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An image is the abstraction of a thousand words. The meaning and essence of complex topics, ideas, and
concepts can be easily and effectively conveyed visually by a single image rather than a lengthy verbal
description. It is not only essential to teach computers how to recognize and classify images but also
how to generate them. Controlled image generation depicting complex and multiple objects is a challeng-
ing task in computer vision despite the significant advancements in generative modeling. Among the core
challenges, scene graph-based and scene layout-based image generation is a significant problem in com-
puter vision and requires generative models to reason about object relationships and compositionality.
Due to its ease of use, less time cost, and labor needs, image generation/synthesizing models from scene
graphs and layouts are proliferating. In the case of a more significant number of scene graphs and layout
to image generation models, a unique experimental evaluation methodology is required to evaluate the
controlled image generation. To this extent, we, in this work, present a standard methodology to evaluate
the performance of scene graph and scene layout-based image generation models. We perform a compar-
ative analysis of image generation models to evaluate image generation models’ complexity from scene
graphs and scene layouts. We analyze the different components of these models on Visual Genome and
COCO-Stuff datasets. The experimental results show that the scene layout-based image generation out-
performs its graph-based counterpart in most quantitative and qualitative evaluations.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Image generation from texts and natural language descriptions
is a complex problem in computer vision. However, several
attempts have been made to synthesize images from texts by inte-
grating generative adversarial networks (GAN) with recurrent neu-
ral networks (Reed et al., 2016; Reed et al., 2016; Reed et al., 2017;
Zhang et al., 2017). These methods yield impressive results on lim-
ited domains such as fine-grained descriptions of birds or flowers
etc. Usually, the ‘‘text to image synthesis” based methods often
confuse in generating images while using complex sentences con-
taining several objects (Zhang et al., 2017).
The information conveyed by a sentence is represented in a lin-
ear structure in which one word follows another, and the complex
sentences can often explicitly be represented as scene graphs.
Scene graph is a higher-level understanding of relationships
between objects. It is the deep representation of a scene that is
very conducive to many visual tasks such as visual question
answering (VQA) (Antol et al., 2015), image retrieval (Johnson
et al., 2015), image/video captioning (Yang et al., 2019; Zhao
et al., 2022), 3D scene understanding (Kim et al., 2019), image
manipulation (Dhamo et al., 2020) and image generation
(Johnson et al., 2018). In VQA, the scene graphs are derived from
images for visual feature learning and applied to graph networks
(Zhang et al., 2019a) to perform reasoning about questions pro-
vided. With the help of scene graphs, the model can accurately
describe the image semantics without the help of unstructured
text and retrieve the related images more interpretably (Schuster
et al., 2015). To make a full use of semantic relationships between
objects, the image captioning methods mostly rely on natural lan-
guage reasoning models such as recurrent neural network (RNN) or
long short-term memory (LSTM). These language models result in
inaccurate image descriptions, which is why the scene graph-based
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image captioning methods are used (Gao et al., 2018). In 3D scene
understanding, the scene graph-based methods can provide the
numerically accurate analysis of object relationships in a 3D scene.
A 3D scene graph helps in understanding the complex indoor envi-
ronments and other tasks (Armeni et al., 2019).

The image generation based on scene graphs can better deal
with complex scenes containing multiple objects and desired lay-
outs. Object representations, attributes, and pairwise image rela-
tionships mainly reflect semantically structured information in
the scene graphs. Thus, scene graphs help provide favorable rea-
soning and information about vision-text tasks such as image gen-
eration. With such contemporary tasks comes complex challenges.
The scene graph-to-image generation (scene graph to image –
SG2I) is a crucial problem in the computer vision and computer
graphics community. The images generated by existing SG2I-
based algorithms are blurred, and the appearance of objects in
the generated images is hardly understandable, making the SG2I
task challenging.

The general process of image generation from scene graphs is
based on two-step: first, a layout is generated from the scene
graph, and then bounding boxes are constructed to convert the lay-
out into images. Nevertheless, sometimes, it is hard for someone to
design vocabulary-based scene graphs. To bridle this issue, a direct
scene layout to image generation (scene layout to image – SL2I)
method was developed by Zhao et al. (2019b). The proposed
method is based on the core concept of scene graph to image
(SG2I) generation process. As mentioned earlier, traditional SG2I
methods first generate the layouts from scene graphs, but, in the
case of SL2I, the user only needs to define the bounding boxes with
object categories which are used to generate the expected images.

Image generation works based on scene graphs, and layouts are
overgrowing. Since SG2I and SL2I are becoming powerful enough,
they can one day replace the work of scene-generation artists.
There is a clear motivation to design a standardized methodology
and analyze state-of-the-art methods to provide comprehensible
insights on recent developments in SG2I and SL2I generation mod-
els. The standard input types for all such methods are scene graphs.
SL2I methods also incorporate a scene graph-based strategy to syn-
thesize images. The generation of images by scene graphs and lay-
outs is more controllable, but it remains a one-to-many problem.
In order to evaluate the existing proposed works, there is a great
demand to propose a standard methodology to evaluate SG2I and
SL2I methods. We, therefore, propose to compare the SG2I and
SL2I methods in a unified pipeline to generate images. In this
study, we aim to conduct a comparative analysis of image genera-
tion algorithms that are based on scene graphs and layouts. These
methods, if improved, can assist the work of artists, graphic design-
ers and can help crime scene investigators to learn more about the
evidences, visually. In the algorithms addressed in this analysis, it
is only required to define some objects and how they interact with
each other, then one can generate an image based on provided
characteristics and relationships. Moreover, the automatic image
generation process is so vigorous that one day it might replace
the image and video search engines with customized image and
video generation algorithms based on individual user preferences.
We investigated four SG2I and SL2I based algorithms, which are
built upon the pioneer method (Johnson et al., 2018). We used
the identical parameters to test the proposed methods. The differ-
ent components of image generation methods are discussed and
compared in this work.
2. Motivation and paper organization

Different surveys of text-based image synthesis using GANs
have been conducted recently (He et al., 2021; Zhou et al., 2021;
2

Shamsolmoali et al., 2021). However, to the best of our knowledge,
no study has been conducted to provide a comprehensive compar-
ative analysis of scene graph-based and scene layout-based image
generation methods. There is lack of comprehensive comparison of
image generation evaluation metrics, remedies for diverse image
synthesis, and information about stable training. This paper reports
an experimental comparison of the state-of-the-art scene graphs
and scene layout-based image generation methods and provide a
comprehensive knowledge about training of SG2I and SL2I algo-
rithms. The main contributions of this work are as follows:

� A standard methodology is proposed to conduct the compara-
tive analysis of SG2I and SL2I methods is proposed in this work.
To this end, we apply the identical configurations for training
the SG2I and SL2I models from scratch on the Visual Genome
Krishna et al. (2017) and COCO-Stuff Caesar et al. (2018) data-
sets and tested the methods on different hyperparameters.

