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Abstract: A disturbance/uncertainty estimation and disturbance rejection technique are proposed in
this work and verified on a ground two-wheel differential drive mobile robot (DDMR) in the presence
of a mismatched disturbance. The offered scheme is the an improved active disturbance rejection
control (IADRC) approach-based enhanced dynamic speed controller. To efficiently eliminate the effect
produced by the system uncertainties and external torque disturbance on both wheels, the IADRC is
adopted, whereby all the torque disturbances and DDMR parameter uncertainties are conglomerated
altogether and considered a generalized disturbance. This generalized disturbance is observed and
cancelled by a novel nonlinear sliding mode extended state observer (NSMESO) in real-time. Through
numerical simulations, various performance indices are measured, with a reduction of 86% and 97% in
the ITAE index for the right and left wheels, respectively. Finally, these indices validate the efficacy of
the proposed dynamic speed controller by almost damping the chattering phenomena and supplying a
high insusceptibility in the closed-loop system against torque disturbance.

Keywords: mobile robot; speed controller; active disturbance rejection control; extended state
observer; chattering phenomenon; torque disturbance; system uncertainties

1. Introduction

Generally, in most engineering applications, disturbances/uncertainties (D/Us) are
widely presented and negatively affect the performance of the control systems [1]. Control
engineering strives to minimize D/Us, and feedforward methods may attenuate or reject
the effect of disturbances that can be detected through measurement [2]. Nevertheless,
exogenous disturbances cannot be calculated or are exceptionally difficult to calculate. The
first spontaneous thought to treat this challenge is to build an observer to estimate the
disturbance. Then, an activation signal can be established to compensate for the exoge-
nous disturbance effect. The simplicity of this indication can be expanded to also reject
uncertainties. The unmodeled effects of uncertainties or dynamics can be estimated as a
proportion of the overall disturbance. As a consequence, a new term was introduced for dis-
turbance activity, which is known as “total disturbance”, which describes the accumulation
of exogenous disturbances, unmodeled dynamics, and uncertain conditions in plants. This
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class of techniques is denoted as estimation and attenuation of disturbance/uncertainty
(EAD/U). Several EAD/U structures have been individually suggested. Han first sug-
gested an extended state observer (ESO) in the 1990s [3]. An ESO is generally viewed as
playing a major essential role in the technique termed active disturbance rejection control
(ADRC) [4]. ADRC consists of three essential parts: a tracking differentiator (TD), extended
state observer (ESO), and nonlinear state error feedback controller (NLSEF).

In precision assembly applications, ADRC has been used as a whole configuration;
it has been used to perform high-accuracy control of ball screw feed drives [5]. Likewise,
a double-loop ADRC scheme was utilized for an active hydraulic suspension system [6].
Taking into account the fact that ADRC is very useful in the field of robotics, this method is
particularly useful for the control of quad helicopters because of its capability to handle
nonlinear models with significant unsettling influences with vulnerability [7]. Moreover,
many engineering systems with ADRC have proven successful [8–10]. The main objective
of this work is to design a controller that provides an active rejection of the bounded
mismatched total disturbances, which have a direct effect on the performance of permanent
magnet direct current (PMDC) motors of the DDMR. The controller guarantees a minimum
orientation error despite disturbances. Exogenous disturbance involves disturbances
including friction torques, fluctuations of the load, changes in parameters for the actuators,
and external disturbances that occur due to collisions with obstacles.

The contribution of this paper lies in applying an improved version of Han’s classical
ADRC to motion control of a DDMR, which is a nonlinear, multi-input–multi-output
(MIMO) system, as an extension of our four previous published papers [11–14]. The
proposed IADRC is constructed by combining three primary units. The first unit is the
improved nonlinear tracking differentiator (INTD), which is used to obtain a smooth and
accurate differentiation of any nonlinear signal. The INTD also declines signals with
frequencies outside a certain frequency band. The second unit in the proposed controller
is the improved nonlinear state error feedback (INSEF) controller. This unit is derived by
combining the nonlinear gains and the classical PID controller with a new control structure.
The last unit is the sliding mode extended state observer (SMESO), which is an expansion
of the linear extended state observer (LESO) method; to reduce the chattering in the control
signal, the nonlinearity and a sliding mode term are added to the LESO to obtain the
proposed SMESO, which performs better than the LESO.

The remainder of this work is structured as follows: Section 2 presents the main
results of the IADRC. In Section 3, the convergence of the proposed observers, in addition
to stability analysis of the closed-loop system, is investigated. Handling of mismatched
disturbances is analyzed within the context of the ADRC in Section 4. Mathematical
modeling of the DDMR and PMDC is introduced in Section 5. Section 6 presents the
numerical simulations of the proposed IADRC control scheme on DDMR. Finally, the work
is concluded in Section 7.

2. The Main Results: Improved Active Disturbance Rejection Control (IADRC)

Classical active disturbance rejection control is a powerful controlling method that
was first suggested by J. Han [4]. Classical ADRC can be structured by gathering a linear
extended state observer (LESO), a tracking differentiator (TD), and a nonlinear state error
feedback (NLSEF); the entire structure is presented in [4,15,16].

The enhanced configuration of the improved active disturbance rejection control
(IADRC) is shown in Figure 1. The following subsections discuss each part of the proposed
control scheme supported by necessary explanations.
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2.1. The Improved Nonlinear TD (INTD)

The INTD is the improved version of the classical tracking differentiator. The im-
provement is achieved by adopting a smooth sigmoid nonlinear function ϕ(.) = tanh(·),
instead of a sign(·) function. The reason behind choosing the sigmoid function tanh(·)
is that the ϕ(.) = tanh(·) near the origin provides a slope with a smooth shape, which
reduces the chattering phenomenon and speeds up the convergence of the proposed track-
ing differentiator in a significant way. Moreover, adding nonlinearity to the design of
the TD increases the robustness of the proposed TD against noise. Another improvement
is introduced by integrating nonlinear and linear parts. This TD presents an enhanced
dynamic performance relative to Han’s TD. An INTD for second-order systems has been
designed using the hyperbolic tangent function [11,17],{ .

r1 = r2.
r2 = −R2 ϕ(r1(t)− r(t))− Rr2

(1)

where ϕ(r1(t)− r(t)) = tanh
(

βr1−(1−α)r
γ

)
, r is the reference signal, and r1 and r2 are the

tracking reference and its derivative, respectively. The coefficients R, β, γ, and α are tuning
coefficients, with 0 < α〈1, β〉1, γ > 0, and R > 0. The configuration with the proposed
INTD can effectively eliminate the chattering phenomenon and measurement noise and
provide swift and smooth tracking of the desired reference signal. To check the stability of
the proposed tracking differentiator, the Lyapunov stability approach is utilized [11].

Definition 1 (simple sigmoid functions) [18]. a function ( ϕ : R→ (−1, 1) ) is supposed to be a
sigmoid. The sigmoid function meets the following conditions:

1. The function ϕ(·) is smooth, i.e., ϕ(x) ∈ C∞;
2. ϕ(·) is an odd function;
3. The function ϕ(·) satisfies lim

x→±∞
|ϕ(x)| = 1.

