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Multiple myeloma (MM) is a hematological cancer characterized by

accumulation of malignant plasma cells in the bone marrow. The patients are

immune suppressed and suffer from recurrent and chronic infections.

Interleukin-32 is a non-conventional, pro-inflammatory cytokine expressed in

a subgroup of MM patients with a poor prognosis. IL-32 has also been shown to

promote proliferation and survival of the cancer cells. Here we show that

activation of toll-like receptors (TLRs) promotes expression of IL-32 in MM

cells through NFkB activation. In patient-derived primary MM cells, IL-32

expression is positively associated with expression of TLRs. Furthermore, we

found that several TLR genes are upregulated from diagnosis to relapse in

individual patients, predominantly TLRs sensing bacterial components.

Interestingly, upregulation of these TLRs coincides with an increase in IL-32.

Taken together, these results support a role for IL-32 in microbial sensing in MM

cells and suggest that infections can induce expression of this pro-tumorigenic

cytokine in MM patients.
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Introduction

Multiple myeloma (MM) is a hematological cancer characterized by accumulation of

malignant plasma cells in the bone marrow. Clinical manifestations include high levels of

monoclonal antibodies in serum and urine, anemia, multiple organ failure, immune

suppression and bone disease (1). IL-32 is a pleiotropic cytokine with classical pro-

inflammatory functions as well as more unconventional roles in cancer, autoimmune

diseases, and infections (2–4). It is shown to be an important growth factor and metabolic

regulator of MM cells (5). Furthermore, IL-32 is secreted by MM cells in exosomes and

alters the tumor microenvironment by promoting osteoclastogenesis and bone degradation
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(6) as well as immune suppression (7, 8). High expression of IL-32

at diagnosis is observed in 10-15% of patients and these individuals

have inferior survival compared to non-expressors (5, 6). Moreover,

IL-32 expression is upregulated upon relapse in a fraction of

patients (5).

IL-32 plays an important role in the host defense against a range

of infectious agents (4) and IL-32 expression can be induced by toll-

like receptor (TLR) activation in monocytes/macrophages, dendritic

cells, and epithelial cells (9–13). TLRs recognize pathogen associated

molecular patterns (PAMPs) and may also recognize and respond to

danger associated molecular patterns (DAMPs) released during cell

damage and cell death (14, 15). MM patients suffer from chronic and

recurrent fungi-, bacteria- and virus- infections (16–18). In addition,

due to cancer-induced inflammation and cancer treatment there is

extensive cell death in the MM bone marrow microenvironment,

which may lead to the release of DAMPS. Thus, MM cells in the bone

marrow are likely to be exposed to TLR agonists derived from either

microbes or cellular stress.

We have previously shown that IL-32 is induced in response to

hypoxia (6). Whether IL-32 expression is induced in response to

TLR signaling in MM cells is not known. Thus, to determine if

infections or cell death may induce cancer cell expression of IL-32

we here examined if IL-32 is induced by TLR agonists in MM cell

lines and if expression of IL-32 correlates with TLR expression in

primary MM cells.
Methods

Cells and culture conditions

MM cell lines ANBL-6, INA-6 and JJN-3 were kind gifts from

Dr. Diane Jelinek (Mayo Clinic, Rochester, MN), Dr. Martin

Gramatzki (University of Erlangen-Nuremberg, Erlangen,

Germany), and Dr. Jennifer Ball (University of Birmingham, UK),

respectively. RPMI-8226 and U266 were obtained from American

Type Culture Collection (ATCC, Rockville, MD, USA), while IH-1

and OH-2 were established in our laboratory (19, 20). RPMI-8226,

U266 and JJN-3 were cultured in RPMI-1640 (RPMI) medium with

20, 15 and 10% heat inactivated fetal calf serum (FCS), respectively.

ANBL-6 and INA-6 cells were cultured in RPMI with 10% FCS and

the addition of 1 ng/ml recombinant human (rh) interleukin (IL)-6.

