
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Jørgen Borander
Sindre Langaard

Leveraging Synthetic Data for
Boosting Occluded Sheep Detection
in UAV Images

Master’s thesis in Computer Science, Informatics
Supervisor: Svein-Olaf Hvasshovd
June 2023

Jørgen Borander
Sindre Langaard

Leveraging Synthetic Data for Boosting
Occluded Sheep Detection in UAV
Images

Master’s thesis in Computer Science, Informatics
Supervisor: Svein-Olaf Hvasshovd
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Each fall, Norwegian farmers round up around 2 million sheep and lambs from
grazing. Locating and gathering all the sheep can be time-consuming and tedious,
considering some stray sheep may have wandered far beyond their designated
grazing areas. With technological advancements, new tools have emerged to as-
sist with sheep roundups, such as using unmanned aerial vehicles UAV to locate
sheep. Previous research has examined applying machine learning algorithms to
images captured by UAVs to detect sheep automatically, showing promising res-
ults and capabilities. However, not all sheep are detected as easily. Sheep which
are partially occluded by vegetation has proved especially difficult to detect.

The aim of this thesis is to improve occluded sheep detection accuracy by
training object detection models on synthetic and real image data. An approach
to generating synthetic images of occluded sheep data in Unity Perception is ex-
plored. The generated synthetic data and real image data are used to train a range
of YOLOv7 models. A baseline model trained on real data exclusively, a model
trained on mixed data, and a fine-tuned model are examined to evaluate its impact
on occluded sheep detection performance. The performance from mixed training
and fine-tuning will also be compared.

The results indicate that synthetic image data can boost the performance of
occluded sheep detection. Both the mixed and fine-tuned models trained with
synthetic data performed better than the baseline model, with the mixed-trained
model seeing the most significant boost in performance.

iii

Sammendrag

Hvert høst samler norske bønder inn omtrent 2 millioner sauer og lam fra beite. Å
lokalisere og samle alle sauene kan være en tidkrevende og langtrukken prosess
da noen av sauene kan ha vandret langt utenfor sitt opprinnelige beiteområde.
Med teknologiske fremskritt har det dukket opp nye verktøy for å hjelpe med
sauesanking, som bruken av droner for å finne sau. Tidligere studier har sett på
å anvende maskinlæringsalgoritmer på bildene tatt av droner for detektere sau
automatisk, og det har vist lovende resultater og muligheter. All sau er derimot
ikke like enkel å oppdage. Å detektere sau som er gjemt under vegetasjon har vist
seg å være spesielt utfordrende.

Målet med denne oppgaven er å øke nøyaktigheten av deteksjon av skjult
sau ved å trene objektdetekteringsmodeller på syntetiske og ekte bilde-data. En
tilnærming til å generere syntetiske bilder av sauer delvis skjult av vegetasjon
i Unity Perception blir utforsket. De genererte syntetiske bildene og ekte bilde-
data blir brukt til å trene en rekke YOLOv7-modeller. En referansemodell trent
utelukkende på virkelige data, en modell trent på en kombinasjon av syntetisk og
ekte data, og en finjustert modell blir undersøkt for å vurdere effekten på ytelsen
ved deteksjon av sauer delvis skjult av vegetasjon. Hvordan trening på kombinas-
jonen av syntetisk og ekte data sammenlikner med en fin-justert modell vil også
bli utforsket.

Resultatene indikerer at syntetiske bilde-data kan forbedre ytelsen ved detek-
sjon av sauer delvis skjult av vegetasjon. Både modellen trent på kombinerte data
og den finjustert modellen presterer bedre enn referansemodellen, hvor modellen
trent på kombinerte data oppnådde den største forbedringen i ytelse.

v

Acknowledgements

This master’s thesis is a part of the MIDT and MSIT master programmes at the De-
partment of Computer Science at the Norwegian University of Science and Tech-
nology.

We want to thank our supervisor Svein-Olaf Hvasshovd, for his guidance and
encouragement while writing this thesis. No meeting without a smile, laughter
and encouraging words. Thank you to Bjørnar Østtveit, Hallvard Stemshaug and
Kari Meling Johannessen for sharing their data and insights from previous exper-
iments and work.

A special thanks to all the other master’s students at Gamle Fysikk, who have
motivated us throughout the process. Their support and the weekly vinlotteri and
kliss og quiz have made working on the thesis a joy.

vii

Contents

Abstract . iii

Sammendrag . v

Acknowledgements . vii

Contents . ix

Figures . xi

Tables . xiii

Acronyms . xv

1 Introduction . 1

1.1 Background and Motivation . 1
1.2 Thesis Goal and Research Questions 2
1.3 Scope and Limitations . 3
1.4 Thesis Structure . 3

2 Related Work . 5

2.1 Master Thesis on Sheep Detection in UAV Images 5
2.2 Locating Sheep with Radio-Equipped UAVs 6
2.3 Object Detection with Synthetic Data 7
2.4 Imbalanced Classes in Object Detection 8
2.5 Occlusion in Object Detection . 9

3 Theory and Background Knowledge . 11

3.1 Sheep Roundup . 11
3.1.1 Existing Tools for Sheep Tracking 12

3.2 Object Detection . 14
3.2.1 Evaluation Metrics for Object Detection 14

3.3 Artificial Neural Networks . 20
3.3.1 Convolutional Neural Network 22
3.3.2 YOLOv7 . 23

3.4 Training a Neural Network . 24
3.4.1 Gradient Descent . 24
3.4.2 Supervised vs Unsupervised Training 25
3.4.3 Pre-training and Fine-tuning . 25
3.4.4 Over- and Underfitting . 26
3.4.5 Dataset Splits . 26
3.4.6 Datasets for Object Detection 27

4 Method . 29

ix

x J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

4.1 Requirements . 29
4.1.1 Requirements for Generated Images 29
4.1.2 Requirements for Object Detection Model 30

4.2 Unity . 31
4.2.1 Unity Perception . 31

4.3 Data Generation in Unity Perception 32
4.3.1 Parameters and Considerations for Synthetic Image Gener-

ation . 34
4.3.2 Randomisers . 36

4.4 Sheep Dataset . 37
4.4.1 DJI Mavic 2 Enterprise Dual . 38
4.4.2 Real Image Data . 38
4.4.3 Synthethic Image Data . 40

4.5 Data Preparation . 41
4.6 Alternative Approaches to Sheep Recognition in UAV Imagery 42

4.6.1 Exploring Methods for Synthetic Sheep Image Generation . 42
4.6.2 Alternative Approaches for Object Detection Models 44
4.6.3 Weaknesses of Selected Approach 44

5 Experiment Structure . 47

5.1 Research Questions . 47
5.2 Dataset Splits . 48
5.3 Training . 49
5.4 Testing . 51

6 Results . 53

6.1 Results from Training . 53
6.2 Results from Testing . 56

7 Discussion . 63

7.1 Research Question 1 . 63
7.2 Research Question 2 . 64
7.3 Research Question 3 . 65
7.4 Implications and Limitations . 66

7.4.1 Practical Implications on UAV Roundup 66
7.4.2 Limitations and Sources of Error 67

8 Conclusion . 69

8.1 Conclusion . 69
8.2 Future Work . 70

Bibliography . 73

A Dataset and Code Repository . 81

Figures

3.1 Example of object detection input and output 14
3.2 Intersection over union . 15
3.3 Confusion matrix . 15
3.4 Bounding boxes before and after non-maximum suppression 16
3.5 Possible relationships between confidence threshold and precision

or confidence . 18
3.6 The relationship between precision and recall and how they affect

each other . 18
3.7 Precision-recall curve . 19
3.8 Artificial neural network . 20
3.9 Neuron from an artificial neural network 21
3.10 CNN architecture . 22
3.11 Convolution filter . 22
3.12 Max-pooling . 23
3.13 Min-pooling . 23
3.14 Gradient descent . 25

4.1 Determining if a sheep is positioned under a tree 35
4.2 Resulting synthetic images of occluded sheep generated with Unity

Perception . 35
4.3 DJI Mavic 2 Enterprise Dual . 39
4.4 Example of image tilling . 42

6.1 Comparing validation objectness loss for baseline models pre-trained
and trained from scratch . 54

6.2 mAP@0.5 for all multi-class models . 55
6.3 mAP@0.5 for all single class models 55
6.4 Validation objectness loss for single and multi-class models 55
6.5 Confidence matrix for model 1A Baseline 60
6.6 Confidence matrix for model 2A Mixed 61
6.7 Confidence matrix for model 3A Fine-tuned 62

xi

Tables

3.1 Comparisons of tracking systems from Telespor, FindMy and Nofence 12
3.2 Comparing cost of Telespor, FindMy and Nofence systems at various

tracking levels . 13

4.1 Frame-by-frame process for generating images with Unity Perception 32
4.2 DJI Mavic 2 Enterprise Dual specifications 39
4.3 Instances and number of images for each sheep class in the dataset

of real images . 40
4.4 Instances and number of images for each sheep class in the dataset

of synthetic images . 41

5.1 Training data distribution across classes 48
5.2 Validation data distribution across classes 49
5.3 Testing data distribution across classes 49
5.4 Configurations of models used for training and testing 50

6.1 Optimal confidence thresholds used for testing 56
6.2 Precision scores from testing . 57
6.3 Recall scores from testing . 57
6.4 mAP@0.5 scores from testing . 58
6.5 mAP@0.5:0.95 scores from testing . 58

7.1 Comparison of YOLOv7 and YOLOv5 performance 63

xiii

Acronyms

ANN Artificial neural network. 20, 22

AP Average precision. 7, 19, 20, 54

CNN Convolutional neural network. 9, 22, 23, 25, 44

DIMO Dataset of industrial metal objects. 7

E-ELAN Extended efficient layer aggregation network. 23

FN False negative. 14, 17

FP False positive. 14, 17

GANs Generative adversarial networks. 8, 9, 43, 70

GPS Global positioning system. 38

IoU Intersection over union. 14, 16, 20

IR Infrared radiaton. 6, 38

mAP Mean average precision. 8, 9, 20, 56

MS COCO Microsofts common objects in context. 7, 9, 27, 47

NIBIO Norsk institutt for bioøkonomi. 13

NMS Non maximum suppresion. 16

NTNU Norwegian University of Science and Technology. 5, 6, 8, 37

RGB Red green blue. 6

SOTA State of the art. 2, 63

SSD Single-shot detector. 44

xv

xvi J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

TN True negative. 14

TP True positive. 14, 17

UAV Unmanned aerial vehicle. iii, 1–3, 5, 6, 30

YOLO You only look once. 2, 5, 6, 8, 23, 25, 27, 44

Chapter 1

Introduction

1.1 Background and Motivation

Each year around 2 million sheep and lamb are released into Norwegian nature for
grazing [1]. At the end of the grazing period in the fall, the sheep farmer rounds
up the sheep for the winter. Sheep roundup can be a challenging and tedious task,
as the sheep move over a large area and can be spread across difficult-to-predict
locations and a range of terrain [2]. Through grazing trips, the farmer tries to
round up all the sheep, but because of the large area to cover, not all sheep are
likely to be found [3]. Farmers are often required to complete several grazing trips
to locate all of their sheep. Finding the last ones can require a large crew searching
over time, quickly becoming expensive [2]. Failing to locate the last sheep can lead
to a loss in revenue, and the resources used in the search could have been better
spent elsewhere.

Because of this, the farmer uses tools to help with sheep roundup. Tradition-
ally, bells are attached to the neck of the sheep to help with localisation. This is
helpful as the bell makes a lot of noise when the sheep are moving about, but it
requires the farmer to be relatively close to hear the sound. Neither do the bells
create sound when the sheep are stationary, so they will not help locate dead or
heavily injured sheep. There are, however, newer technologies made for helping
with sheep roundups [4][5][6][7]. These devices are tracking sheep using GPS
and transmitting location data to the farmer over satellite or cellular connectivity.
Being battery driven, they can be recharged and used for years, some even having
a life expectancy spanning multiple seasons on one charge. They can, however,
have a significant upfront cost, and most require an active subscription. These
alternatives are helpful but can be expensive for the farmer.

Camera-equipped Unmanned aerial vehicles (UAVs) have also proven to be an
effective way of rounding up sheep [8][9][10][11]. It is more affordable and can
be effective at scanning through the terrain. These UAVs fly over the landscape,
capturing images looking for sheep, which a machine learning algorithm processes
to detect sheep automatically. This method has proven to be an effective way of
finding sheep[12]. However, it has been shown that some sheep are more chal-

1

2 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

lenging to detect than others, primarily sheep with darker wool or sheep occluded
by vegetation [13]. These sheep have a limited amount of image data associated
with them, making training an object detection algorithm a challenge [14]. Ways
of creating synthetic data have been proposed and show that it can positively af-
fect the training of models and detection of sheep in the wild [13][15], however,
detecting occluded objects remain to be a challenge [16]. This thesis will build
upon the work on generating synthetic data to train object detection algorithms,
focusing on improving accuracy when looking at occluded sheep.

1.2 Thesis Goal and Research Questions

Goal: Improve detection of partially occluded sheep by training YOLOv7 on real and
synthetic data generated with Unity Perception

The main goal of this thesis is to improve the detection performance of par-
tially occluded sheep by training the You only look once (YOLO) version 7 al-
gorithm on real and synthetic data generated with Unity Perception. Using syn-
thetic data to train an object detection model, the hypothesis is that it can improve
the detection accuracy of occluded sheep.

The goal is further broken down into three research questions addressing key
factors regarding using synthetic data and detecting occluded sheep. Answering
these questions will help with reaching the overall goal for the thesis.

RQ1: How does YOLOv7 perform with the dataset consisting of real images?

Previous work looking at the detection of sheep in UAV images done by Østtveit
[13] used the YOLO version 5 architecture. Since then, the object detection field
has progressed, with improved algorithms being released. Comparing how a State
of the art (SOTA) object detection algorithm performs on the existing dataset will
give an updated baseline to compare the results from adding occluded images.

RQ2: How does training on mixed synthetic and real data affect the detection per-
formance of occluded sheep?

The hypothesis is that generating more image data with hard-to-detect classes
and using this for training will yield better results. These hard-to-detect classes are
sheep which are partially occluded by vegetation. Rendering images of sheep oc-
cluded by trees, branches and bushes and using these for training should improve
the accuracy performance of the model.

RQ3: How does fine-tuning compare to mixed training performance for predicting
occluded sheep?

Various techniques exist for training object detection models using synthetic
data. Examining the performance differences between two methods, mixed train-
ing and fine-tuning, can give insight into how object detection models for sheep
detection should be trained.

Chapter 1: Introduction 3

1.3 Scope and Limitations

This thesis focuses on improving the performance of detecting occluded sheep in
UAV images. The rest of the system for sheep detection, such as the UAV itself,
controls, running the object detection model, or designing the graphical interface
handled by the user, is outside the scope of the thesis.

A limiting factor has been the image data available for training. Supplying the
dataset with more images has not been possible as the UAV has been missing for
several months, only surfacing in the spring. As the writing of this thesis doesn’t
match the season where the UAV is intended to be used, it wouldn’t be optimal to
capture new images in the spring.

Time has also been a limiting factor for training and generating images. Train-
ing a model takes many hours, and suitable hardware is in high demand and not
always available, often resulting in days of waiting in queues. Generating syn-
thetic data also requires time. Therefore, testing every possible configuration and
possibility for improvement of the object detection models has not been feasible.

1.4 Thesis Structure

Chapter 1: Introduction gives an overview of the problem description and presents
the goal, research questions and scope for the thesis.

Chapter 2: Related Work presents related work and research done on relevant
subjects within sheep roundup and object detection.

Chapter 3: Theory and Background Knowledge gives an introduction to back-
ground knowledge on the domain and introduces relevant theory from the field
of computer vision and object detection.

Chapter 4: Method explains the method of generating occluded sheep data, presents
existing datasets and explores alternative approaches for generating synthetic
data and training the object detection algorithm.

Chapter 5: Experiment Structure presents how the experiments for evaluating
the research questions are structured.

Chapter 6: Results presents the results from training and testing following the
data generation and training.

Chapter 7: Discussion examines the results from testing and discusses their mean-
ing, validity and implications with regard to the research questions.

Chapter 8: Conclusion evaluates the goal of the thesis, its contribution, and sug-
gestions for future work.

Chapter 2

Related Work

The following chapter will present related work and research on subjects relev-
ant to this thesis. It will cover some of the previous master thesis about using
Unmanned aerial vehicle (UAV)s for sheep roundup and research on different as-
pects of object detection, including using synthetic data and the problems of class
imbalance and occlusion.

2.1 Master Thesis on Sheep Detection in UAV Images

As UAVs have become viable for agricultural tasks such as monitoring crops and
livestock [12], studies and theses have looked at the application and usability of
UAVs for sheep roundup. The following theses are written by students from the
Norwegian University of Science and Technology (NTNU) under the supervision
of Professor Svein-Olav Hvasshovd, looking at different aspects of sheep detection
in UAV images.