Assumption 1. The function ϕ(.) in definition (4.1) is an odd function with ψ(y) =
∫ y

0 ϕ(u)du ≥ 0,
where u is a variable without any special physical meaning.

The proposed INTD has the following advantages relative to other tracking differentiators:

(i) The proposed tracking differentiator is built using a smooth nonlinear function (ϕ(·))
instead of the sign(·) function used in most conventional nonlinear differentiators. This is
an essential step toward preventing a chattering phenomenon from the output derivatives;

(ii) A second improvement is accomplished by combining the linear and the nonlinear
terms. The benefits of this are clear in suppressing high-frequency components in
the signal, such as noise. With this feature, the proposed GTD also achieves better
performance than other tracking differentiators;
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(iii) The saturation feature of the function ϕ(·) increases the robustness against noisy
signals because for large errors, even with a wide range of noise, it is mapped to a
small domain set of the function ϕ(·) (see Figure 2, range and domain sets A);

(iv) Increasing the slope of the continuous function ϕ(·) near the origin significantly
accelerates the convergence of the proposed tracking differentiator (see Figure 2,
range and domain sets B).
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The convergence of the proposed INTD is investigated in the next theorem.

Theorem 1. Consider the dynamic system (1). If the signal r(t) is differentiable and
supt∈[0,∞)|

.
r(t)| = B < ∞ , then the solution of (1) is convergent in the sense that, r1(t) is

convergent to r(t) as R→ ∞ .

Proof. Let, t = τ
R . Then

.
ri(t) =

dri(t)
dτ

dτ

dt
= R

dri(t)
dτ

i ∈ {1, 2} (2)

Combining (1) and (2) yields R
dr1( τ

R )
dτ = r2

(
τ
R
)

R
dr2( τ

R )
dτ = −R2 ϕ

(
r1
(

τ
R
)
− r
(

τ
R
))
− Rr2

(
τ
R
) (3)

which leads to 
dr1( τ

R )
dτ = 1

R r2
(

τ
R
)

dr2( τ
R )

dτ = −Rϕ
(
r1
(

τ
R
)
− r
(

τ
R
))
− r2

(
τ
R
) (4)

Assume {
z1(τ) = r1

(
τ
R
)
− r
(

τ
R
)
,

z2(τ) =
1
R r2
(

τ
R
) (5)

which results in  dz1(τ)
dτ =

dr1( τ
R )

dτ − dr( τ
R )

dτ
dz2(τ)

dτ = 1
R

dr2( τ
R )

dτ

(6)
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This, together with (4), yields,{
dz1(τ)

dτ = 1
R r2
(

τ
R
)
− dr( τ

R )
dτ ,

dz2(τ)
dτ = 1

R
[
−Rϕ

(
r1
(

τ
R
)
− r
(

τ
R
))
− r2

(
τ
R
)] (7)

Then, {
.
z1(τ) =

1
R r2
(

τ
R
)
− dr( τ

R )
dτ ,

.
z2(τ) = −ϕ

(
r1
(

τ
R
)
− r
(

τ
R
))
− 1

R r2
(

τ
R
) (8)

Substituting (5) and (8), we obtain,{
.
z1(τ) = z2(τ)−

dr( τ
R )

dτ ,
.
z2(τ) = −ϕ(z1(τ))− z2(τ)

(9)

Select the candidate Lyapunov function (V(z)) as

V(z) =
∫ z1

0
ϕ(v) dv +

1
2

z2
2(τ) (10)

The total derivative of V(z) with respect to τ along the trajectory of the system (9) is
given as,

.
V(z) = ϕ(z1)

.
z1 + z2

.
z2 (11)

This, together with (8), yields,

.
V(z) = ϕ(z1)

[
z2(τ)−

dr
(

τ
R
)

dτ

]
+ z2[−ϕ(z1(τ))− z2(τ)] (12)

which is derived from
.

V(z) = −ϕ(z1)
dr
(

τ
R
)

dτ
− z2

2 (13)

Finally, we obtain
.

V(z) ≤ |ϕ(z1)|
∣∣ .
r(t)

∣∣ 1
R

(14)

According to Assumption 1 and Definition 1,

.
V(z) ≤ B

R
(15)

lim
R→∞

.
V(z) ≤ 0 (16)

Then, the solution of (9) is globally asymptotically stable (GAS) by invoking LaSalle’s
invariance principle [19]. It follows that lim

R→∞
z1 = 0. According to (5), we obtain

lim
R→∞

r1 = r (17)

�

2.2. The Improved Nonlinear State Error Feedback Controller (INSEFC)

Consider the following observable nth-order nonlinear affine-in-control system,{
ξ(n) = f

(
ξ,

.
ξ, . . . , ξ(n−1), t

)
+ bu

y = ξ
(18)
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where u(t) ∈ C(R,R) is the control input, y(t) ∈ C(R,R) is the measured output, b ∈ R
is the input gain, and f ∈ C(Rn ×R, R) is a nonlinear function. It is necessary to design
a nonlinear feedback controller ( Ψ : R→ R ) such that the control effort (u(t)) is at its
minimum while achieving the following:

1. The closed-loop system is asymptotically stable in the presence of external distur-
bances, system uncertainties, and measurement noise;

2. The output (y(t)) is forced to track a known reference signal (r(t)), i.e., lim
t→∞
|r(t)− y(t)| = 0,

satisfying the transient response specifications;
3. The chattering phenomenon in the control signal (u(t)) is reduced.

The original version of the nonlinear state error feedback (SEF) functions in the form
of fal(.) was first proposed by Han [4] and expressed as,

f al(e, α, δ) =

{ e
δ1−α |e| ≤ δ

|e|αsgn(e) |e| > δ
(19)

where δ . is a small number used to express the domain of the linear function near zero [3],
and 0 < α < 1. The f al(·) is a nonsmooth, piecewise, continuous, nonlinear saturation and
a monotonously increasing function [20–23]. The curve of the f al(·) function when δ = 0.1
is shown in Figure 3a. The curve of the f al(·) function when α = 0.25 is shown in Figure 3b.
The f al(·) function is nonsmooth at the inflection point [24], and when the value of δ is too
small, it is still easy for the phenomenon of high-frequency chattering to appear. This is
true even for large δ values [25].
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When α = 0.75, the f al(·) function is almost linear. In practical terms, the value
of α is generally selected as δ = 0.01 [26] and can be further tuned and determined by
experiments [27].

The improved nonlinear state error feedback control (INSEFC) law provides more
shape flexibility within a wide range of the state error vector. This behavior improves both
the performance and the robustness of the controlled system.

