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1. Introduction

Characteristic classes play a fundamental role in the analysis of vector bundles. Let 
M be a smooth manifold and π : E → M be a smooth vector bundle. While ordinary 
characteristic classes just depend on the topology of M and E, the presence of a con-
nection ∇ on E allows to define more refined secondary classes which depend on the 
geometry encoded by ∇. One may give a unified description of primary and this type 
of secondary classes using the differential characters of Cheeger–Simons [5], or smooth 
Deligne cohomology. These are examples of differential cohomological invariants which 
refine singular cohomology. In [23], Hopkins–Singer show that every topological cohomol-
ogy theory has a differential refinement for smooth manifolds. Differential refinements 
play, in particular, an important role in mathematical physics as they allow for a concep-
tual interpretation of quantization conditions in field theories (see e.g. [5], [12], [15], [23], 
[33], and [38]). For K-theory on smooth manifolds there are various geometric models for 
differential refinements, for example structured vector bundles of Simons–Sullivan [35]
and differential K-theory of Freed–Lott [13].

Since many manifolds studied in mathematical physics are equipped with a complex 
structure, for example Calabi–Yau manifolds in string theory and mirror symmetry, 
it is desirable to have refinements of topological cohomology theories which track the 
complex structure. For a complex manifold X, an analog of smooth Deligne cohomology 
is complex analytic Deligne cohomology [6] which takes the Hodge filtration on forms 
and thereby the complex structure on X into account. In [10], Esnault studies secondary 
classes of flat bundles on analytic manifolds. In [24], Karoubi defined multiplicative K-
theory which we may consider as a Hodge filtered extension of complex K-theory in our 
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terminology. In [22], the authors construct a Hodge filtered extension, denoted ED, of 
every rationally even cohomology theory E following the work of Hopkins–Singer in [23]. 
In particular, they define a Hodge filtered extension of complex cobordism represented 
by the Thom spectrum MU . This theory shares the same relationship with complex 
analytic Deligne cohomology as differential cobordism of [23] does with smooth Deligne 
cohomology. Recently, Benoist showed in [1] that Hodge filtered cobordism of [22] can 
be used to study subtle phenomena for non-algebraic cohomology classes for algebraic 
varieties.

The definition of the groups En
D(p)(X), for integers n, p and complex manifold X, 

in [22] has the advantage that many important properties follow directly from the con-
struction of ED(p) as a homotopy pullback as in (1) below. However, it also has the 
disadvantage that it is rather abstract which makes it difficult to describe elements in 
En

D(p)(X) explicitly. It is therefore highly desirable to have an alternative and more con-
crete construction of En

D(p)(X). To provide such a concrete and geometric description 
for E = MU is the purpose of this paper. We will do this by showing that, for every 
integer p, MU∗

D(p) is isomorphic to a new theory which we denote by MU∗(p), without 
the subscript D, whose elements are given by concrete geometric cycles and relations. In 
[18] we show that this geometric description allows us to define pushforward morphisms 
in MU∗(p) for every proper holomorphic map between complex manifolds. This is a 
vast extension of the result in [22] and is important for the study of Abel–Jacobi type 
invariants as in [31].

We now briefly recall the construction of [22] and will then outline the new contri-
butions of the present paper. Let ManC denote the category of complex manifolds and 
holomorphic maps. The Grothendieck topology defined by open covers turns ManC into 
an essentially small site with enough points. For a topological space Z, let sing(Z) denote 
its singular simplicial set. Let E be a topological rationally even spectrum. Let sing(E)
denote the spectrum of simplicial sets whose nth simplicial set is given by sing(En). For 
V∗ = E∗ ⊗Z C, let H(V∗) denote the spectrum whose nth simplicial set is the simplicial 
Eilenberg–MacLane space K(V∗, n). Let sing(E) → H(V∗) be a map of spectra which 
induces the genus φ∗ : E∗ → V∗ which in degree 2k multiplies with (2πi)k. We consider 
φ as a map of constant presheaves of spectra on ManC. The canonical inclusion map 
V∗ → A∗(X; V∗) from constant functions into the complex of smooth forms induces a 
map of presheaves of Eilenberg–MacLane spectra H(V∗) → H(A∗(V∗)). Composition 
then yields a map φ : sing(E) → H(A∗(V∗)) which we also denote by φ. For a given 
integer p, let φp = (2πi)p · φ. Then ED(p) is defined by the homotopy cartesian square 
of presheaves of spectra on ManC

ED(p) sing(E)

φp

H(F pA∗(V∗)) H(A∗(V∗))

(1)



4 K.B. Haus, G. Quick / Advances in Mathematics 431 (2023) 109244
where the notation for the presheaves of the complex of filtered forms F pA∗(V∗) is 
explained in (5) and Definition 2.8. Let hoSp(sPre∗) denote the homotopy category of 
presheaves of spectra on ManC. Then the n-th Hodge filtered E-cohomology group with 
twist p of a complex manifold X is defined as the group of homotopy classes of maps of 
presheaves of spectra

En
D(p)(X) = HomhoSp(sPre∗)(Σ∞(X+),ΣnED(p)).

We will now summarise the construction of our geometric model MU∗(p) which is 
inspired by Karoubi’s multiplicative K-theory of [24] and the geometric differential com-
plex cobordism groups of [3]. The details are given in section 2. For a smooth manifold 
X we denote by A∗ the sheaf on X given by the de Rham complex with complex coeffi-
cients. Similar to [24] we develop our theory for objects in the category ManF which are 
pairs (X, F ∗) where X is a smooth manifold, and F ∗ a descending filtration of A∗ on X
as a chain complex of A0-modules. A morphism f : X → Y in ManF is a smooth map 
f : X → Y such that, for each p, we have f∗F pA∗ ⊂ F pA∗. Whenever X is a complex 
manifold we consider it as an object in ManF together with the Hodge filtration on 
A∗. Since we are mostly interested in the case of complex manifolds we will refer to 
MU∗(p)(X) which we will define below as geometric Hodge filtered complex cobordism 
even though X may just be in ManF . Our main reason to use the category ManF

is that it makes it easier to work with products of a complex manifold and a smooth 
manifold. We hope, however, that the additional generality may turn out to be useful in 
future applications as well.

Let (X, F ∗) be an object in ManF . Recall from [24] that Karoubi’s multiplicative 
K-theory groups MK(X) are generated by triples (E, ∇, ω) where E → X is a complex 
vector bundle with connection ∇, and ω is a sequence of forms such that ch2p(∇) +dω2p ∈
F pA2p(X). Here ch2p(∇) denotes the 2p-th Chern–Weil Chern character form of ∇. For 
Hodge filtered complex cobordism, we essentially replace vector bundles with connection 
by the differential cobordism cycles of [3].

Consider the genus φ : MU∗ → V∗ given by multiplication by (2πi)n in degree 2n. By 
Thom’s theorem, MUn is the bordism group of n-dimensional almost complex manifolds. 
Hirzebruch showed that if R is an integral domain over Q, then any genus φ : MU∗ → R

is of the form

φ(Z) =
∫
Z

(Kφ(TZ))−1

for a multiplicative sequence Kφ, which yield an R-valued characteristic class of complex 
vector bundles. Now we set R = V∗ = MU∗ ⊗ C and consider the characteristic class 
Kp = (2πi)p · Kφ. If ∇ is a connection on a complex vector bundle E → X, Chern–
Weil theory gives a form Kp(∇) representing Kp(E). Given a proper oriented map 
f : Z → X and a form ω on Z, we consider the pushforward current f∗ω, which acts by 
σ �→

∫
ω ∧ f∗σ.
Z



K.B. Haus, G. Quick / Advances in Mathematics 431 (2023) 109244 5
Now we can describe the group of Hodge filtered cycles ZMU(p)(X). The details 
are explained in section 2. The elements in ZMU(p)(X) are triples (f, ∇, h) where 
f is a proper, complex oriented map f : Z → X, ∇ is a connection on the com-
plex stable normal bundle of f and h is a current on X so that f∗Kp(∇) − dh is a 
smooth form in F pA∗(X; V∗). We grade ZMU(p)(X) by the codimension of f , so for 
(f, ∇, h) ∈ ZMUn(p)(X) we have dimX − dimZ = n. Whenever h is a form with 
dh ∈ F pAn(X; V∗), we define a(h) = (0, 0, h) ∈ ZMUn(p)(X). We will quotient out the 
group of cycles a 

(
F pAn−1). Now we define the cobordism relation, which is essentially 

that of [3]. Let ̃b = (b, ∇) be a pair with b : W → R ×X and ∇ a connection on its stable 
normal bundle. We assume that b is transverse to the inclusion ιt : X → R ×X, given 
by ιt(x) = (t, x), for t = 0, 1. Let

ψ(̃b) =
∫

[0,1]×X/X

b∗K
p(∇)

and define BMUn
geo(p)(X) ⊂ ZMUn(p)(X) as the subgroup generated by cycles of the 

form

(f1,∇1, 0) − (f0,∇0, ψ(̃b)).

Definition 1.1. For (X, F ∗) ∈ ManF and integers n, p, the geometric Hodge filtered 
complex cobordism groups are defined by

MUn(p)(X) := ZMUn(p)(X)
BMUn

geo(p) + a (F pAn−1(X;V∗))
.

We now state the main result of this paper:

Theorem 1.2. Let X be a complex manifold together with the Hodge filtration. Then, for 
all integers n, p, there is an isomorphism of Hodge filtered cohomology groups

MUn
D(p)(X) ∼= MUn(p)(X) (2)

which respects pullbacks along holomorphic maps.

Remark 1.3. The analog of Theorem 1.2 for differential cobordism is a consequence of the 
uniqueness theorem of [4] for differential extensions of cohomology theories which satisfy 
the axioms of [4]. We propose similar axioms for Hodge filtered extensions in section 2.9. 
However, the proof of the uniqueness theorem of [4] relies on the fact that any continuous 
map is homotopic to a smooth one. The corresponding assertion for holomorphic maps 
is false. We have not succeeded in finding a proof that works also in the holomorphic 
setting. We therefore prove Theorem 1.2 by providing an explicit isomorphism.
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The proof of Theorem 1.2 is based on the extent to which the Pontryagin–Thom con-
struction is compatible not just with topological but differential geometric data as well. 
To check all the required compatibilities requires a detailed analysis of the geometry of 
the Pontryagin–Thom construction. We then construct isomorphism (2) as a composi-
tion of two isomorphisms. In section 3 we construct a more geometric model of Hodge 
filtered cobordism on ManF . We prove in section 4 that this model and the one of [22]
are equivalent. Then we define in section 5 a map from the new model to the geometric 
cycle description we described above. While at first glance it may seem to be a rather 
straightforward task to construct a cycle out of the data of homotopy pullback (1) for 
E = MU , we do not expect it to be possible to construct isomorphism (2) in a more 
direct way.

We will now further describe the key ideas for the construction of isomorphism (2). 
Consider a pointed continuous map

Th(Rk ×X) = ΣkX+
g

MU(m, l) = Th(γm,l) (3)

such that g|g−1(γm,l) is smooth and transverse to Grm(Cm+l), considered as the image of 
the 0-section ιm,l in γm,l. Here Th(E) is the Thom space of E. Then we get a manifold 
Zg = g−1(Grm(Cm+l)), and a natural map fg : Zg → X. The map fg is naturally complex 
oriented, and the associated complex representative of the stable normal bundle is Ng =(
g|Zg

)∗
γm,l. There are natural compatible connections ∇m,l on γm,l, as considered in 

[28,29], which we may pull back to get a connection ∇g =
(
g|Zg

)∗ ∇m,l. Now we view 
the currents φ∇m,l

:= (ιm,l)∗ K
p(∇m,l) as currents on MU(m, l). As such, they should 

correspond to maps of presheaves MU(m, l) → H(D∗(V∗)), where we consider MU(m, l)
as representing the presheaf of smooth maps to MU(m, l) and use D∗ to denote the 
complex of currents. Then we may replace the map φp : sing(MU) → H(A∗(V∗)) in (1)
with a map φ∇ : MU → H(D∗(V∗)) defined by the formula φ∇(g) = π∗g

∗(φ∇m,l
) where 

π : Rk ×X → X is the projection. This would harmonise well with the geometric groups 
MUn(p)(X), since we have

(fg)∗ K
p(∇g) = π∗

(
g|g−1(γm,l)

)∗
φ∇m,l

. (4)

Hence, if we furthermore had a current h such that ω = φ∇(g) − dh is in F pAn(X; V∗), 
we could simply map (g, h, ω) to (fg, ∇g, h). However, since currents may not be pulled 
back along arbitrary holomorphic maps, D∗ is not a presheaf and φ∇ cannot be made 
into a map of presheaves.

Therefore, we note that (ιm,l)∗ induces the Thom isomorphism, and so we may use 
compatible Thom forms to circumvent the use of currents in the above analysis. We 
chose to use the Mathai–Quillen Thom forms of [27], which are natural for Hermitian 
bundles with unitary connections. Then we can pull back these Thom forms along maps 
g as in (3). We denote the set of such maps by Mapsm

∗ (ΣkX+, MU(m, l)). Now we would 
like to take colimits and to replace the spaces MU(m, l) with the spaces MUn, where 
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n + k = 2m, and then with QMUn = colimk ΩkMUn+k. We show that the Mathai–
Quillen Thom forms behave well with respect to these two stabilisation procedures. 
Finally, we consider the simplicial set Mapsm(Δ•×X, QMUn) of, in an appropriate sense, 
smooth maps. Note that we work with Δ•×X instead of X×Δ•, since the orientation of 
the former is compatible with integration over Δ•. We refer to Remark 3.13 for further 
details.

In section 3.4 we then define a new homotopy theoretic model, denoted MUhs(p), 
of Hodge filtered cobordism using the existence of the Mathai–Quillen forms. A key 
observation is that the latter will allow us to define natural maps of simplicial sets

φn
sm : Mapsm(Δ• ×X,QMUn) → An(Δ• ×X;V∗).

The classes in MUn
hs(p)(X) are represented by triples (g, ω, h) where g : ΣkX+ →

MU(m, l) is smooth, ω ∈ F pAn(X; V∗), and h ∈ An(Δ1 × X; V∗) restricts to ω at 
one end and φn

sm(g) at the other. See Lemma 3.16 for a precise statement.
We show in section 4.2 that the new model MUhs(p) is represented by a presheaf of 

spectra which fits into a homotopy pullback similar to the one defining MUD(p). The 
constant presheaf sing(MU) is replaced with the presheaf of simplicial spectra X �→
Mapsm(Δ• ×X, QMU). The map φn

sm above induces a map of presheaves of spectra

φsm : Mapsm(Δ• ×−, QMU) → A∗
hs(V∗),

where A∗
hs(V∗) is a presheaf of simplicial spectra over ManC which is weakly equiv-

alent to the Eilenberg–Maclane spectrum H(A∗(V∗)). We also define a spectrum 
F pA∗

hs(V∗) which is weakly equivalent to H(F pA∗(V∗)). They are related by a natu-
ral map F pA∗

hs(V∗)) → A∗
hs(V∗) which is induced by the objectwise inclusion of sheaves 

F pA∗(V∗) 
inc−−→ A∗(V∗). The presheaf of spectra MUhs(p) is then defined as the homotopy 

pullback of the diagram

Mapsm(Δ• ×−, QMU) → A∗
hs(V∗) ← F pA∗

hs(V∗).

