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Wave dispersion in moderate 
channel turbulence
Chiara Pilloton 1, Claudio Lugni 1,4,5, Giorgio Graziani 3 & Francesco Fedele 2*

We study channel turbulence by interpreting its vorticity as a random sea of ocean wave packet 
analogues. In particular, we investigate the ocean-like properties of vortical packets applying 
stochastic methods developed for oceanic fields. Taylor’s hypothesis of frozen eddies does not hold 
when turbulence is not weak, and vortical packets change shape as they are advected by the mean 
flow, altering their own speed. This is the physical manifestation of a hidden wave dispersion of 
turbulence. Our analysis at the bulk Reynolds number Reb = 5600 suggests that turbulent fluctuations 
behave dispersively as gravity-capillary waves, with capillarity being dominant near the wall region.

Unlike laminar flows where particles have smooth and highly ordered paths, turbulent channel flows are char-
acterized by velocity fluctuations and a highly disordered motion. Turbulent flow is generally dominated by a 
chaotic motion of fluid particles that are advected in an irregular flow varying in space and time. This observation 
led Taylor1 to describe a turbulent flow as filled by frozen vortices that are advected downstream by the mean 
flow. This is Taylor’s hypothesis, which essentially holds in the weak turbulence regime, when flow fluctuations 
around the mean are small compared to the large-scale flow. Then, eddies can be considered as passive scalars 
transported at the mean flow velocity, or Taylor speed. However, when the turbulent flow is not weak, eddies 
undergo a distortion of their shapes as they are advected by the mean stream. Such shape-changing dynamics can 
speed up or slowdown the vortices, while being advected at a different speed than the mean flow velocity2–6. Thus, 
the speed of coherent turbulent structures includes not only a dynamical velocity, which accounts primarily for 
their inertia, but also a geometric component. This can be interpreted as a self-propulsion velocity2 induced by 
the shape-changing deformations of the flow structures, similar to that of a low Reynolds number swimmer7. In 
this case, the dynamical velocity is null since inertia is neglected and the swimmer’s velocity is uniquely deter-
mined by the geometry of the sequence of its body’s shapes. In a fixed laboratory frame, we observe the swim-
mer drifting as its body’s shape varies in time. In a frame moving with the swimmer we just observe his body’s 
shape variations. In wave mechanics, the recently noticed slowdown effect of crests of dominant oceanic wave 
groups8 can be explained in terms of geometric phase velocities9. In particular, in deep waters the largest wave 
of a group tends to slow down as it reaches the maximum height at focus and then speed up10. On the contrary, 
in capillary wave groups the largest crest tends to speed up before focus and then slow down. In both cases, the 
crest of the wave group changes its shape while slowing down or speeding up, as the kinematic manifestation of 
the natural dispersion of surface gravity waves10. Such a behaviour is analogous to that of turbulent vortices that 
change their shape as they are advected by the flow.

In this work we study channel flow turbulence by interpreting its vorticity as a random sea of ocean wave 
groups analogues. We then investigate the space-time evolution of its vortical packets and their wave-like prop-
erties supported by direct numerical simulations (DNS, hereafter). In this regard, it is well established that Self-
Sustaining Processes (SSP)11–13 capture the essence of turbulent structures in channel flows: streamwise vortical 
rolls remodulate the streamwise velocity in the form of streaks by redistributing the momentum in the crossflow 
planes. The streaks are unstable to spanwise disturbances leading to a streamwise ondulation, which regenerates 
the streamwise rolls via a nonlinear self-interaction, and the process repeats sustaining itself11,12. Thus, in this 
work we will investigate the dispersive properties of both spanwise and streamwise vorticity fields. To do so, 
we use stochastic methods developed for random oceanic fields, in particular the theory of quasi-determinism 
(QD) for ocean waves14–17. We aim at verifying the hypothesis that Navier–Stokes turbulence hides an ocean-
like dispersion behaviour that governs the shape-changing dynamics of vortices, in analogy with the evolution 
of oceanic wave groups9,10.

The paper is structured as follows. We first briefly overview the theoretical results on the wave dispersion of 
axisymmetric turbulent flows18. Then, we introduce the case study of DNS turbulent channel flows simulations, 
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and then overview Taylor’s hypothesis1 in relation to our work. We then provide evidence that when turbulence 
is not weak, deviations from Taylor’s hypothesis relate to a hidden wave-like dispersion of turbulence in analogy 
with surface gravity waves. In doing so, we first review the dispersive properties of surface gravity wave packets 
of an ocean field. Then, we investigate the kinematics of the analogous wave packets of vorticity in turbulent 
channel flows. We then conclude by discussing our results and findings.

Wave dispersion in axisymmetric Navier–Stokes flows
Fedele and Dutykh18,19 investigated the dynamics of non-rotating axisymmetric pipe flows in terms of nonlinear 
soliton bearing equations. They showed that at high Reynolds numbers, the dynamics of perturbations to the 
laminar flow obey a coupled system of nonlinear Camassa–Holm (CH) equations20. These support inviscid 
and smooth localized travelling waves in the form of localized toroidal vortices that concentrate near the pipe 
boundaries (wall vortexons) or wrap around the pipe axis (centre vortexons) in agreement with the analytical 
soliton solutions derived by Fedele21 for small and long-wave disturbances and the nonlinear neutral structures 
derived by Walton22. Such an azimuthal vorticity is the analogue of the spanwise vorticity in channel flows con-
sidered in this work (see Fig. 1). Azimuthal vorticity in the pipe splits into a centre vortexon radiating vorticity 
in the form of wall vortexons. These can under go further splitting before viscosity dissipates them, leading to a 
slug of centre vortexons. The splitting process originates from a radial flux of azimuthal vorticity from the wall 
to the pipe axis23.

