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A fundamental variable characterizing immiscible two-phase flow in porousmedia
is the wetting saturation, which is the ratio between the pore volume filled with
wetting fluid and the total pore volume. More generally, this variable comes from a
specific choice of coordinates on some underlying space, the domain of variables
that can be used to express the volumetric flow rate. The underlyingmathematical
structure allows for the introduction of other variables containing the same
information, but which are more convenient from a theoretical point of view.
We introduce along these lines polar coordinates on this underlying space, where
the angle plays a role similar to thewetting saturation.We derive relations between
these new variables based on the Euler homogeneity theorem. We formulate
these relations in a coordinate-free fashion using differential forms. Finally, we
discuss and interpret the co-moving velocity in terms of this coordinate-free
representation.
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1 Introduction

Flow of immiscible fluids in porous media [1–4] is a problem that has been in the hands
of engineers for a long time. This has resulted in a schism between the physics at the pore
scale and the description of flow at scales where the porous medium may be seen as a
continuum, also known as the Darcy scale. This fact has led to the phenomenological relative
permeability equations proposed by Wyckoff and Botset in 1936 [5] with the inclusion by
Leverett of the concept of capillary pressure in 1940 [6], still being the unchallenged
approach to calculate flow in porous media at large scales. The basic ideas of the theory are
easy to grasp. Seen from the viewpoint of one of the immiscible fluids, the solid matrix and
the other fluid together reduce the pore space in which that fluid can move. Hence, the
effective permeability as seen by the fluid is reduced, and the permeability reduction factor of
each fluid is their relative permeability. The capillary pressure models the interfacial tension
at the interfaces between the immiscible fluids by assuming that there is a pressure difference
between the pressure fields in each fluid. The central variables of the theory, relative
permeability, and capillary pressure curves are determined routinely in the laboratory under
the name special core analysis and then used as input in reservoir simulators [3, 7]. A key
assumption in the theory is that the relative permeability and the capillary pressure are
functions of the saturation alone. This simplifies the theory tremendously, but it also
distances the theory from realism.

Some progress has been made in order to improve on relative permeability theory.
Barenblatt et al. [8] recognized that a key assumption in relative permeability theory is that
locally, the fluids are in phase equilibrium, even if the flow as a whole is developing. This has
as an implication that the central variables of that theory, relative permeability, and the
capillary pressure are functions of the saturation alone. They then go on to generalize the
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theory to flow which is locally out of equilibrium, exploring how the
central variables change. Wang et al. [9] went further by introducing
dynamic length scales due to the mixing zone variations, over which
the spatial averaging is performed.

The relative permeability approach is phenomenological and
going beyond relative permeability theory means making a
connection between the physics at the pore scale with the Darcy
scale description of the flow. The attempts at constructing a
connection between these two scales—which may stretch from
micrometers to kilometers—have mainly been focused on
homogenization, replacing the original porous medium by an
equivalent spatially structureless one.

The most famous approach to the scale-up problem along
these lines is thermodynamically constrained averaging theory
(TCAT) [10–14], based on thermodynamically consistent
definitions made at the continuum scale based on volume
averages of pore-scale thermodynamic quantities, combined
with closure relations based on homogenization [15]. All
variables in TCAT are defined in terms of pore-scale variables.
However, these result in many variables and complicated
assumptions are needed to derive useful results.

Another homogenization-approach based on non-equilibrium
thermodynamics uses Euler homogeneity to define the up-scaled
pressure. From this, Kjelstrup et al. derived constitutive equations
for the flow while keeping the number of variables down [16–18].

There is also an ongoing effort in constructing a scaled-up
theory based on geometrical properties of pore space by using
the Hadwiger theorem [19–21]. The theorem implies that we can
express the properties of the spatial geometry of the three-
dimensional porous medium as a linear combination of four
Minkowski functionals: volume, surface area, mean curvature,
and Gaussian curvature. These are the only four numbers
required to characterize the geometric state of the porous
medium. The connectivity of the fluids is described by the Euler
characteristic, which by the Gauss–Bonnet theorem can be
computed from the total curvature.