Our definition of the spectra A∗
hs(V∗) and F pA∗

hs(V∗) follows essentially the work of 
Hopkins–Singer [23, Appendix D], which is the motivation for the subscript hs. In The-
orems 4.7 and 4.9 in section 4.3 we show that there is a weak equivalence of presheaves 
of spectra MUD(p) � MUhs(p) and hence a natural isomorphism MU∗

D(p)(X) ∼=
MU∗

hs(p)(X) for every p ∈ Z.
Since MUhs(p) is a much more accessible model, we are then able to define in sec-

tion 5.3 a natural map

κ : MUn
hs(p)(X) → MUn(p)(X)

by setting
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κ(g, ω, h) =

⎛⎜⎝fg,∇g, Fα(g) +
∫

Δ1×X/X

h

⎞⎟⎠ .

Here Fα(g) is a universally defined correction term which is needed since we used a 
Thom form on γm,l instead of the Thom current (ιm,l)∗ K(∇m,l) appearing in (4). The 
assignment X �→ MU∗

hs(p)(X) is actually defined for every X ∈ ManF . In fact, we show 
in Theorem 5.19 in section 5.4 that κ is an isomorphism of Hodge filtered extensions 
over ManF .

Many of the ideas of the present paper appeared in the doctoral thesis of the first-
named author. Both authors would like to thank the Department of Mathematical 
Sciences at NTNU for the continuous support during the work on the thesis and this 
paper. We thank Mike Hopkins for helpful discussions and the anonymous referees for 
helpful comments and suggestions to improve the exposition of the paper.

2. Geometric Hodge filtered cobordism

In this section we will define geometric Hodge filtered complex cobordism groups. We 
begin with some recollection and notation.

2.1. Currents

Let X be a smooth manifold and let ΛX denote the orientation bundle of X. Let 
A∗

c(X; ΛX) be the space of compactly supported smooth forms on X with values in 
ΛX . Let D∗(X) denote the space of currents on X, defined as the topological dual of 
A∗

c(X; ΛX). Given a form ω ∈ A∗(X) and a current T ∈ D∗(X), their product acts by

T ∧ ω(σ) = T (ω ∧ σ).

There is an injection A∗(X) → D∗(X) given by

ω �→ Tω =

⎛⎝σ �→
∫
X

ω ∧ σ, σ ∈ A∗
c(X; ΛX)

⎞⎠ .

We grade D∗ so that this injection preserves degree. That is, Dk(X) consists of the 
currents which vanish on a homogeneous ΛX valued form σ, unless possibly if deg σ =
dimRX − k. We will not always distinguish ω from Tω in our notation.

If X is a manifold without boundary, Stokes’ theorem implies for ω ∈ Ak(X):

Tdω(σ) = (−1)k+1Tω(dσ).

Hence we can extend the exterior differential to a map d : Dk(X) → Dk+1(X) by
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dT (σ) = (−1)k+1T (dσ).

We define for a vector space V , D∗(X; V ) = D∗(X) ⊗ V , and for a graded vector space 
V∗ we set

Dn(X;V∗) =
⊕
j

Dn+2j(X;V2j).

An orientation of a map f : Z → X is equivalent to an isomorphism ΛZ � f∗ΛX . If f is 
proper and oriented, we therefore get a map

f∗ : A∗
c(X; ΛX) → A∗

c(Z; ΛZ)

which induces a map

f∗ : D∗(Z) → D∗+k(X)

where k = codim f = dimX − dimZ. We also denote by f∗ the homomorphism 
D∗(Z; V∗) → D∗(X; V∗) induced by tensoring f∗ with the identity of the various V2j. 
We get the equality

d ◦ f∗ = (−1)kf∗ ◦ d.

Remark 2.1. In the case of a submersion π : W → X the pushforward π∗ takes forms to 
forms. We thus obtain the integration over the fiber map∫

W/X

: A∗(W ) → A∗+d(X)

defined by the equation

T∫
W/X

ω = π∗Tω.

2.2. The category ManF

We recall the definition of ManF from the introduction.

Definition 2.2. We denote by ManF the category with objects pairs (X, F ∗) where X is 
a smooth manifold, and F ∗ a descending filtration of the sheaf A∗ on X given by the 
de Rham complex with complex coefficients as a chain complex of A0-modules. We will 
often just write X ∈ ManF , in which case F pA∗ will refer to the filtration associated to 
X as an object of ManF . A morphism f : X → Y in ManF is a smooth map f : X → Y

such that, for each p, we have f∗F pA∗ ⊂ F pA∗.
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Remark 2.3. Let Man denote the category of smooth manifolds. There is an embedding 
of categories Man → ManF which endows a manifold with the trivial filtration A∗ =
F 0A∗ ⊃ F 1A∗ = 0. Whenever we consider a smooth manifold S without specifying a 
filtration we equip S with this trivial filtration.

Remark 2.4. There is an embedding of categories ManC → ManF given by considering 
a complex manifold X together with the Hodge filtration on A∗, i.e., whenever X is 
a complex manifold we consider it as an object in ManF with the Hodge filtration on 
forms which is defined by

F pAn(X) =
⊕
i≥0

Ap+i,n−p−i(X). (5)

This filtration is not associated with a Hodge structure, but the name is justified by 
the fact that if X is compact Kähler, (5) induces the Hodge filtration on H∗(X; C). In 
fact, we are mainly interested in the case of complex manifolds. We develop our theory 
on the category ManF instead of ManC because it is convenient to have a theory that 
naturally handles products S ×X for S merely smooth.

Definition 2.5. Given X1, X2 ∈ ManF , we equip X1 ×X2 with the filtration

F pA∗(X1 ×X2) =
⊕

p1+p2=p

F p1A∗(X1) ⊗ F p2A∗(X2)

where the over-line denotes the closure in the topological space A∗(X×Y ) equipped with 
the C∞-compact-open topology of [7]. Thus a form ω = f ·ωX ⊗ωY , for f a function on 
X × Y , belongs to F p1+p2A∗(X × Y ) whenever ωX ∈ F p1A∗(X) and ωY ∈ F p2A∗(Y ), 
and every element of A∗(X × Y ) is a finite sum of such forms.

This construction is not the categorical product on ManF . It is, however, the cate-
gorical product on the full subcategory of ManF satisfying the following condition:

For ωi ∈ F piA∗(X), i = 1, 2, we have ω1 ∧ ω2 ∈ F p1+p2A∗(X). (6)

Remark 2.6. Note that condition (6) is equivalent to requiring Δ: X → X ×X to be a 
morphism in ManF .

Remark 2.7. Let X be a complex manifold and let S be a smooth manifold. Then we 
can describe the filtration for the product S × X as follows. Let (zi) be holomorphic 
coordinates for U ⊂ X, and let (si) be smooth coordinates for V ⊂ S. Then a form

∑
fIJKdsK ∧ dzI ∧ dzJ ∈ A∗(V × U)
IJK
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belongs to F pA∗(V × U) exactly if fIJK = 0 whenever |I| < p. By slight abuse of 
terminology, we will often refer to this filtration as the Hodge filtration on S ×X.

Definition 2.8. Let V∗ be an evenly graded C-vector space and X ∈ ManF . We extend 
the given filtration on A∗(X) to forms with coefficients in V∗ by

F pAn(X;V∗) :=
⊕
j∈Z

F p+jAn+2j(X;V2j).

The grading is defined such that a form ω ∈ Ar(X; Vs) has degree r − s.

2.3. Cycle model for MU(X)

We now recall from [32] Quillen’s description of the complex cobordism groups of a 
smooth manifold X, denoted by MUn(X). Let f : Z → X be a smooth map. We may 
factorize f as f = π ◦ ι for an embedding ι : Z → X ×CN and π the projection onto X. 
If the codimension of f , defined by codim f = dimX − dimZ, is even, then a complex 
orientation of f is represented by a complex structure on the normal bundle of ι. If f
has odd codimension, a complex orientation of f is a complex orientation of the map 
Z → X×R given by z �→ (f(z), 0). In either case we obtain a complex vector bundle Nf

which represents the stable normal bundle of f . Two choices of factorization and complex 
structures, the second one denoted by primes, represent the same complex orientation if 
there is a commutative diagram

Z
ι

i0

X ×CN

π

Z × I X ×CN ′′
X

Z
ι′

i1

X ×CN ′

π′

where the central vertical maps are linear embeddings of complex vector bundles, and the 
first central horizontal map is an isotopy between the two maps Z → X ×CN ′′ through 
factorizations of f . Thus the class of the stable complex normal bundle [Nf ] = [f∗TX] −
[TZ] ∈ K0(Z) depends only on the complex orientation. If f1 and f2 are composable 
complex oriented maps, their composition is complex oriented with complex normal 
bundle satisfying [Nf2◦f1 ] = [Nf1 ] + f∗

1 [Nf2 ]. Two complex oriented maps f1 : Z1 → X

and f2 : Z2 → X are isomorphic if there is a diffeomorphism ψ : Z1 → Z2 so that 
f1 = f2 ◦ ψ as an equality of complex oriented maps.
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A complex cobordism cycle, or cycle for short, is an isomorphism class of proper 
complex oriented maps f : Z → X. We let ZMUn(X) denote the monoid of cycles of 
codimension n under disjoint union. A cycle

b = (c, f) : W → R×X ∈ ZMUn(R×X)

is called a bordism datum over X if 0 and 1 are regular values of a : W → R. In this case 
we define Wt = c−1(t), and ft = f |Wt

for t = 0, 1, and put

∂b = f1 + (−f0)

where −f0 denotes the cycle obtained from f0 by reversing the complex orientation of 
its representing complex oriented maps. Then we define BMUn(X) as the submonoid 
generated by boundaries ∂b as b range over all bordism data over X. The n-th complex 
cobordism group of X is then defined by

MUn(X) = ZMUn(X)/BMUn(X).

In fact, MUn(X) is contravariantly functorial in X. For the pullback operation, let 
g : Y → X be a smooth map. If the cycle f : Z → X is transverse to g, then g∗[f ] is 
represented by f ′ in the following pullback square

Z ′

f ′

Z

f

Y
g

X.

It follows from Thom’s transversality theorem that each cobordism class [f ] can be repre-
sented by a map which is transverse to g. That the cobordism class of g∗[f ] depends only 
on [f ] follows by similarly pulling back bordism data. Hence g∗ : MUn(X) → MUn(Y )
is well-defined. There is an exterior product

MUn(X) ×MUm(Y ) → MUn+m(X × Y )

given by ([f ], [g]) �→ [f ×g] =: [f ] × [g]. Then MU∗(X) is turned into a ring by [f ] · [g] :=
Δ∗([f ] × [g]), for Δ: X → X ×X the diagonal map Δ(x) = (x, x).

2.4. Genera

We let MU∗ be the graded ring with MUn = MU−n(pt). A map of rings MU∗ → R

for R an integral domain over Q is called a complex genus. We recall from [19] that 
complex genera may be constructed in the following way. For each i ∈ N, let xi be an 
indeterminate of degree i. Let Q ∈ R[[y]] be a formal power series in the variable y of 
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degree 2. Let σi denote the i-th elementary symmetric function in x1, x2, . . . . We may 
then define a sequence of polynomials KQ

i satisfying

KQ(σ1, σ2, · · · ) = 1 + KQ
2 (σ1) + KQ

4 (σ1, σ2) + · · · =
∞∏
i=1

Q(xi),

since the right hand side is symmetric in the xi. Then we get a characteristic class KQ, 
defined on a complex vector bundle E → X of dimension n by

KQ(E) := KQ(c1(E), . . . , cn(E)) ∈ H∗(X;R).

By [19, section 1.8] all genera are of the form

φQ([X]) =
∫
X

KQ(NX)

where NX denotes the complex vector bundle representing the stable normal bundle of 
X obtained from the complex orientation of X → pt. We now suppose that V∗ is a 
graded ring and that the power series Q(y) = 1 + r1y + r2y

2 + · · · has total degree 0. 
This is equivalent to assuming φQ to be a degree-preserving genus. Then KQ(E) has 
total degree 0. From now on we set V∗ := MU∗ ⊗Z C. By [3, Lemma 3.26] φQ extends 
to a morphism of multiplicative cohomology theories

φQ : MUn(X) → Hn(X;V∗)

by

φQ([f ]) = f∗K
Q (Nf ) . (7)

Here Hn(X; V∗) ∼=
⊕

j H
n+2j(X; V2j), so that in particular H−2j(pt; V∗) � V2j .

Definition 2.9. We fix the multiplicative natural transformation

φ : MU∗(X) → H∗(X;V∗)

characterized by restricting to multiplication with (2πi)k on MU2k → MU2k ⊗C. Let

K = 1 + K2(σ1) + K4(σ1, σ2) + · · ·

be the multiplicative sequence satisfying φ([f ]) = f∗K(Nf ). For p ∈ Z we set Kp =
(2πi)p ·K and

φp([f ]) = f∗K
p(Nf ). (8)
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Let f : Z → X be complex oriented, and let ∇ be a connection on Nf . By Chern–Weil 
theory, there is a well-defined form c(∇) ∈ A∗(Z) representing the total Chern class 
c(Nf ). In fact with respect to local coordinates we have

c(∇) = 1 + 2c1(∇) + c2(∇) + · · · = det
(
I − 1

2πiF
∇
)

where F∇ denotes the curvature of ∇. Then

K(∇) := K(c1(∇), c2(∇), . . . ) ∈ A0(Z;V∗)

represents the class K(Nf ).

2.5. Definition of geometric Hodge filtered cobordism groups

First we recall the definition of geometric cobordism cycles from [3]:

Definition 2.10. A geometric cycle over X is a triple f̃ = (f, N, ∇) where f is a proper 
complex oriented map, with N a complex vector bundle representing the stable normal 
bundle of f , and ∇ a connection on N . We say that f̃ and f̃ ′ are isomorphic if there 
is an isomorphism g : Z → Z ′ of complex oriented maps such that, under the induced 
isomorphism N ∼= g∗N ′, ∇ and g∗∇′ are identified. Let

˜ZMU
n
(X)

denote the abelian group generated by isomorphism classes of geometric cycles over X
of codimension n with the relations f̃1 + f̃2 = f̃1 � f̃2.

Definition 2.11. Let Kp be as in Definition 2.9 for the multiplicative natural transfor-
mation φ. For a geometric cycle f̃ ∈ ˜ZMU

n
(X) we define, using the orientation of f

induced by its complex orientation, the current

φp(f̃) = f∗K
p(∇f ) ∈ Dn(X;V∗). (9)

Remark 2.12. Note that φp(f̃) is a closed current representing the cohomology class 
φp([f ]) = f∗Kp(Nf ) ∈ Hn(X; V∗) defined in (8). By de Rham’s theorem [7, Theorem 
14] we can find a current h ∈ Dn−1(X; V∗) such that

φp(f̃) − dh = f∗K
p(∇f ) − dh is a form, i.e., lies in An(X;V∗). (10)

This observation will be crucial for the definition of Hodge filtered cycles below.
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Definition 2.13. Let (X, F ∗) be an object in ManF . We define the group of Hodge filtered 
cycles of degree (n, p) on (X, F ∗) as the subgroup

ZMUn(p)(X) ⊂ ˜ZMU
n
(X) × Dn−1(X;V∗)/dDn−2(X;V∗)

consisting of pairs γ = (f̃ , h) satisfying

φp(f̃) − dh ∈ F pAn(X;V∗)

where φp(f̃) is defined by (9) in Definition 2.11.

