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Abstract

This thesis examines the inclination to report changes among individuals with autistic traits,

psychotic traits, or both. The study investigates whether these individuals have a propensity to

report changes when there is less substantial evidence for such changes.

We consider a change-point detection task called the “bunny task”. Participants of this task were

asked to report when they perceived changes to underlying properties. A Bayesian observer

model is constructed to calculate change probabilities, which are probabilities of a change hap-

pening at each instance a participant makes a decision in the bunny task. Autistic and psychotic

traits in the participants are assessed using an abbreviated version of the Autism-Spectrum Quo-

tient (AQ) and the positive subscale of Community Assessment of Psychic Experiences (CAPEp)

scores, respectively. Two analytical approaches are employed. The first is a group-based com-

parison based on AQ and CAPEp cut-off scores, and the second is analyzing a generalized mixed

model with AQ and CAPEp scores as covariates.

In our group-based analysis, we discovered significantly higher change probabilities when a

change was reported in individuals with AQ scores above and CAPEp scores below the cut-off,

contradicting our initial hypothesis. Through fitting logit models to each participant, we found

a significant correlation between the choice of reporting change or not and the correspond-

ing change log odds. The change log odds effects were significantly lower in groups with high

CAPEp scores than in the control group. Furthermore, high CAPEp score groups tended to report

changes more when change probabilities were low. However, the group consisting of people

with AQ above and CAPEp below the cut-off scores was found to generally underreport changes

according to the fitted models.

In the generalized mixed model analysis, increasing AQ and CAPEp scores were associated with

a decreased effect of change log odds. Higher CAPEp scores correlated with a higher tendency

to infer changes at low change probabilities while elevating AQ scores did not reflect a similar

trend.

These findings suggest that individuals with psychotic traits are more likely to infer changes with

less evidence, unlike those with autistic traits who appeared to underreport changes.
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Sammendrag

Denne masteroppgaven undersøker tilbøyeligheten til å rapportere endringer blant individer

med autistiske trekk, psykotiske trekk, eller begge deler. Studien undersøker om disse indivi-

dene har en tendens til å rapportere endringer når det er mindre tydelige indikasjoner på slike

endringer.

En oppgave kalt “kaninoppgaven” blir brukt for å vurdere beslutningstakingen til folk med autis-

tiske og psykotiske trekk. Deltakerne i denne oppgaven ble bedt om å rapportere når de opp-

fattet endringer i underliggende variabler. Vi konstruerer en bayesiansk modell for å beregne

sannsynlighetene for at en endring har forekommet hver gang en deltaker tar en avgjørelse i

kaninoppgaven. Autistiske og psykotiske trekk hos deltakerne blir vurdert ved hjelp av hen-

holdsvis en forkortet versjon av Autism-Spectrum Quotient (AQ) og den positive subskalaen av

Community Assessment of Psychic Experiences (CAPEp). To analytiske tilnærminger ble benyt-

tet. Den første tilnærmingen innebærer å dele inn deltakerne i grupper basert på AQ- og CAPEp-

verdiene, og den andre var å analysere en generalisert mikset modell med AQ- og CAPEp-scorer

som kovariater.

I vår gruppebaserte analyse oppdaget vi betydelig høyere sannsynlighet for endring de gangene

en endring ble rapportert hos individer med høye AQ-verdier og lave CAPEp-verdier, som mot-

strider vår opprinnelige hypotese. Ved å tilpasse logitmodeller for hver deltaker, fant vi en be-

tydelig korrelasjon mellom valget om å rapportere en endring eller ikke og de tilhørende log

odds for at en endring hadde skjedd. Effektene av log odds var betydelig lavere i grupper med

høye CAPEp-verdier enn i kontrollgruppen. Videre hadde grupper med høy CAPEp-verdier en

tendens til å rapportere endringer hyppigere når sannsynligheten for endring var lave. Imidler-

tid ble gruppen bestående av mennesker med høye AQ-verdier og lave CAPEp-verdier generelt

estimert til å under-rapportere endringer ifølge til de tilpassede modellene.

I analysen av den generaliserte miksede modellen var økte AQ- og CAPEp-score forbundet med

en redusert effekt av log odds for endring. Høyere CAPEp-score korrelerte med en høyere ten-

dens til å tolke endringer ved lave sannsynligheter for endring, mens en økt AQ-score ikke viste

en lignende trend.

iii



Disse funnene antyder at individer med psykotiske trekk er mer tilbøyelige til å tolke endringer

når det var lite som tydet på at en endring hadde skjedd ifølge den bayesianske modellen, i

motsetning til de med autistiske trekk som generelt underrapportere endringer.
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1 | Introduction

When people make decisions in everyday life, they often base them on learned experience, and

this learned experience is constantly informed by observations made in the decision-making

environment. Usually, incomplete information available to the decision maker results in un-

certainty and variability in the observations. This variability can occur even in a stable and

persistent environment. In this type of environment, the underlying statistical relationships

are stable, but there is still variability in the observations. For example, consider observations

from a normal distribution with a certain mean and variance. Observations drawn from this

distribution will vary even though all observations are from the same distribution. Sometimes,

observations from this distribution could be outliers and lie in another area than the observa-

tions from the same distribution. In that case, no fundamental change has happened, and the

observation is from the same distribution as the previous observations. Other times, this unex-

pected observation may be due to a fundamental change in the environment, for example, that

the observation is from another distribution than the previous observations. This could be a

normal distribution with a different mean. Observations from this new distribution could also

be within the same area as the previous observations from the first distribution, so even though

the observation is not unexpected, there could be a fundamental change in the environment. In

such a dynamic environment with natural randomness and where changes to underlying vari-

ables can occur, it could be challenging to have accurate beliefs of the variables relevant to the

decision-making. In particular, it can be hard to distinguish between changes due to natural

variability and actual changes to the underlying properties in the environment. When a funda-

mental change has happened, previous observations can also give imprecise information about

the current state.

A topic of interest in psychology is investigating individuals’ tendency to infer change in such

environments. Some people might need more substantial evidence to be convinced that a

change has happened. Others might be more easily convinced that a change has occurred with-

out as large deviations from previous observations. The tendency to infer changes more fre-

quently has been linked to different personality traits. Psychotic and autistic personality traits
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are of particular interest in this context. It has been theorized that people with psychotic traits,

autistic traits, or both differ in how they infer change compared to the general populace.

People with psychotic traits perceive their surroundings differently from others. These traits

are found in individuals who have psychotic disorders or who experience psychosis-like symp-

toms. Psychotic disorders can include schizophrenia, delusional disorders, or toxic psychosis.

According to Lieberman and First [2018], a symptom that is common for all psychotic disor-

ders is delusions. According to Kiran and Chaudhury [2009], delusions are defined as beliefs

that are firmly held even though evidence contradicting the beliefs is presented. Another com-

mon symptom of psychotic disorders is hallucinations, meaning experiencing sensations such

as hearing, seeing, or tasting things that are not real. According to Capra et al. [2013], psychotic

traits can also include grandiosity and bizarre experiences.

The two main symptoms that characterize autism spectrum disorder (ASD) are social communi-

cation impairments and repetitive behavior. Social communication impairments vary between

different people with ASD. According to Lord et al. [2018], these impairments can include strug-

gles with conversations, deviations in non-verbal communication skills like eye and body con-

tact, and difficulties with social relationships. The symptom of repetitive behavior can refer to

repetitive movements, speech, and use of objects. In addition, it can refer to difficulties in devi-

ating from certain routines, including verbal and nonverbal behavioral routines. Other typical

repetitive behaviors include fixation on specific topics and unusually intense narrow interests.

Furthermore, people with ASD can experience both sensory overload and sensory sensitivity.

It has been theorized that the autistic symptoms sensory overload, sensory sensitivity, and dif-

ficulties handling changing environments can be attributed to a tendency to overestimate pre-

diction errors [Van de Cruys et al., 2014]. This overestimation may cause relatively minor de-

viations from expected outcomes to be interpreted as more substantial outliers. This tendency

is expected to lead to inferring changes to underlying properties more frequently than an aver-

age person. This tendency is also proposed for people with psychotic traits [Fletcher and Frith,

2009]. Individuals with psychotic traits are often prone to perceiving changes in relatively stable

environments, potentially leading to symptoms of delusions and hallucinations. There is some

evidence that people with sub-tendencies to psychosis are related to more frequently inferring
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changes in the environment [Kreis et al., 2020]. Results from studies of individuals with a risk for

psychosis indicate similar tendencies [Cole et al., 2020]. However, these findings are contested

as other studies have produced contradicting results [Powers et al., 2017]. Similarly, there exist

studies that indicate that people with autistic traits tend to infer environmental changes more

easily [Karvelis et al., 2018], [Nassar and Troiani, 2021]. These results are also mixed as other

studies find no link between autistic traits and more frequent reporting of changes [Goris et al.,

2021].

Differences in how people infer changes can be investigated through controlled experiments

where people are asked to decide whether a change has happened based on their observations.

This thesis considers a particular task called “the bunny task”. This is a digital change-point

detection task which includes both variability in the observations and changes to the underly-

ing properties. The task of the participants are to differentiate between noise and fundamental

changes. The bunny task is similar to the example already mentioned at the beginning of this

section, where observations are drawn from a normal distribution. The participants of the ex-

periment observe one bunny at a time. The bunny walks from the center of a circle in a par-

ticular direction. The direction in which the bunny walks in is drawn from a normal distribu-

tion. After a certain number of observations from one normal distribution, a certain number

of observations are drawn from another normal distribution where the mean is changed and

the variance is the same. Bunnies with walking directions drawn from the new distribution are

considered to be part of a new family. After a certain number of observations from this family,

walking directions drawn from a new normal distribution with a new mean value and the same

variance appear. This repeats until all observations from all families are made. How much the

mean value changes from the previous family to a new family is the same each time the family

changes. Each time a new bunny is observed, the task participants have to classify the bunny

into the family they think it is part of. As each new bunny is observed, the participants must

decide if it belongs to a new family, as compared to the family the preceding bunnies were clas-

sified into. These decisions of whether a change had occurred or are of particular interest when

assessing the participants’ tendency to infer changes, and we refer to them as change choices.

The bunny task is described in more detail in Section 2.1.

3



1.1 The problem of interest

Professors at NTNU, Gerit Pfuhl and Robert Biegler, have previously worked with and analyzed

the bunny task, and the problem this thesis addresses has been formulated in collaboration with

them. The objective of this thesis is to investigate whether individuals with autistic and/or psy-

chotic traits exhibit different tendencies in inferring changes as compared to the general popu-

lace. We plan to analyze decisions made during the bunny task, utilizing statistical analyses and

modeling to examine the relationship between these traits and the tendency to infer change.

We are generally interested in any findings that could shed light on how individuals with autistic

and/or psychotic traits infer changes. Part of our analysis involves examining any general differ-

ences in decision-making between these individuals and healthy controls. However, the main

hypothesis we intend to investigate is that people with psychotic and/or autistic traits have a

propensity to infer changes, and in this thesis we want to investigate whether people with these

traits tend to report changes when there is less substantial evidence for a change.

After completing the Bunny Task, participants take a personality test measuring autistic and

psychotic traits. Autistic traits are measured by a shortened version of the Autism Spectrum

Quotient called AQ-shorts. Psychotic traits were measured by the positive subscale of the Com-

munity Assessment of Psychic Experiences scale(CAPEp). Every participant ends up with an AQ

score and a CAPEp score. Using these scores, we sort participants into groups. Those scoring

below specific cut-off values for AQ and CAPEp form the control group. Moreover, we have three

study groups of people who score above the cut-off for either AQ, CAPEp, or both.

We want to explore under what conditions these study groups report changes in the Bunny Task.

To do this, we aim to construct a Bayesian observer model. This model aims to estimate the

probabilities of different outcomes in the Bunny Task based on what the participant observes

each time they make a decision. We are particularly interested in what we refer to as change

probabilities, which are the probabilities that each bunny belongs to a new family based on the

observations made at the classification point. These probabilities act as a measure to evaluate

the degree of evidence that indicates a change has taken place. Recall that the change choices

were whether changes of families were reported or not during the bunny task. Each change
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choice corresponds to a change probability, which represents the probability that a change truly

happened when they made that particular choice.

We plan to analyze these change probabilities when participants report a family change. If we

find that the change probabilities are lower for the study groups, it could suggest that they re-

port changes with less evidence. Of course, this conclusion assumes that our Bayesian observer

model accurately represents the participants’ perspective on the Bunny Task.

We first want to visually analyze the distribution of change probabilities when a change is re-

ported. Then, we will do some hypothesis tests using permutation tests to see if the differences

we find are statistically significant.

Additionally, we plan to do modeling with the change choices as responses. Our plan includes

fitting a logit model for each participant to examine the correlative relationship between the

change choices and their corresponding change probabilities. This approach will aid in iden-

tifying any potential differences between the control group and the study groups with elevated

AQ and/or CAPEp scores. Moreover, we want to analyze what the fitted model implies about

our primary hypothesis. We, therefore, investigate whether there is any evidence that the study

groups infer changes with less evidence.

The second part of our analysis uses CAPEp and AQ scores as continuous explanatory variables.

We want to see if there is a relationship between these scores and the choices participants make

for different change probabilities. This will be done by fitting a binary random intercept logit

model with a random intercept for each participant. This analysis will help us see if higher AQ

and CAPEp scores generally relate to differences in decision-making. We also examine what the

results tell us about the main hypothesis.
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2 | The bunny task

The bunny task was designed to investigate how much a change in the environment is needed

before the participants report a change. In this section, we explain the bunny task in more detail.

We also describe how the observations in the task were generated. Furthermore, we delve into

the personality test taken by the participants and the methods by which autistic and psychotic

traits are measured. At last, we describe the data consisting of the observations, decisions, and

personality test results for all bunny task participants.

2.1 The task

The bunny task consists of two main blocks. The participants see a circle with a black dot in

its center on the screen. This circle can be seen in Figure 2.1. One bunny appears at the time,

moving from the center of the circle in a straight line to the circle line. The participants are given

instructions before the task begins. They are informed that they will see bunnies move from the

center of the circle in a specific direction to find food. They are also told that bunnies come from

different families. Bunnies from the same family will move from the center of the circle with the

same mean walking direction, but the actual walking directions from the different bunnies in

the same family are spread randomly around the mean. The exact distribution these walking

directions are drawn from is unknown to the participants. The participants can see how the

bunnies from the different families are spread around the same mean in Figure 2.2. This figure

shows the demonstration of the bunny task before the actual task begins. In the actual task,

the bunnies will appear one at a time, and the history of the bunnies is not shown. In Figure

2.2, one color corresponds to one family, and the dotted line shows the mean of the family. The

participants are informed that one family of bunnies leaves the center at the time, which means

that before a bunny from a new family appears, all the bunnies from the previous family appear.

This means the task starts with a certain number of bunnies from the first family appearing,

one at a time. After the last bunny from the first family has appeared, the first bunny from the

second family appears, and after that, a bunny from the first family will never appear again. After
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Figure 2.1: The starting screen of the bunny task.
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Figure 2.2: Demonstration of the bunny task.
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all the bunnies from the second family have appeared, all the bunnies from the third family will

appear. This continues until all the bunnies have left the center of the circle. The participants

are told that the change of mean walking direction from one family to the next is always in the

same direction, but they are not informed exactly how much the mean changes between each

family. If we again look at Figure 2.2, the mean of the first family is the dotted green line, the

mean of the second is the brown dotted line, and the third has the color red. This shows how the

mean changes in the same direction. They are also informed that the number of bunnies in each

family can vary so that the bunnies can not be classified into different families by just counting

them. The task of the participants is to classify the bunnies into families. The first observation

is guaranteed to be from the first family, family 1, so that is the only option. The second bunny

could still be from family 1, but now it is also possible that the bunny is from family 2, so they

have those two options. They answer by pressing the number of the family they think the bunny

comes from on the computer. After having classified bunnies into families for a time, they could

reach family number 10 and above, that is, family numbers with more than one digit. Then, they

only have to press the last digit of the number. If they, for example, think the bunny belongs to

family number 12, they only answer with the last digit, which is 2. After getting the instruction

and before starting on the actual task, the participants have to answer two control questions to

demonstrate that they have understood that the families can come in different sizes and that

they only respond with the last digit if they think the bunny is from a family number with more

than one digit. They are also informed that it is possible to change their mind during the task

and classify a bunny into the family the preceding bunny was classified into. If you, for example,

classified the last bunny into family 3, you can classify the next bunny into family 2. This option

is, however, only available if you have classified 3 or less into the same family in a row. If more

than 3 bunnies have been classified into the same family in a row, you will only have two options,

the latest bunny is either a part of the same family as the previous or the bunny is part of the next

family.