Drawing on Fedele and Dutykh18,19,21 consider the axisymmetric perturbation to a laminar pipe fluid flowing 
in the streamwise direction x, with r the radial direction. The associated streamfunction is ψ ∼ A(x, t)φ(r) , where 
φ(r) is the least stable eigenmode of the linearized axisymmetric Navier–Stokes equations around the laminar 
flow solution21 and the amplitude A(x, t) satisfies a CH type equation18

where um is a mean advection velocity, (α, γ ,β) are free parameters, (F, H) are the coefficients of the nonlinear 
terms and r is the radial direction. Here, we added a fifth-order dispersion term ruled by β to model dispersive 
effects beyond axisymmetry. Linearizing around the constant steady state solution A = A0 , the associated phase 
speed of a Fourier wave perturbation ei(kx−ωt) is

(1)∂tA+ um ∂xA− α ∂xxtA− γ ∂xxxA− β∂Axxxxx + F A ∂xA+H A ∂xxxA = 0,

(2)C(k) =
ω(k)

k
=

u0 + αC0k
2 − βk4

1+ αk2
,

Figure 1.   Left: snapshots of the average spanwise vorticity field ωz(x, y, t) and tracking of the encircled eddy. 
Right: details of the shape of the encircled eddy. Time increases from top to bottom, related animation Movie S1.
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where u0 = um + FA0 and C0 = (γ −HA0)/α . The dispersion is of capillary-gravity type. Indeed, the phase 

speed attains its maximum at kc =
√(

−1+
√

1+ α2(C0 − u0)/β
)
/α where dC/dk = 0 . For 0 ≤ k < kc , 

waves behave dispersively as capillary (dC/dk > 0 ) since shorter waves travel faster than longer waves, i.e. 
C(k)− u0 ∼ k2 . For k > kc , the dispersion changes to gravity type with longer waves that travel faster than 
shorter waves (dC/dk < 0 ). When fifth-order dispersion vanishes, i.e. β tends to zero, the capillary brunch 
extends to large wavenumbers since kc tends to infinity and the gravity dispersion brunch disappears. In this 
case, the phase speed tends asymptotically to C → C0 at large k’s.

Such a wave dispersion is associated to a hidden elastic energy that has a counterpart in axisymmetric 
Navier–Stokes flows, which are essentially two-dimensional (2-D) since vortex stretching is absent. To under-
stand the physical origin of such a wave dispersion, Fedele and Dutykh18 consider the 2-D Euler equations for an 
inviscid fluid over the domain V in a Cartesian frame. Given the streamfunction ψ , the divergent-free velocity 
field v =

(
−∂yψ , ∂xψ

)
 and the vorticity ωz = ∂xxψ + ∂yyψ . The equation of motion follows as

where the commutator [f , g] = ∂xf ∂yg − ∂yf ∂xg . Drawing on Morrison24, the Hamiltonian form follows as

where

is the kinetic energy, or Hamiltonian of the system and the non-canonical Poisson brackets are defined as

where δ denotes variational derivative. Energy is conserved as H is an invariant of motion. Such a Hamiltonian 
structure naturally lend itself to a physical analogy between the fluid motion and the deformation of an elastic 
membrane. Indeed, the Hamiltonian H can be interpreted as the elastic energy of a thin membrane subject to 
tensional forces. The surface ψ(x, y, t) represents the time-varying field of vertical displacements of the deformed 
membrane and the vorticity ωz is proportional to the mean curvature κ of the surface ψ . For a given elastic 
energy H of the membrane, curvature κ changes over space and time according to Eq. (4). The membrane sur-
face locally bends sharply if κ increases, or flattens if κ decreases. Since fluid streamlines are the contours of the 
streamfunction ψ , this implies that vortices intensify or attenuate where the surface curvature κ is high or low.

In summary, the theoretical phase speed in Eq. 2 predicts that capillary-type dispersion is active in the inertial 
range of axisymmetric flow turbulence. In the following, we will investigate the dispersive properties of spanwise 
and streamwise vorticity of turbulent channel flows in comparison to the theoretical CH dispersion in Eq. (2).

Turbulence in channel flows
Consider an incompressible three-dimensional (3D) flow U(x, y, z, t) = (u, v,w) in a channel of rectangular 
cross-section. The horizontal x-axis is in the streamwise direction of negative pressure gradients. The vertical 
y-axis is in the wall-normal direction pointing from the lower to the upper wall. Finally, the spanwise z-axis 
is chosen so that (x, y, z) is an orthonormal coordinate system. The channel height is Ly = 2δ , the streamwise 
length is Lx = 4πδ and the width Lz = 2πδ with δ the half channel height. At the bottom y = 0 and at the top of 
the wall y = 2δ . The flow in periodic in both streamwise and spanwise directions. We shall investigate numeri-
cally the case of a turbulent flow at the bulk Reynolds number Reb = 5600 , or the centerline Reynolds number 
Rec = 3300 , and the relevant flow parameters are described in the “Methods” section. The simulated turbulent 
flow is generally characterized by a chaotic motion of vortices advected in an irregular and space-time varying 
flow field. In particular, Fig. 1 depicts vortices in the simulated field being mainly advected by the mean flow. 
A closer look at the flow dynamics reveals that the (encircled) vortical structure created at the wall is advected 
and lifted up near the centre of the channel (related animation Movie S1). In a reference frame moving with the 
vortex, it is evident that the flow structure, while being advected by the mean flow, changes its shape continuously 
by focusing and defocusing its energy content through a modulation of its vorticity. Since we want to investi-
gate the dispersive character of turbulence, without loosing generality and to easily manage the computational 
complexity of the data analysis, we will study spanwise averages of vorticity and velocity fields. Such an average 
does not annihilate the dispersive features of the flow as discussed below.