A different class of theories is based on detailed and specific
assumptions concerning the physics involved. An example is local
porosity theory [22–27]. Another example is the decomposition in
prototype flow (DeProf) theory which is a fluid mechanical model
combined with non-equilibrium statistical mechanics based on a
classification scheme of fluid configurations at the pore level
[28–30]. A third example is that of Xu and Louge [31] who
introduced a simple model based on Ising-like statistical
mechanics to mimic the motion of the immiscible fluids at the
pore scale, and then scale up by calculating the mean field behavior
of the model. In this way, they obtain the wetting fluid retention
curve.

The approach we take in this paper is built on the approach to
the upscaling problem found in [32–36]. The underlying idea is to
map the flow of immiscible fluids in porous media, a dissipative and
therefore out-of-equilibrium system, onto a system which is in
equilibrium. The Jaynes principle of maximum entropy [37] may
then be invoked and the scale-up problem is transformed into that of
calculating a partition function [35].

In order to sketch this approach, we need to establish the
concept of steady-state flow. In the field of porous media,
“steady-state flow” has two meanings. The traditional one is to

define it as flow where all fluid interfaces remain static [38]. The
other one, which we adopt here, is to state that it is flow where the
macroscopic variables remain fixed or fluctuate around well-defined
averages. The fluid interfaces will move and on larger scales than the
pore scale where one will see fluid clusters breaking up and merging.
If the porous medium is statistically homogeneous, we will see the
same local statistics describing the fluids everywhere in the porous
medium [36].

Imagine a porous plug as shown in Figure 1. There is a mixture
of two immiscible fluids flowing through it in the direction of the
cylinder axis under steady-state conditions.

A central concept in the following is the representative
elementary area (REA) [34, 35, 39]. We pick a point in the
porous plug. In a neighborhood of this point, there will a set of
streamlines associated with the velocity field �v. The overall flow
direction is then defined by the tangent vectors to the streamlines.
We place an imaginary disk of area A at the point, with orientation
such that A is orthogonal to the overall flow direction. We illustrate
this as the lower disk in Figure 1. We assume that the disk is small
enough for the porous medium to be homogeneous over the size of
the plane with respect to porosity and permeability. This disk is
an REA.

The REA will contain different fluid configurations. By “fluid
configuration”, we mean the spatial distributions of the two fluids in
the disk and their scalar velocity fields. We also show a second disk
in Figure 1, which represents another REA placed further along the
average flow. Since the flow is incompressible, we can imagine the z-
axis corresponding to a pseudo-time axis.Wemay state that the fluid
configuration in the lower disk of Figure 1 evolves into the fluid
configuration in the upper disk under pseudo-time-translation. We
now associate entropy to the fluid configurations in the sense of
Shannon [40]. Even though the system is producing molecular

FIGURE 1
A porous plug in the form of a cylinder. There is a mixture of two
immiscible fluids flowing through it in the direction of the cylinder axis
under steady-state conditions. Two disks orthogonal to the cylinder
axis are further imagined. These are REAs.
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entropy through dissipation, it is not producing Shannon entropy
along the z-axis. This allows us to use the Jaynes maximum entropy
principle, and a statistical mechanics based on Shannon entropy
ensues [35].

This statistical mechanics scales up the pore-scale physics,
represented by the fluid configurations to the Darcy scale, which
then is represented by a thermodynamics-like formalism involving
averaged velocities.

Rudiments of this thermodynamics-like formalism was first
studied by Hansen et al. [32], who used extensivity to derive a
set of equations that relate the seepage velocity of each of the two
immiscible fluids flowing under steady state conditions through a
representative volume element (REV). They introduced a co-
moving velocity together with the average seepage velocity v that
contained the necessary information to determine the seepage
velocities of the more wetting and the less wetting fluids, vw and
vn respectively. Stated in a different way, these equations made it
possible to make the transformation

v, vm( )$ vw, vn( ). (1)
It is the aim of this paper to present a geometrical interpretation

of the transformation in Eq. 1. We wish to provide an intuitive
understanding of precisely what the transformation means and to
determine the role of the co-moving velocity. Our aim is not to
develop the theory presented in [32] further by including new
results, but rather consolidate and amend the existing theory
with a deeper understanding.