Remark 2.14. To simplify the notation, we will often write φ instead of φp. We may 
sometimes write a Hodge filtered cobordism cycle as a triple

γ = (f̃ , ω, h) ∈ ˜ZMU
n
(X) × F pAn(X;V∗) × Dn−1(X;V∗)/dDn−2(X;V∗),

where (f̃ , h) ∈ ZMUn(p)(X) and φp(f̃) − dh = ω.

We now define maps on the level of cycles as follows:

R : ZMUn(p)(X) → F pAn(X;V∗)cl, R(f̃ , h) = φp(f̃) − dh

a : d−1 (F pAn(X;V∗))n−1 → ZMUn(p)(X), a(h) = (0, h) (11)

I : ZMUn(p)(X) → ZMUn(X), I(f̃ , h) = f

where d−1 (F pAn(X;V∗))n−1 denotes the subset of elements in An−1(X; V∗) which are 
sent to the subgroup F pAn(X; V∗) under d : An−1(X; V∗) → An(X; V∗).

We will now introduce the cobordism relation.

Definition 2.15. The group of geometric bordism data over X is the subgroup of 
˜ZMU

n
(R ×X), with underlying maps b = (cb, f) : W → R ×X such that 0 and 1 are 

regular values for c. Then Wt = c−1
b (t) is a closed manifold for t = 0, 1, and ft = f |Wt

is 
a geometric cycle. We define

∂b̃ := f̃1 − f̃0 ∈ ˜ZMU
n
(X)

and, setting W[0,1] = c−1
b ([0, 1]), we define

ψp(̃b) = (−1)n
(
f |W[0,1]

)
∗ (Kp(∇b)) .

Remark 2.16. We will often write ψ instead of ψp to simplify the notation.

Proposition 2.17. For b̃ a geometric bordism datum over X, we have

φp(∂b̃) − dψp(̃b) = 0.
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Proof. Let σ ∈ A∗
c(X; V∗). We use for t = 0, 1 the notation of the following diagram, 

where the square is cartesian, and where we view jt with the pullback orientation:

Wt

jt

ft

W

f

(c,f)

{t} ×X
it

id

R×X

X

Let W[0,1] = c−1([0, 1]). Since Kp(∇b) is closed and of even degree, we have d(Kp(∇b) ∧
f∗σ) = K(∇b) ∧ df∗σ, and so by Stokes theorem,

(
f |W[0,1]

)
∗ K

p(∇b)(dσ) =
∫

W[0,1]

K(∇b) ∧ df∗σ

=
∫

∂W[0,1]

K(∇b) ∧ f∗σ

=
(
f |∂W[0,1]

)
∗
(
δ∂W[0,1] ∧Kp(∇b)

)
(σ),

where δ∂W[0,1] is the integration current of ∂W[0,1] with the boundary orientation. We 
observe that δ∂W[0,1] = (j1)∗1 − (j0)∗1, since the pullback orientation coincides with the 
boundary orientation at 1, but not at 0. We have

(f |W[0,1])∗(δ∂W[0,1] ∧Kp(∇b)) = (f |W[0,1])∗((j1)∗j
∗
1K(∇b) − (j0)∗j∗0Kp(∇b))

= (f1)∗Kp(∇f1) − (f0)∗Kp(∇f0)

= φp(f̃1) − φp(f̃0).

Since T (dσ) = (−1)degT+1dT (σ), for homogeneous currents T , by definition of the exte-
rior derivative on currents on X, this finishes the proof. �

In light of Proposition 2.17, we consider (∂b̃, ψp(̃b)) as a Hodge filtered cycle of degree 
(codim b, p). We call such cycles nullbordant and let BMUn

geo(p)(X) ⊂ ZMUn(p)(X)
denote the subgroup generated by the nullbordant cycles.

We define

F̃ pAn−1(X;V∗) := F pAn−1(X;V∗) + dAn−2(X;V∗).

Then we define the group of Hodge filtered cobordism relations by

BMUn(p)(X) = BMUn
geo(p)(X) + a

(
F̃ pAn−1(X;V∗)

)
(12)
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where a is the map defined in (11) above.
Now we are ready to define geometric Hodge filtered cobordism:

Definition 2.18. Let (X, F ∗) ∈ ManF and let n and p be integers. The geometric Hodge 
filtered cobordism group of X of degree (n, p) is defined as the quotient

MUn(p)(X) := ZMUn(p)(X)
BMUn(p)(X) .

We denote the Hodge filtered cobordism class of γ = (f̃ , h) ∈ ZMUn(p)(X) by [γ] =
[f̃ , h].

2.6. The long exact sequence

The maps defined on the level of cycles in (11) induce maps on the level of cohomology 
groups:

R : MUn(p)(X) → Hn(X;F pA∗(V∗)), R[f̃ , ω, h] = [ω]

a : Hn−1
(
X; A

∗

F p
(V∗)

)
→ MUn(p)(X), a(h) = [0, dh, h] (13)

I : ZMUn(p)(X) → MUn(X), I[f̃ , h, ω] = [f ].

Proposition 2.19. The maps R, a and I in (13) are well-defined.

Proof. We first show that I and R vanish on BMUn(p)(X), as defined in (12). For 
γ = (∂b̃, ψ(̃b)) ∈ BMUn

geo(X), we have

I(γ) = ∂b ∈ BMUn(X), and R(γ) = 0,

where the second equality is Lemma 2.17, and b is the bordism datum underlying b̃. We 
have I ◦ a = 0, so in particular

I(a(h)) = 0, h ∈ F̃ pAn−1(X;V∗),

which finishes the proof that I is well-defined. We have

R ◦ a
(
F̃ pAn−1(X;V∗)

)
= d

(
F pAn−1(X;V∗)

)
which is the group of relations for

Hn(X;F pA∗(V∗)) �
F pAn(X;V∗)cl

p n−1
dF A (X;V∗)
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so R is well-defined too. That a is well-defined follows from the isomorphism

Hn

(
X; A

∗

F p
(V∗)

)
∼= d−1(F pAn+1(X;V∗))n

F̃ pAn(X;V∗)

and the definition of BMUn(p)(X). �
Remark 2.20. It is clear that R ◦ a = d, and by construction we have

[R(γ)] = φp(I(γ)) in Hn(X;V∗).

Hence the diagram

MUn(p)(X) I

R

MUn(X)

φp

Hn(X;F pA∗(V∗))
inc∗

Hn(X;V∗)

commutes, where inc∗ is the map induced by the inclusion of complexes of sheaves 
F pA∗(V∗) 

inc−−→ A∗(V∗).

Let φ denote the composition of φ with the reduction modulo F p map:

φ =
(
MUn(X) φ−→ Hn(X;A∗(V∗)) → Hn

(
X; A

∗

F p
(V∗)

))
.

Theorem 2.21. There is a long exact sequence:

· · · Hn−1
(
X; A∗

Fp (V∗)
)

a
MUn(p)(X) I

MUn(X)
φ

Hn
(
X; A∗

Fp (V∗)
)

a
MUn+1(p)(X) · · ·

Proof. We start with exactness at MUn(p)(X). First we observe

I(a([h])) = I([0, dh, h]) = 0.

The converse requires more work. We work at the cycle level, so let γ = (f̃ , ω, h) ∈
ZMUn(p)(X) and suppose I(γ) = 0. That means f = ∂b for some bordism datum b. We 
may extend the geometric structure of f̃ over b and obtain a geometric bordism datum 
b̃ such that ∂b̃ = f̃ . We have

(f̃ , ω, h) − (∂b̃, 0, ψ(̃b)) = (0, ω, h′) = a(h′).
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The last equality follows from the observation that, since (0, ω, h′) ∈ ZMUn(p)(X) is a 
Hodge filtered cycle, we must have

dh′ = ω ∈ F pAn(X;V∗).

Hence we know γ ∈ BMUn(p)(X). Next we show exactness at MUn(X). The vanishing 
φ ◦ I = 0 follows from the following commutative diagram, where the bottom row is 
exact:

MUn(p)(X)

R

I
MUn(X)

φ
φ

Hn(X;F pA∗(V∗))
inc∗

Hn(X;V∗) Hn
(
X; A

Fp (V∗)
)
.

Conversely, suppose φ([f ]) = 0. Then we can find ω ∈ F pAn(X; V) such that

φ([f ]) = inc∗([ω]).

Let ∇f be a connection on Nf so that we get a geometric cycle f̃ with I(f̃) = f . Then 
φ(f̃) is a current representing φ([f ]). Hence φ(f̃) and ω are cohomologous, i.e., there is 
a current h ∈ Dn−1(X; V∗) such that φ(f̃) − dh = ω. Then γ := (f̃ , ω, h) is a Hodge 
filtered cycle with I(γ) = f .

Now we show exactness at Hn
(
X; A

Fp (V∗)
)
. Let f : Z → X be a bordism cycle on 

X. We will show a(φ([f ])) = 0 ∈ MUn+1(p)(X). Lifting f to a geometric cycle f̃ ∈
˜ZMU

n
(X) we can write

a(φ([f ]) = [0, 0, φ(f̃)].

We may build from f̃ a geometric bordism datum b̃ with underlying map

Z
( 1
2 ,f)

R×X

where 1
2 denotes the constant map with value 1

2 . Clearly ∂b̃ = 0. More interesting is the 
observation that ψ(̃b) = (−1)nφ(f̃). Hence

(∂b̃, 0, ψ(̃b)) = (0, 0, (−1)nφ(f̃)) ∈ BMUn
geo(X)

and we conclude that a(φ([f ])) = 0.
Conversely, suppose that h ∈ (d−1F pAn(X; V∗))n−1 is such that a(h) = (0, dh, h)

represents 0 in MUn(p)(X). Then there must be a geometric bordism datum b̃ with 
underlying map (cb, fb) : W → R ×X, and a form h′ ∈ F̃ pAn−1(X; V∗) such that
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(0, dh, h) = (∂b̃, dh′, ψ(̃b) + h′).

Since ∂b̃ = 0, we have that

f := fb|c−1
b ([0,1]) ∈ ZMUn(X)

is a bordism cycle. By definition of ψ, we have ψ(̃b) = (−1)nφ(f̃) where f̃ is the obvious 
geometric cycle over f . We now have the following computation in Hn−1

(
X; A∗

Fp (V∗)
)
:

[h] = [h− h′] = [ψ(̃b)] = (−1)nφ([f ]) ∈ Im (φ).

This finishes the proof. �
2.7. Pullbacks

We now establish the contravariant functoriality of MUn(p)(X), along the lines of 
[3][sections 4.2.5–4.2.6]. We denote by WF (u) the wave-front set of a current u in the 
sense of [20, 8.1]. See in particular [20, Def. 8.1.2, and p. 265] for the definition. For a 
smooth map f : Z → X, we denote by N(f) ⊂ T ∗X the normal set of f :

N(f) = {v ∈ T ∗X : v �= 0, f∗v = 0}.

Let g : Y → X be a morphism in ManF . We define ZMUn
g (p)(X) to be the subset of 

ZMUn(p)(X) consisting of those γ = (f̃ , h) satisfying

• WF (h) ∩N(g) = ∅, and
• g � f .

For γ = (f̃ , h) ∈ ZMUn
g (p)(X), we define g∗γ ∈ ZMUn(p)(Y ) by

g∗(γ) = (g∗f̃ , g∗h). (14)

Here g∗h is defined by [20, Theorem 8.2.4]. To define g∗f̃ we use the transversality 
property and consider the following cartesian diagram of manifolds:

g∗Z
G

g∗f

Z

f

Y
g

X.

Then g∗f is complex-oriented, with Ng∗f = G∗Nf . We define g∗f̃ by
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g∗f̃ = (g∗f,G∗Nf , G
∗∇f ).

The aim of this section is to show the following theorem:

Theorem 2.22. The above pullback construction induces a map

g∗ : MUn(p)(X) → MUn(p)(Y )

for any morphism g : Y → X, making MUn(p) a contravariant functor on ManF .

The proof proceeds in three steps:

Proposition 2.23. Given a morphism g : Y → X in ManF , and a Hodge filtered cycle 
γ ∈ ZMUn(p)(X), there exist b ∈ BMUn(p)(X) such that

γ + b ∈ ZMUn
g (p)(X).

Proposition 2.24. If γ ∈ ZMUn
g (p)(X) ∩BMUn(p)(X), then

g∗γ ∈ BMUn(p)(Y ).

For morphisms g1 : X1 → X2 and g2 : X2 → X3 in ManF , we define

ZMUn
g1g2

(p)(X3) := ZMUn
g2

(p)(X3) ∩ ZMUn
g2◦g1

(p)(X3).

Proposition 2.25. We have g∗2
(
ZMUn

g1g2
(p)(X3)

)
⊂ ZMUn

g1
(p)(X2), and

g∗1 ◦ g∗2 = (g2 ◦ g1)∗ : ZMUn
g1g2

(p)(X3) → ZMUn(p)(X1).

Since transversality is a generic property for smooth maps, and homotopies can be 
viewed as cobordisms, these three propositions together prove Theorem 2.22.

Proof of Proposition 2.25. Let γ = (f̃ , h) ∈ ZMUn
g1g2

(p)(X). The equality of currents 
g∗1g

∗
2h = (g1 ◦ g2)∗h follows from [20, Theorem 8.2.4]. We only need to add that connec-

tions pull back in a natural way as well. �
Proof of Proposition 2.23. By Thom’s transversality theorem we may choose f1 homo-
topic to f so that f1 � g. Then there is a complex orientation of f1 and a cobordism 
between f1 and f of the form b = R × Z → R ×X with b(t, z) = (t, H(t, z)) where H
is a homotopy between f1 and f . We may extend the geometric structure of f̃ over b
and obtain a geometric bordism datum b̃. We give f1 the geometric structure i∗1(̃b), for 
i1 : X → R ×X the inclusion i1(x) = (1, x). By design we have ∂b̃ = f̃1 − f̃ . Hence

(f̃1, ω, h + ψ(̃b)) − (f̃ , ω, h) ∈ BMUn
geo(X),
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and g∗f̃1 is well-defined. Since φ(f̃) −dh is smooth, we must have WF (φ(f̃)) = WF (dh). 
Since d is a differential operator we have WF (dh) ⊂ WF (h) by [20, 8.1.11], but equality 
need not hold. To complete the proof, we must show that upon replacing h with a 
cohomologous current if necessary, we can assume WF (h) = WF (dh), since a(dβ) ∈
BMUn(p)(X) by definition. Thus we have reduced the proof of the assertion to proving 
the following lemma. �
Lemma 2.26. Let α ∈ Dn(X; V∗). Then there exists a current β ∈ Dn−1(X; V∗) so that 
WF (dα) = WF (α + dβ).