� A theoretical comparison of different components of SG2I and
SL2I based methods is presented to help better understand
the complexity of image generation methods from scene graphs
and layouts for implementation purposes.

The organization of the paper is as follows. Section 3 presents
the background knowledge of the basicmethods used in image gen-
eration. We provide a comprehensive overview of current state-of-
the-art methods for image generation from texts, scene graphs, and
scene layouts in Section 4. Section 5 provides the methodological
description of SG2I and SL2I based methods. Section 7 is about
implementation details of comparison methods used in this study.
The results of the compared methods are discussed in Section 8
while concluding remarks are presented in Section 10.
3. Background

This section overviews relevant concepts often employed in
constructing image generation pipelines. This unified pipeline con-
sists of three main components; scene graphs, graph convolutional
networks, and generative adversarial networks, as shown in Fig. 2.

3.1. Scene graphs

A scene graph is a graph data structure that encapsulates infor-
mation related to objects and their relationships in a scene. It was
initially proposed for the image retrieval task to search images
containing particular semantic contents (Johnson et al., 2015). As
illustrated in Fig. 1, a complete scene graph includes objects and
relationships and represents the semantics of the scene. Scene
graphs are powerful enough to encode the 2D (Johnson et al.,
2015) and 3D (Armeni et al., 2019) representations of images into
their semantic elements without having any constraints on object
types, attributes, and relationships.

According to Johnson et al. (2018), a scene graph data structure
G contains a set of object categories C and relationship categories
R. The scene graph G can be defined as a tuple consisting of ðO; EÞ,
where O ¼ o1; . . . ; onf g is a set of objects, which may be, for exam-
ple (See Fig. 1), persons (man, boy), places (patio), things (frisbee),
and other parts (arms, legs) with each oi 2 C. E is a set of directed
edges E#O�R� O, which are the relationships between objects,
i.e., geometry (boy on the patio) and actions (man throwing fris-
bee) in the form of oi; r; oj

� �
where oi; oj 2 O and r 2 R.

3.2. Graph convolutional networks

Graphs are commonly used to represent the relationships
between data points in a vector space x 2 Rnð Þ, where xðiÞ is the



Fig. 1. The scene graph on the left contains objects (in blue) and their relationships (in purple). The objects of the scene graph refer to regions of the image on the right.
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value of the signal of node i. The graph neural network (GNN) was
initially proposed to process data representation in a graph domain
(Scarselli et al., 2008), which can handle various types of graphs,
such as cyclic, acyclic, directed, and undirected. A special type of
GNN, called the graph convolutional network (GCN), uses convolu-
tional aggregation. The convolutional layers in a GCN function sim-
ilarly to the traditional 2D convolutional layers in a convolutional
neural network (CNN).

In a GCN, a graph G is defined as a pair ðV ; EÞ, where V denotes
the set of nodes, and E represents the set of edges. A spatial grid of
feature vectors is used as input, and a new spatial grid of vectors is
produced through convolutional aggregates, where the weights are
shared across all neighborhoods. For all objects oi 2 O and edges
oi; r; oj
� � 2 E, the input vectors v i and vr for each node and edge,
respectively, are given as RD

in, and the output vectors v 0
i and v 0

r

for all nodes and edges are RD
out.

In the typical pipeline for scene graph to image generation,
scene graphs are processed end-to-end using GCNs, which com-
prise multiple graph convolutional layers. At each node V and edge
E, the input graph with dimension vector Din computes the new
dimension vectors Dout for each incoming node and edge. The graph
convolution theory applied in GCN can be represented as v i and
v r ;2 RD

in, representing the given input vectors with objects oi 2 O
and edges oi; r; oj

� � 2 E. The output vector in Eq. 1 can be computed
for all nodes and edges using three functions gs; gp, and go, which
take in triple vectors v i;v r , and v j, respectively. The three functions
gs; gp, and go are implemented using a single network by concate-
nating the three input vectors, which are then fed to a multilayer
perceptron (MLP). This results in new vectors for the subject oi,
predicate r, and object oj. Therefore, the formulation can be stated
as follows:

v 0
i; v 0

r 2 RD
out ð1Þ

v 0
r ¼ gp v i;v r ;v j

� � ð2Þ

where v 0
i and v 0

r are the output vectors for object oi, and v 0
c is the

output vector for edges presented in Eq. 2. A candidate vector for
edges starting at oi is computed by collecting all candidates in a
set VS

i , and for all edges terminating at oj, a candidate vector is com-
puted by Vo

i . All methods use a similar GCN formulation for scene
graph to image generation reported in this study.

3.3. Generative adversarial networks

A generative adversarial network (GAN) is a deep neural net-
work proposed by Goodfellow et al. (2014) to solve the generative
modeling problem. The GAN consists of two adversarial models,
3

i.e., generator and discriminator. The generator network G receives
a collection of training examples as input and learns the probabil-
ity distribution to produce data, whereas the discriminator net-
work D distinguishes between real and fake data. Both networks
(generator and discriminator) are trained against each other in a
min–max game strategy, in which D divides the input into two
classes (real or fake), and G tries to fool the discriminator. The most
typical loss function for training a GAN is defined as follows:

min
G

max
D

VðD;GÞ
¼ Ex�pdataðxÞ½logDðxÞ� þ Ez�pzðzÞ½logð1� DðGðzÞÞÞ�

ð3Þ

where a min–max strategy is played between generator G and dis-
criminator D;V is the value function, pdataðxÞ is the actual data dis-
tribution drawn from data x;pzðzÞ is the input noise variable, DðxÞ is
the probability of x where D is trained to maximize the probability
of assigning correct labels to training examples and samples
whereas G is trained to minimize logð1� DðGðzÞÞÞ.