Muribø [10] experimented on how well the object detection algorithm YOLO
version 3 performed when detecting sheep. He examined performance when de-
tecting sheep as a superclass versus as three subclasses: white, black and brown.
He also looked at how tuning input resolution and confidence threshold when
training affected performance. The results showed that detecting sheep as a su-
perclass with a resolution of 832x832 pixels and a confidence threshold of 0.1
performed the best. With these calibrations, the algorithm detected 1638 of 1650
sheep, giving it a recall score of 0.99. However, there are doubts as to how applic-
able Muribøs results are. The dataset for training the algorithm consisted primar-
ily of white sheep, without much variation in landscape and light conditions. He
theorises that with more and varied data, the findings may apply to real-use scen-
arios.

Furseth and Granås [17] studied the use of YOLOv5-based deep learning mod-
els, testing configurations of different sizes and training on different image types
and resolutions. These models were evaluated on their accuracy and inference
speed running on mobile devices with limited hardware. Comparing YOLOv5s

5

6 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

and YOLOv5m, they found that the larger YOLOv5m with more trainable para-
meters performed only marginally better than the smaller YOLOv5s, however, the
difference was more significant at lower resolutions. Inference time was signi-
ficantly higher for YOLOv5m running on a mobile device. They also found that
training on tiled high-resolution images performed better than training on the
same downscaled images.

Johannessen [8] proposed a deep learning model which could detect sheep in
RGB and IR images captured from a UAV. The proposed model fused Red green
blue (RGB) and Infrared radiaton (IR) images to utilise the features from both
formats. She compared the performance of the fusion model to strictly RGB and
IR models’ results. The results show that the most accurate models with a con-
fident threshold of 0.5 achieved a grid precision of 0.977 and a recall of 0.901,
corresponding to the detection of 97.5 % of the sheep in the validation dataset.
Her results suggest that RGB and IR fusion images can effectively detect sheep.

However, Stemshaug [18] found contrary results. He compared the perform-
ance of YOLOv5 models fusing IR and RGB with models using only RGB images
to detect sheep. He experimented with different configurations to determine the
impact of the IR images and whether they increased performance enough to jus-
tify the increased price of a UAV equipped with both cameras. His results suggest
that the highest-performing model uses tiled RGB images to locate four classes
of sheep, having a recall of 0.986. The highest-performing model fusing RGB and
IR images had a recall of 0.960. Even though these results are comparable, his
research findings suggest that the actual value of IR images doesn’t materialise,
as the UAV isn’t used in colder darker environments, so a UAV without IR image
capabilities is sufficient for the use case of sheep roundup.

2.2 Locating Sheep with Radio-Equipped UAVs

Alternative approaches for using UAVs for sheep roundups are also possible. Using
radio transmitters instead of cameras has been explored by NTNU students to
create systems for tracking sheep.

Vucic and Axell [19] studied using a system consisting of a UAV, lightweight
radio tags on sheep, and a custom Ground Control Station to locate sheep. The
system used Bluetooth Low Energy, Round Trip Time, and trilateration to find
sheep. Using cheap radio tags, tracking a large percentage of the herd is econom-
ically feasible. However, the system is not thoroughly tested to the extent it needs
to be a reliable solution for the farmer, as different terrain can affect the system’s
performance. They found it successful in locating sheep in open fields and light
forests but struggled in heavier forestation. More research is required to determine
if the system is viable for real-use scenarios.

Chapter 2: Related Work 7

2.3 Object Detection with Synthetic Data

As object detection has spread to more use cases, the need for quality data has
increased. Capturing images of real-world examples might not always be feasible,
and if it can be captured, manually labelling data is tedious and is prone to human
error [20]. Because of these disadvantages, training object detection algorithms
with synthetic data has been explored as a possibility.

An analysis by Vanherle et al. [15] from 2022 examined training object de-
tection models with synthetic training data. A problem addressed in the paper is
the resemblance between real and synthetic data. The synthetic data might look
realistic, but there is still a difference between the real and rendered data. This
is called the domain gap [21], and because of this, models trained on synthetic
data will perform worse than when trained on real data. The author looks at dif-
ferent methods and techniques during training to overcome this problem. Using
the Dataset of industrial metal objects (DIMO) [22] dataset allowed for controlled
variations and randomisation in the synthetic dataset. When generating data, they
compared the effects of using real data, synthetic copies, synthetic data with ran-
dom poses, synthetic data with random lighting, and synthetic data with random
poses and lighting. Their results suggest that mimicking high-level features, such
as poses and shapes, is easier to make look realistic than low-level features, such
as textures, lights, and colours. Their findings indicate that it is beneficial to ac-
curately simulate high-level features while randomising low-level features, as this
made the model generalise best in the experiment.

Different techniques for training with synthetic data were also analysed. When
comparing transfer learning and data augmentation for better performance, they
found that transfer learning performed the best, with quicker convergence speed
and better Average precision (AP) scores. With transfer learning from the Mi-
crosofts common objects in context (MS COCO) dataset, the AP scores were high
from the start, meaning even a few thousand images can produce a decent model.
Leveraging real images boosted the models’ performance even more, with fine-
tuning outperforming mixed training for all real and synthetic data ratios. Adding
more synthetic images increased mixed training performance, maximising at a ra-
tio of 5 synthetic images for each real. The best-performing fine-tuned model had
a ratio of 1:1. They concluded that using both real and synthetic images improved
performance, with fine-tuning being the recommended approach.

Seib et al. [23] looked at current approaches for using synthetic data in neural
network training. As Vanherle et al. [15], they looked at transfer learning and data
augmentation with some variations. Pre-training a model before fine-tuning was
looked at but with different results. They found that pretraining a model and
then freezing all layers without an application-specific purpose was desirable, in
contrast to Vanherle et al., who found that even a pre-trained model could benefit
from continuing to tweak the shallow layers of the network. Seib et al. also looked
at other ways of data augmentation for training. In addition to simple transforma-
tions like flipping, cropping, or otherwise distorting images to produce more vari-

8 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

ations, they also looked at random erasing, sample pairing and using Generative
adversarial networks (GANs) to extend the dataset. Random erasing, where an ar-
bitrary block of pixels is substituted with black pixels, and sample pairing, where
two classes are averaged along each RGB channel to create new examples during
training, have reported improved model performance. GANs have the potential to
create new example images but require a lot of data to be able to generate new
examples.

Borkman et al. [24] introduced the Unity Perception package in 2021. It is a
tool for generating labelled synthetic data for computer vision tasks. It generates
custom 3D scenes with randomisation and variation and automatically creates
labels and annotations, considerably speeding up the process of generating syn-
thetic data. They used the Faster R-CNN model with the ResNet50 backbone pre-
trained on the ImageNet dataset for testing. They compared the performance of
the model trained on a real image dataset versus the synthetic dataset fine-tuned
on the real data. The real image dataset consisted of 1267 images with 63 classes
of groceries, and the synthetic dataset consisted of 400,000 synthetic images. The
baseline model, trained on the real dataset, achieved a Mean average precision
(mAP) of 0.719, while the model trained on only synthetic data achieved a mAP
of 0.538. However, by fine-tuning the model trained on synthetic data with the
full real dataset, they achieved the highest mAP of 0.854. Their research suggests
that Unity Perception is a viable option for synthetic image generation and can
potentially boost detection performance.

Another NTNU student, Østtveit [13], used synthetic data generated with
Unity Perception to detect sheep in UAV images. He examined which categor-
ies of sheep an object detection algorithm finds the most difficult to detect, being
the dark-wooled and occluded classes. He then trained the YOLOv5 algorithm on
synthetic and real images to boost the detection of these difficult-to-detect classes,
achieving higher recall scores. The results indicate that training a model on a com-
bination of real and synthetic sheep images is viable for sheep detection when UAV
image data is limited.

2.4 Imbalanced Classes in Object Detection

When the distribution of classes in a dataset is not uniform, it can lead to biased
models favouring the majority classes [25]. This is a relevant issue in object de-
tection, and it is essential to have a varied dataset to ensure that the algorithm
learns features from all classes.

A review by Oksuz et al. [14] from 2020 looked at the state of imbalance
problems in machine learning. Looking at deep-learning object detection literat-
ure, they identified eight different imbalance problems, grouped into four types;
class imbalance, scale imbalance, spatial imbalance, and objective imbalance. The
most relevant category for this thesis is class imbalance, in which one class is over-
represented with more examples than others. It can occur in two different ways. In
foreground-background class imbalance, the over- and under-represented classes

Chapter 2: Related Work 9

are foreground and background classes, respectively, meaning there are more neg-
ative examples than positive ones. With object detectors, this is inevitable, as most
bounding boxes will be labelled as negative. In foreground-foreground imbalance,
there is an imbalance between the classes in the dataset. An approach to this
problem is using generative methods to address the imbalance and supply under-
represented classes with more examples. Methods utilising GANs are suggested,
but using other data generation methods could also be viable, like using a game
engine.

2.5 Occlusion in Object Detection

Occlusion is when an object is hidden or partially hidden by another object in
an image. It can occur by the same type of object called intra-class occlusion or
another object or a fixed element called inter-class occlusion [16]. Occlusion can
occur in many ways, as objects of different sizes and degrees of coverage can
occlude the object, making it challenging to tackle on a general basis [16].

Wang et al. [26] examined data creation for different ways occlusion can occur.
They suggest utilising adversarial networks to generate synthetic images of hard
examples with occluded and deformed objects. These hard examples are used to
train the object detection model and adversarial network simultaneously. They
reported increases in mAP score of 2.3% on the VOC07 dataset and 2.6% on the
VOC2012 dataset compared to the Fast-RCNN, showing the potential of GANs and
generated synthetic images of occluded objects.

Kortylewski et al. [27] introduced Compositional Convolutional Neural Net-
work (CompositionalNet). They unified Convolutional neural network (CNN) with
compositional models by replacing the fully-connected classification head of a
CNN with a differentiable generative compositional model. After experimenting
on real and synthetic occluded images from the MS COCO and PASCAL3D+ data-
set, they found that the CompositionalNet model outperformed standard CNNs
by a large margin for classifying and detecting vehicles under occlusion, showing
the potential of generative models for boosting detection of occluded objects.

Chapter 3

Theory and Background

Knowledge

The following chapter will introduce relevant background theory for the thesis.
It will cover sheep and sheep roundup knowledge, object detection and relevant
metrics, neural networks, insight into YOLOv7, and aspects of training object de-
tection models.

3.1 Sheep Roundup

Approximately 2 million sheep and lamb are on the pasture during the grazing sea-
son [1]. During the season, the sheep farmer must do weekly welfare checks on the
sheep. This is required by law, so the farmer must keep track of the sheep’s where-
abouts during the season. Both end-of-the-season roundup and welfare checks can
be challenging as the sheep roam relatively freely through the terrain. Fences and
salt blocks are placed throughout the fields to keep the sheep from roaming too
far away, but some might still be far away from their designated grazing area.

Bringing the sheep back from the pasture is primarily done in three steps [2]:

Primary roundup: For 1-2 weekends, a larger group of people and shepherd
dogs help the farmer round up the sheep. In this phase,
approximately 90% of the sheep are found.

Secondary roundup: With less help, the farmer searches for missed sheep in the
same areas as in the primary roundup. This phase lasts a
few weeks, and most remaining sheep are found.

Find stray sheep: In the last phase, the farmer searches beyond the primary
pasture to find the last sheep. They might have travelled
far from the primary pasture, so finding the last ones can
be challenging.

11

12 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

The effort and time required during the final phase of roundup can often be
a source of frustration for the farmer. This is where the need for effective tools to
help with sheep roundups emerges.

3.1.1 Existing Tools for Sheep Tracking

Bells

Traditional bells have been used for keeping track of sheep for hundreds of years.
It gives the farmer an indication of where the sheep are, as the bells create a lot of
noise when the sheep are moving. The bells are attached to the neck of the sheep,
making it a cheap and practical tool for locating sheep.

However, bells also have their downsides. The sound of the bell is loud, but
the farmer still needs to be in relative proximity to be able to hear it. Secondly,
the constant sound of the bell can damage the sheep, as there needs to be more
research into how its hearing and well-being are affected [28]. The sound of the
bell also might attract predators who can hear the sound at further ranges than
humans [28].

Radio bells

Over the last 20 years, radio bells have been introduced as a viable option to
traditional bells. Different solutions are available on the market, such as models
from Telespor [6], Findmy [5], and Nofence [29]. These options vary in price and
features. Table 3.1 compares different models available on the market.

Telespor FindMy Nofence
Radiobjella Modell 2 Rød Småfeklave

Price (per unit) 1,088 kr 2,490 kr 1,950 kr
Subscription (per unit) 144 kr 169 kr 334 kr
Network technology GNSS, LTE-M, Bluetooth LTE, GNSS LTE-M, GNSS, Bluetooth
Battery life (seasons) 1 2-3 1
GPS tracking x x x
Geofencing - x x
Movement alarm x - -
Stress Warning - x -
Waterproof x - -

Table 3.1: Comparisons of tracking systems from Telespor, FindMy and Nofence

These solutions have features that allow the farmer to control where the sheep
can move with geofencing and real-time tracking of their whereabouts. Some even
have stress warning alarms, notifying the farmer if there is a disturbance in the
sheep herd, requiring additional inspection.

However, connectivity can be a problem for these tracking systems, as they rely
on different technologies with varying degrees of coverage in the pasture, like LTE.

Chapter 3: Theory and Background Knowledge 13

Cellular providers typically do not cover grazing pastures, decreasing their effect-
iveness or proving them worthless. Some newer models have developed solutions
and workarounds for the lack of connectivity, using base stations instead of cellu-
lar coverage [4]. While cellular coverage is steadily increasing, these challenges
persist and continue to pose difficulties for some farmers.

Another issue with radio bells is their associated cost. Various providers sug-
gest different levels of coverage of tracked sheep. Nofence recommends fitting all
adult sheep with a tracker [29], while FindMy recommends a minimum coverage
of 25% [5]. As stated by Johanssen and Sørheim [30], it is important to consider
that a sheep herd typically resides in smaller groups of 8-10 sheep. Because of
this, not all sheep need their own radio bell, making it possible to tag a smal-
ler percentage of the herd. Table 3.2 gives an overview of the cost of different
commercial solutions at varying degrees of coverage. It is based on Norsk institutt
for bioøkonomi (NIBIO)s numbers from 2021, which state that the average sheep
farmer has 142 winter-fed sheep [31].

Telespor FindMy Nofence
Coverage Costs Radiobjella Modell 2 Rød Småfeklave

25% Up-front 38,624 kr 88,395 kr 69,225 kr
Seasonal 5,112 kr 6,000 kr 11,857 kr

50% Up-front 77,248 kr 176,790 kr 138,450 kr
Seasonal 10,224 kr 11,999 kr 23,714 kr

75% Up-front 115,872 kr 265,185 kr 207,675 kr
Seasonal 15,336 kr 17,999 kr 35,571 kr

100% Up-front 154,496 kr 353,580 kr 276,900 kr
Seasonal 20,448 kr 23,998 kr 47,428 kr

Table 3.2: Comparing cost of Telespor, FindMy and Nofence systems at various
tracking levels

These figures show the substantial cost associated with tracking sheep. While
these estimates are not entirely precise, they indicate the potential expenditure
tied to the use of tracking devices. Utilizing a drone, however, does not come with
the same levels of upfront and recurring seasonal costs. For instance, the UAV
used for previous work was the DJI Mavic Enterprise 2 Dual, further described
in Section 4.4.1. It is no longer in production, but its successor, the DJI Mavic
Enterprise 3, is available at approximately 44,000 Norwegian kroner [32]. Even
though the practical use cases of the UAV and radio bells are not entirely the same,
comparing these numbers indicates the possible savings and value associated with
using UAVs for sheep monitoring and roundup.

14 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

3.2 Object Detection

Object detection is a computer vision technique for locating and classifying in-
stances of objects in images [33]. An object detection algorithm uses an image
as input and outputs bounding boxes predicting the object’s location and a clas-
sification prediction with a confidence score, stating the algorithm’s confidence
in its prediction. An example of input and output is shown in Figure 3.1. The al-
gorithms used for object detection use machine learning or deep learning to detect
and classify objects correctly. Object detection has many use cases, from facial re-
cognition or autonomous driving cars to surveillance, security, or healthcare [34].
Object detection is also a basis for other computer vision techniques, like instance
segmentation and object tracking.

Figure 3.1: Example of object detection input and output

3.2.1 Evaluation Metrics for Object Detection

This section provides an overview of evaluation metrics commonly used for object
detection, such as precision, recall, F1-score, and mean Average Precision (mAP).
The intricacies of these metrics, their calculation, and their interpretation in the
context of object detection will be described. These metrics are standard for eval-
uating object detection algorithms’ performance.

Intersection Over Union

Intersection over union (IoU) is a metric that evaluates the overlap between two
bounding boxes, for example, how well a prediction is relative to the ground truth
[35]. IoU for two bounding boxes are measured by the intersection area divided
by the union area, as shown in Figure 3.2.

By calculating IoU, a prediction is classified as a True positive (TP) or False
positive (FP). The prediction is classified as correct and a true positive if the IoU
exceeds a predefined threshold, typically set to 0.5. A prediction falling below the
IoU threshold is classified as incorrect and a false positive. A False negative (FN)
means that the object detector didn’t make a prediction and missed a ground
truth. A True negative (TN) means no prediction or ground truth exists, which

Chapter 3: Theory and Background Knowledge 15

Figure 3.2: Intersection over union (IoU)

Figure 3.3: Confusion matrix

16 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

typically are not recorded when reporting predictions performance. The confusion
matrix, as illustrated in Figure 3.3, provides an overview of these classifications,
summarizing the performance of the detection algorithm.