To get a better sense of how the participants do the task, we consider different examples that

show how the bunnies appear on the screen, the different options they are presented with, and

a couple of different scenarios that can play out during the task. Recall the starting screen in

Figure 2.1. To see the direction of the first bunny, the participant has to press space on the

9



(a) The first bunny. (b) The second bunny.

Figure 2.3: The first and second bunny in the bunny task.

computer. In Figure 2.3, we see the two first bunnies appearing. The figure to the left shows

the first bunny. This bunny walks from the circle center to the line in a straight line. The only

option here is family number 1, so they must press 1 and continue with the next bunny. Each

time they want a new bunny to appear, they have to press space. The figure to the right in Figure

2.3 shows the second bunny. This bunny could either be from the same family as the first bunny

or the next family, family number 2. We also see that family 1 and 2 are the only options on the

screen. As earlier stated, the previous observation is not shown, so the participant can not see

directly how this observation compares to the previous observation on the screen. However, the

previous bunny was just shown, so it is reasonable to assume that the participant sees that the

area the new bunny has walked to is very close to the previous one. Therefore the participant

also categorizes this bunny into family number 1. This can be seen in the figure as option 1 is

marked.

Now, assume that the participant has classified several bunnies into family number 1. Most of

the previous bunnies have walked into the same area. A new bunny appears and can be seen to

the left in Figure 2.4. The participant thinks this observation significantly differs from the previ-

ous observations classified into family 1. Therefore, the participant categorizes this bunny into

family 2. The following bunny can be seen to the right in Figure 2.4. The options the participant

can choose between now are family 1, 2, or 3. If the bunny is in family 2 it is in the same family

as the preceding bunny. If it is in family 3, it comes from another new family with a new mean.

10



(a) First reported change. (b) The participant change their mind.

Figure 2.4: The participant reports a change and then change their mind when observing the
next bunny.

Family 1 is also an option since only one observation has been classified into family 2 in a row,

which is below the threshold of 3. The participant notices that the bunny walks into the same

area as the ones classified into family 1. Therefore, the participant wants to change their mind

and classify this new observation as part of family 1. This means that they change their mind

about the previous bunny and think this is also a part of family 1. This is due to the fact that all

the bunnies from a family have to appear before bunnies from the next family appear.

After a couple more bunnies are classified into family 1, a new bunny is shown, and can be seen

to the left in Figure 2.5. This bunny walks in a significantly different direction than the previous

bunnies, and again the participant reports a change to family 2. The next bunnies who appear

after this report of change walk approximately into the same area. Therefore, the participant

sticks to classifying the bunnies into family 2 for over 3 times in a row. Now, the only two options

for the participant are family 2 or 3, and this will be the case until a new change is reported. This

scenario is shown to the right in Figure 2.5.

The task continues until all bunnies have been classified into families. The only restriction on

how often a change can be reported is that at least one bunny must be classified into each family.

If the participant, for example, reports a change in each observation, the family number of the

last observation is the same as the observation number plus one.
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(a) A bunny is classified into family 2.
(b) Example where family 2 and 3 are the only
options.

Figure 2.5: The participant classifies more than 3 bunnies into family 2.

2.2 Generating walking directions and family sizes.

Let d = (d1, . . . ,dno) be the walking directions of all the bunnies in both blocks of the bunny task.

The walking direction di denotes the walking direction of bunny number i . Walking directions

are given in the number of degrees the bunny walks in from the center of the circle. The di-

rections of the bunnies are randomly and independently drawn from normal distributions. Let

us first consider the walking directions drawn from the first family. Let µ be the mean walking

direction of the first family. To generate one walking direction, we start by drawing zi from a

standard normal distribution with mean 0 and variance 1. This is turned into a walking direc-

tion by di = µ+σzi . This means that to generate di by sampling zi from a normal distribution

and transforming it into di is equivalent to generating a sample from a normal distribution with

mean µ and variance σ2.

The standard deviation is σ= 20, and is constant under the whole experiment and the same for

each participant. The mean change between one family and the next is the same each time, and

we denote this change as ∆. To transform a generated sample from a normal distribution to the

walking direction from family number j , the following formula is used

di =µ+ ( j −1) ·∆+σzi , (2.1)

12



for j = 1, . . . . This means that di ∼ N (µ+ ( j − 1) ·∆,σ2). Before the participants begin the two

main blocks of the bunny task, they do the task one round in advance. This is called the titration

block, and is done to determine the fixed number of degrees the mean direction changes with

from one family to the next for one participant. After the titration block, a titration threshold is

decided for the participant, and the value of this threshold is adapted to the decisions made by

the participants in the titration block. The method used was the adaptive staircase procedure

best (PEST) [Lieberman and Pentland, 1982]. The threshold was decided by taking the average

of the last three estimates of PEST. This titration threshold is unknown for the participants, and

is equal to the absolute value of the mean change |∆|. The mean change of the participants is

either clockwise or counterclockwise. If the change is clockwise, we have ∆= |∆|. If the change

is counter-clockwise, we have that the mean change is given by ∆=−|∆|.

After the titration block, the participants go through the two main blocks. In one block, the

mean family size is higher than in the titration round, and this is referred to as the low volatility

block. In the other block, the high volatility block, the mean family size is lower than the mean

in the titration block. The number of bunnies in each block was the same for each participant.

However, the order of the low and high volatility blocks varied among the participants. There

were a total of 25 families in each block, meaning there are 24 points where a change occurs.

The number of bunnies in each family is drawn from truncated log-normal distributions. In

Table 2.1, we see a summary of the different blocks. In the low volatility block, there are, in total

Table 2.1: The family mean, minimum and maximum family sizes in each block of the bunny
task.

Block Mean family size Minimum Maximum Total bunnies
Titration block 9.32 6 14 233
High volatility block 7.08 5 12 177
Low volatility block 12.52 7 19 313

313 bunnies for all participants. Thus, to generate the walking directions in this block, first 313

values from a standard normal distribution is drawn. In the high volatility block, there were in

total 177 bunnies. The total number of bunnies in the two main blocks is therefore no = 490.
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2.3 AQ-short and CAPEp

As mentioned earlier, after the bunny task is completed, the participants do a personality test to

assess to what extent they have autistic and psychotic traits. A condensed version of the Autism

Spectrum Quotient called the AQ-shorts [Hoekstra et al., 2011] was used to assess the degree of

autistic traits in the participants. The AQ is a way to measure autistic traits by self-reporting.

The full version of the test contains 50 items, and you get a score between 0 and 50 based on

the endorsement of each item. According to [Hoekstra et al., 2011], several studies have shown

that AQ is reliable for assessing autistic traits. This includes studies in Japan [Wakabayashi et al.,

2006], the UK [Baron-Cohen et al., 2001], and the Netherlands [Hoekstra et al., 2008], which

have shown that the AQ scores in people with ASC are significantly higher than in the general

population. Furthermore, in [Woodbury-Smith et al., 2005], it was found that using AQ scores

is a reliable measurement to predict the diagnosis of AS. However, in a larger study, like the

study considered in this thesis, the 50 items can be too lengthy. Therefore, the AQ-short, which

consists of 28 items, is used. In [Hoekstra et al., 2011], AQ-short was found to retain the most

important structure of AQ and be a reliable way to measure autistic traits. In each of the 28 items

used in this study, the participants were asked to rate their agreement from 1 = Definitely agree

to 4 = Definitely disagree. Each item can contribute between 1 and 4 points to the total AQ score,

and the maximum score is 112.

The degree of psychotic traits in the participants was measured by using the Community Assess-

ment of Psychic Experiences scale (CAPEp) [Stefanis et al., 2002]. This measurement has been

found to be a reliable way to measure psychotic traits [Núñez et al., 2021]. The participants are

presented with items where they report the frequency of psychotic-like experiences on a scale

from 1 = Never to 4 = Nearly always. The CAPEp has 5 sub-scales, which include hallucinations,

magical thinking, grandiosity, paranoia, and bizarre experiences. After the test, the participants

received a score in each category and an overall score for CAPEp. The overall score is what we

use in further analysis in this thesis. The test consists of a total of 20 items, and as each item can

contribute up to 4 points to the total score, the maximum score is 80. Three control questions

were added to identify people who provided inaccurate or false information about their experi-

ences. The control question included common misconceptions about psychosis, like whether
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they had experienced being a historically famous person. Answering yes to such a question may

indicate that they are lying since this is not an actual symptom of psychosis.

Remember, as a part of the analysis, we plan to categorize individuals into groups based on their

AQ and CAPEp scores and compare the decisions between them. These cut-off points are based

on cut-off scores previously used in similar work. However, it is important to note that cut-off

scores have mainly been used to create visual representations and not in the analysis itself in

previous work with the bunny task. Grouping the individuals in this way, called dichotomizing,

has its drawbacks. One is that the results from this analysis are sensitive to where the cut-off

scores are set. Furthermore, we end up with people who have substantially different scores in

the same group, or people with very similar scores in the same group, depending on which side

of the cut-off they fall. Despite this, we think it is worthwhile to do this analysis as it could give

us insight into whether these cut-off scores are reasonable in this context. Furthermore, recall

that we are going to do an analysis where AQ and CAPEp are considered explanatory variables,

meaning we are investigating how they might influence the participants’ choices of inferring

change in the bunny task. We are interested to see if the findings from the group-based and

variable-based approaches align. Both finding that the results from the different analyses align

or do not align are interesting results. For instance, we might find that those in the group with

CAPEp scores above the cut-off tend to report changes with less evidence compared to the con-

trol group with both CAPEp and AQ scores below the cut-off. Yet, we might not find an overar-

ching relationship between elevated CAPEp scores and the tendency to infer change based on

less evidence. This would mean that the difference is not detectable when considering CAPEp

scores broadly but becomes apparent when focusing on the group with higher CAPEp scores.

Hence, we perform both a group-oriented analysis and an investigation using CAPEp and AQ

as explanatory variables, as both methods can uncover unique insights into how people with

autistic and psychotic traits make decisions.

A cut-off score of 65 was suggested by Hoekstra et al. [2011] specifically for the 28-item AQ-short.

This cut-off score was found to have a sensitivity of 97% and a specificity of 82% for distinguish-

ing individuals with AS from controls. This means that 97% of the people with AS were correctly

classified as such, and 82% of the controls were correctly classified as such using 65 as a cut-off
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score. This cut-off score has also previously been used as a cut-off score in previous work with

the Bunny Task. The group of people with an AQ score higher than 65 is referred to as H-AQ,

while those with an AQ score less than or equal to 65 is referred to as L-AQ. Regarding CAPEp,

a cut-off score of 1.47 was proposed by Bukenaite et al. [2017] for the average CAPE-P15 score,

which is a CAPEp score determined by 15 items. Each item can contribute between 1 and 4

points to the total score, and a score of 1.47 means that the total score divided by the number of

valid answers is 1.47. This cut-off score showed a sensitivity of 77% and a specificity of 58% for

detecting people at ultra-high risk for psychosis (UHR). Previously, an average score of 1.6 has

been employed for the bunny task, which is the cut-off used in this thesis. An average score of

1.6 corresponds to a total score of 1.6·20 = 32. The group of people with an average CAPEp score

below or equal to 32 is called the L-CAPEp group, and the group of people with a score over 32

is referred to as H-CAPEp.

From these scores, we can divide the participants into 4 mutually exclusive groups. The group of

healthy controls is referred to as L-CAPEp & L-AQ group since these people have AQ and CAPE

scores below or equal to the cut-off. The group of people with an CAPEp score over the cut-off

and an AQ below or equal to the cut-off is referred to as the H-CAPEp & L-AQ. The group of

people with a CAPEp below the cut-off and an AQ above the cut-off is called the the L-CAPEp &

H-AQ group. The group with both AQ and CAPEp above the cut-off is referred to as the H-CAPEp

& H-AQ group. Further in this thesis, we refer to groups that are not the control group as the

study groups.

2.4 Data from the bunny task and the personality test

Participants of the bunny task were recruited online. Only adults were allowed to participate

and there were a total of 445 participants. Out of these participants, 106 were excluded, leaving

339 to be the final sample. The reason for the exclusion of certain individuals was to avoid

including people who were not engaged with the task. Some people were excluded since they

had a threshold greater than four times the standard deviation σ= 20, and thus a threshold over

80. Other people were also excluded because of having a threshold lower than 10. Two people

were also excluded because they scored high on the three CAPEp control questions. There were
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Table 2.2: Relevant variables for one participant.

Variable Description
familyNumber The actual family number
bunnyNumber The bunny number within the family

familyNumberIndicated Which family number did the participant indicate

165 females, 167 males, and 7 identifying as non-binary in the final sample. The average age was

28.9(SD = 10.10), where the youngest was 18 and the oldest was 70.

The different choices and observations the participants made during the bunny tasks were col-

lected in CSV-files with one file for each participant. The relevant variables are explained in

Table 2.2. In Table 2.3, an example with the 16 first rows for one participant can be seen. The

participant has ∆= 73.67 as the titration threshold. One row represents one bunny in the data.

The variable familyNumber tells the actual families each bunny was drawn from. The variable

familyNumberIndicated is which family the participant categorized the bunnies into. Note that

the first family is encoded as family 0 for the variable familyNumber, and the first family of the

variable familyNumberIndicated is family 1. Further in this thesis, we refer to the first family as

family 1. The 12 first bunnies are from the first family, then the next four bunnies included are

from the second family. We can see that this particular participant reports a change after ob-

serving the fourth bunny and then change their mind in the following observation. The same

happens in the ninth observation, where the participant reports a change before returning to

the first family in the next observation. After reporting a change in the 13th observation, the

participant sticks with this family for over three bunnies in a row, so it is impossible to return to

the previous family. We notice that the participant starts to consistently report that the bunnies

are from the second family when the bunnies from the second family actually begin to appear.

In this case, the titration threshold is pretty big and just a little smaller than the exclusion criteria

of 80, so there is a pretty big jump in the observed directions from before the change happens to

after the change has happened. Other relevant variables for the analysis are the CAPEp - and AQ

scores from the personality tests of the different participants. In addition, the titration thresh-

old |∆| and which direction it changes are relevant variables. The variables are summarized in

Table 2.4. The data for all the participants are collected in one file, which we can see a subset of

in Table 2.5. There are two rows for each participant that represent the two main blocks of the
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Table 2.3: Relevant data from one participant with ∆=−73.67.

Table 2.4: Relevant variables for the participants.

Variable Description
ID The identification of the participant
CAPEpositive The CAPEp score from the personality test
AQ The AQ score from the personality test

titrationTreshold
The absolute value of the number of degrees the mean
changes with decided by the titration block

directionchanges
The direction in which the mean changes with. Either
counter-clockwise or clockwise

volatilityorder
Whether the high volatility or low volatility block comes
first.
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Table 2.5: Data from the different participants.

bunny task.

The empirical distribution of AQ and CAPEp scores can be seen in Figure 2.6. In the figure, the

mean score is plotted as a red vertical line, while the cut-off scores are plotted as vertical blue

lines. The AQ scores range from a minimum of 43 to a maximum of 93, with an average score of

64.09. Similarly, the CAPEp scores extend from a low of 20 to a high of 58, averaging at 29.68. As

discussed earlier, different groups are decided based on AQ scores and CAPEp scores. In Table

2.6, the sizes of the different groups can be seen.

(a) Distribution of AQ scores. (b) Distribution of CAPEp scores.

Figure 2.6: Distribution of AQ and CAPEp scores with corresponding means and cut-off scores.
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Table 2.6: The number of individuals in the different groups.

L-AQ H-AQ Sum
L-CAPEp L-CAPEp & L-AQ: 140 L-CAPEp & H-AQ: 99 239
H-CAPEp H-CAPEp & L-AQ: 47 H-CAPEp & H-AQ: 53 100
Sum 187 152 339

Figure 2.7: Participant with 89 reported family changes in the first block and 45 changes reported
in block two.