Proof. This is [3, Lemma 4.11]. For convenience of the reader, we recount their proof. 
Choose a Riemannian metric on X. Let d∗ be formally adjoint to d. Then we consider 
the Laplacian Δ = d∗d + dd∗, which is an elliptic differential operator

Δ: D∗(X) → D∗(X).

Using [21, Theorem 18.1.24] we can find a parametrix P : D∗(X) → D∗(X), properly 
supported in the sense that both projections from the support of the Schwartz kernel 
of P, which we denote P , D∗(X × X) ⊃ suppP → X are proper maps, such that 
both Δ ◦ P − id and P ◦ Δ − id are smoothing operators. We put G = d∗P. This 
pseudo-differential operator satisfies

dG + Gd = 1 + S

for a smoothing operator S. Let β = Gα. Then we get

α− dβ = α− dGα = α− (1 −Gd + S)α = −Gdα + Sα.

Since G is a pseudo-differential operator, we have WF (Gdα) ⊂ WF (dα). This can, for 
example, be seen by taking Γ = T ∗X\0 in [21, Proposition 18.1.26.]. This finishes the 
proof. �
Proof of Proposition 2.24. Let γ = (f̃ , h) ∈ ZMUn(p)(X)g ∩ BMUn(p)(X). We can 
then write

γ = (∂b̃, φ(̃b)) + a(h)

where b̃ is a geometric cobordism with underlying map b = (ab, fb) : W → R ×X and 
h ∈ F̃ pAn−1(X; V∗). We must show that g∗γ ∈ BMUn(p)(Y ). We start by noting that, 
since g is a morphism in ManF , we have

g∗a(h) = a(g∗h) ∈ BMUn(p)(Y ).
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We can perturb fb slightly, without ∂b̃, so as to ensure fb � g. We extend the geometric 
structure of b̃ over the perturbing homotopy and obtain a geometric bordism datum 
b̃ with ∂b̃ = f̃ . Now we consider the pullback geometric bordism datum g∗b̃, which is 
formally defined as the geometric cycle (idR×g)∗b̃. It has underlying map (a′, f ′) : W ′ →
Y , fitting into the following diagram where all squares are pullback squares of manifolds 
for t ∈ {0, 1}.

Wt

W ′
t t×X W

(ab,fb)

t× Y W ′

(a′
b,f

′
b)

G
R×X

R× Y

idR×g

It is then clear that ∂g∗b̃ = g∗∂b̃. We get from Theorem 2.27 below that

g∗ψ(̃b) = (−1)ng∗(fb|a−1
b ([0,1]))∗K(∇b)

= (−1)n
(
f ′
b|a′−1

b ([0,1])

)
∗
G∗K(∇b)

= ψ(g∗b̃).

Hence we have

g∗(∂b̃, ψ(̃b)) = (∂g∗b̃, ψ(g∗b̃)) ∈ BMUn(p)(Y ). �
It remains to show the following result which is certainly well-known. However, we 

were unable to find a reference and therefore provide a proof.

Theorem 2.27. Let f be a proper, oriented smooth map of codimension d, and let g be 
smooth with f � g. We consider the cartesian diagram

Z ′ := Z ×X Y
g′

f ′

Z

f

Y
g

X.

Then the following diagram exists and commutes:
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A∗(Z ′)

f ′
∗

A∗(Z)
g′∗

f∗

D∗+d(Y ) D∗+d
g (X).

g∗

Here we mean by D∗
g (X) the currents T on X which may be pulled back along g, in the 

sense that there is a unique current, which we label g∗T , in the set{
lim
t→0

g∗(ωt) : limωt→0 = T
}
.

In particular, we have an equality of continuous C-linear maps

g∗ ◦ f∗ = f ′
∗ ◦ g′ ∗ : A∗(Z) → D∗+d(Y ).

Proof. We will apply micro-local analysis and the Schwartz kernel theorem [21, p. 93–94]. 
The Schwartz kernel theorem states that there is a bijection between D∗(Z × X) and 
the space of maps A∗

c(Z) → D∗(X) given by

D∗(Z ×X) � T �→ (σZ �→ (σX �→ T (σZ ⊗ σX))) .

Then T is called the Schwartz kernel of the mapping it corresponds to. We need the 
following three facts:

(1) The Schwartz kernel of f∗ is the integration current δGraph(f), where

Graph(f) = {(z, f(z))} ⊂ Z ×X.

(2) The Schwartz kernel of g∗ is the integration current δGraph′(g) of the transposed 
graph

Graph′(g) = {(g(y), y)} ⊂ X × Y.

(3) The kernel of f ′
∗ ◦ g′∗ is the integration current of (g′, f ′)(Z ′).

The last statement follows from

δ(g′,f ′)(Z′)(σZ ⊗ σY ) =
∫
Z′

g′ ∗σZ ∧ f ′ ∗σX .

The first two statements are special cases with either f ′ or g′ as the identity.
We now apply Hörmander’s criterion, see [20, 8.2.14] and the preceding discussion. 

We get that when f � g, then g∗ ◦ f∗ is continuous with kernel
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K := (πZ,Y )∗ (idZ × Δ × idY )∗ δGraph(f) ⊗ δGraph′(g),

where πZ,Y : Z×X×Y → Z×Y is the projection. Using [20, Example 8.2.8] we can now 
deduce that K is the current (g′, f ′)∗1Z′ . Since we saw already that this is the kernel of 
f ′
∗ ◦ g′ ∗, we get from the Schwartz kernel theorem that

f ′
∗ ◦ g′ ∗ = g∗ ◦ f∗. �

2.8. Products

We first define exterior products

× : MUn1(p1)(X1) ×MUn2(p2)(X2) → MUn1+n2(p1 + p2)(X1 ×X2) (15)

on where X1 ×X2 carries the filtration of Definition 2.5. When X satisfies condition (6), 
i.e., when the diagonal Δ: X → X ×X is a morphism in ManF , we get the structure 
of a bigraded ring on

MU∗(∗)(X) =
⊕
n,p

MUn(p)(X).

Let for i = 1, 2

γi = (f̃i, hi) ∈ ZMUni(pi)(Xi)

be Hodge filtered cycles with underlying maps fi : Zi → Xi, and let πi be the projection 
Z1 × Z2 → Zi. We define the exterior product of geometric cycles by

f̃1 × f̃2 = (f1 × f2, N1 ×N2, ∇1 ×∇2),

where we abbreviate Nf1 by N1 and so on, N1 × N2 = π∗
1N1 ⊕ π∗

2N2, and ∇1 × ∇2 =
π∗

1∇1 ⊕ π∗
2∇2. We have the product

⊗ : Dn1(X1;V∗) × Dn2(X2;V∗) → Dn1+n2(X1 ×X2;V∗),

satisfying T1 ⊗ T2 = π∗
1T1 ∧ π∗

2T2. Since K is multiplicative, we have

Kp1+p2(∇1 ×∇2) = Kp1(∇1) ⊗Kp2(∇2).

We now return to suppressing the p in Kp = (2πi)p ·K and φp from the notation. Since 
(f1 × f2)∗(T1 ⊗ T2) = (f1)∗T1 ⊗ (f2)∗T2, we get

φ(f̃1 × f̃2) = φ(f̃1) ⊗ φ(f̃2). (16)
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We want R(γ1 × γ2) = R(γ1) ⊗R(γ2). We compute:

φ(f̃1) ⊗ φ(f̃2) −R(γ1) ⊗R(γ2)

= φ(f̃1) ⊗ φ(f̃2) − (φ(f̃1) − dh1) ⊗ (φ(f̃2) − dh2)

= dh1 ⊗ φ(f̃2) + φ(f̃1) ⊗ dh2 − dh1 ⊗ dh2

= d
(
h1 ⊗ φ(f̃2) + (−1)n1φ(f̃1) ⊗ h2 − h1 ⊗ dh2

)
= d

(
h1 ⊗R(γ2) + (−1)n1φ(f̃1) ⊗ h2

)
Therefore we define the exterior product of Hodge filtered cycles by

γ1 × γ2 :=
(
f̃1 × f̃2, h1 ⊗R(γ2) + (−1)n1φ(f̃1) ⊗ h2

)
. (17)

Remark 2.28. In the above computation, we chose h1 ⊗ dh2 as a current with exterior 
derivative dh1 ⊗ dh2. If we had chosen instead (−1)n1dh1 ⊗ h2, we would have been led 
to define

γ1 × γ2 =
(
f̃1 × f̃2, h1 ⊗ φ(f̃2) + (−1)n1R(γ1) ⊗ h2

)
.

Since we work modulo Im(d), this choice is immaterial as we have

h1 ⊗ dh2 − (−1)n1dh1 ⊗ h2 = d (h1 ⊗ h2) .

Proposition 2.29. Let s : X1 ×X2 → X2 ×X1 be the swap map s(x1, x2) = (x2, x1). The 
exterior product (17) satisfies

(γ1 + γ′
1) × γ2 = γ1 × γ2 + γ′

1 × γ2,

γ1 × γ2 = (−1)n1s∗ (γ2 × γ1) .

Proof. The isomorphism of geometric cycles underlying the first equation is obvious. 
Then the first equation follows since the expression h1 ⊗ φ(f̃2) + (−1)n1R(γ1) ⊗ h2 is 
linear in h1. The second equality follows from Remark 2.28. �

We now show that the cobordism class of γ1 × γ2 depends only on the cobordism 
class of γi. Because of the symmetry, it suffices to show that if γ2 represent 0, i.e., 
γ2 ∈ BMUn2(p2)(X2), then

γ1 × γ2 ∈ BMUn1+n2(p1 + p2)(X1 ×X2).

We can write

γ2 = (∂b̃, ψ(̃b) + h) = (∂b̃, ψ(̃b)) + a(h)
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for b̃ a geometric bordism datum over X2, with underlying map (ab, fb), and h ∈
F̃ p2An2(X2; V∗). We note first that since f̃1 × 0 = 0 we get

γ1 × a(h) = (0, h1 ⊗ dh + φ(f̃1) ⊗ h) (18)

= a
(
R(γ1) ⊗ h + d

(
(−1)n1+1h1 ⊗ h

))
.

Since

R(γ1) ⊗ h− d
(
(−1)n1+1h1 ⊗ h

)
∈ F̃ p1+p2An1+n2(X1 ×X2;V∗)

we conclude that γ1×a(h) represent 0. We now suppose γ2 = (∂b̃, ψ(̃b)). Then R(γ2) = 0, 
and we get

γ1 × γ2 = γ1 × (∂b̃, ψ(̃b))

= (f̃1 × ∂b̃, (−1)n1φ(f̃1) ⊗ ψ(̃b))

= (∂(f̃1 × b̃), ψ(f̃1 × b̃))

where we interpret f̃1 × b̃ as a geometric bordism datum on X1 × X2, and the sign is 
absorbed by the sign in the definition of ψ. We have now established the exterior product 
(15).

Definition 2.30. We assume that (X, F ∗) satisfies condition (6), i.e., that Δ: X → X×X

is a morphism in ManF . Using (15) we turn MU∗(∗)(X) into a ring with the product

MUn(p)(X) ×MUm(q)(X) → MUn+m(p + q)(X) (19)

defined by

[γ1] · [γ2] = Δ∗([γ1 × γ2]).

2.9. Proposed axioms for Hodge filtered cohomology theories

We end this section with a brief discussion of a general framework for Hodge filtered 
extensions of cohomology theories. It is inspired by the axiomatic approaches of [4] and 
[34] to differential cohomology.

Definition 2.31. Let h∗ be a cohomology theory for topological spaces and assume that 
h∗ is rationally even in the sense that h∗(pt) ⊗Q is an evenly graded vector space. For 
p ∈ Z and an evenly graded C-vector space V∗, let

φp : h∗ → H∗(−;V∗)
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be a morphism of cohomology theories. Following [4], we define a Hodge filtered extension
of (h∗, φp) over ManF to be a contravariant functor

h∗
D(p) : ManF → AbZ

together with natural transformations

• a : Hn−1
(
X; A∗

Fp (V∗)
)
→ hn

D(p)(X)
• I : hn

D(p)(X) → hn(X)
• R : hn

D(p)(X) → Hn (X;F pA∗(V∗))

where we write A∗

Fp (V∗) for the quotient of complexes of sheaves A∗(V∗)
FpA∗(V∗) . These data 

are required to satisfy the following conditions:

• The diagram

hn
D(p)(X) I

R

hn(X)

φp

Hn(X;F pA∗(V∗))
inc∗

Hn(X;A∗(V∗))

commutes, where inc∗ is the map induced by the inclusion of complexes of sheaves 
F pA∗(V∗) 

inc−−→ A∗(V∗).
• R ◦ a = d, where d denotes the connecting homomorphism in cohomology which is 

induced by the differential.
• The sequence

· · · hn−1(X)
φp

Hn−1
(
X; A∗

Fp (V∗)
)

a
hn
D(p)(X) I

hn(X) Hn
(
X; A∗

Fp (V∗)
)

· · ·

(20)

is exact, where φp is the composition

hn(X) φp

−→ Hn(X;A∗(V∗)) −→ Hn

(
X; A

∗

F p
(V∗)

)
.

A morphism of Hodge filtered extensions over (h∗, φp) is a natural transformation κ
which commutes with the respective structure maps.

Example 2.32. It follows from Proposition 2.19, Remark 2.20, Theorem 2.21, and Theo-
rem 2.22 that the functor X �→ MU∗(p)(X) is a Hodge filtered extension of (MU∗, φp)
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over ManF . In fact, together with the product structure of Definition 2.30 geometric 
Hodge filtered cobordism is a multiplicative Hodge filtered extension in the following 
sense: It is clear that I is multiplicative and it follows from the computations prior to 
(17) that R is multiplicative as well. Moreover, we have

a([h]) · γ = a([h ∧R(γ)]).

Example 2.33. For h∗ = E∗, represented by a rationally even spectrum E and V∗ =
E∗ ⊗Z C, the functor X �→ E∗

D(p)(X) is a Hodge filtered extension of (E∗, φp) over the 
subcategory ManC. The maps I and R are induced by canonical maps ED(p) → sing(E)
and ED(p) → H(F pA∗(V∗)). In order to obtain a, we remark that ED(p) is equivalent to 

the homotopy fiber of the induced map sing(E) → H
(

A∗

Fp (V∗)
)

where we use that the 
Eilenberg–MacLane functor H is a Quillen equivalence between stable model categories 
by [36] and preserves homotopy pushouts. We refer to [17, Chapter 3] for further details. 
In particular, Deligne cohomology is a Hodge filtered extension of singular cohomology.

