ps | grep -c command is not
0, then the process is running. As seen in Listing 4.2, it is also possible to test if
sdr-services started correctly by checking if there are 2 processes with the correct
name. This works because sdr-services always launches two (2) processes with
the same name.

1 # Check if running

2 if ["$(ps | grep -c '[s]dr-services*')" -eq 0]; then

3 echo "[ERROR] sdr-services failed to start, trying backup."

4 return 1

5 elif ["$(ps | grep -c '[s]dr-services*')" -ne 2]; then

6 echo "[ERROR] sdr-services failed to start properly, killing

and trying backup."↪→

7 kill_sdr_services

8 return 1

9 fi

Listing 4.2: Statement to check if a process has started and is running correctly.

This contribution solves the problem where the sdr-services stalls in an infi-
nite loop, or a malicious program such as in Listing 4.3 replaces the executable.

1 int main(int argc, char **argv) {

2 for (;;) {}

3 return 0;

4 }

Listing 4.3: A simple program that starts and does nothing for eternity.

Combining Listings 4.1 and 4.2 into a single function to check if a file exists,
attempts to run the file, and then checks if it runs, provides the code in Listing 4.4.
This function will accomplish this if the sdr-services file exists in the provided
directory.

As this function requires a path to a directory with a potential sdr-services, a
simple ”for loop” is necessary to make it work with multiple directories. The loop
will go through a list of predefined paths and test each path until a running file
is verified or the loop is completed. When correct execution is ensured, the flag
SDR_SERVICES_STARTED is set.

4In more complete Linux versions, there is the command pgrep that accomplish this, but it is
not included on the TOTEM SDR

4.2. FAULT-TOLERANT OPERATIONS 51

1 start_sdr_service ()

2 {

3 # Check if existing

4 FILE=$1/sdr-services

5 if [-f "$FILE"]; then

6 # As sdr-services could be found, execute

7 echo "[MESSAGE] Starting sdr-services from $FILE".

8 $FILE -m "$HYPSO_SDR_ROOT" 13 can0 &

9 else

10 # sdr-services could not be found, return and try the

next location↪→

11 echo "[ERROR] $FILE does not exist. Trying next

location"↪→

12 return 1

13 fi

14

15 # Allow the process to start and run for a couple of seconds

16 sleep 5

17

18 # Check if running

19 if ["$(ps | grep -c '[s]dr-services*')" -eq 0]; then

20 echo "[ERROR] sdr-services failed to start, trying

backup."↪→

21 return 1

22 elif ["$(ps | grep -c '[s]dr-services*')" -ne 2]; then

23 echo "[ERROR] sdr-services failed to start properly,

killing and trying backup."↪→

24 kill_sdr_services

25 return 1

26 fi

27

28 echo "[MESSAGE] Started sdr-services from $FILE".

29

30 return 0;

31 }

Listing 4.4: Function to check if the sdr-services exists, run it, and check if it is
running.

However, there are scenarios where the SDR_SERVICES_STARTED flag is set even
if the execution might be unsuccessful. If the startup of sdr-services is detected
as successful, then fails right after the check, the flag will be set with unsuccessful
execution. This is, however, an improbable scenario because the execution must
start exactly two processes with the correct name and function for at least 5 seconds,
as stated in the risk matrix in Table 4.1. Because of the limited capabilities of the
TOTEM SDR OS, this issue is not prioritized, but a promising solution is presented
in Section 5.2: Future Work.

The different starting paths are defined in the variable SDR_SYSTEM_LOC. Three
paths are given from the environmental variables described in the Section 2.4.1. A

52 CHAPTER 4. IMPLEMENTATION, RESULTS, AND DISCUSSION

1 SDR_SERVICES_STARTED=0

2 ## Start sdr-services

3 # Try the different sdr-services locations,

4 # if started correctly, break and continue

5 # Store if it manages to start

6 for loc in ${SDR_SYSTEM_LOC}

7 do

8 if start_sdr_service "$loc"; then

9 SDR_SERVICES_STARTED=1

10 break 1

11 fi

12 done

Listing 4.5: Loop for different paths for the sdr-services executable. Sets the flag
SDR_SERVICES_STARTED if the service is successfully executed.

”hard-coded” path /bin/ is also included in case of an error with the environ-
ment variables. The four paths for the sdr-services executable are listed below.

• The HYPSO_SDR_ROOT variable pointed to /home/totem/hypso/. This is the
path to the main executable.

• The HYPSO_SDR_BACKUP_DIR_USR variable pointed to /usr/bin/.

• The HYPSO_SDR_BACKUP_DIR_LOCAL variable pointed to /usr/local/bin/.

• ”Hard coded” path /bin/.

If the environment variables file is removed or non-existing and can not be set,
the author has implemented a check and recovery system for that case. A simple
check for the environment variables file is performed using the same file checker
discussed above, as shown in Listing 4.6. A default path for HYPSO_SDR_ROOT is
set to the same as mentioned above. The two backup paths are not set and will be
empty when setting the SDR_SYSTEM_LOC variable. This leads to only the first and
last paths being available in the startup loop. The checker can also fail, and the
startup script will only have the last path /bin/ to start from.

Combining Listings 4.4 and 4.5, the final logic for starting sdr-services is
shown in the flow diagram in Figure 4.6.

A second application is executed on startup, the m6p-time-sync executable. It
ensures the correct time on the TOTEM by reading the satellite bus to fetch the
correct time. The start script is not as complicated as with sdr-services as time
synchronization is not critical for comm unication between the TOTEM SDR and
other satellite systems. The required functionality is ensured by slightly modifying
Listing 4.4 to search for the existence of m6p-time-sync. The time sync only runs
briefly, so checking if it is running is unnecessary, as it is treated as non-critical SW
for the operations and will not reduce the capabilities of the TOTEM SDR.

4.2. FAULT-TOLERANT OPERATIONS 53

1 # Source the environment vars

2 # This adds the HYPSO_SDR_ROOT, HYPSO_SDR_APPS and HYPSO_SDR_BACKUP_DIR

env vars↪→

3 # If not found, use a default value

4 ENV_FILE="/etc/profile.d/hypso_sdr.sh"

5 if [-f "$ENV_FILE"]; then

6 . $ENV_FILE

7 echo "[MESSAGE] Set environment varialbes from ${ENV_FILE}."

8 else

9 echo "[CRITICAL] Could not initialize the environment

variables. Using defaults"↪→

10 HYPSO_SDR_ROOT="/home/totem/hypso"

11 fi

Listing 4.6: Check the existence of the environment variables file. Set a default
value if not found.

No

Yes

No

File exist in
location?

Execute from
location Yes

Executed
successfully?

Next
Location

Report error and unset flag
for successful execution

Yes

No

More
locations?

Set flag for successful
execution

sdr-services
Start Locations

Kill sdr-services
Yes

No Still
running?

Figure 4.6: Flow diagram of the logic starting sdr-services.

A similar ”for loop” as shown in Listing 4.5 is used to start m6p-time-sync.
Combining this with Listing 4.7 results in the following flow diagram as shown in
Figure 4.7.

Yes

No

File exist in
location?

Execute from
location

Next
Location

m6p-time-sync
Start Locations

Figure 4.7: Flow diagram for executing m6p-time-sync.

These contributions greatly increase the system’s resistance to adverse events
and conditions. By including multiple paths for the critical SW, one or more paths
can fail before the system goes into a reduced state. The first path (HYPSO_SDR_ROOT)
is treated as a working directory for the executable, and this is where the main
executable resides. Updating the sdr-services executable will only change the
executable in the main path, leaving the three backup paths ”alone”.

54 CHAPTER 4. IMPLEMENTATION, RESULTS, AND DISCUSSION

1 start_m6p_time_sync ()

2 {

3 # Check if existing

4 FILE=$1/m6p-time-sync

5 if [-f "$FILE"]; then

6 # As m6p-time-sync could be found, execute

7 echo "[MESSAGE] Starting m6p-time-sync from $FILE".

8 $FILE

9 else

10 # m6p-time-sync could not be found, return and try the

next location↪→

11 echo "[ERROR] $FILE does not exist. Trying next

location"↪→

12 return 1

13 fi

14

15 return 0;

16 }

Listing 4.7: Function to check if the m6p-time-sync exists, then execute it.

4.2.2 Including sdr-services in the Read-Only Filesystem

A significant additional change that will increase the resilience to adverse events
is to include the sdr-services in the read-only part of memory, i.e., in the root0
(squashFS, RO partition) discussed in Section 2.4.2. NAND flash storage is less
prone to errors and failure when only being read from. Including the sdr-services
in read-only memory keeps the risk of errors and failure at a minimum.

BR makes this easy; add a package containing the source for sdr-services5.
This would normally build and include the executable in the final RO FS.

Originally the hypso-sw repository was mainly created to compile hypso-cli

and opu-services that are needed for the HSI operations. It was later adopted
to include support for compiling sdr-services as most of the infrastructure and
components were already in the hypso-sw repository. As a result, the build pro-
cedure of sdr-services is incompatible with how BR requires the procedure to
be formulated, notably the need for a special Docker. The main problem is how
hypso-sw uses the toolchain for the TOTEM to compile sdr-services. It relies on
the fact that the toolchain, or sdr-system, exists and is located in the same root
directory as hypso-sw.

To include sdr-services as a package is therefore not straightforward with-
out a rewrite of the build procedure in hypso-sw. Rewriting is a possibility, but
it is outside the scope of this thesis. It requires a different method of initializing
compilation, a different maintenance procedure, and special knowledge about BR
packages. Maintainability will be harder to ensure. Compiling sdr-services as
described and documented by hypso-sw is easier and only requires learning the

5Generated from hypso-sw.

4.2. FAULT-TOLERANT OPERATIONS 55

compilation process of hypso-sw.

sdr-services

bin

SDR_SERVICE_LOCATION

.gitignore

Config.in

sdr-services.mk

Figure 4.8: sdr-services dummy package. The sdr-services.mk file copies

sdr-services and m6p-time-sync if they are present in bin/

An effective solution the author has implemented is to compile sdr-services

with the documented procedure, using a script to automate the process. BR then
use a dummy package to copy the files into the correct path in the RO FS. The
paths are the same as the four startup paths discussed in Section 4.2.1. The first
step is to build and create the toolchain. Secondly, use that to build sdr-services

with the documented procedure in hypso-sw. The last step is to rerun BR to in-
clude the files in the image. BR will work even if the executable sdr-services and
m6p-time-sync files are absent in the first run. This is because it copies the en-
tire bin/ from the dummy package, which also contains a dummy file named
SDR_SERVICE_LOCATION. It only contains some text to keep the folder structure af-
ter being processed by git. This file is copied into the TOTEM RO FS and deleted
immediately after. The BR/Linux install command requires at least one file in
the source directory to succeed with ”installing” the directory. The procedure is
visualized in Figure 4.9. The numbers in the gray stapled box correspond to the
process steps listed below.

Run BR as normal
Download archives
and sources if not

cached
Compile Toolchain

Compile Linux and
SW defined by BR

configuration

"Install" bin/
directory into FS

Delete dummy file
from FS

Compile sdr-services
and m6p-time-sync from

hypso-sw

Copty sdr-services and
m6p-time-sync into the

sdr-services package

Create and finalize
the TOTEM images

Run BR as normal "Install" bin/
directory into FS

Delete dummy file
from FS

Create and finalize
the TOTEM images

BR Normal Procedure

Download and Fetch Archives

Compilation of Toolchain and SW

Procedure for sdr-services Package

Creation of Final Images

Compilation of sdr-services

1

2 3

4

Figure 4.9: Flow of operations for first build the BR toolchain, then build sdr-ser

vices, copy the generated files, and then re-run BR to include the files in the image.

