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Abstract: In this work, a Nonlinear Higher Order Extended State Observer (NHOESO) is presented
to replace the Linear Extended State Observer (LESO) used in Conventional Active Disturbance
Rejection Control (C-ADRC) solutions. In the NHOESO, the standard LESO is completed with
a two-term smooth nonlinear function with saturation-like characteristics. The proposed novel
NHOESO enables precise observation of the generalized disturbances with higher-order derivatives.
The stability of the NHOESO is examined with the aid of the Lyapunov method. A simulation
of an uncertain nonlinear Single-Input–Single-Output (SISO) system with time-varying external
disturbances confirms that the proposed NHOESO copes well with the generalized disturbance,
which is not true for other ESOs.

Keywords: generalized disturbance; Lyapunov method; state estimator; model uncertainty; nonlinear
systems; active disturbance rejection control

1. Introduction

Observers gather increasing amounts of information about the states of systems from
their inputs and outputs [1–6]. The first state observation was made by Luenberger [7] by
observing inputs and outputs, and numerous subsequent versions, including sliding-mode
observers [8] and high-gain observers [9], have been proposed since. Unlike its predecessors,
the Extended State Observer (ESO) was pioneering in its independence from mathematical
models [10]. Active Disturbance Rejection Control (ADRC) was used to estimate the
uninformative dynamics of a nonlinear system as well as the model uncertainties that
contribute to the generalized disturbance [11]. As reported in [10], ADRC was proposed to
address the shortcomings of PID controllers. Several versions of ADRC were based on a
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nonlinear version of the ESO [12] and were parameterized in [13]. The main components of
ADRC are a Tracking Differentiator (TD), a Nonlinear State Error Feedback (NLSEF), and
an Extended State Observer (ESO) [14–16].

1.1. Related Works

In [17], an Unknown Input Observer (UIO) was proposed and used for Disturbance
Accommodation Control (DAC). The external disturbance is considered an extra-state
variable of the plant model. The UIO estimates the entire state, and the disturbance is
cancelled with a specifically selected counteracting control signal. A Disturbance Observer
(DOB) was designed in [18]. It uses the inverse of the nominal transfer function of the
plant and rejects exogenous disturbances. Based on the concept of the DOB, a Multi-loop
Perturbation Compensator (MPEC) was proposed in [19]. A hierarchical and recursive
compensation method effectively compensates the perturbation (i.e., model uncertainty
and external disturbances) to the plant. There was great improvement in the perturbation
attenuation performance as the number of loops increased, but there was a reduction in the
robust stability margin on the modeling error as the loop number increased. As explained
in [20], the UIO offered superior application value compared to the DOB because provided
an estimation of the state variables and did not only estimate the disturbance. A Nonlinear
Disturbance Observer (NDO) was proposed in [21]. Such an NDO has been used in robotic
manipulator systems, such as planar serial manipulators with revolute joints [22], and
multi-fingered robot hands [23].

In [24], an extended high-gain observer for nonlinear MIMO systems, in which the
observer dynamics are faster than the extended system dynamics, was proposed by feeding
back the output estimation error via a nonlinear function, and the nonlinear ESO (NLESO)
was designed. There are two types of nonlinear functions: those that fit the rule of “big
error, small gain”, and those that fit the rule of “small error, big gain” [25]. the nonlinear
function is generally chosen as a piecewise continuous, saturating, monotonically increasing
function [26–28]. The nonlinear gains of the NLESO are designed to reduce the “peaking
phenomenon” and to avoid large transient behaviors [29]. A nonlinear observer was also
used to guarantee fast convergence and robustness concerning noise [30]. In [31,32], a
generic NLESO has been given. In [33,34], two different nonlinear functions have been
proposed. These nonlinear functions have not only a nonlinear characteristic but also have
better smoothness properties. In particular, these functions can be separately adjusted to
be suited to the practical application with different requirements through three design
parameters. A function with two design parameters that change the shape and range
of the function was proposed in [35]. A non-smooth function, which is a combination
of linear and nonlinear terms, has been proposed in [25,26,28,36–38] with two design
parameters. Unfortunately, using this function has introduced a high-frequency chattering
phenomenon [33,35]. The work in [39] selected the hyperbolic tangent function without
any parameter to ensure rapid convergence. In [40], the output estimation error was fed
back using both nonlinear and switching terms to establish a novel finite-time convergent
ESO. The motion control of a speed turntable with a temperature box was applied with the
proposed ESO. This ESO performed better than a traditional ESO based on the experimental
results. In [41], an ESO with time-varying gain was introduced to reduce drastically the
peaking value. A detailed analysis with rigorous mathematical proof for the NLESO, which
is the backbone of ADRC, was given in [32]. In [42], an ESO with high-order nonlinearity
was studied using the Describing Function (DF) method. In addition, the nonlinear ESO
and ADRC parameters were tuned using a simple and fast method.