Beyond Taylor’s hypothesis
In channel flow turbulence vortical patches breath and deform while being advected downstream by the mean 
flow. In this case, the velocity U of a vortical structure can be decomposed as2

where the dynamical velocity Ud , or Taylor speed1, relates to the inertia of the turbulent flow and to the exter-
nal forcing (e.g. pressure gradients), and Ug is the geometric velocity induced by the deformation of vortices2. 
When turbulence is weak, vortices are transported passively at the mean flow speed Um , i.e. Ud ≈ Um , and the 
geometric component is negligible2,3. When turbulence is not weak, Fedele et al.2 showed that the geometric 

(3)∂tωz = −v · ∇ωz = −[ψ ,ωz],

(4)∂tωz =
{
ωz ,H

}
,

(5)H =
1

2

∫

V
|∇ψ |2 dV = −

1

2

∫

V
ωzψ dV

(6){F, G} =
∫

V
ωz

[
δF

δωz
,
δG

δωz

]
dV ,

(7)U = Ud + Ug ,
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velocity Ug is significant and it is induced by the shape-changing dynamics of vortices. In particular, consider the 
spanwise vorticity field ωz . According to Taylor’s hypothesis1, turbulent flow is filled by frozen vortices advected 
downstream with the dynamical velocity2,3

where brackets �·�x,z denote space average in the x and z directions and ∂t and ∂x denote time and space differen-
tiation. In our study case, turbulence is not weak and Um and Ud differ as shown in Fig. 2. Note that the dynami-
cal velocity Ud does not tend to zero at the wall because vorticity and its temporal and spatial gradients do not 
vanish at the wall. Similar trend is also observed in the experiments by Fedele et al.2. The excess mean velocity 
Um − Ud is the geometric component Ug , which is not negligible since the turbulent fluctuations are not weak. 
Thus, vortices are advected at a speed different than the Taylor, or dynamical speed Ud

3. Fedele et al.2 showed that 
their shape changing dynamics induces an additional self-propulsion velocity, or geometric speed Ug . A large 
excess of geometric velocity implies a strong regime of turbulence and Taylor’s hypothesis is not satisfied at all2,3.

In the following, we will show that the occurrence of geometric velocities is the kinematic manifestation of 
a hidden ocean-like dispersion of turbulence in analogy with surface gravity waves. To do so, we first briefly 
overview the dispersive properties of ocean wave groups and then investigate the ocean-like dispersion of the 
analogous wave groups, or packets of spanwise and streamwise vorticity.

Slowdown and speedup of dispersive surface gravity waves
In a typical oceanic sea state, when the wind blows on an initially flat sea surface it generates first capillary waves, 
i.e. short waves (from about a few millimetres and up to a couple of centimetres) whose propagation is dominated 
by surface tension. Though small, under the action of the wind, capillary waves tends to group and grow in size, 
both in wavelength and amplitude, originating waves for which gravity acceleration dominates their propagation. 
The two restoring mechanisms of surface tension and gravity determine their duration span. A capillary wave 
soon flattens as the wind stops blowing, while a gravity wave, once formed by the wind, continues its propagation 
for long time in the form of a swell even without any forcing wind. Gravity and capillary waves manifest different 
dispersion properties. The dispersion relation, or dependence of the wave frequency ω(k) from the wavenum-
ber k, characterizes the two different type of waves. In particular, for capillary waves ω ∼ k3/2 , while for gravity 
waves in deep water ω ∼ k1/2 . In the former case, the phase speed of the wave is C = ω/k , and shorter capillary 
waves travel faster than longer capillary waves (C ∼ k1/2 ). On the contrary, shorter gravity waves tend to travel 
slower than longer gravity waves (C ∼ k−1/2).

Ocean waves typically travel in groups, or packets, exhibiting a complex propagation during focusing8,14. The 
speed of the largest crest of an unsteady wave group is different than the phase speed9,10. For example, the largest 
crest of a group traveling in deep waters slows down as it attains its maximum amplitude at focus and then speeds 
up in the following decaying phase. On the contrary, crests of capillary wave packets first speeds up while they 
reach their peak and then slow down10. The slowdown or speedup of crests is the kinematic manifestation of the 
natural dispersion of surface gravity waves. Similarly to the speed of vortical patches in Eq. 7, Fedele9 showed 
that the crest speed of the largest wave of a group traveling along the x direction can be decomposed as the 
sum of a dynamical velocity, or phase speed, and a geometric component that depends on the shape-changing 
dynamics of the crest

and the dynamical velocity follows as9

(8)Ud(y, t) = −
�∂tωz∂xωz�x,z
�∂xωz∂xωz�x,z

,

(9)Ccrest = Cd + Cg ,

(10)Cd = −
�∂tη ∂xη�x
�∂xη ∂xη�x

,

U/U
max

y
/

U
d

U
m

Figure 2.   Mean velocity profile Um(y) (black line) and mean dynamical, or Taylor, velocity profile Ud(y) (red 
line).
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where η(x, t) is the vertical displacement of the wave surface from the mean sea level, and brackets �·�x denote 
space average. Fedele9 showed that Cd is close to the phase speed C0 = ω0/k0 , where k0 is the wavenumber at the 
spectral peak and ω0 = ω(k0) is the associated frequency that follows via the dispersion relation. Wave packets 
containing energy in a broad range of wavenumbers manifest greater dispersion and their crests change shape 
significantly during focusing, while slowing down or speeding up10. As a result, in broadband wave packets the 
crest speed differs from the phase speed C0 by the geometric component Cg , as the manifestation of the disper-
sion experienced by the wave group. On the contrary, narrowband wave packets with energy distributed in a 
small range of wavenumbers are weakly dispersive. Thus, they do not exhibit significant speedup/slowdown and 
C ≈ C0

10, or equivalently Cg ≈ 0.
The dispersion properties of surface gravity wave groups are now further explored by way of an analytical 

approach. Without loosing generality we consider a generic one-dimensional (1-D) long-crested wave packet 
traveling along the x direction, whose surface displacements from the mean sea level is η(x, t) . Our results also 
extend to two-dimensional (2-D) short-crested wave packets10. We rescale space and time as dimensionless, 
i.e. x → k0x and t → ω0t . Assume a generic dispersion relation ω(k) and the packet energy is distributed in 
wavenumber space in accord with an amplitude spectrum A(k), where k is normalized by k0 and ω by the cor-
responding frequency ω0 at the spectral peak. Drawing on Fedele et al.10

where α is the defocussing factor with values in [0, 1] and θ(k) is a random phase function of k. In particular, at 
any k, the phases are independent and uniform random variables distributed in [−π ,π ] . When α = 0 , perfect 
focusing occurs at the point x = 0 at time t = 0 . Here, the tallest wave in the group reaches its maximum crest 
height h as a result of perfect phase coherence leading to a constructive superposition of the elementary har-
monic waves whose amplitudes depend on the packet amplitude spectrum A(k). For α > 0 , a degree of phase 
decoherence leads to an imperfect focusing and the maximum height at focus reduces to10 h sin(πα)/(πα) < h . 
Fedele et al.10 demonstrated that wave packets with dispersion ω(k) ∼ kn (n > 0 ) exhibit crest speedup for 
n > 1 (n = 3/2 for capillary waves), while a crest slowdown occurs for 0 < n < 1 (n = 1/2 for deep-water grav-
ity waves).