How people solve the task varies a lot. Some people tend to report changes more often and

others tend to report fewer changes. Figure 2.7 shows an example of a participant who reports

many changes. Along the x-axis are the observations numbers. There are in total 490 observa-

tions in the two blocks, and thus the observation number ranges from 1 to 490. The y-axis is the

degrees the bunnies walk in. Each point is a walking direction, and they are ordered the same

way as they appear on the screen. At observation number 314, the second round starts. The par-

ticipant reports 88 changes in the first block, while 45 changes are reported in the second block.

Recall that there are 25 families in both blocks and therefore 24 changes. Thus, this participant

overreports changes. The opposite can be seen in Figure 2.8. Here, the participant reports 6

changes in the first block and 5 changes in the second block, which are few reported changes
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Figure 2.8: Participant with 6 reported family changes in block 1 and 5 reported changes in block
2.

compared to the actual number.

In Figure 2.9, the distribution of the number of changes reported by the participants can be seen.

Both blocks are included. The average number of reported changes for both blocks is 17.9. This

is below the actual number of changes. Thus, on average, people tend to underreport changes.

The figure also shows some outliers in which people overreport a lot.

We want to check whether we see any visual differences in the number of reported changes be-

tween the different groups based on AQ and CAPEp scores. We plot the empirical distribution

of the reported changes in both blocks for each study group, comparing them to the control

group, L-CAPEp & L-AQ. Together with the distribution we plot the mean and median reported

changes as vertical lines, where the blue lines corresponds to the control group and the red lines

corresponds to the study group. We start by comparing the control group with the L-CAPEp &

H-AQ group. The empirical distribution of these two groups can be seen in Figure 2.10. From

this plot, it seems like the individuals in the control group tend to have a higher number of re-

ported changes. The mean number of reported changes is 18.4 for the control group compared
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Figure 2.9: Number of reported family changes for all the participants in both blocks.

to 16.1 for the L-CAPEp & H-AQ group. The median is 14 for the control group and 16 for L-

CAPEP & H-AQ. Now, let us consider the difference between the H-CAPEp & L-AQ group and

the control group. The distribution of the reported changes for these two groups can be seen in

Figure 2.11. We see no clear differences between these two groups. The H-CAPEp & L-CAPEp

group has slightly higher mean reported changes. The median reported changes is 16 for the

control group and 15 for the H-CAPEp & L-CAPEp group.

Finally, we look at the differences between the group with a high degree of both psychotic and

autistic traits, the H-CAPEp & H-AQ group. In Figure 2.12, we can see the distribution of re-

ported changes for this group compared to the control group. We see no apparent visual differ-

ences between those two groups by looking at the plot. However, the mean and median number

of reported changes is notably higher for the H-CAPEp & H-AQ group.

These plots tell something about the general tendency of reporting changes by individuals in the

different groups. In further analysis, we are interested in under what conditions these reported

changes happened. In particular, we are interested in the probability that a change had occurred
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Figure 2.10: Reported changes of the control group and the L-CAPEp & H-AQ group.

Figure 2.11: Reported changes of the control group and the H-CAPEp & L-AQ group.
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Figure 2.12: Reported changes of the control group and the H-CAPEp & H-AQ group.

at the times they reported changes. This is discussed further in Section 5.
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3 | Theory

This section describes the statistical and probability theory needed for the analysis we outlined

in the introduction. Recall that we want to construct a Bayesian observer model for finding the

probability that the last observed bunny is part of the different possible families it can be a part

of, given the observations made. To construct the Bayesian model, the law of total probability

and Bayes´ theorem are central, and they are explained in this section. Furthermore, the basic

concepts and the philosophy of Bayesian statistics are included in this section. We consider an

example related to the bunny task to demonstrate how Bayesian inference is done. The geo-

metric and negative binomial distributions are assumed for two of the model variables in the

Bayesian model, and these distributions are explained in this section. We aim to use the prob-

abilities derived from the Bayesian model to analyze the choices made by the participants. At

each point a new bunny appears, we consider the odds of this bunny being part of a new family

given the observations made. These are the odds we previously referred to as change odds. The

participants have to decide whether the bunny is part of a new family, the same family as the

previous bunny, or, in some cases, whether the bunny is from the family preceding the family

of the previous bunny. We consider this choice as binary, where the choice is either to report

a change of family or not, and we estimate the relationship between this binary change choice

and the change log odds at the point the decision was made. We fit a logit model with the bi-

nary change choices as responses and the corresponding change log odds as covariates. The

logit model is a variant of the generalized linear model (glm), and we give a general explanation

of the glm in this section. We also show how the logit model is a variant of the glm. We want

to investigate whether significant differences exist between the study and control groups given

in Table 2.6. We do permutation tests to do hypothesis testing, and in this section, we explain

permutation tests for one-sided hypotheses.

As previously stated, we also want to fit a binary random intercept logit model with the AQ and

CAPEp scores in addition to change log odds as covariates. This model is a type of generalized

linear mixed model (glmm), and this model type is explained in this section.
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3.1 Law of total probability

The formulation of the law of total probability is based on how it is described by Härdle et al.

[2015]. An understanding of conditional probabilities is needed for formulating the law of total

probability. Let B and C be two events on the sample space S. The conditional probability of B

given C is defined as

P (B |C ) = P (B ∩C )

P (C )
, (3.1)

which means that we have

P (B ∩C ) = P (B |C )P (C ).

This is called the multiplication rule and can according to Härdle et al. [2015] be generalized for

the events A1, . . . , An by

P (A1 ∩·· ·∩ An) = P (A1) ·P (A2|A1) ·P (A3|A2 ∩ A1) · . . . ·P (An |A1 ∩ . . . , An−1).

Assume that we want to find the probability of an event B ⊆ S. Furthermore, let us assume that

P (B |Ai ) and P (Ai ) is known for i = 1, . . . ,n, and that A1, · · ·∩ An is a partition of S defined by

Ai ∩ A j =;,

A1 ∪ A2 ∪·· ·∪ An = S.
(3.2)

The law of total probability states that the probability of the event B is given by

P (B) =
n∑

i=1
P (B ∩ Ai ) =

n∑
i=1

P (B |Ai )P (Ai ). (3.3)

A variant of the law of total probability can also be found for conditional probabilities. Assume

that we want to find the conditional probability of the event B given the event C . Let us consider

P (B ∩C ) =
n∑

i=1
P (B ∩ Ai ∩C ). (3.4)
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By using the product rule for three variables, we get

P (B ∩ Ai ∩C ) = P (C ) ·P (Ai |C ) ·P (B |Ai ∩C ).

Inserting this into (3.4) yields

P (B ∩C ) =
n∑

i=1
P (C ) ·P (Ai |C ) ·P (B |Ai ∩C )

Furthermore, we insert this into (3.1) and get

P (B |C ) =
∑n

i=1 P (C ) ·P (Ai |C ) ·P (B |Ai ∩C )

P (C )
=

n∑
i=1

P (B |Ai ∩C ) ·P (Ai |C ).

The law of total probability can also be formulated when conditioning on events generated by

continuous variables. Again, let us assume we want to find the probability of an event B . Let X

be a continuous random variable with a density function fX . According to [Baclawski, 2008], the

probability of the event B can be found by

P (B) =
∫ ∞

−∞
P (B |X = x) fX (x)d x. (3.5)

Equivalently to when we condition on events generated by discrete variables, we can find the

conditional probability of event B given the event C by condition on an event generated by a

continuous variable X by the formula

P (B |C ) =
∫ ∞

−∞
P (B |X = x,C ) f (x|C )d x. (3.6)

3.2 Bayes´ theorem

Let as in (3.2), the events A1, . . . , An be a partition of the sample space S, and B be an events in

this sample space. Bayes´ theorem is useful for finding the conditional probability of an event

A j for 1 ≤ j ≤ n given B , when the probabilities P (B |Ai ) and P (Ai ) are known for i = 1, . . . ,n. The
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theorem states that this probability is given by

P (A j |B) = P (B |A j )P (A j )

P (B)
. (3.7)

By using the expression for the probability P (B) given in (3.3), we get

P (A j |B) = P (B |A j )P (A j )∑n
i=1 P (B |Ai )P (Ai )

. (3.8)

Let us assume that θ and X are discrete or continuous random variables. A more general formu-

lation of Bayes´ theorem is

f (θ|x) = f (x|θ) f (θ)

f (x)
. (3.9)

The distribution f (x) can be found by the law of total probability. The reason why the notation

f (.) is used here is that the formula is valid for not only events but for continuous and discrete

random variables. If θ is a continuous random variable, we can use the law of total probability

in the continuous case as in (3.5). This yields

f (x) =
∫ ∞

−∞
f (x|θ) f (θ)dθ. (3.10)

3.3 Bayesian statistics

Bayesian statistics is a field within statistics where a probability of an event expresses the degree

of belief in the event occurring. The probabilities are, therefore, subjective beliefs contrary to

the frequentist interpretation of probabilities, where probabilities are interpreted as limits of

relative frequencies [Härdle et al., 2015].

According to Givens and Hoeting [2012], in Bayesian inference, the parameter of interest are

considered random variables. Assume that x denotes observed data which is a realization of X .

Let us assume that θ is a parameter of the distribution of X . The probability f (θ) in (3.9) is inter-

preted as a prior distribution and represents the prior knowledge about of the parameter before

any data is observed. According to [Givens and Hoeting, 2012], this distribution may be chosen

based on previous experiments and data. It also may represent the subjective beliefs of a per-
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son before making observations, or it could be selected so that it has a limited effect on the end

result. We want to make a Bayesian observer model for the bunny task from the participants´

viewpoint. Thus, we want the a priori assumptions and prior distributions to be representative

of the a priori beliefs of the participants. These beliefs are based on the information they receive

before the task and the experience they have with the task beforehand. Sometimes, assessing

which a priori assumptions are reasonable is difficult. In that case, it might be beneficial to use

prior distributions that do not have too much influence on the end result. The posterior dis-

tribution denoted f (θ|x) in (3.9), is the main interest in Bayesian statistics. This distribution

represents the updated belief of the variable θ after observing the data x. The main driving fac-

tor of the updating of beliefs is the joint distribution f (x|θ). This function changes and updates

the posterior distribution through Bayes´ theorem as more data is observed.

Sometimes, it is helpful to use what is called an improper prior. Assume that Θ denotes the

parameter space of θ. According to an Robert et al. [2007] an improper prior of θ can be defined

as ∫
Θ

f (θ)dθ =+∞.

Improper priors can be used as long as the posterior ends up being a proper distribution. An

example of an instance where improper priors can be useful is when we have limited knowledge

of the parameter we want to put a prior on, and it is hard to find a proper distribution that rep-

resents this a priori knowledge. An improper prior can also be chosen to limit the influence the

priors have on the posterior. One example of an improper prior is a uniform distribution on the

whole real line. To show how we can do Bayesian inference using this as the prior distribution,

we can consider the mean walking direction µ of the first family in the bunny task. A uniform

prior for µ on the real line is given by

f (µ) = c for µ ∈ (−∞,∞). (3.11)

Let us assume that we have observed n walking directions, x = (x1, . . . , xn). In reality, we do not

know how many times a change of family has occurred, but in this example, we assume that we

know that the n observations are from the first family. We want to do Bayesian inference on µ

using the observed data and the prior distribution in (3.11). Assume that each walking direction
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is drawn from

f1(xi |µ) = N (µ,σ2),

where σ= 20 is assumed known. The joint distribution f (x|µ) is then given by

f (x|µ) =
n∏

i=1
f1(xi |µ).

What we are interested in is the posterior distribution f (µ|x). Bayes´ theorem yields

f (µ|x) = f (x|µ) f (µ)∫
f (x|µ) f (µ)dµ

= f (x|µ) · c∫
f (x|µ) · cdµ

= f (x|µ)∫
f (x|µ)dµ

.

As we see here, the constant c is canceled out. By inserting the expression for a normal distribu-

tion, we get

f (µ|x) =
∏n

i=1 exp
(
−1

2
(xi−µ)2

σ2

)
∫ ∏n

i=1 exp
(
−1

2
(xi−µ)2

σ2

)
dµ

=
exp

(
− 1

2σ2

(∑n
i=1 x2

i −2µ
∑n

i=1 xi +nµ2
))

∫
exp

(
− 1

2σ2

(∑n
i=1 x2

i −2µ
∑n

i=1 xi +nµ2
))

dµ
(3.12)

Furthermore, we want to solve the integral in the denominator,

∫ ∞

−∞
exp

(
− 1

2σ2

(
n∑

i=1
x2

i −2µ
n∑

i=1
xi +nµ2

))
dµ=

√
2πσ2

n
exp

((∑n
i=1 xi

)2 −n ·∑n
i=1 x2

i

2 ·n ·σ2

)

By inserting this into (3.12), we get

f (µ|x) =
√

n

2πσ2
·

exp
(
− 1

2σ2

(∑n
i=1 x2

i −2µ
∑n

i=1 xi +nµ2
))

exp

( (∑n
i=1 xi

)2−n·∑n
i=1 x2

i
2·n·σ2

)
=

√
n

2πσ2
exp

(
− n

2σ2

(
1

n

n∑
i=1

x2
i −

2

n
µ

n∑
i=1

xi +µ2 + 1

n2

(
n∑

i=1
xi

)2

− 1

n
·

n∑
i=1

x2
i

))

= 1p
2π

√
n

σ2
·exp

(
−1

2

n

σ2

(
µ− 1

n

n∑
i=1

xi

)2)
.

This means that the posterior distribution of µ is

µ|x ∼ N

(
1

n

n∑
i=1

xi ,
σ2

n

)
.
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In other words, the posterior distribution of the mean walking direction of the family is a normal

distribution. Its expected value is the mean of the observed directions, and its variance is the

variance of the distribution the walking directions are assumed drawn from divided by the num-

ber of observations. The prior does not have a big influence on the final inference. After just a

few observations, we get a good impression of where the mean is. Even if the participants have

some prior expectation about the first mean walking direction, using a more informative prior

for the mean is unlikely to alter the final inference substantially. In addition, it is hard to find

a distribution that is a good representation of all the participants, as they might have different

prior beliefs about the mean of the first family.

3.4 Geometric and binomial distribution

Consider Bernoulli trials with a probability p for success at each trial. A Bernoulli trial can,

according to Casella and Berger [2021], be written as

Xi =


1 with probability p,

0 with probability 1−p.
(3.13)

Let R denote the number of these Bernoulli trials needed for one success. The probability of no

success in a trial is 1−p. If there have been r Bernoulli trials when a change occurs, there have

been r −1 trials before the change. Since the Bernoulli trials are independent, the probability

that r Bernoulli trials are needed for one success is given by

P (R = r ) = (1−p)r−1p. (3.14)

To give an example, we can consider the bunny task where the different bunny families had

different sizes. Let x = (x1, . . . , xn) denote the bunny directions, where xi is observation number

i . Assume that j −1 changes have occurred and xn is thus a part of family j . Let the variables

R1, . . . ,R j−1 be at which observation numbers the family changes happen, which means that if

Ri = ri it follows that xri is the first observed direction of family i +1. A size of a bunny family

is the number of bunnies appearing from the first bunny of that family until the last bunny
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from that family. The family size of family number i is therefore Ri −Ri−1. In reality, the family

sizes were drawn from truncated log-normal distributions. However, this is not known to the

participants. Instead, as each bunny appears, we assume that there is a probability p that the

bunny is from a new family compared to the previous bunny and, therefore, a probability 1−p

that the bunny is in the same family as the previous bunny. Therefore, each time a new bunny

appear is seen as a Bernoulli trial where there are two possible outcomes, a family change or

not. We start by considering the observation number of the first change, R1. There is at least one

bunny from each family, so the first bunny has to be part of the first family, and therefore we have

R1 > 1. In (3.14), it is assumed that a success can happen also in the first trial. Since a change can

not happen in the first observation in the bunny task, the probability of R observations before

the first change occurs is the same as the joint probability of no changes in observation numbers

2, . . . ,r1 −1 before a change occurs in observation number r1. Thus, the probability that the first

change occurs in r1 is given by

P (R1 = r1) = (1−p)r1−2p. (3.15)

If Ri−1 = ri−1 is given, we know where the change to family i happened. Then, the variables

R1, . . . ,Ri−2 do not provide more information about where the change to family i + 1 occurs.

