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Abstract
1. Estimating the genetic variation underpinning a trait is crucial to understanding 

and predicting its evolution. A key statistical tool to estimate this variation is the 
animal model. Typically, the environment is modelled as an external variable in-
dependent of the organism, affecting the focal phenotypic trait via phenotypic 
plasticity. We studied what happens if the environment is not independent of the 
organism because it chooses or adjusts its environment, potentially creating non- 
zero genotype– environment correlations.

2. We simulated a set of biological scenarios assuming the presence or absence of 
a genetic basis for a focal phenotypic trait and/or the focal environment (treated 
as an extended phenotype), as well as phenotypic plasticity (the effect of the 
environment on the phenotypic trait) and/or ‘environmental plasticity’ (the effect 
of the phenotypic trait on the local environment). We then estimated the additive 
genetic variance of the phenotypic trait and/or the environment by applying five 
animal models which differed in which variables were fitted as the dependent 
variable and which covariates were included.

3. We show that animal models can estimate the additive genetic variance of the 
local environment (i.e. the extended phenotype) and can detect environmental 
plasticity. We show that when the focal environment has a genetic basis, the 
additive genetic variance of a phenotypic trait increases if there is phenotypic 
plasticity. We also show that phenotypic plasticity can be mistakenly inferred to 
exist when it is actually absent and instead environmental plasticity is present. 
When the causal relationship between the phenotype and the environment is 
misunderstood, it can lead to severe misinterpretation of the genetic parameters, 
including finding ‘phantom’ genetic variation for traits that, in reality, have none. 
We also demonstrate how using bivariate models can partly alleviate these is-
sues. Finally, we provide the mathematical equations describing the expected es-
timated values.
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1  |  INTRODUC TION

One of the biggest current challenges in evolutionary biology is un-
derstanding how populations adapt to their environment and pre-
dicting if they will be able to cope with the pace of anthropogenically 
induced environmental change. It is thus essential to understand the 
genetic and phenotypic changes that allow populations to cope with 
environmental challenges (Chevin et al., 2010). Within this context, 
the field of quantitative genetics studies the additive genetic vari-
ance of traits. This is a key determinant of their heritability and evo-
lutionary potential and, thus, of the ability of populations to adapt 
to their environment (Falconer & Mackay, 1996). One of the most 
widely used statistical tools for estimating the additive genetic vari-
ance of a trait is a type of mixed model called the ‘animal model’ 
(Kruuk, 2004; Lynch & Walsh, 1998).

Various studies have highlighted possible pitfalls when using ani-
mal models, and the errors associated with their application and bio-
logical interpretation (de Villemereuil et al., 2018; Kruuk, 2004; Kruuk 
et al., 2008; Postma & Charmantier, 2007; Wilson et al., 2010). For 
example, failing to account for maternal effects may cause additive 
genetic variance (and thus heritability) to be overestimated due to 
the genetic covariance between siblings as generated by the shared 
environment (e.g. the care of their mother; Wilson et al., 2010).

Another problem with the animal model is that the assumed 
model structure might not reflect the actual biology of the system 
(Westneat et al., 2020), and this has received far less attention. Here 
we specifically focus on the assumption that genes and environment 
are uncorrelated (Lynch & Walsh, 1998) (Figure 1a). If not, the gene– 
environment covariance changes the estimated phenotypic variance:

where VP is the phenotypic trait variance, VG is its additive genetic 
variance, VE its environmental variance and Cov

[
G, E

]
 is the gene– 

environment covariance. That this covariance is zero (i.e. that geno-
types are randomly distributed across environments) may be true 
in captivity or other controlled conditions, but not necessarily so in 
natural populations. Although this problem has long been recognized 
(e.g. Falconer, 1960), it seems to be systematically ignored (e.g. it is not 
mentioned in Charmantier et al., 2014).

A common approach to deal with phenotype– environment re-
lationships is to fit the environment as a covariate. However, this 
approach implicitly assumes that their covariance is environmental 
instead of genetic. This assumption may be incorrect in natural pop-
ulations for two reasons. First, there might be a genetic basis to as-
pects of the environment that we include in the model (Figure 1b). 
This could occur when the organism has a (genetic) preference to 
occur in a specific type of environment (‘selection (choice) of the en-
vironment’ cf. Edelaar & Bolnick, 2019, e.g. habitat choice), or when 
it has a (genetic) inclination to change its environment to a different 
state (‘adjustment of the environment’ cf. Edelaar & Bolnick, 2019, 
for example habitat construction). Although it has been shown 
that genetic variation can affect and determine an individual's 

(1)VP = VG + VE + 2Cov
[
G, E

]
,

4. This study highlights that not taking gene– environment correlations into account 
can lead to erroneous interpretations of additive genetic variation and pheno-
typic plasticity estimates. If we aim to understand and predict how organisms 
adapt to environmental change, we need a better understanding of the mecha-
nisms that may lead to gene– environment correlations.

K E Y W O R D S
additive genetic variance, animal model, bivariate model, environmental plasticity, extended 
phenotype, gene– environment correlation, gene– environment covariance, phenotypic 
plasticity

F I G U R E  1  (a) Typical quantitative genetic partitioning of focal 
phenotypic trait z into direct additive genetic (az), environmental 
(x) and residual (ez) components. A known environment may 
affect the phenotypic trait via phenotypic plasticity (�xz), but this 
effect is independent of the organism's genes. (b) Compared to 
a), when an organism has a genetic preference (ax) to choose or 
adjust its local environment (x), the genes of the organism and 
its environment are no longer independent. In this scenario, the 
genes influencing choice or adjustment of the local environment 
also indirectly influence the phenotypic trait through phenotypic 
plasticity (�xz). (c) When the phenotypic trait (z) of an organism 
has a genetic component (az) and affects the choice or adjustment 
of the local environment (x) via ‘environmental plasticity’ (�zx
), the genes underpinning the expression of the phenotypic trait 
indirectly affect the choice or adjustment of the environment. 
Thus, the genes of the organism and its environment are no longer 
independent, causing a genetic correlation between the organism 
and its environment.
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environment (e.g. Dawkins, 1982; Jaenike & Holt, 1991; Weber 
et al., 2013), this possibility is rarely explored using animal models 
(see Järvinen et al., 2017; Gervais et al., 2020, 2022 for exceptions).