The selected IoU threshold will decide how accurate the bounding box is re-
quired to be relative to the ground truth. A low IoU threshold will result in more in-
accurate predictions being considered true. Consequently, a higher IoU threshold
will result in only precise bounding boxes being considered true.

Non Maximum Suppresion

Non maximum suppresion (NMS) is a post-processing algorithm widely used in
computer vision. When an object detection model predicts where an object is, it
usually makes several predictions that overlap for the same object. Each prediction
has a confidence score, and only the prediction with the highest confidence is
useful for this object. To find it, all the predictions are sorted in descending order
in a list of potential detections. Then the prediction with the highest confidence is
added to the final list of detections. Then it removes any other predictions in the
potential detections list with an IoU over a pre-defined threshold. This continues
until the list of potential detections is empty [36]. Figure 3.4 shows an image
before and after applying NMS.

(a) Before NMS (b) After NMS

Figure 3.4: Bounding boxes before and after non-maximum suppression

Chapter 3: Theory and Background Knowledge 17

Precision and Recall

Precision and recall are metrics that describe the performance of the predictions
of an object detection model. Precision is expressed by Equation (3.1) as the
fraction of correct prediction out of all predictions [35]. In this case, the fraction
of predicted sheep that actually are sheep. Precision will be a number between 0
and 1. If precision is closer to 0, it would mean that most of the model predictions
are FPs, meaning the predictions are wrong. Similarly, a precision score close to 1
would mean a high degree of TPs and most predictions being correct. Figure 3.5a

exhibits possible relationships between precision and the confidence threshold. A
low confidence threshold would result in many predictions where most would be
wrong, resulting in a low precision score. As the confidence threshold rises, fewer,
more confident predictions are made, resulting in a high precision score.

precision=
T P

T P + F P
=

All correct predictions
All predictions

(3.1)

Recall is expressed by Equation (3.2) and is defined as the fraction of cor-
rect prediction out of all correct instances [35]. In this case, the fraction of sheep
correctly predicted out of all instances of sheep. Like precision, recall is a num-
ber between 0 and 1. A recall score close to 0 would mean many FNs, mean-
ing it does not find the relevant instances that it should. A recall score close to
1 would mean a high degree of TPs and low FNs, meaning it would find most
sheep. Figure 3.5b exhibits possible relationships between recall and the con-
fidence threshold. A low confidence threshold would result in many predictions,
making it likely that most ground truths are found, resulting in a high recall score.
As the confidence threshold rises, fewer predictions will be considered true, res-
ulting in fewer ground truths being found and a lower recall score.

recall=
T P

T P + FN
=

All predictions
All ground truths

(3.2)

Neither precision nor recall is suited to be a single metric of accuracy, and
they need to be reported together to describe the models’ accuracy adequately.
The relationship between precision and recall is exemplified in Figure 3.6. Preci-
sion does not consider how many total ground truths it missed. That means the
precision of a model can be 100% if all the predictions it made were correct, even
if it missed 80% of the total ground truths. Meanwhile, recall does not consider
how many predictions were made, only if all ground truths were detected. That
means the recall can be 100% if the model predicts everything as a ground truth,
even if that would be detrimental to the precision. They are both influenced by
the confidence threshold but have the opposite relationship. A low threshold gives
low precision and high recall, while a high threshold gives high precision and low
recall [37].

18 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

(a) Precision vs confidence (b) Recall vs confidence

Figure 3.5: Possible relationships between confidence threshold and precision or
confidence

(a) High precision, low recall (b) Low precision, high recall

Figure 3.6: The relationship between precision and recall and how they affect
each other

Chapter 3: Theory and Background Knowledge 19

F1-score

F1-score is the harmonic mean of precision and recall and is expressed by Equa-

tion (3.3). It is a weighted single metric score combining precision and recall [38].
The F1-score is between 0 and 1, where the precision and recall are weighted
equally. Plotting the F1-scores of multiple confidence thresholds creates an F1-
curve, where the curve’s apex signifies the optimal confidence threshold for both
precision and recall [39].

F1-score= 2⇥ presicion⇥ recal l
precision+ recal l

(3.3)

Precision-Recall Curve

Plotting the precision and recall across all confidence thresholds results in a precision-
recall curve [35]. It describes the relationship between precision and recall and
better represents accuracy than precision or recall alone. At a given recall value, it
shows the corresponding precision, showing the tradeoff between the two metrics.
Different potential precision-recall curves are shown in Figure 3.7. When recall
is low, precision tends to be high, as few ground truths have been found, but the
model is confident they are correct. As the recall rises, there need to be more
predictions made to find more ground truths, which typically results in the mod-
els making more wrong predictions, decreasing the precision. A good-performing
model would keep precision high overall recall levels.

Figure 3.7: Possible precision-recall curve

Average Precision

Average precision (AP) is used to compound the precision-recall curve into one
metric. The AP value is the area under the precision-recall curve p(r), and can be
found for each class detected using Equation (3.4) [35].

20 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

AP =
Z 1

0
p(r)dr (3.4)

Mean Average Precision

The mean of all average precision values is called Mean average precision (mAP)
and is the more wieldy used evaluation metric since most object detection models
have multiple classes. The mAP score of a single class model is the same as the AP
score. Equation (3.5) shows the formula for mAP for every n number of classes.

mAP =
1
n

nX

i=1

APi (3.5)

Two commonly used mAP versions are mAP@0.5 and mAP@0.5:0.95, where
the number indicates the IoU threshold used for calculations. mAP@0.5 describes
the mean average precision at 0.5 IoU threshold [35]. Similarly, mAP can be cal-
culated at other thresholds, like mAP@0.75. mAP@0.5:0.95 describes the mean
average precision over multiple IoU thresholds from 0.50 to 0.95 with a 0.05
increase each step [35]. By doing this, the inaccurate bounding boxes will be
regarded as false as the IoU threshold rises, indicating how tight the model’s
bounding box predictions are. mAP@0.5 and mAP@0.5:0.95 are usually repor-
ted together to evaluate a model’s performance.

3.3 Artificial Neural Networks

Artificial neural network (ANN) is a collection of nodes and edges organized to
simulate the structures and connections of neurons in the brain [40]. It is struc-
tured with multiple layers, the input layers, a number of hidden layers, and the
output layers. Figure 3.8 shows an example of a simple fully connected artificial
neural network [41].

Figure 3.8: Example of a simple fully connected artificial neural network with
input, hidden, and output layers. Figure from Zhang [40]

Chapter 3: Theory and Background Knowledge 21

The input is initially processed in the network’s first layer. It performs some
computations before forwarding the result to the next layer. Similar calculations
take place at each subsequent hidden layer in the network. Eventually, the output
layer is reached, with the final results from passing the input through the network.
The output is then compared with the desired or target output. The discrepancy
between the actual and target output is called loss and is used to adjust the net-
work parameters for more accurate results. The process of updating parameters
is called backpropagation. The iterative process of input processing, comparison
with the desired output, and parameter adjustment is continued with new inputs.
This process is referred to as training the network [42].

Every neuron in a fully connected network has a number of input edges cor-
responding to the number of neurons in the previous layer. Each input edge has
a corresponding weight. The neuron summarises all the weighted input from the
previous layer and adds its own bias [40]. Before the calculation is passed to the
next layer, a activation function is applied to prevent linearity [43]. A common
activation function is the Sigmoid function which outputs either 0 or 1 if the value
is above or below a certain threshold. The weights and biases in the network are
the parameters which are adjusted during training. Figure 3.9 shows an example
of the input and output of a neuron.

Figure 3.9: Example of a neuron from an artificial neural network. Figure from
Neural Networks and Machine Learning [44]

22 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

3.3.1 Convolutional Neural Network

A Convolutional neural network (CNN) is a type of ANN which is often used for
computer vision tasks [45]. A CNN consists of three building blocks, the backbone,
neck and head. The different parts are made up of multiple layers. The backbone
is responsible for creating a feature map from the input and applying different
functions to the input. The neck is responsible for preparing the features extracted
from the backbone to the head. The head is responsible for the classification and
predictions and is usually a fully connected layer outputting a probability for the
input to belong to a certain class. Through these three parts, CNN can accurately
classify objects in images [46]. Figure 3.10 is an example of a CNN architecture.

Figure 3.10: Example of a CNN architecture. Figure from Saha [46]

Convolution Filter

The convolution filter is used to extract desired features from the input. A filter
is applied to subregions of the pixel grid representing the input image. The filter
strides across the pixel grid and outputs a feature map highlighting the desired
features of the input image. These features can, for example, be horizontal or
vertical edges [46]. Figure 3.11 shows a convolution filter being applied to an
image.

Figure 3.11: Convolution filter with 3x3 image patch and filter

Chapter 3: Theory and Background Knowledge 23

Pooling Operations

Pooling is applying a pooling layer to extract the desired features from the input.
Max-pooling, shown in Figure 3.12 is one such pooling operation that reduces a
region of the feature map to the highest value from the region which is beneficial
for computing costs [47]. Other pooling operations are average pooling, which
averages out the values of a subregion to reduce noise, or min-pooling shown in
Figure 3.13, which extracts the lowest values [48].

Figure 3.12: Example of max-pooling operation on a 2x2 image patch and stride
of 2

Figure 3.13: Example of min-pooling operations on a 2x2 image patch and stride
of 2

3.3.2 YOLOv7

You only look once (YOLO) is a family of real-time single-stage object detection al-
gorithms. The algorithm inputs an image and outputs the class’s predicted bound-
ing boxes. The first version, YOLOv1, was released in 2016, and since then, mul-
tiple new versions have been proposed improving upon speed and accuracy. The
latest official version is YOLOv7, which was released in 2022 and is a state-of-the-
art object detector [49].

The YOLO algorithms are built to be a trade-off between speed and accur-
acy. They are single-stage, meaning they localize objects in images in one step,
compared to multi-stage detectors, which propose a general area before locating
the actual object. [50]. Single-stage detectors have better inference speed than
multi-stage but at the cost of accuracy [51].

YOLOv7 is a CNN consisting of a backbone, neck and head. It uses the Rep-
ConvN backbone and YOLO head [52]. The Extended efficient layer aggrega-

24 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

tion network (E-ELAN) computational block is introduced in YOLOv7, which uses
group convolution to enhance the features learned by different feature maps and
improve the use of parameters and calculations [49].

When evaluating the loss of the model, YOLOv7 used three different loss func-
tions, objectness loss, box loss and classification loss [53]. Objectness is the prob-
ability that an object exists in a defined area. Objectness loss is the error in the
confidence of the presence of an object. Box loss is the error between the ground
truth and the predicted bounding box. Classification loss measures the error in
class prediction.

YOLOv7 Bounding Box Annotations Style

Each annotated image is accompanied by a corresponding .txt file that contains the
labels. The label file provides information about the bounding box coordinates and
class labels for each object within the image. Each line in the label file represents
one object in the image. The YOLO label format is shown in Equation (3.6).

center_id center_x center_y width height (3.6)

The center_id indicates the class of the object. The center_x and center_y
represent the coordinates of the bounding box’s centre relative to the image’s
width and height. These centre coordinates are normalized, ranging from 0 to 1.
In this format, (0,0) represents the image’s top-left corner, and (1,1) represents
the bottom-right corner. The width and height represent the width and height of
the bounding box relative to the image’s width and height. These values are also
normalized, ranging from 0 to 1.

3.4 Training a Neural Network

3.4.1 Gradient Descent

When training a neural network, the goal is to adjust the weights and biases to
minimise the loss. The technique for finding the optimal values is called gradient
descent [54]. In broad terms, gradient descent tries to find the optimal values by
calculating the gradient for the loss, which tells which direction the steepest in-
crease is. Adjusting the parameters in steps in the opposite direction of the gradi-
ent, that is, towards the steepest decrease in loss, the minimum loss is reached
incrementally.

The gradient of the loss with respect to the weights and biases is calculated by
initializing random values for weights and biases. For each training example, the
algorithm calculates the gradient of the loss and updates the weight and biases
by subtracting a fraction of the gradient from the current values. This fraction is
called the learning rate and determines the step size toward the steepest decrease.
The process is repeated for multiple iterations, called epochs, until the algorithm

Chapter 3: Theory and Background Knowledge 25

converges to a minimum of the loss function. Figure 3.14 shows the process of
finding the minimum loss with gradient descent.

Figure 3.14: Gradient Descent. Figure adapted from Crypto1 [54]

3.4.2 Supervised vs Unsupervised Training

Supervised and unsupervised learning are two different approaches when training
models in machine learning [55]. Both approaches have their unique benefits and
drawbacks.

In supervised learning, a labelled dataset is used to train the model, mean-
ing that both the input data, in this case, the images, and the desired output,
the bounding boxes and annotations, are provided during training. CNNs use su-
pervised learning technique and has proven to be highly effective and accurate
for object detection, like with YOLOv7 [49]. However, they require a significant
amount of labelled data, which can be time-consuming and costly.

In unsupervised learning, a labelled dataset is not required. It tries to identify
patterns and features from the input data, like specific shapes, textures or colour
combinations. Unsupervised methods work with unlabeled data and can be easier
to deploy at scale. However, accuracy is often lower than with supervised tech-
niques, especially in tasks requiring precise object localisation. It can be useful in
exploratory data analysis or when labelled data is scarce.

3.4.3 Pre-training and Fine-tuning

Pre-training is a technique in machine learning about training a model without
any specific task in mind. It is done on a large dataset like MS COCO or VOC. Pre-

26 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

training aims to learn generic features, like shapes or textures, that can be used
for other more specific tasks [55]. When a model is pre-trained on a dataset, it can
be used for object detection, but to make it accurate on a specific task, fine-tuning
can be used to train the model further. In fine-tuning, the model is trained on a
smaller dataset with image labels for a specific purpose, such as recognizing sheep
[56].

The model can perform better using pre-training and fine-tuning than training
from scratch [55]. With a dataset limited by size and the number of instances,
this technique is especially valuable, as the limited number of instances may limit
the models’ ability to learn general patterns. By learning general features on a
large, diverse dataset, the model can perform better at new and unseen data and
improve its convergence speed.

3.4.4 Over- and Underfitting

Over and underfitting in machine learning are problems that can affect the model’s
performance by either emphasising too much on small details or not learning
general features enough [57]. Overfitting is when the model learns the specific
details and specifics of the examples in the training data instead of the generic
features. An overfit model makes it bad at recognizing new variations of a class.
Underfitting happens when the dataset used for training is limited in size and
variation so that it does not learn the features for recognizing the objects.

3.4.5 Dataset Splits

When training an object detection model, the dataset is split into three subsets,
train, validation and test. The split is essential to ensure the model has sufficient
data for training while still having new examples for validation and testing [58].
Typically, the training subset consists of 70% to 80% of the total dataset, while
the validation and test subsets split the remaining images equally.

The training subset is the largest and should be varied and representative of
the real-world objects it is being trained to recognize. This dataset is used for all
epochs during training.

The second subset is the validation dataset. After each training epoch, the
model is evaluated with the validation dataset to evaluate the model’s perform-
ance. Comparing the models’ performance on the validation dataset can help pre-
vent overfitting while training. If the performance on the training dataset is good
but bad on the validation set, it can be a symptom of overfitting, as it doesn’t
generalise well on new unseen data[58].

The third subset is the testing dataset used to evaluate and compare perform-
ance results. These images must be unique for this dataset to evaluate the per-
formance of the trained models accurately [58].

Chapter 3: Theory and Background Knowledge 27

3.4.6 Datasets for Object Detection

Different datasets have been created for training and evaluating object detection
models. These datasets have different attributes, making them useful for computer
vision tasks. An important aspect of the datasets is that they are benchmarks for
new and improved object detection algorithms. As a new algorithm is released, it
is tested on a recognized dataset like MS COCO, so there is a common dataset to
test and compare performance. Algorithms like YOLOv7 are tested and compared
to other object detectors on the MS COCO dataset [49].

MS COCO is created by Microsoft [59] and consists of 33,000 images of objects
from 80 different classes, ranging from cars, bicycles and animals. Each image in
the dataset is labelled with annotations for the object classes. The dataset is used
in computer vision tasks like object detection and segmentation. It is used for
training and evaluating object detection models and has become a benchmark in
the industry.

The Visual Object Classes dataset is another dataset used for computer vision
tasks [60]. It was first introduced in 2005 for the PASCAL (Pattern Analysis, Stat-
istical Modelling and Computational Learning) Visual Object Classes Challenge, a
computer vision competition. In later years, the dataset was updated for new chal-
lenges like the VOC2012. The dataset consists of 11,500 images and 20 classes,
making it inferior in size to MS COCO, but the dataset still has some value as a
benchmark for new computer vision algorithms.

Chapter 4

Method

The following chapter will describe the method used for answering the research
questions. It will give an overview of the requirements for the synthetic images
and object detection models’ performance, describe the method for generating
synthetic images, image preparation of real image data, and explore alternative
solutions.