The enhanced nonlinear control law uses exponential functions and sign(.), and it is
established as follows,

uINLSEF = Ψ(e) = k(e)T f (e) + uintegrator (20)

where e is the n × 1 state error vector, which is defined as,

e =
[
e(0) . . . .e(i) . . . . e(n−1)

]T
(21)

where e(i) is the state error derivative of an nth order and expressed as,

e(i) = ri+1 − ξ̂i+1 (22)

k(e) is a function of nonlinear gains and expressed as,

k(e) =



k1(e)
...

ki(e)
...

kn(e)

 =



(
k11 +

k12

1+exp
(

µ1(e(0))
2
)
)

...(
ki1 +

ki2

1+exp
(

µi(e(i−1))
2
)
)

...(
kn1 +

kn2

1+exp
(

µn(e(n−1))
2
)
)


(23)

where ki1, ki2, and µi are positive coefficients, and i ∈ {1, 2, . . . , n},. The advantage of
k(e)i is that it improves the nonlinear controller’s ability to detect even small errors.
When e(i−1) = 0, k(e)i = ki1 + ki2/2, while as e(i−1) increases, k(e)i ≈ ki1. For values of
e(i−1) in between, the value of k(e)i lies in the sector of [ki1, ki1+ki2/2], as shown in Figure 4.
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comes less sensitive to small variations in 𝑒 (see Figure 5b). 

Figure 4. Characteristics of the nonlinear gain function (ki(e)) for ki1 = 20 and ki2 = 5.
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The function f (e) is expressed as,

f (e) =
[∣∣∣e(0)∣∣∣α1

sign(e) . . .
∣∣∣e(i)∣∣∣αi

sign
(

e(i)
)

. . .
∣∣∣e(n−2)

∣∣∣αn
sign

(
e(n−1)

)]T
(24)

Equation (24) shows significant features in the nonlinear term |e|αsign(e). For αi � 1,
the term rapidly switches its state, as shown in Figure 5a. This feature makes the error
function ( f (e)) sensitive to small error values. When α exceeds 1, the nonlinear term
becomes less sensitive to small variations in e (see Figure 5b).
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The control signal (u) can be limited using the nonlinear hyperbolic function (tanh(·))
in the form,

u = δ tanh
(uINLSEF

δ

)
(25)

where uINLSEF is defined in (17) and has the following features:

(i) Any real number (−∞, ∞) is mapped to a number in the range of [−δ, δ];
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(ii) The tanh(·) function is symmetric about the origin, and only zero-valued inputs are
mapped to zero outputs;

(iii) The control action (u) is limited via mapping but not clipped. Therefore, there are no
strong harmonics in the high-frequency range.

Figure 6 shows the control signal (u) against e(t) and
.
e(t), considering (25).
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Theorem 2. Consider the following observable second-order nonlinear control system (n = 2){ ..
ξ = f

(
ξ,

.
ξ
)
+ bu,

y = ξ.
(26)

as shown in Figure 7a. The PD controller is described as,

u = kpe + kd
.
e (27)

where the tracking error is e = r− y. Then, the linear control law (u) can be generalized to the form
u = Ψ(e) (see Figure 7b) such that Ψ is sector-bounded and satisfies Ψ(0) = 0.

Proof. Let x1 = x, and x2 =
.
x. Then, the system (26) can be represented as,

.
ξ1 = ξ2,

.
ξ2 = f (ξ1, ξ2) + bu,

y = ξ1

(28)

Consider a convergent TD, which is described as lim
t→∞
|r1 − r| = 0, lim

t→∞

∣∣r2 −
.
r
∣∣ = 0. Let

a convergent state observer be characterized by lim
t→∞

∣∣∣ξ̃1 − ξ1

∣∣∣ = 0, and lim
t→∞

∣∣∣ξ̃2 − ξ2

∣∣∣ = 0.

Since the tracking error is e = y − r,
.
e =

.
y − .

r; then, the two errors can be defined as
lim
t→∞

e = lim
t→∞

(ξ1 − r1) and lim
t→∞

.
e = lim

t→∞
(ξ2 − r2). Finally, as t→ ∞ , the control law (25)

takes the following form: u = kp(r1 − ξ1) + kd(r2 − ξ2).
This formula can be expanded for an nth-order system to take the following form: u =

KTe, where K = (k1, k2, . . . , kn )T is the gain vector, e =
(

e,
.
e, . . . , e(n−1)

)T
is the tracking
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error vector, and the linear combination can be generalized to a nonlinear combination
formula described as u = Ψ(e). �

Entropy 2023, 25, x FOR PEER REVIEW 10 of 30 
 

 

 
Figure 6. The characteristics of the control signal ( 𝑢 ) of (25): 𝑛 = 2 , 𝑘 = 20,  𝑘 = 5, 𝑘 =20, 𝑘 = 5, 𝜇 = 2.5,  𝜇 = 1.5, 𝛼 = 0.5, 𝛼 = 0.5, 𝑎𝑛𝑑 𝛿 = 2.5. 

Theorem 2. Consider the following observable second-order nonlinear control system (n = 2) 𝜉 = 𝑓 𝜉, 𝜉 + 𝑏𝑢,𝑦 = 𝜉.   (26)

as shown in Figure 7a. The PD controller is described as, 𝑢 = 𝑘 𝑒 + 𝑘 𝑒 (27)

where the tracking error is 𝑒 = 𝑟 − 𝑦. Then, the linear control law (u) can be generalized to the 
form 𝑢 = 𝛹(𝑒) (see Figure 7b) such that 𝛹 is sector-bounded and satisfies 𝛹(0) = 0. 

 
(a) 

 
(b) 

Figure 7. The SISO system in Theorem 1. (a) Linear combination control law; (b) nonlinear combina-
tional control law.

2.3. Sliding Mode Extended State Observer (SMESO)

In state space form, the suggested SMESO can be expressed as follows,

.
ξ̂ = FX̂ + B1u + B2g

(
y− ξ̂1

)
(29)

where ξ̂ ∈ R(n+1)×1 is a vector that comprises the observed total disturbance and states of

the plant,
.

X̂ ∈ R(n+1)×1, B1 ∈ R(n+1)×1, B2 ∈ R(n+1)×1, and F ∈ R(n+1)×(n+1).

ξ =
[
ξ1 ξ2 . . . ξn+1

]T ,
.
ξ̂ =

[ .
ξ̂1

.
ξ̂2 . . .

.
ξ̂n+1

]T

F =



0 1
0 0

0 0
1 0

· · · 0
· · · 0

0 0

0
...

0 1
...

...

· · · 0
. . .

...
0 0
0 0

0 0
0 0

· · · 1
0 0


(30)

B1 =
[
0 0 . . . 1 0

]T , B2 =
[
β1 β2 . . . βn+1

]T
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Now, g
(
y− ξ̂1

)
= Kα

∣∣y− ξ̂1
∣∣αsign

(
y− ξ̂1

)
+ Kβ

∣∣y− ξ̂1
∣∣β(y− ξ̂1

)
, where Kα, α, Kβ,

and β are appropriate design parameters. With n = 2, the SMESO can be expressed as,
.
ξ̂1 = x2 + β1(Kα

∣∣y− ξ̂1
∣∣αsign

(
y− ξ̂1

)
+ Kβ

∣∣y− ξ̂1
∣∣β(y− ξ̂1

)
)

.
ξ̂2 = ξ3 + bu + β2(Kα

∣∣y− ξ̂1
∣∣αsign

(
y− ξ̂1

)
+ Kβ

∣∣y− ξ̂1
∣∣β(y− ξ̂1

)
)

.
ξ̂3 = β3(Kα

∣∣y− ξ̂1
∣∣αsign

(
y− ξ̂1

)
+ Kβ

∣∣y− ξ̂1
∣∣β(y− ξ̂1

)
)

(31)

The SMESO is the nonlinear modified version of the LESO. The proposed SMESO is
the third part of the IADRC, which considers the main part that is used to actively estimate
what is known as the “total disturbance”. Compared with the LESO, SMESO performs
better when it comes to reducing chattering in control signals. In [13], the proposed SMESO
demonstrated in detail that estimation error converges to zero asymptotically for nonlinear
gain functions. With a sliding term, estimation accuracy is increased for the nonlinear
extended state observer. As a result, the proposed method achieves excellent performance
when it comes to smoothed control signals, requiring less control energy to accomplish the
intended result [13].