1. Create and compile the BR toolchain for the first time. This includes down-
loading all the necessary source files and libraries. A complete toolchain is

56 CHAPTER 4. IMPLEMENTATION, RESULTS, AND DISCUSSION

created.

The first time BR runs, the sdr-services and m6p-time-sync executables are
not present, as they require the toolchain to be compiled. As discussed above,
this is not a problem, as a dummy file is ”installed” and then immediately
removed.

This part of the process is completed by deleting the dummy files from the
target RO FS before the FS is compressed into its final image.

2. Build sdr-services and m6p-time-sync from hypso-sw using the toolchain
created in the previous step. This uses a custom Docker created to compile
SW included with the hypso-sw repository.

3. Copy the sdr-services and m6p-time-sync files into the dummy package
hypso-shared/package/sdr-services/bin/ to prepare for the next step.

4. Re-run BR to include the files copied in the previous step into the finished
RO FS image.

The author’s contribution of compiling and inclusion of sdr-services during
the building of the RO FS image for the TOTEM SDR further improves the re-
sistance and active recovery from adverse events. As mentioned in Sections 2.1.1
and 2.4.2 the entire RO FS is loaded into RAM at startup. This makes the system
functional and operational without the writable FS.

4.2.3 Disabling the Overlay File System as a Last Resort

It might be applicable and necessary to update the sdr-services executable dur-
ing operations. Either due to new features being implemented or fixes for bugs.
Testing of new SW should be done on the ground with the EM version of the TO-
TEM SDR located at the NSSL. However, some issues may not be revealed during
testing on the ground and may only appear after being implemented on the satel-
lite. This can lead to an adverse event, compromising the SDR capabilities. The
S99HypsoTotem start script should handle the recovery of these events by checking
that sdr-services executed properly.

However, some features are unavailable because of the simplistic OS on the TO-
TEMs. This includes service watchdogs like systemd and more robust process man-
agement than the simple ps command.

As mentioned in Sections 4.2.1 and 4.2.2, the sdr-services executable is lo-
cated at multiple paths throughout the RO FS. The start-up script tests all these
paths in the order specified and will set a flag, SDR_SERVICES_STARTED, to indicate
the successful start-up of sdr-services. If the execution of sdr-services fails to
start after testing all paths, the start-up script will try to disable the OverlayFS and
reboot if it is not already disabled. This is implemented in Listing 4.8 by the author
and shown in the flow diagram in Figure 4.10. This will disable the access to the
data0 partition (the RW partition) but can be mounted for manual recovery and
successively re-enable the OverlayFS.

4.2. FAULT-TOLERANT OPERATIONS 57

1 # If sdr-services did not start, disable

2 # overlay to boot without potential broken storage in the R/W part of

NAND↪→

3 # If overlay is already disabled, do not reboot.

4 if ["$SDR_SERVICES_STARTED" = "0"] && ["$(check_overlay)" = "1"];

then↪→

5 echo "[CRITICAL] sdr-services could not be found, disabling

overlay"↪→

6 disable_overlay

7

8 echo "[CRITICAL] rebooting in 5 seconds to disable the overlay"

9 sleep 5

10 # After next reboot, overlay will be disabled.

11 reboot

12 elif ["$SDR_SERVICES_STARTED" = "0"] && ["$(check_overlay)" = "0"];

then↪→

13 echo "[ERROR] Overlay is disabled and could not start

sdr-services from any location!"↪→

14 elif ["$SDR_SERVICES_STARTED" = "1"] && ["$(check_overlay)" = "0"];

then↪→

15 echo "[MESSAGE] Overlay is disabled!"

16 fi

Listing 4.8: Statement to handle the case where the start-up script could not exe-
cute the sdr-services from the four paths.

No

Yes
Is flag for successful

execution set?

Report error and
Disable OverlayYes

No

Is Overlay enabled?

Report error

Run as normal

Figure 4.10: Flow diagram of disabling the OverlayFS based on the successful exe-
cution of sdr-services.

The start-up script includes several helper functions to enable, disable, and
check the OverlayFS. These are based on the U-Boot Linux tools fw_printenv and
fw_setenv . They can modify the U-Boot configuration from the Linux user space.
Listings 4.9 to 4.11 lists the implementation by the author. The U-Boot variable
bootargs is read by Linux during start-up, and the ”overlay=” entry is then for-
warded to the /etc/overlayroot script to create the OverlayFS. If ”overlay=”
is empty or non-existing (i.e. disabled), the script will create a RamFS for RW capa-
bilities while the TOTEM is powered, but lost when unpowered.

During operations, if the OverlayFS is disabled, a helper function

58 CHAPTER 4. IMPLEMENTATION, RESULTS, AND DISCUSSION

1 enable_overlay ()

2 {

3 fw_setenv bootargs "$(fw_printenv -n bootargs_safe)"

overlay=ubi0:data0↪→

4 echo "[CRITICAL] Overlay is enabled, please reboot."

5 }

Listing 4.9: Helper function to enable the OverlayFS at next reboot.

1 disable_overlay ()

2 {

3 fw_setenv bootargs "$(fw_printenv -n bootargs_safe)"

4 echo "[CRITICAL] Overlay is disabled, please reboot."

5 }

Listing 4.10: Helper function to disable the OverlayFS at next reboot.

1 check_overlay ()

2 {

3 fw_printenv | grep -c overlay=

4 }

Listing 4.11:Helper function to check if the OverlayFS is enabled. This will return
a 1 if it is and a 0 if not.

enable_data0 will remount the RW partition to /tmp/data0nand/ where re-
covery can be performed. Then re-enabling the OverlayFS to test if the recovery
succeeded. The start-up script will then handle the startup as usual, trying to start
sdr-services with the OverlayFS enabled and disable it if unsuccessful.

1 enable_data0 ()

2 {

3 if ["$(check_overlay)" = "1"]; then

4 echo "Overlay is enabled, already mounted at /tmp/rwfs"

5 return

6 fi

7 MOUNTPOINT=/tmp/data0nand

8 mkdir -p "${MOUNTPOINT}"

9 mount -t ubifs ubi0:data0 "${MOUNTPOINT}"

10 echo "[MESSAGE] data0 is mounted at ${MOUNTPOINT}"

11 }

Listing 4.12:Helper function to mount the RW part (data0) of the OverlayFS if the
overlay is disabled.

Combining the abovementioned procedures, the final logic is visualized in Fig-

4.2. FAULT-TOLERANT OPERATIONS 59

ure 4.11.

Overlay enabled

Overlay disabled

Start boot procedure

Apply overlay

Success

Fail

Try starting services
from the RW

overlayFS

Success

FailTry starting services
from the RO rootFS

Booted system with
services running

Disable Overlay and
Restart

Loss of SDR

Figure 4.11: Flow diagram of the startup procedure with the disabling of the Over-
layFS.

There is, however, a problem with this approach. It is possible to make the start-
up script ”believe” that the sdr-services is started if the sdr-services starts
and then stops after a short while6. This is hard to detect because of the limited
watchdog capabilities of the TOTEM Linux. It is easy for the operators to detect this
as communication to the SDR is not working, and they can take action to disable the
overlay without interaction with Linux. Some solutions to this issue are internally
discussed in NSSL, and the most promising solution is presented in Section 5.2.

By disabling the OverlayFS if no execution path functions, the system’s resili-
ence’s reaction and recovery are further improved. This will also protect against
malicious actions to compromise the system, as the RO FS can not be written to,
and the entire OverlayFS can be disabled. Contributions by the author enabled
the detection and reaction of the script by careful research and development. The
helper functions were developed to improve the system’s ease of use and robust-
ness.

4.2.4 Testing of the S99HypsoTotem Startup Script

Testing critical systems to ensure resilience is essential. The author created scenar-
ios that the S99HypsoTotem startup script can act upon, and the logs can be studied
to acquire the test results. As the script can handle missing files, startup crashes,
and unsuccessful execution, test cases for these scenarios are necessary.

The script lists paths where the sdr-services executables are located as dis-
cussed in Section 4.2.1. For it to reach the third start path, the two preceding paths
must be broken. Broken in the testing conditions are eithermissing, crashes, or stalls
within the wait period.

6Longer than the waiting period in the start-up script, which is 5 seconds.

60 CHAPTER 4. IMPLEMENTATION, RESULTS, AND DISCUSSION

In Table 4.2, the different scenarios are presented as the ”Adverse events”. The
letters A-D represent the four paths mentioned at the end of Section 4.2.1. The
resulting starting path is recorded when the OverlayFS is enabled and disabled
and when the environmental variables are not set.

The data is acquired by studying the logs generated by S99HypsoTotem. An ex-
ample is in Listing 4.13. The test case is when the OverlayFS is enabled, and all
four (A, B, C, and D) paths are broken. The logs generated by m6p-time-sync and
sdr-services are omitted in this example. All the test logs are in Appendix B.

Table 4.2: Startup paths resulting from testing different scenarios for the
S99HypsoTotem startup script. The letters A-D represent the four startup paths dis-
cussed in Section 4.2.1. The single letters represent the successful startup paths.
Broken means either non-existing, stalls, or crashes.

Adverse Event OverlayFS
Enabled

OverlayFS
Disabled

Environment Vari-
ables Not Set

None A A A
A Crashes B B D
A Stalls B B D
A Broken B B D
A+B Broken C C D
A+B+C Broken D D D
A+B+C+D Broken Disable

Overlay
Loss of SDR Disable Overlay/Loss

of SDR

1 ################################ HYPSO TOTEM STARTUP SCRIPT BELOW

###############################↪→

2 [MESSAGE] Set environment varialbes from /etc/profile.d/hypso_sdr.sh.

3 [MESSAGE] Starting m6p-time-sync from /home/totem/hypso/m6p-time-sync.

4 ...

5 [ERROR] /home/totem/hypso/sdr-services does not exist. Trying next

location↪→

6 [ERROR] /usr/bin/sdr-services does not exist. Trying next location

7 [ERROR] /usr/local/bin/sdr-services does not exist. Trying next

location↪→

8 [ERROR] /bin/sdr-services does not exist. Trying next location

9 [CRITICAL] sdr-services could not be found, disabling overlay

10 [CRITICAL] Overlay is disabled, please reboot.

Listing 4.13: Test results in the log from S99HypsoTotem, with logs from the exe-
cutable removed.

The results from the tests are presented in Table 4.2. As can be seen, the correct
paths are used for every ”Adverse Event”, and the sdr-services only fails to start
when all four paths are broken, and the OverlayFS is disabled. Cases, when the
environment variables are not set have the effect of removing paths B and C from
the list of starting paths, as expected.

4.3. COMPILATION OF SDR APPLICATIONS 61

4.3 Utilizing the BRToolchain for a flexible and easy-to-use
SDR applications development environment

As the HYPSO mission is set to have at least 2 satellites, where one (HYPSO-2) will
include an SDR, the need for an environment to develop and test applications is
essential. While one SDR is in the satellite, a second SDR is installed in the lidsat
at the NSSL. Both SDRs are of the TOTEM type, but as mentioned and discussed in
Section 4.1, the toolchain, libraries, and FW have differences.