A second case that violates the assumption that the organism 
and the environment are independent occurs when a phenotypic 
trait influences how the local environment is adjusted or which en-
vironment is chosen (e.g. phenotype- dependent matching habitat 
choice; Edelaar et al., 2008; Figure 1c). This is an effect of the phe-
notypic trait on the focal environment, the reverse effect of pheno-
typic plasticity (where the environment affects the phenotypic trait). 
For lack of an established term (as far as we know), we will call this 
‘environmental plasticity’ as a logical equivalent of phenotypic plas-
ticity. Environmental plasticity covers the phenotype dependency 
of both choice and adjustment of the local environment that an in-
dividual experiences. Note that for habitat choice/selection, for an 
outside observer the environment does not undergo any transfor-
mation. However, the observing researcher is irrelevant: the local 
environment that the individual organism experiences does indeed 
change, and this is what matters. In this way, if an organism's focal 
phenotypic trait harbours genetic variation and affects the choice 
or adjustment of its local environment (i.e. there is environmental 
plasticity), then a genetic covariance between the trait and the en-
vironment is expected. Assuming the inverse causal relationship of 
an effect of the focal environment on the phenotypic trait (i.e. as-
suming phenotypic plasticity when there is environmental plasticity) 
could cause wrong inferences of the animal model estimates. As an 
example, imagine we are studying the heritability or plasticity of be-
havioural boldness of a breeding wild bird population. We might be 
tempted to add nest distance from the closest road as a fixed effect 
to control for the influence of human disturbance on boldness (i.e. 
phenotypic plasticity). Alternatively, boldness could affect nest dis-
tance choice (i.e. environmental plasticity, with less bold individuals 
preferring to breed further away from roads) instead of the other 
way around (Holtmann et al., 2017). For this scenario, treating bold-
ness as a response variable and nest distance as the independent 
variable would not reflect the true causal relationship. This could 
result in misinterpretation of the estimates provided by the animal 
model due to the misspecification of the causal structure of the 
model.

When studying gene– environment correlations, it is important 
to emphasize that for any hypothesized relationship between phe-
notypes and environment, the estimated genetic variance can be 
underpinned by ‘direct’ genetic variance affecting a trait or environ-
ment versus ‘indirect’ genetic variance. We therefore use the term 
‘direct additive genetic variance’ to refer to the variance caused by 
alleles ‘directly’ affecting a trait (path az to z in Figure 1a), in the sense 
that the causally intermediate traits are not measured or of interest. 
Within a path analysis context, this has been referred to as exog-
enous variance because factors outside the causal pathway cause 
it (e.g. de Villemereuil et al., 2018). In the path diagram depicted in 
Figure 1a, the direct variance can also be thought of as the expected 
genetic variance on the trait conditional on all individuals having 
the same focal environment. In contrast, we use the term ‘indirect 

additive genetic variance’ to acknowledge that alleles underpinning 
traits affecting the environment may cause indirect genetic variance 
on other traits, because of the indirect effects of alleles on a pheno-
type through the environment (path ax to x to z in Figure 1b). In other 
words, variance that is caused by a plastic response to variation in a 
phenotype or environment with a genetic underpinning. Finally, we 
use the term ‘total additive genetic variance’ to refer to the sum of 
both direct and indirect genetic variance.

When the local environment varies depending on the individu-
al's genotype, it may be seen as an extended phenotype, that is the 
expression of genes in traits outside of what is typically considered 
the organism (Dawkins, 1982; Edelaar & Bolnick, 2019). Studying 
environmental variables as extended phenotypes allows linking the 
study of gene– environment correlations to previous treatments 
on selection on causally covarying traits (e.g. Morrissey, 2014). 
Contrary to Dawkins's definition, here we use extended phenotype 
without implying that the choice or adjustment of the focal envi-
ronment is expected to result in a change in fitness. (see Supporting 
Information I for further discussion on treating environmental vari-
ables as extended phenotypes.)

In this paper, we combine data simulations with mathematical 
derivations to describe the consequences for the animal model 
estimates and their interpretation when the focal environment 
depends on the genes of our study organism. We simulated data 
assuming 12 different biological scenarios and then analysed these 
data with a set of 5 animal models with different causal structures. 
The fitted animal models varied in which trait was the focal trait 
and the covariate (including bivariate models). We then show how 
the additive genetic variance estimated by the different animal 
models (V̂a) fitted for the different biological scenarios can either 
reflect a trait's direct additive genetic variance, its indirect additive 
genetic variance, the sum of these two (i.e. its total additive ge-
netic variance), or a biased estimate which is not consistent with 
anything of the above. What the animal model provides us with 
depends on the existence of gene– environment correlation and the 
appropriateness of the model structure for each biological scenario 
(see Table I for the expected estimated values for each model for 
each scenario).