Consider now the dispersion law ω = k2 of capillary-type waves. If the wave spectrum is Gaussian-shaped

with spectral bandwidth s, the Fourier integral in Eq. (11) can be solved analytically for α = 0 and the surface 
displacements of a perfect focusing group follows as

From Eq. (11), a degree of phase decoherence (0 < α < 1 ) is introduced by convolving η(x, t) with the stochastic 
defocussing kernel f (x;α) , i.e. (η ∗ f )(x) , where

By flipping space with time (x = −t, t = −x) we get the surface displacement η(−t,−x) of a deep-water gravity 
wave packet with dispersion k = ω2 , or ω =

√
k.

The space-time evolution of the wave surface displacements of a Gaussian capillary wave group (spectral 
bandwidth s = 0.3 , defocussing α = 0.1 ) is shown in the top-left panel of Fig. 3. The top-right panel depicts the 
crest height η/ηmax versus the crest speed C/C0 , where C0 is the phase speed at the spectral peak and ηmax is the 
maximum height attained. From the left panel three essential phases are noticeable: a speed-up phase (A) before 
focus, with the maximum crest speed attained at the focusing (B), followed by a slowdown (C) after focus. The 
shape changing of the crest is the result of longer waves being ahead of shorter waves before focus at (A). These 
reach the longer waves at the focus time in (B) and surpass them after focus (C). In the initial phase the crest leans 
backward, it becomes symmetric at focus, and then leans forward after. Note that the speedup and slowdown 
phases are not symmetric because the focusing is imperfect (ηmax ≈ 0.98h ). Thus, the crest speed evolution does 
show hysteresis in the top-right panel. Note that the ratio C/C0 at focus (B) is close to 1.10. Thus, the speedup is 
10% of the phase speed C0 and equals the geometric velocity Cg resulting in significant changes of the crest shape 
during the wave motion. Due to wave dispersion, small-scale waves travel faster than large-scale waves ahead of 
them, which are surpassed after the focusing point where the large peak occurs.

The kinematics of an imperfect focusing of a Gaussian wave group in deep waters (spectral bandwidth s = 0.3 , 
defocussing α = 0.1 ) is depicted in the two bottom panels of the same Fig. 3. Here, in the left panel we observe an 
initial slowdown of the crest before focus (A), with the minimum crest speed attained at focusing (B), followed 
by a phase of speeding-up (C). The crest shape-changing here is the result of the longer waves being behind the 
shorter waves before focusing at (A), then they reach the shorter waves at focus in (B) and surpass them after 
focus (C). In this case, the crest kinematics is anti-symmetric to that of the capillary wave group (see top panels 
of the same Figure). Indeed, before focus the crest leans forward, it shapes symmetrically at focus, and then 
leans backward after. From the bottom-right panel, the ratio C/C0 at focus (B) is close to 0.8, indicating a 20% 
slowdown of the crest speed, and the geometric component Cg ≈ −0.2C0 . Note that small-scale waves travel 

(11)η(x, t) = h

∫ ∞

−∞
A(k) exp [i(kx − ω(k)t + αθ(k))]dk,

(12)A(k) =
1

√
2πs2

e
− (k−1)2

2s2

(13)η(x, t) =
1

√
1+ 2is2t

exp

{
−

1

2s2

[
1−

(1+ is2x)2

1+ 2is2t

]}
.

(14)f (x,α) =
∫ ∞

−∞
exp [i(kx + αθ(k))]dk.
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slower than large-scale waves behind them, the former being surpassed after the focusing point where the large 
peak occurs.

The observed shape changing of the wave crest is the kinematic manifestation of the dispersion of the wave 
group. The crest slowdown or speedup phenomenon occurs when unsteadiness plays a role in the wave group 
propagation, and it has its theoretical origin in the geometric phase framework in quantum mechanics9,25. Note 
that our results and conclusions are also valid for two-dimensional (2-D) short-crested wave packets as shown by 
Fedele et al.10. Nonlinearities make surface gravity waves less dispersive and the effects of slowdown or speedup 
of the dominant crest is slightly reduced, but still significant10,26.

Quasi‑determinism of waves.  Waves of an oceanic sea state are typically modeled as realizations of an 
homogeneous and stationary Gaussian sea27. Consider a two-dimensional (2-D) wave field of surface displace-
ment η(X, t) and position vector X = (x, y) . The space-time structure of the wave field surrounding a very large 
crest height, or surface maximum h that occurred at the point X0 = (x0, y0) at time t0 , can be predicted almost 
surely as h → ∞ . In simple words, the number of realizations of a Gaussian sea surrounding a very large wave 
crest are limited. The wave field can only develop downward from the large peak, and in the limit of infinite 
height h, with probability tending to one it assumes the quasi-deterministic (QD) form given by conditional 
mean27–29

where (·) denotes ensemble average and brackets �·� denote time average. The cross-correlation between the 
surface displacement at the focusing point and that at the surrounding points encodes the wave structure around 
the extreme maximum. We note that the QD model is valid for nonstationary and nonhomogeneous fields and it 
has been applied to nonlinear fields29,30. For one-dimensional (1-D) wave fields and applications discussed below

(15)ηQD(X + X0, t + t0) = η(X + X0, t + t0)|η(X0, t0) = h) = h
�η(X + X0, t + t0)η(X0, t0)�

�η(X0, t0)2�
,

(16)ηQD(x + x0, t + t0) = η(x + x0, t + t0)|η(x0, t0) = h) = h
�η(x + x0, t + t0)η(x0, t0)�

�η(x0, t0)2�
,
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Figure 3.   Kinematics of a Gaussian capillary wave group (top panels) and of a gravity wave group in deep 
waters (bottom panels): (left) space-time evolution of the wave elevation η , (right) hysteresis curve of the crest 
height η/ηmax as a function of the crest speed C/C0 , where ηmax is the maximum crest height and C0 is the phase 
speed. The focusing is imperfect and the wave evolution before and after focus is asymmetric. Waves travel from 
left to right.
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where η(x, t) is the surface displacement. QD theory27–29 is very general as Eq. (15) also applies to three  (3-D) 
and higher dimensional random fields. In our studies, without losing generality we only focus on 2-D fields. We 
note in passing that Schmidt and Schmid31 formulated a Proper Orthogonal Decomposition method based on 
the space-time correlation of turbulent measurements. Such an approach is then applied to estimate conditional 
averages and study the structure of turbulent flows near maxima. Here, we wish to emphasize that the space-time 
correlation in Eq. (15) already encodes the turbulent structure around maxima27–29.

Results: wave dispersion of turbulence
In this section we will investigate the dispersive character of channel turbulence. To bear the high computational 
cost of handling tera-scale data set at hand, without loosing generality we will consider spanwise z-averages of 
vorticity and velocity fields. Such a spanwise average does not annihilate any wave dispersion of the flow. We 
are interested in the large-amplitude vortical structures analogous to the large wave groups of oceanic seas10,29. 
Unlike the small-amplitude vortical structures that occur sparsely over space and time, large-amplitude packets 
are isolated events in space-time. Thus, the 2D spanwise average neither alters their space-time evolution, nor 
their dispersive properties as supported by the following theoretical argument. Consider a large generic 3D 
dispersive wave packet field η advecting along the streamwise direction x. According to QD theory27–29, the wave 
field is represented by the Fourier integral

where S(kx , ky , kz) is the spectrum, or Inverse Fourier transform of the covariance of the wave field and the dis-
persion relation ω = Ukx + α (k2x + k2y + k2z ) includes a dispersionless component (streamwise advection at the 
speed U along x) and a capillary-type component ruled by the parameter α . Averaging along the homogeneous 
spanwise direction z over a length Lz yields the 2D wave field

This averaged field stil l  exhibits capillary-type dispersion and streamwise advection as 
ω̃(kx , ky) = Ukx + α (k2x + k2y) and the associated 2D spectrum

For example, consider the wave packet field η propagating along the streamwise direction (peak wavenumber 
k0 ) with Gaussian-shaped spectrum

where sx , sy , sz are spectral bandwidths in the streamwise, vertical and spanwise directions, respectively. Then,

where ϕ(t) = arctan[ImF(t)/ReF(t)] is the phase of the complex function

where Erf (z) = 2/
√
2π

∫ z
0 e−w2

dw is the error function. Note that F(t) simply modulates the spectrum in time. 
The phase ϕ(t) is independent of the wavenumbers kx , ky and both advection and capillary-type dispersion are 
preserved by the spanwise averaged field. Indeed, the frequencies ω̃(kx , ky) are simply shifted by the wavenum-
ber-independent shift �ω(t) = −dϕ/dt . A similar argument also holds for gravity-wave dispersion. So, if 2D 
spanwise averages of a 3D turbulent field are dispersive, so is their parent 3D field. We note in passing that the 
aforementioned approach has similarities to the covariant migration technique in radar imaging32. Here, (x, y)-
slice measurements of a (x, y, z)-wave field allows extrapolating along the depth z from the knowledge of the 
full wave dispersion.

It is also relevant to study the dispersive properties of spanwise vorticity of 3D incompressible turbulent 
fields, where stretching and tilting are directly connected to vortex deformations given by the conservation of 
the angular momentum and induced by gradient of velocities aligned with the vorticity vector. Although space 
averages partially smooth out vortex dynamics, the information content about vortex deformations is unaltered 
by the spanwise averaged vorticity values in the xy plane. The lengthening or shortening of the filaments in the 
spanwise z direction corresponds to an increase or decrease in size of the vortex patch. Since streaks extend 
mainly in the streamwise direction, 3D turbulence is mainly generated by the action of the spanwise vortex 
stretching mechanism at Reynold number Reτ = 180 (see “Methods” section for parameter definition).

η(x, y, z, t) =
∫ ∫ ∫

S(kx , ky , kz) exp
[
i
(
kxx + kyy + kzz − ω(k)t

)]
dkxdkydkz ,

�η�z =
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η dz =

∫ ∫
S̃(kx , ky , t) exp

[
i
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(
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Spanwise vorticity.  Consider the fluctuations of the mean spanwise vorticity field 
ωz(x, y, t) = �ωz(x, y, z, t)�z , where brackets denote space average in the spanwise direction z. We note that the 
core of the simulated turbulent field is quasi-Gaussian, with spots of high kurtosis ∼ 5 punctuating the field, 
indicating the expected intermittency at the small scales. We use Eq. (16) and explore the dispersion features of 
turbulence by applying Boccotti’s QD theory27,29. To account for the non-homogeneity of the vorticity field in 
space, we apply QD theory to the horizontal cross-sectional vorticity field ω̃z(x, t) = ωz(x, y = y0, t) at a pre-
scribed distance of y = y0 from the wall. We will consider indicative values of y0 near the wall (y+ = 0.027 ) and 
near the channel’s center (y+ = 160.2 ), with the center at y+ = 177.8 . Variations around those positions yield 
the same conclusions. The vorticity field is analogous to the free-surface elevation η of an oceanic wave field, and 
we are interested in the most probable space-time turbulent structure around peaks of vorticity. Such a structure 
resembles a wave group that we refer to as a QD vortical packet.