Thus, we have

P (Ri = ri |R1 = r1, . . . ,Ri−1 = ri−1) = P (Ri = ri |Ri−1 = ri−1).

The probability P (Ri = ri |Ri−1 = ri−1) is the conditional probability that observation number ri

is the first observation drawn from family i +1 given that observation number r j−1 is the first

observation number from family i . This equals the joint probability of no changes occurring

between observation number ri−1 +1 to ri −1 and a change occurring in ri . Again, because of

the independence of these events, this probability is given by

P (Ri = ri |Ri−1 = ri−1) = (1−p)ri−ri−i−1p. (3.16)

Also related to Bernoulli trials is the binomial distribution. Let the sequence X1, . . . , Xn be a

sequence of Bernoulli trials where each Xi is given by (3.13). Let Y be the number of successes
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in this sequence which can be written as

Y =
n∑

i=1
Xi .

According to Casella and Berger [2021], Y then has a binomial distribution given by

P (Y = y |n, p) =
(

n

y

)
p y (1−p)n−y , y = 0,1,2, . . . ,n. (3.17)

Let us again consider the bunny task. Let Tn denote which family the last observation xn is a

part of. If xn is part of family j it follows that j −1 changes have happened up to observation

xn . Hence, the probability of Tn being part of family j is the same as the probability of j − 1

changes up to xn . As each bunny appears, there is a probability p of change except at the first

observation, which is guaranteed to be part of the first family. Therefore the probability of xn

being of part of family j is equivalent to the probability of j −1 successes after n −1 Bernoulli

trials and is therefore given by

P (Tn = j ) =
(

n −1

j −1

)
p j−1(1−p)n− j , j = 1,2, . . . ,n. (3.18)

3.5 Generalized linear models

Consider the ungrouped data (yi , xi 1, . . . , xi k ) for i = 1, . . . ,n, where (y1, . . . , yn) are responses and

xi = (xi 1, . . . , xi k )T is a vector of covariates corresponding to yi . Let Yi denote the random vari-

able of which we consider yi to be a realization. In a linear model, it is assumed that the re-

sponses have a normal distribution. The generalized linear model is a generalization of the

linear model where other distributions, in addition to the normal distribution, can be assumed

for the responses [Fahrmeir et al., 2013]. There are some distributional assumptions for the

(generalized linear model) glm. As in a linear model, the first assumption is that for a given co-

variate vectors xi = (1, xi 1, . . . , xi k ) for i = 1, . . . ,n, the responses are conditionally independent.

According to Fahrmeir et al. [2013], the second assumption is that the distribution of the re-

sponse variables Yi for i = 1, . . . ,n must be part of an exponential family. If the response yi is
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part of an exponential distribution, we can write the distribution in the form

f (yi |θi ) = exp

(
yiθi −b(θi )

φ
+ c(yi ,φ)

)
, (3.19)

where θi is regarded as the natural parameter and φ denotes a common dispersion parameter

which is independent of i . In addition, we have

E(Yi ) =µi = b
′
(θi ), Var(Yi ) =σ2

i =φb
′′
(θi ). (3.20)

A structural assumption of the glm is that the mean µi is linked to a linear predictor ηi = xT
i β

through the relations

µi = h(ηi ), (3.21)

ηi = g (µi ), (3.22)

where h is referred to as a response function and g is the link function which is the inverse

of h. What link function is suitable depends on the distribution of the response. According

to [Fahrmeir et al., 2013] every distribution belonging to the exponential family has something

called the canonical link function, and this is given by g (µi ) = θi = ηi .

An example of when a generalized linear model can be used is when the response is binary.

Assume that the responses yi for i = 1, . . . ,n are binary and that we have one covariate denoted

by x1i , which is the corresponding covariate to the response yi . The response variable Yi is the

random variable from which yi is generated, and we assume this to be Bernoulli distributed and

is therefore given by

Yi =


1 with probability π,

0 with probability 1−π.
(3.23)

The probability mass function is given by

f (Yi = yi ) =π
yi
i (1−πi )1−yi . (3.24)
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We want to rewrite this equation into the same form as in (3.19). First, take the logarithm of both

sides of the expression above and get

log( f (Yi = yi )) = yi log(πi )+ (1− yi ) log(1−πi ) = yi (log(πi )− log(1−πi ))+ log(1−πi )

= yi log

(
πi

1−πi

)
+ log(1−πi ).

This means that we can write the probability mass function as

f (Yi = yi ) = exp

(
yi log

(
πi

1−πi

)
+ log(1−πi )

)
. (3.25)

By letting θi = log

(
πi

1−πi

)
, we have πi = exp(θi )

1+exp(θi )
. This yields

log(1−πi ) = log

(
1− exp(θi )

1+exp(θi )

)
= log

(
1+exp(θi )−exp(θi )

1+exp(θi )

)
= log

(
1

1+exp(θi )

)
=− log(1+exp(θi )).

Inserting the final expression above into (3.25) yields

f (Yi = yi |θi ) = exp
(
yiθ− log

(
1+exp(θi )

))
. (3.26)

Thus, by letting b(θi ) = log(1+exp(θi )), φ = 1 and c = 0, the density is in the same form as in

the general expression of an exponential distribution in (3.19). To confirm this, we can check

whether the relations in (3.20) hold. First, we consider the mean. Recall that θi = log

(
πi

1−πi

)
.

We get that

µi = E [Yi ] = b′(θi ) = exp(θi )

1+exp(θi )
=

πi
1−πi

1
1−πi

=πi ,

which is the result we expect for a Bernoulli distribution. Furthermore, we have

Var[Yi ] =φb′′(θi ) = exp(θi )

(1+exp(θi ))2
=

πi
1−πi(

1
1−πi

)2 =πi (1−πi ).
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This is also what we expected. We want to relate the mean µi = πi to a linear predictor ηi =
β0 +β1x1i . Using the canonical link-function leads to

θi = ηi =⇒ log

(
πi

1−πi

)
=β0 +β1x1i . (3.27)

Here, the logit link function is used, and a model that uses this link function and assumes a

Bernoulli distribution for the response is often referred to as the logit model [Fahrmeir et al.,

2013]. We get that the odds of success, Yi = 1, is given by

πi

1−πi
= exp(β0) ·exp(β1x1i ),

which means that changing the covariate x1i with one unit changes the odds of success by a fac-

tor of exp(β1). Another common link-function for a binary response is the probit link-function.

LetΦ be the normal cumulative distribution function. Then, the probit link-function is given by

πi =Φ(ηi ). (3.28)

3.6 Generalized linear mixed models

The description of the generalized linear mixed models is based on the description given in

[Fahrmeir et al., 2013]. Recall that throughout the bunny task, the participants observe 490 bun-

nies, and they, therefore, have to make 490 decisions about which family each bunny belongs

to. Thus, when considering the data sets containing the decisions made by the participants

during the bunny task, we have repeated measures for each individual. Let us assume that for

individuals t = 1, . . . , N , the data is given by

(yt1, . . . , yt i , . . . , ytn , . . . , xt1, . . . , xt i , . . . , xtn),

where n is the number of observations for each individual. Here, yt i denotes observation num-

ber i for individual t . A key component of generalized linear mixed models (glmm), are random
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effects. Corresponding to an individual t , we have a random effect γt given by

γi ∼ N (0,Q), (3.29)

where Q is a positive definite covariance matrix. We assume the responses yt i to be condition-

ally independent given γt for t = 1, . . . , N and i = 1, . . . ,n. Furthermore, we assume that the

conditional distribution f (yi |γt ) is part of an exponential family. Recall that in a glm, the linear

predictor is given by ηi = xT
i β. In a generalized linear mixed model (glmm), the linear predictor

also includes the random effect γt and is given by

ηt i = xT
tiβ+uT

tiγt , t = 1, . . . , N , i = 1, . . . ,n, (3.30)

where xt i = (xt i 1, . . . , xt i j , . . . , xt i k )T is a covariate vector. The vector ut i is, according to Fahrmeir

et al. [2013], often a subvector of the covariate vector. In this thesis, we only consider the special

case where ut i = 1, for t = 1, . . . , N and i = 1, . . . ,n, and the linear predictor is then given by

ηt i = xT
tiβ+γt , t = 1, . . . , N , i = 1, . . . ,n. (3.31)

When this is the linear predictor, the model is called a random intercept model. The condi-

tional mean µt i = E(yt i |γt ) is linked to ηt i through µt i = h(ηt i ) or ηt i = g (µt i ), where g is a link

function.

Let us again consider an example where the response is binary. We assume that we have a lin-

ear predictor given by (3.31), and that γt ∼ N (0,σ2
γ). The conditional distribution f (yt i |γt ) is

assumed to be a Bernoulli distribution. The mean is given by

µt i = E [yt i |γt ] = P (yt i = 1|γt ) =πt i ,

and is linked to the linear predictor through

log

(
πt i

1−πt i

)
= xT

tiβ+γt .
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Thus, we have
πt i

1−πt i
= exp

(
xT

tiβ+γt
)
,

which means that for a specific individual, changing a covariate xt i j with s changes the odds that

Yi j = 1 with a factor of exp(β j · s). The corresponding conditional probability given an individual

t is

πt i = P (yt i |γt ) = 1

1+exp(−xT
tiβ−γi )

(3.32)

This probability is conditional for one specific individual. We are also interested in the marginal

probability P (Yi j = 1), which is the probability of a success Yi j = 1 averaged over all individuals

t = 1, . . . , N . By using the law of total probability, we get

P (Yt i = 1) =
∫ ∞

−∞
P (Yt i = 1|γt ) f (γt )dγt .

According to [Agresti, 2013], this probability can be approximated by

P (Yt i = 1) ≈ 1

1+exp

(
−xT

tiβp
1+0.6σ2

w

) , (3.33)

or equivalently, the odds can be approximated by

P (Yt i = 1)

1−P (Yt i = 1)
≈ exp

 xT
tiβ√

1+0.6σ2
w

 . (3.34)

Thus, marginally, changing the covariate xt i j by one unit changes the odds of Yi j = 1 with a

factor of exp

(
β j /

√
(1+0.6σ2

w )

)
.

3.7 Permutation test for one-sided hypothesis tests

As stated in Givens and Hoeting [2012], a permutation test is a statistical inference method that

involves conducting “experiments” on the observations within a data set. What makes the per-

mutation test advantageous is that it does not rely on any distributional assumptions or as-

sumptions of independence and can therefore be applied in many different contexts. In this
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thesis, we want to use a permutation test to test whether there are significant differences be-

tween two groups, where one group is the control group L-AQ & L-CAPEp and the other group

is one of the study groups in Table 2.6. In this section, we refer to the two groups we want to test

differences between as groups 1 and 2, where either group 1 or 2 could be the control group de-

pending on the context. Let w = (w1, . . . , wn1 ) be outcomes from group 1 and let z = (z1, . . . , zn2 )

be outcomes from group 2. Let x = (w, z) denote all the outcomes. The outcomes x are either

change probabilities or regression parameters in this thesis. Let Fw be the cumulative distribu-

tion of the outcomes wi for i = 1, . . . ,n1, and let Fz be the cumulative distribution of the out-

comes zi for i = 1, . . . ,n2.

We want to use a permutation test to do a one-sided hypothesis test. The null hypothesis is

H0 : Fw = Fz . (3.35)

The alternative hypothesis is that the outcomes from group 1 tend to be larger than those of

group 2, and can be written as

H1 : Fw (z) > Fz(z)∀z. (3.36)

We need to decide on a test statistic that can capture the difference between the two groups to do

the hypothesis testing. Let s = h(w, s) be the test statistic. In our case, we consider the difference

in mean or median between the groups as test statistics. If we consider the difference in mean,

we have h(w, s) = w̄ − s̄ where w̄ is the mean out the outcomes of group 1 and z̄ is the mean of

the outcomes of group 2. If we consider the difference in mean, we have h(w, z) = w̃ − z̃ where

w̃ is the median of the outcomes of group 1 and z̃ is the median of outcomes of group 2. Let s0

denote the observed statistic with the original group labels. We consider s0 as a realization of

the random variable S. To test the significance of our hypothesis, we estimate the p-value. The

p-value is defined as the “probability of observing a test-statistic at least as extreme as the one

actually observed” provided that H0 is true [Aschwanden, 2015]. The alternative hypothesis is

that the outcomes w tend to be higher than the outcomes z. In this case, observing an equal or

more extreme value than the one actually observed means observing something larger or equal
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to the observed value s0. Thus, the p-value is given by

p = P (S ≥ s|H0 is true). (3.37)

Under the null hypothesis, all the observations x are drawn from the same distribution. Thus,

the control and patient labels are irrelevant since they do not influence the outcome. Therefore,

assuming the null hypothesis is true, we could randomly shuffle the labels among the outcomes,

and the joint null distribution would be the same. To simulate the distribution of S under the

null hypothesis, we randomly shuffle the labels of the outcomes x in B iterations. A new group

1 and 2 is randomly chosen at each iteration. The size of one group is the same at each itera-

tion. When dividing into two groups, we divide the individuals and not the outcomes into the

groups. However, if we have one outcome for each individual, dividing the individuals into two

groups is equivalent to dividing the outcomes into the groups. We can divide the outcomes

into groups when we compare the intercept or effect coefficients between the groups. However,

we have multiple change probabilities for each individual. When dividing these probabilities

into groups, we randomly place individuals into two groups. The corresponding probabilities

of one individual are placed into the same group as the individual. Let wb denote the outcomes

of the randomly selected group 1 at iteration b and let zb be the randomly selected group 2 at

the same iteration. At iteration b, we calculate an observed statistic sb = h(wb , sb) based on the

new groups. We, therefore, have statistics s1, . . . , sB , one for each permutation of group labels.

These statistics together make up an estimation of the distribution of S under the null hypothe-

sis. To estimate the p-value, we divide the number of statistics among s1, . . . , sB that are equal to

or larger than the original statistic s0. To write this mathematically, we first define an indicator

function given by

I (sb) =


1 if sb ≥ s0,

0 otherwise.
(3.38)

Furthermore, the estimated p-value p̃ is

p̃ =
∑B

b=1 I (sb)+1

B +1
. (3.39)
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To reject the null-hypothesis, the estimated p-value p̃ needs to be larger than a selected signifi-

cance level of α. We use α= 0.05 throughout this thesis.
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4 | Bayesian observer model for the bunny task

During the bunny task, the participants must decide which family the newest observation is part

of. We aim to construct a Bayesian observer model to calculate the probability that the most re-

cently observed bunny belongs to the potential families it can be a part of, given the observed

walking directions so far. In this section, we state the assumptions in the Bayesian model and

derive the model itself. Additionally, we provide an example of applying the model to actual ob-

servations. The goal is to use these probabilities to analyze the choices made by the participants.

At each instance, when the participants observe a new walking direction of a bunny, we consider

the probability of it belonging to a new family compared to the family the previous bunny was

classified into. These probabilities are the ones referred to as change probabilities in the intro-

duction. The actual change probabilities calculated from the observation of the participants

will be analyzed in Section 5. The corresponding log odds to the change probabilities, referred

to as change log odds, will be used as covariates in the logit model we consider in Section 5.2.

The change log odds are also utilized as covariates in the modeling in Section 6.

We aim to make the probabilities in the Bayesian observer model representative of the partici-

pants’ beliefs, and we make assumptions based on the information they receive before the task.

The model needs to consider the number of changes reported by the participants. To illustrate

this, consider the example in Figure 4.1. Here, we can see 23 observations drawn from the three

first families. The mean of each family is drawn as straight horizontal lines of different colors.

The first family is a normal distribution with a mean value of 0, and the change of mean from

one family to the next is here 20, so the second family has a mean value of 20 and the third one

has a mean of 40. There have been 2 changes, but let us assume that the participant, unaware

of this, has reported 5 changes and more than three into family 6 in a row. The possible options

for families depend on the reported changes, and in this example, the possible options are fam-

ily 6 and family 7. Since the participants do not have a complete overview of all the observed

bunnies, it can be challenging to realize that too many changes have been reported. Further-

more, the participant cannot go back to a previous family at this point. In this scenario, the

model has the potential to provide probabilities that may be misleading and representative of

42



Figure 4.1: Example of observed walking directions in the bunny task.

the participant’s beliefs. Let us, for example, assume that the model takes high probabilities for

families around where the actual family is, which in this example means that the model would

assign high probabilities to families around family 3. Even if the participant stops overreport-

ing changes and starts making decisions more aligned with where the actual changes occur, the

reported families will still be out of sync with the families the model gives the highest probabil-

ities to because of the initial decisions. As a result, the model does not reward the participant

significantly for making better decisions later. Similar issues may arise if a participant consis-

tently underreports changes and becomes misaligned with the families the model predicts as

most likely. Thus, a model disregarding the number of changes reported by participants would

not accurately represent their beliefs in these cases.