2  |  MATERIAL S AND METHODS

2.1  |  General simulation design

We developed a simulation procedure in R 4.0.2 (R Core Team, 2020) 
to study the impact of gene– environment correlations on the es-
timates of plasticity and additive genetic variance. This simulation 
generates an individual phenotypic trait (z) which has a genetic un-
derpinning summarized by a breeding value (�z), which responds 
plastically (�xz) to a focal environmental variable (x) and which is af-
fected by unknown effects summarized in a residual value (�z),

(2)z = �z + �xzx + �z.
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In a similar way, the focal environment variable may have a genetic un-
derpinning summarized by a breeding value (�x), it can also be affected 
by the organism's phenotypic trait (z) proportional to the coefficient 
�zx , and it is also affected by unknown residual effects (�x),

The unknown residual effects on the phenotypic trait (�z) and the en-
vironment (�x) are assumed to be a realization of a normal distribution 
with a mean of zero and variance �2

�z
 and �2

�x
, respectively.

The breeding values for each individual are the sum of the ef-
fects of n loci (in linkage disequilibrium) influencing trait expression. 
Each locus has two alleles coded as 0 and 1, and for simplicity, we 
assume that their effects on the trait are additive. Also, for simplic-
ity, we assume that allele frequencies for all loci are 0.5. Therefore, 
the expected direct additive genetic variance in a trait (�2

�z
) or envi-

ronment (�2
�x

) is equal to 0.52n, where n can differ between the phe-
notypic trait and the focal environment.

We start by simulating the genotypes of a founder population 
of 750 individuals; then sexes are randomly assigned ensuring a 
sex ratio of 1. Individuals mate randomly, there is no natural se-
lection, and there are no overlapping generations. Alleles follow 
Mendelian segregation, without mutation. We simulate 10 non- 
overlapping generations and each pair produces two individuals, 
ensuring a constant population size across generations. The geno-
type of each individual is then used to calculate its breeding value. 
Finally, pedigrees are built based on the parent– offspring relation-
ships (see Supplementary Material for more details on the simulation 
procedure).

2.2  |  Biological scenarios

We simulated 12 different biological scenarios (Table 1) that involved 
the presence or absence of the following factors: direct additive 
genetic variance for the phenotypic trait (�2

�z
= 25), direct additive 

genetic variance for the focal environment (�2
�x

= 12.5), phenotypic 
plasticity (�xz = 0.7; i.e. the effect of the focal environment on the 
phenotypic trait, Figure 1a,b) and environmental plasticity (�zx = 0.5

; i.e. the effect of the phenotypic trait on the focal environment, 
Figure 1c). A fixed variance in z and x due to unknown residual ef-
fects was always simulated (120 and 70 respectively). These values 
are arbitrary, but we intentionally used values to make the simula-
tion results clear. Every scenario was simulated 100 times, resulting 

in 100 datasets that differed due to stochastic variation. The simula-
tion results are only valid for the specific choices of each simulation, 
and serve mostly as examples. Therefore, we generalize the simula-
tion results by providing the analytical formulas for the expected 
estimated values by the different animal models for each scenario.

Scenarios 1– 4 correspond to populations with a phenotypic trait 
with a direct genetic basis and/or phenotypic plasticity. These scenar-
ios were used to check the simulation procedures since they are the 
classical scenarios usually assumed when using animal models. In sce-
narios 5– 8, we simulated a direct genetic basis for the focal environ-
ment. In scenarios 7 and 8, we also simulated phenotypic plasticity. In 
these hypothetical scenarios, the focal phenotypic trait is affected by an 
environmental variable with a direct genetic basis. For example, when 
the water depth at which a deep- sea fish forages has a direct genetic 
basis (Gaither et al., 2018) and this depth (focal environment) affects 
its body mass (phenotypic trait). For scenarios 9– 12, we simulated envi-
ronmental plasticity instead of phenotypic plasticity. In other words, in 
these scenarios, we simulated that the focal environment was affected 
by the focal phenotypic trait. One such example is shown in Camacho 
et al. (2020), where ground- perching grasshoppers of a specific colour 
(focal phenotypic trait) choose a substrate of a colour (environmental 
variable) similar to their own to increase crypsis. This does not change 
the actual colour of any of the available substrates, but it does change 
the colour of the environment that each individual experiences, which 
is our focal trait. For simplicity, we did not simulate scenarios where 
phenotypic and environmental plasticity are simultaneously present, as 
this leads to feedback and possible order effects, although it appears to 
be possible in nature (Boyle & Start, 2020; Lowe & Addis, 2019).

2.3  |  Statistical analyses: Animal models

We fitted the animal models using the R package ASReml- R 
(Butler, 2020). See Table 2 for parameter descriptions.

We fitted five different animal models. Models 1 and 2 corre-
spond to the typical structures usually used to estimate the genetic 
parameters of the phenotypic trait of interest (z). Model 1 is the sim-
plest case:

where uz is the population mean, az are the breeding values with vari-
ance V̂az

 and ez is the residual term with variance V̂ez
 .

(3)x = �x + �zxz + �x .

(4)z = uz + az + ez.

Scenario

Simulated 
parameter 1 2 3 4 5 6 7 8 9 10 11 12

�2
�z

= 25 — — ✔ ✔ — ✔ — ✔ — — ✔ ✔

�2
�x

= 12.5 — — — — ✔ ✔ ✔ ✔ — ✔ — ✔

�xz = 0.7 — ✔ — ✔ — — ✔ ✔ — — — — 

�zx = 0.5 — — — — — — — — ✔ ✔ ✔ ✔

TA B L E  1  Parameters used for 
simulating in each scenario. ‘✔’ indicate 
when a particular parameter was 
involved using the given values, where 
�2
�z

 is direct additive genetic variance for 
the focal phenotypic trait, �2

�x
 is direct 

additive genetic variance for the focal 
environment, �xz is phenotypic plasticity 
and �zx is environmental plasticity.
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Model 2 has a similar model structure but includes the focal envi-
ronment of each individual (x) as a fixed effect and the effect of such 
an environment on the individuals' phenotypic trait (�̂xz):

Model 3 is similar to model 1, but now the environment is the trait of 
interest (the dependent variable), potentially with its own genetic 
basis:

where x is the experienced focal environment variable of each individ-
ual, ux is the population mean, ax are the breeding values with variance 
V̂ax

 and ex represent the residual effects with variance V̂ex
.