1.2. Paper Contribution

The NHOESO proposed in this paper is based on the conventional ESO and includes
a two-term smooth nonlinear function with saturation-like properties. The proposed
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NHOESO will make it possible to observe the generalized disturbances with high accuracy.
The experiment in [4] demonstrated that the nonlinear function f al(e, α, δ), suggested as

f al(e, α, δ) =

{ e
δ1−α |e| ≤ δ

|e|αsgn(e) |e| > δ
(1)

is rough, and whatever the value of δ is, the phenomenon of high-frequency chattering is
still present. Thus, the main contributions of this paper are as follows:

a. A new class of nonlinear function G(e) : R→ R proposed as

G(e) = Kα|e|αsign(e) + Kβ|e|βe

is used instead of the f al(e, α, δ) function. This nonlinear function has a nonlinear
characteristic and is smooth;

b. Moreover, the curve shape, range, and central location of this function can be
separately adjusted to adapt to the practical application of different situations
and requirements;

c. The saturation-like properties are used to suggest a novel asymptotically convergent
extended state observer. The proposed NHOESO can enhance the observation capa-
bility and asymptotically reduce the estimation error when compared to traditional
extended state observers;

d. Additionally, a precise Lyapunov analysis of the NHOESO and the associated closed-
loop system was performed. The NHOESO-based controller can sustain zero tracking
error and is asymptotically stable.

To the best of our knowledge, no NHOESO for extremely uncertain nonlinear systems
has yet been proposed in the literature. This problem is significant and difficult for reasons
related to theory and practice, which is our incentive for continuing this research endeavor.

1.3. Paper Organization

This paper is outlined as follows. In Section 2, the statement of the underlying problem
is discussed. A LESO and its parameter tuning method are introduced in Section 3. Section 4
presents the suggested NHOESO, which is the contribution of this work. An analysis of the
validity of the observer proposed in Section 5 is based on numerical simulations. Lastly,
Section 6 provides the conclusion.

2. Problem Statement

Given a nth order nonlinear system of relative degree ρ, with ρ ≤ n,
ξ(ρ) = f

(
ξ, . . . , ξ(ρ−1), η, w, t

)
+ b(t)u(t)

y = ξ
.
η = f0

(
η, ξ, . . . , ξ(ρ−1)

) (2)

where ξ is the system’s states, u(t) ∈ C(R,R) is the control input, y(t) ∈ C(R, R) is
the measured output, w(t) ∈ C(R, R) is an external disturbance, b(t) ∈ C(R, R) is the
input gain, and f0 ∈ C(Rn,Rn−ρ) is the nonlinear function that represents the internal
dynamics. f ∈ C(Rρ ×R×R×R,R) is an unknown uncertain function. It should be
noted that System (2) is not in the “pure chain of integrators” form or what is called the
Brunovsky form.

If the ESO is incorporated into the feedback loop, it will guarantee that (2) will be put
into the Brunovsky form up to ρ. Through the ADRC, the generalized disturbance from the
nonlinear system in (2) is removed online using the estimated states ξ̂. As in [43], consider
the following assumptions for System (2).
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Assumption A1. There is information available about the input and output signals of the system
and its relative degree.

3. Linear Extended State Observer (LESO)

Assume ξ1 = y, ξ2 =
.
y, . . . , ξρ = ξ(ρ−1), then,{ .

ξ i = ξi+1 i ∈ {1, 2, . . . , ρ− 1}
.
ξρ = f

(
ξ1, ξ2, . . . , ξρ, w, t

)
+ (b(t)− b0)u + b0u

(3)

Consider the additional state,

ξρ+1 = f + (b(t)− b0)u = L (4)

where L is denoted as the generalized disturbance, which comprises all unidentified external
disturbances, internal dynamics, and uncertainties. Several methods are used to choose the
value of the parameter b0 ∈ R\{0}. In [10], the coefficient b0 is a loose estimation of b(t) in
the range of ±50%, while in [43], the parameter b0 was chosen empirically by the user as a
design parameter.

Assumption A2. There exists an upper bound for the time derivative of the generalized disturbance
(i.e., at least L ∈ C1 and supt∈[0,∞)|L| = M < ∞ where ∈ R).

Based on Assumptions A1 and A2, a (ρ + 1)th order LESO can be designed to estimate
both the generalized disturbances and the states of the system given in (2) following the
method presented by [44],

.
ξ̂ i = ξ̂i+1 + βi

(
y− ξ̂1

)
, i ∈ {1, 2, . . . , ρ− 1}

.
ξ̂ρ = ξ̂ρ+1 + βρ

(
y− ξ̂1

)
+ b0u

.
ξ̂ρ+1 = βρ+1

(
y− ξ̂1

) (5)

where βi is an observer gain coefficient to be adjusted and i = 1, 2, . . . , ρ + 1,
(
y− ξ̂1

)
= e is

the estimation error. The bandwidth-based and pole placement methods are the traditional
techniques to adjust a linear extended state observer. If the aim is to lower the number of
coefficients, the observer gain parameters may be expressed as functions of the bandwidth
ω0 of the LESO. The estimator gains are chosen as

β1
β2
...