However, because of how the different FWs and toolchains are created and struc-
tured, discussed in Section 4.1, the SDR applications are equal. This means that all
applications can be developed, then compiled to work with the different versions
of the TOTEM SDR. The EM version of the totem, the totem-em, is the most critical
as it tests the applications on the ground before they are transferred to the satellite.

Together with NSSL, the author has created a separate repository containing the
SDR applications, named sdr-applications. This enables the usual git workflow
with branches, commits, issues and PRs.

4.3.1 Optmizing the Structure for Agile and Easy Development

An easy-to-use and maintainable framework is necessary to develop and compile
the applications for the different TOTEM versions. A standardized structure can
be obtained by compiling the applications by utilizing make ’s framework and fea-
tures [67]. The compilation process can then be fully automated by standardizing
the structure for each application. The suggested process flow diagram is shown in
Figure 4.12.

Invoke make in
repository root

Initialize Docker
environment with
correct toolchain

No

Yes

Invoke make to
compile all?

For each application
defined in Makefile

Move to the project
directory

Compile project
automatically based
on standard project

Makefile

Compile manual as
normal with make

and cmake

Yes

No

More projects to
compile?

Compiled SDR-
applications

Figure 4.12: Flow diagram for how applications can be recursively, automatically
built.

Each application is structured as individual projects7. The ”recipes” for make

(the Makefile) is central, as it enables each application to be compiled by just in-
voking make . The standardized project is not strict on the structure as long as a
Makefile with the required ”recipes” are included in the project’s root.

Following the structure proposed in Figure 4.13 for every single application,

7Each project could be a separate repository and could be compiled isolated from the other appli-
cations.

62 CHAPTER 4. IMPLEMENTATION, RESULTS, AND DISCUSSION

make-project

<Source files in any structure>

<...>

.gitignore

Makefile

README.md

Figure 4.13: Structure for a single application. Note that this structure should be
able to be standalone.

these can be recursively processed after each other. Each project Makefile is subject
to including a set of standardized ”recipes”, as shown in Appendix A.5.

make The default ”recipe” shall compile the final project. This includes setting
all the correct compiler flags and including libraries.

make clean The clean ”recipe” shall clean the project directory of output files
and other helper files.

make bundle The bundle ”recipe” shall copy and move the output files to a
different directory to easily upload multiple applications simultaneously.

Besides these three, each project Makefile can contain other necessary recipes
and variables. The story changes a bit for CMake projects. The original approach is
not optimal as CMake is a tool to create Makefiles and will overwrite the standard-
ized project Makefile. The author’s solution is to modify the name of the Makefile
to Makefile.mk and modify the logic to recursively invoke make to respect CMake
projects. This is shown in Appendix A.6

An ”apps” Makefile in apps/Makefile recursively goes through each appli-
cation project directory and invokes the make command for each project, utilizing
the standardized structure, specifically the standard ”recipes”. This file is shown
in Appendix A.4

The main script can subsequently create a structure that includes all the appli-
cations in an output directory for mass transfer of the applications. This can then
be uploaded to the development SDR for testing and eventually to the satellite(s)
for operations.

By adhering to the standardized structure implemented in PR sdr-applica

tions#6 by the author, it is possible to ensure a well-organized, maintainable, and
modularized SDR applications development environment. Because of the modu-
larization of each project, multiple developers can develop projects in multiple
branches. PRs are then created from the branches to be included in the ”main”
branch in the repository to increase the code quality.

4.3. COMPILATION OF SDR APPLICATIONS 63

sdr-applications

apps

<project directories>

<...>

Makefile

docs

<Documentation structure>

<...>

README.md

scripts

<Helper scripts>

.gitignore

Makefile

README.md

Figure 4.14: Structure for the repository containing all the applications. Each
project is residing in apps/ . Note the multiple layers of Makefiles from the
root and towards the project.

4.3.2 Utilizing Multiple Toolchains for Compilation

Multiple toolchains are needed to compile SW for the different TOTEM SDRs, so
a toolchain ”agnostic” Docker environment is desired. Since all versions of the
sdr-system BR repositories follow the same structure, discussed in Section 4.1,
this is trivial.

Each version of the sdr-system (sdr-system, sdr-system-h2 etc.) contains (af-
ter building) a complete toolchain and the file cross-compile-env . The

cross-compile-env file contains environment variables with paths to the tools
in the toolchain. Linux usually has these variables set, but custom variables are
used as the TOTEM SDRs requires a custom toolchain. make have a built-in fea-
ture to automatically use these variables where applicable, notably when compiling
C/C++.

A custom Docker is used to separate the use of the custom toolchain from the
host computer. The specific toolchain version is supplied to the Docker run com-
mand, which dynamically mounts the correct toolchain for compiling, making the
Docker ”toolchain-agnostic”. This procedure is performed by the

scripts/run-docker.sh script to instantiate and build Docker to the required
specification.

Most of the development is done and tested on the EM TOTEM, so the default
sdr-system (sdr-system-em) toolchain is used by default. The root Makefile

handles the initialization of Docker and enables the change of toolchains. This

64 CHAPTER 4. IMPLEMENTATION, RESULTS, AND DISCUSSION

Makefile is shown in Appendix A.3. make allows for overwriting variables by
supplying the variable and a new value to the command. To change the toolchain
from sdr-system to the sdr-system-h2, invoke make PLATFORM=h2 . This will
be forwarded to the scripts/run-docker.sh script, and the correct toolchain
is used. Any valid designator discussed in Section 4.1, like h2 can be used. Each
toolchain must be cloned/downloaded to the same root directory as sdr-applica
tions, as the ”root” Makefile checks for toolchains there.

.

sdr-applications

<Repository for SDR applications>

sdr-system

<Build system and toolchain for the EM TOTEM SDR>

sdr-system-h2

<Build system and toolchain for the HYPSO-2 FM TOTEM SDR>

Figure 4.15:Organization of the different repositories containing the toolchains for
the different TOTEM SDRs and the sdr-applications repository.

These essential contributions enable the NSSL to rapidly develop SDR appli-
cations for a range of different TOTEM SDRs. This is achieved by implementing
a toolchain ”agnostic” Docker environment to easy interchange the different tool-
chains with a simple command.

4.4 Designing a Safe Development Environment for the Fli-
ght Model SDR

Although the TOTEM is a space-proven and space-hardened HW designed to sur-
vive the harsh environment during launch and its lifecycle in space, it is still good
practice to prevent anything undesirable from happening.

During testing and development, dust and grease from handling the TOTEM
may distort or even damage the thermal and other properties. Electrostatic Dis-
charge (ESD) is a hazard during handling of electronics HW that must be consid-
ered. Not touching the device directly is the best practice in this case.

Development and testing are necessary to maintain operations and add valuable
new capabilities. According to the user manual [68] and the update procedure [41],
the TOTEM should only be handled while wearing latex gloves and in an ESD-safe
area. A safe environment is designed to minimize the risk of damaging the TOTEM
during development and reduce the need to prepare and set up the TOTEM to be
used.

The safe environment shall adhere to a set of requirements as listed below. These
requirements were detected for a desirable and safe environment while still adher-
ing to the maximum and minimum values specified in the TOTEM SDR datasheet

4.4. FLIGHT MODEL DEVELOPMENT ENVIRONMENT 65

and Interface Control Documents (ICD) [40, 41]

GSE-ENV-010 The enclosure shall be ESD safe.
Removes the risk of being touched and causing an ESD.

GSE-ENV-020 The enclosure shall be airtight.
Minimizes the settlement of dust and other contaminants from the air.

GSE-ENV-030 The enclosure shall include external power connection(s), for +5V
and ground.
Reduces the risk of connecting the power wrong and reduces the handling of
the FM.

GSE-ENV-060 The enclosure shall include an external CAN bus connection.
Satellite bus that enables communications between devices in the satellite.

GSE-ENV-050 The enclosure shall include an external 50Ω antenna connection.
Connection for an external antenna. It can be an actual antenna, measure-
ment device, or a dummy load.

GSE-ENV-060 The enclosure shall include an external Universal Asynchronous
Receiver/Transmitter (UART) connection.
Connections for communicating with the TOTEM for development purposes.

GSE-ENV-070 The enclosure should include an external ethernet connection.
Connections for communicating with the TOTEM over IP for development
purposes.

GSE-ENV-080 The enclosure should include an external JTAG connection.
Connections for communicating and programming the SoC within the TO-
TEM for development purposes.

As the shipping of the TOTEM to NA is due in August 2023, the safe environ-
ment will be temporary. That does not allow for any deviations from the require-
ments but opens up for simplifying the solutions for cable management and rout-
ing.

The following items were chosen as the final components for a safe environment
that meets requirements GSE-ENV-010 through GSE-ENV-060.

• ESD safe plastic box with a latched lid.

• Metal standoffs with corresponding metal nuts.

• DBUS9 connector with flat-cable and hand-made connections to the CAN bus
connectors on the TOTEM.

• Through-hole banana plugs for power, one red and one black.

• Through-hole antenna adapter provided by Alén Space.

66 CHAPTER 4. IMPLEMENTATION, RESULTS, AND DISCUSSION

• USB to UART with long cables with the correct connector for usage with the
TOTEM.

Only the power and antenna have mounted connectors on the box’s walls. CAN
and UART have shorter cables fed through smaller holes, and friction fits in the
box.

The development connectors specified in GSE-ENV-070 and GSE-ENV-080 were
not prioritized as the components necessary were unavailable at the time of imple-
mentation.

The final assembly can be seen in Figure 4.16.

Figure 4.16: The finished safe environment for the FM version of the TOTEM. al-
ready connected to the HYPSO-2 LidSat.

These contributions are essential for the development of the FM TOTEM SDR.
The safe environment enables the NSSL to develop rapidly and test SW on the
model that is eventually to be sent into space without taking unnecessary risks
regarding the handling of the FM.

Chapter 5

Conclusion

Don’t adventures ever have an end? I
suppose not. Someone else always has
to carry on the story.

Bilbo Baggins

At the start of this project, the state of the development environments for the
TOTEMs was functional but had a very steep learning curve and not a clear sepa-
ration of what was done by NSSL and what was done by Alén Space. Maintaining
two build systems for two different TOTEMs posed a risk of breaking during the
project’s life. Compilation of the SDR applications were also tricky to understand
for less experienced system developers and programmers, thus prone to human
errors. As most of the users and developers are Bachelor’s and Master’s students,
their time on the project is limited. Hence, it is important that they can focus on,
for example, their SDR application development instead of struggling and spend-
ing time setting up the build system and development environments.

The original built-in resilience of the payload to adverse events and conditions
was insufficient to recover from all relevant adverse events and conditions. This
could lead to losing the SDR in space, where repairs would be impossible.

5.1 Contributions and Impact

Utilizing features from BR, the author contributes to a clear separation of Alén
Space’s original configuration of the TOTEM, and the additions made by the author
improved the system’s maintainability and usability. External trees split the build
system into three separate directories, one for the original fromAlén Space and two
from NSSL. Payload code adaptions made by NSSL and the author are split to sepa-
rate between the adaptations for a unique TOTEM and adaptations that should be
applied to all TOTEMs, making a reusable system and improving maintainability
further. The shared external tree was distributed and version controlled using git
submodules between all TOTEMs, which promotes reusability. These changes and

67

68 CHAPTER 5. CONCLUSION

removing dependencies completed in the specialization project [1] made the build
systems highly portable, re-creatable, maintainable, and robust.