Our geometrical interpretation will rest upon the definition of
a space spanned by two central variables: the wetting and non-
wetting transversal pore areas. These areas are defined as the area
of REAs covered by the wetting and non-wetting fluids,
respectively.

Instead of using the two extensive areas directly, one often
works with coordinates where one is the (wetting) saturation. If
the pore area of the REA is fixed, it is often convenient to let the
other variable be this area. A third way—which is new—is to use
polar coordinates. This, as we shall see, simplify the theory
considerably.

In Section 2, we describe the REA and the relevant variables. We
define intensive and extensive variables, tying them to how they scale
under scaling of the size of the REV. We also review the central
results of Hansen et al. [32] here: the introduction of the auxiliary
thermodynamic velocities and the co-moving velocity.

The central concept in our approach to the immiscible two-fluid
flow problem is that of the pore areas. In Section 3 we introduce area
space, a space that simplifies the analysis considerably. We showcase
different coordinate systems on this space, focusing on polar
coordinates.

Section 4 expresses the central results of Hansen et al. [32] in
polar coordinates. Expressed in this coordinate system, the
geometrical structure implied by the extensivity versus intensivity
conditions imposes restrictions that simplify the equations. The
section goes on to express the total pore velocity, seepage velocities,
thermodynamic velocities, and co-moving velocity in terms of polar
coordinates. This provides a clear geometrical interpretation of the
co-moving velocity.

Section 5 focuses on relations between the different velocities
that can be expressed without referring to any coordinate system.
We do this by invoking differential forms and exterior algebra [41,
42]. Differential forms constitute the generalization of the
infinitesimal line, area, or volume elements used in integrals and
exterior calculus is the algebra that makes it possible to handle them.
Flanders predicted in the early sixties [41] that within short they
would become important tools in engineering. This did not happen,
and they have remained primarily within mathematics and
theoretical physics. Such objects are also especially prevalent in
thermodynamics, and here, we will show that the computational
rules of differential forms provide a simple way of expressing the
relations between the velocities in the system at hand.

Section 6 focuses the discussion on the co-moving velocity by
constructing a coordinate-independent expression that defines it.

We present in Section 7 two concrete systems. 1) A porous
medium obeying the Brooks–Corey relative permeability and 2) a
capillary fiber bundle model, which we analyze using the methods
developed in this paper.

In Section 8, we summarize our main results which may be
stated through three Eqs 58, 69, 98. These equations formulate in a
coordinate-free way the three relations that exist between the
average seepage velocity and the co-moving velocity.

2 Representative elementary area

We will now elaborate on the definition of the REA presented in
Section 1.

We define the transversal pore area Ap as previously defined,
which defines porosity

ϕ � Ap

A
. (2)

The pore volume contains two immiscible fluids; the more
wetting fluid (to be referred to as the wetting fluid) or the less
wetting fluid (to be referred to as the non-wetting fluid). The
transversal pore area Ap may, therefore, be split into the area of
the REA disk cutting through the wetting fluidAw or cutting through
the non-wetting fluid An so that we have

Ap � Aw + An. (3)

We also define the saturations

Sw � Aw

Ap
, (4)

Sn � An

Ap
, (5)

so that

Sw + Sn � 1. (6)
We note that the transversal pore areas Ap, Aw, and An are

extensive in the REA A, that is Ap → λAp, Aw → λAw, and An → λAn

when A→ λA. The porosity ϕ and the two saturations Sw and Sn are
intensive in the REA A: ϕ → λ0ϕ, Sw → λ0Sw and Sn → λ0Sn when
A → λA.
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There is a time averaged volumetric flow rate Q through the
REA. The volumetric flow rate consists of two components, Qw and
Qn, which are the volumetric flow rates of the wetting and the non-
wetting fluids. We have

Q � Qw + Qn. (7)
We define the total, wetting, and non-wetting seepage velocities,

respectively, as

v � Q

Ap
, (8)

vw � Qw

Aw
, (9)

vn � Qn

An
. (10)

Using Eqs 7–10, we find

v � Q

Ap
� Aw

Ap

Qw

Aw
+ An

Ap

Qn

An

� Swvw + Snvn.
(11)

The volumetric flow rates Q, Qw, and Qn are extensive in the
REA A, and the velocities v, vw, and vn are intensive in the area A.