βρ+1

 =


a1ω0
a2ω2

0
...

aρ+1ω
ρ+1
0


where ai, i = 1, 2, . . . , ρ + 1 are selected in such a way that the characteristics equation
sρ+1 + a1sρ + . . . + aρs + aρ+1 is stable Hurwitz. Large values of the LESO parameters
will increase the adverse effect of the measurement noise, and thus will decrease the
system performance. Moreover, large values of the LESO parameters lead to the “peaking
phenomenon”, which is caused by multiplying the estimation error e = (y− ξ̂1) by large
values. Therefore, there is a need to adopt a new class of ESO that relieves the effect of
the aforementioned issues. Nonlinear ESO is a new class of ESO that manipulates the
estimation error e = (y− ξ̂1) in a nonlinear fashion and can alleviate the effect of both
measurement noise and the peaking phenomenon.
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4. The Proposed Nonlinear Higher-Order Extended State Observer (NHOESO)
4.1. The NHOESO Definition and Convergence Theorem

To extend the concept of the linear extended state observer (LESO), two major improve-
ments are included in this work. Firstly, a smooth nonlinear error function is introduced.
Secondly, adding more than one augmented state to the proposed NHOESO enables it
to track the generalized disturbance ξρ+1 asymptotically. Moreover, the estimation error
ei(t), i ∈ {1, 2, . . . , ρ} depends on the upper bound of the second derivative of the gener-
alized disturbance ξρ+1. This aspect allows the NHOESO to estimate disturbances and
uncertainties with higher-order derivatives. As was shown in the simulation, these im-
provements provided faster and more accurate estimations of the states ξi, i ∈ {1, 2, . . . , ρ}
and the generalized disturbance ξρ+1. The proposed nonlinear error function also reduced
the chattering phenomenon presented in LESOs. In addition, the proposed NHOESO
produced both a smooth control signal and a minimum overshoot in the output response.

Starting from the nonlinear system of (3) and adding the extended states
ξρ+1 = f + (b(x)− b0)u = L, ξρ+2 =

.
L, System (3) can be written equivalently as

.
ξ i = ξi+1, i ∈ {1, 2, . . . , ρ− 1}
.
ξρ = ξρ+1 + b0u
.
ξρ+1 = ξρ+2
.
ξρ+2 = ∆h

(6)

where ∆h(t) =
..
L.

The proposed NHOESO is described as

.
ξ̂ i = ξ̂i+1 + βiG(e), i ∈ {1, 2, . . . , ρ− 1}
.
ξ̂ρ = ξ̂ρ+1 + βρG(e) + b0u
.
ξ̂ρ+1 = ξ̂ρ+2 + βρ+1G(e)
.
ξ̂ρ+2 = βρ+2G(e)

(7)

where e = (y − ξ̂1) is the estimation error and the parameters βi, i = {1, 2, . . . , ρ + 2}
are the gains of the estimator to be adjusted. It is supposed that βi = aiω0

i, where ai,
i ∈ {1, 2, . . . , ρ + 2} is the related design parameter with each ω0

i, and ω0 is the bandwidth
of the NHOESO estimator.

The function G : R→ R is proposed as

G(e) = Kα|e|αsign(e) + Kβ|e|βe (8)

where e = (y− ξ̂1) is the estimation error, Kα, Kβ, α, and β are positive design parameters,
i.e., α, β > 0. The suggested function G(e) of (8) can be expressed as

G(e) =
(

Kα
|e|α

e
sign(e) + Kβ|e|β

)
e (9)

Since sign (e) = e/| e|, for |e| 6= 0, then

G(e) =
{

0 e = 0
k(e)e e 6= 0

(10)

Function k(e) : R/{0} → R+ is an even function, given as

k(e) = Kα|e|α−1 + Kβ|e|β (11)

To prove the convergence of the NHOESO, the following assumptions are needed:
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Assumption A3. L is a continuously differentiable function.

Assumption A4. There exists Mh ∈ R+ such that supt∈[0,∞)|∆h(t)| = Mh, where ∆h(t) =
..
L.

Assumption A5. V : Rρ+2 → R+ and W : Rρ+2 → R+ are continuously differentiable func-
tions with

λ1‖η‖2 ≤ V(η) ≤ λ2‖η‖2, W(η) = ‖η‖2 (12)

∑ρ+1
i=1

∂V(η)

ηi

(
ηi+1 − aik

(
η1

ω0
ρ

)
·η1

)
− ∂V(η)

∂yρ+2
aρ+2k

(
η1

ω0
ρ

)
η1 ≤ −W(η) (13)

Theorem 1. (NHOESO convergence): Given System (6) and NHOESO (7), it follows that,
under Assumptions A3, A4, and A5, for any initial conditions,

lim
t→∞

∣∣ξi(t)− ξ̂i(t)
∣∣ = O

(
1

ω0
ρ+3−i

)
lim

t→ ∞
ω0 → ∞

∣∣ξi(t)− ξ̂i(t)
∣∣ = 0

where ξi and ξ̂i symbolize the states of (6) and (7) respectively, with i ∈ {1, 2, . . . , ρ + 2}.
Proof: see Appendix A.