4. Literature review

As of today, few attempts have been made regarding image gen-
eration from scene graphs and layouts (Johnson et al., 2018; Li
et al., 2019; Zhao et al., 2019b; Zhao et al., 2020). That makes image
generation from scene graphs and layouts a bespoke area to work
on. This section provides an overview of related work concerning
image generation from text, scene graphs, and layouts. The goal
of this section is to review image synthesis from different
modalities.

4.1. GANs for image synthesis

Since the inception of GANs, image synthesis has become cru-
cial for many real-world applications that generate synthetic data
to represent different entities. Usually, a generator synthesizes an
image, and a discriminator differentiates between a real and a fake
image. Promising results have been achieved using GANs in differ-
ent fields, such as image generation (Johnson et al., 2018; Isola
et al., 2017), video prediction (Vondrick et al., 2016), texture syn-
thesis (Zhao et al., 2021), natural language processing (Li et al.,
2018), and image style transfer (Karras et al., 2019). GANs can
apply the conditions on category labels by providing the category
labels as an additional input to the generator G and discriminator
D resulting in conditional image synthesis (Gauthier, 2014; Mirza
and Osindero, 2014). However, the discriminator can also be forced
to predict the labels (Odena et al., 2017). Mainly, the GANs are used
in image synthesis, which can produce better synthetic images
than previous state-of-the-art approaches (Salimans et al., 2016;
Mao et al., 2019).



M.U. Hassan, S. Alaliyat and I.A. Hameed Journal of King Saud University – Computer and Information Sciences 35 (2023) 101543
Although the state-of-the-art performance of GANs is visible on
the front end of image generation, the training process of GANs is
often unstable. To overcome this, Wassertein GAN (Arjovsky et al.,
2017) that is an alternative of traditional GAN (Goodfellow et al.,
2014) was proposed for improving the learning stability and get-
ting rid of model collapsing issues during the training process.
Another approach, Unrolled GAN (Metz et al., 2016), was also pro-
posed to address the same problem. Wasserstein GAN (Arjovsky
et al., 2017) uses the Wasserstein distance metric to improve the
learning stability, and Unrolled GAN (Metz et al., 2016) addresses
the same problem by unrolling the optimization process. Image
generation requires high resolution and high fidelity images. For
these reasons, Progressive GAN (Karras et al., 2017) and BigGAN
(Brock et al., 2018) are also a good fit, where Progressive GAN
keeps adding new layers starting from a low-resolution until a
high-resolution fine detail is achieved, and BigGAN is trained on
a very large scale on ImageNet to achieve the high-resolution fine
details of images. In summary, Progressive GAN (Karras et al.,
2017) generates high-resolution images by adding new layers pro-
gressively, and BigGAN (Brock et al., 2018) is trained on a large
scale to achieve high-resolution fine details in the generated
images.

4.2. Image synthesis from scene graphs

Image generation based on scene graphs is a challenging task
that requires a substantial effort to produce recognizable objects
in complex scenes. Most of the methods proposed for image syn-
thesis from scene graphs rely on the use of GCN. One of the first
attempts in this area considered the creation of an image retrieval
framework based on a scene graph formulation (Johnson et al.,
2015). Later, Johnson et al. (Johnson et al., 2018) proposed sg2im,
the pioneer method for image generation using scene graphs. The
sg2im method aims to solve the challenges of image generation
faced by natural language/textual description methods regarding
semantic entity information.

The image generation from scene graphs is also referred to as
conditional image generation, in which the expected image is con-
ditioned on some additional information. The seminal work of
Johnson et al. (2018) focused on scene graphs that contain infor-
mation of multiple objects in the foreground. They used a GCN
which passes the scene graph information along its graph edges.
A scene layout is constructed by predicting the bounding boxes
and segmentation masks, and finally, a cascaded refinement net-
work (CRN) (Chen and Koltun, 2017) is used to convert the pre-
dicted layout into the expected image. Previous approaches
typically involve encoding the scene graph into a vector represen-
tation and then decoding the vector to generate an image having
several drawbacks, such as the loss of spatial information and
the inability to handle complex relationships between objects. To
address these issues, the authors propose a new model that gener-
ates images directly from the scene graph.

To incorporate spatial information into the model, the authors
(Johnson et al., 2018) introduce a new type of layer called a spatial
feature transform (SFT) layer. This layer uses the spatial positions
of objects in the scene graph to transform the feature maps gener-
ated by the generator. The SFT layer enables the model to generate
images that accurately reflect the spatial relationships between
objects in the scene.

Basically, the GCNs are of two types: (i) Spectral GCN and (ii)
Spatial GCN. The former one was proposed by Henaff et al.
(2015) to construct a deep architecture with a slight learning com-
plexity by incorporating a graph estimation procedure for the clas-
sification problem. The latter is built upon classic CNN and
propagation models Zhang et al. (2019). The classic CNNs are
extended to spatial GCNs by mapping the graph data into
4

structure-aware convolution operations in both Euclidean and
non-Euclidean spaces. Li et al. (2019) proposed a method that uses
an external object crop that acts as an anchor to control the gener-
ation task. Their proposed method is different from Johnson et al.
(2018) in three ways. First, external object crops are used; sec-
ondly, they used a Crop Refining Network to convert layouts masks
into images; third, a Crop Selector is introduced to choose the
most-suitable crops from the objects database automatically.