4.1 Requirements

Certain requirements must be in place to ensure the usefulness of the object de-
tection model and the synthetic images. This section will cover requirements for
synthetic image generation and requirements for object detection models’ per-
formance.

4.1.1 Requirements for Generated Images

Generating synthetic images for machine learning applications has proved to be
an effective way of supplying a dataset [15][13][23][24]. However, these meth-
ods are not perfect, so factors like the domain gap [21] must be considered. This
section will present functional and non-functional requirements for synthetic im-
age generation.

Functional Requirements

When generating synthetic data, key properties must be fulfilled to make the im-
ages functional and practical for sheep detection. Firstly, the synthetic images must
be photo realistic to a certain extent. This might seem fairly oblivious, but to de-
crease the domain gap, they must be realistic looking enough to be useful when
applying the learned features to real images. Secondly, it must support the cre-
ation of random objects, scenes and layouts. The scenes useed for training must be
varied to a certain extent and randomly created within certain pre-defined para-
meters. This is important to ensure variation in the training images to prevent

29

30 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

overfitting. As well as supporting random layouts, randomised low-level features
are important for sheep objects and the landscape. The sheep objects should have
random sizes and colours within a predefined range, and the landscape must con-
tain vegetation of different sizes, colours and appearances. As the primary focus
is occluded sheep, placing objects to create the specific occlusion conditions must
be controllable and not completely arbitrary. The sheep should be placed close to
the border of other objects, like trees and bushes, which also should be randomly
positioned. Weeding out images without occluded sheep in post-processing is not
viable as it would require too much computing power and manual work, meaning
all images generated must contain an occluded sheep. All images must also have
precise labels, as labelling images is tedious and requires much time and would
render the generation method of low value.

Non-functional Requirements

For an object detection model to be sufficiently trained, having loads of data to
train on is crucial. This requires the method to support the generation of large
batches of images. It must be able to do so without supervision, and the images
must have the required properties regarding randomization and variation. The
software for generating images must be able to run on a 16-inch MacBook Pro
with the Apple M1 chip. It cannot be too graphics-heavy, as access to graphical
computing power for image generation is limited. The size of the images should
also be minimal, as the available storage capacity is limited. Within these limits,
generating the images within a reasonable timetable should also be possible.

4.1.2 Requirements for Object Detection Model

Certain requirements exist for the model’s performance to be a viable option in
the context of sheep roundup. However, as the thesis doesn’t focus on running the
models on the UAV, the performance requirements are somewhat different. The
focus will be on accuracy performance and what is required for the model to be
useful for the farmer in the field. Inference speed and computational power are
out of the scope of the thesis and not considered for the requirements.

The drone will be used in the final phase of the sheep roundup. It will not
be used to scan through the entire pasture but rather as a tool to locate the final
sheep. As the farmer is searching, he might have an idea or know roughly where
to look. He can then use the drone to check out the potential location of the
sheep. While flying in a pre-defined pattern over the search area, the UAV must
indicate if it finds something so the farmer can check it out more closely. Because
an indication for further search is the UAV’s main purpose, recall is valued over
precision for the specific use case of the object detection model. Simultaneously,
there must be an adequate level of precision as well, as it would be a waste of
time for the farmer to search through flagged areas to find the UAV detected a
rock. Therefore, the trained models for the thesis require high levels of precision
and recall, but recall is prioritised over precision if needed.

Chapter 4: Method 31

4.2 Unity

Based on the requirements for the generated images in mind, the game engine
Unity was chosen to generate the synthetic images. Unity is a game engine de-
veloped by Unity Technologies written in C++ [61]. Unity makes it possible to
create photorealistic scenes and controllable environments using C# without too
heavy hardware requirements. Unity is widely popular for game development,
and there is a large community of developers and support online. Assets are an
important part of the engine and the objects used to create a scene. There are a lot
of open-source and paid resources available online. The assets are of varying qual-
ity but can come close to photo realism. The environments are fully controllable,
and the object’s behaviour is highly predictable, making it suitable for creating
scenes and objects for synthetic image generation.

4.2.1 Unity Perception

With Unity, the package Unity Perception was used. Unity Perception is a tool cre-
ated for large-scale creation and generation of synthetic images for object detec-
tion tasks. It has tools for randomizing, generating and annotating images auto-
matically. These tools can generate images with randomised properties, both built-
in and customised, including camera, lighting, scenes and landscape. It has proven
to be an effective tool for synthetic image generation [24][13].

Limitations in Unity Perception

A limitation when using Unity Perception is how it handles the generation of
bounding boxes for objects occluded by transparent and opaque objects. For sheep
under opaque objects, the bounding boxes will only be drawn for the visible parts
of the sheep, despite the fact that the bounding box should also be drawn for
the occluded parts of the sheep. With transparent objects, however, it does not
account for what is possible to see through and not. For instance, with a simple
mesh covering the sheep, like leaves on a branch, it can be possible to see the
sheep through the mesh. Still, Unity Perception cannot properly label the visible
sheep behind the transparent mesh while at the same time excluding those that
are completely covered and not visible. The Unity Perception team plans a fix for
these issues, but not available at the time of writing this thesis. As occluded sheep
is an integral part of this thesis, a workaround must be implemented. In earlier
work, the images of sheep not visible underneath the tree were removed manually
from the dataset [13]. As the generation of images must be scalable, this is not a
viable solution for larger batches of generated data.

Another limitation regarding Unity Perception is its compatibility with Map-
Magic 2, used for generating the landscape in synthetic images. When generating
images with Unity Perception and MapMagic 2, the generation of the scene and
capturing of the image must be synchronised. MapMagic generates terrain asyn-
chronously from Unity Perception, resulting in the terrain not being ready as the

32 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

image is captured, resulting in an empty image. To account for this, each iter-
ation of image generation has followed a process frame-by-frame, described in
Section 4.3.

4.3 Data Generation in Unity Perception

For the requirements described in Section 4.1, Unity Perception is a suitable
tool for generating synthetic data. However, the existing limitations need a work-
around. The following section describes the adjusted step-by-step process for gen-
erating occluded sheep data. The steps can be found in Table 4.1.

Frame Action

0 Load terrain
Load and position tree

1 Buffer

2 Load sheep
Load sheep animation

3 Place sheep
Get sheep mesh
Change color
Get bounding box
Generate bounding-box file
Capture image

4 Remove sheep
Remove tree

5 Buffer

Table 4.1: Frame-by-frame process for generating images with Unity Perception

Initialization

In the initial stages of image generation, the steps involve loading assets and pre-
paring the scene. The terrain and tree are created and loaded onto the scene in
frame 0. To use the tree’s position to occlude a sheep, it must have a collider.
A collider defines a game object’s shape and size for physical collision. Different
types of colliders have varying degrees of resemblance to the object’s shape. The
degree of resemblance can be adjusted according to the use case. If the interaction
between objects doesn’t require precision, a geometric shape like a box or a cyl-
inder could be used as a collider. Likewise, an accurate collider makes it possible
to have precise interactions between objects. This comes at the cost of computing
power, as it is much more efficient to calculate the collision between two moving

Chapter 4: Method 33

boxes than two moving complex shapes with lots of vertices. Using a mesh col-
lider, the exact shape of the tree is defined and made possible for collisions. The
target is to have a precise collider so that the exact shape of the tree branches and
leaves can be used. After one buffer frame, frame 1, the tree and collider are fully
loaded.

Sheep Positioning and Image Capture

In frame 2, the process of sheep positioning starts. The sheep and its animation are
loaded onto the scene. As the asset is loaded, frame 3 starts. A mesh is generated
with the current frame of the animation, as described further in Section 4.3.2.
For a sheep’s position to be correctly considered occluded, the sheep must be
between 5 % and 95 % covered by leaves, branches, or other parts of the tree. To
calculate the percentage that the sheep is covered, a linecast is used. A linecast is
a Unity function that creates a line from a point of origin to a destination point.
The linecast returns whether or not the line reaches its target destination. Using
the linecast function, it is possible to determine if the positioning of the sheep is
under the tree and to what degree it is covered.

A number of lines are set from the camera to the sheep’s position. The lines are
set to cover each of the sheep’s mesh vertices. Since the only collider in the scene
is the mesh collider for the tree, it will act as a layer mask, covering the sections of
the sheep covered by the tree. By calculating the number of lines that successfully
reach the sheep, it can be determined whether the tree occludes the sheep to the
required degree. The process is reiterated if the sheep are not covered extensively.
That could happen if the sheep is positioned far from the tree, is entirely visible, is
completely covered, or is covered but not to the required degree. The positioning
of the tree and sheep is random. Because of this, the tree can be positioned to cover
the entire field of view for the camera, meaning there is no way for the linecast
to hit the sheep. After 100 tries, the algorithm breaks to avoid a continuous loop,
then repositions the tree before again trying to position the sheep. An example of
the sheep positioning process is shown in Figure 4.1

As the sheep positioning is complete, the bounding boxes are generated us-
ing the same sheep mesh. They are generated by finding the outer vertices of the
sheep. The maximum and minimum values in the x direction and the maximum
and minimum values in the y direction are found. Using Unity’s camera function
WorldToScreenPoint, the x and y values can be transformed into points in the im-
age. These values are used in the Equation (4.1) to calculate the values needed
for the annotation style shown in Section 3.3.2. Then the bounding box label file
is generated and filled with the bounding box values. At the end of this frame, the
image is captured of the scene. The results are an image of a partially occluded
sheep with the corresponding label for that sheep.

34 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

Object width=
x maximum� x minimum

image width

Object height =
x maximum� x minimum

image height

Object center x =
x maximum+x minimum

2

image width

Object center y =
1� x maximum+x minimum

2

image hight

(4.1)

Cleanup and Repeat

In frame 4, the scene is prepared for a new iteration as the image has been cap-
tured. The tree and sheep are removed before a buffer frame, frame 5. The buffer
frame is in place so that the tree mesh collider is removed properly, as Unity col-
liders are on a 1-frame delay. After the last frame, the iteration has ended. Then
the process is repeated for the desired number of times. The result is a dataset of
the desired size with occluded sheep ready for machine-learning tasks. Figure 4.2

are examples of the images generated.

4.3.1 Parameters and Considerations for Synthetic Image Generation

There are many considerations when generating synthetic images to maximise
value for sheep detection. Unity Perception makes generating batches of random-
ised images possible, so the scope and confines of what to generate must be con-
sidered to maximise usefulness within the requirements.

As the focus of generating synthetic images is to supply the dataset with more
instances of the occluded classes, it is crucial to define what occluded signifies.
With an explicit definition, the algorithm for generating data can determine which
images are accepted and which are declined. If the threshold for accepting the
sheep in an image as occluded is too low, it will result in images with sheep that
are not covered to the required extent, meaning the object detection model will
not learn how the features of the sheep will look if they are covered. A too-high
threshold will result in generated images where the sheep is close to fully occluded
by leaves or branches, meaning the model has a very limited amount of meaning-
ful features to learn, if any. Calculating the degree of occlusion is described in
Section 4.3. After testing with multiple thresholds, a coverage lower than 5%
was considered the minimum, and a higher coverage than 95% was considered
the maximum.

The resolution of the images was selected to be 640px by 640px. The YOLOv7
architecture has a base native resolution of 640x640 which fits nicely with the
image generation output. With a larger image size, it would be necessary to tile or

Chapter 4: Method 35

(a) Linecasts drawn from the camera posi-
tion to the vertices of the sheep

(b) Occluded sheep from above, as seen in
final image

Figure 4.1: Determining if a sheep is positioned under a tree

Figure 4.2: Resulting synthetic images of occluded sheep generated with Unity
Perception

36 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

downscale the generated images as is done with the real images. Downscaling has
proven less effective than tiling in performance [17]. Even though the resolution
is low, it doesn’t affect the clarity of the images, as the landscape and objects in
the image are big enough to be sharp.

There are many different options for how to compose a scene. One option is
creating large landscapes with lots of assets populating them. These scenes look
realistic and true to nature. A camera setup could cover most of the scene, quickly
capturing multiple images in succession. Another option is to have smaller local-
ised scenes and images. There is less space available in the scenes for many assets,
but this format is useful for focusing on specific details, like occluded objects.

4.3.2 Randomisers

Different randomisers have been used to create variations within the generated
scenes. This section will briefly overview the randomisers and how they are con-
figured.

Terrain

MapMagic 2 was used to generate random landscapes with desired features. Map-
Magic 2 is a Unity package that generates infinite landscapes from predefined set-
tings. MapMagic uses a node-based logic system to generate the world’s terrain,
where each node represents a separate algorithm called a generator [62]. A gen-
erator can, for example, be noise, erosion, curve or blend. A landscape with the
selected nodes is created by chaining different generators together. By defining
parameters for pseudo-randomization and a random seed, MapMagic 2 outputs
a randomised landscape within the predefined limits. The landscape for the syn-
thetic images is recreated from the real datasets explored in Section 4.4.2 as best
as possible. MagMagic nodes are used to combine soil and grass texture, and com-
bined using the randomiser.

Light

The scene has a single light source, acting as the sun, with the angle randomised
using the inbuild sun-angle randomsizer and a light randomiser using the inbuild
light randomsizer. It inputs the latitude position, the time of data and the day of the
year. Using these inputs, it can generate correct lighting for a real-world position.
As described in Section 4.4.2, most images were captured in the afternoon, and
many were from the autumn. That means the sun will be lower in the sky. As
Vanherle et al. [15] found, high-level features, like lighting in synthetic images,
are essential to make them effective. The images were generated with latitudes
between 50 and 70, with different hue levels, intensity and temperatures in the
light. The day of the photo was set to be between September and November, and
the time of day from 12 to 20.

Chapter 4: Method 37

Camera

The images are generated with a camera view looking straight down at the scene.
Other options are possible, as the camera on the UAV has a field of view of ap-
proximately 85°, which can make some of the sheep in the images appear from the
side. However, it was not prioritised as occlusion mainly occurs when the images
are captured from straight above the sheep. The images are taken at five heights,
30, 40, 50, 60 and 70 meters. The height will influence the perceived sizes of the
sheep in the images, accounting for different sizes of sheep in the images.

Trees

The trees generated in the landscape are from two premade assets from Unity’s
assets store [63][64]. There are 5 different oak and 16 different pine trees. Per
the image, one tree is generated and placed in a random location in the landscape
with an equal chance of being an oak or pine tree.

Sheep

The real images show that the sheep have different colours and sizes and stand
in different poses. To mimic these features in the synthetic data, the sheep can
have a range of colours. They are white, grey, brown and black, with different
variations. The colours are created using a fur texture, which gets randomised
colours from a noise generator. The noise creates variation in the fur, so the sheep
get some random features and variation. Creating realistic-looking fur and texture
for the sheep can be elaborated upon further. However, as low levels don’t increase
performance to a great extent [15], it was deemed adequate. When spawned in
the landscape, the sheep gets a random colour from the set of colours available.

The sheep from the random images appear in a range of poses. The sheep asset
used [65] supports a range of poses out of the box, from standing still, grazing,
running, and laying down. As the sheep spawn, one of these poses is randomly
selected for the sheep. As the image is captured, the sheep are set in a random
frame from the animation, creating variations in the shapes of the sheep, which
have shown to be important for performance [15].

4.4 Sheep Dataset

The dataset used for object detection in this thesis consists of real and synthetic
images. These are captured and created for previous master theses by students
at NTNU. This section will overview the different datasets, their classes and class
distribution.

38 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

4.4.1 DJI Mavic 2 Enterprise Dual

The DJI Mavic 2 Enterprise Dual was used to capture the real images, shown in
Figure 4.3. It is a remote-controlled UAV capable of being used for professional-
grade applications like search and rescue, surveillance, agricultural inspections
and other industrial applications. An overview of the specifications is listed in
Table 4.2. The most important feature for the application of sheep images is the
12-megapixel RGB camera, producing 4000px by 3000px sized images.

The UAV is equipped with an IR camera, able to detect infrared light. The
usefulness of IR images has been studied with varying results. Johannessen [8]
and Furseth and Granås [17] results indicated that IR images could have a positive
effect. However, Stemshaug [18] found that combining RGB and IR images to
detect sheep hurt the performance of the object detectors. The exact impact of
IR images on the effectiveness of object detection remains unclear due to these
conflicting findings. Therefore, the IR images have been discarded for this thesis.

4.4.2 Real Image Data

There are 2125 UAV images in the dataset used for this thesis. These images have
been captured in different years, locations, and seasons. The real images are cent-
ral when training the object detection model for mixed training and fine-tuning
[15]. They are also central when generating synthetic data. By studying these im-
ages, features and characteristics from the environment can be extracted and used
for synthetic image generation.

The first images were captured in Storlidalen in the autumn of 2019, then
later in Klæbu and Orkanger in 2020, and Holtan in 2021. The small number of
locations for image capture might be a limiting factor when training the object de-
tector. Because of the limited location variance, the background and surrounding
terrain might be simial for much of the dataset, resulting in the object detector
not learning to generalize when facing other types of landscape.

Most images have been captured in the autumn, between August and Octo-
ber. A smaller number was captured in May and June, meaning most images are
captured around the time sheep roundup is done. The time of day also influences
the images. Most are caught in the afternoon when the sun is lower in the sky.
The lighting for the synthetic images uses these parameters to generate light.