The space-time evolution of a QD spanwise vortical packet near the wall is estimated from Eq. (16) and shown 
in the top panels of Fig. 4. In particular, the left panel depicts the vorticity fluctuations along the streamwise direc-
tion x at successive instants of time. We observe an asymmetric evolution of the packet growing in amplitude as 
it reaches its maximum peak followed by a decaying phase. The right panel depicts an hysteresis of the peak, or 
crest speed as a function of its vorticity amplitude. This indicates that the packet evolution is asymmetric before 
and after the focus10. The hysteresis could be due to the nonlinear nature of the flow and imperfect focusing. 
Note that the space-time evolution of the QD vortical packet resembles that of a capillary-type wave packet (see 
top panels of Fig. 3): initially the packet speeds up (A-B) as it attains its maximum in B and then slows down 
asymmetrically (B-C). We observe a dispersive trend of gravity-type in the space-time evolution of the QD 
vortical packet near the centre of the channel, as depicted in the bottom panels of the same Fig. 4. The hysteresis 
shown in the right panel of the same figure indicates that the packet slows down as it reaches its peak, and then 
speeds up in the following decaying phase. So, the dispersive behaviour is similar to that of deep-water gravity 
waves (see also the bottom panels of Fig. 3).

Our analysis gives evidence that vorticity dynamics manifests wave-like dispersive properties that vary from 
the wall to the channel’s centre. The small-scale structures near the wall behave dispersively as capillary-type 
waves with a speedup phase before focus followed by a slowdown. On the contrary, the large-scale structures 
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Figure 4.   Kinematics of QD spanwise vortical packets: space-time evolution of a QD vortical packet near the 
wall (left-top panel) and near the channel’s centre (left-bottom panel) of amplitude η . Right panels depict the 
corresponding hysteresis curve of the crest maximum η/ηmax as a function of the crest speed C/Cmax , where 
ηmax and Cmax are the maxima of amplitude and phase speed. The QD packet behaves as a capillary wave-like 
group near the wall and as as deep-water wave group near the channel’s centre (bottom panel). Waves travel 
from left to right.
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near the channel’s centre behave as deep-water waves as they slow down before reaching the focusing point and 
speed up after. This implies that in the boundary layer, initially dominated by small scales, the large scales become 
even more significant. The spanwise vorticity field near the channel’s centre, where gravity-type dispersion in the 
inertial range dominates over the capillary-type regime at the small scales, is analogous to the wave surface field 
of a mature oceanic sea. Here, the large-scale waves in the form of swells propagate purely to gravity dispersion 
and minor small-scale capillary waves on top of the swells are generated because of the local wind33. On the 
contrary, the vorticity field near the wall, where capillary-type dispersion dominates, is analogous to the wave 
field of a young sea, where the small waves generated by a forcing wind are capillary. As waves grow both in size 
an amplitude, eventually gravity effects will rule their propagation.

The wave-like dispersion of the spanwise vorticity ωz can be quantified by estimating the phase speed C(k) 
as a function of the wave number k as3

where �(k, t) is the Fourier spectrum of the spanwise vorticity field ω̃z(x, t) and brackets �·� denote time average. 
The top panels of Fig. 5 show the observed C(k) near the wall and at the channel’s centre. The respective spectra 
S(k) are also shown in the bottom panels. We note that the observed wave dispersion of the spanwise vorticity 
fairly agrees with the theoretical CH dispersion of Eq. (2) indicating a capillary-gravity type dispersive behavior. 
Near the wall, capillarity is dominant at small wavenumbers, or large scales, where energy is mostly localized. 
As a result, the kinematics of the corresponding QD vorticity packet manifests a speed-up of capillary-type 
groups (ω ∼ k2 , see top panels of Fig. 4). Near the channel’s centre, the net effect of the competing capillary-
gravity type dispersion is a mild dominance of gravity. A dispersionless branch (ω ∼ k ) is also observed in the 
inertial range. In physical space, the space-time evolution of the corresponding QD vortical packet undergoes a 
mild slowdown typical of gravity wave groups (see bottom panels of Fig. 4).

The fluctuations of the spanwise vorticity field ω̃z(x, t) near the wall are shown in the top panels of Fig. 6 in 
three different reference systems: (left) fixed laboratory, (central) comoving and (right) desymmetrized frames2,34. 
The respective wavenumber-frequency spectra S(k,ω) are shown in the bottom panels of the same figure. In the 
laboratory frame the field is observed from the fixed Cartesian system used in the DNS simulations. Here, we 
note a drift of the wavy fluctuations of spanwise vorticity due to the inertia of the flow advecting the vortical 
structures and to their shape-changing dynamics. The associated wavenumber-frequency spectrum indicates 
a capillary branch ω ∼ k2 in agreement with the trend observed for the average frequency shown in Fig. 5. The 
same field observed in the comoving frame traveling at the dynamical velocity Ud in Eq. (8) is shown in the central 
panel. Here, a residual drift, or shift is still present and it is induced by the deformation of vortices. Drawing on 
Fedele et al.2, the vorticity field observed in a desymmetrized frame traveling at the total speed Ud + Ug , which 
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Figure 5.   Spanwise vorticity: observed phase velocity C(k) of the field near the wall and the channel’s 
centre (black lines) and theoretical CH dispersion of Eq. (2) (red lines) are shown in the top panels. The 
respective spectra S(k)/Smax normalized by their peak amplitude Smax are shown in the bottom panels. 
Estimated parameters u0,C0,α,β of the CH dispersion are also shown. Wall: u0 = 0.001 , C0 = 0.042 , α = 0.95 , 
β = 1.9 · 10−6 . Center: u0 = 0.0001 , C0 = 0.0658 , α = 0.95 , γ = 7.5 · 10−6.
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includes the geometric velocity, is shown in the right panel. The drift disappears and we can observe the pure 
deformation of the fluctuation field. Moreover, the spectrum has a clear capillary branch ω ∼ k2 as observed in 
the laboratory and comoving frames, which was masked by the advection of the mean flow. This is in agreement 
with the capillary trend observed in the phase speed C(k) near the wall and depicted in the top-left panel of 
Fig. 5. In that figure, C(k) defined in Eq. (17) is an average over frequency of the phase speeds of the elementary 
harmonic waves composing the vorticity field with given wavenumber k.

We note that the dispersion of surface gravity waves is quenched as their wave amplitude increases because 
of nonlinear effects10, a precursor to breaking, or blowup35. Similarly, we expect that at larger Reynolds numbers 
nonlinearities will alter the observed wave dispersion, which then will also depend on the turbulent intensity 
of the flow.