Following the logic and structure of model 2, in model 4 we fit 
the phenotypic trait as a fixed effect to estimate and control for 
its influence on the focal environment variable (i.e. environmental 
plasticity):

Finally, model 5 is the bivariate model that is fitted to estimate the ad-
ditive genetic covariance Cov

[
az, ax

]
 between the phenotypic and the 

environmental variable:

where Ĉov
[
az, ax

]
 represents the estimated additive genetic covariance 

between the phenotypic and the focal environment, and ̂Vaz
and ̂Vax

rep-
resent the estimated additive genetic variance in the phenotypic trait 
and focal environment, respectively. MVN(0, G) represents a multivar-
iate normal distribution where G is the genetic variance– covariance 
matrix.

For bivariate models, starting values for the variances in the 
additive genetic (G) and the residual (R) covariance matrices 
were based on the output from the univariate models (Wilson 
et al., 2010) to improve model convergence. For simplicity, initial 
values were set to 0.1 when univariate models detected additive 
genetic variance and set to 0.0000001 when the estimated addi-
tive genetic variance was close to 0. Covariance starting values 
were always 0.0000001.

3  |  RESULTS

In general, applying different animal models (i.e. assuming dif-
ferent causal structures) results in the estimation of different 
parameters (total, direct or indirect additive genetic variance, or 
a biased estimate that does not correspond with any potential 
parameter of interest) depending on the specific characteristics 
of the different biological scenarios. Table I in the Supporting 
Information provides a summary for all possible model- scenario 
combinations.

3.1  |  Analysing the standard scenarios with 
classical animal model structures

When models 1 and 2 were applied to standard scenarios 1– 4 where 
a direct genetic basis for the phenotypic trait and/or phenotypic 
plasticity was simulated, the expected value for the estimated ge-
netic variance is equal to the simulated direct additive genetic vari-
ance of the phenotypic trait (E

[
V̂az

]
= �2

az
; Supporting Information 

results, Table S2). Note that we refer to the expected value of the 
estimates (E

[̂ ]
) because each estimate will vary around the value 

used as input for the simulations because of finite sample size.

(5)z = uz + �̂xzx + az + ez.

(6)x = ux + ax + ex .

(7)x = ux + �̂zxz + ax + ex .

(8)
⎡
⎢⎢⎣
z

x

⎤
⎥⎥⎦
= u + a + e.

(9)
⎡
⎢⎢⎣
az

ax

⎤
⎥⎥⎦
∼MVN(0,G):

⎡
⎢⎢⎣

V̂az
Ĉov

�
az, ax

�

Ĉov
�
ax , az

�
V̂ax

⎤
⎥⎥⎦
.

TA B L E  2  Notation and description of each of the parameters 
that were simulated. To distinguish estimated parameters for 
(co)variances and types of plasticity from simulated ones, we 
denote parameter estimates using a hat symbol (e.g. �̂xz). Note 
that breeding values and residual values are mean centred for 
Equations 4– 8, representing the statistical analyses but not for 
Equations 2 and 3, describing the simulation process. We thus 
represent them with different symbols. We also refer to V̂a to the 
estimates of additive genetic variance to highlight that this may or 
may not represent any of the values used for the simulation.

Parameters

Simulated Description

z Focal phenotypic trait

x Focal environment/extended 
phenotype

az Breeding value for the 
phenotype

ez Effect of residual variables on 
the phenotypic trait

ax Breeding value for the focal 
environment

ex Effect of residual variables on 
the focal environment

�2
az

Direct additive genetic 
variance of the phenotypic 
trait

�2
ax

Direct genetic variance of the 
focal environment

�xz Strength of the effect of the 
focal environment on 
the phenotypic trait (i.e. 
phenotypic plasticity)

�zx Strength of the effect of the 
phenotypic trait on the 
focal environment (i.e. 
environmental plasticity)
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3.2  |  What happens if the focal environment has a 
genetic basis, and it is fitted as a dependent variable 
in an animal model?

When the presence or absence of a direct genetic basis for the focal 
environment and/or environmental plasticity were simulated (sce-
narios 5, 9 and 10) and we applied models with the focal environment 
as the dependent variable and the phenotypic trait as a covariate 
(models 3 and 4), the expected value for the estimated genetic vari-
ance is equal to the simulated direct additive genetic variance of the 
focal environment (E

[
V̂ax

]
= �2

ax
; Figure S2). The estimated strength 

of environmental plasticity also corresponded to the simulated value 
(E
[
�̂zx

]
= �zx; Figure S3, Table S3).

3.3  |  How are genetic variance estimates affected 
when the focal environment has a genetic basis and the 
phenotypic trait responds plastically to it?

When we simulated a genetic basis for the phenotypic trait and the 
focal environment but no plasticity (scenarios 5 and 6) and then ap-
plied models with the phenotypic trait as the dependent variable, 
without or with the focal environment as a covariate (models 1 and 
2), the expected value for the estimated genetic variance is equal to 
the simulated direct genetic variance (E

[
V̂az

]
= �2

az
). The estimated 

phenotypic plasticity also matched the simulated value (E
[
�̂xz

]
= �xz;

Figures 2 and 3; Table S4). Symmetrically, the same happened in sce-
narios 3 and 6 for the focal environment estimates when we applied 
models 3 and 4 (Supporting Information Results).

