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a b s t r a c t

A novel coalescence kernel with high predictive properties is constructed to be used within the popula-
tion balance framework. The kernel includes the product of a collision frequency term and a novel binary
coalescence probability expression. The probability expression employs critical velocity estimations from
film drainage simulations that also considers particle surface and kinetic energies. Thus, the proposed
expression possesses characteristics of all three commonly used approaches: film drainage, energy,
and critical velocity models. The probability of a collision having a certain velocity and angle is consid-
ered through probability density functions while adapting to the Eulerian frame. A maximum collision
angle that allows coalescence is defined. The kernel is free of artificially introduced tuning parameters
and predicts the size distributions in bubbly pipe flow experiments exceptionally well, including complex
behaviors such as emergence of secondary peaks in the distribution. The theory presented is equally valid
for bubbles and droplets.

� 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Coalescence is the phenomenon where two or more fluid parti-
cles, i.e., bubbles or droplets, merge and form a new one. Coales-
cence plays a crucial role in many natural phenomena and in
industrial applications where dispersed multiphase flows are fre-
quently encountered. In the latter, the spatial distribution and
the size distribution of the dispersed phase are important variables
that can affect the overall efficiency of the process. For example, in
a separation unit, coalescence may be desired for increased effi-
ciency, as the larger particles are typically easier to separate;
whereas in a chemical reactor, smaller particles with higher sur-
face area to volume ratios are more beneficial in diminishing mass
transfer limitations and improving the overall reaction rates.
Therefore, accurate coalescence kernels with high predictive prop-
erties are essential for chemical engineering and multiphase flow
communities.

The population balance framework is widely used in dispersed
flow modelling, in which the effect of coalescence (and breakage)
comes into play via source and sink terms that represent the birth
of a new fluid particle and the death of the original ones, respec-
tively. A coalescence frequency expression is employed as a part
of these source/sink terms. A common approach is to express the
coalescence frequency as a product of the collision frequency, i.e.,
how often the fluid particles get into contact within the dispersed
flow, and the coalescence probability of the interacting fluid parti-
cles. Three main branches of coalescence probability models exist
in the literature (Liao and Lucas, 2010): the film drainage approach,
the energy models, and the critical approach velocity model. The
film drainage approach relates the probability to the ratio between
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two time scales (Coulaloglou, 1975), one representing the duration
for which particles can stay in contact and the other showing the
time required for the two particles to coalesce. The latter time scale
is then commonly estimated through hydrodynamic modelling of
the draining film in between the two colliding particles. The energy
models pioneered by Sovova (1981) on the other hand, expresses
the coalescence probability by comparing the surface energy of
the particles to their kinetic energy during the collision. The final
approach stems from the experimental observations of Lehr et al.
(2002) and claims that two particles can only coalesce when their
relative approach velocity is below a critical value. Although all
three approaches have merit and applicability in certain configura-
tions, they also have a few drawbacks. For example, the film drai-
nage based models assume that the particle interactions and the
drainage of the film are two independent phenomena, which is
unlikely to be true in reality, and calculate the two required time
scales with two different models that can be based on conflicting
arguments. The energy models indicate increasing coalescence
probability with relative collision velocity, whereas experiments
show the existence of a maximum velocity that allows coalescence
(Duineveld, 1998;Lehr et al., 2002). The critical approach velocity
model requires tedious experimental work for measuring the crit-
ical velocity under different flow conditions. Perhaps more impor-
tantly, many models proposed in the literature require tuning
parameters that can often be small or large enough to change the
order of magnitude of the estimated coalescence frequency.

In a more recent work, Das (2015) criticizes the fact that the col-
lision frequency and the coalescence probability are treated inde-
pendently, and proposes a new framework in which the
coalescence frequency is developed as a single entity instead of
the product of the two. This framework does not treat the relative
collision velocity as a single value but instead assigns a probability
distribution to it, and eventually requires comparison between the
approach velocity and a critical velocity to determine the coales-
cence probability. A similar framework with more in depth turbu-
lence induced collision mechanisms is proposed by Gong et al.
(2018). In both works, the critical velocity is determined by equat-
ing the interaction time and coalescence time scales proposed by
Kamp et al. (2001). In other words, just as it is done in the film drai-
nage based coalescence probability models, the particle interaction
and the coalescence are handled as two separate phenomena. To
avoid this, Ozan et al. (2021) suggest a new framework that allows
the critical approach velocity to be estimated directly from the
hydrodynamic film drainage simulations. In the hydrodynamic
modelling, the two colliding particles are typically assumed to
approach each other either at a constant velocity (Klaseboer
et al., 2000; Ozan and Jakobsen, 2019a) or with a constant interac-
tion force (Bazhlekov et al., 2000), meaning that there is no possi-
bility for the reversal of the drainage in these typical models and
consequently they cannot estimate the rebound of the particles.
By solving a force balance over the fluid particles simultaneously
with the hydrodynamic drainage model, Ozan et al. (2021) allow
the relative approach velocity to be time dependent. If the film’s
resistance to drainage becomes significant enough, the velocity
attains negative values and the reversal of the drainage begins. In
turn, this capability in the model enables the estimation of the col-
lision outcome either as coalescence or rebound within a single
simulation without requiring additional estimations, e.g. for an
interaction time scale. Then, a critical velocity separating the coa-
lescence and the rebound regimes for a given parameter set is esti-
mated through the simulations. As this model estimates critical
approach velocities through hydrodynamic film drainage simula-
tions that also incorporate the effects of the particle surface and
kinetic energies (via the force balance), a novel coalescence kernel
based on Ozan et al. (2021)’s work can potentially carry the posi-
tive aspects of all the three approaches for coalescence frequency
2