Remark 2.34. In [4] it is shown that under mild assumptions axioms analogous to the ones 
in Definition 2.31 suffice to characterize differential extensions of cohomology theories up 
to isomorphism. One may therefore wonder whether the axioms of Definition 2.31 also 
suffice to characterize Hodge filtered cohomology up to isomorphism. The obstruction 
to a translation of the proof from [4] to Hodge filtered extensions is essentially the 
fact that morphisms in ManF may be more sparse than arbitrary smooth maps. For 
example, for complex manifolds it is well-known that holomorphic maps are much more 
rigid than smooth maps. This has the following consequence. While the set of maps to 
a space which represents a cohomology theory can be approximated by smooth maps 
to suitable smooth manifolds, it cannot, in general, be approximated by holomorphic 
maps to complex manifolds. Using Oka theory, see for example [26] or [11], we can, 
however, obtain partial results for the subcategory of Stein manifolds in ManC. The 
underlying idea goes back to Gromov [16, 0.7.B.] who suggests to use Oka manifolds to 
encode topological information in holomorphic terms. The assumption we have to make 
is that the underlying cohomology theory h can be represented by spaces which can be 
approximated by complex manifolds which are both Oka and Stein. Our only example 
of such a theory, however, is complex K-theory and we will therefore not include the 
argument in the present paper. We conclude this section with the remark that it is an 
open problem in complex analysis whether the homotopy types representable by Oka–
Stein manifolds are the same as those representable by smooth manifolds.

3. Homotopical model via Mathai–Quillen Thom forms

In this section we prepare to apply the Pontryagin–Thom construction by giving a 
new homotopy-theoretical description of Hodge filtered complex cobordism for every 
(X, F ∗) ∈ ManF .



30 K.B. Haus, G. Quick / Advances in Mathematics 431 (2023) 109244
3.1. Geometry of the tautological bundles and compatibility

We denote by CX and RX the trivial complex and real line bundles over X, or simply 
by C and R when the base space is evident. We consider these with their standard metrics 
and the connection d, which in each case is compatible with the metric. Let Grm(Cm+l)
denote the Grassmannian of m-planes in Cm+l. The tautological bundle γm,l is defined 
by

γm,l = {(v, V ) ∈ Cm+l × Grm(Cm+l) | v ∈ V } ⊂ Cm+l.

Then γm,l inherits a Hermitian metric hm,l, and compatible connection ∇m,l.

Remark 3.1. These connections are the same as those considered by Narashimhan–
Ramanan in [28,29]. They are there shown to be universal among unitary connections.

The various tautological bundles are connected by a system of maps induced by the 
inclusion Cm+l ↪→ Cm+l+1, (z1, . . . , zm+l) �→ (z1, . . . , zm+l, 0) and the bijection Cm+l ×
C → Cm+l+1, ((z1, . . . , zm+l), t) �→ (z1, . . . , zm+l, t). The inclusion gives the right hand 
one of the following commutative diagrams, and the bijection gives the left hand one:

γm,l ⊕C
jm,l

γm+1,l γm,l

im,l

γm,l+1

Grm(Cm+l)
jm,l

Grm+1(Cm+1+l) Grm(Cm+l)
im,l

Grm(Cm+l+1).

(21)

Both diagrams (21) are cartesian, and im,l and jm,l are bundle maps, i.e., continuous 
fiberwise linear isomorphisms.

Proposition 3.2. The connections ∇m,l are compatible in the sense that

im,l
∗∇m,l+1 = ∇m,l, and jm,l

∗∇m+1,l = ∇m,l ⊕ d.

Here d denotes the exterior derivative, thought of as a connection on the trivial bundle.

Proof. There is a map Grm(Cm+l) → Grl(Cm+l) given by V �→ V ⊥. We denote by ⊥
the bundle map γ⊥

m,l → γl,m given by (v, V ) �→ (v, V ⊥). This is a diffeomorphism. The 
bundle map

im,l ⊕ (⊥−1 ◦jl,m ◦ (⊥ ⊕idC)) : γm,l ⊕ (γ⊥
m,l ⊕C) → γm,l+1 ⊕ γ⊥

m,l+1 = Cm+l+1
Grm(Cm+l+1)

equals the map
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γm,l ⊕ γ⊥
m,l ⊕C = Cm+l+1

Grm(Cm+l) → Cm+l+1
Grm(Cm+l+1)

given by ((v, V ), (u, V ), (V, t)) �→ (V, v + u + t · em+l+1), where we use the inclusion 
Cm+l → Cm+l+1 from above to view v and u as elements of Cm+l+1, and ei is the i-th 
standard basis vector. This proves both claims: For the first claim, we observe that the 
connection ∇1 induced on E1 from a connection ∇ on E1 ⊕ E2, is also induced on E1

from E1 ⊕ E2 ⊕ C with the connection ∇ ⊕ d. For the second claim, we observe that 
∇ ⊕ d induces on E1 ⊕C the connection ∇1 ⊕ d. �

The above proof also shows that the metrics are compatible:

Proposition 3.3. For varying m and l, the Hermitian metrics hm,l on γm,l are compatible 
in the sense that jm,l and im,l are metric preserving bundle maps.

Hence γm,l is canonically a Hermitian bundle with unitary connection, and these 
structures are compatible for various values of m and l.

3.2. Thom spaces, rapidly decreasing forms and fundamental forms

For a vector bundle E → X over a compact base we consider the Thom space of 
E, denoted Th(E), to be the one-point compactification of E. In general, Th(E) is the 
colimit

Th(E) := colim
K⊂X

Th(E|K)

over compacta K ⊂ X. As a set we have Th(E) = E � {∞} and the canonical inclusion 
E → Th(E). We view Th(E) as a pointed space with ∞ as basepoint. We view suspen-
sions as Thom spaces, ΣX+ = Th(RX). We consider Th as a functor from the category 
of vector bundles and continuous fiberwise linear maps, to pointed topological spaces.

Now let X be a smooth manifold and E → X be a Euclidean vector bundle, let D
denote the open unit disc bundle of E, and let Φ: E → D be the fiberwise diffeomor-
phism Φ(v) = v/

√
1 + |v|2. Then we follow [27, page 98] and define the space of rapidly 

decreasing forms and currents by

An
rd(E;V∗) := {Φ∗ω | ω ∈ An(E;V∗), and supp(ω) ⊂ D}

Dn
rd(E;V∗) := {Φ∗ω | ω ∈ Dn(E;V∗), and supp(ω) ⊂ D}.

As in [27] an analysis of growth conditions is not necessary for our purposes. There are 
maps (

π
Th(E)
X

)
: Dn

rd(E;V∗) → Dn−dimR E(X;V∗),

∗
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∫
Th(E)/X

: A∗
rd(E;V∗) → A∗−dimR E(X;V∗)

for πE
X : E → X the projection. Note that 

(
πE
X

)
∗ is defined since πE

X = πE
X ◦ Φ and 

πE
X |supp(Φ∗ω) is proper for T ∈ D∗

rd(E; V∗). The integration map 
∫
Th(E)/X is the restric-

tion and co-restriction of 
(
πE
X

)
∗, as in Remark 2.1.

Remark 3.4. We note that, by the Thom isomorphism, the complex A∗
rd(E; V∗) computes 

the reduced cohomology groups of Th(E). We will use the notation

A∗(Th(E);V∗) := A∗
rd(E;V∗).

Mathai and Quillen constructed in [27] rapidly decreasing Thom forms, depending 
naturally on a Hermitian metric and unitary connection. See also [2, §1.6]. Let

MU(m, l) := Th(γm,l).

We get Thom forms

Um,l ∈ A2m(MU(m, l);V∗),

which in light of Propositions 3.2 and 3.3 are compatible in the sense of the ensuing 
proposition. Let UC be the Mathai–Quillen Thom form of Cpt.

Proposition 3.5. We have im,l
∗
Um,l+1 = Um,l and jm,l

∗
Um+1,l = Um,l ⊗ UC. �

Now we are ready to define forms on MU(m, l) which will induce a fundamental 
cocycle. We set

φm,l = Um,l ∧ π∗
m,lK(∇m,l) ∈ A2m(MU(m, l);V∗) (22)

where πm,l : γm,l → Grm(Cm+l) is the projection. Combining Propositions 3.5 and 3.2
we conclude:

Proposition 3.6. The forms φm,l satisfy the equalities

im,l
∗
φm,l+1 = φm,l and jm,l

∗
φm+1,l = φm,l ⊗ UC. �

3.3. Thom spectra and the map A

We recall that MU is the spectrum obtained from the spaces MU(m, l) via the struc-
ture maps

sm,l := Th(im,l) and qm,l := Th(jm,l)
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in the following way. First define the colimit MU(m) = coliml MU(m, l) along the maps 
qm,l. Then we get maps

sm := colim
l

sm,l : Σ2MU(m) → MU(m + 1)

and so we get a sequential spectrum with spaces MU2m = MU(m) and MU2m+1 =
ΣMU(m). Let MU → QMU be the fibrant replacement of MU with spaces

QMUn := colim
k

ΩkMUn+k.

For the following definition we write am,l for the canonical map MU(m, l) → MU(m), 
bm,k for the canonical map ΩkMU(m) → QMU2m−k, and

Ψk : Map∗(ΣkX,Y ) ≈−→ Map∗(X,ΩkY )

for the homeomorphism

Ψk(f) = (x �→ (t �→ f(x, t)))

of the adjunction Σk � Ωk.

Definition 3.7. We define

A : Map∗(ΣkX+,MU(m, l)) → Map(X,QMUn)

by

A(g) = bm,k ◦ Ψk(am,l ◦ g)|X .

Now we assume that X is a smooth manifold. In particular, since X is finite di-
mensional, we get as a consequence of Freudenthal’s Suspension Theorem, as stated in 
[25, Corollary 3.2.3], that A induces a bijection on homotopy classes, provided m, l are 
sufficiently large compared to dimX. Hence from the perspective of homotopy theory 
we need only concern ourselves with the image of A, which we now give an alternative 
description of.

Definition 3.8. Let MapA(X, QMUn) be the space of maps g : X → QMUn such that 
g = A(g′) for some g′ : ΣkX+ → MU(m, l).

Let g : ΣkX+ → MU(m, l). We note that if g′ : Σk+2X+ → MU(m + 1, l) satisfies 
A(g′) = A(g), then g′ = sm,l ◦ g × idC. Similarly, if g′′ : ΣkX+ → MU(m, l + 2) satisfies 
A(g′′) = A(g), then g′′ = qm,l ◦ g. Hence we consider systems of maps {gm,l} where 
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gm,l : ΣkX+ → MU(m, l), with 2m = n + k, such that for all sufficiently large m, l we 
have

qm,l ◦ gm,l = gm,l+1, and sm,l ◦ idC × gm,l = gm+1,l.

We say that two such systems {gm,l} and {g′m,l} are equivalent if g′m,l = gm,l for all 
sufficiently large m, l. From this discussion we conclude:

Proposition 3.9. There is a bijection between maps g ∈ MapA(X, QMUn) and the set of 
equivalence classes of systems of maps {gm,l}. �
3.4. Geometric fundamental forms and a new model

Let (X, F ∗) ∈ ManF . We will now take smoothness of maps into account. Let 
Mapsm

∗ (ΣkX+, MU(m, l)) denote the space of pointed maps ΣX+ → MU(m, l) which 
are smooth on the preimage of γm,l.

Definition 3.10. We define Mapsm(X, QMUn) as the set of maps g : X → QMUn such 
that g = A(gsm) for some gsm ∈ Mapsm

∗ (ΣkX+, MU(m, l)). We define a map

φm,l
sm : Mapsm

∗ (ΣkX+,MU(m, l)) → A2m(ΣkX+;V∗)cl

by gsm �→ g∗smφm,l. For n + k = 2m, applying the integration map 
∫
ΣkX+/X

provides a 
form in An(X; V∗).

Lemma 3.11. We have a well-defined map

φn
sm : Mapsm(X,QMUn) → An(X;V∗)cl,

given by

g = A(gsm) �→
∫

ΣkX+/X

g∗sm(φm,l).

Proof. We will use Proposition 3.6 to show that φn
sm(g) is independent of the choice of 

gsm with A(gsm) = g. By Proposition 3.9, it suffices to show∫
ΣkX+/X

g∗smφm,l =
∫

ΣkX+/X

(qm,l ◦ gsm)∗φm,l+1 (23)

∫
ΣkX+/X

g∗smφm,l+1 =
∫

Σk+2X+/X

(sm,l ◦ Σ2gsm)∗φm+1,l. (24)



K.B. Haus, G. Quick / Advances in Mathematics 431 (2023) 109244 35
We first note that, since qm,l = Th(im,l), (23) holds even before applying 
∫
ΣkX+/X

by 

Proposition 3.6. Next observe that the map sm,l ◦ Σ2gsm is characterized by restricting 
to jm,l ◦ (gsm|X×Rk × idC) on (X ×Rk) ×C. Proposition 3.6 implies((

sm,l ◦ Σ2gsm
)
|X×Rk×C

)∗
φm+1,l = (gsm|X×Rk × idC)∗ (jm,l

∗
φm+1,l)

= (gsm|Rk×X)∗φm,l ⊗ UC

and (24) follows, since 
∫
X×C/X

UC = 1. �
Remark 3.12. Recall the k-th standard simplex

Δk = {(t0, . . . , tk) ∈ Rk+1|0 ≤ tj ≤ 1,
∑

tj = 1}. (25)

Note that Δk is a smooth manifold with corners. Recall that a map Δk → S is smooth if 
it can be extended to a smooth map on an open neighborhood of Δk in Rk+1. We refer 
to [37, §1.5] for any details.

Remark 3.13. We note that in the following argument and in the remainder of the paper 
we consider the product Δ•×X instead of X×Δ•. While the latter is more common for 
arguments in homotopy theory, the former has the advantage that it simplifies arguments 
which involve integration over Δ• as defined in Remark 2.1. For, if ω is a form on Δ1×X, 
then the derivative of the integral over the fiber satisfies the formula

d

∫
Δ1×X/X

ω = −
∫

Δ1×X/X

dω + ι∗1ω − ι∗0ω.

For a form ω on X × Δ1, however, we get

d

∫
X×Δ1/X

ω = −
∫

X×Δ1/X

dω + (−1)dimR X(ι∗1ω − ι∗0ω)

with an additional sign (−1)dimR X which arises from a necessary reshuffling of the co-
ordinates. For a complex manifold X, this would not matter. Since we want to allow 
manifolds in ManF , we chose to work with Δ• ×X.

Since both the domain and the codomain of the map φn
sm are defined for every finite-

dimensional manifold, we can replace X with Δk ×X for any k. Moreover, Lemma 3.11
applies to Δk ×X as well. Hence we draw the following conclusion:

Proposition 3.14. The maps φm,l
sm induce maps of simplicial sets

φn
sm : Mapsm(Δ• ×X,QMUn) → An(Δ• ×X;V∗)
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which fit into commutative diagrams of the form

Mapsm
∗ (Σ(Δ• ×X)+, QMUn+1)

φn+1
sm An+1(Σ(Δ• ×X)+;V∗)cl

Mapsm
∗ ((Δ• ×X)+, QMUn)

φn
sm An((Δ• ×X)+;V∗)cl

where the right-hand vertical map is given by integration over the fiber. �
From the first assertion of Proposition 3.14 we conclude that we have the following 

diagram of simplicial sets

Mapsm(Δ• ×X,QMUn)

φn
sm

F pAn(Δ• ×X;V∗)cl An(Δ• ×X;V∗)cl

(26)

where F pAn(Δ• ×X; V∗)cl is defined in Definition 2.5.