OH-2 and IH-1 were cultured in RPMI containing 10% heat

inactivated human serum (HS), and KJON-1 with 5% HS, both

supplemented with 1 ng/mL rhIL-6. Cell lines were cultured at 37°C

in a humidified atmosphere containing 5% CO2. RPMI-8226 TLR9

and TLR4 KO cells were generated using CRISPR/Cas9 technology

followed by single cell cloning and maintained in the same culture

conditions as the original RPMI cells. For LPS stimulation

experiments with peripheral blood mononuclear cells (PBMCs)

from healthy donors, PBMCs were isolated from fresh buffycoats

by Histopaque -1077 gradient and kept in 10% RPMI medium

overnight before stimulation-experiments. Freshly isolated primary

myeloma cells were obtained from the local hospital biobank

(Biobank1). CD138+ cells were isolated by RoboSep automated

cell separator using Human CD138 Positive Selection Kit (StemCell
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Technologies, Grenoble, France) and later the same day, CD138+

cells were seeded in RPMI-1640 with 2% HS and 1 ng/mL rhIL-6

and stimulated with TLR ligands for 4 hours. When few primary

myeloma cells were donated, the cells were stimulated with a

cocktail containing all the ligands. Concentrations of ligands are

described below. All patient samples were donated after informed

consent, and the study was approved by the regional ethics

committee (REK# 2011/2029 and REK# 247909). The study was

performed in accordance with the Helsinki declaration.
TLR9 and TLR4 CRISPR/Cas9 KO cell lines

RPMI-8226 cells were electroporated with TLR9 (#sc-400600)

and TLR4 (sc-400068-KO-2) CRISPR/Cas9 KO and control (#sc-

418922) plasmids from Santa Cruz Biotechnology, all containing

green fluorescent protein (GFP) for selection. Cells were transfected

using the Nucleofector™ II Device (Lonza) with buffer V (Amaxa

Nucleofector Kit V, Lonza) and program G-015. Cells were then

sorted for GFP positivity on a FACSAria Fusion flow cytometer (BD

Biosciences) and single cell cloned. Clones were screened for TLR

expression by immunoblotting (TLR9 KO andWT) or qPCR (TLR4

KO and WT).
Ligands, inhibitors, and antibodies

For stimulation of cell lines and primary cells the following

ligands were used: TLR2/1: Pam3Cys (EMC microcollections,

Tübingen/Germany), TLR2/6: FSL-1 (EMC microcollections),

TLR3: Poly (I:C) HMW (Invivogen, San Diego, CA, USA), TLR4:

Ultrapure LPS (E.coli 0111:B4, Invivogen) TLR5: Flagellin

(Invivogen), TLR7 and 8: R-848 (Invivogen), TLR9: CpG 2006

(TIBMolBiol, Berlin Germany). Based on titrations of ligands

(Supplemental Figures 2A, B, C) the following concentrations were

used: Pam3Cys: 1 µg/mL, FSL-1: 1 µg/mL, Poly(I:C): 10 µg/mL, LPS:

0.1 µg/mL, Flagellin: 1 µg/mL, R-848: 1 µg/mL, CpG: 1 µM.

For western blotting the following antibodies were used: anti-

IL-32 (#AF3040, R&D Systems Minneapolis, MN, USA), anti b-
actin (#4967), anti-TLR9 (#13674), anti- p-IkB(#2859), anti-IkB
(#4812) all from Cell Signaling Technology (Danvers, MA, USA).

For inhibition of the NFkB pathway the IKK inhibitor VII (CAS

873225-46-8, Calbiochem, San Diego, CA, USA) and the TAK1

inhibitor NG25 (MedChemExpress, Monmouth Junction, NJ, USA)

were used. The concentration used for NG25 was 2 mM and was

based on previous titrations in MM cell lines (unpublished data,

Starheim et al.). For IKK VII we used 10 mM, based on titrations as

shown in (Supplemental Figure 2F). We pre-incubated the cells

with inhibitors for 30 minutes before adding LPS for further 4 hours

(time-point titration as shown in Supplemental Figure 2G).
Sequencing of primary MM cells

Own dataset: CD138+ MM cells were obtained from Norwegian

Myeloma Biobank (Biobank1, St. Olavs University Hospital HR,
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Trondheim, Norway) and isolated as previously described (6). Next,