In contrast, when we simulated phenotypic plasticity alongside 
a genetic basis for the focal environment (scenarios 7 and 8) and 
applied the model with the phenotypic trait as dependent variable 
and no covariates (model 1), the expected value for the estimated 
genetic variance is equal to the sum of the simulated direct genetic 
effects and indirect genetic effects (E

[
V̂az

]
= �2

az
+ �2

xz
�2
ax
; Figure 2; 

Table S4). On the other hand, when the focal environment was 
added as a covariate (model 3), the indirect genetic effects of the 
environment were statistically removed. The expected value for the 
estimated genetic variance is then equal to the simulated direct ge-
netic variance (E

[
V̂az

]
= �2

az
) (Figure 2, Table S3). For these scenarios, 

phenotypic plasticity was correctly estimated (Figure 3, Table S3).
Symmetrically, the same was true for the genetic variance of the focal 

environment and environmental plasticity estimates in scenarios 11 and 
12 when models 3 and 4 were applied (Supporting Information Results).

3.4  |  What happens if there is environmental 
plasticity, yet the classical animal model 
structures are applied?

When applying the model with the phenotypic trait as the depend-
ent variable and no environmental covariate (model 1) to scenarios 
where environmental plasticity was simulated (9, 10, 11 and 12), the 

expected value for the estimated genetic variance is equal to the 
simulated direct genetic variance (E

[
V̂az

]
= �2

az
; Figure 4, Table S5). 

However, when we added the focal environment as a covariate 
(model 2) and thus applied a model assuming the wrong causal re-
lationship (assuming phenotypic plasticity when there is environ-
mental plasticity), phenotypic plasticity was estimated to be present 
when it was absent (Figure 3, Table S5). Moreover, due to this mis-
specification, the additive genetic variance was misestimated (see 
Section 4; Figure 4, scenarios 10– 12).

Symmetrically, the same happened for the scenarios 2, 4, 7 and 8 
when model 4 was applied (see Supporting Information for Results).

3.5  |  What if bivariate models are applied?

When applying the bivariate model (model 5) to all scenarios, esti-
mates for the genetic variances of the phenotypic trait and the focal 
environment matched estimates by models 1 (V̂az

) and 3 (V̂ax
) (i.e. uni-

variate models without a covariate; Supporting Information Results). 
Moreover, the genetic covariance between the phenotypic trait and 
the local environment was correctly estimated when it was simu-
lated to exist (phenotypic plasticity together with a genetic basis for 
the focal environment, scenarios 7 and 8; or environmental plasticity 
together with a genetic basis for the focal phenotypic trait, scenarios 
11 and 12; Figure 5).

4  |  DISCUSSION

We compared the results of different animal model structures ap-
plied to simulated data reflecting different biological scenarios. Our 
results show (i) how the genetic basis of the focal environment can 
be estimated using animal models, (ii) how animal models can es-
timate not only phenotypic plasticity but also environmental plas-
ticity if the correct model structure is fitted, (iii) how plasticity can 
increase the additive genetic variance of the focal trait and how the 
additive genetic estimates provided by the animal model can be po-
tentially misinterpreted, (iv) how fitting the wrong causal structure 
can result in wrong inferences about the additive genetic variance 
and type of plasticity and (v) how bivariate models can detect a ge-
netic covariance between the phenotype and the focal environment 
and may help differentiating between alternative scenarios.

4.1  |  The genetic basis of the focal environment 
can be estimated with animal models

The additive genetic variance of the focal environment can be esti-
mated by fitting it as a dependent variable in an animal model (mod-
els 3 and 4). The estimated genetic variance of the focal environment 
should reflect genetic variation for an individual's preference and 
ability to choose or adjust its environment (Akcali & Porter, 2017; 
Edelaar & Bolnick, 2019). This modelling approach allows studying 
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F I G U R E  2  Estimated additive genetic variance of the phenotypic trait for models 1 (phenotypic trait as dependent variable) and 2 (with 
the focal environment as a covariate) for the simulated values in scenarios 5– 8. The box plots illustrate the distribution of estimates of the 
100 simulations for each scenario (the bottom and the top of the boxes are the first and third quartiles, the middle band is the median, its 
whiskers extend from the box to highest and lowest points within 1.5 times the interquartile range. Outliers are represented with black 
dots. Red dots are the simulated direct genetic variances for the focal phenotypic trait. Orange dots are the simulated total genetic variance 
(direct + indirect; see Section 4). Crossed squares (☒) indicate if non- zero direct genetic variance for the phenotypic trait, direct genetic 
variance for the focal environment, phenotypic plasticity and/or environmental plasticity were simulated.

F I G U R E  3  Estimated effects of the focal environment on the phenotypic trait (i.e. strength of phenotypic plasticity), for model 2 (focal 
environment as covariate). See Figure 2 for box plot description and legend explanation.
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F I G U R E  4  Distribution of the estimated values of additive genetic variance of the phenotypic trait for models 1 (phenotypic trait as 
dependent variable) and 2 (focal environment as covariate) for the simulated values in scenarios 9– 12 (see Figure 2 for box plot description 
and legend explanation).

F I G U R E  5  Estimated values of additive genetic covariance between the phenotypic trait and the focal environment (model 5, bivariate 
model) for the simulated values in all (12) scenarios. Red dots are the simulated additive genetic covariance between the focal phenotypic 
trait and the focal environment (see Figure 2 for box plot description and legend explanation).
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the ‘heritability’ of environmental variables potentially chosen or 
adjusted by individuals in wild populations (i.e. extended pheno-
types) using pedigree or genetic relatedness information. This ap-
proach would also be useful whenever the trait underpinning the 
choice or adjustment of the environment is unknown or cannot be 
measured directly. As discussed further below, what the estimate 
provided by the animal model means (direct, indirect or total addi-
tive genetic variance of the focal environment) will depend on the 
model structure.