estimations existing in the literature. Furthermore, this kernel
would avoid inheriting their drawbacks, since, e.g., it does not
assume independent interaction and coalescence phenomena or
since it matches the experimental observations in estimating
rebound at larger velocities unlike the energy models. The current
work uses the estimated critical velocities to construct such a novel
kernel. The proposed framework also handles the relative approach
velocity of the particles and the collision angle as variables with
probability distributions to adapt the observations on a single col-
lision event to be used in an Eulerian framework.

The model development is presented in Section 2: the critical
velocity and the coalescence probability of a single collision event
are considered in Section 2.1, followed by the relative velocity dis-
tribution between two fluid particles in a flow field in Section 2.2,
and the coalescence frequency expression in Section 2.3. The out-
comes of the proposed probability and frequency expressions are
presented and discussed in Section 3.1. In Section 3.2, the novel
coalescence kernel is integrated into an Eulerian multifluid-
population balance model and its predictions are compared to bub-
bly pipe flow experiments. Finally, Section 4 presents the
conclusions.

2. Model development

In the population balance framework, to express the effect of
coalescence in fluid particle size and distribution within a dis-
persed flow, it is customary to use coalescence frequency as a pro-
duct of the collision frequency and the coalescence probability,
respectively indicating how often two fluid particles collide, and
how probable the given collision results in coalescence. Then, in
analogy with the kinetic theory of gases, the collision frequency
is written as the product of the collision cross-sectional area,

S ¼ p
4 ðdn þ dgÞ2, and the relative velocity between the particles,

vrel, for fluid particles of sizes dn and dg. For the coalescence prob-
ability on the other hand, there are three main approaches in the
literature (Liao and Lucas, 2010): the film drainage approach, the
energy models, and the critical approach velocity model. The cur-
rent work proposes a new methodology for determining the coa-
lescence probability, and consequently the coalescence
frequency, based on the results of Ozan et al. (2021), which combi-
nes some of the positive characteristics of the existing film drai-
nage, enery and critical velocity models. In what follows, we will
discuss how this coalescence kernel is built and its application in
the Eulerian and Lagrangian modelling of dispersed flows.

2.1. Critical velocity and coalescence probability

Ozan et al. (2021) study the film drainage between two fluid
particles with freely-deforming interfaces that can support dimple
formation by considering a time dependent relative approach
velocity. The time dependent behavior of v rel is governed by a force
balance that accounts for the changes in the kinetic and the parti-
cle surface energies. The time dependent v rel can attain negative
values when the film’s resistance to the drainage is large enough,
signifying the onset of rebound of the particles. Thus, in addition
to predicting coalescence, the drainage model is able to estimate
the rebound. This in turn means that for a given parameter set
the outcome of the collision can be predicted as either coalescence
or rebound within a single simulation without requiring secondary
models/estimations. Then, the largest initial v rel value that allows
coalescence (or the smallest that allows rebound) is denoted as
the critical relative approach velocity vc of the corresponding
parameter set. In their Fig. 10, Ozan et al. (2021) present vc as a

function of the equivalent particle radius, Rp ¼ ð1=dn þ 1=dgÞ�1,
for air-in-water systems with immobilized interfaces, which is a
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common occurrence in many real systems. In the current work, the
modelling efforts start based on this data. A curve fit on the vc data
gives

vclc

r
¼ 7:25� 10�7R�0:89

p ð1Þ

where Rp is in m, and lc and r are the continuous phase viscosity
and the system interfacial tension, respectively. The vc data yielding
Eq. (1) are obtained by assuming an initial minimum film thickness
of h00 ¼ 0:1Rp. However, the vc values are found to be relatively
insensitive to the changes in h00 used in the film drainage simula-
tions, as can be seen in Fig. 1. As a result, the vc expression itself
does not change with h00 significantly. For example, for h00 ¼ 0:5Rp,

vclc

r
¼ 8:24� 10�7R�0:90

p ð2Þ

The vc expression can be directly adopted in models where the
exact velocity of each particle is known, for example in Lagrangian
simulations, to estimate the collision outcome. However, it must be
noted that the reported velocity values here are the projections of
the velocity vectors on the line of impact during a collision, since
Ozan et al. (2021) considers only axisymmetric collisions. In reality,
the probability of having a perfectly head-on collision, such that the
line of impact and vrel coincide, is virtually zero. Therefore, the
impact of the collision angle a should also be taken into considera-
tion. As sketched in Fig. 2, a is defined such that a ¼ 0� correspond
to a perfectly head-on collision, and when a ¼ 90� the particles
barely miss each other. The vrel component along the line of impact
is given by v rel cos a, and it is the one corresponding to the
approach velocity in the film drainage simulations. Then, the coa-
lescence probability of a single collision is given by