4.2. Justification for Adding an Additional Augmented State

The reason to incorporate more additional states in the proposed NHOESO is ex-
plained in this subsection. The analysis of the steady-state estimation error ei(t),
i ∈ {1, 2, . . . , ρ + 1} of the LESO can be found in [11],

lim
t→∞

∣∣ξi − ξ̂i
∣∣ = 1

ω0
ρ+2−i

2Mλ2
max(P)

λmin(P)
(14)

while that of the NHOESO is found in Theorem 1,

lim
t→∞

∣∣ξi − ξ̂i
∣∣ = 1

ω0
ρ+3−i

2Mhλ2
max(P)

λmin(P)
(15)

These results illustrate that the steady-state estimation error lim
t→∞

∣∣ξi − ξ̂i
∣∣ of the

NHOESO is more sensitive to an increase in the bandwidth ω0 than that of the LESO.
This is because of the presence ofω0 in the denominator. Moreover, the steady-state esti-
mation errors are proportional to M for the LESO as in (14) and to Mh for the NHOESO
as in (15), where Mh and M are the limit bounds of the second and first derivatives of the
generalized disturbance ξρ+1, respectively (see Assumptions A2 and A4)

Consider a generalized disturbance ξρ+1, which is a linear function in time, i.e.,

L(t) = at, where a is a constant. Then ∆ =
.
L = a and ∆h =

..
L = 0, and based on

this, the upper bound M, is a non-zero constant, while Mh is zero. In this case, for a specific
low value of ω0, the steady-state estimation error of the NHOESO in (15) will be zero,
while that of the LESO given in (14) has a non-negligible value. Therefore, the NHOESO is
more suitable than the LESO to give an estimation of the generalized disturbance ξρ+1 of
the linear type. Moreover, a generalized disturbance ξρ+1 with a higher-order derivative
will worsen the steady-state estimation error for the LESO because if the generalized dis-
turbance ξρ+1 is expressed as L(t) = at2, then the upper bound M→ ∞ , as t→ ∞ . The
steady-state estimation error of the LESO will escape to infinity, i.e., lim

t→∞

∣∣ξi − ξ̂i
∣∣→ ∞, and

thus, the LESO will diverge. However, Mh will have a constant value of 2a. Consequently,
the NHOESO will have a small steady-state estimation error for sufficiently large NHOESO
bandwidth ω0. The only weak point of the NHOESO is the time required for the estimated
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generalized disturbance ξ̂3 to be settled to its actual value ξ3, which is analyzed in the
following example.

Consider a situation where the relative degree ρ = 2, and the LESO is expressed as
.
ξ̂1 = ξ̂2 + β1

(
y− ξ̂1

)
,

.
ξ̂2 = ξ̂3 + β2

(
y− ξ̂1

)
+ b0u,

.
ξ̂3 = β3

(
y− ξ̂1

) (16)

The dynamics of the NHOESO given in (7) with G
(
y− ξ̂1

)
= y− ξ̂1 is expressed as

.
ξ̂1 = ξ̂2 + β1

(
y− ξ̂1

)
,

.
ξ̂2 = ξ̂3 + β2

(
y− ξ̂1

)
+ b0u,

.
ξ̂3 = ξ̂4 + β3

(
y− ξ̂1

)
,

.
ξ̂4 = β4(y− ξ1)

(17)

Given that ξ̂4 =
∫

β4(y− ξ1) dt, then (17) can be expressed as
.
ξ̂1 = ξ̂2 + β1

(
y− ξ̂1

)
,

.
ξ̂2 = ξ̂3 + β2

(
y− ξ̂1

)
+ b0u,

.
ξ̂3 = β4

∫ t
0

(
y− ξ̂1

)
dt + β3

(
y− ξ̂1

) (18)

It is shown in Theorem 1 that lim
t→∞

∣∣ξ1 − ξ̂1
∣∣ = 1

ω0
ρ+2

2Mhλ2
max(P)

λmin(P) , where the R.H.S is

a constant (ρ, ω0, λmin(P), λmax(P), and Mh are constants). So, given that y = ξ1 and if
Equation (23) has integration term β4

∫ t
0

(
y− ξ̂1

)
dt, then, the result of the integration will

be constant too. It can be noticed in (16) that the estimated generalized disturbance ξ̂3 is a
function of the error e1 = y− ξ̂1 and will change in accordance with the error. It will settle
to its actual value ξ3 when the estimation error y− ξ̂1 becomes zero. Meanwhile, in the
NHOESO (18), and due to the integration term β4

∫ t
0

(
y− ξ̂1

)
dt, the estimated generalized

disturbance ξ̂3 of the NHOESO will take a longer time to settle to its actual value ξ3, which
requires the following condition:

β4

∫ t

0

(
y− ξ̂1

)
dt + β3

(
y− ξ̂1

)
= 0 (19)

Letting e1 = y− ξ̂1, (19) can be expressed as

β4

∫ t

0
e1 dt + β3e1 = 0 (20)

Taking the derivative of (20) w.r.t t, we obtain

.
e1 = − β4

β3
e1 (21)

Solving (21) w.r.t t, yields

e1(t) = e1(0)exp
(
− β4

β3
t
)

Therefore, the condition (19) will be satisfied at t→ ∞ (i.e., t = − β3
β4

ln
(

e1(t)
e1(0)

)
when e1(t)

has a very small value), or as the ratio β4
β3

is large enough, where e1(t) = e1(0)exp
(
− β4

β3
t
)

will decay faster to zero.
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4.3. Mismatched Disturbances