RNA was isolated from purified MM cells using miRVana total RNA

isolation (ThermoFisher, #AM1560). RNA-seq was performed using

the TruSeq Stranded mRNA Library Prep Kit (Illumina # RS-122-

2101) according to the manufacturer’s protocol using 400 ng input

RNA. Illumina (#20020595, San Diego, CA, USA) followed by 75 bp

single read sequencing on the Illumina Hiseq 4000 next machine. The

depth of sequencing was 18 million reads per sample. The study was

approved by the regional ethics committee (REK # 247909).
RNA sequencing data analyses

RNA sequencing data (MMRF_CoMMpass_IA13a_E74

GTF_Salmon_Gene_Counts) and clinical data were downloaded

from the Multiple Myeloma Research Foundation CoMMpass

IA13 release (https://research.themmrf.org/). RNA sequencing

data from CD138+ cells were available for 795 baseline samples

from patients with MM. For TLR gene expression analysis, patient

samples taken at diagnosis were divided into high and low IL-32

expression based on the same percentiles (upper 10th and lower

90th) as used in our previous study on IL-32 in myeloma (5). We

used the upper 10th percentile (n = 54; counts per million (cpm,

log2)> 1.52) and lower 90th percentile (n = 741, (cpm,log2)≤ 1.52)

and significance was analyzed by one-tailed Wilcoxon signed-rank

test in R. Pearson correlation analysis was performed using

stat_cor function in R.

RNA-sequenced CD138+ cells from longitudinal samples were

available for 47 samples in IA13. We analyzed IL-32 expression at

diagnosis and first relapse timepoint and divided these into two

equally large groups based on fold change (FC) upregulation of IL-

32 from diagnosis to relapse. Patients with log2 FC≥2.25 (n=23) and

log2 FC<2.25 (n=24) were separated into two groups. Fold change

differences in TLR expression between diagnosis (baseline) and

relapse were calculated for these two groups.

For own RNA sequencing data (the Biobank1 dataset), high IL-

32 expressing patients were defined as those with IL-32 expression

(cpm,log2) >1.57, and low/non-expressing patients were defined as

those with IL-32 expression (cpm,log2) ≤ 1.57), which represents

the upper 30% percentile (n=26) and lower 70% percentile (n=61),

respectively, This is approximately the same cpm cutoff as used

when analyzing the CoMMpass IA13 dataset. Differences in TLR

gene expression were assessed using one-tailed Wilcoxon signed-

rank test in R.

All analyses were run using R version 3.6.2 (2019-12-12). Used

packages with version number includes: packageVersion(“biomaRt”)

‘2.41.4’; packageVersion(“edgeR”) ‘3.26.8’; packageVersion

(“ggplot2”) ‘3.2.1’. packageVersion(“ggpubr”) ‘0.4.0’.
Real-time quantitative PCR

Total RNA was isolated using RNeasy kit (Qiagen, Hilden,

Germany). Complementary DNA (cDNA) was synthesized from
Frontiers in Immunology 03
total RNA using High-Capacity RNA‐to‐cDNA kit (Applied

Biosystems, Carlsbad, CA, USA). PCR was performed using

StepOne Real‐Time PCR System and Taqman Gene Expression

Assays (Applied Biosystems) using standard settings (2′ 50°C, 10 ′
95°C, 40 cycles at 95°C for 15 sec, 1′ 60°C). Relative gene expression
was analyzed by the comparative Ct method, and genes with Ct

values >32 were regarded as detected. Probes were as follows:

human IL-32 (Hs00992441_m1), TLR1 (Hs00413978_m1), TLR2

(Hs01872448_s1), TLR3 (Hs01551078_m1), TLR4 (Hs00

152939_m1), TLR5 (Hs01019558_m1), TLR6 (Hs01039989_s1),

TLR7 (Hs00152971_m1), TLR8 (Hs00152972_m1), TLR9

(Hs00152973_m1) and housekeeping gene TATA-binding protein

(TBP; Hs00427620_m1) or b-actin (Hs0160665_g1).
Immunoblotting

Cells were lysed in lysis buffer (50 mM Tris–HCl, 1% NP40,

150 mM NaCl, 10% glycerol, 1 mM Na3VO4, 50 mM NaF and

Complete protease inhibitor (Roche Diagnostics, Mannheim,

Germany). Lysates were denatured in 1× NuPage LDS sample

buffer supplemented with 0.1 mM DTT for 10 min at 70°C before

they were separated on 4-12% Bis‐Tris polyacrylamide gel.