Definition 3.15. Let (X, F ∗) ∈ ManF and let n and p be integers. Let MUhs(p)n(X) be 
the homotopy pullback of diagram (26). We set

MUn
hs(p)(X) := π0(MUhs(p)n(X)).

Recall that we identify the interval [0, 1] and Δ1 via t ↔ (t, 1 − t). Denote by ι1t the 
map

ι1t : Δ1 × Δ0 ×X ↪→ Δ1 × Δ1 ×X (27)

with image Δ1 × {t} ×X, and by ι2s the map

ι2s : Δ0 × Δ1 ×X ↪→ Δ1 × Δ1 ×X (28)

with image {s} × Δ1 × X. Since (26) is a diagram of Kan complexes, the set 
π0(MUhs(p)n(X)) has the following concrete description:

Lemma 3.16. Let (X, F ∗) ∈ ManF . Every element in MUn
hs(p)(X) is represented by a 

triple

(g, ω, h) ∈ Mapsm(X,QMUn) × F pAn(X;V∗)cl ×An(X × Δ1;V∗)cl,

such that ι∗1h = φn
sm(g) and ι∗0h = ω. Two such triples (g0, ω0, h0) and (g1, ω1, h1) are 

homotopic if there is a triple (g•, ω•, h•) in
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Mapsm(Δ1 ×X,QMUn) × F pAn(Δ1 ×X;V∗)cl ×An(Δ1 × Δ1 ×X;V∗)cl

which satisfies (ι21)∗h• = φn
sm(g•) and (ι20)∗h• = ω• in An(Δ1 × X; V∗), and such that 

ι∗i (g•, ω•, h•) = (gi, ωi, hi) for i = 0, 1. The latter means, in particular, (ι10)∗h• = h0 and 
(ι11)∗h• = h1. �
Remark 3.17. We note that X �→ MU∗

hs(p)(X) is a Hodge filtered extension of (MU∗, φp)
over ManF in the sense of Definition 2.31. The structure maps Ihs and Rhs are in-
duced by the maps of simplicial sets MUhs(p)n(X) → Mapsm(X × Δ•, QMUn) and 
MUhs(p)n(X) → F pAn(Δ• × X; V∗), respectively. The map ahs arises from the fact 
that MUhs(p)n(X) is homotopy equivalent to the homotopy fiber of the induced map of 
simplicial sets

Mapsm(Δ• ×X,QMUn) → An(Δ• ×X;V∗)/F pAn(Δ• ×X;V∗).

The induced long exact sequence of the homotopy fiber yields an exact sequence of the 
form (20).

4. Comparison of homotopy models

Now we show that for X a complex manifold, there is a natural isomorphism 
MU∗

D(p)(X) ∼= MU∗
hs(p)(X) for every p ∈ Z. We will show the existence of the iso-

morphism by showing that there is a zig-zag of weak equivalence between the defining 
homotopy pullbacks. We restrict to X ∈ ManC, as opposed to X ∈ ManF , since 
MUn

D(p)(X) has only been defined for complex manifolds in [22]. We would expect, 
however, that an extension of MU∗

D(p)(X) to ManF is possible as well.

4.1. Notation

Let sPre = sPre(ManC) be the category of simplicial presheaves on the site ManC

with Grothendieck topology defined by open subsets. We consider sPre with the lo-
cal projective model structure. The weak equivalences are maps which induce weak 
equivalences of simplicial sets on stalks. We denote the resulting homotopy category 
by hosPre. Let sPre∗ denote the category of pointed presheaves. We denote the cate-
gory of presheaves of sequential spectra of simplicial sets on ManC by Sp(sPre∗) and 
consider it as a model category with the model structure induced by stabilising the one 
of sPre∗. We denote the resulting homotopy category by hoSp(sPre∗).

For a topological space Z, we consider the simplicial presheaf SingZ on ManC whose 
n-simplices are continuous maps

Δn ×X → Z.
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Note that we have a canonical isomorphism of simplicial sets singZ = SingZ(pt). For 
every CW -complex Z, the simplicial presheaf SingZ is objectwise fibrant and satisfies 
hypercover descent in ManC by [8, Theorem 1.3] (see also [22, Lemma 2.3]). A continuous 
map Z → Z ′ induces a map of presheaves SingZ → SingZ ′. If E is a sequential spectrum 
of topological spaces, the structure maps of E turn SingE into a presheaf of spectra of 
simplicial sets on ManC.

4.2. MUhs(p) is a presheaf of spectra

First we observe that Mapsm(Δ• ×X, QMU) is a simplicial spectrum with structure 
maps defined as follows: Recall that, as described in [23, page 379], a k-simplex of the 
simplicial loop space ΩsimpA• of a simplicial set A• can be described as a sequence

a0, . . . , ak ∈ Ak+1

satisfying the conditions

∂∗
i ai = ∂∗

i ai−1 (29)

∂∗
0a0 = ∗ = ∂∗

k+1ak

The homeomorphism QMUn
≈−→ ΩQMUn+1 induces for each n a natural isomorphism 

Mapsm(Δ• × X, QMUn) 
∼=−→ Mapsm(Δ• × X, ΩQMUn+1). The adjunction between the 

suspension and loop space functors then induces a natural isomorphism Mapsm
∗ (Σ(Δ• ×

X)+, QMUn+1) 
∼=−→ Mapsm(Δ•×X, QMUn+1). A pointed map Σ(Δ•×X)+ → QMUn+1

corresponds to a map Δ1 × Δ• × X → QMUn+1 which restricts to the constant map 
on both subspaces {0} × Δ• ×X and {1} × Δ• ×X with value the canonical basepoint 
of QMUn+1. The restriction of any such map to the (k + 1)-simplices in the standard 
triangulation of Δ1 × Δk leads to a sequence of maps

g0, . . . , gk : Δk+1 ×X → QMUn+1,

i.e., a sequence of (k+ 1)-simplices in Mapsm(Δ• ×X, QMUn+1) satisfying the relations 
corresponding to (29). This defines a natural map of simplicial sets

Mapsm(Δ• ×X,QMUn) → ΩsimpMapsm(Δ• ×X,QMUn+1) (30)

which provides the sequence n �→ Mapsm(Δ• × X, QMUn) with the structure of a se-
quential spectrum of simplicial sets.

Second, we choose a concrete model for presheaves of Eilenberg–MacLane spaces. 
More concretely, we will prove:

Proposition 4.1. The simplicial presheaf X �→ An(Δ• ×X; V∗) on Man is weakly equiv-
alent to K(A∗(V∗), n).
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We recall that the Dold–Kan correspondence is an equivalence of categories between 
simplicial abelian groups and connective chain-complexes under which weak equivalences 
correspond to quasi-isomorphisms. It associates to a simplicial presheaf F• the normalized 
chain complex, N(F•). There is also the Moore complex of a simplicial presheaf, M(F•), 
which has n-th presheaf Fn, and differentials given by 

∑
(−1)i∂i, where ∂i are the face 

maps of F•. There is a natural map N(F•) → M(F•) which is a quasi-isomorphism by 
[14, Theorem III.2.1]. Proposition 4.1 therefore follows from the Lemma 4.2 below.

Lemma 4.2. Integration over the fiber 
∫
Δk×X/X

is a chain homotopy equivalence

· · · ∂∗

An(Δk ×X;V∗)cl
∂∗

∫
Δk×X/X

· · · ∂∗

An(Δ1 ×X;V∗)cl
∂∗

∫
Δ1×X/X

An(X;V∗)cl

id

· · · d An−k(X;V∗)
d · · · d An−1(X;V∗)

d An(X;V∗)cl,

with homotopy inverse τ defined below.

Lemma 4.2 is essentially [23, Corollary D.14]. However, there the homotopy inverse 
is not given, and so we will give its construction. Let vi ∈ Δk be the point with ti = 1. 
Let pk : Δk\v0 → Δk−1 be radial projection onto the 0-th face,

pk(t0, . . . , tk) =
(

t1
1 − t0

, . . . ,
tk

1 − t0

)
.

Let g : [0, 1] → R be smooth, and vanishing in a neighborhood of 0 and equaling 1 in a 
neighborhood of 1. Recall that we identify Δ1 with the unit interval [0, 1] via t ↔ (t, 1 −t). 
We can then define

hk : An(Δk−1 ×X;V∗) → An(Δk ×X;V∗)

ω �→ g(1 − t0) · (pk × id)∗ω.

The map h is a contraction of the complex An(Δ• ×X; V∗). We define τ recursively by 
τ0 = id: An(X; V∗)cl → An(X; V∗)cl, and for k > 0,

τk : An−k(X;V∗) → An(Δk ×X;V∗)cl (31)

τk = d ◦ hk ◦ τk−1.

Let ιt : X → Δ1 ×X, ιt(x) = (t, x), be the inclusion at t map. Then we have

ι∗0 ◦ τ1 = d and ι∗1 ◦ τ1 = 0. (32)

Using the techniques of [23, Appendix D], one can also prove:
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Proposition 4.3. Integration over the fiber 
∫
Δk×X/X

restricts to a chain homotopy equiv-
alence

· · · ∂∗

F pAn(Δk ×X;V∗)cl
∂∗

· · · ∂∗

F pAn(Δ1 ×X;V∗)cl
∂∗

F pAn(X;V∗)cl

· · · d
F pAn−k(X;V∗)

d · · · d
F pAn−1(X;V∗)

d
F pAn(X;V∗)cl

with homotopy inverse, the restriction of τ .

Now we can turn this into a concrete model for the presheaf of Eilenberg–MacLane 
spectra as follows. As pointed out in [23, page 381], and analogous to the construction 
of the map (30), restriction to the standard triangulation of Δ1 × Δk yields a weak 
equivalence of simplicial sets

sA• : An(Δ• ×X;V∗)cl → ΩsimpAn+1(Δ• ×X;V∗)cl.

We now introduce the notation A∗
hs(V∗) and show that we obtain Ω-spectra:

Proposition 4.4. The sequences

A∗
hs(V∗) : n �→ An(Δ• ×−;V∗)cl

and, for every integer p,

F pA∗
hs(V∗) : n �→ F pAn(Δ• ×−;V∗)cl

define Ω-spectra in the category of sequential spectra of presheaves on ManC.

Proof. The maps sA• provide the objectwise structure maps of the first spectrum. As the 
filtration on forms on X is independent of the simplicial identities which define the map, 
the maps sA• restrict to natural weak equivalences

sF
pA

• : F pAn(Δ• ×X;V∗)cl → ΩsimpF pAn+1(Δ• ×X;V∗)cl.

Since An(Δ• ×X; V∗)cl is a simplicial abelian group and hence a Kan complex for each 
n, the sequence n �→ An(Δ• × X; V∗)cl is an Ω-spectrum of simplicial sets for every 
X. Moreover, since each of the simplicial presheaves An(Δ• ×−; V∗)cl and F pAn(Δ• ×
−; V∗)cl satisfy descent with respect to hypercovers, we obtain fibrant objects in the local 
projective model structure of presheaves of sequential spectra on ManC by [9, Corollary 
7.1] (see also [30]). This proves the assertion. �
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Next we check that the maps φn
sm induce a natural map of simplicial spectra

Mapsm(Δ• ×X,QMU) φsm−−→ A∗
hs(X,V∗).

Since the maps φn
sm are natural in Δ• × X, a sequence g0, . . . , gk of (k + 1)-simplices 

in Mapsm(Δ• × X, QMUn+1) satisfying the relations corresponding to (29) induces a 
sequence φn+1

sm (g0), . . . , φn+1
sm (gk) of (k + 1)-simplices in An+1(Δ• × X; V∗)cl satisfying 

similar relations. Thus φn
sm induces a natural map on the simplicial loop spaces as well. 

In fact, we get a commutative diagram of the form

Mapsm(Δ• ×X,QMUn)
φn

sm An(Δ• ×X;V∗)cl

ΩsimpMapsm(Δ• ×X,QMUn+1)
φn+1

sm ΩsimpAn+1(Δ• ×X;V∗)cl,

since both vertical maps arise from the restriction to the standard triangulation of Δ1 ×
Δk.

4.3. Comparison of homotopy models

Now we construct the comparison map.
The map MU → QMU induces a map Sing (MU) → Sing (QMU). We then obtain a 

map sing(MU) → Sing (QMU) by precomposing with the isomorphism of simplicial sets 
sing(MU) ∼= Sing (MU)(pt). It follows from [22, Proposition 3.11] that this map induces 
an isomorphism on stalks and so is a weak equivalence. Let Mapsm(− × Δ•, QMU) →
Sing (QMU) be the map of presheaves of spectra induced by forgetting smoothness. 
This is an objectwise weak equivalence, since every continuous map is homotopic to a 
smooth map by Whitney’s approximation theorem. We also note that this is a map 
between fibrant objects by [22, Lemma 3.12]. Let H(A∗(V∗)) → A∗

hs(V∗) be the map 
of presheaves of spectra which for the n-th spaces is given by the map τ defined in 
Lemma 4.2. Its homotopy inverse is induced by integrating over the fiber. Similarly, 
let H(F pA∗(V∗)) → F pA∗

hs(V∗) be the map of presheaves of spectra induced by the 
restriction of τ . Again, this map has a homotopy inverse which is induced by integrating 
over the fiber. In total, we have a diagram of presheaves of spectra
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H(F pA∗(V∗))

�

H(A∗(V∗))

�

sing(MU)
φ

�

Sing (QMU)

F pA∗
hs(V∗)

�

A∗
hs(V∗)

�

Mapsm(Δ• ×−, QMU).
φsm

�

(33)

Definition 4.5. We write MUhs(p) for the homotopy of the bottom row of diagram (33).

Remark 4.6. Recall that the homotopy pullback of the top row of diagram (33) is MUD(p)
by definition. We note that in [22, §4] the complex of holomorphic forms Ω∗(X; V∗) is used 
instead of smooth forms to define MUD(p). However, since the canonical maps Ω∗(V∗) →
A∗(V∗) and Ω∗�p(V∗) → F pA∗(V∗) are quasi-isomorphisms the homotopy pullback of 
(33) represents Hodge filtered cobordism groups which are canonically isomorphic to the 
ones of [22, Definition 4.2].

Theorem 4.7. The homotopy pullbacks MUD(p) and MUhs(p) are isomorphic in the ho-
motopy category hoSp(sPre∗) of presheaves of spectra on ManC.

Proof. The assertion is a consequence of the observation on homotopy pullbacks in model 
categories formulated in the following lemma. �
Lemma 4.8. Let C be a proper simplicial model category. We consider the following dia-
gram

C1

�

B1

�

A1
�

A0

C2

�

B2

�

A2

�

(34)

in which all vertical maps are weak equivalences and in which the left-hand squares 
commute. We also assume that A0 and A2 are fibrant. Then the homotopy pullbacks 
C1 ×h

B1
A1 and C2 ×h

B2
A2 of the top and bottom row, respectively, are weakly equivalent.