To satisfy the matched condition, the ESO assumes that the plant is expressed in the
normal form [45,46]. Thus, it can only be applied to systems that can be expressed in
the normal form directly or by changing variables. When a system has zero dynamics,
performing such a transformation can be challenging. There are also nonlinear systems
with disturbances appearing in a different channel of control input, and these systems fail to
satisfy the matching condition. Due to this, the ADRC is no longer able to manipulate this
mismatched disturbance as before. For instance, the following nonlinear model belongs
to a class of uncertain nonlinear systems in a lower triangular form with mismatched
disturbance [47–52]:

ξi = aiξi+1 + φi(ξ1, . . . , ξi) + wi, i ∈ {1, 2, . . . , ρ− 1}
ξρ = φρ

(
ξ1, ξ2, . . . , ξρ

)
+ wρ + bu,

y = ξ1.
(22)

where ξ =
(
ξ1(t), ξ2(t), . . . , ξρ(t)

)T ∈ Rρ is the system state, y(t) ∈ R is the measured out-
put, u(t) ∈ R is the control input, wi(t) ∈ R, i ∈ {1, 2, . . . , ρ} is the unknown exogenous dis-
turbance, and b ∈ R is the control coefficient. The function φi : Ri → R, i ∈ {1, 2, . . . , ρ} .

Theorem 2. A second-order nonlinear system in a lower triangular form with mismatched distur-
bances can be described as follows:

.
ξ1 = a1ξ2 + φ1(ξ1) + w1.
ξ2 = φ2(ξ1, ξ2) + w2 + bu
y = ξ1

(23)

where ξ = (ξ1(t), ξ2(t))
T ∈ R2 is the system’s state, y(t) ∈ R is the measured output,

u(t) ∈ R is the control input, wi(t) ∈ R, i ∈ {1, 2} is the unknown exogenous disturbance,
and b ∈ R is the control coefficient. The function φi : Ri → R, i ∈ {1, 2} . If the function φ1
and the exogenous disturbance w1 are differentiable w.r.t t, System (23) can be transformed
into the following form: 

.
ξ̃1 = ξ̃2,
.
ξ̃2 = f

(
ξ̃1, ξ̃2, w1,

.
w1, w2

)
+ b̂u,

y = ξ̃1.

(24)

where f
(

ξ̃1, ξ̃2, w1,
.

w1, w2

)
= a1φ2

(
ξ̃1,

ξ̃2−φ1(ξ̃1)−w1
a1

)
+

∂φ1(ξ̃1)
∂ξ1

ξ̃2 + a1w2 +
.

w1 and

b̂ = a1b.
Proof: seen Appendix A.

5. Numerical Simulations

To assess the effectiveness of the suggested NHOESO, the following nonlinear SISO
system is considered: 

.
ξ1 = ξ2.
ξ2 = f (ξ1, ξ2) + w(t) + (1 + a3 sin(t))u
y = x1

(25)

where f (ξ1, ξ2) = a1ξ1 + a2sin(ξ2), with a1 = 0.2, a2 = a3 = 0.1, and the external distur-
bances are taken as w(t) = exp(−t) cos(t). The reference r(t) was selected as a periodic
input and was defined as cos(0.5t) imposed at t = 0 s.
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The fall-based control law in this simulation is

u = f al(ẽ1, α1, δ1) + f al(ẽ2, α2, δ2)− ξ̂3 (26)

where

f al(e, α, δ) =

{ e
δ1−α |e| ≤ δ

|e|αsgn(e) |e| > δ

The error of the tracking is steering the control signal given by

(ẽ1, ẽ2)
T = (r1, r2)

T −
(
ξ̂1, ξ̂2

)T
. The desired transient profile vector (r1, r2)

T is obtained
using a conventional Tracking Differentiator (TD), given as [10]:{ .

r1 = r2,
.
r2 = −Rsign

(
r1 − r + r2|r2|

2R

) (27)

Different ESOs have been chosen from the literature to be compared with our pro-
posed NHOESO. They were used to find the estimated states

(
ξ̂1, ξ̂2

)T
and the estimated

generalized disturbance ξ̂3. The combination of the conventional TD of (34), the fall-based
control law of (26), and the proposed NHOESO of (7) is called NHOESO-based ADRC
(written as NADRC in the following). The dynamics of the observers that were used in
these simulations are listed in Table 1. The time responses of these simulations are shown
in Figures 1–4. In this work, an OPI is proposed, which is represented as

OPI = w1
ITAE

N1
+ w2

ISU
N2

+ (28)

where ITAE =
∫ t f

0 t|y− r|dt is the integration of the time absolute error for the output

signal, ISU =
∫ t f

0 v2 dt is the integration of the square of the control signal, IAU =
∫ t f

0 |v|dt
is the integration of the absolute of the control signal, and t f is the final simulation time.
The tuning process of the ADRC units and the conventional techniques was carried out
using the Genetic Algorithm (GA) in the MATLAB® environment to minimize the OPI of
(28). The sample data of the tuned parameters of the ADRC units are given in Table 2. The
performance indices obtained from the numerical simulations are listed in Table 3. It can
be seen that the proposed observer outperformed its counterparts, where the minimum
value of the ITAE of the proposed NHOESO indicates that its time-domain performance
was the best among the other conventional observers found in the literature, while the
minimum delivered energy of the proposed NHOESO is very clear from the value of the
ISU in Table 3.