Proteins were transferred to a nitrocellulose membrane using

the iBlot Dry Blotting System (Invitrogen, Camarillo, CA, USA).

Membranes were blocked using 5% bovine serum albumin

(Sigma–Aldrich, St. Louis, MO) in Tris‐buffered saline with

0.01% Tween followed by overnight incubation with the primary

antibodies previously described. Detection was performed using

horseradish peroxidase (HRP) conjugated antibodies (DAKO,

Glostrup, Denmark) and developed with Super Signal West

Femto Maximum Sensitivity Substrate (Thermo Scientific,

Rockford, IL, USA). Images were obtained with LI‐COR

Odyssey Fc and analyzed using Image Studio Software (LI‐COR,

Lincoln, NE, USA).
Statistical analyses

Results from in vitro experiments were graphed and analyzed

using GraphPad by Prism version 8 software (La Jolla, CA, USA).

Patient datasets were analyzed in R, with statistical packages.

Experimental replicate numbers and statistical tests are

indicated in the figure legends. Briefly, mean value and

standard error of the mean (SEM) were calculated for

replicates from independent experiments. For replicates within

one experiment mean and SD is shown. For comparison of two

groups unpaired Student´s t-test was used. For comparison of

two groups with measurements over time, multiple t-tests were

performed. For comparison of different treatments within one

group one-way ANOVA and Dunnett´s multiple comparison

was used. For comparison of more than two groups with

measurements over time, two-way ANOVA and Dunnett´s

multiple comparisons test was used.
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Results

TLR-induced NFkB signaling promotes IL-
32 expression in MM cells

We previously showed that IL-32 is expressed in a subset of MM

patients and MM cell lines (6). TLRs are also expressed by primary

MM cells (21, 22). Both IL-32- and TLR expression varies between

cell lines (Supplemental Figures 1A, B). RPMI-8226 cells have a

broad repertoire of TLRs and do not express IL-32 in basal culture

conditions (Supplemental Figure 1), and we therefore used these

cells for TLR-stimulation. Optimal ligand concentrations used in

the experiments were determined by titration (Supplemental

Figures 2A–C). IL-32 mRNA was upregulated in RPMI-8226 in

response to Pam3cys (TLR2/1), FSL-1 (TLR2/6), LPS (TLR4), R-

848 (TLR7 and TLR8) and CpG (TLR9) (Figure 1A). Moreover, IL-

32 protein expression was increased in response to LPS and CpG

after 4 hours, and after 24 hours, increased IL-32 protein was

evident also in response to Pam3cys, FSL-1 and R-848 (Figure 1B).

Thus, increased IL-32 mRNA corresponded to increased IL-32

protein. IL-32 was transcribed after 2 hours of stimulation with

LPS (Figure 1C), while IL-32 protein was evident after 3 hours,

indicating that LPS-induced IL-32 is regulated through gene

transcription (Figure 1D).

To investigate if IL-32 expression was induced by LPS and

CpG through their cognate receptors, we evaluated the expression

of IL-32 in RPMI-8226 cells depleted of TLR4 or TLR9

(validation of knock out in Supplemental Figures 2D, E). As

expected, LPS did not promote IL-32 expression in TLR4 KO cells

(Figure 1E), while the TLR9 ligand CpG did not induce IL-32 in

TLR9 KO cells (Figure 1F), supporting that the induction of IL-32

in response to PAMPs is mediated by cognate TLR receptor-

ligand interactions.