An interactive approach to generate images from scene graphs
using recurrent neural networks by preserving image content
and modifying cumulative images was proposed by Mittal et al.
(Mittal et al., 2019). The method works in three stages, with
increasing levels of complexity. At each stage, more nodes and
edges are added to the scene graph to give more information to
the GCN to generate layout. They used a Scene Layout Network
(SLN) on top of the architecture proposed in Johnson et al. (2018)
that generates the layouts for predicting the bounding boxes. Their
proposed method utilizes the GCN and adversarial image transla-
tion method to generate images in an unsupervised manner. The
generated images still need improvements, such as the images
are blurry and the objects are not generated according to the input
scene graphs. Another work Tripathi et al. (2019) also improved
upon (Johnson et al., 2018) by introducing scene context network.
That work added a context-aware loss for a higher image matching
and introduced two new metrics for measuring the compliance of
generated images with scene graphs: (i) relation score and (ii)
mean opinion relation score.

GCN-based methods present some limitations, i.e., the GCN
sometimes gets confused over relations among attributes, and
finding the correct relation is also laborious. For example, (Man,
right, Woman) and (Woman, left, Man) are always true, but it will
typically result in different illustrations for most cases. Herzig et al.
(2020) proposed a canonical representation based on a method for
scene graph to image generation that respects the relations of attri-
butes by keeping the graph’s information in a canonicalization
process.

4.3. Image synthesis from layouts

Scene layouts are the intermediate states when generating
images from scene graphs. However, Zhao et al. (2019b) pro-
posed an explicit framework of directly generating images from
layouts without the need to define scene graphs manually. The
bounding boxes and object categories are specified at the begin-
ning. Then, a diverse set of images is generated based on the
defined coarse layouts. They also made an extension (Zhao
et al., 2020) to their already proposed work (Zhao et al.,
2019b) by explicitly defining the loss functions and extending
the object feature map module by adding the object-wise atten-
tion to their proposed framework.

Sylvain et al. (2020) proposed an object-centric method to gen-
erate images from layouts. However, their proposed method incor-
porates scene graph-based retrieval to increase the fidelity of
layouts. Therefore, their proposed method is a hybrid of scene
graph-based and layout-based image generation mechanisms.
They proposed an Object-Centric GAN (OC-GAN), which integrates
the scene graphs similarity module to learn the spatial representa-
tions of the objects in a scene layout. One of the limitations of their
method is that a distant look of images generated by most SL2I
generation methods appears to be adhering to the input layouts
and look realistic. However, a closer inspection of these images
reveals that there is a lack of context awareness and location sen-
sitiveness. To overcome these limitations, a final work to date is
proposed by He et al. (2021) by introducing the context-aware fea-
ture transformation module. The generated features are updated
for each object in their proposed method while computing the
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Gram matrix for feature maps to capture the inter-feature correla-
tions, which respect the location sensitiveness of objects.

5. Methods comparison

This section highlights the methodological descriptions of SG2I
and SL2I-based methods used in this analysis. We selected four
methods that are built upon the pioneer work of SG2I method
Johnson et al. (2018) and have identical input and training data.

Creating complex scene images from real-world objects
requires a high-level understanding of computer vision and com-
puter graphics. The goal of image generation from scene graphs
is to take a scene graph as an input and generate a realistic image
corresponding to the described objects and their relationships in
a graph.

We propose following the typical pipeline to train all SG2I and
SL2I generation methods for synthesizing images. For a scene-
graph-based image generation method, the proposed framework
should be able to move from the graph domain to the image
domain. The typical workflow employed for scene-graph-based
image generation is illustrated in Fig. 2 where a GCN-based graph
is constructed based on the input scene graph. The coarse 2D struc-
ture of scene layouts is predicted using an object layout network
based on the embedding vectors. Finally, an adversarial network
generates the output image.

As a pioneer of scene graph to image generation works, Johnson
et al. (2018) proposed to generate images from scene graph using
GCNs and a cascaded refinement network (CRN) Chen and Koltun
(2017). The GCN processes the input graphs to generate a scene
layout. The generated scene layout is based on the prediction of
bounding boxes and segmentation masks of objects. In the final
stage, the CRN generates the output image based on the predicted
scene layout. During the generation of images, Johnson et al.
(2018) experienced three primary challenges: (i) the development
of a method that can process graph-structured inputs; (ii) the gen-
erated images must comply with the objects and the relationship
between objects specified in a graph; and (iii) the images gener-
ated using GCN and CRN must be realistic.

5.1. sg2im

This section describes in detail the sg2im method. The image
generation network f takes the input scene graph G and noise z
to generate the output image I ¼ f ðG; zÞ. The processing of G takes
place along with a GCN, which generates the embedding vectors
for each object. The embedding vectors of GCN respect the rela-
tionships between objects in a scene graph by predicting the
bounding box and segmentation masks for each object in a scene
graph. After this step, a layout is generated, which acts as an inter-
mediate element between a scene graph and an output image. The
generation of output image I is based on the CRN, and the realistic
Fig. 2. Typical pipeline employed for scene graph and layout to image generation. A scene
an image domain. This step produces scene layout predictions. Finally, a conditional GA

5

images based on the scene graph are generated by adversarial
training of network f against a pair of network discriminators
Dimg and Dobj. The Dimg encourages image I to appear realistic while
Dobj contains the information of realistic and recognizable objects.
Each node and edge of the input scene graph is converted to a
dense vector from a categorical label through a learned embedding
layer.

Cascaded Refinement Network. To synthesize an image with
respect to a given layout, it is necessary to respect the object posi-
tions available in the given layout. A cascaded refinement network
(CRN) introduced works on this pattern and consists of a series of
convolutional refinement modules. In CRN, the modules are con-
catenated to each other channel-wise and are passed to a pair of
3� 3 convolutional layers. Each module receives the inputs from
the scene layout, which is down-sampled to a specific input reso-
lution and the output of the previous module.
5.2. PasteGAN

To achieve a more robust control of the image generation pro-
cess in a more fine-grained manner, a crop selection-based strat-
egy, named PasteGAN, was developed by Li et al. (2019). They
made a threefold contribution: (i) the objects of scene graph work
as crops that use external object crops bank to guide image gener-
ation process; (ii) to better generate an image, a Crop Refining Net-
work and an Object-Image Fuser were designed with the goal of
making object crops appear in a fine-grained way in the final image
generation process; and (iii) to automatically select the most com-
patible crop, a Crop Selector module is also devised in PasteGAN.
Basically, the PasteGAN encodes the input scene graph and object
crops to generate the corresponding images.