3. Convergence and Stability Analysis

In this section, the convergence of the proposed SMESO and the stability of the closed-
loop system are investigated in detail to validate the proposed design techniques.

3.1. Convergence Analysis of the Proposed SMESO

To prove the convergence of the SMESO, the following assumptions are needed.

Assumption 2. There exists an upper bound for the time derivative of the generalized disturbance
(i.e., at least

.
L ∈ C1 and supt∈[0,∞)

∣∣∣ .
L
∣∣∣ = M < ∞, where ∈ R);

Assumption 3. L is a continuously differentiable function;

Assumption 4. V : Rn+1 → R+ and W : Rn+1 → R+ are continuously differentiable functions
with [16],

λ1‖η‖2 ≤ V(η) ≤ λ2‖η‖2 , W(η) = ‖η‖2 (32)

∑n−1
i=1

∂V(η)

ηi

(
ηi+1 − aik

(
η1

ω0
ρ

)
.η1

)
− ∂V(η)

∂yn
ank
(

η1

ω0n

)
η1 ≤ −W(η) (33)

Theorem 3. (SMESO convergence). Given the system of (18) and SMESO of (29), it follows that
under assumptions A3 and A5, for any initial conditions,

(i) lim
t→∞

∣∣ξi(t)− ξ̂i(t)
∣∣ = O

(
1

ω0
n+2−i

)
(ii) lim

t→ ∞
ω0 → ∞

∣∣ξi(t)− ξ̂i(t)
∣∣ = 0

where ξi and ξ̂i symbolize the state of (18) and (29), respectively, where i ∈ {1, 2, . . . , n + 1}.

Proof. Let ei = ξi − ξ̂i, i ∈ {1, 2, . . . , n + 1}. Correspondingly, let

ηi = ω0
n−iei

(
t

ω0

)
, i ∈ {1, 2, . . . , n + 1} (34)
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Then, the dynamics of the estimation error can be expressed in a time scale as,

dη1
dt = η2 − a1k

(
η1

ω0
n−1

)
η1

dη2
dt = η3 − a2k

(
η1

ω0
n−1

)
η1

...
dηn
dt = ηn − ank

(
η1

ω0
n−1

)
η1

dηn+1
dt = ∆h

ω0
2 − an+1k

(
η1

ω0
n−1

)
η1

(35)

Let the candidate Lyapunov functions (V, W : Rn+1 → R+ ) denoted by
V(η) = 〈Pη, η〉 = ηT Pη, where η ∈ Rn+1, and P is a positive definite symmetric ma-
trix. Consider (22) of assumption A4 with λ1 = λmin(P) and λ2 = λmax(P), where λmin(P)
and λmax(P) are the minimum and maximum eigenvalues of P, respectively.

.
V with regard

to t over η (over the solution of (35) )is determined as follows:

.
V(η)

∣∣∣
along (35)

= ∑n+1
i=1

∂V(η)

∂ηi

.
ηi(t) (36)

Then,

.
V(η)

∣∣∣
along (35)

=
n−1

∑
i=1

∂V(η)

ηi

(
ηi+1(t)− aik

(
η1(t)
ω0n

)
.η1(t)

)
− ∂V(η)

∂ηn
ank
(

η1(t)
ω0n

)
.η1(t) +

∂V(η)

∂ηn+1

M
ω02 (37)

Consider (33) of assumption A4; then,

.
V(η)

∣∣∣
along (35)

≤ −W(η) +
∂V(η)

∂ηn+1

M
ω02 (38)

As V(η) ≤ λmax(P)‖η‖2 and
∣∣∣ ∂V(η)

∂ηn+1

∣∣∣ ≤ ‖ ∂V(η)
∂η ‖, then

∣∣∣ ∂V
∂ηn+1

∣∣∣ ≤ 2λmax(P)‖η‖. As

V(η) ≤ λmax(P)‖η‖2 = λmax(P)W(η). Thus, −W(η) ≤ − V(η)
λmax( P) . Finally, because

λmin(P)‖η‖2 ≤ V(η), this leads to ‖η‖ ≤
√

V(η)
λmin(P) . Accordingly, and given assumption

A4,
.

V(η) becomes,
.

V(η) ≤ − V(η)
λmax(P) +

M
ω0

2 2λmax(P)
√

V(η)√
λmin(P)

. Since d
dt

√
V(η) = 1

2
1√

V(η)

.
V(η), then,

d
dt

√
V(η) ≤ 1

2
1√

V(η)

(
− V(η)

λmax(P)
+

M
ω02 2λmax(P)

√
V(η)√

λmin(η)

)
(39)

which gives
d
dt

√
V(η) ≤ −

√
V(η)

2λmax(P)
+

M
ω02

λmax(P)√
λmin(P)

(40)

which can be solved as√
V(η) ≤ 2Mλ2

max(P)
ω02

√
λmin(P)

(
1− e−

t
2λmax(P)

)
+
√

V(η(0))e−
t

2λmax(P)
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According to assumption A4, we have λmin(P)‖η‖2 ≤ V(η). This leads to

‖η‖ ≤
√

V(η)
λmin(P) . Then,

‖η‖ ≤
√

1
λmin(P)

(
2Mλ2

max(P)
ω02

√
λmin(P)

(
1− e−

t
2λmax(P)

)
+
√

V(η(0))e−
t

2λmax(P)

)

which yields

‖η‖ ≤ 2Mλ2
max(P)

ω02λmin(P)

(
1− e−

t
2λmax(P)

)
+

√
V(η(0))
λmin(P)

e−
t

2λmax(P) (41)

It follows from (34) that,

∣∣ξi − ξ̂i
∣∣ ≤ 1

ω0n−i ‖η(ω0t)‖

It follows from (41) that,

∣∣ξi − ξ̂i
∣∣ ≤ 1

ω0n−i

(
2Mλ2

max(P)
ω02λmin(P)

(
1− e−

ω0t
2λmax(P)

)
+

√
V(η(0))
λmin(P)

e−
ω0t

2λmax(P)

)

Finally,

lim
t→∞

∣∣ξi − ξ̂i
∣∣ = 1

ω0n+2−i
2Mλ2

max(P)
λmin(P)

= O
(

1
ω0n+2−i

)
(42)

and
lim

t→ ∞
ω0 → ∞

∣∣ξi − ξ̂i
∣∣ (43)

�

3.2. Stability Analysis of the Closed-Loop System

In this section, the closed-loop stability is investigated for a general nonlinear SISO
uncertain system with an ADRC controller.