To explain how we incorporate the participant’s previous decisions into our model, let us con-

sider the observed walking directions d = (d1, . . . ,dnb ), which are all the directions observed

after bunny number nb appears. At this point, the participant needs to determine which family
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bunny number nb should be classified into. Recall that the participant only has two or three op-

tions to choose between. Let us consider the first family that is a possible option on the screen

at this point. Suppose the participant has two families to choose between. In that case, there

have been at least three consecutive bunnies preceding bunny number nb that were classified

into the same family, and this family is the first option on the screen. The first option is therefore

the family bunny number nb −1 was placed into by the participant. However, when less than

three bunnies have been classified into the same family in a row, there are three options, and the

first available option is the family preceding the one bunny number nb −1 was classified into.

Now, let us assume that bunny number r with walking direction dr was the first bunny the par-

ticipant classified into the first available family option displayed on the screen. To incorporate

the participant’s choices in the model, we only include the observations dr , . . . ,dnb , and assume

that dr is actually part of the family it was classified into. These observations start with the first

one classified into the first family displayed on the screen up to and including observation num-

ber nb . The assumption that dr is actually from the family it was classified into ensures that we

take the participant’s choices into consideration, and if the participant gets out of sync, this will

not necessarily manifest itself further into the task. Furthermore, since the participants only see

one bunny at a time and do not have a full overview of previous observations, it is reasonable

to assume that not all previous observations are taken into consideration when determining the

family the bunny is part of.

Let us again consider the example in Figure 4.1. We assume that a participant correctly clas-

sified all observations in this example. Thus, the horizontal lines in the figure also show into

which families this participant classified the observations. Before each time one of the first 10

bunnies was classified into a family by the participant, the first option displayed on the screen

was family 1, same as to the left in Figure 2.4. Thus, when finding probabilities for the different

outcomes in these instances, all observations were included. After observing bunny number 11

or 12, the participant has three possible family options: family 1, family 2, or family 3 as shown

to the right in Figure 2.4. Hence, in these scenarios, family 1 is the first option, and all observa-

tions until bunny number 11 or 12 are considered when determining the probabilities of them

belonging to the various potential families. However, between observation numbers 13 and 18,

the participant can only choose between family numbers 2 and 3, and family 1 is no longer an
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option. In these instances, we only include observations starting from observation number 10

until the last, and we assume that observation number 10 actually is a part of family 2.

4.1 The Model

We use assumptions discussed in Section 3 to construct the Bayesian observer model of the

bunny task problem. The mean of the first family is denoted µ, and we assume an improper

uniform prior distribution on the whole real as in (3.11) for this variable. Furthermore, as in

Section 3.4, the observation numbers of the first bunnies in each family are denoted R1, . . . ,R j−1

for family 2, . . . , j . The distribution of P (R1 = r1) is assumed to be geometrically distributed and

given by (3.15). Furthermore, we assume that P (Ri = ri |Ri−1 = ri−1) is a geometric distribu-

tion given by (3.16). Recall that we only include certain observations in the Bayesian observer

model. We denoted the observations included after observing dnb as (dr , . . . ,dnb ). When we de-

scribe the model in this section, we aim to establish suitable and consistent notation, and we

denote x = (x1, . . . , xn) as the observations included at a given point when xn is the last observed

direction. This means that x1 is the first observation from the first family appearing as a possi-

ble option, and this observation is assumed to be correctly classified. The family of x1 could be

many different families depending on how many changes the participant has reported. Again,

since we want to describe the model generally for all cases, we refer to the family of x1 as family 1

here. We let the variable Tn be a variable denoting the family number of xn given that the family

of x1 is family 1. In other words, if kn changes occur between x1 and xn , we have Tn = kn+1. The

probability we are interested in is P (Tn = j |x). That is, the probability that xn is a part of family

j given the observations x. We assume the prior distribution of Tn to be a binomial distribution

given by (3.18).

During the titration process, the participants get a sense of how much the mean value changes

between each family. Each participant receives a titration threshold. Remember that this thresh-

old is the same as the absolute value of how much the mean value changes between families.

The mean either changes clockwise or counter-clockwise for each participant in both blocks. If

the change direction is clockwise, the shift in mean denoted∆ is the same as the titration thresh-

old. The mean change ∆ is the negative titration threshold if the change direction is counter-
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clockwise. Since the titration threshold is determined by how the participants do the task in the

titration block, and they get somewhat of a sense of where this threshold lies, we assume that ∆

is known.

Now, let us consider the distributions the walking direction of the bunnies is drawn from. Let fk

denote the probability density function from which bunnies from family number k are drawn.

All the families have the same standard deviation, which we assume to be known and denoted

by σ. The mean walking direction of the first family is µ, and the mean value changes with ∆

each time the family change. We assume that each observation xi is independently drawn from

a normal distribution where

fk (xi |µ) = N (µ+ (k −1) ·∆,σ2) for k = 1, . . . , j , (4.1)

and thus

fk (xi |µ) = 1p
2πσ

exp

(
−1

2

(xi −µ− (k −1) ·∆)2

σ2

)
. (4.2)

Again, recall that R1, . . . ,R j−1 denote the first observation number of each family from family

2, . . . , j . If R1 = r1, . . . ,R j = r j and µ are given, we have that observation 1 until r1 −1 are drawn

from family 1. Furthermore, in general, observation numbers ri−1 to ri −1 are drawn from family

i , while observation numbers r j−1 to the last observation, observation number n, are drawn

from family j . Thus, we have

f (x|µ,R1 = r1, . . . ,R j = r j ,Tn = j ) =
r1−1∏
i=1

f1(xi |µ) ·
r2−1∏
i=r1

f2(xi |µ) · . . . ·
r j−1−1∏
i=r j−2

f j−1(xi |µ) ·
n∏

i=r j−1

f j (xi |µ).

(4.3)

In general, we can write this as

f (x|µ,R1 = r1, . . . ,R j−1 = r j−1,Tn = j ) =
(

1p
2πσ

)n

exp

(
− 1

2σ2
· (nµ2 +b j (r )µ+ c j (r ))

)
, (4.4)
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where

b j (r ) =
j−1∑
i=1

−2ri∆+ (2 · ( j −1) ·∆)(n +1)−2 ·
n∑

i=1
xi

c j (r ) =∆2 ·
(

j−1∑
i=1

−ri · (2i −1)+n( j −1)2 + ( j −1)2

)
+

j−2∑
s=1

(−2s) ·∆
rs+1−1∑

i=rs

xi −2 · ( j −1) ·∆
n∑

i=r j−1

xi +
n∑

i=1
x2

i ,

(4.5)

where we define a sum
t∑

r=s
ur equal to zero for t < s.

We want to find the probability of the event Tn = j given the observations x. In theory, observa-

tion xn could be a part of family 1, . . . ,n. Bayes´ theorem yields

P (Tn = j |x) = f (x|Tn = j )P (Tn = j )∑n
i=1 f (x|Tn = i )P (Tn = i )

. (4.6)

Thus, we must find an expression of f (x|Tn = j ) for j = 1, . . . ,n. We use the law of total prob-

ability by integrating over the possible values of µ and summing over the possible values of

R1, . . . ,R j−1. By letting R = (R1, . . . ,R j−1) and r = (r1, . . . ,r j−1), the joint conditional distribution

can be expressed as

f (x|Tn = j ) =
n− j+2∑

r1=2
. . .

n∑
r j−1=r j−2+1

∫ ∞

−∞
f (x|R = r,µ,Tn = j ) f (R = r,µ|Tn = j )dµ. (4.7)

Given that we know the family of the last observation, knowing the mean of the first family µ

does not provide more information about where the changes R occurred without the observa-

tion x given. This means that we have f (R = r |Tn = j ,µ) = f (R = r |Tn = j ). From this we get

f (R = r,µ|Tn = j ) = P (R = r |Tn = j ,µ) f (µ|Tn = j ) = P (R = r |Tn = j ) f (µ|Tn = j ).
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Furthermore, we assume f (µ|Tn = j ) = f (µ) = c. Therefore, we have

f (x|Tn = j ) =
n− j+2∑

r1=2
. . .

n∑
r j−1=r j−2+1

∫ ∞

−∞
f (x|R = r,µ,Tn = j )P (R = r |Tn = j ) · cdµ

= c ·
n− j+2∑

r1=2
. . .

n∑
r j−1=r j−2+1

P (R = r |Tn = j )
∫ ∞

−∞
f (x|R = r,µ,Tn = j )dµ.

(4.8)

Thus, we need to find the integral

∫ ∞

−∞
f (x|R1 = r1, . . . ,R j−1 = r j−1,µ,Tn = j )dµ. (4.9)

By inserting (4.4) for the integrand, we get

∫ ∞

−∞
f (x|µ,R1 = r1, . . . ,R j−1 = r j−1,Tn = j )dµ=

∫ ∞

−∞

(
1p

2πσ2

)n

exp

(
− 1

2σ2
· (nµ2 +b j (r )µ+ c j (r ))

)
dµ

=
(

1p
2πσ2

)n

·
√

2πσ2

n
exp

(
b j (r )2 −4nc j (r )

8nσ2

)
.

(4.10)

To finish the derivation of f (x|Tn = j ) in (4.8) we need to find P (R = r |Tn = j ) = P (R1 = r1, . . . ,R j =
r j |Tn = j ). This is the joint conditional probability that the changes occur in r1, . . . ,r j−1 given

that xn is a part of family j . Bayes’ theorem yields

P (R1 = r1, . . . ,R j−1 = r j−1|Tn = j ) = P (Tn = j |R1 = r1, . . . ,R j−1 = r j−1)P (R1 = r1, . . . ,R j−1 = r j−1)

P (Tn = j )
.

(4.11)

We start by considering the probability P (Tn = j |R1 = r1, . . . ,R j−1 = r j−1) in the numerator in

(4.11). This is the conditional probability that observation xn is part of family number j given

that changes occur at r1, . . .r j−1. If xn is a part of family j , it means that no changes occur be-

tween observation number r j−1+1 to n. Recall that there is a probability of (1−p) for no change

in each observation. Thus, we have

P (Tn = j |R1 = r1, . . . ,R j−1 = r j−1) = (1−p)n−r j−1 .

The other probability P (R1 = r1, . . . ,R j−1 = r j−1) in the numerator in (4.11) is found by using the
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multiplication rule. We have that,

P (R1 = r1, . . . ,R j−1 = r j−1) = P (R1 = r1) ·P (R2 = r2|R1 = r1) · . . . ·P (R j = r j |R1 = r1, . . . ,R j−1 = r j−1).

(4.12)

As previously mentioned, the probability P (R1 = r1) is geometrically distributed and is given by

(3.15), and that P (Ri = ri |R1 = r1, . . . ,Ri−1 = ri−1) for i = 2, . . . , j−1 is also a geometric distribution

given by (3.16). By inserting these expressions into (4.12), we have that

P (R1 = r1, . . . ,R j−1 = r j−1) = (1−p)r j−1− j p j−1.

Now, recall that the denominator in (4.11), P (Tn = j ), has a binomial distribution which is given

by (3.18). By inserting this expression and the expression of P (R1 = r1, . . . ,R j−1 = r j−1) and

P (Tn = j |R1 = r1, . . . ,R j−1 = r j−1) into (4.11), we get

P (R1 = r1, . . . ,R j = r j |Tn = j ) = (1−p)n−r j−1 (1−p)r j−1− j ·p j−1(n−1
j−1

)
p j−1(1−p)n− j

= 1(n−1
j−1

) . (4.13)

Now, we have derived everything needed for finding f (x|Tn = j ). We insert the expression of the

integral in (4.10) and the expression of P (R1 = r1, . . . ,R j = r j |Tn = j ) in (4.13) into (4.8), and we

get

f (x|Tn = j ) =
n− j+2∑

r1=2
. . .

n∑
r j−1=r j−2+1

∫ ∞

−∞
f (x|R = r,µ,Tn = j )P (R = r |Tn = j ) f (µ|Tn = j )dµ

=
n− j+2∑

r1=2
. . .

n∑
r j−1=r j−2+1

(
1p

2πσ2

)n

·
√

2πσ2

n
exp

(
(b j (r ))2 −4nc j (r )

8 ·n ·σ2

)
· c(n−1

j

) .

(4.14)

All components needed to find the probability of interest P (Tn |x) given in (4.6) are in place. The

expression above and the binomial distribution P (Tn = j ) given in (3.18) are inserted into the

numerator of the expression and are also used to find the sum
n∑

i=1
P (Tn = i |x) in the denom-

inator. To demonstrate how these probabilities are found based on real bunny directions, we

consider an example.

Example 4.1.1 We again consider the bunny directions given in the example in Figure 4.1. First,
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we look at the first three observations from this example, which are x = (x1, x2, x3) = (−4,8,14).

After three observations, there are three possibilities. Either there have been no changes, meaning

that x1 is part of family 1. If one change has occurred, observation x3 is part of family 2, and if

two changes have happened, x3 comes from family 3. The probabilities we are interested in are

therefore P (T3 = j ) for j = 1,2,3, which are the probabilities that x3 is part of family 1, 2 or 3 given

all observations so far, x.

As earlier stated, a model assumption is that the standard deviation σ= 20 and the mean change

∆= 20 are known. Recall that family 1 is assumed to have an unknown mean walking direction

of µ, family 2 a mean of µ+∆ and family 3 a mean value of µ+2∆. By using the general expression

of P (Tn = j |x) in (4.6) for n = 3, we get

P (T3 = j |x) = f (x|T3 = j )P (T3 = j )

f (x|T3 = 1)P (T3 = 1)+ f (x|T3 = 2)P (T3 = 2)+ f (x|T3 = 3)P (T3 = 3)
(4.15)

for j = 1,2,3. First, we consider the expressions of f (x|T3 = j ) given by (4.14), where b j (r ) and

c j (r ) given in (4.5) are needed. We start by looking at f (x|T3 = 1). We use the values of ∆ = 20,

σ= 20 and x = (−4,8,14) which yields

b1 =−2 ·
n∑

i=1
xi =−36,

c1 =
n∑

i=1
x2

i = 276.

By inserting these values into (4.14), we get

f (x|T3 = 1) = c ·
(

1p
2πσ2

)n

·
√

2πσ2

n
exp

(
b2

j −4a j c j

8 ·n ·σ2

)
= c ·

(
1p

2 ·π ·202

)3

·
√

2 ·π ·202

3
exp

(
362 −4 ·3 ·276

8 ·3 ·202

)
= c

2π ·400 ·p3
exp

(
− 21

100

)
.

Now that we have found f (x|T3 = 1), the next step is to find f (x|T3 = 2). We start by considering
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b2(r1) and c2(r1) which is found by inserting j = 2 into (4.5), and this yields

b2(r1) =−40r1 +124,

c2(r1) = 1876−400r1 −40 ·
n∑

i=r1

xi .
(4.16)

By inserting these into the expression of f (x|Tn = 2) given in (4.14), we get

f (x|Tn = 2) =
n∑

r1=2

(
1p

2πσ2

)n

·
√

2πσ2

n
exp

(
b2(r1)2 −4nc2(r1)

8 ·n ·σ2

)
· c

n −1

=
3∑

r1=2

c

2π ·400 ·p3 ·2
exp

(
b2(r1)2 −12c2(r1)

9600

)
.

(4.17)

To find a numerical value for the expression above, we need to find b2(r1) and c2(r1) for r1 = 2,3.

We start by considering r1 = 2 and insert this into (4.16) which yields b2(2) = 44 and c2(2) = 196,

b2(3) = 4 and c2(3) = 116. By inserting these values into (4.17), we get

f (x|T3 = 2) = c

2π ·800 ·p3
·
(
exp

(
(44)2 −12 ·196

9600

)
+exp

(
(4)2 −12 ·116

9600

))
= c

2π ·800 ·p3

(
exp

(
− 13

300

)
+exp

(
− 43

300

))
.