By creating a custom and automated development environment using Docker,
the compilation of SDR-applications SW written in C/C++ enables rapid develop-
ment and ease of use for time-constrained students. The toolchains used to com-
pile the TOTEM SDR FW were also automated to be included and used to compile
other SW that run on the TOTEM SDR. Switching between the specific hardware
toolchains is done by specifying simple compiler flags.

System resilience in the harsh environment of space is essential. As the system
configuration of the TOTEM was limited, multiple mission-critical SW locations
were implemented to increase the passive resistance and improve the recovery and
reaction capabilities to adverse events and conditions. The original start-up script
was modified to handle the different events that can cause the SW not to start,
which made the system more robust and will possibly extend the lifespan of the
TOTEM SDR mission.

By combining the different changes and adaptations made to the build system
and system resilience, the longevity of the HYPSO-2 satellite mission is ensured, as
well as enabling developers to build applications and utilize the SDR for the entire
lifetime of the satellite.

5.2 Future Work

During the later stages of the development of the TOTEM SDR system resilience,
there were some concerns that the crucial sdr-services started but did nothing,
like an infinite loop. If this happens during startup, the startup script should be
able to handle it. However, because of the limitation of the TOTEM SDR’s OS, it is
a challenge to detect erroneous execution after this point.

The question is if it is possible to disable the overlayFS without having con-
tact with the SDR. U-Boot [69] have mechanisms to detect failures during boot
and change the boot process accordingly without interacting with Linux. U-Boot
implements a ”Boot Limit”, that counts the amount of boot attempts before suc-
cess. When reaching the boot limit, an alternative boot command is used instead.
This command disables the overlay by setting the bootargs entry, mentioned in
Listings 4.9 and 4.10, to the values of bootargs_safe.

As the documentation of U-Boot is hard to come by, these mechanisms are not
fully understood. The options bootlimit and altbootcmd is set, indicating that the
mechanism is active. During testing, the author could not get this to work properly.
With this mechanism, it might be possible to rapidly power up and power down the
SDR to force the boot procedure to use the altbootcmd, which disables the overlay.
After the next reboot, the TOTEM SDR only loads the RO FS, which will put the
system in a known working state as discussed in Section 4.2.3.

Bibliography

[1] Øyvind Paulsen Skaaden, “System integration, maintainability, and portabil-
ity of an embedded linux system for use with a CubeSat SDR payload,” In-
ternal Document, Specialization Project in Embedded Systems, Norwegian
University of Science and Technology, Trondheim, Dec. 2022, 33 pp.

[2] NTNU Small Satellite Lab. “HYPSO-project.” (), [Online]. Available: http:
//hypso.space/ (visited on Apr. 26, 2023).

[3] HYPSO Project Team,HYPSO-MRD-001 HYPSO-1Mission Requirements Doc-
ument. HYPSO Internal Document, Dec. 4, 2020.

[4] HYPSO Project Team, HYPSO-2-MRD-001 HYPSO-2 Mission Requirements
Document. HYPSO Internal Document, Aug. 29, 2022.

[5] M. E. Grotte, R. Birkeland, E. Honore-Livermore, S. Bakken, J. L. Garrett,
E. F. Prentice, F. Sigernes, M. Orlandic, J. T. Gravdahl, and T. A. Johansen,
“Ocean color hyperspectral remote sensing with high resolution and low la-
tencythe HYPSO-1 CubeSat mission,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 60, pp. 1–19, 2022, issn: 0196-2892, 1558-0644. doi: 10
.1109/TGRS.2021.3080175. [Online]. Available: https://ieeexplore.iee
e.org/document/9447150/ (visited on Nov. 16, 2022).

[6] Cal poly cubesat laboratory. “CubeSat,” CubeSat. (2023), [Online]. Available:
https://www.cubesat.org (visited on Jun. 5, 2023).

[7] Cal Poly CubeSat Laboratory,CP-CDS-R14.1 CubeSat Design Specification (CP-
CDS-R14.1), 14.1. Cal Poly CubeSat Laboratory, Feb. 2022. [Online]. Avail-
able: https://www.cubesat.org/s/CDS-REV14_1-2022-02-09.pdf (visited
on Dec. 15, 2022).

[8] NanoAvionics. “Nanosatellites & CubeSats,” NanoAvionics. (), [Online]. Avail-
able: https://nanoavionics.com/ (visited on Apr. 29, 2023).

[9] Canadian Space Agency. “CubeSats in a nutshell,” Canadian Space Agency.
Last Modified: 2022-05-06. (Apr. 12, 2017), [Online]. Available: https://w
ww.asc-csa.gc.ca/eng/satellites/cubesat/what-is-a-cubesat.asp

(visited on Dec. 15, 2022).

[10] SpaceX. “SmallSat rideshare program,” SpaceX - Rideshare. (Jun. 7, 2023),
[Online]. Available: http://www.spacex.com/rideshare (visited on Jun. 7,
2023).

69

http://hypso.space/
http://hypso.space/
https://doi.org/10.1109/TGRS.2021.3080175
https://doi.org/10.1109/TGRS.2021.3080175
https://ieeexplore.ieee.org/document/9447150/
https://ieeexplore.ieee.org/document/9447150/
https://www.cubesat.org
https://www.cubesat.org/s/CDS-REV14_1-2022-02-09.pdf
https://nanoavionics.com/
https://www.asc-csa.gc.ca/eng/satellites/cubesat/what-is-a-cubesat.asp
https://www.asc-csa.gc.ca/eng/satellites/cubesat/what-is-a-cubesat.asp
http://www.spacex.com/rideshare

70 BIBLIOGRAPHY

[11] M. Dillinger, K. Madani, and N. Alonistioti, Eds., Software defined radio: ar-
chitectures, systems, and functions, Wiley series in software radio, Hoboken,
NJ: Wiley, 2003, 416 pp., isbn: 978-0-470-85164-7.

[12] A. Pini. “Learn the fundamentals of software-defined radio and how to use
it with a low-cost module,” Digi-Key Electronics. (Jun. 30, 2020), [Online].
Available: https://www.digikey.no/en/articles/learn-the-fundament
als-of-software-defined-radio (visited on Dec. 12, 2022).

[13] Alén Space. “Alén space | nanosatellites - CubeSats - small satellites,” Alén
Space. (), [Online]. Available: https : / / alen . space/ (visited on Dec. 6,
2022).

[14] A. Holt and C.-Y. Huang, Embedded Operating Systems: A Practical Approach
(Undergraduate Topics in Computer Science), 2nd ed. 2018. Cham: Springer
International Publishing : Imprint: Springer, 2018, 1 p., isbn: 978-3-319-
72977-0. doi: 10.1007/978-3-319-72977-0.

[15] Wikipedia Collaborators, Operating system, in Wikipedia, Page Version ID:
1115693051, Oct. 12, 2022. [Online]. Available: https://en.wikipedia
.org/w/index.php?title=Operating_system&oldid=1115693051 (visited
on Nov. 17, 2022).

[16] Wikipedia Collaborators, Linux on embedded systems, in Wikipedia, Page Ver-
sion ID: 1110104595, Sep. 13, 2022. [Online]. Available: https://en.wikip
edia.org/w/index.php?title=Linux_on_embedded_systems&oldid=1110

104595 (visited on Nov. 17, 2022).

[17] David A Rusling, Processes. The Linux Documentation Project, 1999. [On-
line]. Available: https://tldp.org/LDP/tlk/kernel/processes.html
(visited on Jun. 26, 2023).

[18] International Business Machines (IBM) Corporation, System/360 Model 67
Time Sharing System Preliminary Technical Summary (S/360-00). 1966, vol. C20-
1647-0.

[19] A. Bhattacharjee and D. Lustig, Architectural and operating system support for
virtual memory (Synthesis lectures on computer architecture 42). San Rafael,
California: Morgan & Claypool Publishers, 2018, 157 pp., isbn: 978-1-62705-
602-1. doi: 10.2200/S00795ED1V01Y201708CAC042.

[20] Filesystems, in collab. with L. Wirzenius, Joanna Oja, Stephen Stafford, and
Alex Weeks. The Linux Documentation Project. [Online]. Available: https:
//tldp.org/LDP/sag/html/filesystems.html (visited on Apr. 23, 2023).

[21] BlackBerry Limited. “Embedded OS, support and services | RTOS, hypervi-
sor | BlackBerry QNX.” (2022), [Online]. Available: https://blackberry.q
nx.com/en.html (visited on Apr. 27, 2023).

[22] Real Time Engineers Ltd. “FreeRTOS - market leading RTOS (real time op-
erating system) for embedded systems with internet of things extensions,”
FreeRTOS. (2023), [Online]. Available: https://www.freertos.org/index
.html (visited on Apr. 27, 2023).

[23] Microsoft. “Windows for IoT.” (2023), [Online]. Available: https://develo
per.microsoft.com/en-us/windows/iot/ (visited on Apr. 27, 2023).

https://www.digikey.no/en/articles/learn-the-fundamentals-of-software-defined-radio
https://www.digikey.no/en/articles/learn-the-fundamentals-of-software-defined-radio
https://alen.space/
https://doi.org/10.1007/978-3-319-72977-0
https://en.wikipedia.org/w/index.php?title=Operating_system&oldid=1115693051
https://en.wikipedia.org/w/index.php?title=Operating_system&oldid=1115693051
https://en.wikipedia.org/w/index.php?title=Linux_on_embedded_systems&oldid=1110104595
https://en.wikipedia.org/w/index.php?title=Linux_on_embedded_systems&oldid=1110104595
https://en.wikipedia.org/w/index.php?title=Linux_on_embedded_systems&oldid=1110104595
https://tldp.org/LDP/tlk/kernel/processes.html
https://doi.org/10.2200/S00795ED1V01Y201708CAC042
https://tldp.org/LDP/sag/html/filesystems.html
https://tldp.org/LDP/sag/html/filesystems.html
https://blackberry.qnx.com/en.html
https://blackberry.qnx.com/en.html
https://www.freertos.org/index.html
https://www.freertos.org/index.html
https://developer.microsoft.com/en-us/windows/iot/
https://developer.microsoft.com/en-us/windows/iot/

BIBLIOGRAPHY 71

[24] EE Times and Embedded, “2019 embedded markets study,” Mar. 2019. [On-
line]. Available: https://www.embedded.com/wp-content/uploads/2019
/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf (visited on
Apr. 27, 2023).

[25] The kernel development community. “CPU architectures the linux kernel
documentation.” (), [Online]. Available: https://docs.kernel.org/arch.h
tml (visited on Nov. 25, 2022).

[26] Computer data storage, in Wikipedia, Page Version ID: 1151091968, Apr. 21,
2023. [Online]. Available: https://en.wikipedia.org/w/index.php?tit
le=Computer_data_storage&oldid=1151091968#cite_ref-3 (visited on
Apr. 23, 2023).