NFkB is a central downstream transcription factor of TLR-

signaling. To investigate if transcription of IL-32 was regulated by

NFkB we treated RPMI-8226 cells with two inhibitors of NFkB
signaling: the IKK inhibitor VII and the TAK1/MAP4K2 inhibitor

NG25. LPS-induced IL-32 was significantly reduced with NG25 and

almost completely abolished by the IKK inhibitor VII, both at the

mRNA level (Figure 1G; Supplemental Figures 2F, G)) and at the

protein level (Figure 1H) indicating that NFkB is the main regulator

of the LPS-induced transcription of IL-32. Expression of IL-32

following CpG stimulation was also inhibited by the IKK inhibitor,

supporting that NFkB is essential for inducing IL-32 also in

response to other TLR agonists (Supplemental Figure 2H). The

NFkB inhibition was validated by western blotting of p-IkB where

the LPS- induced increase of p-IkB was reduced upon treatment

with IKK-VII (Supplemental Figure 2I). Induction of IL-32 by LPS,

and inhibition of IL-32 expression by the NFkB inhibitor VII was

also observed in PBMCs from healthy donors, supporting that the

response may be conserved in different immune cells (Supplemental

Figures 2J, K). Taken together, these results show that ligand

binding and signal transduction through TLRs followed by

activation of NFkB is important for the induction of IL-32 in

MM cells in response to TLR agonists.
Frontiers in Immunology 04
IL-32 is associated with TLR expression in
primary MM cells

As we found IL-32 to be upregulated by TLR activation in vitro,

we next investigated if IL-32 is induced in primary myeloma cells in

response to TLR agonists (Figure 2A). Freshly obtained CD138+

primary cells from five patients were stimulated with ligands

activating TLR 1-9. IL-32 was increased more than two-fold in

response to TLR1/2 agonist Pam3Cys and TLR4 agonist LPS in

patient #1. In patients #2 and #3 Il-32 expression was increased

about 50% in response to flagellin and FSL-1, respectively

(Figure 2A). For patients #4 and #5, fewer cells were donated, and

we therefore used a cocktail containing all agonists for stimulation.

IL-32 expression increased nearly three-fold in patient #4 following

TLR agonist cocktail stimulation, while the response to TLR

stimulation was less prominent in patient #5 (about 30% percent

increase in IL-32 mRNA expression).

To further assess the relationship between IL-32 and TLRs in

myeloma patients we compared TLR gene expression in MM

primary cells with high- (n=80) or no/low expression of IL-32

(n=712) (IA13 CoMMpass dataset, cutoff: log2cpm>1.52, upper

10th percentile vs. lower 90th percentile). We found that TLR2,

TLR4, TLR5, TLR7 and TLR8 were significantly upregulated in IL-

32-expressing plasma cells (Figure 2B). Upregulation of these TLRs

in IL-32-expressing MM cells was confirmed in our own

independent patient cohort (23) (Figure 2C). Of all TLR genes in

the CoMMpass dataset, TLR2 (R=0.44, p= 2.2e-16) and TLR8

(R=0.47, p=2.2e-16) were the TLRs most highly correlated to IL-

32 (Figure 2D). Thus, IL-32 expression is positively associated with

TLR expression in patient samples.

We previously showed that IL-32 is upregulated upon relapse and

that some IL-32-non-expressors start to express IL-32 in the time

period between diagnosis and relapse (5). To investigate if TLR

expression in a similar manner is increased in samples obtained at

relapse compared with samples obtained at diagnosis we analyzed the

same longitudinal RNA-sequenced samples (n=47). Indeed, TLR2,

TLR4, TLR5, TLR7 and TLR8 mRNA expression were significantly

upregulated at treatment relapse compared with expression at time of

diagnosis (Figure 2E). Interestingly, these were the same TLRs that

were most significantly associated with IL-32 in the diagnostic

samples in the CoMMpass dataset (Figure 2B) as well as in our

own dataset (Figure 2C). To investigate if the increased expression of

TLRs in samples obtained at relapse coincided with the increase of IL-

32, we divided the patient samples into two groups based on the fold

change upregulation of IL-32 from diagnosis to relapse (logFC ≥ 2.25,

n= 23 and log2FC<2.25, n=24, Supplemental Table 1) and compared

changes in TLR expression between the two groups. Strikingly,

patients with an IL-32 FC2.25 from diagnosis to relapse had

significantly increased TLR 2-,4-,5- and 8- expression at relapse

compared with expression at diagnosis. (Figure 2F). In contrast, in

the group of patients with no/small increase in IL-32 in the relapse

samples, there was no significant increase in TLR expression at

relapse (Figure 2E). These data support that a subgroup of patients

experience high IL-32 and high TLR expression upon

disease progression.
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Finally, as we found that NFkB transduced the TLR-dependent