Proof. First we take the homotopy pullback A1 ×h
A0

A2 of the right-hand vertical maps. 
The two induced maps A1 ×h

A0
A2 → A1 and A1 ×h

A0
A2 → A2 are weak equivalences. 

Hence the induced maps on homotopy pullbacks
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C1 ×h
B1

(A1 ×h
A0

A2) → C1 ×h
B1

A1 and C2 ×h
B2

(A1 ×h
A0

A2) → C2 ×h
B2

A2

are weak equivalences. Thus it remains to observe that the homotopy pullbacks C1 ×h
B1

(A1×h
A0

A2) and C2×h
B2

(A1×h
A0

A2) are weakly equivalent. This follows from the following 
diagram

C1

�

B1

�

A1 ×h
A0

A2

C2

�

B2

�

A1 ×h
A0

A2

in which the right-hand square commutes up to homotopy and the vertical maps are 
weak equivalences. �

As a consequence of Theorem 4.7 we get that the respective cohomology groups rep-
resented by the two homotopy pullbacks are isomorphic. This enables us to prove the 
following result:

Theorem 4.9. Let X be a complex manifold and n, p be integers. Then there is a natural 
isomorphism of groups

MUn
D(p)(X) ∼= MUn

hs(p)(X).

Proof. By Theorem 4.7 it remains to relate the groups MUn
hs(p)(X) of Definition 3.15 to 

MUhs(p)-cohomology. Each of the presheaves of spectra in the bottom row of diagram 
(33) satisfy levelwise hypercover descent and the structure maps are objectwise weak 
equivalences. Hence each of the presheaves of spectra in the bottom row is an Ω-spectrum. 
Hence the n-th space MUhs(p)n of MUhs(p) represents MUhs(p)-cohomology, i.e., there 
is a natural isomorphism

HomhoSp(sPre∗)(Σ∞(X+),ΣnMUhs(p)) ∼= HomhosPre(X,MUhs(p)n).

Moreover, we can compute the simplicial presheaf MUhs(p)n levelwise as the homotopy 
pullback of the nth spaces of the presheaves of spectra in the bottom row of (33). By 
[31, Proposition 2.7], we can compute this homotopy pullback objectwise in the sense 
that there is a natural isomorphism

HomhosPre(X,MUhs(p)n) ∼= π0(MUhs(p)n(X)).

Since we have MUn
hs(p)(X) = π0(MUhs(p)n(X)) by definition of the left hand side, this 

proves the assertion of the theorem. �
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As we pointed out in section 2.9, the functor MUD(p) is a Hodge filtered cohomology 
extension over (MU∗, φp) on ManC. We conclude this section with the observation that 
the isomorphism of Theorem 4.9 is one of Hodge filtered extensions.

Remark 4.10. Let ID, RD and aD denote the structure maps of MUD(p) as a Hodge 
filtered extension of (MU∗, φp) in the sense of Definition 2.31 and Example 2.33. We 
observed in Remark 3.17 that MU∗

hs(p) is a Hodge filtered extension over (MU∗, φp). 
Now it suffices to observe that the zig-zag of weak equivalences we constructed be-
tween MUD(p) and MUhs(p) actually is a zig-zag between the homotopy fiber sequences 
that induce the respective structure maps. Hence we conclude that the isomorphism 
MU∗

D(p)(X) ∼= MU∗
hs(p)(X) of Theorem 4.9 is an isomorphism of Hodge filtered exten-

sions of (MU∗, φp) over ManC.

5. From homotopy to geometry

We are now going to use the Pontryagin–Thom construction to define a natural iso-
morphism of groups

κ : MUn
hs(p)(X) → MUn(p)(X)

for every n and p and every X ∈ ManF .

5.1. Representatives in the homotopy pullback

First we will represent elements of MUn
hs(p)(X) in a suitable way. Recall the map A

from Definition 3.7. Let

Map�(X,QMUn)

denote the set of maps g : X → QMUn such that g = A(g�) for some map 
g� : ΣkX+ → MU(m, l) which is smooth on g�−1(γm,l), and transverse to the 0-section 
ιm,l : Grm(Cm+l) → γm,l.

Theorem 5.1. Let (X, F ∗) ∈ ManF , and let n and p be integers. For every ele-
ment γ ∈ MUn

hs(p)(X), there is a representative (g, ω, h) as in Lemma 3.16 with 
g ∈ Map�(X, QMUn).

To prove Theorem 5.1 we are going to use the following general fact about homotopy 
pullbacks. Since it is important for the later arguments, we provide a detailed proof.

Lemma 5.2. Let g• : Δ1 ×X → QMUn be a homotopy between g0 = ι∗0g• and g1 = ι∗1g•. 
Assume we have a triple (g0, ω, h0) which represents an element in MUn

hs(p)(X). Then 
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there is a form h1 ∈ An(Δ1 × X; V∗) such that the triple (g1, ω, h1) is homotopic to 
(g0, ω, h0).

Proof. The pullback along the projection πX : Δ1 ×X → X of φsm(g0) yields a closed 
form π∗

Xφn
sm(g0) ∈ An(Δ1×X; V∗)cl which is constant on Δ1. We set h1 := h0+φsm(g•) −

π∗
Xφsm(g0). The restrictions along ιt : Δ0×X ↪→ Δ1×X for t = 0 and t = 1, respectively, 

yield

ι∗1h1 = ι∗1h0 + ι∗1φsm(g•) − ι∗1π
∗
Xφsm(g0)

= φsm(g0) + φsm(g1) − φsm(g0)

= φsm(g1)

and

ι∗0h1 = ι∗0h0 + ι∗0φsm(g•) − ι∗0π
∗
Xφsm(g0)

= ω + φsm(g0) − φsm(g0)

= ω.

Hence the triple (g1, ω, h1) represents an element in MUn
hs(p)(X). Now we construct a 

homotopy between (g0, ω, h0) and (g1, ω, h1). The homotopies g• and ω• := π∗
Xω satisfy 

the requirements of Lemma 3.16. It remains to find a compatible homotopy h•. To 
construct h• we consider the map

G• : Δ1 × Δ1 ×X → QMUn

defined by Gs(t, x) = gst(x). We think of G• as a homotopy between the maps 
G0 : (t, x) �→ g0(x) and G1 : (t, x) �→ gt(x). We set

h• := π∗
Δ1×X(h0 − π∗

Xφsm(g0)) + φsm(G•) ∈ An(Δ1 × Δ1 ×X;V∗)cl

where πΔ1×X : Δ1 × Δ1 × X → Δ1 × X denotes the projection to the two right hand 
factors. Next we compute the pullbacks along the various inclusions into the copies of Δ1. 
Recall the map ι2s from (28). The restriction to 1 on the left most factor in Δ1 ×Δ1 ×X

yields

(ι21)∗h• = (ι21)∗π∗
Δ1×X(h0 − π∗

Xφsm(g0)) + (ι21)∗φsm(G•)

= h0 − π∗
Xφsm(g0) + φsm(g•)

= h1.

The restriction to 0 yields
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(ι20)∗h• = (ι20)∗π∗
Δ1×X(h0 − π∗

Xφsm(g0)) + (ι20)∗φsm(G•)

= h0 − π∗
Xφsm(g0) + φsm(g0·•)

= h0 − π∗
Xφsm(g0) + π∗

Xφsm(g0)

= h0.

Now recall the map ι1t from (27). The restriction to 1 on the middle factor in Δ1×Δ1×X

yields

(ι11)∗h• = (ι11)∗π∗
Δ1×X(h0 − π∗

Xφsm(g0)) + (ι11)∗φsm(G•)

= ι∗1(h0 − π∗
Xφsm(g0)) + φsm(g•)

= φsm(g0) − φsm(g0) + φsm(g•)

= φsm(g•).

The restriction to 0 yields

(ι10)∗h• = (ι10)∗π∗
Δ1×X(h0 − π∗

Xφsm(g0)) + (ι10)∗φsm(G•)

= ι∗0(h0 − π∗
Xφsm(g0)) + φsm(g0·•)

= ω − φsm(g0) + φsm(g0)

= ω.

Thus the triple (g•, π∗
Xω, h•) is a homotopy between (g0, ω, h0) and (g1, ω, h1). �

Proof of Theorem 5.1. Let γ ∈ MUn
D(p)(X) and (g, ω, h) be a representative as in 

Lemma 3.16. By Freudenthal’s Suspension Theorem there is a map g′ : ΣkX+ →
MU(m, l) such that A(g′) is homotopic to g. Since smooth maps are dense among 
continuous maps, we can by Thom’s transversality theorem find a map g� : ΣkX+ →
MU(m, l) which is smooth on g−1

� (γm,l), homotopic to g′ and transverse to ιm,l. Then 
A(g�) ∈ Map�(X, QMUn) is homotopic to g. By Lemma 5.2, there exists an h1 such that 
(A(g�), ω, h1) represents an element in MUn

hs(p)(X) and a homotopy between (g, ω, h)
and (A(g�), ω, h1). Hence the latter too represents the class γ in MUn

hs(p)(X). �
Definition 5.3. Wedenote byMU�

hs(p)n(X)0 the subset of triples (g, ω, h) inMUhs(p)n(X)0
such that g ∈ Map�(X, QMUn).

5.2. A geometric Pontryagin–Thom map

We will now define a geometric Pontryagin–Thom map

ρ∇ : Map�(X,QMUn) → ˜ZMU
n
(X).
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Given g� : ΣkX+ → MU(m, l) which is smooth on

Ug� = (g�)−1(γm,l) ⊂ X ×Rk ⊂ ΣkX+,

and transverse to ιm,l, we consider the following commutative diagram:

Z

fg�

g�|Z

i

Grm
(
Cm+l

)
ιm,l

γm,l

Ug�

g�|Ug�

π

MU(m, l) QMU2m

X

(35)

The square is cartesian, Z = (g�)−1(Grm(Cm+l)), and π is the restriction to Ug� of the 
projection X ×Rk → X. The derivative of g� induces a real isomorphism

Dg� : N(i) → (g�|Z)∗ N(ιm,l) =: Ng�

where N(i) is the normal bundle of i. This gives fg� = π ◦ i a complex orientation. It is 
easy to check that fg� is proper. We get a connection on Ng� by

∇g� := (g�|Z)∗ ∇m,l.

We then define

ρ∇,m,l(g�) = (fg� , Ng� ,∇g�) ∈ ˜ZMU
n
(X),

and for g = A(g�), we define

ρ∇(g) = ρ∇,m,l(g�) ∈ ˜ZMU
n
(X).

Proposition 5.4. The map ρ∇ : Map�(X, QMUn) → ˜ZMU
n
(X) is well-defined.

Proof. Let g� ∈ Map�
∗ (ΣkX+, MU(m, l)). By Theorem 3.9 it suffices to show

ρ∇,k,m,l(g�) = ρ∇,k,m,l+1(qm,l ◦ g�)

ρ∇,k,m,l(g�) = ρ∇,k+2,m+1,l(sm,l ◦ Σ2g�).
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We use the notation of diagram (35). The first identity follows from the following com-
mutative diagram, where all squares are cartesian:

Zqm,l◦g�

Zg� Grm(Cm+l+1)

ιm,l+1

Ug�

Grm(Cm+l)

ιm,l

Ug�

g�

id
γm,l+1

γm,l
im,l X.

For the second identity, we first note that sm,l ◦ Σ2g� is characterized by(
sm,l ◦ Σ2g�

)
|X×Rk×C = jm,l ◦ ((g�|X×Rk) × idC).

It is clear that (g�|X×Rk) × idC is transverse to {0} × Grm(Cm+l), with inverse image 
{0} × Zg� . We then consider the following commutative diagram, where all squares are 
cartesian squares of manifolds:

Zsm,l◦Σ2g�

{0} × Zg� Grm+1(Cm+1+l) C × Ug�

Grm(Cm+l)

0⊕ιm,l

C × Ug�

g�×idC

id
γm+1,l

C ⊕ γm,l
jm,l X.

It is now clear that the map {0} × Zg� → Zsm,l◦Σ2g� is an isomorphism of geometric 
complex oriented maps over X. This proves the assertion. �

In order to better understand the current φ(ρ∇(g)), we define fundamental currents 
by

φ∇m,l
= (ιm,l)∗K(∇m,l) ∈ D2m(MU(m, l);V∗). (36)

The cartesian square of diagram (35) yields by Theorem 2.27 the formula of currents
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(
g�|Ug�

)∗
φ∇m,l

= i∗K(∇g�).

Pushing this down to X, we obtain an expression for φ(ρ∇(g)) in terms of φ∇m,l
:

φ(ρ∇(A(g�))) = (fg�)∗K(∇g�) = π∗
(
g�|Ug�

)∗
φ∇m,l

. (37)

Remark 5.5. We now have a map

φ ◦ ρ∇ =: φ∇ : Map�
∗ (X,QMUn) → Dn(X;V∗)

of presheaves on the site of manifolds and local diffeomorphisms. Applying this with 
X = γm,l and g the canonical inclusion γm,l → MU(m, l) = γm,l � {∞}, we deduce that 
im,l

∗
φ∇m,l+1 = φ∇m,l

and 
(
π
γm,l×C
γm,l

)
∗
jm,l

∗
φ∇m+1,l = φ∇m,l

.

We will now compare the fundamental forms φm,l of (22) with the fundamental cur-
rents φ∇m,l

of (36). The Thom isomorphism is induced by integration over the fiber, 
which we have defined to be the restriction and co-restriction of the currential pushfor-
ward. Since 

∫
MU(m,l)/Grm(Cm+l) Um,l = 1, we have∫

MU(m,l)/Grm(Cm,l)

π∗
m,lK(∇m,l) ∧ Um,l = K(∇m,l)

by the projection formula for the currential pushforward f∗(T ∧ f∗ω) = f∗(T ) ∧ ω. We 
also have

(πm,l)∗ ((ιm,l)∗K(∇m,l)) = K(∇m,l)

since πm,l ◦ ιm,l = idGrm(Cm+l). This establishes the identity

[φm,l] = [φ∇m,l
] in H2m(MU(m, l);V∗). (38)

It follows that there are currents

αm,l ∈ D2m−1(MU(m, l);V∗)

such that

dαm,l = φ∇m,l
− φm,l in D2m(MU(m, l);V∗). (39)

Since WF (dαm,l) = WF (φ∇m,l
) ⊂ N(ιm,l), we can by Lemma 2.26 furthermore assume

WF (α) ⊂ N(ιm,l).

This implies, in particular, that g∗αm,l is defined whenever g � ιm,l.
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Remark 5.6. Suppose α′ ∈ D2m−1(MU(m, l); V∗) also satisfies dα′ = φ∇m,l
− φm,l. We 

get

d(αm,l − α′) = 0.

Since H2m−1(MU(m, l); V∗) = 0 we can find a current β in D2m−2(MU(m, l); V∗) such 
that dβ = αm,l − α′. We will eventually only need αm,l modulo exact currents, and as 
such we see that αm,l is well-defined.