Assumption 5. The states ξ̂i (i = 1, 2, . . . , n) and the generalized disturbance ξn+1 = f of an
n-dimensional uncertain nonlinear SISO system are estimated by a convergent ESO, which produces
the estimated states ξ̂i, i ∈ {1, 2, . . . , n} of the plant and the estimated generalized disturbance
ξ̂n+1 as t→ ∞ , i.e.,

lim
t→∞

∣∣ξi − ξ̂i
∣∣ = 0, i ∈ {1, 2, . . . , n}, (44)

and
lim
t→∞

∣∣ f − ξ̂n+1
∣∣ = 0 (45)

Assumption 6. A tracking differentiator produces a trajectory (ri , i ∈ {1, 2, . . . , n}) with mini-
mum set point change. The trajectory converges to a reference trajectory (r(i−1)) for
i ∈ {1, 2, . . . , n} with r(n) = 0 as t→ ∞ , i.e.,

lim
t→∞

∣∣∣r(i−1) − ri

∣∣∣ = 0, i ∈ {1, 2, . . . , n} (46)
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Theorem 4. Consider a n-dimensional uncertain nonlinear SISO system expressed as
ξi = ξi+1, i ∈ {1, 2. . . . , n− 1}
.
ξn = f

(
ξ1, ξ2, . . . , ξρ, w, t

)
+ u

y = ξ1

(47)

The system (47) is controlled by the linearization control law (LCL) signal (u) expressed by,

u = v− ξ̂n+1 (48)

where v is expressed by,

v =
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1(ẽ1)ẽ1 +
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which is expressed as, 𝜉 = 𝑦( ) , 𝑖 ∈ {1,2, … , 𝜌}  (52)

Substitute (52) in (51), and the tracking error is expressed by, �̃� = 𝑟( ) − 𝑦( ) , 𝑖 ∈ {1,2, … , 𝜌} (53)
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2(ẽ2)ẽ2 + . . . +
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n(ẽn)ẽn (49)

where ẽi = ri − ξ̂i , i ∈ {1, 2, . . . , n} is the tracking error, and
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i : R→ R+, i ∈ {1, 2, . . . , n} ;
assume that assumptions A5 and A6 hold. Then

lim
t→∞
|ẽi| = 0, i ∈ {1, 2, . . . , n} (50)

Proof. The tracking error (ẽi, i ∈ {1, 2, . . . , n}) of the closed-loop system is the error between
the reference trajectory and the corresponding plant estimated states expressed as,

ẽi = ri − ξ̂i , i ∈ {1, 2, . . . , n}

After convergence occurs, the tracking error is described by,

ẽi = r(i−1) − ξi , i ∈ {1, 2, . . . , n} (51)

For the system given in (33), the states (ξi) are expressed in terms of the plant output,
which is expressed as,

ξi = y(i−1) , i ∈ {1, 2, . . . , ρ} (52)

Substitute (52) in (51), and the tracking error is expressed by,

.
ẽi = r(i−1) − y(i−1) , i ∈ {1, 2, . . . , ρ} (53)

Differentiating the tracking error (ei, i ∈ {1, 2, . . . , n}) with regard to time yields

.
ẽi = r(i) − y(i) = ẽi+1 , i ∈ {1, 2, . . . , n} (54)

It follows that the tracking error dynamics ẽi , i ∈ {1, 2, . . . , n}) are expressed as

.
ẽ1 = ẽ2,
.
ẽ2 = ẽ3,

...
.
ẽn = r(n) − y(n) = r(n) −

.
ξn

(55)

This, together with (47), yields,

.
ẽ1 = ẽ2,
.
ẽ2 = ẽ3,

...
.
ẽn = r(n) − ( f + u)

(56)
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From (48) and (56), we obtain,

.
ẽ1 = ẽ2,
.
ẽ2 = ẽ3,

...
.
ẽn = r(n) − v + ξ̂n+1 − f

(57)

It follows from (45) and (57) that,

.
ẽ1 = ẽ2,
.
ẽ2 = ẽ3,

...
.
ẽn = r(n) − v

(58)

The tracking error dynamics given in (58) associated with the control law (v) designed
in (49) produce the following dynamics

.
ẽ1 = ẽ2,
.
ẽ2 = ẽ3,

...
.
ẽn = r(n) −
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which is expressed as, 𝜉 = 𝑦( ) , 𝑖 ∈ {1,2, … , 𝜌}  (52)
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1(ẽ1)ẽ1 −
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2(ẽ2)ẽ2 − . . .−
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n(ẽn)ẽn

(59)

Based on assumption A6, the dynamics given in (59) can be represented in compact
form as, .

ẽ = Aẽ (60)

where

A =



0 1 0
0 0 1
... . . . . . .

. . . 0 0

. . . 0 0

. . .
...

...
0 0 0
0 0 0

−
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For the system given in (33), the states (𝜉 ) are expressed in terms of the plant output, 
which is expressed as, 𝜉 = 𝑦( ) , 𝑖 ∈ {1,2, … , 𝜌}  (52)

Substitute (52) in (51), and the tracking error is expressed by, �̃� = 𝑟( ) − 𝑦( ) , 𝑖 ∈ {1,2, … , 𝜌} (53)

Differentiating the tracking error (𝑒 , 𝑖 ∈ {1,2, … , 𝑛}) with regard to time yields �̃� = 𝑟( ) − 𝑦( ) = �̃�  , 𝑖 ∈ {1,2, … , 𝑛} (54)
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ρ(ẽn)


(61)

and ẽ = (ẽ1, ẽ2, . . . , ẽn)
T

The characteristic polynomial of A is expressed by

|λI − A| = λn +
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1(ẽ1) (62)

The design parameters of the proposed controller are selected to ensure that the roots
of the characteristic polynomial (43) have a strictly negative real part, which makes (61)
asymptotically stable. Hence, lim

t→∞
|ẽi| = 0. �

Remark 1. The error vector is calculated up to the relative degree (n) of the system because the ESO
estimate system states up to n, i.e., ei = ri − ξ̂i, i ∈ {1, 2, . . . , n}. This implies that the vector k(e)
of (23) and the vector f (e) of (24) are of size n.

Corollary 1. Consider the nonlinear system and the control signal given in Theorem 2. The
control signal (v) is expressed as v = ∑n

i=1 ki(ẽi) fi(ẽi), where ki(ẽi) =
(

ki1 +
ki2

1+exp(µi ẽi
2)

)
, and

fi(ẽi) = |ẽi|αi sign(ẽi) for i ∈ {1, 2, . . . , n}. Moreover, if assumptions A5 and A6 hold, then
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lim
t→∞

∣∣ri − ξ̂i
∣∣ = 0, i ∈ {1, 2, . . . , ρ} for a suitable set of the design parameters ki1, ki2, µi, and αi with

i ∈ {1, 2, . . . , n}.