2.1 Euler homogeneity

As the areas Aw and An, and the volumetric flow rate Q are
extensive in the REA A, we have that

Q λAw, λAn( ) � λQ Aw, An( ). (12)
This scaling was the basis for the theory presented in [32], which

we now summarize.
We now apply the Euler homogeneous function theorem to Q.

We take the derivative with respect to λ on both sides of Eq. 12 and
set λ = 1. This gives

Q Aw,An( ) � Aw
zQ

zAw
( )

An

+ An
zQ

zAn
( )

Aw

. (13)

We note here that we assume Aw and An are our independent
control variables. This makes Ap, Sw, and Sn dependent variables.
More precisely, Eq. 13 is the Euler theorem for homogeneous
functions applied to a degree-1 homogeneous function Q. By
dividing this equation by Ap, we have

v � Sw
zQ

zAw
( )

An

+ Sn
zQ

zAn
( )

Aw

, (14)

where we have used Eqs 4, 5. We define the two thermodynamic
velocities v̂w and v̂n as

v̂w � zQ

zAw
( )

An

(15)

and

v̂n � zQ

zAn
( )

Aw

(16)

so that we may write Eq. 14 as

v � Swv̂w + Snv̂n. (17)
The thermodynamic velocities v̂w and v̂n are not the physical

velocities vw and vn. Rather, the most general relation between vw
and v̂w and vn and v̂n, which fulfills both Eqs 11, 17,

v � Swv̂w + Snv̂n � Swvw + Snvn, (18)
can be expressed as

v̂w � vw + Snvm, (19)
v̂n � vn − Swvm. (20)

This defines the co-moving velocity vm, which relates the
thermodynamic and the physical velocities.

We have up to now used (Aw, An) as our control variables. If we
now consider the coordinates (Sw, Ap) instead, we can write

v̂w � zQ

zAw
( )

An

� zQ

zSw
( )

Ap

zSw
zAw

( )
An

+ zQ

zAp
( )

Sw

� dv

dSw
( )Sn + v,

(21)

where we have used that

zSw
zAw

( )
An

� z

zAw
( )

An

Aw

Aw + An
( ) � Sn

Ap
. (22)

Likewise, we find that

v̂n � zQ

zAn
( )

Aw

� − dv

dSw
( )Sw + v. (23)

We combine Eqs 21, 23 with Eqs 19, 20 to find

vw � v + Sn
dv

dSw
− vm( ), (24)

vn � v − Sw
dv

dSw
− vm( ), (25)

and we see that these two equations give the map (v, vm)→ (vw, vn).
We now subtract Eq. 25 from Eq. 24, finding

dv

dSw
� vw − vn + vm, (26)

and we now differentiate Eq. 11 with respect to Sw,

dv

dSw
� vw − vn + Sw

dvw
dSw

+ Sn
dvn
dSw

. (27)

We compare Eqs 26, 27, finding

vm � Sw
dvw
dSw

+ Sn
dvn
dSw

. (28)

Eqs 11, 28 constitute the inverse mapping (vw, vn) → (v, vm).
The mapping (v, vm) → (vw, vn) tells us that given the

constitutive equations for v and vm, we also have the constitutive
equations for vw and vn. It turns out that the constitutive equation for
vm is surprisingly simple [34],

vm � a + b
dv

dSw
, (29)

where a and b are coefficients depending on the entropy associated
with the fluid configurations [35].
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The equations we have used in Section 2 hint at an underlying
mathematical structure which may seem complex. As we will now
show, it is in fact quite the opposite.