P ¼ 1; if v rel cos a < vc ðRpÞ; 0 6 a < 90�

0; if v rel cos a P vc ðRpÞ; 0 6 a < 90�

�
ð3Þ

Although this formulation is reasonable for head-on collisions and
for collisions with moderate collision angles, when a is large it erro-
neously estimates coalescence even at extremely high velocities
since cos a is small. To avoid this, au, an upper limit for coalescence
to possibly occur, is introduced:
Fig. 1. Dimensionless critical velocity as a function of RpðmÞ obtained by considering diffe
thickness values are h00 ¼ ½0:1;0:2;0:3;0:4;0:5� � Rp .

3

P ¼ 1; if v rel cos a < vc ðRpÞ and a < au

0; otherwise

�
ð4Þ

The existence of such an upper limit can be found in the literature,
e.g., according to Rother et al. (1997) au ¼ 1:019radians � 58�.

In many configurations, it is not computationally feasible to
completely resolve the dispersed flow and Eulerian simulations
are employed, in which the precise information on the position
and the velocity of the individual particles is unavailable. In this
case, the velocity of the particles should be estimated through a
probability density function instead of assuming it is a single
known value.

2.2. Fluid particle velocity distribution

Wilczek et al. (2011) observe that the fluid velocities in isotro-
pic turbulence is Gaussian distributed. Based on this observation, it
is possible to determine a probability distribution for the relative
velocity between two fluid particles (Das, 2015;Gong et al.,
2018). As shown in Appendix A, the probability density function
for v rel between two particles of sizes dn and dg is given by:

f vrel
¼ 4pv2

rel

2p r2
n þ r2

g

� �h i3=2 exp �1
2

v2
rel

r2
n þ r2

g

 !
ð5Þ

Furthermore, the variances r2
n and r2

g are required to determine the
density function. By considering the inertial subrange of turbulence,
Das (2015) argues that v rel between two particles of size dn can be

approximated with ð�dnÞ1=3 at their point of impact, where � is the
dissipation rate. A full-spectrum approach is discussed by Solsvik
and Jakobsen (2016). Their Eqs. (81)-(87) read

½dv �2 ¼ 4
3
k 1� T1 þ T2 T3T4 � T5ð Þ½ �f g ð6Þ

where

T1 ¼ 2
s2

F �1
3

� �1=2

;
3
2

� �
;
s2

4

 !
ð7Þ
rent initial separation thicknesses in film drainage simulations. The minimum initial



Fig. 2. Sketch of the collision geometry.
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T2 ¼ 33=2C 2=3ð Þ ð8Þ

T3 ¼ 27s2=321=3C 2=3ð Þ ð9Þ

T4 ¼ 1
352p

F
7
3

� �11=6

;
17
6

� �
;
s2

4

 !
ð10Þ

T5 ¼ 1
2p

2
s

� �2=3

K4
3
sð Þ ð11Þ

and

s ¼ jr= c�1=2
L jL

� �
ð12Þ

F;K and C are the hypergeometric, the Bessel, and the gamma func-
tions respectively. L is the integral length scale (taken as the pipe
diameter during the comparison with bubbly flow experiments), k
is the turbulent kinetic energy, r can be approximated as the fluid
particle size, and cL is given as a function of Kolmogorov parameter
C as (Solsvik, 2017):

cL ¼ exp �4:478þ 18:362C
Re1:075�0:070C

k

� 1:342þ 2:024C

" #
� 1:913

þ 2:169C ð13Þ
where the Taylor-scale Reynolds number is

Rek ¼
ffiffiffiffiffiffi
20
3

r ffiffiffiffiffiffiffi
k2

�mL

s
ð14Þ

with mL being the continuous phase kinematic viscosity.
The resulting dv from Eqs. (6)–(14) can be taken as an indicator

of the relative velocity between two particles upon their impact in
a similar fashion to Das (2015)’s estimation. The same quantity can
also be determined through Eq. (5). For two fluid particles of same
size, Eq. (5) reduces to