transcription of IL-32 we asked whether the fraction of patients with

hyperactivated NFkB is also the IL-32 expressors. NFkB is constitutively

active in 20% of MM patients and 40% of MM cell lines (24–26). We

analyzed the IL-32 expression in patients from the CoMMpass IA11

dataset with and without a mutation in the NFkB pathway (27). There

was however no association between IL-32 expression and mutated

NFkB (Supplemental Figure 2L), indicating that hyperactivated NFkB is

not the leading cause of constitutive IL-32 expression in MM patients.
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Discussion

Here we demonstrate that that IL-32 is induced in MM cells in

response to PAMPs through NF-kB activation downstream of

TLRs. We further found that IL-32 expression is associated with

TLR expression in MM patients in two large, independent patient

cohorts. We also show that TLR expression in malignant plasma

cells increased from diagnosis to relapse in individual patients and

coincided with an increase in IL-32.
D

A

B

E

F
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H

C

FIGURE 1

TLR-induced NFkB signaling promotes IL-32 expression in MM cells. (A) RPMI-8226 cells were stimulated with TLR agonists (for concentrations, see
methods) for 4 and 24 hours and IL-32 mRNA expression was assessed by qPCR. The figure shows mean ± SEM of 3 independent experiments.
(B) RPMI-8226 cells were stimulated with TLR agonists for 4 and 24 hours and IL-32 protein expression was evaluated by western blot. The figure
shows representative western blot of 3 independent experiments. (C) RPMI-8226 cells were harvested at different time-points following LPS
stimulation (0.1 µg/mL) and IL-32 mRNA expression was analyzed by qPCR (mean ± SD) and (D) IL-32 protein expression by western blot (E) RPMI-
8226 TLR4 WT (mock) and KO cell lines were stimulated with LPS and CpG for 24 hours. Figure shows representative western blot (n=3) of IL-32
protein and qPCR analysis of IL-32 mRNA (mean ± SD, n=1) (F) RPMI-8226 TLR9 WT (mock) and KO cell lines were stimulated with LPS and CpG for
24 hours. The figure shows representative western blot (n=2) of IL-32 protein and qPCR analysis of IL-32 mRNA (mean ± SD, n=1) (G) RPMI-8226
cells were stimulated with LPS (0.1 µg/mL) and NG25 (2 µM) or IKK VII (10 µM) for 4 hours. IL-32 mRNA expression (mean ± SEM, n=3) was assessed
by qPCR. (H) RPMI-8226 cells were stimulated with LPS, NG25 and IKK VII (concentrations as above) for 4 hours. The figure shows representative
western blot (n=3) of IL-32 protein expression. P-values in (A) and (G) are calculated by one-way ANOVA with Dunnett´s multiple comparison test.
*p≤ 0.05, **p ≤ 0.001, ****p ≤ 0.0001.
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IL-32 is expressed in 10-20% of patients at diagnosis, and a

larger fraction of patients start to express IL-32 following treatment

(5). Importantly, the expression is not linked to specific genetic

subgroups (6), which supports that IL-32 expression is induced by

extracellular cues. Indeed, IL-32 is upregulated in MM cells by

hypoxia (6), which is a characteristic of the MM bone marrow (6,

28–30). Our in vitro and in vivo data presented here support that IL-
Frontiers in Immunology 06
32 expression in MM cells can also be induced by TLR-activation.