In an analysis done by Østtveit [13], he tried to find the elevation at which the
images were captured. He used Global positioning system (GPS) elevation data
to see how many meters above sea level the image was captured. He then cross-
checked the GPS position with data from Karvtverket to find meters above sea level
for that exact position. Using these data, he could plot the height of the UAV flying
above the ground when it captured the image. According to these results, some of
the data he used were unreliable, as some images were claimed to be captured 70
meters below ground. Removing the questionable data points, he found that most
images were captured between 30 to 60 meters above the ground, influencing the
synthetic images’ camera height.

Chapter 4: Method 39

Figure 4.3: DJI Mavic 2 Enterprise Dual

DJI Mavic 2 Enterprise Dual Specifications

Take-off weight: 899g (without accessories)

Dimensions:
Folded: 214mm X 91mm X 84mm.
Unfolded: 322mm X 242mm X 84mm

Speed 72 kph
Range 8000 km
Flight Time 31 min
Internal Storage Micro SD, 24GB Onboard
Battery 3850 mAh (heated)
RGB camera resolution 12 MP
RGB camera Field of view (FOV) Approx. 85°
Sensor Sony 1/2.3
Lens f/2.8-f/3.8
Zoom 2x Digital 3x Electronic
Shutter Speed Electronic Shutter 8-1/8000s
ISO Range Video: 100-3200 Photo:100-3200 (manual)

Table 4.2: DJI Mavic 2 Enterprise Dual specifications

40 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

Table 4.3 shows the distribution of sheep classes in the real dataset. Each
class represents a type of sheep, and the table shows the number of individual
instances of that class and the number of images containing at least one instance
of that class.

Class Instances Number of Images

White sheep 12,380 1,739
Grey sheep 3,515 1,150
Black sheep 2,362 1,017
Brown sheep 1,071 445
White occluded sheep 904 516
Grey occluded sheep 149 75
Black occluded sheep 40 37
Brown occluded sheep 10 7

Total 20,431 4,986

Table 4.3: Instances and number of images for each sheep class in the dataset of
real images

Evidently, the dataset is quite imbalanced towards the white sheep class, which
appears over 150% more than the class with the second most instances, grey
sheep. These sheep classes are the most similar, and it can be challenging to draw
the line between a white sheep and a light grey sheep during labelling, meaning
the classes with light-coloured wool dominate the dataset. It is also quite clear
that the occluded classes are underrepresented in the dataset, especially those
with dark wool. There are only 1,103 occluded sheep compared to 19,328 non-
occluded sheep. Only 5.40% of all instances are occluded. Because of the limited
number of real images with occluded sheep, an object detection model trained on
this dataset alone will most likely struggle with recognizing the occluded classes.

4.4.3 Synthethic Image Data

Table 4.4 shows the distribution of sheep classes in the synthetic dataset. As seen,
the spread of the number of instances of the classes is more equal than in the
real dataset. Of the non-occluded classes, the brown sheep is the most numerous.
Of the occluded classes, the occluded white sheep has roughly twice as many
instances as the rest. The white sheep randomiser described in Section 4.3.2 has
two sets of white wool which can be selected. Because of the flat chance that one
wool is chosen over another, the class of white sheep is twice the size of the others.

The classes which are not occluded are data generated by Østtveit for his thesis
in 2022 [13]. These images are rendered in Unity but without the focus on oc-
cluded sheep. However, they include instances of occluded sheep, but they are
not labelled correctly. An occluded white sheep from that dataset is labelled as a
white sheep. It will influence the results when testing for multiple classes but will

Chapter 4: Method 41

Class Instances Number of Images

White sheep 851 778
Grey sheep 1,644 1,373
Black sheep 2,401 1,860
Brown sheep 3,182 2,275
White occluded sheep 3,245 3,245
Grey occluded sheep 1,699 1,699
Black occluded sheep 1,672 1,672
Brown occluded sheep 1,588 1,588

Total 15,233 6,904

Table 4.4: Instances and number of images for each sheep class in the dataset of
synthetic images

not make a difference for single-class testing. A single class will be used for the
use case of the UAV. But for the sake of experimenting, multiple classes will be
used so that it is possible to compare and see the results on performance.

4.5 Data Preparation

Tiling of Images

When training an object detector model on image data, resolution can pose a chal-
lenge. Even with supercomputers available, the time required and the cost-value
of allocating the resources needed make it unviable. However, there are solutions
to this problem. One option is the use of downscaling. With downscaling, the im-
ages are compressed into a smaller resolution, which is more manageable for the
hardware. When the resolution of the image is close to the desired resolution,
downscaling can be a viable option, without losing too much detail. However, in
this case, the images from the UAV are 4000px by 3000px, which is far from op-
timal. Some of the sheep from the UAV images are very small, so downscaling
these images would remove too much detail. Another option is tiling, where the
original images are tiled into smaller images which can be processed during train-
ing. Granås & Furseth [17] found that tiling was effective for UAV images of sheep
for accuracy and training time.

The image is divided into an 8x6 grid. Every 4,056px by 3,040px image is
divided into 48 507px by 507px images. To ensure that no sheep are split between
two images, each of these smaller images is padded with 64 pixels on every side. As
a result, most of the padded images have dimensions 635px by 635px, except for
the edge images, which may be slightly smaller since they do not receive padding
on the outer edges. After the division and padding process, some of the smaller
images do not contain any sheep. These images are discarded. After tiling and
padding, the same sheep may appear on two smaller images. Since the dataset is

42 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

divided into testing, validation and training before the tilling process, this doesn’t
interfere with the model’s training process. Figure 4.4 shows an example of the
tiling prossess.

(a) Image divided into 8x6 grid (b) Images left after tilling and discarding

Figure 4.4: Example of image tilling

4.6 Alternative Approaches to Sheep Recognition in UAV

Imagery

Before selecting the method of data generation and an object detection model,
alternative approaches were considered. This section will give a brief overview of
other viable options for exploring the goal of this thesis.

4.6.1 Exploring Methods for Synthetic Sheep Image Generation

To create synthetic images for sheep recognition in UAV imagery, Unity was chosen
as the framework for data generation. However, alternative approaches exist that
leverage different frameworks, varying from game engines to more specialized im-
age generation techniques. By exploring these options and analyzing their strengths
and weaknesses, the choice of approach can be better justified, and the overall
methodology can be more thorough.

Exploring Unreal Engine as an Alternative

Another popular game engine which can be used for generating synthetic data is
Unreal Engine, developed by Epic Games. Like Unity, it can render photo-realistic
scenes and offers various tools and third-party add-ons. UnrealCV is a tool sup-
porting Unreal Engine 4, which is made to help with computer vision tasks.

Unreal Engine has some strengths compared to Unity. The assets and 3D-
rendered graphics have an overall higher quality than in Unity. To create syn-
thetic images, it is essential to be close to photo-realistic. However, as Vanherle et

Chapter 4: Method 43

al. [15] noted, low-level features are not the most impactful thing for synthetic
images to resemble. Rendering scenes in Unreal Engine is also faster than in Unity.
As mentioned in Section 4.1.1, computing time is essential, as available comput-
ing power is limited. However, the difference isn’t significant enough to influence
the generation process heavily. On the other hand, the Unity community is larger
than the Unreal Engine community, and more assets and support are available on-
line. Having high-quality assets is a critical factor in creating the scene. Similar to
Unity Perception, the Unreal Engine tool UnrealCV is available. Although the tools
are made for similar tasks, such as object detection, UnrealCV only supports Un-
real Engine 4, an outdated software version, and not Unreal Engine 5. Not only
that, but the tool itself has not been updated since late 2017. All these aspects
combined made Unity and Unity Perception and clear choice.

Leveraging GANs for Synthetic Image Creation

Generative adversarial networks (GANs) are a deep learning model that can gen-
erate realistic-looking images [66]. The model consists of two neural networks, a
generator and a discriminator, used to learn features and patterns, enabling the
network to create synthetic images that resemble real examples. The generator is
responsible for learning patterns and generating examples, while the discrimin-
ator classifies the output, labelling it as real or as a generated image. By trying
to fool the discriminator, the generator learns how to generate realistic-looking
data. The back-and-forth between the two models continues until the generator
can fool the discriminator with regularity.

One of the advantages of using GANs is data augmentation. Data augmenta-
tion is a proven technique to improve object detectors’ performance [23]. Tech-
niques for data augmentation to expand datasets with new instances are often
primitive, with flipping, cropping, zooming or other simple transformations of
datasets being usual. With GANs, it is possible to create new examples with more
domain-specific features and variations than simple transformations [26][27][23].
Creating art, high-resolution versions of input data, and image-to-image transla-
tion [67] are some of the capabilities of GANs. Over the years, GANs have suc-
cessfully created photo-realistic images of human faces, which are impossible to
differentiate from real example data [68].

Even though GANs have a lot of potential for generating synthetic images for
object detection applications, there are some disadvantages to the specific setting
of this thesis. Firstly, developing GANs is a complex task, both regarding domain
expertise, but also complexity regarding training [67]. Compared to a game en-
gine like Unity, developing a GAN requires knowledge and expertise within deep
learning to produce realistic, high-quality images. Even with high-powered com-
puters available, the process is time-consuming and computationally demanding.
With Unity, it is possible to quickly create photo-realistic images with less demand
for power and less required expertise in the field.

One of the benefits of using Unity is the level of control it provides in creating

44 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

a predictable and organized environment. When working on a thesis, positioning
objects in relation to each other is crucial and cannot be left to chance. Unity
makes it easy to adjust and modify the scene and objects. Adding new objects is
a simple process, unlike in a GAN, where the system must first learn the features
of the object before it can be inserted into the scene. Additionally, Unity allows
for easy adjustments to lighting, camera angles, and object details. These features
require extensive training and example data in a GAN.

4.6.2 Alternative Approaches for Object Detection Models

The object detection field has had massive progress over the years, and new emer-
ging object detection models are released yearly. There are multiple options for the
object detection model for sheep detection. This section will present alternative
models and examine their advantages and drawbacks.

Similar to YOLO, Single-shot detector (SSD) is a single-stage object detection
algorithm, meaning they perform predict object class labels and create bounding
boxes in a single forward of the network. Despite both being single-stage detect-
ors, some differences set them apart. One aspect that distinguishes them is the
creation of bounding boxes. SSD uses anchor boxes, which are pre-defined bound-
ing boxes of different sizes, to make predictions. These boxes are matched to the
ground truths during training before adjusting box offsets and class probabilities
to learn to detect objects. Contrary, YOLO does not use anchor boxes. Each im-
age is divided into a grid, where each grid is responsible for predicting bounding
boxes and probabilities.

SSD and YOLO are two algorithms that aim to balance speed and accuracy for
object detection tasks requiring real-time, precise predictions. These algorithms
are beneficial in autonomous driving, agriculture monitoring, or detecting sheep
in UAV images. YOLOv7 is currently the latest object detection algorithm. It has
been utilized in multiple earlier master theses, making it a suitable option for
further studies and comparisons with previous work.

Kortylewski et al. [27] introduced the CompositionalNet algorithm focusing
on occluded objects. Their results show significant increases in performance com-
pared to standard CNNs at detecting occluded objects. Implementing this algorithm
for finding sheep in UAV images can potentially improve the detection of occluded
classes.

4.6.3 Weaknesses of Selected Approach

As mentioned in Section 4.2.1, Unity Percetion has some limitations. Given the
limiting scope and time, some of these can be circumvented, but others are difficult
to address.

A significant advantage of Unity is its publicly available free and paid assets.
However, the data generation method is bound to use these assets, as it is not
feasible to create enough custom assets due to limited time. Making them with
the required quality to be useful for training would also be difficult. Some of the

Chapter 4: Method 45

assets used, like the sheep and tree assets, are of questionable quality. The textures
and looks have been acceptable for the experiments for this thesis, even though
they have made the positioning of sheep challenging. An extensive experiment
would require more precision to be optimal for occluded sheep training.

Even though Unity could run on available hardware, generating images has
been slow, often susceptible to interruptions and crashes. Because of this, the num-
ber of new images generated of occluded sheep has been lower than initially de-
sired. This can potentially influence the impact of occluded sheep images. It is
clear that Unity Perception has a lot of potential for machine learning applica-
tions, but there are still glitches and errors that need to be addressed.

The selected object detection model, YOLOv7, also has some weaknesses.
Muribø [10] reported that an earlier version of YOLO performed better on one
superclass of sheep than on multiple sub-classes. YOLOv7 doesn’t support super
and sub-classes, so these configurations could not be tested, as it potentially would
influence the models’ ability to detect sheep.

Chapter 5

Experiment Structure

The following chapter explains how the experiment for this thesis is structured
and how the experiments relate to the research questions. The research questions
will be presented, along with the approach for training and testing.

5.1 Research Questions

RQ1 How does YOLOv7 perform with the dataset consisting of real images?

From previous work, the latest object detection model used on the sheep data-
set is YOLOv5. According to [49], YOLOv7 is up to 120% better than YOLOv5 on
the MS COCO dataset. Given the dramatic increase in performance, the hypo-
thesis is that YOLOv7 should perform significantly better than its predecessor. As
the data used for training will be exclusively real data, the results of the YOLOv7
model will be the baseline for further experiments and comparisons.

RQ2: How does training on mixed synthetic and real data affect the detection per-
formance of occluded sheep?

The newly generated synthetic data will be mixed with real image data to
train two YOLOv7 models, evaluating their ability to detect occluded sheep. These
models will be compared to the baseline model from the previous research ques-
tion. The aim is to ascertain how the synthetic data affects the performance. The
hypothesis is that adding synthetic data should improve the performance of the
occluded classes in the dataset.

RQ3: How does fine-tuning compare to mixed training performance for predicting
occluded sheep?

Previous research has studied how mix-training with synthetic data affects the
models’ ability to detect sheep [13]. According to [15], training on synthetic data
before fine-tuning outperforms mix-training in accuracy, requiring less training

47

48 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

time. The results from fine-tuning will be compared to the results of mixed train-
ing obtained from the prior research question, considering their accuracy. The
hypothesis is that fine-tuning should produce better results than mixed training
results.

5.2 Dataset Splits

The dataset described in Section 4.4 will be used for training, validation and
testing. Table 5.1, Table 5.2, and Table 5.3 give an overview of the number of
class instances in each of the subsets.

The dataset of real images is split so that 70 % of images are in training and
15 % in each of the validation and testing subsets. The dataset of synthetic images
is split so that 90 % of the images are in training and 10 % are in validation. All
classes must be represented to make the datasets as useful as possible for training
and testing. Still, because of the highly imbalanced nature of the real dataset, it
is challenging to provide enough unique examples of underrepresented classes
for training, validation and testing. It will most likely impact both training and
testing.

Each subset is also split into real and synthetic data. The Real data is all 2,125
images from the real dataset, and the Synthetic is the combination of synthetic
data generated for Østtveit [13] and this thesis. Synthetic data is primarily used
for training, but the validation of models trained on exclusively synthetic data
is only validated on synthetic data. The other models use real image data for
validation, and all models use exclusively real data for testing.

Training

Class Real Synthetic Total

Black sheep 1,638 2,190 3,828
Brown sheep 744 2,860 3,604
Grey sheep 2,427 1,488 3,915
White sheep 8,585 782 9,367
Black occluded sheep 26 1,487 1,513
Brown occluded sheep 6 1,415 1,421
Grey occluded sheep 87 1,524 1,611
White occluded sheep 627 2,925 3,552

Total 14,140 14,671 28,811

Table 5.1: Training data distribution across classes

Chapter 5: Experiment Structure 49

Validation

Class Real Synthetic Total

Black sheep 360 211 571
Brown sheep 165 322 487
Grey sheep 546 153 699
White sheep 1,910 69 1,979
Black occluded sheep 6 185 191
Brown occluded sheep 2 173 175
Grey occluded sheep 31 175 206
White occluded sheep 139 320 459

Total 3,159 1,608 4,767

Table 5.2: Validation data distribution across classes

Testing

Class Real

Black sheep 364
Brown sheep 162
Grey sheep 542
White sheep 1,885
Black occluded sheep 8
Brown occluded sheep 2
Grey occluded sheep 31
White occluded sheep 138

Total 3,132

Table 5.3: Testing data distribution across classes

5.3 Training

Pytorch was used to define the YOLOv7 architecture for training the sheep ob-
ject detector. It’s a framework used for machine-learning applications and can be
used to build deep-learning models. The framework is open source with lots of
resources available. It enables tensor computation on Graphical Processing Units
and is built with Python.

All models are trained on the IDUN cluster at NTNU. The cluster consists of
many nodes with variations in CPUs, number and types of GPUs, and memory
sizes. The NVIDIA A100 40GB was used for training.