f vrel
¼ v2

relffiffiffiffiffiffiffi
4p

p
r3

n

exp �1
4
v2

rel

r2
n

 !
ð15Þ

whose expected value is given by

E f vrel

h i
¼
Z 1

0
v relf vrel

dv rel ¼ 4ffiffiffiffi
p

p rn ð16Þ

By combining the two estimations, i.e., by assuming E½f vrel
� � dv , the

standard deviation is found as

rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
12

k 1� T1 þ T2 T3T4 � T5ð Þ½ �f g
r

ð17Þ
4

The same equation holds for rg as well, since
f vrel

ðrg;rnÞ ¼ f vrel
ðrn;rgÞ. By considering a vertical pipe (as such a

configuration is employed for model validation in Section 3.2) with
a diameter of Dpipe, the turbulent kinetic energy is obtained through

k ¼ ðDpipe �Þ2=3, and the turbulent energy dissipation rate � is esti-
mated following Eq. (13) of Zhao et al. (2021):

e ¼ 1:21� 10�4 jG þ jL
mL

Dpipe

� ��0:25 jG
jL

� ��0:5 2j3L
Dpipe

ð18Þ

where jG and jL are the superficial gas and liquid velocities.
As the coalescence probability of a single collision (Eq. (4)) and

the probability density function of v rel (Eq. (5)) are determined, the
coalescence frequency for an Eulerian model will be estimated
next.

2.3. Coalescence frequency

For a pair of fluid particles with sizes dn and dg with a known v rel

the coalescence frequency can be written as

Cðdn;dgÞ ¼ Sðdn; dgÞv rel Pðdn; dg;v rel;vc;aÞ ð19Þ

where the product of S ¼ p
4 ðdn þ dgÞ2 and v rel gives the swept vol-

ume rate, which represents the collision frequency, and P is the coa-
lescence probability (given that the collision occurs) defined in Eq.
(4). However, the collision angle and v rel are not necessarily known
constant values, and their probability density functions f vrel

and f a
should be included in the expression. Then, this expression should
be integrated over the whole v rel and a ranges to take all possible
states into consideration. This yields

Cðdn;dgÞ ¼ p
4
ðdn þ dgÞ2

Z 1

0

Z p=2

0
v rel f a f vrel

ðdn;dg;v relÞPðdn; dg; vrel; vc ;aÞdadv rel

ð20Þ

Here the product of the collision cross-sectional area and v rel indi-
cates the frequency of collisions in the flow field, f a and f vrel

give
the probabilistic distributions for the collision conditions, the angle
and the relative velocity, and P is the coalescence probability of a
collision to result in coalescence under these conditions. By assum-
ing one of the particles is in a frozen frame, and the other’s relative
position with respect to the first particle has a uniform probability
distribution, the probability of having a collision with a ¼ a0, where
0 6 a0 6 p=2, follows f a ¼ sinð2aÞ. Although all possible a values
are taken into consideration in Eq. (20), notice that the probability
expression (Eq. (4)) enforces an upper integration limit for a as dis-
cussed in Section 2.1. In the following section, the validity and the
performance of the proposed coalescence closure are tested.
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3. Results and discussion

This section first presents and discusses the outcomes of the
probability expressions developed in Section 2; and then evaluates
the validity and the predictive performance of the coalescence fre-
quency expression (Eq. (20)) against the bubbly pipe flow experi-
ments of Lucas et al. (2011). Lucas et al. (2011) is an internal
report where the raw experimental data from Lucas et al. (2005)
were re-evaluated through an improved methodology. The exper-
imental parameters for the three runs (96, 107, 108) used in the
current study is given in Table 1. To simulate the bubbly pipe flow,
an Eulerian multifluid-population balance model is employed with
Eq. (20) as the coalescence frequency. The details of the population
balance model is given in Section 5.2 of Solsvik and Jakobsen
(2014) and the final equations used in the current work is pre-
sented in Appendix B.

It must be noted that, even though the experimental validation
is only done for a gas–liquid system in Section 3.2, the theory pre-
sented so far and the results of Section 3.1 are equally valid for
both bubbles and droplets.
3.1. Outcome of the probability expressions

The relative velocity probability density function (as given in
Eq. (5)) is presented in Fig. 3 for different particle size couples,
where the variance is calculated through Eq. (16). The physical
parameters are taken from the run 107 of Lucas et al. (2005)
Table 1
Experimental runs employed in model validation and the relevant parameters (Lucas
et al., 2011).

Run jG ðm=sÞ jL ðm=sÞ Dpipe ðmmÞ Lpipe ðmÞ
96 0.0898 1.017 51.2 3.5
107 0.140 1.017 51.2 3.5
108 0.140 1.611 51.2 3.5

Fig. 3. Probability density function for relative velocity for dg ¼ ½1;2;3;4�mm (from the l
dn ¼ 4mm.

5

throughout this subsection. The results indicate that both the
attainable relative velocity values and v rel with largest probability
increase with increasing particle sizes. In other words, larger fluid
particles are more likely to collide with higher v rel. Additionally,
the threshold for their rebound (vc) is also smaller as can be seen
through Eq. (1). Thus, the likelihood of coalescence decreases with
the equivalent particle size.