Proof. Since

ki(ẽi) fi(ẽi) =

(
ki1 +

ki2
1 + exp(µi ẽi

2)

)
|ẽi|αi sign(ẽi), i ∈ {1, 2, . . . , n} (63)

Equation (63) can be expressed as,

ki(ẽi) fi(ẽi) =

{
0 ẽi = 0
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i(ẽi)ẽi ẽi 6= 0
(64)

where the function
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i : R/{0} → R+ is an even nonlinear gain function, and:
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i(ẽi) =

(
ki1 +

ki2

1 + exp
(
µi ẽ2

i
))|ẽi|αi−1, i ∈ {1, 2, . . . , n} (65)

The expression (65) is time-varying because it is a function of ẽi. For simplicity,
consider that the parameters ki2 = 0 and αi = 1 and that the expression (65) is reduced to
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i(ẽi) = ki1. Consider the tracking error dynamics given in (59) with n = 2, which provides{ .
ẽ1 = ẽ2,

.
ẽn = −k11 ẽ1 − k21 ẽ2

(66)

The characteristic equation of (66) is expressed as,

|λI − A| = λ2 + k21λ + k11 (67)

The roots of the characteristic equation (67) are λ1,2 = − k21
2 +

√
k21

2−4k11
2 for

k21
2 < 4k11, which leads to a complex conjugate with a negative real part. Then,

ẽ1 → 0 and ẽ2 → 0 at t→ ∞.
In Theorem 4, we assumed that r(n) = 0 for the case of r(n) in (59) not satisfying

assumption A 6, i.e., r(n) 6= 0. Then, for n = 2,{ .
ẽ1 = ẽ2,

.
ẽ2 = −k11 ẽ1 − k21 ẽ2 + r(2)(t)

(68)

Let q(t) = r(2)(t) after taking the Laplace transform of both sides of (68)

sẼ1(s) = Ẽ2(s)

sẼ2(s) = −k11Ẽ1(s)− k21Ẽ1(s) + Q(s)

Solving for Ẽ1(s) and Ẽ2(s) in terms of Q(s) , we obtain

Ẽ1(s) =
Q(s)

s2 + k21s + k11
(69)

Ẽ2(s) =
sQ(s)

s2 + k21s + k11
(70)

It can be noticed from (70) that for nonzero r(2)(t) = q(t), the error ẽ1(t) tracks r(2),
which means that at a steady state, ẽ1(t) is nonzero, depending on r(2)(t). The error ẽ2 is
the derivative of ẽ1(t). �
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4. Mismatched Disturbances

To satisfy the matched condition, the ESO assumes that the plant is expressed in
the normal form [28,29]. Thus, it can only be applied to systems that can be directly
expressed in the normal form or by changing variables. When a system has zero dynamics,
performing such a transformation can be challenging. There are also nonlinear systems
with disturbances appearing in a different channel of control input; these systems fail
to satisfy the matching condition. Therefore, ADRC is no longer able to manipulate this
mismatched disturbance as before. For instance, the following nonlinear model belongs
to a class of uncertain nonlinear systems in a lower triangular form with mismatched
disturbance [30–35],

ξi = aiξi+1 + φi(ξ1, . . . , ξi) + wi, i ∈ {1, 2, . . . , n− 1}
ξn = φn(ξ1, ξ2, . . . , ξn) + wn + bu,

y = ξ1

(71)

where ξ = (ξ1(t), ξ2(t), . . . , ξn(t))
T ∈ Rn is the system state, y(t) ∈ R is the measured out-

put, u(t) ∈ R is the control input, wi(t) ∈ R, i ∈ {1, 2, . . . , n} is the unknown exogenous dis-
turbance, and b ∈ R is the control coefficient. The function φi : Ri → R, i ∈ {1, 2, . . . , n} .

Theorem 5. A second-order nonlinear system in a lower triangular form with mismatched distur-
bances can be described as follows,

.
ξ1 = a1ξ2 + φ1(ξ1) + w1.

ξ2 = φ2(ξ1, ξ2) + w2 + bu
y = ξ1

(72)

where ξ = (ξ1(t), ξ2(t))
T ∈ R2 is the system state, y(t) ∈ R is the measured output, u(t) ∈ R is

the control input, wi(t) ∈ R, i ∈ {1, 2} is the unknown exogenous disturbance, and b ∈ R is the
control coefficient. The function φi : Ri → R, i ∈ {1, 2} . If the function φ1 and the exogenous
disturbance (w1) are differentiable with regard to t, the system (72) can be transformed into the
following form, 

.
ξ̃1 = ξ̃2.

ξ̃2 = f
(

ξ̃1, ξ̃2, w1,
.

w1, w2

)
+ b̂u

y = ξ̃1

(73)

where f
(

ξ̃1, ξ̃2, w1,
.

w1, w2

)
= a1φ2

(
ξ̃1,

ξ̃2−φ1(ξ̃1)−w1
a1

)
+

∂φ1(ξ̃1)
∂ξ1

ξ̃2 + a1w2 +
.

w1, and b̂ = a1b.

Proof. Let ξ̃1 = ξ1 and ξ̃2 =
.
ξ1. Then,

.
ξ̃2 = a1

.
ξ2 +

∂φ1(ξ1)

∂ξ1

.
ξ1 +

.
w1 (74)

By substituting (72) in (74), we obtain,

.
ξ̃2 = a1φ2

(
ξ̃1, ξ2

)
+

∂φ1

(
ξ̃1

)
∂ξ1

ξ̃2 + a1w2 +
.

w1 + a1bu (75)

Since ξ2 =
ξ̃2−φ1(ξ̃1)−w1

a1
, (75) can be expressed as,

.
ξ̃2 = a1φ2

ξ̃1,
ξ̃2 − φ1

(
ξ̃1

)
− w1

a1

+
∂φ1

(
ξ̃1

)
∂ξ1

ξ̃2 + a1w2 +
.

w1 + a1bu (76)
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Finally, system (72) can be defined as,
.
ξ̃1 = ξ̃2,

.
ξ̃2 = f

(
ξ̃1, ξ̃2, w1,

.
w1, w2

)
+ b̂u,

y = ξ̃1

(77)

where f
(

ξ̃1, ξ̃2, w1,
.

w1, w2

)
= a1φ2

(
ξ̃1,

ξ̃2−φ1(ξ̃1)−w1
a1

)
+

∂φ1(ξ̃1)
∂ξ1

ξ̃2 + a1w2 +
.

w1, b̂ = a1b. �

Theorem 5 can be generalized easily for nth-order uncertain nonlinear systems in a
lower triangular form with mismatched disturbance wi(t), i ∈ {1, 2 . . . , n} as in (71).

5. Mathematical Modelling of The Differential Drive Mobile Robot

The mathematical model of the mobile robot mathematical is an approximation of the
physical mobile robot, which consists of the dynamical kinematic and actuator models. To
restrain the robot’s motor dynamics, an internal loop is also involved. Figure 8 illustrates
the mobile robot block diagram with an internal control loop [36].
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As shown in Figure 8, w(t), q(t), and p(t) represent the reference input velocity, the
output of the internal loop (i.e., recent velocity), and the kinematic model output (i.e.,
robot posture), respectively. The control inputs are the differences between the required
and the recent velocities (e(t) = w(t)− q(t)), while the control output (u(t)) influences
the dynamics of the mobile robot as forces or torques. The posture of the mobile robot
regarding the origin of the global coordinate system (GCS) is described by the position
coordinates (x, y) of its local coordinate system (LCS) origin, with rotation defined by an
angle (θm) [36].