Social scientists have already recognized that many environ-
ments are heritable, since humans select, modify and create envi-
ronments using behaviours with a genetic basis (Plomin et al., 2016; 
Saltz, 2019). However, this view has hardly been adopted for wild 
non- human populations (see Møller, 2006; Weber et al., 2013 for 
exceptions), and animal models have almost never been applied for 
this purpose (Gervais et al., 2020, 2022; Järvinen et al., 2017; are 
the only exceptions we know of). We hope that researchers will rec-
ognize the potential of studying the heritable variation of the envi-
ronment experienced by individuals by treating it as an extended 
phenotype. In this way, the focal environment is no longer exclu-
sively modelled as an external ecological context imposing selective 
pressures, but as one that may be chosen or adjusted by the organ-
ism (Edelaar & Bolnick, 2019), and therefore as an integral part of an 
organism's adaptive potential, with its own genetic basis and evolu-
tionary dynamics. The approach we outline here provides a powerful 
tool to quantify the heritability of the environment. As more herita-
bility estimates of the environment accumulate, comparative anal-
ysis can provide insights on which types of environments have no, 
low or high heritability, improving our ability to predict evolutionary 
responses to environmental change.

4.2  |  Animal models can estimate environmental 
plasticity if the right model structure is fitted

Treating the focal environment as a dependent variable, a pheno-
typic trait can be fitted as a fixed effect to estimate its impact on the 
focal environment. This could be expanded to any type of regression 
that allows estimating the reaction norm of the focal environment, 
that is as a function of the phenotypic trait. The advantage of using 
animal models in this context is that they take into account the non- 
independence caused by relatedness among individuals.

In the last decade, research into phenotype- responsive choice 
of the environment in the form of the so- called matching habitat 
choice (Edelaar et al., 2008) has gained relevance and consolidation 
(Camacho et al., 2020; Lowe & Addis, 2019), but there are still many 
open questions. The animal model may be a valuable addition to the 
toolbox for further study. In contrast, the effect of variation in in-
dividual phenotypes on adjustment of the environment (e.g. niche 
construction) appears to have been virtually ignored in the scien-
tific literature (Edelaar & Bolnick, 2019). The animal model structure 
we propose might be able to shed some light on this too. As is the 
case for phenotypic plasticity (Pigliucci, 2005), genetic variation in 

environmental plasticity is necessary for it to evolve. Thus, estimat-
ing genetic variation in environmental plasticity, or in other words 
G(ene) by P(henotype) interaction is another interesting avenue for 
future research.

4.3  |  Animal models detect increased genetic 
variation via pleiotropy/indirect genetic effects

We found that the estimated genetic variance of the phenotypic trait 
is larger when the phenotypic trait itself is affected by a focal envi-
ronment that harbours genetic variance (Figure 2, scenarios 7 and 8). 
Here, the genes underpinning the chosen or adjusted focal environ-
ment have an indirect pleiotropic effect on the plastic phenotypic 
trait (Figure 1b). The estimates of the genetic variance correspond 
to the sum of the simulated direct genetic effects (the direct genetic 
basis for the phenotypic trait, �2

az
) and indirect genetic effects (the 

direct genetic basis for the focal environment, �2
ax

, proportional to 
the square of the strength of phenotypic plasticity, �2

xz
). This form of 

pleiotropy is sometimes called environmental pleiotropy (Paaby & 
Rockman, 2013; Saltz, 2019). If desired, these indirect effects can be 
controlled for and filtered out by fitting the focal environment as a 
fixed effect in the animal model (Figure 2, scenarios 7 and 8, model 
2). Doing so allows estimating the direct genetic variance used in our 
simulations. Note that for real populations, the estimated genetic 
variance for a trait after controlling for a focal environmental vari-
able would still be the sum of its additive direct genetic variance plus 
the indirect effects of other unmeasured environmental (and pheno-
typic) variables affecting the focal phenotypic trait. Therefore, the 
value and interpretation of the direct estimated additive direct ge-
netic variance is contingent on the model structure. All of the above 
applies symmetrically to instances where a focal phenotypic trait 
with a genetic basis affects the focal environment (scenarios 11 and 
12).

A similar issue has been addressed before, when focusing 
on the covariance between two different phenotypic traits (de 
Villemereuil et al., 2018), showing how the inclusion of a phe-
notypic trait as a covariate ‘explains away’ some of the additive 
genetic variance. Generalizing this to a focal environment as a 
second trait, empiricists should be aware that the environment is 
not always independent of the organism (i.e. can be an extended 
phenotype), and that including it in the model changes the inter-
pretation of what is estimated.

4.4  |  Consequences of fitting the wrong causal  
model

When including a focal environment with a genetic basis as a co-
variate in the animal model with the intention to disentangle direct 
and indirect genetic effects, the model structure assumes that the 
phenotype– environment covariance is due to a causal effect of the 
environment on the phenotypic trait (i.e. phenotypic plasticity). 
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However, this is problematic when in reality it is the focal pheno-
typic trait that influences the focal environment (i.e. there is en-
vironmental plasticity). In this case, the ‘classical’ structure of the 
animal model does not reflect the real causal structure of the biolog-
ical system. When fitting this model, a ‘false’ phenotypic plasticity is 
estimated (Figure 3) as a function of:

where �zx is the simulated environmental plasticity, �2
z
 is the variance 

of the phenotypic trait, �2
x
 the variance of the focal environment and 

�2
zx
�2
z
 is the indirect variance caused by environmental plasticity. The 

false estimate of the phenotypic plasticity is thus a function of the 
environmental plasticity �zx and the coefficient �, representing the 
ratio between the phenotypic variance and the total variance in the 
environment.