[27] Lars Wirzenius, Joanna Oja, Stephen Stafford, and Alex Weeks, The Linux
System Administrator’s Guide, 0.9. The Linux Documentation Project. [On-
line]. Available: https://tldp.org/LDP/sag/html/index.html (visited
on Apr. 23, 2023).

[28] The kernel development community. “UBI file system the linux kernel doc-
umentation.” (), [Online]. Available: https://docs.kernel.org/filesyste
ms/ubifs.html (visited on Nov. 25, 2022).

[29] Memory TechnologyDevices. “MTD - general documentation,”Memory Tech-
nology Device (MTD) Subsystem for Linux. (), [Online]. Available: http://w
ww.linux- mtd.infradead.org/doc/general.html (visited on Nov. 29,
2022).

[30] Memory Technology Devices. “UBI - unsorted block images,” Memory Tech-
nology Device (MTD) Subsystem for Linux. (), [Online]. Available: http://w
ww.linux-mtd.infradead.org/doc/ubi.html (visited on Nov. 29, 2022).

[31] Memory TechnologyDevice. “NANDdata,”Memory TechnologyDevice (MTD)
Subsystem for Linux. (), [Online]. Available: http://www.linux-mtd.infra
dead.org/doc/nand.html (visited on Nov. 29, 2022).

[32] X. Jimenez, D. Novo, and P. Ienne, “Wear unleveling: Improving NAND flash
lifetime by balancing page endurance,” in 12th USENIX Conference on File
and Storage Technologies (FAST 14), Santa Clara, CA: USENIX Association,
Feb. 2014, pp. 47–59, isbn: ISBN 978-1-931971-08-9. [Online]. Available: ht
tps://www.usenix.org/conference/fast14/technical-sessions/prese

ntation/jimenez (visited on Dec. 1, 2022).

[33] Western Digital, NAND Evolution and its Effects on Solid State Drive (SSD)
Useable Life, WP-001-01R. Nov. 12, 2011. [Online]. Available: https://we
b.archive.org/web/20111112000643/http://www.wdc.com/WDProduc

ts/SSD/whitepapers/en/NAND_Evolution_0812.pdf (visited on Jun. 25,
2023).

[34] The kernel development community. “Overlay filesystem the linux kernel
documentation.” (2023), [Online]. Available: https://docs.kernel.org/f
ilesystems/overlayfs.html (visited on May 4, 2023).

[35] Buildroot Association. “Buildroot - making embedded linux easy.” (2023),
[Online]. Available: https://buildroot.org/ (visited on Apr. 26, 2023).

https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://docs.kernel.org/arch.html
https://docs.kernel.org/arch.html
https://en.wikipedia.org/w/index.php?title=Computer_data_storage&oldid=1151091968#cite_ref-3
https://en.wikipedia.org/w/index.php?title=Computer_data_storage&oldid=1151091968#cite_ref-3
https://tldp.org/LDP/sag/html/index.html
https://docs.kernel.org/filesystems/ubifs.html
https://docs.kernel.org/filesystems/ubifs.html
http://www.linux-mtd.infradead.org/doc/general.html
http://www.linux-mtd.infradead.org/doc/general.html
http://www.linux-mtd.infradead.org/doc/ubi.html
http://www.linux-mtd.infradead.org/doc/ubi.html
http://www.linux-mtd.infradead.org/doc/nand.html
http://www.linux-mtd.infradead.org/doc/nand.html
https://www.usenix.org/conference/fast14/technical-sessions/presentation/jimenez
https://www.usenix.org/conference/fast14/technical-sessions/presentation/jimenez
https://www.usenix.org/conference/fast14/technical-sessions/presentation/jimenez
https://web.archive.org/web/20111112000643/http://www.wdc.com/WDProducts/SSD/whitepapers/en/NAND_Evolution_0812.pdf
https://web.archive.org/web/20111112000643/http://www.wdc.com/WDProducts/SSD/whitepapers/en/NAND_Evolution_0812.pdf
https://web.archive.org/web/20111112000643/http://www.wdc.com/WDProducts/SSD/whitepapers/en/NAND_Evolution_0812.pdf
https://docs.kernel.org/filesystems/overlayfs.html
https://docs.kernel.org/filesystems/overlayfs.html
https://buildroot.org/

72 BIBLIOGRAPHY

[36] Yocto Project. “Yocto project it’s not an embedded linux distribution it cre-
ates a custom one for you.” (2023), [Online]. Available: https://www.yocto
project.org/ (visited on Apr. 26, 2023).

[37] The Buildroot developers, The Buildroot User Manual. Buildroot Association,
Mar. 12, 2023. [Online]. Available: https://buildroot.org/downloads/ma
nual/manual.html (visited on Apr. 26, 2023).

[38] NanoAvionics. “6u nanosatellite bus m6p,” NanoAvionics. (), [Online]. Avail-
able: https://nanoavionics.com/small-satellite-buses/6u-nanosate
llite-bus-m6p/ (visited on Apr. 29, 2023).

[39] R. Birkeland, G. Quintana-Diaz, E. Honore-Livermore, T. Ekman, F. A. Agelet,
and T. A. Johansen, “Development of a multi-purpose SDR payload for the
HYPSO-2 satellite,” in 2022 IEEE Aerospace Conference (AERO), Big Sky, MT,
USA: IEEE, Mar. 5, 2022, pp. 1–11, isbn: 978-1-66543-760-8. doi: 10.1109
/AERO53065.2022.9843447. [Online]. Available: https://ieeexplore.iee
e.org/document/9843447/ (visited on Nov. 16, 2022).

[40] Alén Space, ICD - TOTEM Motherboard & UHF Frontend, 1.0. Alén Space,
internal document, Dec. 7, 2022. (visited on Jun. 25, 2023).

[41] Alén Space, TOTEM - Motherboard User Manual, 1.1. Alén Space, internal
document, Apr. 28, 2021, 34 pp. (visited on Jun. 18, 2023).

[42] Alén Space, TOTEM - UHF Frontend - Datasheet, 1.1. Alén Space, internal
document, Oct. 8, 2018, 13 pp. (visited on Dec. 13, 2022).

[43] Advanced Micro Devices, Inc. “Zynq-7000 SoC,” AMD Xilinx. (2022), [On-
line]. Available: https://www.xilinx.com/products/silicon-devices/s
oc/zynq-7000.html (visited on Dec. 6, 2022).

[44] Analog Devices, AD9364 Datasheet, C. Analog Devices, Jul. 2014, 32 pp. [On-
line]. Available: https://www.analog.com/en/products/ad9364.html#pr
oduct-overview (visited on Dec. 6, 2022).

[45] Analog Devices, Linux kernel - variant from analog devices, inc. original-date:
2012-10-08T12:49:16Z, Nov. 17, 2022. [Online]. Available: https://github
.com/analogdevicesinc/linux (visited on Nov. 23, 2022).

[46] libcsp, The cubesat space protocol, original-date: 2011-10-07T10:35:34Z, Dec. 11,
2022. [Online]. Available: https://github.com/libcsp/libcsp (visited on
Dec. 14, 2022).

[47] pothosware, Soapy SDR - vendor and platform neutral SDR support library.
original-date: 2014-10-04T19:40:28Z, Dec. 12, 2022. [Online]. Available: h
ttps://github.com/pothosware/SoapySDR (visited on Dec. 14, 2022).

[48] GNU Radio project. “GNU radio - the free & open source radio ecosystem,”
GNU Radio. (2022), [Online]. Available: https://www.gnuradio.org/ (vis-
ited on Dec. 14, 2022).

[49] J. Brtis andM.Mcevilley, Systems Engineering for Resilience, MP1909495.MITRE,
Jul. 1, 2019. [Online]. Available: https://www.researchgate.net/publ
ication/334549424_Systems_Engineering_for_Resilience (visited on
May 8, 2023).

https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://nanoavionics.com/small-satellite-buses/6u-nanosatellite-bus-m6p/
https://nanoavionics.com/small-satellite-buses/6u-nanosatellite-bus-m6p/
https://doi.org/10.1109/AERO53065.2022.9843447
https://doi.org/10.1109/AERO53065.2022.9843447
https://ieeexplore.ieee.org/document/9843447/
https://ieeexplore.ieee.org/document/9843447/
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.analog.com/en/products/ad9364.html#product-overview
https://www.analog.com/en/products/ad9364.html#product-overview
https://github.com/analogdevicesinc/linux
https://github.com/analogdevicesinc/linux
https://github.com/libcsp/libcsp
https://github.com/pothosware/SoapySDR
https://github.com/pothosware/SoapySDR
https://www.gnuradio.org/
https://www.researchgate.net/publication/334549424_Systems_Engineering_for_Resilience
https://www.researchgate.net/publication/334549424_Systems_Engineering_for_Resilience

BIBLIOGRAPHY 73

[50] D. Firesmith, System Resilience: What Exactly is it?CarnegieMellon’s Software
Engineering Institute: Carnegie Mellon University, Software Engineering In-
stitute’s Insights (blog), Nov. 25, 2019. [Online]. Available: https://insight
s.sei.cmu.edu/blog/system-resilience-what-exactly-is-it/ (visited
on May 8, 2023).

[51] National Aeronautics and Space Administration, NASA Systems Engineering
Handbook Revision 2, NASA SP-2016-6105 Rev2. NASA, Jun. 20, 2017. [On-
line]. Available: https://www.nasa.gov/sites/default/files/atoms
/files/nasa_systems_engineering_handbook_0.pdf (visited on Jun. 19,
2023).

[52] European Cooperation for Space Standardization, ECSS-E-ST-10C Rev.1 Sys-
tem engineering general requirements (15 February 2017), ECSS-E-ST-10C Rev.1.
ECSS, Feb. 15, 2017. [Online]. Available: https://ecss.nl/standard/ecss
-e-st-10c-rev-1-system-engineering-general-requirements-15-febr

uary-2017/ (visited on Jan. 25, 2023).

[53] V. Cripps, “Phases of an ESA hardware project expained,” Swedish Institute
of Space Physics, Uppsala, May 23, 2018. [Online]. Available: https://www
.space.irfu.se/seminars/20180523-Cripps-HW_Project.pdf (visited on
Jun. 19, 2023).

[54] StackOverflow. “Stack overflow developer survey 2022,” StackOverflow. (May
2022), [Online]. Available: https://survey.stackoverflow.co/2022/ (vis-
ited on Jun. 16, 2023).

[55] Git developers. “Git,” Git. (2023), [Online]. Available: https://git-scm.co
m/ (visited on May 4, 2023).

[56] S. Chacon and B. Straub, Pro Git, 2.1.391-2-g2fbc35b8. Apress, Apr. 27, 2023.
[Online]. Available: https://git-scm.com/book/en/v2 (visited on May 4,
2023).

[57] GitHub Inc. “GitHub - build software better, together,” GitHub. (2023), [On-
line]. Available: https://github.com (visited on May 4, 2023).

[58] GitHub Inc. “About GitHub,” GitHub. (2023), [Online]. Available: https:
//github.com/about (visited on May 4, 2023).

[59] GitHub Inc. “GitHub features: The right tools for the job,” GitHub. (2023),
[Online]. Available: https://github.com/features/ (visited on Jun. 17,
2023).