At last, we consider f (x|T3 = 3). When T3 = 3, there have been two changes in the three first ob-

servations and since the first change can not happen in the first observation, we have that the

first change happens in r1 = 2 and the second change happens in r2 = 3. We find f (x|Tn = 3) by

inserting j = 3 into (4.14), and this yields

f (x|Tn = 3) = c(n−1
j−1

) ·( 1p
2πσ2

)n

·
√

2πσ2

n
exp

(
(b3(2,3))2 −4 ·nc3(2,3)

8 ·n ·σ2

)
. (4.18)

We need to find b j (2,3) and c j (2,3). By inserting j = 3 and ∆ = 20, σ = 20 into (4.5), we get

b3(2,3) = 84 and c3(2,3) = 836, and inserting these values and the values of σ = 20 and ∆ = 20

into (4.18) yields

f (x|Tn = 3) = c

2π202
p

3
exp

(
842 −4 ·3 ·836

8 ·202

)
= c

2 ·π ·202 ·p3
exp

(
− 31

100

)
. (4.19)
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The last step for finding P (T3 = j |x) for j = 1,2,3 is to find the prior distributions P (T3 = j ) for

j = 1,2,3. We insert these values of j and n = 3 into the binomial distribution given in (3.18)

which yields

P (Tn = 1) = (1−p)2,

P (Tn = 2) = 2 ·p · (1−p),

P (Tn = 3) = p2.

A value of p has to be determined. Keep in mind that the family sizes are assumed to be geomet-

rically distributed, and the mean of a geometric distribution with success probability p is equal

to 1/p. In this thesis, we only consider the results of the two main blocks of the bunny task. Be-

fore these blocks, the participants form an impression of the sizes of the families in the titration

block. As reported in Table 2.1, the average family size in this block is 9.32. Thus, we use a value

of p = 1/9.32. We insert the values we found for f (x|Tn = j ) for j = 1,2,3, into (4.15) and get

P (Tn = 1|x) = 0.779

P (Tn = 2|x) = 0.211

P (Tn = 3|x) = 0.011.

After 3 observations, the probability that the last bunny is part of family 1 and, therefore, that

no changes have happened is 0.779 according to the Bayesian observer model. The probability of

1 change and the that the last bunny is part of family 2 is 0.211. The probability of 2 changes is

0.011. Since we only have made 3 observations at this point, it is not surprising that the it is most

likely that no changes have happened so far. The prior probability that one change has happened

is P (T3 = 2) = 2 · p · (1− p) = 2 · (1/9.32) · (1− 1/9.32) = 0.192, which is lower than the posterior

probability P (T3 = 2|x) = 0.211. This increase in probability can be explained by the increase

of walking directions from −4 to 14, which leads to that f (x|T3 = 2) > f (x|T3 = 1). We look at

how the probabilities develop as more bunnies are observed. Figure 4.1 shows that the first change

occurs at observation number 10. In Figure 4.2, we can see a plot of the 9 first observations and the

probabilities that observation 9 is part of family 1, 2 and later families. According to the Bayesian
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Figure 4.2: Example of the 9 first walking directions just before a change occur.

model, it is most likely that no changes have occurred at this point as the probability of family 1

is 0.797.

The next observation is part of a new family, and we also see a jump in the bunny direction as the

observation has a higher walking direction compared to the previous observations. In Figure 4.3,

we can see the probabilities that the last bunny is part of the different possible families after this

last observation is included. The family the last observation is most likely to be part of, according

to the Bayesian observer model, is family 1. However, it is more likely than not that a change has

happened at this point since the probability of the last observation being part of a family higher

than 1 is 0.432+0.087 = 0.519.

4.2 Change probabilities and odds

As stated earlier, we want to use the Bayesian observer model to calculate probabilities based on

real observations made by the participants. In Section 2.2, we denoted all observed bunny direc-
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Figure 4.3: Example of the 10 first observed walking directions where observation 10 is the first
from family 2.
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tions in both the low volatility and high volatility block combined by d1, . . . ,dno , where no = 490

for all participants. The first bunny in each block is guaranteed to be part of the first family in

each block, and the participants have to place these two bunnies into family 1. The first family

decision the participants make in each block is therefore of no interest, and there are therefore

n = 488 decisions we are interested in. Let d1, . . . ,dn represent the walking directions of the 488

bunnies we are interested in examining in terms of their placement by the participants. Recall

that we do not include all observations in the Bayesian observer model; only the observations

categorized into the first possible family on the screen until the last observed bunny are in-

cluded. In Section 4.1, we described how we found probabilities P (Tn = j |x) for j = 1, . . . ,n in

general, where x was the general denotation of the observations included in the model. Now,

let xi = (xi 1, . . . , xi ni ) denote the observations included in the model when di has just been ob-

served, where ni is the number of observations included at that point. Remember that in the

Bayesian observer model, we defined family 1 at any given point in the task as the first possible

family option displayed on the screen. At the point where di is observed, the family xi 1 was clas-

sified into, is considered family 1. Let z1, . . . zn be the choices the participant makes between the

possible displayed options at each time they make the decision, where zi = 1 if the first family

displayed on the screen is chosen, zi = 2 if the second family is chosen and zi = 3 if the eventual

third option is chosen. We let Ti be a variable denoting which family di is part of given that xi 1 is

part of family 1. In this thesis we focus on people´s tendency to assess changes. The probability

we are mainly interested in is therefore the probability that the most recent observation xi ni is

part of a new family compared to the one xi ni−1 was classified into. This probability is what we

refer to as change probabilities. For one participant, we have change probabilities

pi = P (Ti > zi−1|xi ), for i = 1, . . . ,n. (4.20)

These change probabilities have corresponding change odds given by

ρi = pi

1−pi
for i = 1, . . . ,n. (4.21)

Let us again consider the example given in Figure 4.2, where 9 bunnies have been observed. We

assume that the participant has placed the 8 first bunnies into family 1. Therefore the options
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the participant can choose between are family 1 and family 2 at this point. The probability that

bunny number 9 is part of family 2 or above, and thus the change probability that a change has

occurred is p8 = 0.192+ 0.011 = 0.203. The corresponding change odds is ρ8 = 0.255. After 10

observations in Figure 4.3, the corresponding change probability is p9 = 0.432+0.087 = 0.519,

and the change odds thus ρ9 = (0.519)/0.481 = 1.079.
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5 | Group-based analysis

As stated previously, we want to use the probabilities calculated from the Bayesian observer

model to analyze the decisions made by the participants. Based on the observations the par-

ticipants made, which we can see a subsection of for one participant in Table 2.3, we calculate

change probabilities p1, . . . p488 for each participant. Recall that the central hypothesis we want

to investigate is whether people with autistic or psychotic traits tend to need less evidence be-

fore inferring changes. In this thesis, we consider the change probabilities as a measurement

of the level of evidence that a change has occurred. The change probabilities are specifically

analyzed when the participants report a change. Suppose these probabilities give a good rep-

resentation of the participants’ perception of the bunny task and the hypothesis is true. In that

case, it is expected that people with autistic or psychotic traits need lower change probabili-

ties when reporting changes. We, therefore, start by investigating whether there are any visual

differences between the groups in Table 2.6. We discover that the mean and median change

probability when reporting change is larger for the H-AQ & L-CAPEp group compared to the

control group L-CAPEp & L-AQ. We test whether the L-CAPEp & H-AQ group tends to have

higher change probabilities when reporting changes than the control group. This is done by

performing a permutation test for a one-sided hypothesis to see if the p-value is over a α= 0.05

significance level. Furthermore, we are interested in looking at the distribution of the change

probabilities when participants do not infer changes. These probabilities help understand the

results from the modeling presented in Section 5.3.

Recall that in addition to testing the hypothesis of whether people with autistic and psychotic

traits need less deviation from expected results to infer changes, we are also interested in inves-

tigating whether we find other differences in how people infer changes. These possible differ-

ences provide interesting insight into how the groups make decisions. We consider a logit model

where the choices the participants make of whether they infer change or not at each point they

make a decision are considered responses. We want to estimate the relationship between the

response variable and the corresponding odds for each participant by fitting a logit model with

the log(ρi ) as a covariate. For each participant, we estimate an intercept coefficient and a coef-
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ficient for the effect of the log odds. As we will see, the estimated intercept term of a participant

is equal to the estimated log odds that the participant infers a change when there is an equal

chance of change and no change according to the model. The estimated effect coefficients are

estimates of the correlation between the change log odds and the change choices made by the

participants. We compare these estimates between the participants of the different groups in

Table 2.6. At last, we also want to investigate whether these estimated coefficients align with

our hypothesis. This investigation is done by comparing the estimated average log odds and

probability that a change was reported for different values of change probabilities and log odds.

5.1 Group differences in change probabilities

Recall that the participants of the bunny task are given two or three choices into which the latest

bunny can be classified. We use these choices as responses in the model described in Section

5. However, to circumvent the problem that the choices are sometimes binary and other times

ternary, we simplify these choices into binary responses. Our primary focus in this thesis is

understanding how people perceive change. Therefore, we treat reporting a change of family as

a separate category. Additionally, we combine the choices of classifying the latest bunny into

the same family or the previous family into one category. Let us denote these binary choices

of one participant as y1, . . . , yn for n = 488. Let di be the last observed bunny direction before

the choice yi is made. The event yi = 1 means that observation di was categorized into a new

family, and yi = 0 means that observation di was classified into the same or a previous family.

As in Section 4.2, z1, . . . , zn denote which of the family options on the screen the bunnies were

classified into. Mathematically, we define the choices yi of one participant as

yi =


1 if zi > zi−1,

0 if zi ≤ zi−1,
(5.1)

for i = 1, . . . ,n. We refer to y1, . . . , yn as change choices. We aim to investigate whether signifi-

cant differences exist between the groups in Table 2.6. We consider the change probability pi

when the participants answer that a change has occurred. That is, probabilities pi for i when
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Figure 5.1: Comparing the distribution of change probabilities when changes were reported,
between the L-CAPEp & H-AQ group and the control group.

yi = 1. These probabilities tell how likely, according to the Bayesian observer model, a change

has happened when the participants report changes. Keep in mind that if the model gives a good

representation of the participants’ beliefs and the hypothesis is correct, we would suspect that

people with autistic and psychotic traits tend to have lower change probabilities when report-

ing a change, since a lower probability, in this case, indicates less evidence for a change when

reporting a change.

We first compare the control group, L-AQ & L-CAPEp, with the H-AQ & L-CAPEp group. That is,

we compare the change probabilities between the control group with low scores of autistic and

psychotic traits with those with high scores of autistic traits and a low score of psychotic traits.

In Figure 5.1, we see the empirical distribution of change probabilities when the participants

answer that a change has occurred for the L-AQ & L-CAPEp group and for the H-AQ & L-CAPEp

group. In addition, the mean and median for both groups are indicated by vertical lines. Visually,

it is not easy to see significant differences between the two groups. However, a slightly higher

fraction of people from the L-AQ & L-CAPEp group have low change probabilities, and a slightly

higher fraction of the H-AQ & L-CAPEp group have high change probabilities. Furthermore,
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Figure 5.2: Comparing the distribution of change probabilities when changes were reported,
between the H-CAPEp & L-AQ group and the control group.

the mean and median change probability is higher for H-AQ & L-CAPEp. Note that this is the

opposite result of what we expected according to our hypotheses.

In Figure 5.2, we see the distribution of change probabilities for the control group L-AQ & L-

CAPEp and the L-AQ & H-CAPEp group. It is not easy to spot any significant differences be-

tween the groups by looking at this plot. There are no apparent differences in mean or median

either.

At last, we consider the difference between the L-AQ & L-CAPEp group and the H-AQ & H-

CAPEp group. In Figure 5.3, we see the distribution of the change probabilities for H-CAPEp

& H-AQ and L-CAPEp & L-AQ together. We see little evidence of any significant differences

between the groups from this plot.

Since the focus of this thesis is to look for differences in how people with psychotic or autistic

traits infer changes, we do not look for significant differences between the groups in the proba-

bility that a change has occurred when the participants do not report changes. However, these

probabilities are of interest when considering the results of the logit model in Section 5 where
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Figure 5.3: Comparing the distribution of change probabilities when changes were reported,
between the H-CAPEp & H-AQ group and the control group.

we estimate the relationship between the change choice and the log odds of a change occurring

according to the Bayesian observer model. The logit model is fitted to all the data, both where

participants report changes and when participants do not report changes. Therefore, it is also

interesting to look at the change probabilities when participants do not report changes. In Fig-

ure 5.4, we can see the empirical distribution of change probabilities when a change was not

reported for all the participants. This plot shows as expected, that the highest concentration of

change probabilities is close to 0 when the participants did not report changes. 62.2% of the

change probabilities when a change was reported is below 0.5. However, we can see that a con-

siderable proportion of the change probabilities when the participants did not report changes

even are pretty close to 1 too. This can partially be explained by the attributes of the Bayesian

observer model. Even though, as discussed in Section 4.1, our model intends not to penalize

missing out on family changes too much, missing out on family changes can still temporarily

influence the probabilities. To explain this, let us consider an example where a participant has

observed the walking directions (−5,5,0,5,3,0,5,15,20,25,35,45,40). The mean change is∆= 40

here. Since the walking directions have increased pretty steadily, and there has not been any sig-
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Figure 5.4: Change probabilities when participants did not report changes

nificant spike in walking directions, the participant has classified all the bunnies into family 1.

However, according to the model, the probability that the last bunny is part of family 1 is only

0.0767 at this point, and the probability that a change has occurred is, therefore, 0.9233. Let

us assume that the walking directions of the next bunnies are 35 and 40 degrees. These obser-

vations are neither indicative of a change for the participant. Now, the change probability has

increased to 0.971. Because the participant only observes one bunny at a time and has not no-

ticed that the walking directions are considerably higher than the first walking directions, there

will be a lot of change probabilities close to 1 in a row. These situations where participants miss

out on significantly increased walking directions might explain the high proportion of people

not reporting changes even when the change probabilities are high.

We want to investigate the statistical significance of the differences between the groups. As

mentioned earlier, we see little visual evidence for differences between the control group and

the H-CAPEp & L-AQ group. This is also the case when comparing the control group with the

H-CAPEp & H-AQ group. However, the difference between the control group and L-CAPEp

& H-AQ looks more significant. We, therefore, do a hypothesis test of the difference between
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Figure 5.5: Result of 100000 permutations using the difference in mean change probabilities
between the L-CAPEp & H-AQ group and the control group for change choices yi = 1 as test-
statistic.

these groups. First, we consider the difference in mean between the L-CAPEp & H-AQ and

and L-CAPEp & L-AQ groups. We do a permutation test like the one described in Section 3.7.

The alternative hypothesis is that the change probabilities tend to be higher for people in the

L-CAPEp & H-AQ group. The test statistic we use is first the mean of the change probabilities

when reporting change for the L-CAPEp & H-AQ group minus the mean of the control group.

We do B = 100000 permutations. The results can be seen in Figure 5.5. The difference in the

mean is 0.0532, and by using the formula given in (3.39), we estimate the p-value to be 0.037,

which is lower than the significance level. Thus, we find the change probabilities to be signifi-

cantly higher for the L-CAPEp & H-AQ group compared to the control group L-CAPEp & L-AQ

when using the difference in mean as a test statistic. Given our hypothesis, this is a surprising

result. This contradicts the assessment that people with autistic traits report changes with less

evidence. This results together with Figure
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Figure 5.6: Result of 100000 permutations using the difference in median change probabilities
between the L-CAPEp & H-AQ group and the control group for change choices yi = 1 as test-
statistic.

We also investigate whether there are significant differences when the L-CAPEp & H-AQ group’s

median minus the control group’s median is used as a test statistic. The alternative hypothesis is

the same as when using the mean difference: the L-CAPEp & H-AQ group tends to have higher

change probabilities when reporting change. By using (3.39), we get that the estimated p-value

is 0.102. Thus, the difference between the groups is insignificant when using the difference in

median as a test-statistic. In Figure 5.6, we see the simulated density of the difference in median

under the null hypothesis. The originally observed difference in median is plotted as a vertical

line, and this difference is 0.0354.