Consequently, assuming the wrong causal structure may also 
result in the additive genetic variance to be misestimated (see 
Supporting Information for more details). In this scenario, the esti-
mated additive genetic variance of the trait is a function of:

The second term of the right- hand side of this equation captures 
the bias caused by fitting the wrong causal structure. The estimated 
value is dependent on the additive direct genetic variance of both 
the phenotype and the environment, �2

az
 and �2

ax
, the magnitude of 

environmental plasticity, �zx, and the ratio between the phenotypic 
variance and the total variance in the environment, � (Figure 4, 
scenario 12). When there is no environmental plasticity (�zx = 0), 
the estimated additive genetic variance of the phenotype is equal 
to the additive genetic variance of the focal trait (i.e. E

[
V̂az

]
= �2

az
 ). 

However, if environmental plasticity is not 0, even if there is no ad-
ditive genetic variance for the phenotypic trait (�2

az
= 0), a ‘phantom’ 

additive genetic variance can be estimated when there is additive 
genetic variance for the focal environment (�2

ax
≠ 0; Figure 4, scenar-

ios 10 and 11). Furthermore, even in a scenario where there is no ad-
ditive genetic variance in the environment (�2

ax
= 0), if there is indeed 

some genetic variance in the phenotype (�2
az
≠ 0), the additive ge-

netic variance in the phenotype will be misestimated as a function of 
the phenotypic and environmental variance ratio, and the strength 
of environmental plasticity.

These results highlight the importance of correctly identifying 
the causal relationship between local environments and phenotypic 
traits before fitting an environmental covariate in an animal model. 
Researchers are sometimes tempted to add many environmental 
variables hypothesized to be affecting the phenotypic trait, because 
they are believed to cause an overestimation of the genetic vari-
ance when related individuals share the same environments (Wilson 
et al., 2010), or to estimate conditional heritabilities (de Villemereuil 
et al., 2018). However, this could lead to a wrong interpretation of 

the results if the animal model does not reflect the actual causal 
structure underpinning phenotypic expression. Previous studies in-
cluding environmental covariates have almost invariably not taken 
alternative biological scenarios into consideration. This could have 
resulted in wrong inferences about the genetic architecture and evo-
lutionary potential of phenotypic traits. Following up the example in 
the introduction, if boldness is affecting nest site selection (and not 
the other way around), then treating boldness as a response variable 
and nest distance to the closest road as a covariate would result in 
detecting a false influence of the nest distance on boldness (i.e. in-
ferring a false phenotypic plasticity), likely biasing the estimates of 
genetic variance for boldness. Importantly, these problems are not 
unique to phenotype– environment relationships, but to any wrongly 
inferred casual phenotype– phenotype relationship fitted in an ani-
mal model.

4.5  |  Role of bivariate animal models

Bivariate animal models allow estimating the total genetic vari-
ance of both the phenotypic trait and the focal environment. 
Moreover, they can estimate the genetic covariance Cov

[
az, ax

]

that can arise when the focal environment has a genetic basis 
and affects the phenotypic trait via phenotypic plasticity, or 
when the phenotypic trait has a genetic basis and affects the 
local environment via environmental plasticity (Figure 5). From 
the estimates of the variance– covariance matrix, it is possible to 
obtain an estimate of the strength of phenotypic and environ-
mental plasticity as:

However, it would be necessary to know which type of plasticity 
(genetic or environmental) is acting in the studied population. 
Furthermore, the sign of the genetic and residual covariance should 
be the same if there is only one process underpinning the relationships 
between trait and environment.

It is also possible to calculate the direct genetic variance of the 
phenotypic trait after controlling for the indirect effects of the en-
vironmental variable and vice versa, for instance, in our simulation:

(10)E
[
�̂xz

]
= �zx

�2
z

�2
x
+ �2

zx
�2
z

= �zx�.

(11)E
[
V̂az

]
≈ �2

az
+ �2

zx

[
�2
ax
�2 + �2

az

(
�2
zx
�2 − 2�

)]
.

(12)�̂xz =
Ĉov

[
az, ax

]
+ Ĉov

[
ez, ex

]

V̂ax
+ V̂ex

.

(13)�̂zx =
Ĉov

[
az, ax

]
+ Ĉov

[
ez, ex

]

V̂az
+ V̂ez

.

(14)�2
az
= E

[
V̂az

−
Ĉov

[
az, ax

]

V̂ax

]
= E

[
V̂az

− �̂
2

xz
V̂ax

]
.

(15)�2
ax
= E

[
V̂ax

−
Ĉov

[
az, ax

]

V̂az

]
= E

[
V̂ax

− �̂
2

zx
V̂az

]
.

 2041210x, 2023, 5, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14098 by N
tnu N

orw
egian U

niversity O
f Science &

 T
echnology, W

iley O
nline L

ibrary on [11/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  1255Methods in Ecology and EvoluonMUNAR-DELGADO et al.

However, these calculations will be correct only if we know 
whether environmental or phenotypic plasticity is causing the 
genetic covariance between the phenotypic trait and focal en-
vironment, and thus depend on knowing the correct causal 
structure.

Thus, bivariate animal models with the focal phenotypic trait 
and the focal environment as response variables could be applied 
as a first step to disentangle alternative biological scenarios. First, 
it could indicate to what extent the phenotypic trait and the focal 
environment have a genetic variance. Second, if a genetic covari-
ance is detected, there could be some type of plasticity influencing 
the total genetic variance of one of those traits. Biological insight 
or additional (experimental) datasets might then help to clarify the 
causal relationships, that is whether there is phenotypic plasticity, 
environmental plasticity or other types of non- random assortment 
of genotypes in their environment (see below).