[60] A. Mundra, S. Misra, and C. A. Dhawale, “Practical scrum-scrum team: Way
to produce successful and quality software,” in 2013 13th International Con-
ference on Computational Science and Its Applications, Ho Chi Minh City, Viet-
nam: IEEE, Jun. 2013, pp. 119–123, isbn: 978-0-7695-5045-9. doi: 10.1109
/ICCSA.2013.25. [Online]. Available: http://ieeexplore.ieee.org/docu
ment/6681108/ (visited on Jun. 19, 2023).

[61] GitHub Inc. “About forks,” GitHub Docs. (2023), [Online]. Available: https:
//docs.github.com/en/pull-requests/collaborating-with-pull-requ

ests/working-with-forks/about-forks (visited on May 29, 2023).

https://insights.sei.cmu.edu/blog/system-resilience-what-exactly-is-it/
https://insights.sei.cmu.edu/blog/system-resilience-what-exactly-is-it/
https://www.nasa.gov/sites/default/files/atoms/files/nasa_systems_engineering_handbook_0.pdf
https://www.nasa.gov/sites/default/files/atoms/files/nasa_systems_engineering_handbook_0.pdf
https://ecss.nl/standard/ecss-e-st-10c-rev-1-system-engineering-general-requirements-15-february-2017/
https://ecss.nl/standard/ecss-e-st-10c-rev-1-system-engineering-general-requirements-15-february-2017/
https://ecss.nl/standard/ecss-e-st-10c-rev-1-system-engineering-general-requirements-15-february-2017/
https://www.space.irfu.se/seminars/20180523-Cripps-HW_Project.pdf
https://www.space.irfu.se/seminars/20180523-Cripps-HW_Project.pdf
https://survey.stackoverflow.co/2022/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/book/en/v2
https://github.com
https://github.com/about
https://github.com/about
https://github.com/features/
https://doi.org/10.1109/ICCSA.2013.25
https://doi.org/10.1109/ICCSA.2013.25
http://ieeexplore.ieee.org/document/6681108/
http://ieeexplore.ieee.org/document/6681108/
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/about-forks
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/about-forks
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/about-forks

74 BIBLIOGRAPHY

[62] C. Boettiger, “An introduction to docker for reproducible research,” ACM
SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 71–79, Jan. 20, 2015,
issn: 0163-5980. doi: 10.1145/2723872.2723882. [Online]. Available: https
://doi.org/10.1145/2723872.2723882 (visited on Jun. 19, 2023).

[63] Docker Inc. “Docker overview,” Docker Documentation. (Nov. 30, 2022), [On-
line]. Available: https://docs.docker.com/get-started/overview/ (vis-
ited on Dec. 1, 2022).

[64] B. B. Rad, H. J. Bhatti, andM. Ahmadi, “An introduction to docker and analy-
sis of its performance,” International Journal of Computer Science and Network
Security, vol. 17, no. 3, p. 9, Mar. 2017. (visited on Jun. 19, 2023).

[65] C. Ramey, The GNU bourne-again shell, Sep. 26, 2022. [Online]. Available:
https://tiswww.case.edu/php/chet/bash/bashtop.html (visited on
May 8, 2023).

[66] The Open Group and IEEE. “Shell command language.” (2018), [Online].
Available: https://pubs.opengroup.org/onlinepubs/9699919799/uti
lities/V3_chap02.html (visited on Jun. 5, 2023).

[67] Free Software Foundation, Inc., GNU make, 0.77. Free Software Foundation,
Inc., Feb. 26, 2023. [Online]. Available: https://www.gnu.org/software/m
ake/manual/make.html (visited on Jun. 22, 2023).

[68] Alén Space, TOTEM - Motherboard - Datasheet, 1.5. Alén Space, internal doc-
ument, Apr. 26, 2021, 21 pp. (visited on May 25, 2023).

[69] DEMX Software Engineering. “Das u-boot – the universal boot loader,” DENX.
(2023), [Online]. Available: https://www.denx.de/wiki/U-Boot/WebHome
(visited on Jun. 18, 2023).

https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2723872.2723882
https://docs.docker.com/get-started/overview/
https://tiswww.case.edu/php/chet/bash/bashtop.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html
https://www.denx.de/wiki/U-Boot/WebHome

Appendix A

Selected Source Code Listings

A.1 S99HypsoTotem Initialization Script

1 #!/bin/sh

2 ### BEGIN INIT INFO

3 # Should be placed in /etc/init.d/

4 # Provides: S99HypsoTotem

5 # Required-Start: $ALL

6 # Should-Start:

7 # Required-Stop:

8 # Should-Stop:

9 # Default-Start: 2 3 5

10 # Default-Stop:

11 # Description: Linux Startup Script

12 ### END INIT INFO

13

14 # Default time before poweroff

15 # 2500 seconds is around 42 minutes, a bit shorter than the EPS

poweroff↪→

16 SECONDS_BEFORE_POWEROFF=2500

17

18 # Function to kill all instances of sdr-services

19 kill_sdr_services ()

20 {

21 killall sdr-services

22 }

23

24 # Function to check the existence of sdr-services and run it.

25 # Args: path to directory with the executable

26 # Returns: 0 if successful, 1 if fail

27 start_sdr_service ()

28 {

29 # Check if existing

30 FILE=$1/sdr-services

31 if [-f "$FILE"]; then

75

76 APPENDIX A. SELECTED SOURCE CODE LISTINGS

32 # As sdr-services could be found, execute

33 echo "[MESSAGE] Starting sdr-services from $FILE".

34 $FILE -m "$HYPSO_SDR_ROOT" 13 can0 &

35 else

36 # sdr-services could not be found, return and try the

next location↪→

37 echo "[ERROR] $FILE does not exist. Trying next

location"↪→

38 return 1

39 fi

40

41 # Allow the process to start and run for a couple of seconds

42 sleep 5

43

44 # Check if running

45 if ["$(ps | grep -c '[s]dr-services*')" -eq 0]; then

46 echo "[ERROR] sdr-services failed to start, trying

backup."↪→

47 return 1

48 elif ["$(ps | grep -c '[s]dr-services*')" -ne 2]; then

49 echo "[ERROR] sdr-services failed to start properly,

killing and trying backup."↪→

50 kill_sdr_services

51 return 1

52 fi

53

54 echo "[MESSAGE] Started sdr-services from $FILE".

55

56 return 0;

57 }

58

59 # Function to check the existence of m6p-time-sync and run it.

60 # Args: path to directory with the executable

61 # Returns: 0 if successful, 1 if fail

62 start_m6p_time_sync ()

63 {

64 # Check if existing

65 FILE=$1/m6p-time-sync

66 if [-f "$FILE"]; then

67 # As m6p-time-sync could be found, execute

68 echo "[MESSAGE] Starting m6p-time-sync from $FILE".

69 $FILE

70 else

71 # m6p-time-sync could not be found, return and try the

next location↪→

72 echo "[ERROR] $FILE does not exist. Trying next

location"↪→

73 return 1

74 fi

75

76 return 0;

77 }

A.1. S99HYPSOTOTEM INITIALIZATION SCRIPT 77

78

79

80 # Function to enable the overlay at next reboot

81 # Args: NONE

82 # Returns: NONE

83 enable_overlay ()

84 {

85 fw_setenv bootargs "$(fw_printenv -n bootargs_safe)"

overlay=ubi0:data0↪→

86 echo "[CRITICAL] Overlay is enabled, please reboot."

87 }

88

89

90 # Function to disable the overlay at next reboot

91 # Args: NONE

92 # Returns: NONE

93 disable_overlay ()

94 {

95 fw_setenv bootargs "$(fw_printenv -n bootargs_safe)"

96 echo "[CRITICAL] Overlay is disabled, please reboot."

97 }

98

99

100 # Function to check if the overlay is enabled

101 # Args: NONE

102 # Returns: NONE

103 check_overlay ()

104 {

105 fw_printenv | grep -c overlay=

106 }

107

108

109 # Function to mount the data partition if booted without overlay

110 # Args: NONE

111 # Returns: NONE

112 enable_data0 ()

113 {

114 if ["$(check_overlay)" = "1"]; then

115 echo "Overlay is enabled, already mounted at /tmp/rwfs"

116 return

117 fi

118 MOUNTPOINT=/tmp/data0nand

119 mkdir -p "${MOUNTPOINT}"

120 mount -t ubifs ubi0:data0 "${MOUNTPOINT}"

121 echo "[MESSAGE] data0 is mounted at ${MOUNTPOINT}"

122 }

123

124 # Main start script

125 start ()

126 {

127 echo "################################ HYPSO TOTEM STARTUP

SCRIPT BELOW ###############################"↪→

78 APPENDIX A. SELECTED SOURCE CODE LISTINGS

128

129 # Check if overlay is disabled

130 if ! check_overlay; then

131 echo "[CRITICAL] Overlay is not present, no

non-volatile memory"↪→

132 echo "[CRITICAL] SDR-SERVICES could not be detected in

the overlay"↪→

133 fi

134

135 # Shutdown automatically after 41 minutes and 40 seconds.

136 # This is a shorter period than the power-off for the EPS

137 # which is about 43 minutes.

138 printf "sleep %s\npoweroff" "$SECONDS_BEFORE_POWEROFF" |

/bin/sh &↪→

139

140 # Source the environment vars

141 # This adds the HYPSO_SDR_ROOT, HYPSO_SDR_APPS and

HYPSO_SDR_BACKUP_DIR env vars↪→

142 # If not found, use a default value

143 ENV_FILE="/etc/profile.d/hypso_sdr.sh"

144 if [-f "$ENV_FILE"]; then

145 . $ENV_FILE

146 echo "[MESSAGE] Set environment varialbes from

${ENV_FILE}."↪→

147 else

148 echo "[CRITICAL] Could not initialize the environment

variables. Using defaults"↪→

149 HYPSO_SDR_ROOT="/home/totem/hypso"

150 fi

151

152 # Locations for the sdr-services executable.

153 # These are defined in /etc/profile.d/hypso_sdr.sh

154 SDR_SYSTEM_LOC="${HYPSO_SDR_ROOT} ${HYPSO_SDR_BACKUP_DIR_USR}

${HYPSO_SDR_BACKUP_DIR_LOCAL} /bin"↪→

155

156 # Sync time with the EPS

157 ## Start m6p-time-sync

158 # Try the different m6p-time-sync locations (same as sdr),

159 # if started correctly, break and continue

160 for loc in ${SDR_SYSTEM_LOC}

161 do

162 if start_m6p_time_sync "$loc"; then

163 break 1

164 fi

165 done

166

167 sleep 5

168

169 SDR_SERVICES_STARTED=0

170 ## Start sdr-services

171 # Try the different sdr-services locations,

172 # if started correctly, break and continue

A.1. S99HYPSOTOTEM INITIALIZATION SCRIPT 79

173 # Store if it manages to start

174 for loc in ${SDR_SYSTEM_LOC}

175 do

176 if start_sdr_service "$loc"; then

177 SDR_SERVICES_STARTED=1

178 break 1

179 fi

180 done

181

182 # If sdr-services did not start, disable

183 # overlay to boot without potential broken storage in the R/W

part of NAND↪→

184 # If overlay is already disabled, do not reboot.

185 if ["$SDR_SERVICES_STARTED" = "0"] && ["$(check_overlay)" =

"1"]; then↪→

186 echo "[CRITICAL] sdr-services could not be found,

disabling overlay"↪→

187 disable_overlay

188

189 echo "[CRITICAL] rebooting in 5 seconds to disable the

overlay"↪→

190 sleep 5

191 # After next reboot, overlay will be disabled.