Table 1. The list of the ESOs used in the comparison.

Index The Type of ESO Dynamics

1 LESO [44]

.
ξ̂1 = ξ̂2 + β1

(
y− ξ̂1

)
.
ξ̂2 = ξ̂3 + β2

(
y− ξ̂1

)
.
ξ̂3 = β3

(
y− ξ̂1

)

2 NLESO type I [33]

.
ξ̂1 = ξ̂2 + β1 f1

(
y− ξ̂1

)
.
ξ̂2 = ξ̂3 + β2 f1

(
y− ξ̂1

)
.
ξ̂3 = β3 f1

(
y− ξ̂1

)
where f1(e) =

b1tan(b2(e−b3)−tan(−b2b3))
π
2 −tan tan(−b2b3)
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Table 1. Cont.

Index The Type of ESO Dynamics

3 NLESO type II [35]

.
ξ̂1 = ξ̂2 + β1 f2

(
y− ξ̂1

)
.
ξ̂2 = ξ̂3 + β2 f2

(
y− ξ̂1

)
.
ξ̂3 = β3 f2

(
y− ξ̂1

)
where f2(e) = b1

(
1− eb2e

)
sign(e)

4 NLESO type III [34]

.
ξ̂1 = ξ̂2 + β1 f3

(
y− ξ̂1

)
.
ξ̂2 = ξ̂3 + β2 f3

(
y− ξ̂1

)
.
ξ̂3 = β3 f3

(
y− ξ̂1

)
where f3(e) = b1(

π
4 − arc tan(b2e−b2(e−b3))

5 NLESO type IV(a) [53]

.
ξ̂1 = ˆ̂ξ2 + β1 f al

(
y− ˆ̂ξ1, α, δ

)
.
ξ̂2 = ˆ̂ξ3 + β2 f al

(
y− ˆ̂ξ1, α, δ

)
.
ξ̂3 = β3 f al

(
y− ˆ̂ξ1, α, δ

)

6 NLESO type IV(b) [25]

.
ξ̂1 = x̂2 + β1 f al

(
y− ˆ̂ξ1, α1, δ1

)
.
ξ̂2 = ˆ̂ξ3 + β2 f al

(
y− ˆ̂ξ1, α2, δ2

)
.
ξ̂3 = β3 f al

(
y− ˆ̂ξ1, α3, δ3

)

7 NLESO type V [39]

.
ξ̂1 = ˆ̂ξ2 + β1tanh

(
y− ˆ̂ξ1

)
.
ξ̂2 = ˆ̂ξ3 + β2tanh

(
y− ˆ̂ξ1

)
.
ξ̂3 = β3 f tanh

(
y− ˆ̂ξ1

)

8 NLESO type VI [29]

.
ξ̂1 = ˆ̂ξ2 + β1 f al

(
y− ˆ̂ξ1, α, δ

)
+ k1

(
y− ˆ̂ξ1

)
.
ξ̂2 = ˆ̂ξ3 + β2 f al

(
y− ˆ̂ξ1, α, δ

)
+ k2

(
y− ˆ̂ξ1

)
.
ξ̂3 = β3 f al

(
y− ˆ̂ξ1, α, δ

)
+ k3

(
y− ˆ̂ξ1

)

9 Proposed NHOESO

.
ξ̂1 = ˆ̂ξ2 + β1G

(
y− ˆ̂ξ1

)
.
ξ̂2 = ˆ̂ξ3 + β2G

(
y− ˆ̂ξ1

)
.
ξ̂3 = ˆ̂ξ4 + β3G

(
y− ˆ̂ξ1

)
.
ξ̂4 = β4G

(
y− ˆ̂ξ1

)
where G(e) = kα|e|αsign(e) + kβ|e|βe

Figures 1 and 2 demonstrate precise reference signal tracking for NADRC, in contrast
to ADRCs based on other verified observers in this work. The suggested NHOESO provided
a much smoother control signal, as seen in Figure 3. The reason for this smoothness in the
control signal was due to the nonlinear characteristic of the NHOESO, where it damped the
spikes in the control signal and minimized the delivered energy to the nonlinear system.
Figure 4 depicts the estimated error by the nine ESOs, including the proposed one, where
the proposed NHOESO had the fewest estimated errors as compared to the other observers.
The actual and estimated states of the model (32) with the NLESO type I are shown in
Figure 5, and the actual and estimated states for the same model with the NHOESO are
shown in Figure 6, where ITAE is the Integral Time-weighted Absolute Error (ITAE) and is

defined as ITAE =
∫ t f

0 t|e| dt [54], and ISU is the Integration of the Square of the controller

energy and is defined as ISU =
∫ t f

0 u2(t) dt [55].
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Table 2. Sample values of the ADRC units.

Parameter Value

β1 46.4494

β2 731.7998

β3 762.1222

β4 2879.2

δ1 0.0150

δ2 0.3316

α1 0.0047

α2 0.0497

α 0.5331

β 0.3342

kα 0.6166

kβ 0.5432

Table 3. The performance indices of the numerical simulations.