The relative collision velocity and vc are not the only factors
affecting the coalescence probability and the impact of the colli-
sion angle a should also be considered. By momentarily disregard-
ing the upper limit for a, the coalescence behavior map for a given
particle size pair can be obtained by calculating the root of Eq. (3),
i.e., the solution for vrel cos a ¼ vc ðRpÞ. Fig. 4 shows the solution for
a fixed dg of 1mm and different dn as a function of a and v rel, where
each curve separates the coalescence (below the curve) and the no-
coalescence (above the curve) regions for the corresponding parti-
cle sizes. In addition to confirming the earlier observation regard-
ing the relation between the likelihood of coalescence and particle
sizes, Fig. 4 also reveals that as a collision gets closer to being head-
on (decreasing a), it requires a lower v rel for coalescence to occur.
This behavior can be explained by analyzing the components of
vrel, one that is normal to the fluid particle interfaces at the point
of impact, and the tangential ones. For a given v rel, the magnitude
of the normal component decreases with a, rendering the collision
a more ’gentle’ one, which is shown to favor coalescence
(Duineveld, 1994). The magnitude of the tangential component
on the other hand increases with a. This increase may enhance
the tangential mobility of the interfaces during the collision, which
promotes the film drainage and coalescence (Ozan and Jakobsen,
2019b). However, the tangential component also limits the dura-
tion for which the two particles can stay in contact, whereas the
time required for particles to coalesce could be considered to scale
roughly with the inverse of the normal component. Then, a large
enough a may exist, such that it would increase the coalescence
time and decrease the contact time so much that coalescence
becomes impossible. As evident from Fig. 4, Eq. (3) does not sup-
port such a behavior for large a and incorrectly estimates all colli-
eftmost to rightmost peaks) and (a) dn ¼ 1mm, (b) dn ¼ 2mm, (c) dn ¼ 3mm and (d)



Fig. 4. Coalescence probability as a function of v rel and a for dg ¼ 1mm and dn ¼ ½0:5;1;2;5�mm. For each particle size couple, the corresponding curve divides the v rel-a space
into two: no coalescence (above the curve) and coalescence (below the curve) regions.
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sions to result in coalescence regardless of vrel. One way to mitigate
this behavior, is to introduce an upper limit for a above which coa-
lescence probability is set to zero. According to Rother et al. (1997)
such an upper limit exists around au � 58�. The current work treats
au as a variable model input without deviating too much from the
literature value and employs Eq. (4) as the probability expression.

The joint probability density function of a and v rel is presented
in Fig. 5 together with its product with the coalescence probability,
for dg ¼ dn ¼ 5mm. The largest possible collision angle for coales-
cence to occur is taken as au ¼ 60�. As seen in Fig. 5 a), the joint
probability density function is symmetrical around a ¼ 45� follow-
ing the symmetry of sinð2aÞ, whereas no such symmetry exists
with respect to vrel. The product Pfaf vrel

shown in Fig. 5 b) repre-
sents the likelihood of a collision with certain a and vrel to result
Fig. 5. Joint probability density function of a and v rel in a) and its product with the
coalescence to happen is taken to be au ¼ 60� .

6

in coalescence, after both au and vc are considered. This product
is only a part of the integrand for the coalescence frequency
expression given in Eq. (20), and to determine C it should also be
multiplied by the swept volume rate and be integrated over all
possible v rel and a values. Carrying out this integration yields a sin-
gle C value for each particle size pair. Fig. 6 shows C as a function
of particle sizes. For two particles of similar sizes (dg � dn), the
results indicate that the highest coalescence frequency is obtained
for 2mm < dg < 4mm and 2mm < dn < 4mm. The non-monotonic
trend along the dg � dn direction can be explained through the
changes in the coalescence probability and swept volume rate with
particle size. When both particles are small, the coalescence prob-
ability is high due to large vc (Eq. (1)) and relatively low attainable
vrel values (Fig. 3), yet low swept volume rate decreases the colli-
coalescence probability in b) for dg ¼ dn ¼ 5mm. Largest collision angle allowing



Fig. 6. Coalescence frequency C as a function of fluid particle size. Calculated through Eq. (20) with au ¼ 60� .
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sion frequency and consequently C. Going to the other extreme,
i.e., large fluid particles, C diminishes once again, but this time
due to the low coalescence probability (low vc and high values of
v rel) despite having a larger collision frequency. Lastly, the interac-
tions between a small fluid particle and a large one give the highest
coalescence frequency. In this case, the large particle allows a high
swept volume rate; whereas the small particle dominates the
equivalent particle size Rp and results in large values of vc . An
increase in the difference between the particle sizes amplifies
these factors and the coalescence frequency further increases.