From Proposition 3.5 and Remarks 5.5 and 5.6 it follows that modulo exact currents, 
we have

im,l
∗
αm,l+1 = αm,l and (πm,l)∗ (jm,l

∗
αm+1,l) = αm,l,

where πm,l : C ⊕ γm,l → γm,l is the projection. Hence by Proposition 3.9 we may define 
a map

Fα : Map�(X,QMUn) → D∗(X;V∗)/Im (d)

by the setting

Fα(g) := (−1)kπ∗g�∗αm,l

for any g� ∈ Map�
∗ (ΣkX+, MU(m, l)) with A(g�) = g, where π : X × Rk → X is the 

projection as in diagram (35). The sign is here to counteract the sign appearing as d
passes through π∗ in the computation

dFα(g) = (−1)kdπ∗g�∗(αm,l)

= π∗dg�∗(αm,l) (40)

= π∗g�∗(φ∇m,l
− φm,l)

= φ(ρ∇(g)) − φn
sm(g),

where the last equality uses (37).

5.3. Construction of the map κ

For the following definition recall the notation MU�
hs(p)n(X)0 from Definition 5.3 and 

the group ZMUn(p)(X) of Hodge filtered cobordism cycles from Definition 2.13.

Definition 5.7. We define the map

κ : MU�
hs(p)n(X)0 → ZMUn(p)(X)
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by

(g, ω, h) �→

⎛⎜⎝ρ∇(g), ω, Fα(g) +
∫

Δ1×X/X

h

⎞⎟⎠ .

Lemma 5.8. For (g, ω, h) ∈ MU�
hs(p)n(X)0 we have

κ(g, ω, h) ∈ ZMUn(p)(X).

Proof. We work within the context of diagram (35), within which we defined both ρ∇
and Fα. Since (g, ω, h) has the form described in Lemma 3.16 we have

d

∫
Δ1×X/X

h = ι∗1h− ι∗0h = φn
sm(g) − ω.

Using (40) we compute

R(κ(g, ω, h)) = φ (ρ∇(g)) − dFα(g) − d

∫
Δ1×X/X

h

= φ(ρ∇(g)) −
(
φ(ρ∇(g)) − φsm(g)

)
− (φn

sm(g) − ω)

= ω.

Since ω ∈ F pAn(X; V∗), this shows that κ indeed is a map to ZMUn(p)(X). �
Our next goal is to prove that κ takes homotopic triples to cobordant Hodge filtered 

cycles. We first establish two lemmas:

Lemma 5.9. Let X ∈ ManF , and let ιt : X → R ×X be given by ιt(x) = (t, x). Then for 
γ ∈ MUn(p)(R ×X) we have

ι∗1γ − ι∗0γ = a

⎡⎢⎣ ∫
[0,1]×X/X

R(γ)

⎤⎥⎦
in MUn(p)(X).

Remark 5.10. This lemma, and the ensuing proof, is inspired by [4, Lemma 5.1]. As in 
differential cohomology, this is a general result applying to all Hodge filtered cohomology 
theories.
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Remark 5.11. The corresponding formula for differential cohomology provides a formula 
relating f∗

1 (γ) to f∗
0 (γ) for homotopic maps f1, f0 : X → Y . To get that implication 

in our context, we need the homotopy f• to preserve filtrations, i.e., we would need 
f∗
•F

pA∗(Y ) ⊂ F pA∗(R ×X). This is a severe restriction on permissible homotopies, and 
certainly it is not always the case that homotopic holomorphic maps can be connected 
by such a homotopy. In fact, it is not even always possible to connect two homotopic 
holomorphic maps by a homotopy through holomorphic maps.

Proof of Lemma 5.9. Let π : R ×X → X denote the projection, and let β ∈ An−1(R ×
X; V∗) be a form with dβ ∈ F pAn(R ×X; V∗) for which

γ = π∗(ι∗0(γ)) + a[β].

Note the identity

ι∗1γ − ι∗0γ = a[ι∗1β − ι∗0β]. (41)

We also have

R(γ) = R(π∗(ι∗0(γ))) + [dβ],

from which we get ∫
[0,1]×X/X

R(γ) =
∫

[0,1]×X/X

dβ

= ι∗1β − ι∗0β mod Im d.

Together with (41) this finishes the proof. �
Let q : Y → X be a smooth map. We denote by

Map�,q
∗
(
ΣkX+,MU(m, l)

)
⊂ Map�

∗
(
ΣkX+,MU(m, l)

)
(42)

the subset of maps g� such that g� ◦ Σkq ∈ Map�
∗
(
ΣkY+,MU(m, l)

)
.

Lemma 5.12. ρ∇ is natural in the sense that for q : Y → X a smooth map, and g� ∈
Map�,q

∗
(
ΣkX+,MU(m, l)

)
we have:

ρ∇(A(g� ◦ Σkq+)) = q∗ρ∇(A(g�)) ∈ ˜ZMU
n
(Y ).

Proof. It is well-known that given smooth maps f1 : M1 → M2 and f2 : M2 → M3 such 
that f2 � S ⊂ M3, we have f1 � (f−1

2 (S)) if and only if (f2 ◦ f1) � S. From this we 
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see that q∗ is defined on ρ∇(g). Now the assertion follows from the following cartesian 
diagram

ZY

iY

ZX

g�|ZX

iX

Grm
(
Cm+l

)
ιm,l

UY

πY

id×q
UX

πX

g�|UX

γm,l

Y
q

X

with ZX = Zg = (g)−1(Grm(Cm+l)), ZY = (q × id)−1ZX and

UX = g−1(γm,l) ⊂ X ×Rk ⊂ ΣkX+

UY = (q × id)−1(UX) ⊂ Y ×Rk ⊂ ΣkY+. �
Definition 5.13. We denote by MU�,q

hs (p)n(X)0 the subset of triples (g, ω, h) in 
MU�

hs(p)n(X)0 such that g = A(g�) for a map g� in Map�,q
∗
(
ΣkX+,MU(m, l)

)
.

Using the notation of Definition 5.13 the pullback for MUhs along a morphism q : Y →
X of ManF is induced by the map

q∗ : MU�,q
hs (p)n(X)0 → MU�

hs(p)n(Y )0
(A(g�), ω, h) �→

(
A(g� ◦ Σkq+), q∗ω, (idΔ1 × q)∗h

)
.

Lemma 5.14. For (g, ω, h) in MU�,q
hs (p)n(X)0, the following diagram commutes:

MU�,q
hs (p)n(X)0

q∗

κ

MU�
hs(p)n(Y )0

κ

ZMUn
q (p)(X)

q∗
ZMUn(p)(Y ).

Proof. Let g = A(g�) for g� : ΣkX → MU(m, l), and write 
(
πΣX
X

)
∗ for the pushforward 

map D∗(ΣX) → D∗(X). Using Lemma 5.12 and the push-pull formula for currents of 
Theorem 2.27, we compute:

q∗κ(g, ω, h) = q∗

⎛⎜⎝ρ∇(g), ω, Fα(g) +
∫

1

h

⎞⎟⎠

Δ ×X/X



54 K.B. Haus, G. Quick / Advances in Mathematics 431 (2023) 109244
=

⎛⎜⎝q∗ρ∇(g), q∗ω, q∗

⎛⎜⎝(πΣkX
X

)
∗
g�∗(αm,l) +

∫
Δ1×X/X

h

⎞⎟⎠
⎞⎟⎠

=
(
ρ∇(A(g� ◦ Σkq+)), q∗ω,

(
πΣkY
Y

)
∗
(g� ◦ Σkq+)∗αm,l +

∫
Δ1×Y/Y

(idΔ1 × q)∗h
)

= κ
(
A(g� ◦ Σkq+), q∗ω, (idΔ1 × q)∗h

)
. �

We are now ready to show that homotopic triples yield cobordant Hodge filtered 
cycles. We again work within the context of diagram (35).

Lemma 5.15. Let (g0, ω0, h0) and (g1, ω1, h1) be triples in MU�
hs(p)n(X)0 and assume 

there is a homotopy (g•, ω•, h•) between them. Then

κ(g1, ω1, h1) − κ(g0, ω0, h0) ∈ BMUn(p)(X)

where BMUn(p)(X) is defined in (12).

Proof. By Lemma 3.16 we can assume that

(g•, ω•, h•) ∈ MU�
hs(p)n(Δ1 ×X)0,

and that gt(x) is constant as a function of t in a neighborhood of each endpoint. We may 
then extend (g•, ω•, h•) to an element of MU�

hs(p)n(R ×X)0, placing (g•, ω•, h•) in the 
domain of κ. We get

κ(g•, ω•, h•) ∈ ZMUn(p)(R×X).

Let ιt : X → R × X be inclusion at t. The pullback ι∗t (g•, ω•, h•) ∈ MU�
hs(p)n(X)0 is 

defined for t = 0, 1. By naturality of κ, we have

ι∗tκ(g•, ω•, h•) = κ(gt, ωt, ht) ∈ ZMUn(p)(X).

Hence we get

κ(g1, ω1, h1) − κ(g0, ω0, h0) = (ι∗1 − ι∗0)(κ(g•, ω•, h•)).

By Lemma 5.9 we get
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[κ(g1, ω1, h1) − κ(g0, ω0, h0)] = a

⎡⎢⎣ ∫
Δ1×X/X

ω•

⎤⎥⎦ .

Since ω• ∈ F pAn(Δ1 × X; V∗), we have 
∫
Δ1×X/X

ω• ∈ F pAn−1(X; V∗). Since 

a 
[
F pAn−1(X;V∗)

]
is a subset of BMUn(p)(X), this proves the assertion. �

Every element in MUn
hs(p)(X) can be represented by a triple in the subset 

MU�,q
hs (p)n(X)0. This follows from Thom’s transversality theorem and Lemma 5.2. Com-

bining this with Lemmas 5.14 and 5.15, we have proven the following result:

Theorem 5.16. Let q : Y → X be a morphism in ManF and p be an integer. Then we 
have q∗ ◦ κ = κ ◦ q∗hs where q∗ denotes the pullback in MU∗(p)(−) and q∗hs the pullback 
in MU∗

hs(p)(−).

5.4. The map κ is an isomorphism

We will now show that κ is a homomorphism and that it respects the structure maps 
of Hodge filtered cohomology theories. The respective long exact sequences of the two 
theories will then imply that κ is an isomorphism.

The addition on MUn
hs(p)(X) is induced by the following binary operation on 

MU�
hs(p)n(X)0;

(A(g1), ω1, h1) + (A(g2), ω2, h2) = (A((g1 ∨ g2) ◦ pinch), ω1 + ω2, h1 + h2),

for maps g1, g2 ∈ Map�
∗ (ΣkX+, MU(m, l)). Here pinch: ΣkX+ → ΣkX+ ∨ΣkX+ is the 

pinch map which collapses X ×Rk−1 × {0}. We observe that

ρ∇ : Map�(X,QMUn) → ˜ZMU
n
(X)

is a homomorphism in the sense that

ρ∇(A((g1 ∨ g2) ◦ pinch)) = ρ∇(A(g1)) + ρ∇(A(g2)).

This is evident upon noting the diffeomorphism

(g1 ∨ g2)−1(γm,l) ∼= g−1
1 γm,l� g−1

2 (γm,l).

We can deduce the following result:

Lemma 5.17. The map κ : MUn
hs(p)(X) → MUn(p)(X) is a group homomorphism. �
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Next we will show that κ respects the structure maps. We lift the structure maps Ihs, 
Rhs and ahs of MUhs(p) as a Hodge filtered theory from the level of maps in the homotopy 
category to the level of 0-simplices of the simplicial mapping space using Lemma 3.16 as 
follows.

Ihs : MUhs(p)n(X)0 → Mapsm(X,QMUn)

(g, ω, h) �→ g

Rhs : MUhs(p)n(X)0 → F pAn(X;V∗)

(g, ω, h) �→ ω,

ahs : d−1 (F pAn(X;V∗))n−1 → MUhs(p)n(X)0
h �→ (0, dh, τ1h)

where τ1 is the map τ1 = d ◦ h0 : An−1(X; V∗) → An(Δ1 × X; V∗)cl defined in (31). 
Recall from (32) that we have i∗0τ1h = dh and i∗1τ1h = 0, so that, using Lemma 3.16, 
ahs(h) = (0, dh, τ1h) represents a class in MUn

hs(p)(X). We have a Pontryagin–Thom 
map

ρ : Map� (X,QMUn) → ZMUn(X),

defined by ρ = I ◦ ρ∇, i.e., ρ(g�) = (fg� , Ng�). We denote the induced map 
MUn

h (X) → MUn(X) also by ρ. By Thom’s transversality theorem, the homotopy 
classes in Map� (X,QMUn) ⊂ Map(X, QMUn) are all of MUn

h (X), where we use the 
subscript h to indicate that we mean the homotopy-theoretic MU -cohomology group 
of homotopy classes of maps X → QMUn, as opposed to Quillen’s geometric MU -
cohomology groups, recalled in section 2. It is not hard to prove that ρ is an isomorphism.

Lemma 5.18. The map κ : MUn
hs(p)(X) → MUn(p)(X) respects the structure maps:

κ ◦ ahs = a,

I ◦ κ = ρ ◦ Ihs and

R ◦ κ = Rhs.

Proof. Let [h] ∈ Hn−1
(
X; A∗

Fp (V∗)
)

be a class represented by an element h ∈
An−1(X; V∗), with dh ∈ F pAn(X; V∗). We have 

∫
Δ1×X/X

τ1h = h by Lemma 4.2. By 
the definition of κ in Definition 5.7 we get

κ ◦ ahs([h]) = a[h].

Compatibility with I holds by our choice of isomorphism ρ : MUn
h (X) ∼= MUn(X). 

Finally, the equality
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R ◦ κ[(g, ω, h)] = [ω]

was verified on the level of forms in the proof of Lemma 5.8. �
Theorem 5.19. For all integers n and p and every (X, F ∗) ∈ ManF , the homomorphism 
κ : MUhs(p)n(X) → MUn(p)(X) is an isomorphism of groups.

Proof. It follows from Lemma 5.18 that κ fits into a morphism of long exact sequences:

· · · Hn−1(X; A∗

Fp (V∗))
ahs

id

MUn
hs(p)(X)

Ihs

κ

MUn
h (X)

ρ

· · ·

· · · Hn−1(X; A∗

Fp (V∗))
a

MUn(p)(X) I
MUn(X) · · ·

Since the outer vertical maps are isomorphisms for each n and p, the five-lemma implies 
that κ is an isomorphism. �

Together with Theorem 4.9 this finishes the proof of Theorem 1.2.

Remark 5.20. In fact, the proof of Theorem 5.19 shows that κ is an isomorphism of 
Hodge filtered extensions over (MU∗, φp) in the sense of Definition 2.31. Together with 
Remark 4.10 this shows that the natural isomorphism MU∗

D(p)(X) ∼= MU∗(p)(X) is an 
isomorphism of Hodge filtered extensions over (MU∗, φp) on ManC.

Remark 5.21. Recall from [22] and section 2.8 that by taking direct sums over all n, p ∈ Z, 
both MU∗

D(∗)(X) and MU∗(∗)(X) become bigraded rings. We are optimistic that one 
can show that the isomorphism MU∗

D(∗)(X) ∼= MU∗(∗)(X) is actually an isomorphism 
of bigraded rings.
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