192 reboot

193 elif ["$SDR_SERVICES_STARTED" = "0"] && ["$(check_overlay)"

= "0"]; then↪→

194 echo "[ERROR] Overlay is disabled and could not start

sdr-services from any location!"↪→

195 elif ["$SDR_SERVICES_STARTED" = "1"] && ["$(check_overlay)"

= "0"]; then↪→

196 echo "[MESSAGE] Overlay is disabled!"

197 fi

198

199 }

200

201 stop ()

202 {

203 kill_sdr_services

204 echo "Bye, bye Totem."

205 }

206

207 restart()

208 {

209 stop

210 start

211 }

212

213 case "$1" in

214 start)

215 start; ;;

216 stop)

217 stop; ;;

80 APPENDIX A. SELECTED SOURCE CODE LISTINGS

218 restart)

219 restart; ;;

220 enable_overlay)

221 enable_overlay; ;;

222 disable_overlay)

223 disable_overlay; ;;

224 mount_data0)

225 enable_data0; ;;

226 *)

227 echo "Usage: $0

{start|stop|restart|enable_overlay|disable_overlay|

mount_data0}"

↪→

↪→

228 exit 1

229 esac

230 exit $?

A.2. BUILD_CONFIG.SH CONFIGURATION COMBINER/MERGER 81

A.2 build_config.sh Configuration Combiner/Merger

1 #!/bin/bash

2

3 DIR="$(dirname "${BASH_SOURCE[0]}")"

4 MERGE_CFG=${DIR}/../buildroot/support/kconfig/merge_config.sh

5 MERGE_ARGS="-m"

6

7 HYPSOTOTEM_CONFIG_NAME="hypso_totem"

8

9 # Function to merge configuration fragments

10 # Args: string list of all configuration fragments

11 # Return: NONE

12 build_config() {

13 echo "Writing defconfig to

${DIR}/${HYPSOTOTEM_CONFIG_NAME}_defconfig"↪→

14 KCONFIG_CONFIG=${DIR}/${HYPSOTOTEM_CONFIG_NAME}_defconfig

CONFIG_="BR2_" ${MERGE_CFG} ${MERGE_ARGS} "$@"↪→

15 }

16

17

18 # Check if configuration fragments is supplied

19 if [$# -ne 0]; then

20 build_config "$@"

21 exit 0

22 else

23 echo "Usage: $0 [configurations]"

24 echo "No configs specified. Please specify configs. Output will be

in '${DIR}/${HYPSOTOTEM_CONFIG_NAME}_defconfig'."↪→

25 fi

82 APPENDIX A. SELECTED SOURCE CODE LISTINGS

A.3 Makefile Root Makefile in sdr-applications

1 SHELL := /bin/bash

2 APPS_DIR := apps

3 PLATFORM := em

4 SDR_SYSTEM_PATH := sdr-system

5

6 ifneq ($(PLATFORM),em)

7 SDR_SYSTEM_PATH :=$(SDR_SYSTEM_PATH)-$(PLATFORM)

8 endif

9

10 all: docker

11

12 # Check for build system

13 ../$(SDR_SYSTEM_PATH)/cross-compile-env:

14 make -C ../$(SDR_SYSTEM_PATH)

15

16 # Force build the docker image

17 build-docker:

18 scripts/run-docker.sh -f

19

20 # Run docker as normal, build if not exist

21 docker: ../$(SDR_SYSTEM_PATH)/cross-compile-env

22 scripts/run-docker.sh -s $(SDR_SYSTEM_PATH)

A.4. MAKEFILE APPS MAKEFILE IN SDR-APPLICATIONS 83

A.4 Makefile Apps Makefile in sdr-applications

1

2 SHELL := /bin/bash

3 MKDIR := mkdir -p

4 RM := rm -rf

5

6 MAKE_SUBDIRS = example-make example-soapy

7 CMAKE_SUBDIRS = example-cmake

8

9 PLATFORM ?= sdr-system

10

11 #.PHONY: example-make

12 #example-make:

13 # (cd example-make && make)

14

15 all: normal_make c_make

16

17 setup-env:

18 source ../totem/firmware/cross-compile-env

19 printenv

20

21

22

23 .PHONY: normal_make $(MAKE_SUBDIRS)

24 .PHONY: c_make $(CMAKE_SUBDIRS)

25

26 normal_make: $(MAKE_SUBDIRS)

27 c_make: $(CMAKE_SUBDIRS)

28

29 $(MAKE_SUBDIRS):

30 (cd $@ && make)

31

32 $(CMAKE_SUBDIRS):

33 (cd $@ && make -f Makefile.mk)

34

35

36

37 define bundle-command-make

38 (cd $(1) && make bundle)

39

40 endef

41

42 define bundle-command-cmake

43 (cd $(1) && make -f Makefile.mk bundle)

44

45 endef

46

47 .PHONY: bundle

48 bundle:

49 @ $(MKDIR) build/$(PLATFORM)

84 APPENDIX A. SELECTED SOURCE CODE LISTINGS

50 @ $(foreach dir,$(MAKE_SUBDIRS),$(call bundle-command-make,

$(dir)))↪→

51 @ $(foreach dir,$(CMAKE_SUBDIRS),$(call bundle-command-cmake,

$(dir)))↪→

52 @ sleep 2

53 mv $(shell find build -maxdepth 1 -type f -print)

build/$(PLATFORM)↪→

54

55

56 define clean-command-make

57 (cd $(1) && make clean)

58

59 endef

60

61 define clean-command-cmake

62 (cd $(1) && make -f Makefile.mk clean)

63

64 endef

65

66 #@ $(RM) build/$(PLATFORM)

67 .PHONY: clean

68 clean:

69 $(foreach dir,$(MAKE_SUBDIRS),$(call clean-command-make,

$(dir)))↪→

70 $(foreach dir,$(CMAKE_SUBDIRS),$(call clean-command-cmake,

$(dir)))↪→

A.5. MAKEFILE FOR MAKE APPLICATIONS IN SDR-APPLICATIONS 85

A.5 Makefile for make Applications in sdr-applications

1 # Name of output executable goes here

2 EXECUTABLE = example-soapy

3

4 # Sourcefiles goes here

5 SOURCES += example-soapy.c

6 # Linker flags goes here, like -llibiio or -lm

7 LDFLAGS += -lSoapySDR -lfftw3f -lm

8

9 $(EXECUTABLE): $(SOURCES)

10

11 .PHONY: bundle

12 bundle: $(EXECUTABLE)

13 cp $(EXECUTABLE) ../build

14

15 .PHONY: clean

16 clean:

17 rm -f $(EXECUTABLE)

A.6 Makefile for cmake Applications in sdr-applications

1 hello:

2 cmake helloworld/

3 make

4

5

6 .PHONY: bundle

7 bundle: hello

8 cp hello ../build

9

10 .PHONY: clean

11 clean:

12 -make clean

Appendix B

Logs from Testing S99HypsoTotem

B.1 Overlay Enabled

Working sdr-services in /home/totem/hypso/

1 [MESSAGE] Set environment varialbes from /etc/profile.d/hypso_sdr.sh.

2 [MESSAGE] Starting m6p-time-sync from /home/totem/hypso/m6p-time-sync.

3 [MESSAGE] Starting sdr-services from /home/totem/hypso/sdr-services.

4 [MESSAGE] Started sdr-services from /home/totem/hypso/sdr-services.

The sdr-services Crashes Immediately

1 [MESSAGE] Set environment varialbes from /etc/profile.d/hypso_sdr.sh.

2 [MESSAGE] Starting m6p-time-sync from /home/totem/hypso/m6p-time-sync.

3 [MESSAGE] Starting sdr-services from /home/totem/hypso/sdr-services.

4 [ERROR] sdr-services failed to start, trying backup.

5 [MESSAGE] Starting sdr-services from /usr/bin/sdr-services.

6 [MESSAGE] Started sdr-services from /usr/bin/sdr-services.

The sdr-services Stalls Immediately

1 [MESSAGE] Set environment varialbes from /etc/profile.d/hypso_sdr.sh.

2 [MESSAGE] Starting m6p-time-sync from /home/totem/hypso/m6p-time-sync.

3 [MESSAGE] Starting sdr-services from /home/totem/hypso/sdr-services.

4 [ERROR] sdr-services failed to start properly, killing and trying

backup.↪→

5 [MESSAGE] Starting sdr-services from /usr/bin/sdr-services.

6 [MESSAGE] Started sdr-services from /usr/bin/sdr-services.

87

88 APPENDIX B. LOGS FROM TESTING S99HYPSOTOTEM

Working sdr-services in /usr/bin/

1 [MESSAGE] Set environment varialbes from /etc/profile.d/hypso_sdr.sh.

2 [MESSAGE] Starting m6p-time-sync from /home/totem/hypso/m6p-time-sync.

3 [ERROR] /home/totem/hypso/sdr-services does not exist. Trying next

location↪→

4 [MESSAGE] Starting sdr-services from /usr/bin/sdr-services.

5 [MESSAGE] Started sdr-services from /usr/bin/sdr-services.

Working sdr-services in /usr/local/bin/

1 [MESSAGE] Set environment varialbes from /etc/profile.d/hypso_sdr.sh.

2 [MESSAGE] Starting m6p-time-sync from /home/totem/hypso/m6p-time-sync.

3 [ERROR] /home/totem/hypso/sdr-services does not exist. Trying next

location↪→

4 [ERROR] /usr/bin/sdr-services does not exist. Trying next location

5 [MESSAGE] Starting sdr-services from /usr/local/bin/sdr-services.

6 [MESSAGE] Started sdr-services from /usr/local/bin/sdr-services.

Working sdr-services in /bin/

1 [MESSAGE] Set environment varialbes from /etc/profile.d/hypso_sdr.sh.

2 [MESSAGE] Starting m6p-time-sync from /home/totem/hypso/m6p-time-sync.

3 [ERROR] /home/totem/hypso/sdr-services does not exist. Trying next

location↪→

4 [ERROR] /usr/bin/sdr-services does not exist. Trying next location

5 [ERROR] /usr/local/bin/sdr-services does not exist. Trying next

location↪→

6 [MESSAGE] Starting sdr-services from /bin/sdr-services.

7 [MESSAGE] Started sdr-services from /bin/sdr-services.

No working sdr-services

1 [MESSAGE] Set environment varialbes from /etc/profile.d/hypso_sdr.sh.

2 [MESSAGE] Starting m6p-time-sync from /home/totem/hypso/m6p-time-sync.

3 [ERROR] /home/totem/hypso/sdr-services does not exist. Trying next

location↪→

4 [ERROR] /usr/bin/sdr-services does not exist. Trying next location

5 [ERROR] /usr/local/bin/sdr-services does not exist. Trying next

location↪→

6 [ERROR] /bin/sdr-services does not exist. Trying next location

7 [CRITICAL] sdr-services could not be found, disabling overlay

8 [CRITICAL] Overlay is disabled, please reboot.

B.1. OVERLAY ENABLED 89

The m6p-time-sync Broken in /home/totem/hypso/

1 [MESSAGE] Set environment varialbes from /etc/profile.d/hypso_sdr.sh.

2 [ERROR] /home/totem/hypso/m6p-time-sync does not exist. Trying next

location↪→

3 [MESSAGE] Starting m6p-time-sync from /usr/bin/m6p-time-sync.