3.2. Validation against bubbly pipe flow experiments

Next, the kernel performance is tested against three experimen-
tal cases, runs 96, 107 and 108 (Lucas et al., 2011) whose parame-
ters are presented in Table 1. These runs have been selected
purposefully, since they are coalescence dominated and show little
to no breakage. The Eulerian multifluid-population balance model
employed in the simulations is adapted from Solsvik and Jakobsen
(2014) and the final equations are presented in Appendix B. The
Eulerian equations are at steady-state and cross-sectional aver-
aged. Furthermore, as the experimental data is coalescence domi-
nated, the breakage terms in the model are neglected. Both the
physical space (only solved in the axial direction) and the property
space are discretized following a spectral scheme. The relative
velocity range for the integration of Eq. (20) is taken as [0, v rel;1],
where v rel;1 is a large enough velocity such that f vrel

vrel;1
� 	! 0.

The inlet bubble size distribution in each simulation is a Gaussian
distribution adjusted to fit the corresponding experimental inlet
distribution. As no measurements exactly at z ¼ 0m are available
in the experimental data sets, the distributions at z ¼ 0:03m are
used for the fitting. The largest possible collision angle that allows
coalescence, au, is treated as an input parameter in the vicinity of
the value (au � 58�) proposed by Rother et al. (1997).

Fig. 7 presents the comparison for run 108 for au ¼ 50� and
au ¼ 60� at z ¼ 0:23m and z ¼ 3:03m, where z is the axial coordi-
nate along the pipe (Lpipe ¼ 3:5m). The model appears to estimate
7

the experimental behavior exceptionally, both close to the inlet
and the outlet of the pipe, with only minor discrepancies between
the simulation output and the experimental data. Both au values
tested perform similarly for run 108. However, it must be noted
that increasing au shifts the distribution slightly towards the larger
bubble sizes and reduces its peak value. As can be seen from Fig. 8,
the effect of au is much more pronounced for run 107. Although
au ¼ 50� provides an exceptional match with the experimental
data, increasing au to 60� reveals an interesting behavior, in which
the distribution begins to develop a secondary peak at a larger bub-
ble size. This secondary peak is not in agreement with the experi-
mental results for this particular run, but such a behavior is seen in
other experiments. Specifically run 96 exhibits a very pronounced
double peak distribution towards the end of the pipe, as seen in
Fig. 9. The comparison for this run is not as good as the previous
two sets, yet the discrepancies are still arguably small, especially
for au ¼ 60�. The model manages to successfully predict the emer-
gence of the second peak at the correct bubble size despite under-
predicting f m slightly. Furthermore, the axial position at which the
second peak begins to be visible (0.83 m in the experiment) is esti-
mated accurately by the model (between 0.9–1 m). Finally, Figs. 10
and 11 present the bubble size distribution and the Sauter mean
diameter along the pipe length in all three cases for the best
matching au values: 60� for runs 96 and 108, and 50� for run
107. The good match between the experimental and the theoretical
Sauter mean diameter values in Fig. 11 imply that the current
model is able to predict the experimental behavior along the pipe.
All the au values are considerably close to each other, as well as to
58� proposed in the literature, which may suggest that au could
have a universal value that is independent of the experimental
parameters. This eventually would indicate that the proposed coa-
lescence kernel here is devoid of any tuning parameters.

Despite the satisfactory performance of the proposed novel coa-
lescence kernel against the experimental data, the minor discrep-
ancies in the model prediction may be attributed to a couple
factors. The critical velocity expression adapted from Ozan et al.
(2021) comes from film drainage analysis, where the fluid particle



Fig. 7. Particle size distribution for run 108, close to pipe inlet (left) and close to pipe outlet (right), for different au . Solid lines stand for the simulation results and stars are
the experimental data points.

Fig. 8. Particle size distribution for run 107, close to pipe inlet (left) and close to pipe outlet (right), for different au . Solid lines stand for the simulation results and stars are
the experimental data points.

S.C. Ozan, J. Solsvik and H.A. Jakobsen Chemical Engineering Science 269 (2023) 118458
interfaces are assumed to be immobilized. In many real systems, it
is not unrealistic to expect the fluid particle interfaces to be immo-
bile due to small amounts of impurities that are likely to be present
in the system. For example, Klaseboer et al. (2000) conclude that
the drainage behavior in their experiments agrees much better
with a film drainage model that considers immobile interfaces
than its mobile counterpart, most likely due to the presence of
impurities. Yet, even though it is quite likely, there is no definitive
proof showing that the bubble interfaces are completely immobi-
lized in the experiments employed in this work for comparison.
Furthermore, the film drainage model of Ozan et al. (2021) consid-
ers only axisymmetric collisions. Although the current work incor-
porates non-axisymmetric effects by adjusting the vc expression
for different collision angles, it is possible that such effects also
play a role in the film drainage. These additional effects may result
in slight changes in Eqs. (1) and (4), and ultimately impact the coa-
8

lescence kernel’s accuracy. While deriving the relative velocity
probability function, it is assumed that the particle velocities are
independent of each other, as can be seen in Appendix B. Under
certain conditions, for example when wake effects are significant,
this assumption may be a possible source for the discrepancy. A
final remark should be made on the Eulerian multifluid-
population balance used in testing. The model disregards the radial
distribution of the particles inside the pipe and treats cross-
sectional averaged variables, which may reduce its predictive
properties. The selection of the inlet bubble size distribution’s
shape may also play a role in creating the discrepancy, since in
the experiments the distribution may easily be different than
Gaussian as assumed in the flow calculations. All these factors
combined with the error in the experimental measurements may
explain the discrepancies between the simulation outcome and
the experimental data.