3 Coordinate systems in area space

The transversal pore areas Aw ≥ 0 and An ≥ 0 parametrize the
first quadrant of R2. This serves as the “area space” mentioned
earlier, which we will continue to denote as such. It is important to
realize that this space is not physical space. A value of the transversal
pore area Ap corresponds to a point (Aw, An) in this space. If we
consider the entire plane R2 as a whole and simply restrict our
attention to the first quadrant, wemay treat the area space as a vector
space. The point (Aw, An) may then equivalently be described by a
vector,

�A � Aw �ew + An �en, (30)
where �ew and �en form an orthonormal basis set, shown in the
leftmost figure in Figure 2. Note that in this picture, the bases are
shown as attached to the point (Aw,An). We reiterate that both Aw

and An are extensive.
Every point in the transversal area space corresponds to a given

saturation Sw and a transversal pore area Ap and we may view the
map (Aw, An) → (Ap, Sw) given by Eqs 3, 4 as a coordinate
transformation. This is a more natural coordinate system to work
with since Sw is an intensive variable and Ap is in practice kept
constant. We name this system the saturation coordinate system.
We show the normalized basis vector set in the middle figure in
Figure 2. We calculate

�up � z �A

zAp
( )

Sw

� Sw �ew + 1 − Sw( ) �en, (31)

�us � z �A

zSw
( )

Ap

� Ap �ew − Ap �en. (32)

We normalize the two vectors �up and �us to find

�ep � Sw �ew + 1 − Sw( ) �en
1 − 2Sw 1 − Sw( )[ ]1/2, (33)

�es � �ew − �en�
2

√ . (34)

This basis set is not orthonormal, as illustrated in Figure 2. By
expressing �A in this coordinate system, we find

�A � Ap 1 − 2Sw 1 − Sw( )[ ]1/2 �ep. (35)

As it will become apparent, the most convenient coordinate
system to work with from a theoretical point of view is polar
coordinates (Ar,ϕ), given by

Ar �
�������
A2

w + A2
n

√
, (36)

ϕ � arctan
An

Aw
( ), (37)

or vice versa.

Aw � Ar cos ϕ, (38)

An � Ar sin ϕ. (39)
We note that ϕ is intensive and Ar is extensive. We show the

polar coordinate system in the lower figure in Figure 2.
The basis vector set ( �er, �eϕ) is orthonormal, where

�er � cos ϕ �ew + sin ϕ �en � �ep, (40)
�eϕ � −sinϕ �ew + cos ϕ �en. (41)

As for the saturation coordinate system, there is one intensive
variable, ϕ, and one extensive variable, Ar. However, in contrast to
the saturation coordinate system, both variables are varied in
practical situations.

We have that

�A � Ar �er. (42)
We see that this is consistent with Eq. 35 since

FIGURE 2
Three coordinate systems are illustrated and used to parametrize the transversal pore area. (A) The Cartesian coordinate system (Aw, An). A curve of
constant Aw and An is indicated as Aw and An, respectively. Both Aw and An are extensive. The orthonormal basis set ( �ew , �en) is shown as attached to the
point (Aw ,An). (B) The saturation coordinate system (Ap , Sw). Curves of constant Ap and Sw are denoted by Ap and Sw in the figure. Ap is extensive and Sw is
intensive. The non-orthonormal basis ( �ep , �es) is shown. (C) The polar coordinate system (Ar,φ). Curves of constant Ar and φ are denoted by Ar and φ in
the figure. Ar is extensive and ϕ is intensive. The basis set ( �er , �eϕ) is orthonormal. In all three figures, the transversal pore area as a vector �A is shown.
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Ar � Ap 1 − 2Sw 1 − Sw( )[ ]1/2 (43)
and �ep � �er.

4 Euler homogeneity in polar
coordinates

We now focus on Eq. 12 which we repeat here.