QD spanwise vortical packet structures.  We wish to gain further insights into the space-time evolution 
of spanwise vorticity, deformation of vortices and their wave-like dispersive properties. To do so, we use Eq. (15) 
and apply Boccotti’s QD theory27 to the mean spanwise vorticity field ωz(x, y, t) . The space-time evolution of 
the estimated QD vortical packet focusing near the wall (y+ = 20.2 ) is depicted from top to bottom in the left 
panels of Fig. 7 (related animation Movie S2). To clearly depict the packet dynamics near the wall, the area that 
extends to the centre of the channel (y+ = 177.8 ) is not shown. The QD packet travels from left to right along 
the x direction and attains its maximum at the focusing point at B. In particular, patches of vorticity generated 
at the wall are convected downstream (see first two panels from the top). During such motion the QD vortical 
packet consists of a large vortex patch advected downstream that splits into two vortices before focus. As the 
focus point is approached, the vortex ahead intensifies and speeds up more than the slower vortex behind sug-
gesting a capillary-type dispersion. This is clearly observed in the hysteresis diagram of the speed of the large 
vortical patch shown in the right panel of the same figure. Both vortices dissipate after focus is attained. The 
vortex speed-up is in agreement with inviscid theory that predicts the vortex speed U = Ŵ/L , where Ŵ is the 
circulation and L is the vortex width. As the focusing point is approached, the circulation of the large vortex 
increases more than its size resulting in a speedup. The left panel of Fig. 8 depicts the dynamics of the estimated 
QD vortical packet focusing near the centre of the channel  (y+ = 117.3 ) from top to bottom (related anima-
tion Movie S3). The packet consists mainly of a large vortex patch advected downstream that splits into a very 
small vortex and into a large one before focus, which both dissipate after focusing is attained. No capillary-type 
dispersion is observed. The hysteresis diagram in the right panel of the same figure indicates a mild slowdown 
suggesting a gravity-type dispersion.

We note in passing that the 2D QD vortical packets are large vortices since their size 0.2 < L < 1.9 m cor-
responds to wavenumbers k = 2π/L in the range [3.3, 31.4] rad/m , where L is the streamwise length of the 
vortex. In that range, capillary-type dispersion is dominant near the wall, whereas near the centre the net effect 

Figure 6.   (Top panels) spanwise vorticity field ωz(x, t) near the wall in the (left) laboratory, (centre) comoving 
and (right) desymmetrized frames. The respective wavenumber-frequency spectra are shown in the bottom 
panels.
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is a mild dominance of gravity-type dispersion in agreement with the phase velocities C(k) depicted in the top 
panels of Fig. 5.

Streamwise vorticity.  For completeness, we investigate the wave dispersion properties of the fluctuations 
of the mean streamwise vorticity field   ωx(x, y, t) = �ωx(x, y, z, t)�z . The space-time evolution of the 1D QD 
vortical packet ω̃x(x, t) = ωx(x, y = y+, t) near the wall  (y+ = 0.027 ) and channel’s centre (y+ = 160.2 ) are 
shown in the left panels of Fig. 9. They indicate an asymmetric evolution of the packet growing in amplitude as it 
reaches its maximum peak followed by a decaying phase. The hysteresis of the crest speed (right panels of Fig. 9) 
confirms the capillary wave dispersion of turbulence near the wall and a mild gravity-type at the channel’s center. 
The observed phase velocity  C(k) depicted in the top panels of Fig. 10 is fairly explained by the theoretical CH 
dispersion of Eq. (2) at small wavenumbers, where energy is mostly localized.

The space-time evolution of a QD vortical packet focusing near the wall (y+ = 13.2 ) and its crest speed 
hysteresis are depicted in Fig. 11. The QD packet travels from left to right and focuses at B after speeding-up. Its 
intensification is the result of the interaction of two counter-rotating streamwise vortices. After focus, the two 
vortices dissipate while slowing down the packet indicating a capillary-type wave dispersion. Figure 12 depicts 
the space-time evolution of a QD vortical packet focusing at the channel’s centre (y+ = 177.8 ). A large vortex 
patch is observed advecting downstream and no capillary-type dispersion is observed. The hysteresis diagram 
in the right panel of the same figure indicates a mild slowdown suggesting a gravity-type dispersion.

Finally, we note in passing that the theoretical CH dispersion of Eq. (2) fairly explains the phase speeds of the 
streamwise velocity field as shown in Fig. 13, suggesting a capillary-gravity dispersion of the large scale structures.

Conclusions.  Channel flow turbulence is studied by interpreting its vorticity as a random sea of ocean wave 
packet analogues. The wave-like properties of vortical packets is investigated by applying stochastic methods 
developed for random oceanic fields27–29. Our analysis of a moderate turbulent channel flow at the bulk Reynolds 
number Reb = 5600 provides evidence that the space-time evolution of spanwise and streamwise vorticity fields 
have strong analogy with the dispersive propagation of surface gravity waves. In particular, the small turbulent 
scales characterizing the flow near the wall behave dispersively like capillary waves, speeding up as they grow 
in intensity and then slowing down. On the contrary, large scales near the channel’s centre behave with a mild 
gravity dispersion typical of water waves in deep-waters. They tend to slowdown as they intensify and then to 

Figure 7.   (Left) Space-time evolution of a 2D QD vortical packet of spanwise vorticity ωz focusing near the wall 
at B (y+ = 20.2 ). Time increases from top to bottom, related animation Movie S2. (Right) hysteresis curve of 
the peak amplitude η/ηmax as a function of the peak speed C/Cmax , where ηmax and Cmax are the vorticity and 
speed maxima. The area that extends to the centre of the channel (y+ = 177.8 ) is not shown to clearly depict the 
packet dynamics. Warmer (cooler) colors denote positive (negative) values of vorticity.
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speedup. The observed deviations from Taylor’s hypothesis appear to be the signature of the dispersive nature of 
turbulence. Moreover, the observed wave dispersion fairly agrees with the theoretical dispersion predicted for 
axisymmetric flows18,19,21.