Fig. 9. Particle size distribution for run 96, close to pipe inlet (left) and close to pipe outlet (right), for different au . Solid lines stand for the simulation results, and stars and the
dashed lines represent the experimental data.

Fig. 10. Particle size distribution throughout the pipe for each run. Upper integration limit is chosen as the best fitting one, au ¼ 60� for (a) and (c), and au ¼ 50� in (b).

Fig. 11. Sauter mean diameter throughout the pipe for each run. Upper integration limit is chosen as the best fitting one, au ¼ 60� for a) and c), and au ¼ 50� in b).
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4. Conclusions

This work constructs a novel coalescence kernel to be employed
within the population balance framework. The kernel includes a
coalescence probability expression that stems from the critical
velocity estimations of Ozan et al. (2021)’s film drainage simula-
tions. While sharing the merits of the existing literature models
(film drainage based, energy, and critical velocity models), the pro-
9

posed kernel avoids inheriting their drawbacks. Furthermore, it is
free of any artificially introduced tuning parameters. In adaptation
to the Eulerian frame, the collision relative velocity and the colli-
sion angle are treated as distributed parameters through probabil-
ity density functions. The model’s development is finalized with
the addition of a factor signifying the largest possible collision
angle that allows coalescence. The performance of the resulting
kernel is tested against bubbly pipe flow experiments, and show
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exceptional agreement with multiple runs. The model is able to
reproduce the experimental bubble size distribution successfully,
including more complex behaviors such as distributions with
double-peak.
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Appendix A. Appendix A

This appendix is dedicated to derivation of the probability den-
sity function of the relative velocity between the fluid particles (Eq.
(5)). The derivation starts with Eq. (2.16) of Wilczek et al. (2011),
where the probability density function of the velocity vector v
and its magnitude v are related through:

~f ðvÞ ¼ 4pv2f ðvÞ ð21Þ
Through their analysis, Wilczek et al. (2011) show that these two
functions are normal distributed and end up with the following
expressions for the probability density functions in their Eqs.
(2.50) and (2.51):

~f ðvÞ ¼
ffiffiffiffi
2
p

r
v2

r3 exp �1
2
v2

r2

� �
ð22Þ

f ðvÞ ¼ 1

2pr2ð Þ3=2
exp �1

2
v � v
r2

� �
ð23Þ

The validity of Eqs. (22) and (23) is shown and discussed in their
Figs. 3 and 4. However, it must be noted that these equations are
valid for a single fluid particle and further manipulations are
needed for the relative velocity density function of two particles.
Such manipulations have been previously discussed in the litera-
ture, e.g by Das (2015) and Gong et al. (2018), yet for the sake of
completeness they are revisited and discussed here. By denoting
the particle velocities with vn and vg, and by assuming their distri-
butions are independent of each other, a joint probability density
can be written as

f vn;vg
� 	 ¼ f vnð Þf vg

� 	 ¼ 1

2pr2
nð Þ32

exp � 1
2
vn �vn
r2
n

� �
1

2pr2
gð Þ32

exp � 1
2
vg �vg
r2
g

� �

¼ 1
ð2pÞ3r3

n
r3
g
exp � 1

2
vn �vn
r2
n

� 1
2
vg �vg
r2
g

� � ð24Þ

Each particle velocity is then decomposed into the relative velocity
vrel and the remainder w as

vn ¼
r2

n

r2
n þ r2

g
vrel þ rnrg

r2
n þ r2

g
w ð25Þ

vg ¼ � r2
g

r2
n þ r2

g
vrel þ rnrg

r2
n þ r2

g
w ð26Þ

where vrel ¼ vn � vg. Then the expression can be rewritten as

f ðv rel;wÞ ¼ 1

ð2pÞ3r3
nr3

g

exp �1
2
v2

rel þw2

r2
n þ r2

g

 !
ð27Þ
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where v rel ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrel � vrel

p
and w ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

w �wp
. Next, the expression is

integrated in the velocity space for dvn;x dvn;y dvn;z dvg;x dvg;y dvg;z
to cover all the directions. Here xi ¼ x; y; z are the Cartesian coordi-
nates. A transformation between the particle velocity components
and the relative velocity components yield

dvn;idvg;i ¼ rnrg

r2
n þ r2

g
dwidv rel;i ð28Þ

where the factor on the right-hand-side is the Jacobian of the trans-
formation. Then, in the differential form, the function becomes