4.6  |  Additional sources of genotype– 
environment covariance

Genotype– environment covariance may arise due to biological 
processes other than plasticity. One is divergent natural selection. 
When phenotypic traits (genotypes) are divergently selected across 
local environments, a gene– environment correlation is generated 
and a genetic covariance for the phenotypic and environmental 
traits is detected by the animal model. Relatives are more similar 
phenotypically and therefore more likely to occur (survive and re-
produce) in the same habitats. Thus, a genetic variance for the envi-
ronment could also be detected. Therefore, the animal model could 
detect non- existing phenotypic or environmental plasticity, whereas 
in reality the covariate does not influence the development of the 
focal trait, but its continued presence (via differential survival or 
reproduction).

Other scenarios where a genetic covariance could emerge are 
those where plastic habitat choice is present. That occurs when a 
preference for an environment is induced by an environmental 
cue during ontogeny, that is imprinting or learned habitat choice 
(Akcali & Porter, 2017; sometimes also called social learning, e.g. 
Lillie et al., 2018). For example, in some species, individuals choose 
environments similar to those they experienced during their natal 
stage (the period between birth and independence from the par-
ent). Therefore, they choose an environment similar to the one 
their parents chose (e.g. Nielsen et al., 2013). This causes parents 
and offspring to share local environments, which again could gen-
erate a gene– environment correlation. Something similar happens 
when there is a degree of philopatry, that is dispersal does not ran-
domize relatives across environments (Ducros et al., 2020; Gervais 
et al., 2022).

Finally, genetic covariance between the phenotypic trait and the 
environment will also emerge when there are loci that directly affect 
both traits (i.e. there is direct pleiotropy).

4.7  |  Other limitations

We acknowledge here that we only addressed simplified scenarios 
compared to those in real biological systems. First, the phenotypic 
trait and the focal environment are assumed to follow a Gaussian 
distribution and plasticity is linear. The effect of non- Gaussian traits 
and/or non- linear reaction norms on the estimation and potential 
misinterpretation of genetic parameters can be more complex and 
may need a specific treatment (see de Villemereuil et al., 2018; 
Morrissey, 2015). Second, for all models, we assumed that the ex-
pression of the phenotypic trait and the focal environment (extended 
phenotype) are independent of the frequency and density of other 
phenotypes, which are roughly constant across our simulations any-
way. Finally, we just presented bivariate scenarios where only two 
traits are involved. Increasing the number of traits and environments 
would greatly increase the number of potential causal structures. 
Moreover, these causal structures can even change across differ-
ent environments (e.g. Tonsor & Scheiner, 2007). Nevertheless, this 
paper provides some general conclusions that can be the starting 
point for further studies.

4.8  |  Advice to empiricists: Estimating total, direct, 
indirect or uninterpretable additive genetic variance

Researchers should decide what kind of additive genetic variance 
they want to estimate (total, direct and/or indirect) before perform-
ing any kind of analysis, to avoid misinterpretation of the heritability 
of the focal trait. First, the total additive genetic variance for the 
focal trait can be estimated by not including any covariate with a 
genetic basis in the model or by performing a bivariate animal model. 
Second, the direct additive genetic variance of a focal trait, that is 
what remains after removing the indirect effects of a covarying trait 
(an extended phenotype, or any other correlated phenotypic trait 
for that matter), can be estimated by fitting the covariate as a fixed 
effect in the animal model or by performing a bivariate animal model 
(Equations 14 and 15). In the same way, by subtracting the estimate 
of direct additive genetic variance from the estimated total additive 
genetic variance, the indirect genetic effects of the covariate can be 
estimated.

However, relevant caution is needed in two additional steps prior 
to analysis. First, when fitting a focal environment as a fixed effect in 
the animal model. Both total or direct (total minus indirect genetic ef-
fects) genetic variance could be estimated depending on whether the 
environment has a genetic basis or not (e.g. when applying model 2 for 
scenarios 4 and 7, respectively). Thus, it is necessary to know whether 
the focal environment is heritable. Not being aware of this could lead 
to part of the genetic variance being wrongly interpreted to reflect 
non- heritable environmental effects (Gervais et al., 2022). Second, 
when choosing which causal structure is fitted when making infer-
ences about the process underpinning the covariance between pheno-
types and environments (or two phenotypic traits). Fitting the wrong 
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structure results in a misinterpretation or even miscalculation of the 
genetic parameters and which type of plasticity is acting (e.g. when ap-
plying model 2 to scenarios 10– 12). Biological insight or additional mea-
sures and experiments might be needed. If a phenotype– environment 
correlation is detected in a study population, we should first rule out 
the possibility that the environmental variable may be (partially) genet-
ically inherited (or non- genetically inherited for that matter). If that is 
not possible, we should proceed to test experimentally the existence 
of phenotypic or environmental plasticity by manipulating the environ-
ment or the phenotypic trait (see Camacho et al., 2020 for an exam-
ple of testing for environmental plasticity). If we are uncertain about 
the correct causal structure, we should proceed with great caution 
when making inferences about the obtained estimates of genetic vari-
ance when fitting a heritable variable as fixed effect, and at the very 
least the assumptions and possible consequences underlying a chosen 
model structure should be discussed. If we ignore the potential mech-
anisms underpinning gene– environment correlations, we could arrive 
at misleading conclusions about the adaptive potential and expected 
evolutionary dynamics of the phenotypes of our study organisms and, 
therefore, on their ability to cope with environmental change.
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