As shown in Figure 9, the kinematic model can be described by the robot’s linear
velocity (Vm) and its angular velocity (ωm). However, it is desirable to describe most control
configurations according the wheel angular velocities (ωwr, ωwl). The general kinematic
model of DDMR is defined as [37–42],

.
x′ = Vmcos(θm)
.
y′ = Vmsin(θm).

θm = ωm

(78)

Linear velocity is computed by averaging the linear velocities of the two wheels in the
LCS [37–40],

Vm =
(Vwr + Vwl)

2
= rw

(ωwr + ωwl)

2
(79)

The DDMR angular velocity is expressed as,

ωm =
(Vwr −Vwl)

D
= rw

(ωwr −ωwl)

D
(80)
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where Vm is the longitudinal velocity of the center of mass; ωm is the angular velocity of
DDMR; Vwr and Vwl are the longitudinal velocities of the left and right wheels, respec-
tively; ωwr and ωwl are the angular tire velocities of the left and right wheels, respectively;
and rw is the nominal radius of the tire.
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In [13], the nonlinear dynamics of the motor wheels were illustrated and presented in
detail. The state-space depiction of the overall motor and wheel dynamics is summarized
as follows (for the right wheel):

Jeqn
.

ωwr = −Beqnωwr + ktiar − τ′ lr (81)

La
diar

dt
= −kbnωwr − Raiar + var (82)

τ′ lr = τrext/n (83)

where var and val are the input voltages applied to the right and left motors, respectively;
iar and ial are the armature current of the right and left motors, respectively; τ′ lr and τ′ ll
are the right and left motor-developed torques, respectively; kt is a torque constant; kb is
a voltage constant; La is an electric self-inductance constant; Ra is an electric resistance
constant; the total equivalent inertia is denoted as Jeq; total equivalent damping is denoted
as Beq; n is the ratio of the gearbox; and τrext and τlext are the external torque applied at the
wheel side for the right land left wheels, respectively. Let ξ1 = ωwr ξ2 = iar, d = τ′ lr, and
u = var. Then,

.
ξ1 = −

Beq

Jeq
ξ1 +

kt

Jeqn
ξ2 −

1
Jeqn

d (84)

.
ξ2 = − kbn

La
ξ1 −

Ra

La
ξ2 +

1
La

u (85)

Let b1 = − 1
Jeqn , b2 = 1

La
,

f1(ξ1, ξ2) = −
Beq

Jeq
ξ1 +

kt

Jeqn
ξ2 (86)

and
f2(ξ1, ξ2) = −

kbn
La

(87)

The simplified model with the mismatched uncertainties and external disturbances of
the DDMR exactly fits the state-space formulation given in (53). According to Theorem 1,
the state-space model with mismatched uncertainties can be transformed into ADRC
canonical form with b̂ = 1

La
kt

Jeqn for the motor wheel model.



Entropy 2023, 25, 514 20 of 30

6. Numerical Simulations

The kinematic model of the DDMR with PMDC motors and the proposed IADRC
was designed and simulated in the MATLAB®/SIMULINK environment. Numerical
simulations of continuous state models were conducted using the MATLAB® ODE45 solver.
This Runge–Kutta ODE45 solver produces a fourth-order estimate of error using a fifth-
order method. Figure 10 shows the Simulink block diagram of the DDMR and the PMDC
motors with IADRC.
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Figure 10. The Simulink® block diagram of the DDMR kinematics and the PMDC motor controlled
by the IADRC.

The PMDC motor coefficient values are set to La = 0.82, Ra = 0.1557, Kt = 1.1882,
Kb = 1.185, Beq = 0.3922, Jeq = 0.2752, and n = 3.0. The DDMR used in the simulation is
assumed to have the following coefficients: D = 0.40 and rw = 0.075. The coefficients of the
classical ADRC controller are δ1 = 0.4620, δ2 = 0.24807, α1 = 0.1726, α2 = 0.8730, β1 = 30.4,
β2 = 523.4, β3 = 2970.8, and R = 100. The coefficients of the proposed IADRC scheme
include the coefficients of the NLSEFC, which are expressed as k11 = 144.6642, k12 = 8.0475,
k21 = 25.5574, k22 = 4.8814, k3 = 0.5308, δ = 3.8831, µ1 = 44.3160, µ2 = 48.8179, µ3 = 26.1493,
α1 = 0.9675, α2 = 1.4487, and α3 = 3.5032. The ITD suggested in this paper has a set of
coefficients expressed as α = 0.4968, β = 2.1555, γ = 11.9554, and R = 16.8199. Kα = 0.6265,
α = 0.8433, Kβ = 0.5878, β = 0.04078, β0 = 30.4, β1 = 513.4, and β2 = 1570.8 represent the
coefficients of the SMESO used in this work.

The DDMR was tested by applying reference angular velocities for both wheels of
1 rad/s at t = 0 and t = 100 s. To examine the proposed IADRC performance, an exogenous
torque acting as a constant disturbance was applied to the right wheel during the simulation
at t = 30 and removed after 20 s. Figure 11 shows the applied external disturbance. Figure 12
shows the transient response of the controlled PMDC motor for the right wheel when both
the ADRC and the IADRC are applied. The figure shows an enhancement in system
response before and during the applied disturbance when the IADRC is adopted; this
behavior is evident in Figure 12c,d.
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Figure 12. Simulation results: (a) the angular velocity of the right wheel using classical ADRC; (b) 
close-up of the response depicted in (a); (c) the angular velocity of the left wheel using IADRC; (d) 
close-up of the response depicted in (c). 

The orientation error (𝑒 ) associated with the tested case is reduced intensely due to 
the effectiveness of the proposed technique (see Figure 13). Note that 𝑒 = 𝜃 − 𝜃 , 
where 𝜃  is the orientation of the reference trajectory, and 𝜃  is the actual orienta-
tion. The IADRC produces an error signal with less overshoot (3.4 × 10−3) than in the ADRC 
scheme (10.5 × 10−3). The IADRC also shows a faster convergence for the error signal be-
cause of the proposed nonlinearities in the NLSEFC controller, which strongly and quickly 
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Figure 12. Simulation results: (a) the angular velocity of the right wheel using classical ADRC; (b)
close-up of the response depicted in (a); (c) the angular velocity of the left wheel using IADRC; (d)
close-up of the response depicted in (c).

The orientation error (eθ) associated with the tested case is reduced intensely due to the
effectiveness of the proposed technique (see Figure 13). Note that eθ = θre f − θactual , where
θre f is the orientation of the reference trajectory, and θactual is the actual orientation. The
IADRC produces an error signal with less overshoot (3.4 × 10−3) than in the ADRC scheme
(10.5 × 10−3). The IADRC also shows a faster convergence for the error signal because of
the proposed nonlinearities in the NLSEFC controller, which strongly and quickly damp
the error signals.
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Figure 13. Simulation results; (a) the DDMR orientation error in the case of ADRC; (b) the DDMR 
orientation error in the case of IADRC. 