5.2 Logit model

Now, we are interested in estimating the relationship between the change choices yi for i =
1, . . . ,n given in (5.1) and the corresponding log odds ρi given in (4.21) for each participant. We
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aim to employ a logit model to estimate this relationship and use the estimated coefficients

from each participant in this model to generally see if there are differences between the study

groups and the control group. The model we use is similar to the one considered in the example

given in Section 3.5. The responses y1, . . . , yn are considered realizations of the random variables

Y1, . . . ,Yn . The responses are also here assumed to be Bernoulli(πi )-distributed, and we have

πi = P (Yi = 1) = E [Yi ],

which means that πi is the probability that the participant classifies di into a new family. As in

(3.27), we use the logit-link. Furthermore, as mentioned, we use the change log odds as covari-

ates and the linear predictor is given by ηi = α+β log(ρi ). This linear predictor is linked to the

mean through

α+β log(ρi ) = log

(
πi

1−πi

)
. (5.2)

Thus, according to the model, increasing the log odds of change, log(ρi ), with one increases the

estimated odds of the participant reporting a change with β. The intercept α is the log-odds

that the participant reports a change when the change odds is ρi = 1, which means there is an

equal chance of change and no change. If for example α= 0 for a participant, it means that the

estimated odds of the participant reporting a change is 1 when the change odds is 1. In other

words, there is a 50% chance that the participant reports a change when there is a 50% chance

of change according to the Bayesian model.

We fit the model by using the glm() function in R [R Core Team, 2022]. This model fits a glm by

using the Fisher-scoring algorithm to find the maximum likelihood estimates of the coefficients.

We denote the maximum likelihood estimate of α as α̂ and the maximum likelihood estimate of

β as β̂.

5.3 Analysis of α̂ and β̂

In Figure 5.7, the distribution of α̂ and β̂ for all the participants can be seen. Recall that if α̂= 0,

the probability that a participant reports a change is 0.5 when there is a 0.5 probability of change

according to the Bayesian observer model. As we see in the plot, the proportion of people with
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(a) α̂-estimates (b) β̂-estimates

Figure 5.7: α- and β-estimates for all participants

a α̂ over 0 is low. Out of 339 participants, only 5 people have an α̂ over 0, meaning people

tend to need a higher change probability than 0.5 before reporting a change. The average α̂-

estimate is −2.547, which means that the average estimate of the odds that a participant reports

a change when there is 50% chance of change is exp(−2.547) = 0.0783. This odds corresponds

to a probability of 0.0726.

The average β̂-estimate is 0.342. This means that, on average, the estimated odds that a partici-

pant reports a change increases by 0.342 when the log-odds of change increases by 1.

We also want to compare these estimated coefficients between the different study groups and

the control group, L-CAPEp & L-AQ. In Figure 5.8, the empirical distributions of the estimates

of α̂ and β̂ is compared between the different study groups and the control group. On the left

side, the α̂−estimates are plotted, and on the right side the β̂-estimates. For each comparison,

the control group is consistently visualized in blue, while the study group is represented in red.

The mean and median estimates are displayed as vertical lines, with the mean and median coef-

ficients of the study groups depicted by red and dark red lines respectively. Similarly, the mean

and median coefficients of the control group are represented by light blue and dark blue lines

respectively. The values of the median and mean of the coefficients for the different groups are

presented in Table 5.1.

We start by considering the α̂-estimates. We see no clear visual differences between the α̂-

estimates of the study groups and the control group. However, in Table 5.1, we see that the mean

α̂ is considerably lower for the L-CAPEp & H-AQ group than the control group. We test whether

66



the difference between these two groups is significant by doing a permutation test like the one

described in Section 3.7. The alternative hypothesis is that the α̂−estimates tend to be higher

for the control group. The statistic we consider is the difference in mean between the control

group and H-CAPEp & L-AQ, and the observed statistic is thus s0 = 0.205. We do 100000 permu-

tations of group labels. The estimated p-value is 0.0514. Using a significance level of α = 0.05,

the difference is not considered being statistical significant.

We also notice that the median α̂ is substantially larger for the H-CAPEp & H-AQ group than the

control group. We again perform a permutation test where the alternative hypothesis is that the

α̂-estimates tend to be larger for the H-CAPEp & H-AQ group than for the control group. The

estimated p-value is 0.179, and the difference between the groups is deemed insignificant. We

therefore conclude that there are no significant differences in α̂-estimates between the different

study groups and the control group.

Now, we consider the β̂−estimates for the different groups. In Figure 5.8, we see little evidence of

difference between L-CAPEp & H-AQ and the control group. The estimates mostly overlap, and

difference between the mean and median is small. However, we see that there is a notable dif-

ference between the H-CAPEp & L-AQ group and the control group and between the H-CAPEp

& H-AQ and the control group. In both instances, the empirical distribution of the β̂−estimates

seem to be shifted a bit to the right compared to the study group, and the β̂−estimates tend

to be higher for the study groups. In Table 5.1 we also note that both the mean and median

of the β̂−estimates are substantially lower for both the H-CAPEp & L-AQ group and the H-

CAPEp & H-AQ group compared to the control group. We investigate whether these differences

are significant by again performing a permutation tests similar to the previously performed in

the section. In these hypothesis tests, the alternative hypothesis is that is that the β̂−estimates

tend to be higher for the control group. The results from the permutation tests are summed

up in Table 5.2. All the p-values from the tests are smaller than 0.05 and this indicates that the

β̂−estimates are significantly lower for the study groups, H-CAPEp & L-AQ group and H-CAPEp

& H-AQ. These results mean that as the log-odds of change increases, the probability that the

participants reports a change tend to be higher for the two groups with a CAPEp-score higher

than 65.
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(a) α̂-estimates (b) ˆbet a-estimates

(c) α̂-estimates (d) β̂-estimates

(e) α̂-estimates (f) β̂-estimates

Figure 5.8: Comparison of α̂- and β̂-estimates for all groups.

Table 5.1: Mean and median α̂ and β̂ for the different groups.

Group Mean α̂ Median α̂ Mean β̂ Median β̂

L-CAPEp & L-AQ −2.499 −2.641 0.382 0.318
L-CAPEp & H-AQ −2.704 −2.740 0.353 0.316
H-CAPEp & L-AQ −2.472 −2.676 0.282 0.235
H-CAPEp & H-AQ −2.430 −2.404 0.269 0.235
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Table 5.2: Results from permutation tests of the difference between β̂ for the different study
groups with high CAPEp scores and the control group.

Study group Statistic p-value
H-CAPEp & L-AQ Difference in mean 0.00272
H-CAPEp & L-AQ Difference in median 0.00378
H-CAPEp & H-AQ Difference in median 0.00019
H-CAPEp & H-AQ Difference in median 0.00156

We are also interested in investigating what these results tell about the main hypothesis. In

other words, we are interested in what these estimated coefficients tell us about the different

groups’ tendency to report changes. Recall that the linear predictor α+β log(ρ) is linked to

the probability that a participant reports a change π through the link function in (5.2). There

is a linear relationship between the log odds that a participant reports a change and the log

odds of change, and we make a plot showing this relationship for the different groups. Along

the x-axis, we have the log odds of change between -8 to 8, and along the y-axis, we have the

corresponding average estimated log odds that the participants report change for the different

groups. The average log-odds that a participant reports a change is found by using the mean

value of the α̂ and β̂-estimates for the different groups, which we can see in Table 5.1. The plot

is shown in Figure 5.9. Let us start considering the groups with high score of psychotic traits,

the H-CAPEp & L-AQ group and the H-CAPEp & H-AQ. These two groups are represented by

a green and red line respectively in the plot, and these lines follow each other closely. When

comparing to the control group, L-CAPEp & L-AQ, represented by the purple line, we see that

the average log-odds that participants in the two H-CAPEp groups is higher for low change log-

odds. As we already have discussed, as the log(ρ) increases, the log-odds that a participant

reports a change, log(π/(1−π) increases more for the control group. At values of log(ρ) > 0.270

and log(ρ) > 0.611, the average log(π/(1−π) is larger for the control group than the H-CAPEp &

L-AQ group and the H-CAPEp & H-AQ group respectively. These change log-odds corresponds

to change probabilities of 0.567 for the H-CAPEp & L-AQ group and 0.648 for the H-CAPEp &

H-AQ group. For lower change probabilities than these, the average probability that people in

these two groups report changes is higher for the two groups with high scores of psychotic traits.

This indicates that in contexts where there is less evidence of change according to the Bayesian

observed model, the groups with high scores of psychotic traits are on average more likely to
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Figure 5.9: The average relationship between the change log odds log(ρ)
and the log odds that a change was reported log(π/(1−π))

report changes. This is consistent with the main hypothesis which suggests that people with

psychotic traits have a tendency to infer changes in more stable contexts with less evidence for

change. This is not the case with the L-CAPEp & H-AQ group. For this group the average log

odd that a change is reported is expected to be higher for all change log odds over −7.069, which

corresponds to change probabilities over 0.00085. Thus, people with a high degree of autistic

traits and a low degree of psychotic traits have a lower average tendency to report changes when

the change probability is over 0.00085, which includes most cases. In Figure 5.10, the equivalent

plot to 5.9 is shown, but along the x-axis, we have change probabilities pi , and along the y-

axis, we have the corresponding average probabilities that changes as reported, P̂ (Yi |pi ). If we

compare this plot to the one in
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Figure 5.10: The average of the probability that a change was reported, P̂ (Yi = 1|pi ), for change
probabilities pi between 0 and 1

.
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6 | Modelling using CAPEp and AQ as covariates

In Section 5, we conducted analyses by categorizing participants into groups based on AQ and

CAPEp cut-off scores. Through this analysis, we discovered significant differences among the

groups. These findings are interesting as they show that there are differences between the groups

based on cut-off scores that have previously been used for the bunny task. However, as dis-

cussed earlier, a potential problem with this type of analysis is that it could be sensitive to where

the cut-off scores are set. In this section, we do not divide people into groups. We are instead

interested in the relationship between the choices of the participants and their corresponding

CAPEp and AQ scores. In particular, we aim to investigate how increments in AQ or CAPEp score

influence participants’ inclination to infer changes for various change probabilities.

The model considered in this section, similar to the logit model described in Section 5.2, also has

the binary change choices as responses. However, instead of fitting a model for each participant,

we use CAPEp and AQ score as covariates, fitting a single model to all the participant data. The

data consists of repeated observations since each participant makes 488 change choices and has

488 corresponding change probabilities. As discussed in Section 3.6, we can include a random

intercept for each participant to account for the dependency structure in data with repeated

measures for individuals. The model considered in this section is a binary random intercept

model, akin to the example discussed in 3.6. The aim of the modeling is to investigate whether

using AQ and CAPEp as variables yields results consistent with our findings in Section 5.3, and

the fixed effects included are determined accordingly. First, as in the logit model described in

Section 5.2, we have a fixed effect of the change log odds. Furthermore, we include the effects

of the CAPEp and AQ scores. Our previous analysis showed that the mean of the estimated

effect of log odds was significantly lower for groups with high CAPEp scores. Thus, we are inter-

ested in whether increasing CAPEp scores correlate with a lower effect of log odds on the change

choice. To explore this, we include an interaction term between the CAPEp score and the change

log odds in the current model. We also saw that for low change log odds and thus low change

probabilities, the probability that the two groups with high CAPEp scores reported changes was

higher. Therefore, we investigate whether increasing CAPEp scores is generally associated with
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a lower tendency to report changes for low change probabilities. In the previous section, the

results for the two groups with high scores of AQ were mixed. The results of the group with high

scores of AQ and CAPEp, the H-CAPEp & H-AQ group, were similar to the H-CAPEp & L-AQ

group as we see in Figure 5.9. Based on the modeling conducted earlier, we found that when

it came to low change probabilities, the likelihood of reporting changes was nearly identical to

that of the control group. However, the L-CAPEp & H-AQ group generally had lower estimated

probabilities of reporting changes. As the change probability increases, the difference increases.

We are interested in how the effect of the log odds changes with an increased score of AQ, and

we, therefore, include an interaction term between the AQ score and the change in log odds. We

check whether the coefficients in the interaction terms significantly differ from 0, which is done

by performing z-tests. We also conduct z-tests to verify the significance of the other estimated

coefficients.

We also investigate what the estimated values of the coefficients tell about the tendency of re-

porting change for the different participants and whether these results align with our central

hypothesis. We investigate this by considering the estimated probability that a change was re-

ported for different values of change probability and values of AQ and CAPEp. First, we evaluate

the conditional probability that a change was reported for a given individual with a random in-

tercept of zero. Furthermore, we evaluate the marginal probability that a change was reported.

6.1 Binary random intercept logit model

Recall that in Section 5.2, we considered responses y1, . . . , yn , for n = 488 from one participant,

where each change choice yi is whether the participant reported a change or not for observation

number i . We only considered responses for one participant at a time and fitted one model to

each participant. However, this section considers all the binary change choices of all N = 339

participants together. Let (y11, . . . , y1n , . . . , yt1, . . . , yt i , . . . , ytn , . . . , yN n) denote the change choices

of all participants where yt i denotes change choice number i of individual t . To each response

yt i we have a corresponding change oddsρt i whereρt i is change odds number i of participant t .

A response yt i is considered a realization of the random variable Yt i . Equivalent to the example

of the binary random intercept logit model considered in Section 3.6, the responses are binary.
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Let γt ∼ N (0,σ2
w ) denote a random effect corresponding to an individual t . All the responses

yt i for t = 1, . . . , N and i = 1, . . . ,n are assumed conditionally independent given the random

effects γt for t = 1, . . . , N , and yt i |γt ∼ Bernoulli(πt i ). Let AQt and CAPEpt denote the AQ- and

CAPEp score of individual t respectively. In the linear predictor, we include an effect of the AQ

and CAPEp score and the log-odds ρt i . Furthermore, we aim to investigate how the effect of the

change log odds ρt i changes when the AQ and CAPEp score is changed. We include interaction

terms between the log odds ρt i and the AQ score and the CAPEp score. Thus, the linear predictor

is given by

ηt i =β0+β1 ·CAPEpt +β2 ·AQt +β3 log(ρt i )+β4 ·CAPEpt · log(ρt i )+β5 ·AQt · log(ρt i )+γt . (6.1)

The conditional mean µt i = E [Yt i = 1|γt ] =πt i is linked to the linear predictor through

log

(
πt i

1−πt i

)
= ηt i . (6.2)

Letβ= (β0,β1,β2,β3,β4,β5)T and xt i = (1,CAPEpt ,AQt , log(ρt i ),CAPEpt ·log(ρt i ),AQt ·log(ρt i ))T .

The marginal odds that a change was reported, P (Yt i = 1), can then be approximated by (3.34).

According to the model, for a given change log odds log(ρt i ) and AQt score of an individual t ,

increasing the CAPEp score with s units, changes the estimated odds that the individual reports

a change with a factor of

Factor change = exp(β1 · s) ·exp
(
β4 · s · log(ρt i )

)
. (6.3)

The corresponding marginal odds that a change is reported changes with a factor

Factor change = exp

 β̂1 · s√
1+0.6 ·σ2

w

 ·exp

 β̂4 · log(ρt i ) · s√
1+0.6 ·σ2

w

 (6.4)

when the CAPEp score changes with s units.

Furthermore, for a given change log odds log(ρt i ) and CAPEpt score of an individual t , increas-

ing the AQ score with s units, changes the odds that the individual reports a change with a factor
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of

Factor change = exp(β2 · s) ·exp
(
β5 log(ρt i ) · s

)
. (6.5)

For a change of s units of AQt , the marginal odds that a change is reported, changes with

Factor change = exp

 β̂2 · s√
1+0.6 ·σ2

w

 ·exp

 β̂5 · log(ρt i ) · s√
1+0.6 ·σ2

w

. (6.6)

The model is fitted by using maximum likelihood estimation via the glmmTMB()-function from

the glmmTMB-library in R [Brooks et al., 2017]. This function fits a glmm using maximum like-

lihood estimation(MLE) by TMB (Template model builder), while random effects are integrated

out using Laplace approximation. The estimates of the fixed effects are denoted β̂0, β̂1, β̂2, β̂3,

β̂4 and β̂5. The estimate of the random effects’ variance is denoted ˆsi g ma
2
w .

We are interested in whether the regression coefficients significantly differ from 0. We check this

by doing z-tests. Assume that we are considering the coefficient βe with a corresponding MLE

estimate βe . The null hypothesis is

H0 :βe = 0,

and the alternative hypothesis is

H1 :βe ̸= 0.