Table 5.4 gives an overview of the models trained to test the research ques-
tions for this thesis. All models trained are the standard YOLOv7 model with de-
fault hyperparameters, except for a lower learning rate. All real images are tiled

50 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

ID Model Training Dataset Class Type Epochs

1A YOLOv7 Scratch Real Multi class 500
1B YOLOv7 Scratch Real Single class 500
1C YOLOv7 Pre-trained Real Multi class 500
1D YOLOv7 Pre-trained Real Single class 500

2A YOLOv7 Scratch Mixed Multi class 500
2B YOLOv7 Scratch Mixed Single class 500

3A
YOLOv7 Scratch Synthetic Multi class 200
YOLOv7 Fine-tuning Real Multi class 500

3B YOLOv7 Scratch Synthetic Single class 200
YOLOv7 Fine-tuning Real Single class 500

Table 5.4: Configurations of models used for training and testing

to 640px by 640px, the same size as the synthetic images.
Preliminary testing of training parameters was conducted to find optimal val-

ues for the number of epochs and learning rate. Most of the models are trained
for 500 epochs, as it proved to be a good amount for yielding valuable results. In
combination with YOLOv7s built-in Early Stopping feature, which stops training
after a defined number of epochs without any improvement, the training process
can avoid using unnecessary resources. The training from scratch of model 3A and
3B are run for 200 epochs, which preliminary testing suggested to be sufficient
and avoided overfitting. After experimentation with lowering the learning rate,
it was lowered from the default of 0.01 to 0.001 for all models because of early
overfitting in initial testing. The primary focus for training is to evaluate the per-
formance of models trained on different combinations of the datasets described
in Section 5.2. The Real and Synthetic using the respective dataset, and Mixed util-
ising the combination of both for training. For mixed, all the synthetic images are
used in training. Each model is also trained on multiple and single classes. For the
use case of the UAV, having a single class of sheep would be beneficial. For the
thesis, it is advantageous to study the performance of individual classes so that
they can be inspected closer and examined further down the line.

Model 1A-1D are the models related to RQ1, which tests how YOLOv7 is per-
forming on the real dataset. Training from scratch and fin-tuning on pre-trained
weights on the MS COCO dataset for both single and multi-class is tested. The best-
performing model will be the baseline for comparison with the other models for
the rest of the experiment. Model 2A and 2B are tested for RQ2. The model will be
trained on combining the real and synthetic datasets, both single and multi-class,
to see how mixed training performs with synthetic data. Finally, model 3A and 3B
related to RQ3 will test how fine-tuning is compared to mixed training. The train-
ing of these models consists of two phases. First, the models will be trained from
scratch on the synthetic dataset before it is fine-tuned on the real images. This will

Chapter 5: Experiment Structure 51

be done for both multi and single-class models. The results from both pre-training
and fine-tuning will be examined during training, but only the fine-tuned model
will be tested further.

5.4 Testing

When all configurations are done training, the models with the best-performing
weights through training will be selected for testing on the test data split. The
best-performing model in YOLOv7 is selected using a fitness function. The fit-
ness function outputs the weighted average of precision, recall, mAP@0.5 and
mAP@0.5:0.95 from the validation set to determine the best-performing model.
Using the best model compared to the latest model is done to avoid using an over-
fit model, which probably will perform worse on the unseen data in the test data
split. All tests are run on the IDUN cluster with the NVIDIA P100 node.

For evaluating the sheep detector models, different evaluation metrics will
be used. Some are more relevant for the application of finding sheep, and some
for the focus of this thesis specifically. When looking at the multi-class models,
it is important to note that even though there are different classes with different
colours and levels of occlusion, all classes are still sheep. Therefore, a false positive
prediction could be a sheep of another colour or a sheep hidden behind a branch.
This will influence the precision and recall score of the model. However, it will still
be a positive prediction when the goal is finding sheep, even though it belongs
to another class. This could be a result of the labelling of sheep and where the
limits are drawn in the transition from one colour to another, for example, if a
grey sheep is predicted to be a white sheep. Nevertheless, keeping the number
of false negatives in mind is also important, as too many positive predictions of
background objects would drastically decrease the value of the object detector.
Because of how the sheep are classified, looking at the percentages of sheep being
found can be valuable. It can be found through a multi-class confusion matrix.

For the single-class models, precision and recall are more valuable. A false
negative in a single-class model could only be a missed ground truth because no
other classes are being predicted. Reporting mAP@0.5 and mAP@0.5:0.95 will
also be of value for combining the precision and recall metrics and evaluating
bounding box precision.

Chapter 6

Results

The following chapter will present the results of the experiments conducted for
this thesis. First, results from training all models in Table 5.4 will be examined.
Furthermore, the results from testing these models on the test dataset will be
presented, which will be used to compare the performance across configurations.

6.1 Results from Training

The training of the models where all performed on two NVIDIA A100 40GB GPUs.
Running time varied across datasets but was fairly equal between single and multi-
class models. The baseline models trained from scratch, 1A and 1B, finished in
approximately 11 hours, while the baseline pre-trained models, 1C and 1D, in 4
hours. The training from scratch on synthetic data for models 3A and 3B took
about 4 hours and 30 minutes, while the fine-tuning itself took about 11 hours
and 30 minutes. The outlier was the mixed dataset, which finished in 19 hours
and 20 minutes for the multi-class model and 22 hours and 37 minutes for the
single-class model. It is not surprising that the training took longer than for the
other models, as the combination of the two datasets is larger than any one of
them. However, the difference between the two models concerning the number of
classes is more surprising, as the models have the same hyperparameters and are
trained on the same hardware. These differences might result from randomness
during training, like the randomised initial weights.

Figure 6.3 and Figure 6.2 show the mAP@0.5 for the trained models. The
metric is calculated from the validations set after each epoch is finished. 500
epochs are clearly enough as the performance of all models is starting to plat-
eau around 200-300 epochs. Looking at Figure 6.4, objectness loss is increasing
as the models have trained for 200-300 epochs, indicating they are starting to
overfit. These results suggest that the models have been trained for long enough.

An outlier in Figure 6.3, Figure 6.2 and Figure 6.4, is the pink graph, rep-
resenting the pre-training on synthetic data of models 3A and 3B. It is trained
for fewer epochs to avoid overfitting, which can occur if the synthetic training
data isn’t varied, large, and representative of the real data [57]. Even though the

53

54 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

synthetic data is created to be representative and varied, its accuracy to the real
images isn’t exact, and the number of generated images is much lower than sug-
gested in Vanherle et al. [15] experiments, making it prone to overfitting. How-
ever, Figure 6.4 shows the object loss has only slightly increased in the last half of
epochs. Because of the small increase, letting the training continue longer might
be favourable, but it would have to be explored further. It should also be noted
that the same models perform very well on the mAP@0.5 score, especially for
the multi class model, as seen in Figure 6.2. This drastic increase results from
the models being validated on synthetic images alone, and the dataset is more
balanced than the real images. There are more instances of the dark-wooled and
occluded classes, increasing the AP scores for all classes, resulting in a high mAP
score.

Figure 6.1: Comparing validation objectness loss for baseline models pre-trained
and trained from scratch

The pre-trained model 1A, trained on the MS COCO dataset, performed worse
during training than model 1C, trained from scratch. Looking at Figure 6.1, the
validation objectness loss for model 1C has a quick dip before it starts to increase
as early as before epoch 20. It continuously increases for the rest of the training
epochs. It might seem that model 1C gets a low objectness loss quicker than model
1A before it starts to overfit. This could be looked at as advantageous, requiring
less training time. However, in the early epochs, both models had relatively low
mAP@0.5 scores compared to what they achieved in later epochs. The same tend-
encies showed for the single-class models 1B and 1D. Because of these tendencies
during training, the models trained from scratch were selected as the baseline
model for comparison for the rest of the experiments.

Chapter 6: Results 55

Figure 6.2: mAP@0.5 for all multi-class models

Figure 6.3: mAP@0.5 for all single class models

(a) Single class (b) Multi class

Figure 6.4: Validation objectness loss for single and multi-class models

56 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

6.2 Results from Testing

Examining Evaluation Metrics

Table 6.2, Table 6.3, Table 6.4 and Table 6.5 shows the results from testing all
sheep detection models on the test data set, with the highest values highlighted.
The optimal confidence thresholds found from the F1 curve for each model are
used to calculate the metrics for all models, which can be seen in Table 6.1.

Optimal Confidence Thresholds

A Multi B Single

1 Baseline 0.602 0.798
2 Mixed 0.639 0.790
3 Fine-tune 0.631 0.787

Table 6.1: Optimal confidence thresholds used for testing

Each multi-class model has its respective values for each class in the tables. The
single-class all value and the multi-class all values are differentiated by the fact
that the multi-class is the mean of all other classes detected, meaning the weaker
performing classes pull the mean down. In contrast, the single class is trained and
tested as one class, meaning the weak-performing classes don’t impact the mean
extensively because there are so few examples.

As evident, most scores are pretty similar. However, there are some outlier val-
ues and classes. Most notable are the brown occluded class. All the different models
struggle with finding this class, with all having 0 precision and recall at the op-
timal confidence threshold. Another apparent value is model 1A’s precision score
of 1 and recall score of 0.141 for the black occluded class. For this class, the other
models have noticeably lower precision and higher recall. For both cases with the
brown and black occluded classes, it is important to note the number of instances
in the test dataset, which is 2 and 8, respectively. There are few instances, meaning
each prediction greatly impacts the metrics. Also note the relationship between
precision and recall, resulting in the baseline model prediction of all black sheep
correct but simultaneously not finding many of them. Models 2A and 3A, however,
are finding more, but with less precision. Neither of the models could find any of
the two brown occluded sheep in the dataset. These test set limitations should be
considered when evaluating the results.

Even though the results are similar for many classes and models, there are
some trends. For the mAP scores, the models trained on synthetic data consist-
ently outperforms the baseline, if ever so slightly. The only class where the baseline
has better mAP scores are the brown sheep class. Of the models trained on syn-
thetic data, the mixed models perform the best for multi-class, achieving a higher
mAP@0.5 and mAP@0.5:0.95 than single. For the single class, 3B has the highest
mAP@0.5 and 2A for the mAP@0.5:0.95 scores.

Chapter 6: Results 57

Precision

Multi Class 1A Baseline 2A Mixed 3A Finetune

all 0.681 0.676 0.660
black sheep 0.841 0.877 0.851
brown sheep 0.733 0.708 0.719
grey sheep 0.811 0.847 0.42
white sheep 0.866 0.917 0.909
black occluded sheep 1.000 0.897 0.686
brown occluded sheep 0.000 0.000 0.000
grey occluded sheep 0.693 0.607 0.750

white occluded sheep 0.500 0.552 0.525

Single Class 1B Baseline 2B Mixed 3B Finetune

all 0.940 0.937 0.937

Table 6.2: Precision scores from testing

Recall

Multi Class 1A Baseline 2A Mixed 3A Finetune

all 0.606 0.631 0.630

black sheep 0.890 0.871 0.887
brown sheep 0.849 0.839 0.838
grey sheep 0.913 0.910 0.904
white sheep 0.962 0.961 0.959
black occluded sheep 0.141 0.375 0.375

brown occluded sheep 0.000 0.000 0.000
grey occluded sheep 0.452 0.452 0.484

white occluded sheep 0.645 0.638 0.594

Single Class 1B Baseline 2B Mixed 3B Finetune

all 0.929 0.947 0.950

Table 6.3: Recall scores from testing

58 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

mAP@0.5

Multi Class 1A Baseline 2A Mixed 3A Finetune

all 0.626 0.653 0.637
black sheep 0.883 0.896 0.880
brown sheep 0.799 0.793 0.789
grey sheep 0.914 0.920 0.918
white sheep 0.968 0.971 0.968
black occluded sheep 0.430 0.562 0.489
brown occluded sheep 0.002 0.000 0.005

grey occluded sheep 0.481 0.488 0.510

white occluded sheep 0.530 0.592 0.536

Single Class 1B Baseline 2B Mixed 3B Finetune

all 0.959 0.963 0.966

Table 6.4: mAP@0.5 scores from testing

mAP@0.5:0.95

Multi Class 1A Baseline 2A Mixed 3A Finetune

all 0.395 0.421 0.408
black sheep 0.594 0.604 0.595
brown sheep 0.518 0.538 0.532
grey sheep 0.618 0.632 0.640

white sheep 0.728 0.739 0.737
black occluded sheep 0.187 0.284 0.228
brown occluded sheep 0.001 0.000 0.000
grey occluded sheep 0.209 0.210 0.228

white occluded sheep 0.306 0.358 0.305

Single Class 1B Baseline 2B Mixed 3B Finetune

all 0.691 0.697 0.696

Table 6.5: mAP@0.5:0.95 scores from testing

Chapter 6: Results 59

Examining Confusion Matrices

Figure 6.5, Figure 6.6 and Figure 6.7 shows the confusion matrices for the multi-
class models 1A, 2A and 3A. These matrices are calculated using the optimal con-
fidence threshold mentioned earlier. Examining the matrices shows which classes
are wrongly predicted during the prediction process. A false positive between
classes is not crucial for finding sheep but gives insight into the model’s perform-
ance.

Looking at the matrices, it is clear that the white sheep class is the most abund-
ant in the dataset. There are many more instances of the class, but all models also
detect a high degree of them. The high detection rate is no surprise, given the
number of instances in the training set. Many class predictions are falsely pre-
dicted as other sheep classes, especially those of the non-occluded classes. Some
non-occluded classes are also being predicted as the occluded class with the same
colour. By adding the number of true and false positives, the exact number of pos-
itive predictions can be found, giving a more accurate impression of the multi-class
models’ performance.

The detection of occluded sheep has some varying results. The mixed and fine-
tuned models have found more black-occluded sheep than the baseline model.
There are only eight instances in the test set, but three correct predictions are still
an improvement from one correct prediction. As with the brown occluded class,
non of the models managed to get a correct prediction. However, both the models
trained on synthetic data managed to predict brown occluded sheep as another
class of sheep. The mixed model 2A had two false positives, which were classified
as white sheep, and the fine-tuned model 3A predicted them to be of the white
and white occluded classes.

Another result which should be noted is the number of false positives in the
multi-class models. Table 6.1 show the optimal thresholds for all models. Most
notable is the difference between the multi-class models, especially the lower
threshold for the baseline model 1A. This can also be seen in the confusion matrices,
where it is evident that model 1A exhibits a higher rate of false positives compared
to the other two multi-class models, despite almost predicting the same number
of sheep correctly. The white sheep classes seem particularly affected, with 253
false positive white sheep instances in model 1A, as opposed to 148 and 135 in
the mixed and fine-tuned models. Other non-occluded classes are also seeing a de-
crease in false positives. It is more difficult to determine for the occluded classes,
as the number of predictions is so low. However, the number of white-occluded
false positives decreases on both models trained on synthetic data. The only in-
crease is the number of false positives for the grey-occluded sheep class for the
mixed model.

60 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

Figure 6.5: Confidence matrix for model 1A Baseline

Chapter 6: Results 61

Figure 6.6: Confidence matrix for model 2A Mixed

62 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

Figure 6.7: Confidence matrix for model 3A Fine-tuned

Chapter 7

Discussion

The following chapter will examine the results and discuss them with regard to
the research questions. Lastly, different sources of errors from training and testing
which can influence the results will be considered.

7.1 Research Question 1

RQ1 How does YOLOv7 perform with the dataset consisting of real images?

To assess RQ1, the baseline YOLOv7 models performance on the existing data-
set will be compared to the YOLOv5 baseline model used in last year’s study by
Østtveit [13]. The single-class configurations were used for this comparison since
the YOLOv5 metrics were reported as a single-class model. This offers a more pre-
cise evaluation of how the models perform for the application of finding sheep but
doesn’t make it possible to compare the performance across multiple classes. Both
models were trained on an identical dataset and employed the default hyperpara-
meters other than the learning rate for their respective architectures. Table 7.1

showcases the primary metrics for both models.

Architecture Precision Recall mAP@0.5 mAP@0.5:0.95

YOLOv7 0.940 0.929 0.959 0.691
YOLOv5 0.947 0.946 0.962 0.747

Table 7.1: Comparison of YOLOv7 and YOLOv5 performance

The YOLOv5 models from the experiments by Østtveit [13] outperform the
YOLOv7 model on all evaluated metrics. While the differences are not enormous,
the discrepancies are intriguing since the older YOLOv5 model surpassed the more
recent SOTA YOLOv7 model. The most significant difference was observed in the
mAP@0.5:0.95 scores, indicating that the bounding boxes predicted by YOLOv5
are more precise than those predicted by YOLOv7.

63

64 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

Various factors stemming from the architecture’s differences could influence
the models’ performance, like how each model handles different data types and
image complexity. Each version of YOLO introduces changes and refinements in
the network architecture, loss function, or training process, which may have vary-
ing implications for different datasets.

Additionally, the hyperparameters used for both models might benefit one ar-
chitecture over the other. Although the models were trained with their respective
default hyperparameters, except for a lower learning rate on the YOLOv7 mod-
els, other settings might not have been optimal for this particular dataset, thus
affecting the performance of YOLOv7 more negatively than YOLOv5.

Furthermore, it is also essential to consider that many variables can influence
the performance of machine learning models on a specific task. The particular
characteristics of the dataset, including the complexity of images, diversity in
sheep classes, and the level of occlusion, might be better suited to the YOLOv5
model.

However, further research and experimentation would be required to determ-
ine the causes for the difference in performance, involving adjustments in hyper-
parameters, changes in training, analysis of performance across classes, and how
the models perform on varying degrees of image complexity.

7.2 Research Question 2

RQ2: How does training on mixed synthetic and real data affect the detection per-
formance of occluded sheep?