Index ESO ITAE ISU

1 LESO 1.714331 7.168854

2 NLESO type I 1.560685 6.682492

3 NLESO type II 1.613618 6.809034

4 NLESO type III 1.604350 6.779854

5 NLESO type IV(a) 1.630781 6.835949

6 NLESO type IV(b) 1.619501 6.696178

7 NLESO type V 1.657292 6.853151

8 NLESO type VI 1.610722 6.768733

9 NHOESO 0.937766 5.373665
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Figure 6b shows an estimated state ξ̂2 that is smoother than the one obtained by
the NLESO type I. In the estimated state of the earlier case, the high-frequency harmonic
disappeared before the fifth second; however, in the case of NLESO type I, it is still there
beyond the fifth second. Moreover, an accurate estimation of the generalized disturbance
was noticed in Figure 6c compared to that in Figure 5c.
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Figure 6. The states of the model (25) using NHOESO; (a) actual states (ξ1, ξ2)
T ; (b) estimated states(

ξ̂1, ξ̂2
)T ; (c) generalized disturbance

(
ξ3, ξ̂3

)T .

In the NHOESO, the smoothness of the control signal u and the minimum overshoot
in the output response were due to using the proposed nonlinear error function G with the
following features: it is a smooth function; it has high gain near the origin and a small gain
with large error values. Another reason for these enhancements was the extra augmented
ξρ+2 state in the proposed NHOESO, which allowed for the precise observation of the
generalized disturbance ξρ+1 with higher-order derivatives.

6. Conclusions

In this work, a novel NHOESO is proposed with two salient features, i.e., the smooth
nonlinear saturation-like error function and the additional state added to the conventional
ESO. Utilizing this NHOESO allows for greater estimation accuracy in system states and
generalized disturbance. Moreover, an extra state adds greater flexibility to the NHOESO in
dealing with generalized disturbance with nonzero higher-order derivatives. In comparison
to several ESOs proposed in the literature, the simulation results of the proposed NHOESO
applied on an academic example show an outstanding output performance and smoother
control signal.
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Appendix A Proof of Theorems 1 and 2

Theorem A1. (NHOESO convergence): Given System (6) and NHOESO (7), it follows that,
under Assumptions 3, 4, and 5, for any initial conditions,

lim
t→∞

∣∣ξi(t)− ξ̂i(t)
∣∣ = O

(
1

ω0
ρ+3−i

)
lim

t→ ∞
ω0 → ∞

∣∣ξi(t)− ξ̂i(t)
∣∣ = 0

where ξi and ξ̂i symbolize the states of (6) and (7) respectively, with i ∈ {1, 2, . . . , ρ + 2}.

Proof of Theorem A1: Let ei = ξi − ξ̂i, i ∈ {1, 2, . . . , ρ + 2}. Correspondingly, let

ηi = ω0
ρ+1−iei

(
t

ω0

)
, i ∈ {1, 2, . . . , ρ + 2} (A1)

Then, the dynamics of the estimation error can be expressed in time-scaled form, as

dη1
dt = η2 − a1k

(
η1

ω0
ρ

)
η1

dη2
dt = η3 − a2k

(
η1

ω0
ρ

)
η1

...
dηρ

dt = ηρ+1 − aρk
(

η1
ω0

ρ

)
η1

dηρ+1
dt = ηρ+2 − aρ+1k

(
η1

ω0
ρ

)
η1

dηρ+2
dt = ∆h

ω0
2 − aρ+2k

(
η1

ω0
ρ

)
η1

(A2)

Let the candidate Lyapunov functions V, W : Rρ+2 → R+ denoted by
V(η) = 〈Pη, η〉 = ηT Pη, with η ∈ Rρ+2 and where P is a positive definite symmetric ma-
trix. Consider (12) of Assumption A5 with λ1 = λmin(P) and λ2 = λmax(P), where λmin(P)
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and λmax(P) are the minimum and maximum eigenvalues of P, respectively. Finding
.

V
w.r.t t over η (over the solution (A2)) is achieved in the following way:

.
V(η)

∣∣∣
along (A2)

= ∑ρ+2
i=1

∂V(η)

∂ηi

.
ηi(t)

Then,

.
V(η)

∣∣∣
along (A2)

= ∑ρ+1
i=1

∂V(η)

ηi

(
ηi+1(t)− aik

(
η1(t)
ω0

ρ

)
·η1(t)

)
− ∂V(η)

∂ηρ+2
aρ+2k

(
η1(t)
ω0

ρ

)
·η1(t) +

∂V(η)

∂ηρ+2

∆h
ω02

Consider (13) of Assumption A5, then,

.
V(η)

∣∣∣
along (A.2)

≤ −W(η) +
∂V(η)

∂ηρ+2

∆h
ω02

As V(η) ≤ λmax(P)‖η‖2 and
∣∣∣ ∂V(η)

∂ηρ+2

∣∣∣ ≤ ‖ ∂V(η)
∂η ‖, then

∣∣∣ ∂V
∂ηρ+2

∣∣∣ ≤ 2λmax(P)η. As

V(η) ≤ λmax(P)‖η‖2 = λmax(P)W(η), thus, −W(η) ≤ − V(η)
λmax( P) . Finally, because

λmin(P)‖η‖2 ≤ V(η), this leads to ‖ η ‖ ≤
√

V(η)
λmin(P) . Based on this and given Assumption

A4,
.