4 [MESSAGE] Starting sdr-services from /home/totem/hypso/sdr-services.

5 [MESSAGE] Started sdr-services from /home/totem/hypso/sdr-services.

90 APPENDIX B. LOGS FROM TESTING S99HYPSOTOTEM

B.2 Overlay Disabled

Working sdr-services in /home/totem/hypso/

1 [CRITICAL] Overlay is not present, no non-volatile memory

2 [CRITICAL] SDR-SERVICES could not be detected in the overlay

3 [MESSAGE] Set environment varialbes from /etc/profile.d/hypso_sdr.sh.

4 [MESSAGE] Starting m6p-time-sync from /home/totem/hypso/m6p-time-sync.

5 [MESSAGE] Starting sdr-services from /home/totem/hypso/sdr-services.

6 [MESSAGE] Started sdr-services from /home/totem/hypso/sdr-services.

7 [MESSAGE] Overlay is disabled!

Working sdr-services in /usr/bin/

1 [CRITICAL] Overlay is not present, no non-volatile memory

2 [CRITICAL] SDR-SERVICES could not be detected in the overlay

3 [MESSAGE] Set environment varialbes from /etc/profile.d/hypso_sdr.sh.

4 [MESSAGE] Starting m6p-time-sync from /home/totem/hypso/m6p-time-sync.

5 [ERROR] /home/totem/hypso/sdr-services does not exist. Trying next

location↪→

6 [MESSAGE] Starting sdr-services from /usr/bin/sdr-services.

7 [MESSAGE] Started sdr-services from /usr/bin/sdr-services.

8 [MESSAGE] Overlay is disabled!

Working sdr-services in /usr/local/bin/

1 [CRITICAL] Overlay is not present, no non-volatile memory

2 [CRITICAL] SDR-SERVICES could not be detected in the overlay

3 [MESSAGE] Set environment varialbes from /etc/profile.d/hypso_sdr.sh.

4 [MESSAGE] Starting m6p-time-sync from /home/totem/hypso/m6p-time-sync.

5 [ERROR] /home/totem/hypso/sdr-services does not exist. Trying next

location↪→

6 [ERROR] /usr/bin/sdr-services does not exist. Trying next location

7 [MESSAGE] Starting sdr-services from /usr/local/bin/sdr-services.

8 [MESSAGE] Started sdr-services from /usr/local/bin/sdr-services.

9 [MESSAGE] Overlay is disabled!

B.2. OVERLAY DISABLED 91

Working sdr-services in /bin/

1 [CRITICAL] Overlay is not present, no non-volatile memory

2 [CRITICAL] SDR-SERVICES could not be detected in the overlay

3 [MESSAGE] Set environment varialbes from /etc/profile.d/hypso_sdr.sh.

4 [MESSAGE] Starting m6p-time-sync from /home/totem/hypso/m6p-time-sync.

5 [ERROR] /home/totem/hypso/sdr-services does not exist. Trying next

location↪→

6 [ERROR] /usr/bin/sdr-services does not exist. Trying next location

7 [ERROR] /usr/local/bin/sdr-services does not exist. Trying next

location↪→

8 [MESSAGE] Starting sdr-services from /bin/sdr-services.

9 [MESSAGE] Started sdr-services from /bin/sdr-services.

10 [MESSAGE] Overlay is disabled!

No working sdr-services

1 [CRITICAL] Overlay is not present, no non-volatile memory

2 [CRITICAL] SDR-SERVICES could not be detected in the overlay

3 [MESSAGE] Set environment varialbes from /etc/profile.d/hypso_sdr.sh.

4 [MESSAGE] Starting m6p-time-sync from /home/totem/hypso/m6p-time-sync.

5 [ERROR] /home/totem/hypso/sdr-services does not exist. Trying next

location↪→

6 [ERROR] /usr/bin/sdr-services does not exist. Trying next location

7 [ERROR] /usr/local/bin/sdr-services does not exist. Trying next

location↪→

8 [ERROR] /bin/sdr-services does not exist. Trying next location

9 [ERROR] Overlay is disabled and could not start sdr-services from any

location!↪→

The m6p-time-sync Broken in /home/totem/hypso/

1 [CRITICAL] Overlay is not present, no non-volatile memory

2 [CRITICAL] SDR-SERVICES could not be detected in the overlay

3 [MESSAGE] Set environment varialbes from /etc/profile.d/hypso_sdr.sh.

4 [ERROR] /home/totem/hypso/m6p-time-sync does not exist. Trying next

location↪→

5 [MESSAGE] Starting m6p-time-sync from /usr/bin/m6p-time-sync.

6 [MESSAGE] Starting sdr-services from /home/totem/hypso/sdr-services.

7 [MESSAGE] Started sdr-services from /home/totem/hypso/sdr-services.

8 [MESSAGE] Overlay is disabled!

92 APPENDIX B. LOGS FROM TESTING S99HYPSOTOTEM

B.3 Missing Environment Variables

Working sdr-services in /home/totem/hypso/

1 [CRITICAL] Could not initialize the environment variables. Using

defaults↪→

2 [MESSAGE] Starting m6p-time-sync from /home/totem/hypso/m6p-time-sync.

3 [MESSAGE] Starting sdr-services from /home/totem/hypso/sdr-services.

4 [MESSAGE] Started sdr-services from /home/totem/hypso/sdr-services.

Working sdr-services in /bin/

1 [CRITICAL] Could not initialize the environment variables. Using

defaults↪→

2 [MESSAGE] Starting m6p-time-sync from /home/totem/hypso/m6p-time-sync.

3 [ERROR] /home/totem/hypso/sdr-services does not exist. Trying next

location↪→

4 [MESSAGE] Starting sdr-services from /bin/sdr-services.

5 [MESSAGE] Started sdr-services from /bin/sdr-services.

Appendix C

Issues

C.1 sdr-system#11

93

94 APPENDIX C. ISSUES

C.2 sdr-system#20

C.3. SDR-SYSTEM#23 95

C.3 sdr-system#23

96 APPENDIX C. ISSUES

C.4 sdr-system#24

C.5. SDR-SYSTEM#26 97

C.5 sdr-system#26

98 APPENDIX C. ISSUES

C.6 sdr-system#28

C.7. SDR-SYSTEM#29 99

C.7 sdr-system#29

100 APPENDIX C. ISSUES

C.8 sdr-system#39

C.9. SDR-SYSTEM#40 101

C.9 sdr-system#40

102 APPENDIX C. ISSUES

C.10 sdr-system-h2#3

C.11. SDR-APPLICATIONS#1 103

C.11 sdr-applications#1

104 APPENDIX C. ISSUES

C.12 sdr-applications#5

C.13. HYPSO-SW#754 105

C.13 hypso-sw#754

106 APPENDIX C. ISSUES

C.14 hypso-sw#790

Appendix D

Pull-Requests

D.1 sdr-system#25

107

108 APPENDIX D. PULL-REQUESTS

D.2 sdr-system#37

D.3. SDR-SYSTEM#38 109

D.3 sdr-system#38

110 APPENDIX D. PULL-REQUESTS

D.4 sdr-system#41

D.5. SDR-SYSTEM#42 111

D.5 sdr-system#42

112 APPENDIX D. PULL-REQUESTS

D.6 sdr-system#44

D.7. SDR-SYSTEM#45 113

D.7 sdr-system#45

114 APPENDIX D. PULL-REQUESTS

D.8 sdr-system#46

D.9. SDR-SYSTEM-H2#4 115

D.9 sdr-system-h2#4

116 APPENDIX D. PULL-REQUESTS

D.10 sdr-system-h2#6

D.11. SDR-SYSTEM-H2#8 117

D.11 sdr-system-h2#8

118 APPENDIX D. PULL-REQUESTS

D.12 sdr-system-h2#9

D.13. SDR-SYSTEM-HYPSO-SHARED#1 119

D.13 sdr-system-hypso-shared#1

120 APPENDIX D. PULL-REQUESTS

D.14 sdr-applications#6

D.15. HYPSO-SW#765 121

D.15 hypso-sw#765

	Abstract
	Sammendrag
	Preface
	Abbreviations
	Terms
	Introduction
	The HYPSO Mission
	CubeSats
	Software-defined Radios (SDR)
	Aims and Objectives
	Outline

	Background
	Embedded Systems and Operating Systems
	Embedded Linux
	Storage Devices and File Systems

	Build System for Embedded Systems
	Packages
	External Trees
	Cross-compilation and Toolchains

	The HYPSO Satellite(s)
	Hyperspectral Imager (HSI)
	Software-Defined Radio (SDR)

	The TOTEM SDR System
	Embedded Linux
	Storage Layout
	The sdr-system Development Repository

	System Resilience
	Satellite Mission Development

	Methods and Tools
	Distributed Version Control using Git
	Submodules
	GitHub

	Development Cycles in the HYPSO-Project
	Identified Issues
	Pull-Requests During Development
	Spacecraft Development Reviews

	Development Environment
	Remote Development With VS Code and SSH
	Stable Environment with Docker
	LidSat Communication With hypso-cli

	Lab Setup, Testbed, and Equipment
	The NSSL FlatSat: The LidSat
	Testbed for SDR application development

	Implementation, Results, and Discussion
	Designing a Flexible and Usable Procedure for Development of Multiple Firmware and Toolcains
	Keeping HYPSO Adaptations Outside The Original Build System
	Shared Repository for Shared Files
	Multiple sdr-system Repositories
	Imlementation for the current EM and HYPSO-2 FM SDRs

	Ensuring Resilient and Fault-Tolerant Operations for the TOTEM SDR
	Chained Start-Up Script to Start Services
	Including sdr-services in the Read-Only Filesystem
	Disabling the Overlay File System as a Last Resort
	Testing of the S99HypsoTotem Startup Script

	Utilizing the BR Toolchain for a flexible and easy-to-use SDR applications development environment
	Optmizing the Structure for Agile and Easy Development
	Utilizing Multiple Toolchains for Compilation

	Designing a Safe Development Environment for the Flight Model SDR

	Conclusion
	Contributions and Impact
	Future Work

	Bibliography
	Selected Source Code Listings
	S99HypsoTotem Initialization Script
	build_config.sh Configuration Combiner/Merger
	Makefile Root Makefile in sdr-applications
	Makefile Apps Makefile in sdr-applications
	Makefile for make Applications in sdr-applications
	Makefile for cmake Applications in sdr-applications

	Logs from Testing S99HypsoTotem
	Overlay Enabled
	Overlay Disabled
	Missing Environment Variables

	Issues
	sdr-system#11
	sdr-system#20
	sdr-system#23
	sdr-system#24
	sdr-system#26
	sdr-system#28
	sdr-system#29
	sdr-system#39
	sdr-system#40
	sdr-system-h2#3
	sdr-applications#1
	sdr-applications#5
	hypso-sw#754
	hypso-sw#790

	Pull-Requests
	sdr-system#25
	sdr-system#37
	sdr-system#38
	sdr-system#41
	sdr-system#42
	sdr-system#44
	sdr-system#45
	sdr-system#46
	sdr-system-h2#4
	sdr-system-h2#6
	sdr-system-h2#8
	sdr-system-h2#9
	sdr-system-hypso-shared#1
	sdr-applications#6
	hypso-sw#765