To assess RQ2, the performance of models 2A and 2B will be examined. The
two models’ results will be compared to the baseline models 1A and 1B to evaluate
the performance of detecting occluded sheep with mixed data.

Model 2A, trained on multiple classes, generally outperformed the baseline
model 1A regarding precision and recall. One notable difference between these
models is their respective confidence thresholds. Model 1A has a lower optimal
confidence threshold than the mixed model, explaining its lower precision due to a
higher number of false positives. However, this should also result in a higher recall,
as it requires less confidence to label an object as a member of the sheep class.
Despite these differences, the recall scores of both models tend to be pretty similar
across most classes, usually varying by just a few hundredths. This suggests that
the mixed models can make high-precision predictions while maintaining similar
recall scores. The benefit of using mixed models is further evident in the mAP@0.5
scores from Table 6.4, where they outperform the baseline model for all classes
except the brown sheep class.

The mixed models show promising performance when dealing with occluded
classes. For instance, the black occluded class witnessed a significant increase in
mAP@0.5 performance from 0.430 to 0.562, while the white occluded class ex-
perienced an increase from 0.530 to 0.592. However, it’s crucial to note that the

Chapter 7: Discussion 65

test dataset only includes eight black occluded instances, thus suggesting a need
for a more comprehensive dataset for reliable evaluation of the real impact of
synthetic images. Despite having more instances in the training set to learn from,
the benefits of recognizing these features may not be fully realized. The occluded
white sheep implies that incorporating the occluded sheep dataset could be bene-
ficial. Still, for the black and brown occluded sheep, there might not be enough
test images to see the performance improvement, making it challenging to make
a definitive conclusion.

Regarding the single class models, 1B and 2B, the mixed model, 2B showcased
a significant improvement in recall with 0.947 compared to 0.929 for the baseline
model 1B while maintaining a comparable precision score, from 0.937 compared
to 0.940. In single-class models, although we cannot identify which sheep class
the model has difficulties recognizing, the increase in recall, combined with sim-
ilar precision, suggests the model’s enhanced ability to detect more sheep, albeit
without perfect classification. For the drone’s practical use, this is not problem-
atic. It’s important to remember that the primary goal is to ensure all sheep are
detected, even if the exact classification may not always be accurate. Therefore,
the precision-recall tradeoff can be considered suitable in this use case.

Overall the results indicate some improvements in occluded sheep detection
using mixed data. Experimenting with ratios between real and synthetic data
could improve the results. Results from Vanherle et al. [15] suggested a ratio of
5:1 between synthetic and real images. Testing with different ratios could be be-
neficial for the application of sheep detection. But still, the real value of adding
synthetic occluded sheep images to the training data will need further verification
through testing with a larger, more balanced dataset.

To improve the results further, changes in the approach to generating synthetic
data could be explored. Specifically, reconsidering the synthetic data used to en-
hance occluded sheep detection may be beneficial. A more diverse set of gener-
ated scenes could provide the model with a wider variety of contexts for learning.
This could involve enhancing the landscape and sheep’s visual attributes in these
synthetic images. Moreover, the image generation process could be focused more
on underrepresented sheep classes in the dataset. While it is crucial to generate
images covering all sheep classes to ensure comprehensive feature learning, pri-
oritizing the creation of dark-wooled occluded sheep would most likely boost the
model’s performance. In this way, efforts would be more strategically targeted,
enabling a more comprehensive learning process for the model and, potentially,
better results for classes with the worst performance.

7.3 Research Question 3

RQ3: How does fine-tuning compare to mixed training performance for predicting
occluded sheep?

Analyzing the performance and differences between mixed and fine-tuned

66 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

training focuses on models 2 and 3. As an overall trend, the mixed model sur-
passes the fine-tuned model in most performance metrics. When considering the
mAP@0.5 score, the fine-tuned model lags in all classes except for brown and grey
occluded. For the non-occluded classes, performance is lower, albeit not so much.
The difference is more significant with the occluded classes, where the black and
white occluded sheep scored 12.9% and 9.4% lower than the mixed model, re-
spectively.

While these deviations aren’t vast and originate from a test set with a limited
size for the relevant classes, they might not hint at a broader trend outside these
experiments. Contrary to these findings, Vanherle et al. [15], Seib et al. [23], and
Nowruzi et al. [69] reported superior results and performance with fine-tuning in-
stead of training on a mixed dataset. However, from the sheep data experiments,
the fine-tuned model performed worse. A key constraint for the fine-tuned models
3A and 3B is the amount of training data available. A large and diverse synthetic
dataset is crucial for optimal fine-tuning [55], making it a more viable alternative
to exclusively training on real data. Unfortunately, due to time and hardware limit-
ations, generating the necessary quantity of data was unfeasible. Other causes for
the diverging results could be related to the pre-training with exclusively synthetic
data. From the results from training, described in Section 6.1, the pre-training
could have been prolonged. It is not certain, however, that it would lead to in-
creased performance. Another option could be experimenting with freezing the
shallow layers after the model is pre-trained. Seib et al. [23] found the technique
to give promising results, while in contrast, Vanherle et al. [15] got better results
without freezing the layers and rather let them continue training for longer, con-
cluded that it should be considered on a per-problem basis. Further exploration
of the technique could give better results from the fine-tuning of the models. Ra-
tios of synthetic and real images could also be explored, as a 1:1 ratio got the
best results in the same study. The ratios between real and synthetic data across
classes varied immensely and could be optimised for better results. However, it is
still limited by the number of real images of certain classes.

Enhancing the efficiency and capabilities of the synthetic image generator
could be a feasible option for improving the models’ performance. Specifically,
runtime and image variation have room for improvement. A more effective gen-
erator that produces a wider variety of sheep images is a viable option for further
bettering pre-training for the fine-tuned model.

7.4 Implications and Limitations

7.4.1 Practical Implications on UAV Roundup

With the results from the experiments, camera-equipped UAVs could be a viable
option for sheep roundup. However, such a system for detecting sheep would need
to be developed further beyond the scope of this thesis to be a real solution for the
commercial market. For the detection of sheep, especially occluded sheep, to be

Chapter 7: Discussion 67

advanced further, it would require more quality data. Naturally, in machine learn-
ing applications, the performance and results from a model are heavily influenced
by available data. As mentioned, training and testing the object detection models
require more data, as the lack of real examples of occluded sheep of all colours
is a barrier to further development. Synthetic data could help performance, but
real data will always be needed. Innovations in sheep detection performance will
require more real image data and should be a focus for future work on the subject.

7.4.2 Limitations and Sources of Error

Label Quality

Labelling image data is a difficult task which requires precision and patience.
The dataset consists of thousands of images and thousands of instances of sheep,
which have been labelled by hand. Even though the sheep dataset is relatively
small, human errors will occur during labelling. Occluded or dark-wooled sheep
in shadows, which may not be easily visible at first glance, can be missed and left
unlabeled, resulting in the model classifying them as false positives. Labelling a
sheep to the correct class can be challenging at times. Some sheep exhibit mul-
ticoloured fur; the lightest grey sheep may appear white, and the darkest brown
sheep may appear black. Distinguishing between these variations and many oth-
ers can be difficult. Furthermore, factors such as occlusion, shadows, and lighting
conditions introduce additional challenges to the labelling process, potentially
causing the model to misclassify them. In addition, there may be objects in the
images resembling sheep that could be mistakenly labelled as sheep, leading to
the model being trained incorrectly and resulting in increased detection of false
positives by the model. Even if the labelling is correct, the quality of the bounding
box annotations may fall short. Imprecision in the bounding boxes, such as not
capturing the entire sheep, including space around the sheep, or failing to label
occluded sheep as fully visible, can affect the training process. These mistakes can
result in a poorly trained model with decreased performance.

Mesh Quality in Unity

The mesh quality utilized for the trees in Unity is not perfect. While it approx-
imates the trees’ shape, adding textures does not provide a precise 1-to-1 repres-
entation. This inconsistency can lead the script to perceive the sheep as occluded
when it is actually fully visible but standing near the tree. It can also perceive the
sheep as occluded when the sheep is entirely invisible under the tree. As these
labels are automatically generated, they don’t require any visible sheep, making
it impossible for the model to learn any meaningful feature from the image.

68 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

Background Images

A background image is an image that does not contain any labelled objects. The
sheep dataset does not contain any background images. To reduce the number of
false positives detected, having between 0 to 10% background images is recom-
mended.

Random Weights Initialziation

YOLOv7 uses random starting weights during training. Utilizing this, each model
trained can learn from a unique starting point, resulting in each model potentially
learning and performing differently.

Quality of Datasplit

Some images in the dataset were captured in quick succession. This is not con-
sidered when dividing the dataset into training, validation, and testing sets. As a
result, there is a possibility that similar images may end up in different sets. This
can lead to a potential issue of overfitting during training.

Inconsistency in Confusion Matrices

Due to a bug in YOLOv7’s code, inconsistencies have been observed in the confu-
sion matrices. This bug leads to a few instances of sheep not being accounted for
while a few extra instances that do not exist are mistakenly included. However,
it is essential to note that the impact of these inconsistencies is relatively small
compared to the total number of instances in the dataset.

Chapter 8

Conclusion

The following chapter will summarise the conclusion for each research question
to evaluate if the goal posed for the thesis is accomplished. Suggestions for future
work will also be presented.

8.1 Conclusion

RQ1 How does YOLOv7 perform with the dataset consisting of real images?

YOLOv7 performs worse than the older YOLOv5 architecture. The hypothesis
was that the newer algorithm would perform better than the old one. However,
our results suggest that the older architecture is better suited for detecting sheep
in UAV images when it comes to dataset size, parameters and size of the model.

RQ2: How does training on mixed synthetic and real data affect the detection per-
formance of occluded sheep?

Some indications suggest that training on mixed data of real and synthetic
occluded sheep enhances the performance of the models. However, these are only
indications from a small dataset. It must be tested on a dataset with more instances
of all occluded classes to conclude anything with certainty.

RQ3: How does fine-tuning compare to mixed training performance for predicting
occluded sheep?

Training the models from scratch on synthetic data before fine-tuning them on
real data shows some potential. However, the results from these experiments do
not have all the necessary data for training to display its full potential. Generating
more synthetic images would probably produce better results.

69

70 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

Goal: Improve detection of partially occluded sheep by training YOLOv7 on real and
synthetic data generated with Unity Perception

Based on the results of the research questions in this thesis, using Unity Percep-
tion to produce synthetic images is a viable approach to supply the sheep dataset
with instances of occluded sheep. Models using the updated dataset show some
indications of enhanced performance but need to be tested on a dataset with more
examples of real occluded sheep to determine its effect with certainty.

8.2 Future Work

The use of synthetic images to enhance the performance of camera-equipped UAVs
for sheep roundup has shown potential, but there are more options for future
work. These suggestions are based on work that could not be included due to
limited time, work that could be improved upon further, or options discovered
while working on the thesis.

Utilze GANs for Synthetic Data Generation

As mentioned in Section 4.6.1, the possibility of utilising GANs has much poten-
tial for generating synthetic data for training object detection models [27][26].
The most imposing threat to utilising GANs is the lack of real data in the existing
dataset, as the network requires a lot of data for learning and generating good ex-
amples for training a model. Because of this, it is advised to capture more images
for potential future work on the application of camera-equipped UAVs in finding
sheep. Without further expansion of the dataset, increasing the value of the object
detector models might be challenging. With an expanded dataset, GANs can be
explored to expand the synthetic dataset further.

Extend Use of Unity for Synthetic Data Generation

As shown in this thesis and other related work [13][24], using Unity and Unity
Perception data is a viable option for generating synthetic data for training object
detection models. This work can be elaborated on further. As shown by Oksuz et
al. [14], Seib et al. [23], and Wang et al. [26], using synthetic data for providing
underrepresented classes in imbalanced datasets can be experimented on further.
Focusing more on the black and brown sheep, both occluded and non-occluded,
can make the dataset more balanced. Devoting more time to generate synthetic
data in Unity with these classes will potentially be of value to the application of
finding sheep. The landscape created in Unity might also be further developed
by creating a more realistic-looking landscape with more variation in the appear-
ance of the occluded sheep. The algorithm generating occluded sheep could also
be improved, as the sheep placement is confined to a smaller area in the image, re-
ducing the potential variation and randomisation. Creating more varied instances
of occluded sheep might potentially increase the value of the synthetic images.

Chapter 8: Conclusion 71

Optimise UAVs Flight Altitude

Using a generated scene in Unity, optimising the flight height for the UAV is pos-
sible. Exploring sheep’s optimal height and size in the images and optimising the
area covered by the UAV’s camera can be of value. It could optimise the time spent
flying the drone and improve the object detector’s accuracy.

Explore Alternative Object Detector Algorithms

As mentioned in Section 2.5, CompositionalNet is introduced to detect better
and classify occluded objects and found through experiments that it does detect
and classifies vehicles signify better than standard DCNNs. It would be interesting
to see if this method could be successfully implemented to detect and classify
occluded sheep.

During the writing of this thesis, two newer versions of YOLO have been re-
leased. YOLOv6 v3.0 and YOLOv8. Both versions claim to achieve a higher and
faster mAP score on the COCO dataset than YOLOv7. This makes the new models
also likely to detect sheep and occluded sheep better.

YOLO algorithms are single-stage object detection algorithms that prioritise
speed for accuracy, making them optimal for real-time detection. However, if real-
time detection is not a critical requirement, it would be interesting to use two-
stage object detection algorithms that could achieve higher accuracy and see how
it performs at detecting occluded sheep.

Bibliography

[1] Beitebruk og seterdrift, no, May 2021. [Online]. Available: https://www.
ssb.no/jord-skog-jakt-og-fiskeri/artikler-og-publikasjoner/
beitebruk-og-seterdrift (visited on 18/02/2023).

[2] S.-O. Hvasshovd, Droner og Sau og litt til !! Anvendelser og Muligheter, 2017.
[Online]. Available: https://www.statsforvalteren.no/contentassets/
cbf122460efa4e37a051c17c07fade0d/droner-buskerud-2017.pdf (vis-
ited on 19/02/2023).

[3] Tap av sau på beite, nb-NO, 2022. [Online]. Available: https : / / www .
dyrebeskyttelsen.no/tap-sau-pa-beite/ (visited on 19/02/2023).

[4] Gjetargut. [Online]. Available: https://gjetargut.no/ (visited on 21/02/2023).

[5] Findmy | GPS Sporing av husdyr på utmarksbeite. [Online]. Available: https:
//findmy.no/no/agtech (visited on 21/02/2023).

[6] Telespor, nb-NO. [Online]. Available: http://www.telespor.no/ (visited
on 21/02/2023).

[7] Nyhet! Smartbjella 2 - opptil 10år batteri*, nb-NO. [Online]. Available: https:
//smartbjella.no/ (visited on 22/02/2023).

[8] K. M. Johannessen, ‘Towards Improved Sheep Roundup - Using Deep Learning-
Based Detection on MultiChannel RGB and Infrared UAV Imagery,’ en, Ac-
cepted: 2021-09-20T16:04:51Z, M.S. thesis, NTNU, 2020. [Online]. Avail-
able: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2779322
(visited on 15/11/2022).

[9] H. Sørensen Bøckman, ‘Locating sheep in the highlands with aerial footage
and a lightweight algorithm system.,’ eng, Accepted: 2022-03-12T18:19:45Z,
M.S. thesis, NTNU, 2021. [Online]. Available: https://ntnuopen.ntnu.
no/ntnu-xmlui/handle/11250/2984882 (visited on 14/03/2023).

[10] J. H. Muribø, ‘Locating Sheep with YOLOv3,’ eng, Accepted: 2019-09-26T14:05:52Z,
M.S. thesis, NTNU, 2019. [Online]. Available: https://ntnuopen.ntnu.
no/ntnu-xmlui/handle/11250/2619041 (visited on 21/02/2023).

73

74 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

[11] I. Nygård and S. Vittersø, ‘Improved Sheep Detection - Modifying YOLOv5
to accurately detect grazing sheep in UAV imagery,’ eng, Accepted: 2022-
12-22T18:19:32Z, M.S. thesis, NTNU, 2022. [Online]. Available: https:
//ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3039298 (visited on
14/03/2023).

[12] J. Kim, S. Kim, C. Ju and H. I. Son, ‘Unmanned Aerial Vehicles in Agricul-
ture: A Review of Perspective of Platform, Control, and Applications,’ IEEE
Access, vol. 7, pp. 105 100–105 115, 2019, Conference Name: IEEE Access,
ISSN: 2169-3536. DOI: 10.1109/ACCESS.2019.2932119.

[13] B. Østtveit, ‘Using synthetic data to improve the detection of sheep in drone
images,’ eng, Accepted: 2022-10-07T17:31:39Z, M.S. thesis, NTNU, 2022.
[Online]. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/
11250/3024704 (visited on 15/11/2022).

[14] K. Oksuz, B. C. Cam, S. Kalkan and E. Akbas, Imbalance Problems in Ob-
ject Detection: A Review, en, arXiv:1909.00169 [cs], Mar. 2020. [Online].
Available: http://arxiv.org/abs/1909.00169 (visited on 05/03/2023).