The chattering phenomenon found in the estimated total disturbances produced by 
the LESO of the conventional ADRC for both wheels (Dr and Dl) are extremely reduced by 
using the SMESO of the proposed IADRC. The same is true of the control signals that 
drive the two wheels (𝑢  and 𝑢 ; see Figure 14), where a very smooth control signal is 
obtained as a result of the slight increase in the overshot (compare Figure 14a,b). 
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Figure 13. Simulation results; (a) the DDMR orientation error in the case of ADRC; (b) the DDMR
orientation error in the case of IADRC.

The chattering phenomenon found in the estimated total disturbances produced by
the LESO of the conventional ADRC for both wheels (Dr and Dl) are extremely reduced by
using the SMESO of the proposed IADRC. The same is true of the control signals that drive
the two wheels (ur and ul ; see Figure 14), where a very smooth control signal is obtained as
a result of the slight increase in the overshot (compare Figure 14a,b).

Entropy 2023, 25, x FOR PEER REVIEW 24 of 30 
 

 

 
(b) 

Figure 13. Simulation results; (a) the DDMR orientation error in the case of ADRC; (b) the DDMR 
orientation error in the case of IADRC. 

The chattering phenomenon found in the estimated total disturbances produced by 
the LESO of the conventional ADRC for both wheels (Dr and Dl) are extremely reduced by 
using the SMESO of the proposed IADRC. The same is true of the control signals that 
drive the two wheels (𝑢  and 𝑢 ; see Figure 14), where a very smooth control signal is 
obtained as a result of the slight increase in the overshot (compare Figure 14a,b). 

 
(a) 

Figure 14. Cont.



Entropy 2023, 25, 514 25 of 30Entropy 2023, 25, x FOR PEER REVIEW 25 of 30 
 

 

 
(b) 

(c) 

Figure 14. Cont.



Entropy 2023, 25, 514 26 of 30Entropy 2023, 25, x FOR PEER REVIEW 26 of 30 
 

 

 
(d) 

Figure 14. Simulation results: (a) the control signals generated by the ADRC; (b) the control signals 
generated by the IADRC; (c) the estimated total disturbance from the LESO; (d) the observed total 
disturbance from the SMESO. 
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generated by the IADRC; (c) the estimated total disturbance from the LESO; (d) the observed total
disturbance from the SMESO.

Tables 1 and 2 show the results based on evaluation of several OPIs. These indices
reflect the performance of the adaptive improved active disturbance rejection control. The
results are classified into kinematic and dynamic performance indices.

Table 1. DDMR kinematic performance indices.

Performance Index
Controller

ADRC IADRC

OPIx 0.0010884970 0.0005257305

OPIy 0.0016112239 0.0007447036

OPIθ 0.0000059780 0.0000017459

Table 2. Performance indices of both wheels.

Wheel Performance Index
Controller

ADRC IADRC

Right
ITAE 13.302889 1.780254

ISU 1372.090423 1407.300305

Left
ITAE 6.919226 0.146694

ISU 1343.542226 1372.124019
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where OPIx = 1
N ∑

(
xre f − xactual

)2
,

OPIy = 1
N ∑

(
yre f − yactual

)2
,

OPIθ = 1
N ∑

(
θre f − θactual

)2

ITAE = ∑ t
∣∣∣ωre f −ωactual

∣∣∣dt

ISU = ∑ u2dt

Discussion

A new nonlinear error combination (Ψ(e)) is proposed, which was used to construct
an NLSEFC. When used solely in the feedback loop, it leads to a noticeable improvement
in the performance of the closed-loop system in terms of the ISU index for both models.
This closeness is due to the common term ( f (e) = |e|αsign(e)) included in the structure of
the NLSEFC. Furthermore, the nonlinear gain function (k(e)), in contrast to the conven-
tional PID controller, produces a variable gain depending on the error value, which, in
turn, enhances the transient behavior of the system response. Furthermore, an SMESO is
suggested in this paper; the smoothness of the control signal u and the minimum overshoot
in the output response are due to using the proposed nonlinear error function (·) with
the following features: it is a smooth function, and it has high gain near the origin and
a small gain with large error values. Finally, a new tracking differentiator, named the
INTD, is proposed; it proved superior to the other tracking differentiators by solving the
common issues extant in conventional differentiators. One of these issues is the “peaking
phenomenon”. This phenomenon is reduced by considering the INTD of 4.35 with an
optimized set of parameters, i.e., a1 and a2. In addition, the proposed INTD eliminates the
“phase lag” problem that is extant in most conventional tracking differentiators due to the
scaling parameters, i.e., α and β. The input scaling parameter (α) reduces the values of the
input signal (r(t)) level (1 − α), while scaling parameter β amplifies the level of the output
signal (r1(t)), thereby accelerating the tracking phase. When these three parts are combined
to synthesize the IADRC, the proposed IADRC scheme presented in this paper and applied
to DDMR achieves the improvements mentioned above in an easier manner because the
nonlinear system is converted into a chain of integrators by the SMESO, which is simply
a linearized system controlled by a nonlinear controller. This is reflected in the DDMR in
terms of the smooth output response and chatter-free control signal. Moreover, the torque
disturbance is canceled by the IADRC scheme and provides very small values for the ITAE
and ISU indices, as shown in Tables 1 and 2.

A major improvement in the kinematic indices is achieved for the IADRC against
the conventional ADRC, where the OPIx, OPIy, and OPIθ are reduced by 51.7%, 53.78%,
and 70.794%, respectively. A significant enhancement in the time-domain response is
achieved (ITAE is lowered by 86.6175%) by increasing the ISU, which signifies the power
provided to the PMDC motor. In addition, the chattering in the control signal caused by
Han’s classical ADRC is almost eliminated by the proposed IADRC. Finally, the DDMR
orientation error is clearly reduced and swiftly decreases to zero.

7. Conclusions

An improved nonlinear ADRC controller was developed for a DDMR to provide
accurate speed tracking in the presence of high external torque disturbance. The proposed
IADRC with the SMESO generates an exact estimation of the states and the total disturbance.
The proposed IADRC with three parts, namely the SMESO, the NLSEF, and the INTD,
provides a committed scheme to enhance the ability of the conventional ADRC to achieve
disturbance estimation and attenuation. In conclusion, the simulation results show that the
developed IADRC can effectively enhance the performance of the system and improve the
accuracy and the speed of the PMDC motor of the DDMR under mismatched uncertainties
and torque disturbance. The IADRC eliminates the chattering phenomenon, which is
coherent in the conventional ADRC, with minimal increase in the overshoot of the control
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signal when disturbance occurs. The future directions for our proposed IADRC including
extending its applications to include consensus multiagent systems. The first step will be
to design a control system for every local agent for consensus disturbance rejection. The
second step with involve analysis of the design for network-connected multi-input linear or
nonlinear systems using relative state information of the subsystems in the neighborhood.
The consensus multiagent system can be configured with in leaderless or leader–follower
consensus setups under common assumptions of the network connections.
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