TLRs are heterogeneously expressed by primary MM cells (21, 22,

31) and exposure of various TLR-ligands is likely to have different

effects depending on the cells’ TLR repertoire (32). Indeed, this is

evident in our experiments with primary cells, where cells from all

patients increased IL-32 mRNA in response to TLR-stimulation,

but which ligands that activated the cells and to which extent IL-32
D

A

B

E

F

C

FIGURE 2

IL-32 is associated with TLR expression in primary MM cells. (A) Freshly obtained primary CD138+ myeloma cells were stimulated with TLR agonists
for 4 hours and IL-32 expression was evaluated by qPCR. The figure shows mean RQ ± SD of technical replicates. The Ct-values for IL-32 in
untreated cells were for patient #1: 33.13, patient #2: 34.05, patient #3: 31.32, patient # 4: 31.92 and patient #5: 32.43. (B) TLR gene expression in
IL-32 expressing patients (upper10th percentile) compared to non-expressing patients (lower 90th percentile) in CoMMpass IA13. (C) TLR gene
expression in IL-32 expressing patients (upper 30th percentile) compared to non-expressing patients (lower 70th percentile) in our own (Biobank1)
dataset. (D) Plot showing Pearson correlation between IL-32 and TLR2 and TLR8 in the CoMMpass IA13 dataset. (E) TLR expression at diagnosis and
first relapse timepoint in RNA-sequenced longitudinal CD138+ patient samples from CoMMpass IA13. Figure shows the mean ± SEM for TLR
expression at diagnosis and relapse. (F) TLR expression between diagnosis (baseline) and relapse for patients with an FC ≥ 2.25 increase of IL-32 in
relapse (n=24) and patients with FC<2.25 increase of IL-32 in relapse (n=23). The figure shows the mean ± SEM for TLR expression at diagnosis and
relapse in each group. In A, B and D, significance was analyzed by one-tailed Wilcoxon signed-rank test. In E significance was calculated by two-
tailed Wilcoxon signed-rank test.
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was increased varied greatly. In patient sequencing data the

strongest correlations were between IL-32 and TLR2 and TLR8.

In the bone marrow, TLR agonists may be derived from

pathogens or from damaged or dead cells. TLR expression has

been shown to increase upon infection (33–35). Thus, although this

correlation is not absolute (36), high expression of TLRs in primary

MM cells may be indicative of an inflammatory bone marrow

microenvironment or of an ongoing infection. MM patients are

susceptible to infections (16) and the anti-MM treatments increase

the frequency of infection further (37). The level of DAMPs rises

following anti-MM treatment due to tumor cell death. It is therefore

likely that DAMPs may also be a driver of IL-32 expression in the

MM bone marrow microenvironment, but this remains to be

further investigated.

Intracellular IL-32 promotes proliferation and survival of MM

cells (5, 38) and depletion of IL-32 from myeloma cell lines reduced

tumor engraftment and/or tumor growth in three different

xenograft mouse models(5). At the molecular level, IL-32

interacts with components of the mitochondrial respiratory chain

and promotes oxidative phosphorylation in malignant plasma cells

(5). IL-32 is also expressed in plasma cells obtained from healthy

individuals (5). However, whether IL-32 is induced to a similar

extent upon TLR activation in non-malignant plasma cells and the

role of IL-32 for normal plasma cell function needs to be elucidated.

In the cancer setting, MM cell-derived IL-32 may also have

indirect effects on tumor progression. IL-32 can accelerate disease

progression by promoting osteoclast differentiation and bone

destruction (6.) In an early study, IL-32 was shown to promote

the differentiation of monocytes into macrophages while the

generation of functional dendritic cells was inhibited (39), which

may suggest that IL-32 can have negative effects on immune

responses. Indeed, more recently, myeloma-derived IL-32 was

shown to promote the formation of immunosuppressive, M2-like

macrophages (8, 40, 41).

In conclusion, activation of TLRs in an inflamed or infectious

bone marrow microenvironment may lead to IL-32 expression, and

this may contribute to accelerate the disease. We therefore propose

that the subgroup of IL-32-expressing patients may benefit from

combination treatments where drugs targeting hypoxia, antibiotics,

antiviral- or anti-inflammatory drugs are included.
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