The z score corresponding to βe is given by

z = β̂e

SD(β̂e )
.

The observed z-statistic z is considered a realization of the random variable Z , which under the

null hypothesis is assumed N (0,1)-distributed. The corresponding p-value is P (Z > |z|). With a

p-value below 0.05, we consider the effect significant.
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Table 6.1: Estimated conditional fixed effects for the binary random intercept logit model.

Conditional fixed effects

Term Coefficient Estimate Std. Error z value Pr(>|z|)
Intercept β̂0 −2.48214 0.37254 −6.66 2.69 ·10−11

CAPEp β̂1 0.01680 0.00759 2.21 0.0269
AQ β̂2 −0.00818 0.00520 −1.573 0.1157

change log odds β̂3 0.40881 0.01454 28.12 < 2 ·10−16

CAPEp:change log odds β̂4 −0.00498 0.00025 −19.67 < 2 ·10−16

change log odds:AQ β̂5 −0.00052 0.00021 −2.45 0.0145

Table 6.2: Estimated variance and standard deviation of random effects in the binary random
intercept logit model.

Random effects variances

Groups Name Variance σ̂2
w Std.Dev σ̂w

1 candidate Intercept 0.8648 0.92993

6.2 Analysis of the results from the binary intercept model

The estimated regression coefficients and their corresponding standard deviation, z-score, and

p-value are presented in Table 6.1. The estimated variance σ̂2
w and standard deviation σ̂w for

the random effects can be seen in Table 6.2. We notice that all estimated coefficients except β̂3

are significantly different from 0.

We start by analyzing the effect of the log odds for different scores of AQ and CAPEp and compare

the results with what we found in Section 5.3. To better understand what a change of unit in AQ

and CAPEp score means, recall the empirical distributions of the scores of the participants in

Figure 2.6. The AQ scores of the participants lie between 43 and 93 and the CAPEp scores lie

between 20 and 58. Changing the scores by one unit is therefore a relatively small change. We

also note that a change of one unit of AQ scores is relatively smaller compared to the range of

AQ scores than the change of one unit in CAPEp is to the range of CAPEp scores. The negative

β̂4-estimate means that increasing the score of CAPEp yields a more negative effect of the log

odds on the change choice. This is consistent with what we found in Section 5.3 where both

groups with a score over the cut-off values for CAPEp had lower estimated effects of the log odds.

Furthermore, we saw that the L-CAPEp & H-AQ group had a slightly lower mean effect of the
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log odds compared to the control group. However, the difference between the groups was not

found to be significant. The negative β̂5-estimate tells that increasing the AQ score lowers the

estimated effect of the change log odds. However, the β̂4-estimate is considerably lower than

the β̂5-estimate, which means that the log odds effect is expected to decrease more when the

CAPEp score is increased compared to when the AQ score in increased with the same number

of units.

Recall that, the factor increment of the odds that a change is reported for a given change log

odds log(ρt i ) and AQt -score of an individual t is given by (6.3) when CAPEp changes by s units.

By inserting the estimates of the regression coefficients, we get

Factor change = exp(0.01860 · s) ·exp
(−0.00498 · s · log(ρt i )

)
.

The factor change of marginal odds is given by (6.4) and by inserting the relevant estimated

coefficients, we get

Factor change = exp

 β̂1 · s√
1+0.6 ·σ2

w

 ·exp

 β̂4 · log(ρt i ) · s√
1+0.6 ·σ2

w

.

In Figure 6.1, we plot this factor change of conditional and marginal odds for different change

log odds values and an increment of CAPEp score s = 10. The figure shows that for change log

odds under 3.37, increasing the CAPEp score is expected to increase the odds that a change is

reported. This corresponds to a change probability of 0.967. For values above this, increasing

the CAPEp score is expected to decrease the probability that a change is reported. This is similar

to what we found in Section 5.3. We found that the two groups with high scores of CAPEp had

higher estimated odds of reporting a change when the change probabilities were below 0.567

and 0.648 for the H-CAPEp & L-AQ group and H-CAPEp & H-AQ group respectively. The

findings in this section suggest that, according to the random intercept model, the tendency

of inferring change in people with elevated scores of CAPEp is generally higher. Only when the

probability that a change has occurred is over 0.967, CAPEp score has a negative correlation with

reporting changes.

77



(a) Conditional odds for a given individual (b) Marginal odds

Figure 6.1: The factor the conditional and marginal odds changes with when the CAPEp in-
creases with 10 unites for different values of change log odds log(ρt i )

Now, we consider an individual with a given CAPEp score and change log odds ρt i . Recall that

changing the AQ score with s unites changes the log-odds that the individual reports a change

with a factor of equal to the one in (6.6). Inserting the estimated regression coefficients yields

Factor change = exp(−0.00818 · s) ·exp
(−0.00052log(ρt i ) · s

)
.

The factor change of marginal odds is estimated by

Factor change ≈ exp

 −0.00818 · s√
1+0.6 ·σ2

w

 ·exp

−0.00052 · log(ρt i ) · s√
1+0.6 ·σ2

w

.

The factor change of the conditional and marginal odds when changing AQ by s = 10 for different

change log odds is shown in Figure 6.2. For all change log odds between −10 and 10, an increase

in AQ score is expected to lower the probability that a change is reported. These results are also

similar to what we found for the L-CAPEp & H-AQ group in Section 5.3, where for most change

log odds, the estimated odds that a change was reported was smaller for the L-CAPEp & H-AQ

compared to the control group.

In addition to finding that the interactions effects are significant, the plots of the factor change of

conditional and marginal odds suggest that these effects have a practical impact on the results.

For example, we see that changing the CAPEp score by 10 is estimated to almost double the

odds that a change is reported for very low change probabilities. Let us now consider a change
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(a) Conditional odds for a given individual (b) Marginal odds

Figure 6.2: The factor the conditional and marginal odds changes with when the AQ increases
with 10 unites for different values of change log odds log(ρt i )

probability of 0.01, which means that the probability for a change is very low according to the

Bayesian model. This probability corresponds to a change probability of approximately −2. If

we consider a change of CAPEp from the minimum of 20 to the maximum of 58, which is a

change of 38, the conditional odds that a change is reported, changes by an estimated factor of

exp(0.01860 ·38) · exp(−0.00498 ·38 · (−2)) = 2.96. This means that the odds has almost tripled

according to the model. To further showcase the practical meaning of the results, we consider

the probability that a change is reported for different change probabilities pt i , AQ scores and

CAPEp scores. First we consider the probability P (Yt i = 1|γt = 0), which is the probability that

a change is reported for a given individual with a mean random effect of γt . We can see these

conditional probabilities for different CAPEp scores, AQ scores and change probabilities in Table

6.3. This table presents the calculated conditional probabilities that a change is reported, given

a range of AQ and CAPEp scores. AQ scores are shown in the first column and range from 50 to

90, while CAPEp scores are displayed in the second column, and ranges from 20 to 50. Each row

of the table represents a unique combination of AQ and CAPEp scores.

The rest of the column names indicate the change probabilities, specifically for pt i values of

0.25, 0.5, 0.75, 0.9, and 0.99. The corresponding probabilities that a change is reported, given the

specific AQ, CAPEp, and pt i values, are displayed in the cells in the table. The equivalent table

for the marginal probabilities P (Yt i = 1) is shown in Table 6.4. These tables show what we have

discussed earlier. For change probabilities pt i ∈ {0.25,0.5,0.75,0.9} which are all below 0.967,

the probability that a change is reported increases when the CAPEp increases. For pt i = 0.99, an
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Table 6.3: Conditional probabilities P (Yt i = 1|γi ) for different values of CAPEP, AQ and change
probabilities pt i .

Conditional probabilities
AQ CAPEp pt i =0.25 pt i =0.5 pt i =0.75 pt i = 0.9 pt i = 0.99

50.00 20.00 0.05 0.07 0.10 0.13 0.22
50.00 30.00 0.07 0.08 0.11 0.13 0.21
50.00 40.00 0.08 0.10 0.12 0.14 0.20
50.00 50.00 0.10 0.11 0.13 0.15 0.19
60.00 20.00 0.05 0.07 0.09 0.12 0.20
60.00 30.00 0.06 0.08 0.10 0.12 0.19
60.00 40.00 0.08 0.09 0.11 0.13 0.19
60.00 50.00 0.09 0.11 0.12 0.14 0.18
70.00 20.00 0.05 0.06 0.08 0.11 0.19
70.00 30.00 0.06 0.07 0.09 0.11 0.18
70.00 40.00 0.07 0.08 0.10 0.12 0.17
70.00 50.00 0.09 0.10 0.11 0.13 0.16
80.00 20.00 0.04 0.06 0.08 0.10 0.17
80.00 30.00 0.05 0.07 0.08 0.10 0.16
80.00 40.00 0.07 0.08 0.09 0.11 0.16
80.00 50.00 0.08 0.09 0.12 0.15
90.00 20.00 0.04 0.05 0.07 0.09 0.16
90.00 30.00 0.05 0.06 0.08 0.10 0.15
90.00 40.00 0.06 0.07 0.09 0.10 0.14
90.00 50.00 0.08 0.08 0.10 0.11 0.13
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Table 6.4: Marginal probabilities P (Yt i = 1) for different values of CAPEP, AQ and change proba-
bilities pt i .

Marginal probabilities
AQ CAPEp pt i = 0.25 pt i = 0.5 pt i = 0.75 pt i =0.9 pt i = 0.99

50.00 20.00 0.09 0.11 0.14 0.17 0.27
50.00 30.00 0.10 0.13 0.15 0.18 0.26
50.00 40.00 0.12 0.14 0.16 0.19 0.25
50.00 50.00 0.14 0.16 0.18 0.19 0.24
60.00 20.00 0.08 0.11 0.13 0.16 0.25
60.00 30.00 0.10 0.12 0.14 0.17 0.24
60.00 40.00 0.12 0.13 0.15 0.18 0.23
60.00 50.00 0.14 0.15 0.17 0.18 0.22
70.00 20.00 0.08 0.10 0.12 0.15 0.23
70.00 30.00 0.09 0.11 0.13 0.16 0.22
70.00 40.00 0.11 0.13 0.14 0.16 0.22
70.00 50.00 0.13 0.14 0.16 0.17 0.21
80.00 20.00 0.08 0.09 0.12 0.14 0.22
80.00 30.00 0.09 0.11 0.13 0.15 0.21
80.00 40.00 0.10 0.12 0.14 0.15 0.20
80.00 50.00 0.12 0.13 0.15 0.16 0.19
90.00 20.00 0.07 0.09 0.11 0.13 0.20
90.00 30.00 0.08 0.10 0.12 0.14 0.20
90.00 40.00 0.10 0.11 0.13 0.14 0.19
90.00 50.00 0.12 0.13 0.14 0.15 0.18
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increment of CAPEp scores is associated with a decrease of probability that a change is reported

according to the model. We also see that for all the change probabilities considered here, an

increment of AQ is associated with a decrease of probability that a change is reported. This

decrease is higher for high change probabilities.
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7 | Closing remarks

In this thesis, we investigated whether individuals with either autistic or psychotic traits, or both,

demonstrate a difference in their tendency to infer change in their environment compared to

the general population. In particular, we focused on the hypothesis that those with autistic

and/or psychotic traits require less evidence before concluding that a fundamental change has

occurred.

To test our hypotheses, we used the ‘bunny task’, a digital task where participants classify bun-

nies into families based on their walking direction. The means of the walking directions repre-

sented the distinct families, and a change of family, that is, a change in mean walking direction,

was the subject of interest. The change probabilities calculated from the Bayesian observer

model were central to analyzing the participants’ decision-making. The change probabilities

aimed to quantify the perceived evidence for a change given the observed walking directions

when the decision was made.

AQ and CAPEp scores were employed to measure the level of autistic and psychotic traits in the

participants, respectively. Our analysis followed two main paths: a group-based comparison

using cut-off scores for CAPEp and AQ, and a generalized mixed model treating CAPEp and AQ

scores as continuous variables.

For the group-based analysis, participants were divided into groups based on cut-off scores of 65

for AQ and 28 for CAPEp. From this analysis, we found no significant differences between the L-

CAPEp & H-AQ group and the control group. We did neither observe any significant differences

between the H-CAPEp & H-AQ group and the control group. Interestingly, contrary to our main

hypothesis, the L-CAPEp & H-AQ group had significantly higher change probabilities when

changes were reported, which does not suggest that people in this group infer changes when

the evidence of change is lower than the control group.

Furthermore, in the group-based analysis, we fitted logit models to each participant to assess

participants’ tendency to report changes in the bunny task. The logit model for a participant

included the change log odds from the Bayesian observer model as an explanatory variable.
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Groups with high CAPEp scores, the H-CAPEp & L-AQ group, and the H-CAPEP & H-AQ group,

showed significantly lower effects from the change log odds, suggesting a less consistent corre-

lation between increased odds and the reporting of change. However, for low change probabili-

ties, the two groups with a high score of CAPEp were more inclined to report changes compared

to the control group. People were less likely to report changes according to the fitted model for

change probabilities exceeding 0.567 and 0.648 for the H-CAPEp & L-AQ group and H-CAPEP &

H-AQ groups respectively. Meanwhile, the L-CAPEp & H-AQ group generally reported changes

less frequently for most change probabilities.

The subsequent generalized mixed model(glmm) analysis, where CAPEp and AQ scores were

treated as continuous explanatory variables, provided further insights. This model also had the

binary change choices as responses, but we fitted one model for all participants with one ran-

dom intercept corresponding to each individual. We found that, according to the fitted model,

increasing the AQ and CAPEp scores were associated with a decreased effect of change log odds,

aligning with our findings when we classified participants based on cut-off scores. Further-

more, the estimates from the fitted glmm indicated that with low change probabilities, increased

CAPEp scores were related to a higher inclination to infer changes. This finding supported our

main hypothesis and matched the results from the group-based analysis, where we saw that the

two groups with high scores of CAPEp had significantly lower effects of change log odds. Fur-

thermore, elevated AQ scores did not correlate with a higher tendency to infer changes, a finding

consistent with the one in the group-analysis, and does not support the main hypothesis.

Therefore, the findings in this thesis indicate that individuals with psychotic traits tend to in-

fer changes in situations where there is less evidence, a trend not observed in individuals with

autistic traits who seemed to underreport changes.

However, there are limitations to the work done in this thesis. The model we used, the Bayesian

observer model, assumes a specific perspective on the task, which might not be entirely re-

flective of how the participants perceive it. For future research, we recommend considering

variations of the Bayesian observer model that could provide a more accurate depiction of the

participants’ points of view. One possibility could be to add uncertainty to the number of de-

grees the mean changes between families. The participants do not know the number of degrees
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the mean changes with, and assuming this is known might be an oversimplification. All par-

ticipants have a mean change between 10 and 80 degrees, and assuming a uniform continuous

prior distribution between 10 and 180 for the mean change can be considered. In further re-

search, considering an alternative Bayesian observer model that accommodates more of the

participants’ decisions could also be an alternative. Our model calculates the probability of a

bunny belonging to a new family, given that the first bunny classified into the first family option

on the screen was correctly classified. However, an alternative model could calculate the con-

ditional probability that the latest bunny belongs to a new family under the assumption that all

preceding bunnies were correctly classified. This model can potentially be more aligned with

the participants’ view, as the participant’s preceding decisions determine the options displayed

on the screen. Consequently, it is plausible that participants make subsequent decisions based

on the assumption that their previous classifications were accurate.

Moreover, it could be beneficial to consider statistics focusing more on the lower end of the

spectrum of change probabilities, especially since we are primarily interested in participants’

decision-making in more stable contexts.

Another potential improvement could be to differentiate between the results from the task’s low

volatility and high volatility blocks. The family sizes are larger in the low volatility block, and

changes occur less frequently. Investigating whether participants with high AQ or CAPEp scores

are more inclined to report changes in these more stable environments would be interesting.

To summarize, our findings reveal compelling differences in how individuals with psychotic

traits perceive changes in their environment. These results provide an important step towards

a better understanding of these traits and suggest areas for future research. However, the lack

of a similar pattern in individuals with autistic traits, who instead seem to underreport changes,

illustrates the complex nature of these traits and the human decision-making process.
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