The PasteGAN mainly used the external memory tank to find
objects given in the input scene graphs to generate images. The
training process of PasteGAN consists of two stages in which, the
first stage aims to reconstruct the ground-truth images using orig-
inal crops mori

i , whereas the second stage focuses on generating
images with selected images crops msel

i from the external memory
tank.

The scene graph is processed with GCN to obtain a latent vector
z containing contextual information of each entity. The PasteGAN
processes scene graphs using GCN and then a crop selector selects
the good crop for objects that are relevant for generating realistic
images. The good crop selector should be able to recognize not only
the accurate objects, but it should also match with the similarity of
scenes. The PasteGAN used the pretrained sg2im based GCN to pro-
cess scene graphs.

The crop refining network adopted by PasteGAN is based on two
steps: (i) a crop encoder, which aims at extracting main visual fea-
tures of objects, and (ii) an object refiner, consisting of two 2D
graph convolutional layers. It fuses the visual appearance of
graph is given as input and a graph convolutional network processes it to convert into
N further synthesizes the image as final output.
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cropped object series. Furthermore, an object-image fuser is used
to combine all object crops into a latent space-based canvas.

An image decoder based on a cascaded refinement network is
used to take the input of latent canvas and generate an image by
respecting the object positions in latent scene canvas. After this,
a discriminator based on a pair of image discriminators and object
discriminators generates realistic and recognizable images by
training the image generation network adversarially.
5.3. WSGC

In SG2I, typically, there are two steps involved; the first step is
to generate a layout based on the input scene graphs, and in the
second step, the pixels are generated out of the layout as a final
image. The transformation of layouts to images relies on geometric
properties (for example (man, right of, boy). Since humans primar-
ily generate the scene graphs, there always remains the possibility
of error, such as there may not always be all correct relations in the
data. We can elaborate on this with Fig. 3. It can be seen that the
scene graphs (man, right of, boy) and (boy, left of, man) both are
semantically equivalent, but existing SG2I methods do not con-
sider them semantically equivalent, which is the limitation of pre-
vious SG2I based methods.

In order to overcome the semantic equivalence difficulty,
Herzig et al. (2020) proposed a canonical scene graph-based
image generation method by replacing traditional scene graphs.
Logically equivalent conventional scene graphs are replaced with
canonical scene graphs that are used to generate the layouts. The
advantage of their method Herzig et al. (2020) is its capacity of
learning more compact models by distributing the information
across the graph with only a few parameters. By using the
canonicalization process, the robustness and noise of graphs
can be improved.

The scene graph canonicalization is performed in two different
stages. At first, the scene graph canonicalization is calculated by
assuming the transitive relations and converse relations as an
instance of inference. Secondly, a weighted scene graph canonical-
ization is calculated based on an exactly weighted scene graph
canonicalization (WSGC-E) and a sampling weighted scene graph
canonicalization (WSGC-S). However, a scene graph to image
canonicalization is carried in two steps. Initially, a layout is pre-
dicted using a weighted scene graph. The weighted scene graph
used the GCN to predict the layout bounding boxes. WSGC used
the same methodology of generating images from layouts as pro-
posed in Sun and Wu (2019); Zhao et al. (2019b). The work of
Zhao et al. (2019b) is extended as layout2image Zhao et al.
(2020) by proposing new loss functions and is used to generate
images from layouts, but an extension to Zhao et al. (2019b) was
proposed by introducing the CLEVR dataset where attributes of
objects can be specified.
Fig. 3. Limitation of exis
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5.4. Layout2im

As described earlier, Zhao et al. (Zhao et al., 2019b) proposed a
method to generate images from layouts using the word embed-
ding methodology. Following a similar strategy, layout2image
(Zhao et al., 2020) was proposed by defining the new loss functions
explicitly. An extension to the object feature map composition
module is also added. Thanks to the sg2im method, which is used
as a core model for differentiable bilinear cropping of images, these
crops are fed to object discriminator in the image generation pro-
cess of layout2image. However, layout2image (Zhao et al., 2020) is
similar to Zhao et al. (2019b) in many aspects. The image genera-
tion training phases from layout are divided into seven parts:

1. The object-latent code estimations are first calculated from
ground-truth images to sample-out object latent codes.

2. A latent object code is then sampled to construct a feature map
using the object feature map composition strategy. This step
produces object feature maps by simplifying the regions with
their bounding boxes.

3. An object-wise attention module is added to object feature map
composition to implicitly alleviate the need to add different
classes of objects in fusion layers.

4. A resulting image is decoded after the fusion module which is
added after an object feature map.

5. An image decoder is tasked to generate images from the hidden
feature maps. Furthermore, an explicit object latent code
regression is introduced to encourage the consistency between
latent codes and outputs.

6. Finally, an image and object discriminator, similar to the sg2im
method (Section: sg2im), is introduced for classifying an input
image or object as real or fake.

6. Loss functions

This section highlights the loss function used in the comparison
method of this comparative analysis. We briefly explain all rele-
vant loss functions used in scene graph and scene layout based
models.

The network f of the sg2im method is jointly trained using two
discriminators Dobj and Dimg . The image generation network f is
trained by minimizing the weighted sum of six loss functions
which are as follows:

1. Box Loss, calculated by penalizing the L1 difference between
ground-truth and predicted bounding boxes.

2. Mask Loss, calculated by finding the difference between
ground-truth mask and the predicted mask.

3. Pixel Loss, calculated by finding the L1 difference between
ground-truth and generated images.
ting SG2I methods.



Table 1
Statistics of Visual Genome and COCO-Stuff datasets.