Similarly to surface gravity waves that behave less dispersively as their amplitude increases10, at larger Reyn-
olds number flows we expect nonlinearities to alter wave dispersion, which thus has a dependence on the tur-
bulent intensity of the flow. Finally, our approach to investigate dispersion properties of channel turbulence is 
general and can be extended to 3D fields.

Methods
Direct numerical simulations of channel flow turbulence.  The developed turbulence in channel flow 
is a theoretical case consisting of a flow passing through two infinite parallel planes, driven by a constant pres-
sure gradient. The physical parameters of the flow are the driving pressure gradient and the kinematic viscosity 
of the fluid ν . The flow is characterized by its bulk Reynolds number Reb = Ubd

ν
 based on the channel height 

d = 2δ and the mean bulk velocity Ub = 1
d

∫ d
0 < u(x, y, z, t) >xz dy , where < · >xz denotes space average in the 

x and z directions. We also define the centerline Reynolds number Rec = Ucδ
ν

 with Uc the mean centerline veloc-
ity based on the half channel height δ . The flow is laminar for Rec < 1350 and fully turbulent for Rec > 1800 , 
although coexistence of laminar and turbulent states are evident up to Rec = 3000 . The corresponding friction 
Reynolds number Reτ = uτ d

ν
 depends on the friction velocity uτ . We also define the dimensionless wall coordi-

nate y+ = yuτ /ν , where y is the vertical distance from the wall.
Direct numerical simulations (DNS) were carried out using the open-source software OpenFOAM36. The 

Navier–Stokes equations are numerically solved using the finite volume method and without any turbulence 
modeling of the unresolved smallest scales. This means that the whole range of simulated spatial and temporal 
scales are resolved. We carried out our simulations of a fully developed channel flow turbulence at the bulk 
Reynolds number Reb = 5600 , or the centerline Reynolds number Rec = 3300 and the friction Reynolds number 

Figure 8.   (Left) Space-time evolution of a 2D QD vortical packet of mean spanwise vorticity ωz(x, y, t) 
focusing near the centre of the channel at B (y+ = 117.3 ). Time increases from top to bottom, related animation 
Movie S3. (Right) hysteresis curve of the peak amplitude η/ηmax as a function of the peak speed C/Cmax , where 
ηmax and Cmax are the vorticity and speed maxima. Warmer (cooler) colors denote positive (negative) values of 
vorticity.
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Reτ = 180 . We considered the same channel geometry as in Kim et al.37. In particular, the streamwise channel 
length is Lx = 4πδ , the height Ly = d = 2δ and the width Lz = 2πδ , with δ = 1meter . We used a mesh grid 
with (Nx = 383)× (Ny = 192)× (Nz = 319) points, doubling the resolution of the mesh used in Kim et al.37. 
For more details on the numerical simulations and mesh convergence we refer to Pilloton38. In order to simulate 
a domain of infinite size, periodic boundary condition were applied in the streamwise and spanwise direction 
for the velocity and pressure fields. Otherwise, the walls were treated with Dirichlet boundary condition for the 
velocity field (no slip u = 0 ) and the Neumann condition (∂p/∂n = 0 ) for the pressure field. Simulations were 
carried out with a time step dt = 0.15 using the implicit Crank-Nicolson numerical scheme for discretizing time 
derivatives and second order Gaussian discretization for space derivatives.
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Figure 9.   Kinematics of QD streamwise vortical packets: space-time evolution of a QD vortical packet near the 
wall (left-top panel) and near the channel’s centre (left-bottom panel) of amplitude η . Right panels depict the 
corresponding hysteresis curve of the crest maximum η/ηmax as a function of the crest speed C/Cmax , where 
ηmax and Cmax are the maxima of amplitude and phase speed. The QD packet behaves as a capillary wave-like 
group near the wall and as deep-water wave group near the channel’s centre (bottom panel). Waves travel from 
left to right.
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Figure 10.   Streamwise vorticity: observed phase velocity C(k) of the field near the wall and the channel’s 
centre (black lines) and theoretical CH dispersion of Eq. (2) (red lines) are shown in the top panels. The 
respective spectra S(k)/Smax normalized by their peak amplitude Smax are shown in the bottom panels. 
Estimated parameters u0,C0,α,β of the CH dispersion are also shown. Wall: u0 = 0.001 , C0 = 0.051 , α = 4 
β = 0.003 . Center: u0 = 0.001 , C0 = 0.065,α = 2 , β = 1.3 · 10−5.

Figure 11.   (Left) Space-time evolution of a 2D QD vortical packet of the mean streamwise vorticity ωx(x, y, t) 
focusing near the wall at B (y+ = 13.2 ). Time increases from top to bottom, related animation Movie S4. (Right) 
hysteresis curve of the peak amplitude η/ηmax as a function of the peak speed C/Cmax , where ηmax and Cmax are 
the vorticity and speed maxima. Warmer (cooler) colors denote positive (negative) values of vorticity.
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Figure 12.   (Left) Space-time evolution of a 2D QD vortical packet of the mean streamwise vorticity ωx(x, y, t) 
focusing near the centre of the channel at B (y+ = 177.8 ). Time increases from top to bottom, related animation 
Movie S5. (Right) hysteresis curve of the peak amplitude η/ηmax as a function of the peak speed C/Cmax , where 
ηmax and Cmax are the vorticity and speed maxima. Warmer (cooler) colors denote positive (negative) values of 
vorticity.

C
(k

)[
m

/s
]

Wall

k [rad/m]

S(
k)

/S
m

ax

Center

k [rad/m]

k-5/3 k-5/3

Figure 13.   Streamwise velocity: observed phase speed C(k) of the field near the wall and the channel’s 
centre (black lines) and theoretical CH dispersion of Eq. (2) (red lines) are shown in the top panels. The 
respective spectra S(k)/Smax normalized by their peak amplitude Smax are shown in the bottom panels. 
Estimated parameters u0,C0,α,β of the CH dispersion are also shown. Wall: u0 = 0.001 , C0 = 0.042 , α = 0.95 , 
β = 1.9 · 10−6 . Center: u0 = 0.001 , C0 = 0.064 , α = 4 , β = 2.9 · 10−5.
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