f ðv rel;wÞ ¼ 1
ð2pÞ3r3

n
r3
g
exp � 1

2
v2
rel
þw2

r2
n
þr2

g

� �
dvn;x dvn;y dvn;z dvg;x dvg;y dvg;z

¼ 1
ð2pÞ3r3

n
r3
g
exp � 1

2
v2
rel
þw2

r2
n
þr2

g

� �
rnrg
r2
n
þr2

g

� �3

dwxdv rel;xdwydv rel;ydwzdv rel;z

¼ 1

ð2pÞ3 r2
n
þr2

gð Þ3 exp � 1
2
v2
rel
þw2

r2
n
þr2

g

� �
dwxdv rel;xdwydv rel;ydwzdv rel;z

ð29Þ

Writing Eq. (29) in terms components in spherical coordinates r; h;/
gives

f ðv rel;wÞ ¼ v2
rel sin/vrel

w2 sin/w

ð2pÞ3 r2
n þ r2

g

� �3 exp �1
2
v2

rel þw2

r2
n þ r2

g

 !
d/vrel

dhvrel dv rel d/w dhw dw

as dv rel;xdv rel;ydv rel;z ¼ v2
rel sin/vrel

d/vrel
dhvrel

dv rel and

dwxdwydwz ¼ w2 sin/w d/w dhw dw. Then, by integrating for all the
possible states (from 0 to 2p in hvrel

and hw; 0 to p in /vrel
and /w,

and 0 to 1 in w), the relative velocity probability density function
is obtained as

f vrel
¼ 4pv2

rel

2p r2
n þ r2

g

� �h i3=2 exp �1
2

v2
rel

r2
n þ r2

g

 !
ð31Þ
Appendix B. Appendix B

Solsvik and Jakobsen (2014) present a combined Eulerian
multifluid-population balance model for bubbly flow consisting
of the momentum balance for each phase, the continuous phase
continuity equation and the population balance equation. The
cross-sectional averaged population balance equation at steady-
state reads

@
@z ½vd;zðD; zÞf mðD; zÞ� � f mðD;zÞvd;zðD;zÞ

qdðzÞ
@qdðzÞ
@z

þ @
@D vd;DðD; zÞf mðD; zÞ

 �� 3

Dvd;DðD; zÞf mðD; zÞ
¼ DBðD; zÞ þ BBðD; zÞ þ DCðD; zÞ þ BCðD; zÞ

ð32Þ

where D is the particle size, z is the axial direction in the pipe and f m
is the mass density of fluid particles within the continuous phase.
The axial dispersed phase velocities in the physical and in the prop-
erty spaces are respectively denoted by vd;z and vd;D. The right-hand
size terms stand for the death and birth terms due to coalescence
and breakage, and are expressed as

DBðD; zÞ ¼ �bðDÞf mðD; zÞ ð33Þ

BBðD; zÞ ¼ VðDÞ
Z Dmax

D
hðD;D0ÞbðD0Þ f mðD0; zÞ

VðD0Þ dD0 ð34Þ

DCðD; zÞ ¼ �f mðD; zÞ
Z ðD3

max�D3Þ1=3

Dmin

CðD;D0Þ f mðD0; zÞ
qdðzÞVðD0Þ

dD0 ð35Þ
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BCðD; zÞ ¼ D2VðDÞ
2

Z ðD3�D3
minÞ

1=3

Dmin

Cð½D3 � D03�1=3;D0Þ
½D3 � D03�2=3

� f mðD0; zÞ
qdðzÞVðD0Þ

f mð½D3 � D03�1=3; zÞ
VðDÞ � VðD0Þ dD0 ð36Þ

where D0 is the size of the secondary particle, V is the particle vol-
ume, b denotes the breakage frequency function and h is the daugh-
ter size distribution function. The dispersed and the continuous
phase momentum equations are given

@
@z f mðD; zÞvd;zðD; zÞvd;zðD; zÞ

 � ¼ � @

@D f d;mðD; zÞvd;zðD; zÞvd;DðD; zÞ

 �

� fmðD;zÞ
qdðzÞ

dpðzÞ
dz þ f mðD; zÞg þ f drag

ð37Þ

acðzÞqcvcðzÞ d
dz vcðzÞ ¼ �acðzÞ dpðzÞ

dz � acðzÞqc fwðzÞ
2Dpipe

vcðzÞ2

þacðzÞqcg � R Dmax

Dmin
f dragðD; zÞdD

ð38Þ

where f drag is the drag force, ac is the volume fraction of the contin-
uous phase, g is the gravitational acceleration and f w is the wall fric-
tion factor. The closures for the drag and the friction terms can be
found in Table 1 of Solsvik and Jakobsen (2014). Finally, the conti-
nuity equation gives

d
dz

acðzÞqcðzÞvcðzÞð Þ ¼ 0 ð39Þ

for the continuous phase.
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