Dataset Visual
Genome

COCO-
Stuff

Training set 62,565 24,972
Validation set 5506 1024
Test set 5088 2048
Total number of objects 178 171
No. of objects in an image 3–30 3–8
Min. number of relationships between objects 1 6
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4. Image adversarial loss, which encodes if the generated image
patches to appear realistic.

5. Object Adversarial Loss, which used for ensuring that the gener-
ated objects to appear realistic.

6. Auxiliary Classifier Loss, which ensures that object discrimina-
tors should classify all the generated objects in an image.

PasteGAN generator is based on the minimized weighted sum of
six loss functions that were available in the provided source code;
however, the reported study has mentioned to use eight loss func-
tions in their proposed method.

1. Image Reconstruction Loss, which finds the L1 difference
between ground-truth image and reconstructed image.

2. Crop Matching Loss, which calculates the L1 difference between
object crop feature maps and re-extracted object feature maps
from generated images.

3. Adversarial Loss, which is similar to object adversarial loss in
sg2im (Johnson et al., 2018), i.e., its use aims to ensure that
the objects to appear realistic.

4. Auxiliar Classifier Loss, which is used to ensure that object dis-
criminators should classify all the generated objects in an
image.

5. Perceptual Loss, which calculates the L1 difference between
ground-truth images and reconstructed images in the global
feature space.

6. Box Regression Loss, which is used to calculate L1 difference
between ground truth and the prediction boxes.

There is only one loss function used in this method which is
based on the single scene graph and its ground-truth layout.

1. L1 Loss, which is used for minimizing the error between the dif-
ference of ground truth mask and the predicted mask.

Different from other SG2I approaches, this method introduces
two loss functions. For example, a KL (Kullback–Leibler) loss func-
tion is proposed to compute the KL-divergence between a distribu-
tion and normal distribution, and an object latent code
reconstruction loss strengthens the connection of specific object
appearance and latent codes to be invertible. However, other loss
functions, such as image reconstruction loss, object adversarial
loss, auxiliary classification loss, and adversarial image losses, are
the same as introduced in the sg2im method Johnson et al. (2018).
7. Experimental details

The methods which we used for comparison in this study are
selected based on three keywords, i.e., (i) scene graph, (ii) layout
generation, and (iii) image generation. This section provides in
depth details of experimental setup employed to perform the
analysis.
7.1. Datasets

The experiments in all four methods are mainly performed on
Visual Genome (VG) and COCO-Stuff datasets. We used the same
settings and the datasets for the comparison methods. Both data-
sets contain the varying size of images. For a fair evaluation of all
methods, we resize all images with size 64� 64. Table 1 shows
the attributes of the datasets used for methods comparison.

Visual Genome. This dataset is composed of 108,077 scene
graph annotated images with seven main components such as
objects, attributes, relationships, scene graphs, region descriptions,
region graphs, and question–answer (QA) pairs. Each image con-
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sists of an average of 35 objects, and the relationships between
two objects can be actions, e.g., jumping over, wear, behind, drive
on etc. and 26 attributes, e.g., color (red), states (sitting/standing),
etc. The scene graphs in this dataset are the localized representa-
tions of an image and are combined to construct an entire image.
The region descriptions are the natural descriptions in a sentence
format to describe a region of the scene. The objects, attributes,
and relationships are combined through a directed graph to con-
struct region graphs in the VG dataset. Furthermore, two types of
QA pairs are associated with each image: (i) Freeform QA and (ii)
Region-based QA. The dataset is preprocessed at the beginning
and then divided into training (80%), validation (10%), and test
(10%) sets.

COCO-Stuff. This dataset consists of 164 K complex scene
images Caesar et al. (2018). It contains 172 classes comprising 80
things, 91 stuff, and 1 class as unlabeled. An expert annotator
curated the 91 stuff classes. Additionally, the class unlabeled is used
in two scenarios. First, when the label is not listed in any of 171
predefined classes, and second when the annotator is unable to
infer the pixel label. However, this dataset contains 40 K training
images and 5 K validation images from scene graphs and layouts
for the image generation task. Dense pixel-level annotations in
COCO-Stuff are augmented from the COCO (Lin et al., 2014)
dataset.

After a thorough study of preceding SG2I and SL2I methods, we
come to the evaluation of these methods. The evaluation protocols
and implementation details of all methods used for comparative
analysis are defined in the evaluation metrics and implementation
details sections, respectively.
7.2. Evaluation metrics

The image quality of all generated images by the four methods
needs to be quantitatively measured, and for this reason, different
image quality evaluation metrics have been used by different
methods. Usually, the Inception score is the primary image quality
measure that uses ImageNet to encourage recognizable objects
within the generated images. This analysis reported four main
evaluation metrics for a comparison of all methods, namely: Incep-
tion Score (IS), Frechet Inception Distance (FID), Diversity Score
(DS), and Classification Accuracy (CA).

Inception Score: The inception score ð"Þ is implemented for the
evaluation of the generated image quality, specifically for synthetic
images, the higher the value is, the better the inception score is
(Salimans et al., 2016). It involves using a pre-trained deep neural
network for the classification of generated images. It has two main
objectives: (i) image quality, are the generated images look like a
specific object?, and (ii) image diversity, are the generated objects
lie in a wide range?. A pre-trained VGGNet Simonyan and
Zisserman (2014) is used to implement and compute the IS for
all the methods in this analysis.

Fréchet Inception Distance: FID was proposed by Heusel et al.
(2017), and is a metric that is used to embed a set of generated
images into feature space which is given by a special layer of the
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Inception network. The lower value of FID (#) represents the higher
quality of images generated by the generator compared to the real
ones.

Diversity Score: This metric is used in the deep feature space to
compute the perceptual similarity between two images. The DS is
different from IS in the sense that it measures the difference
between generated images and real images from the same input.
The higher the metric value is, the better the DS (") is.

Classification Accuracy: This is a measure to quantify the
capacity to create identifiable objects, a crucial criterion for evalu-
ating the SG2I and SL2I works. We initially train a ResNet-101
object classification model He et al. (2016). This is accomplished
by using the actual objects cropped and downsized from ground
truth images inside the training set of each dataset. Afterwards,
we calculate and report the object classification precision for the
generated images. The higher value of CA (") represents the best
score is achieved.