V(η) becomes,

.
V(η) ≤ − V(η)

λmax(P)
+

Mh
ω02 2λmax(P)

√
V(η)√

λmin(P)
,

Since d
dt

√
V(η) = 1

2
1√

V(η)

.
V(η), then

d
dt

√
V(η) ≤ 1

2
1√

V(η)

(
− V(η)

λmax(P)
+

Mh
ω02 2λmax(P)

√
V(η)√

λmin(η)

)

which gives
d
dt

√
V(η) ≤ −

√
V(η)

2λmax(P)
+

Mh
ω02

λmax(P)√
λmin(P)

(A3)

Given that (A3) is an ordinary first ODE, it can be solved as√
V(η) ≤ 2Mhλ2

max(P)
ω02

√
λmin(P)

(
1− e−

t
2λmax(P)

)
+
√

V(η(0))e−
t

2λmax(P)

From Assumption A5, we have λmin(P)‖η‖2 ≤ V(η).

This leads to ‖ η ‖ ≤
√

V(η)
λmin(P) . Then,

‖ η ‖ ≤
√

1
λmin(P)

(
2Mhλ2

max(P)
ω02

√
λmin(P)

(
1− e−

t
2λmax(P)

)
+
√

V(η(0))e−
t

2λmax(P)

)

which gives

‖ η ‖ ≤ 2Mhλ2
max(P)

ω02λmin(P)

(
1− e−

t
2λmax(P)

)
+

√
V(η(0))
λmin(P)

e−
t

2λmax(P) (A4)
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It results from (A1) that

∣∣ξi − ξ̂i
∣∣ ≤ 1

ω0
ρ+1−i η(ω0t)

It follows from (A4) that

∣∣ξi − ξ̂i
∣∣ ≤ 1

ω0
ρ+1−i

(
2Mhλ2

max(P)
ω02λmin(P)

(
1− e−

ω0t
2λmax(P)

)
+

√
V(η(0))
λmin(P)

e−
ω0t

2λmax(P)

)

Finally,

lim
t→∞

∣∣ξi − ξ̂i
∣∣ = 1

ω0
ρ+3−i

2Mhλ2
max(P)

λmin(P)
= O

(
1

ω0
ρ+3−i

)
(A5)

�

Theorem A2. A second-order nonlinear system in a lower triangular form with mismatched
disturbances can be described as follows:

.
ξ1 = a1ξ2 + φ1(ξ1) + w1,
.
ξ2 = φ2(ξ1, ξ2) + w2 + bu,
y = ξ1

(A6)

where ξ = (ξ1(t), ξ2(t))
T ∈ R2 is the system state, y(t) ∈ R is the measured output,

u(t) ∈ R is the control input, wi(t) ∈ R, i ∈ {1, 2} is the unknown exogenous disturbance,
and b ∈ R is the control coefficient. The function φi : Ri → R, i ∈ {1, 2} . If the function φ1
and the exogenous disturbance w1 are differentiable w.r.t t, System (A6) can be transformed
into the following form: 

.
ξ̃1 = ξ̃2,
.
ξ̃2 = f

(
ξ̃1, ξ̃2, w1,

.
w1, w2

)
+ b̂u,

y = ξ̃1.

(A7)

where f
(

ξ̃1, ξ̃2, w1,
.

w1, w2

)
= a1φ2

(
ξ̃1,

ξ̃2−φ1(ξ̃1)−w1
a1

)
+

∂φ1(ξ̃1)
∂ξ1

ξ̃2 + a1w2 +
.

w1 and

b̂ = a1b.

Proof of Theorem A2. Let ξ̃1 = ξ1, and ξ̃2 =
.
ξ1.Then,

.
ξ̃2 = a1

.
ξ2 +

∂φ1(ξ1)

∂ξ1

.
ξ1 +

.
w1 (A8)

By substituting (A7) into (A8), we obtain

.
ξ̃2 = a1φ2

(
ξ̃1, ξ2

)
+

∂φ1

(
ξ̃1

)
∂ξ1

ξ̃2 + a1w2 +
.

w1 + a1bu (A9)

Since ξ2 =
ξ̃2−φ1(ξ̃1)−w1

a1
, then (A9) can be expressed as

.
ξ̃2 = a1φ2

ξ̃1,
ξ̃2 − φ1

(
ξ̃1

)
− w1

a1

+
∂φ1

(
ξ̃1

)
∂ξ1

ξ̃2 + a1w2 +
.

w1 + a1bu
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Finally, System (A6) can be defined as
.
ξ̃1 = ξ̃2,
.
ξ̃2 = f

(
ξ̃1, ξ̃2, w1,

.
w1, w2

)
+ b̂u,

y = ξ̃1.

where f
(

ξ̃1, ξ̃2, w1,
.

w1, w2

)
= a1φ2

(
ξ̃1,

ξ̃2−φ1(ξ̃1)−w1
a1

)
+

∂φ1(ξ̃1)
∂ξ1

ξ̃2 + a1w2 +
.

w1

b̂ = a1b

Theorem 2 can be generalized easily for ρth order uncertain nonlinear systems in a
lower triangular form with mismatched disturbance wi(t), i ∈ {1, 2 . . . , ρ}, as in (A6). �
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