[15] B. Vanherle, S. Moonen, F. Van Reeth and N. Michiels, Analysis of Training
Object Detection Models with Synthetic Data, arXiv:2211.16066 [cs], Nov.
2022. DOI: 10.48550/arXiv.2211.16066. [Online]. Available: http://
arxiv.org/abs/2211.16066 (visited on 01/03/2023).

[16] K. Saleh, S. Szénási and Z. Vámossy, ‘Occlusion Handling in Generic Object
Detection: A Review,’ in 2021 IEEE 19th World Symposium on Applied Ma-
chine Intelligence and Informatics (SAMI), Jan. 2021, pp. 000 477–000 484.
DOI: 10.1109/SAMI50585.2021.9378657. (visited on 03/03/2023).

[17] O. K. Furseth and A. O. Granås, ‘Real-time Sheep Detection - Improving
Retrieval of Free-ranging Sheep Using Deep Learning-based Detection on
Drone Imagery Running on Mobile Devices,’ eng, Accepted: 2021-12-15T18:19:55Z,
M.S. thesis, NTNU, 2021. [Online]. Available: https://ntnuopen.ntnu.
no/ntnu-xmlui/handle/11250/2834578 (visited on 08/11/2022).

[18] H. Stemshaug, ‘Impact of Low Resolution IR Images in Drone Based Sheep
Detection,’ eng, Accepted: 2022-10-18T17:20:52Z, M.S. thesis, NTNU, 2022.
[Online]. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/
11250/3026821 (visited on 15/11/2022).

[19] T. Vucic and C. Axell, ‘Tracking sheep by radio tags and UAV: A field study
of Bluetooth round-trip time ranging and multilateration,’ eng, Accepted:
2022-10-07T17:31:27Z, M.S. thesis, NTNU, 2022. [Online]. Available: https:
//ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3024696 (visited on
14/02/2023).

Bibliography 75

[20] L. Zhang, R. Tanno, M.-C. Xu, C. Jin, J. Jacob, O. Cicarrelli, F. Barkhof
and D. Alexander, ‘Disentangling Human Error from Ground Truth in Seg-
mentation of Medical Images,’ in Advances in Neural Information Processing
Systems, vol. 33, Curran Associates, Inc., 2020, pp. 15 750–15 762. [On-
line]. Available: https://proceedings.neurips.cc/paper/2020/hash/
b5d17ed2b502da15aa727af0d51508d6-Abstract.html (visited on 22/04/2023).

[21] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba and P. Abbeel, ‘Domain
randomization for transferring deep neural networks from simulation to
the real world,’ in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), ISSN: 2153-0866, Sep. 2017, pp. 23–30. DOI:
10.1109/IROS.2017.8202133. (visited on 01/04/2023).

[22] P. De Roovere, S. Moonen, N. Michiels and F. Wyffels, Dataset of Industrial
Metal Objects, arXiv:2208.04052 [cs], Aug. 2022. DOI: 10.48550/arXiv.
2208.04052. [Online]. Available: http://arxiv.org/abs/2208.04052
(visited on 31/05/2023).

[23] V. Seib, B. Lange and S. Wirtz, Mixing Real and Synthetic Data to Enhance
Neural Network Training – A Review of Current Approaches, arXiv:2007.08781
[cs], Jul. 2020. DOI: 10.48550/arXiv.2007.08781. [Online]. Available:
http://arxiv.org/abs/2007.08781 (visited on 03/04/2023).

[24] S. Borkman, A. Crespi, S. Dhakad, S. Ganguly, J. Hogins, Y.-C. Jhang, M.
Kamalzadeh, B. Li, S. Leal, P. Parisi, C. Romero, W. Smith, A. Thaman, S.
Warren and N. Yadav, Unity Perception: Generate Synthetic Data for Com-
puter Vision, arXiv:2107.04259 [cs], Jul. 2021. DOI: 10.48550/arXiv.
2107.04259. [Online]. Available: http://arxiv.org/abs/2107.04259
(visited on 02/03/2023).

[25] T. Agrawal, Imbalanced Data in Object Detection Computer Vision Projects,
en-US, Jul. 2022. [Online]. Available: https://neptune.ai/blog/imbalanced-
data-in-object-detection-computer-vision (visited on 31/03/2023).

[26] X. Wang, A. Shrivastava and A. Gupta, A-Fast-RCNN: Hard Positive Gen-
eration via Adversary for Object Detection, en, arXiv:1704.03414 [cs], Apr.
2017. [Online]. Available: http://arxiv.org/abs/1704.03414 (visited
on 06/04/2023).

[27] A. Kortylewski, Q. Liu, A. Wang, Y. Sun and A. Yuille, Compositional Con-
volutional Neural Networks: A Robust and Interpretable Model for Object Re-
cognition under Occlusion, en, arXiv:2006.15538 [cs], Jun. 2020. [Online].
Available: http://arxiv.org/abs/2006.15538 (visited on 03/04/2023).

[28] N. K. A. REDAKTØR, Hvor plagsomt er det for sauen å gå med ei bjelle rundt
halsen hele sommeren? no, Section: naturvitenskap, Jul. 2019. [Online].
Available: https://forskning.no/dyreverden-husdyr-landbruk/hvor-
plagsomt-er-det-for-sauen-a-ga-med-ei-bjelle-rundt-halsen-
hele-sommeren/1360767 (visited on 14/03/2023).

76 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

[29] Nofence - Verdens første virtuelle gjerder for beitedyr, no. [Online]. Available:
https://www.nofence.no (visited on 01/03/2023).

[30] J. R. E. Johanssen and K. Sørheim, ‘Sau - Atferd og velferd hos sau,’ no,
Norsk senter for økologisk landbruk, Tingvoll, Report, Oct. 2018, ISBN:
9788282020657, pp. 1–6. [Online]. Available: https://orgprints.org/
id/eprint/33947/ (visited on 27/04/2023).

[31] NIBIO Driftsgranskingane i jord- og skogbruk - Hovudtabellar. [Online]. Avail-
able: https://driftsgranskingane.nibio.no/drgr/hovudtabellar/
?vis=htab&tabell_id=52&aar=2021&lang=BM (visited on 09/03/2023).

[32] DJI Mavic 3 Enterprise (Worry-Free Basic Combo), no. [Online]. Available:
https://djioslo.no/produkt/enterprise/dji-mavic-3e/ (visited on
28/02/2023).

[33] Z. Zou, K. Chen, Z. Shi, Y. Guo and J. Ye, ‘Object Detection in 20 Years: A
Survey,’ Proceedings of the IEEE, vol. 111, no. 3, pp. 257–276, Mar. 2023,
Conference Name: Proceedings of the IEEE, ISSN: 1558-2256. DOI: 10.
1109/JPROC.2023.3238524.

[34] G. Boesch, Object Detection in 2023: The Definitive Guide, en-US, Feb. 2023.
[Online]. Available: https://viso.ai/deep-learning/object-detection/
(visited on 31/05/2023).

[35] R. Szeliski, Computer Vision: Algorithms and Applications (Texts in Com-
puter Science), en. Cham: Springer International Publishing, 2022, ISBN:
978-3-030-34372-9. DOI: 10.1007/978-3-030-34372-9. [Online]. Avail-
able: https://link.springer.com/10.1007/978-3-030-34372-9 (visited
on 12/05/2023).

[36] A. Neubeck and L. Van Gool, ‘Efficient Non-Maximum Suppression,’ in 18th
International Conference on Pattern Recognition (ICPR’06), ISSN: 1051-4651,
vol. 3, Aug. 2006, pp. 850–855. DOI: 10.1109/ICPR.2006.479.

[37] P. Huilgol, Precision and Recall | Essential Metrics for Data Analysis (Updated
2023), en, Sep. 2020. [Online]. Available: https://www.analyticsvidhya.
com/blog/2020/09/precision-recall-machine-learning/ (visited on
13/04/2023).

[38] F-Score, May 2019. [Online]. Available: https://deepai.org/machine-
learning-glossary-and-terms/f-score (visited on 19/05/2023).

[39] J. Czakon, F1 Score vs ROC AUC vs Accuracy vs PR AUC: Which Evaluation
Metric Should You Choose? en-US, Jul. 2022. [Online]. Available: https:
//neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc (visited on
01/06/2023).

Bibliography 77

[40] Z. Zhang, ‘Artificial Neural Network,’ en, in Multivariate Time Series Ana-
lysis in Climate and Environmental Research, Z. Zhang, Ed., Cham: Springer
International Publishing, 2018, pp. 1–35, ISBN: 978-3-319-67340-0. DOI:
10.1007/978-3-319-67340-0_1. [Online]. Available: https://doi.org/
10.1007/978-3-319-67340-0_1 (visited on 22/11/2022).

[41] B. Liquet, S. Moka and Y. Nazarathy, 4 General Fully Connected Neural Net-
works | The Mathematical Engineering of Deep Learning. [Online]. Available:
https://deeplearningmath.org (visited on 18/04/2023).

[42] A. Krogh, ‘What are artificial neural networks?’ en, Nature Biotechnology,
vol. 26, no. 2, pp. 195–197, Feb. 2008, Number: 2 Publisher: Nature Pub-
lishing Group, ISSN: 1546-1696. DOI: 10.1038/nbt1386. [Online]. Avail-
able: https://www.nature.com/articles/nbt1386 (visited on 09/11/2022).

[43] Z. Brodtman, The Importance and Reasoning behind Activation Functions, en,
Nov. 2021. [Online]. Available: https://towardsdatascience.com/the-
importance-and-reasoning-behind-activation-functions-4dc00e74db41
(visited on 27/04/2023).

[44] Neural Networks and Machine Learning : Networks Course blog for INFO
2040/CS 2850/Econ 2040/SOC 2090, en, sv. [Online]. Available: https:
//blogs.cornell.edu/info2040/2015/09/08/neural-networks-and-
machine-learning/ (visited on 01/06/2023).

[45] W. Zhiqiang and L. Jun, ‘A review of object detection based on convolu-
tional neural network,’ in 2017 36th Chinese Control Conference (CCC),
ISSN: 1934-1768, Jul. 2017, pp. 11 104–11 109. DOI: 10.23919/ChiCC.
2017.8029130.

[46] S. Saha, A Comprehensive Guide to Convolutional Neural Networks — the
ELI5 way, en, Nov. 2022. [Online]. Available: https://towardsdatascience.
com/a-comprehensive-guide-to-convolutional-neural-networks-
the-eli5-way-3bd2b1164a53 (visited on 21/05/2023).

[47] D. Scherer, A. Müller and S. Behnke, ‘Evaluation of Pooling Operations in
Convolutional Architectures for Object Recognition,’ en, in Artificial Neural
Networks – ICANN 2010, K. Diamantaras, W. Duch and L. S. Iliadis, Eds.,
ser. Lecture Notes in Computer Science, Berlin, Heidelberg: Springer, 2010,
pp. 92–101, ISBN: 978-3-642-15825-4. DOI: 10.1007/978-3-642-15825-
4_10.

[48] M. Basavarajaiah, Which pooling method is better? Maxpooling vs minpooling
vs average pooling, en, Aug. 2019. [Online]. Available: https://medium.
com/@bdhuma/which- pooling- method- is- better- maxpooling- vs-
minpooling-vs-average-pooling-95fb03f45a9 (visited on 19/05/2023).

[49] C.-Y. Wang, A. Bochkovskiy and H.-Y. M. Liao, YOLOv7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors, arXiv:2207.02696
[cs], Jul. 2022. DOI: 10.48550/arXiv.2207.02696. [Online]. Available:
http://arxiv.org/abs/2207.02696 (visited on 11/02/2023).

78 J. Borander and S. Langaard: Synthetic Data for Occluded Sheep Detection

[50] M. Carranza-García, J. Torres-Mateo, P. Lara-Benítez and J. García-Gutiérrez,
‘On the Performance of One-Stage and Two-Stage Object Detectors in Autonom-
ous Vehicles Using Camera Data,’ en, Remote Sensing, vol. 13, no. 1, p. 89,
Jan. 2021, Number: 1 Publisher: Multidisciplinary Digital Publishing In-
stitute, ISSN: 2072-4292. DOI: 10.3390/rs13010089. [Online]. Available:
https://www.mdpi.com/2072-4292/13/1/89 (visited on 20/05/2023).

[51] P. Soviany and R. T. Ionescu, Optimizing the Trade-off between Single-Stage
and Two-Stage Object Detectors using Image Difficulty Prediction, arXiv:1803.08707
[cs], Aug. 2018. [Online]. Available: http://arxiv.org/abs/1803.08707
(visited on 20/05/2023).

[52] J. Terven and D. Cordova-Esparza, A Comprehensive Review of YOLO: From
YOLOv1 to YOLOv8 and Beyond, arXiv:2304.00501 [cs], Apr. 2023. DOI:
10.48550/arXiv.2304.00501. [Online]. Available: http://arxiv.org/
abs/2304.00501 (visited on 24/04/2023).

[53] J. Hui, Real-time Object Detection with YOLO, YOLOv2 and now YOLOv3,
en, Sep. 2022. [Online]. Available: https://jonathan-hui.medium.com/
real-time-object-detection-with-yolo-yolov2-28b1b93e2088 (vis-
ited on 01/06/2023).

[54] Crypto1, How Does the Gradient Descent Algorithm Work in Machine Learn-
ing? en, Oct. 2020. [Online]. Available: https://www.analyticsvidhya.
com/blog/2020/10/how- does- the- gradient- descent- algorithm-
work-in-machine-learning/ (visited on 21/04/2023).

[55] M. Alloghani, D. Al-Jumeily Obe, J. Mustafina, A. Hussain and A. Aljaaf, ‘A
Systematic Review on Supervised and Unsupervised Machine Learning Al-
gorithms for Data Science,’ in Jan. 2020, pp. 3–21, ISBN: 978-3-030-22474-
5. DOI: 10.1007/978-3-030-22475-2_1.

[56] Fine Tuning YOLOv7 - Custom Object Detection Training, en-US, Aug. 2022.
[Online]. Available: https://learnopencv.com/fine-tuning-yolov7-
on-custom-dataset/ (visited on 23/04/2023).

[57] A. Bronshtein, Train/Test Split and Cross Validation in Python, en, Mar.
2020. [Online]. Available: https://towardsdatascience.com/train-
test-split-and-cross-validation-in-python-80b61beca4b6 (visited
on 12/05/2023).

[58] Train Test Validation Split: How To & Best Practices [2023], en. [Online].
Available: https://www.v7labs.com/blog/train-validation-test-
set,%20https://www.v7labs.com/blog/train-validation-test-set
(visited on 13/05/2023).

[59] COCO - Common Objects in Context. [Online]. Available: https://cocodataset.
org/#home (visited on 02/05/2023).

[60] The PASCAL Visual Object Classes Homepage. [Online]. Available: http://
host.robots.ox.ac.uk/pascal/VOC/ (visited on 07/05/2023).

Bibliography 79

[61] Unity Real-Time Development Platform | 3D, 2D, VR & AR Engine, en. [On-
line]. Available: https://unity.com (visited on 25/04/2023).

[62] Denis Pahunov / MapMagic World Generator · GitLab, en. [Online]. Avail-
able: https://gitlab.com/denispahunov/mapmagic (visited on 27/04/2023).

[63] HDRP Oak Tree | 3D | Unity Asset Store, en. [Online]. Available: https:
//assetstore.unity.com/packages/3d/hdrp-oak-tree-214007 (visited
on 11/05/2023).

[64] HDRP Pine Tree | 3D Trees | Unity Asset Store, en. [Online]. Available:
https://assetstore.unity.com/packages/3d/vegetation/trees/
hdrp-pine-tree-214095 (visited on 11/05/2023).

[65] SHEEP | Characters | Unity Asset Store, en. [Online]. Available: https:
//assetstore.unity.com/packages/3d/characters/animals/mammals/
sheep-5012 (visited on 11/05/2023).

[66] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville and Y. Bengio, Generative Adversarial Networks, arXiv:1406.2661
[cs, stat], Jun. 2014. DOI: 10.48550/arXiv.1406.2661. [Online]. Avail-
able: http://arxiv.org/abs/1406.2661 (visited on 19/05/2023).

[67] J. Brownlee, A Gentle Introduction to Generative Adversarial Networks (GANs),
en-US, Jun. 2019. [Online]. Available: https://machinelearningmastery.
com/what-are-generative-adversarial-networks-gans/ (visited on
20/05/2023).

[68] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen and T. Aila, Analyzing
and Improving the Image Quality of StyleGAN, en, arXiv:1912.04958 [cs,
eess, stat], Mar. 2020. [Online]. Available: http://arxiv.org/abs/1912.
04958 (visited on 19/05/2023).

[69] F. E. Nowruzi, P. Kapoor, D. Kolhatkar, F. A. Hassanat, R. Laganiere and J.
Rebut, How much real data do we actually need: Analyzing object detection
performance using synthetic and real data, arXiv:1907.07061 [cs], Jul. 2019.
DOI: 10.48550/arXiv.1907.07061. [Online]. Available: http://arxiv.
org/abs/1907.07061 (visited on 28/03/2023).

Appendix A

Dataset and Code Repository

Project for generating synthetic images in Unity Perception:

• https://github.com/Borern/master-unity

Synthetic and real image sheep dataset:

• https://www.kaggle.com/datasets/sindrelangaard/uav-sheep-dataset

81