7.3. Implementation details

We implemented the identical parameters for all four methods
in this analysis using python version 3.5, PyTorch 0.4, and Linux
(Ubuntu) 20.04. With the updates of all libraries, we used a virtual
environment for a fair comparison. The training learning rate was
set at 10�4 and a batch size of 32, 16, 8 and 16 for all methods,
respectively. Table 2 highlights the hyperparameter details of all
the methods used in this work. All scene graphs are augmented
with a special image object, and a specific in image relationship
is connected to each true object in the SG2I and SL2I methods,
through which all scene graphs are connected.

To generate the images of size 64� 64 on the VG and COCO-
Stuff datasets, we used RTX 3090 GPU, and it took days to finish
training with a million iterations on each dataset. The scene graphs
are available in a human-readable format in a JSON file. After
installing the GraphViz library, it is also possible to visualize the
input scene graph as a graph. The program used the Pytorch
library.
8. Experimental results

Table 3 shows the performance of comparison methods on four
metrics, i.e., IS, FID, DS, and CA. Each dataset is split into 3 groups
and we report mean and standard deviation for IS, and DS for all
methods. The samples are generated on a full model with image
size 64� 64 by defining different synthetic scene graphs. The mod-
els’ abilities are evaluated through generating complex scenes. The
best IS and DS is achieved by Layout2im Zhao et al. (2019b), and
the best FID is achieved by PasteGAN Li et al. (2019).

The methods reported in this study used different loss func-
tions, which we have reported in earlier methodological descrip-
tions. However, for the sake of fair comparison, we evaluated the
generator and discriminator loss functions of all methods, which
are the two main components of a GAN. Fig. 4 illustrates the com-
parison of two loss functions for 90 epochs, where we report the
loss for every ten epochs. Fig. 4a is the representation of generator
loss, where we can see that the loss for sg2im (Johnson et al., 2018)
Table 2
Hyperparameter details.

Methods Dataset Input Size

sg2im Johnson et al. (2018) VG, COCO-Stuff 64 � 64
PasteGAN Li et al. (2019) VG, COCO-Stuff 64 � 64
WSGC Herzig et al. (2020) VG, COCO-Stuff 64 � 64
Layout2im Zhao et al. (2019b) VG. COCO-Stuff 64 � 64
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and PasteGAN (Li et al., 2019) is relatively lower than WSGC
(Herzig et al., 2020) and Layout2im (Zhao et al., 2019b). In the case
of discriminator loss (Fig. 4b), all four methods performed compar-
atively better. However, we can observe that WSGC Herzig et al.
(2020) performed best in the case of generator loss on the COCO
dataset, whereas Layout2im Zhao et al. (2019b) outperformed in
the case of discriminator loss on all datasets. The object classifica-
tion accuracy is also reported for all four comparison methods. It
can be observed that the objected generated by the SL2I method
Zhao et al. (2019b) can be accurately classified for real images. It
is also observed during the experimentation that the object classi-
fication’s upper bound limit does not necessarily confirm the diffi-
culty of distinguishing the generated images.

Fig. 5 shows the statistics of bounding box predictions for all
methods on two datasets. R@t is used to predict the accuracy of
predicted bounding boxes, and from the experiments, it can be
seen that using the SL2I mechanism improves the prediction per-
formance. Fig. 5a presents the R@3 while Fig. 5b is the demonstra-
tion of R@5.

Fig. 6 shows the generated images using comparison methods.
From the set of images, it can be seen that Layout2im Zhao et al.
(2019b) performed relatively better than other scene graph-
based methods in the qualitative evaluation. According to their
input labels, the objects are more recognizable and consistent.
The images generated by SG2I-based methods also respect the
compositionality of objects. However, the blurriness and object
overlapping is still a major problem of object synthesis in these
methods.
9. Discussions

9.1. Limitations

Since GANs are a powerful class of deep learning models widely
used in image generation methods. While this work also leverages
GANs-based SG2I and SL2I generation methodology. There are sev-
eral limitations associated with both using GANs and scene graphs
to synthesize images.

For example, GANs can sometimes suffer from mode collapse,
where the generator network produces limited types of output that
fail to represent the full diversity of the target distribution. This
happens when the generator network produces similar or identical
outputs for different input values, resulting in a loss of variety in
the generated images (Wang et al., 2020). GANs can be challenging
to train, and their training can be unstable. The generator and dis-
criminator networks can get stuck in a suboptimal state, resulting
in poor-quality output images. GANs require careful tuning of their
hyperparameters, such as learning rates, batch sizes, and regular-
ization terms. The choice of these hyperparameters can signifi-
cantly impact the quality of the generated images (Meshry,
2022). GANs require large datasets for training, and the quality of
the generated images can depend on the quality and quantity of
the training data. GAN-based image synthesis methods often can-
not provide fine-grained control over the generated images. For
example, it may be challenging to generate images with specific
attributes or to generate images that match a given textual
BS LR Ep. Iterations Training Time

32 1e�4 90 1,000,000 5 Days/dataset
16 1e�4 90 1,000,000 5 Days/dataset
8 1e�4 90 1,000,000 10 Days/dataset
16 1e�4 90 300,000 3 Days/dataset



Table 3
Performance evaluation of IS, FID, DS, and CA of all methods on two datasets.

Methods IS " FID # DS " CA "
VG COCO VG COCO VG COCO VG COCO

sg2im Johnson et al. (2018) 5:3� 0:1 6:1� 0:2 65.13 74.42 0:07� 0:05 0:02� 0:01 42.31 38.52
PasteGAN Li et al. (2019) 6:5� 0:1 7:1� 0:1 32.43 40.35 0:05� 0:02 0:04� 0:01 44.52 45.96
WSGC Herzig et al. (2020) 7:3� 0:1 5:1� 0:2 55.31 62.23 0:12� 0:09 0:07� 0:03 48.74 49.63
Layout2im Zhao et al. (2019b) 7:9� 0:2 8:7� 0:3 39.68 44.19 0:17� 0:08 0:13� 0:05 51.85 50.36

Fig. 4. Performance evaluation of comparative methods based on their training (a)
generator loss and (b) discriminator loss.

Fig. 5. Intersection over union comparison of all four methods on two datasets. (a)
R@3 and (b) R@5.

M.U. Hassan, S. Alaliyat and I.A. Hameed Journal of King Saud University – Computer and Information Sciences 35 (2023) 101543
description. GANs are often limited in their ability to generate
complex scenes with multiple objects or large-scale contexts and
can struggle to maintain spatial coherence and realistic object
interactions. Overall, while GAN-based image synthesis methods
have made significant progress, they still have limitations that
must be addressed to enable their wider adoption and enhance
their ability to generate high-quality and diverse images.

Scene graph-based methods can suffer from limited diversity,
where the generated images tend to follow a small set of prototyp-
ical visual layouts, which can make them less visually interesting
or less representative of the full range of possible scenes. These
methods are often computationally intensive and require large
9

amounts of memory to process and manipulate complex graph
structures (Zhu et al., 2022). Similar to GAN-based methods, scene
graph-based methods require large amounts of training data to
achieve good results. SG2I and SL2I methods struggle to scale to
more complex and diverse scenes. They rely on explicit modeling
of object relationships and interactions, which can become compu-
tationally expensive as the number of objects and relationships
increases. Although scene graphs can include textual information
about objects and their relationships, incorporating more detailed
textual descriptions or natural language instructions into SG2I and
SL2I methods can be challenging. Like GAN-based methods, scene
graph-based methods can lack fine-grained control over the



Fig. 6. A comparison of images generated by SG2I and SL2I based methods. The images of size 64� 64 are generated using the same setting for all methods. (Orange) shows
the generated results on VG dataset while (Green) illustrate the images generated on COCO-Stuff dataset.
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generated images, such as generating images with specific attri-
butes or modifying certain aspects of the generated scenes. In sum-
mary, while scene graph-based methods offer a promising
direction for image synthesis, challenges remain to be addressed,
such as improving scalability and diversity and finding ways to
incorporate textual information better and provide more fine-
grained control over the generated images.

9.2. Future directions

In this section, we discuss some potential future research direc-
tions for SG2I and SL2I generation methods. Scene graph-based
image generation methods have recently gained popularity in the
computer vision community for their ability to generate realistic
and diverse images by leveraging the rich semantic information
encoded in scene graphs.

Improving the quality and diversity of generated images is cru-
cial for SG2I and SL2I generation methods. Although SG2I methods
have achieved impressive results, there is still room for improve-
ment in terms of the quality and diversity of generated images.
Future research can explore novel techniques to enhance the real-
ism and diversity of synthesized images, such as incorporating
attention mechanisms (Kitada and Iyatomi, 2022), adversarial
training, and semantic consistency regularization.

Exploring multi-modal and multi-task image generation is
another potential research direction. SG2I generation can be
extended to generate images with multiple modalities or to per-
10
form multiple tasks simultaneously. For example, a model could
generate an image and its corresponding textual description or
generate images with different styles or viewpoints. The research-
ers can investigate these multi-modal and multi-task scenarios to
create more versatile and flexible image generation models.

Incorporating real-world constraints for generating high-
quality images is intrinsic for SG2I and SL2I generation methods.
For instance, in real-world scenarios, synthesized images must
adhere to certain constraints, such as object occlusions, lighting
conditions, and camera angles. There are possibilities to explore
how to incorporate these constraints into the image synthesis pro-
cess to generate more realistic images that better reflect the com-
plexities of real-world scenes.

Time consumption is a major issue in synthesizing images from
scene graphs. It happens due to the fine-tuning of larger parame-
ters and complex hierarchical structures. To enhance the accelera-
tion of SG2I and SL2I generation methods, deep neural networks
can be constructed based on extreme learning machine (ELM) the-
ory (Zhang et al., 2020). The method is faster and easy to imple-
ment, involving two stages: (i) randomly generating hidden layer
parameters from a predefined specific interval and (ii) calculating
the generalized inverse of the output weight matrix. The accelera-
tion of SG2I and SL2I-based methods can significantly be increased
by incorporating the ELM theory to fine-tune parameters.

One of the critical challenges for SG2I and SL2I methods is
adapting to new domains and modalities. SG2I and SL2I-based
models have mainly been applied to 2D images, but they can also
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be extended to other domains, such as 3D scene synthesis or video
synthesis. Future research can investigate how to adapt scene
graph-based image generation methods to these new domains
and modalities. The generation of scene graph-based 3D objects
and scenes can be extended to 3D digital twins for smart cities cre-
ation in a virtual space. In order to create real-life scenarios, a user
can provide the textual description, and a scene or object can be
generated for use in smart city applications and further use in
authoring tools (Hassan et al., 2022).

Finally, developing interpretable and explainable models is
essential. Scene graph-based image generation models are typi-
cally black boxes that are difficult to interpret and explain. Future
research can focus on developing more interpretable and explain-
able models, which can facilitate their use in real-world applica-
tions where interpretability and transparency are crucial.
10. Conclusion

A study on the analysis of different scene graphs and layout to
image generation methods is presented in this work. The SL2I
method showed state-of-the-art performance on all evaluation
measures due to predefining the compositionality of object layouts
during the training process. Our experiments of SG2I and SL2I gen-
eration models suggest that the image generation pipeline from
scene graphs is still lagging in image quality, and a good layout
prediction is necessary before generating an image from a pre-
dicted layout. All reported methods need at least three defined
objects to generate an image. Moreover, experiments suggest that
the complex scenes are tricky for current image generation frame-
works because current state-of-the-art methods ignore much
information of objects while synthesizing objects. There is a need
to improve the overall visual quality of objects for scene
graph-based image generation networks. The generation of high-
resolution images is still in significant demand for image genera-
tion models, so introducing new loss functions and adding more
experiments to current state-of-the-art methods can significantly
improve this area.
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