Q λAw, λAn( ) � λQ Aw, An( ).
We may interpret this equation geometrically. If we follow the

value of Q along a ray passing through the origin of the two-
dimensional space spanned by (Aw, An) keeping the ratio An/Aw

constant, it grows linearly with the distance from the Q-axis.
In polar coordinates, this means

Q Ar, ϕ( ) � v̂rAr, (44)
where

v̂r � zQ

zAr
( )

ϕ

� v̂r ϕ( ). (45)

The important point here is that v̂r is not a function of Ar.
We may derive Eq. 44 from Eq. 12 as follows. First, we write Aw

and An in terms of Ar and ϕ in Eq. 12 so that

1
λ
Q λAr cos ϕ, λAr sin ϕ( )
� Q Ar cos ϕ, Ar sin ϕ( ) � Q Ar, ϕ( ). (46)

Next, we set λ = 1/Ar to find

Ar Q cos ϕ, sin ϕ( ) � Arv̂r ϕ( ) � Q Ar,ϕ( ), (47)
where

v̂r ϕ( ) ≡ Q cos ϕ, sin ϕ( ), (48)

and we are done. We illustrate in Figure 3 the geometrical meaning
of Eq. 12, that is, Euler homogeneity. The graph of the volumetric
flow rate Q takes the shape of a “crumpled” cone in the space
spanned by (Q, Aw, An).

We now express the different fluid velocities, namely the pore
velocity, seepage velocities, thermodynamic velocities, and the co-
moving velocity, in terms of polar coordinates.

4.1 Seepage velocities

The area space spanned by (Aw, An) is simply (a subset of) the
real plane. We can therefore identify it with the tangent space of
velocities, which is the same Cartesian plane as that of the areas
(Aw,An). We can therefore regard the seepage velocity as a vector in
the area space,

�v � vw �ew + vn �en. (49)

The volumetric flow rate Q is then given by the scalar product

Q � �v · �A � vwAw + vnAn � v̂wAw + v̂nAn. (50)

In polar coordinates, the seepage velocity is given by

�v � vr �er + vϕ �eϕ. (51)

Hence, the volumetric flow rate in polar coordinates is given by

Q � �v · �A � vr �er + vϕ �eϕ( ) · Ar �er( ) � vrAr. (52)

Comparing with Eq. 44, we find

vr � v̂r � v̂r ϕ( ). (53)

By using Eqs 49, 51 combined with Eqs 40, 41, we find

FIGURE 3
Geometrical meaning of the function Q being degree-1 Euler homogeneous in the extensive variables, meaning it fulfils equation (12), using polar
coordinates. We here use the same symbolQ as both a variable and a function. Moving along a ray in the space spanned by the variablesQ, Aw and An, the
volumetric flow rate increases linearly with the distance from the Q-axis. For a constant value Ap

r of the radial coordinate Ar (A) or a constant valueQp of
the volumetric flow rate (B), the graph of Q appears as a “crumpled” cone originating at the origin, with the level set (shown in red) imagined as an
“edge”. The level sets are different in the two cases. In particular, the volumetric flow rate will in (A) have different limiting valuesQp

1 andQp
2 in the limit of

single-phase flow of either the wetting or non-wetting fluid.

Frontiers in Physics frontiersin.org06

Pedersen and Hansen 10.3389/fphy.2023.1127345

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1127345


vr � vw cos ϕ + vn sin ϕ

� Swvw + 1 − Sw( )vn
1 − 2Sw 1 − Sw( )[ ]1/2,

(54)

vϕ � −vw sin ϕ + vn cos ϕ

� − 1 − Sw( )vw + Swvn
1 − 2Sw 1 − Sw( )[ ]1/2.

(55)

We have here expressed cos ϕ and sin ϕ in terms of Sw.
We now compare Eq. 44 with Eq. 8, rewritten as

Q � vAp. (56)

Using Eq. 43, we find that their equality demands

v � v̂r
1 − 2Sw 1 − Sw( )[ ]1/2. (57)

Hence, v is not the norm of �v.

4.2 Thermodynamic velocities

We may write Eq. 13 as

Q � v̂wAw + v̂nAn � �̂v · �A, (58)
where we have defined, in the same manner as for Eq. 49,

�̂v � v̂w �ew + v̂n �en. (59)
We use Eqs 40, 41 to express this equation in polar coordinates,

�̂v � v̂r �er + v̂ϕ �eϕ, (60)
where

v̂r � v̂w cos ϕ + v̂n sin ϕ, , (61)
v̂ϕ � −v̂w sin ϕ + v̂n cos ϕ. (62)

4.3 Co-moving velocity

We defined the co-moving velocity vm as the velocity function
that relates the physical seepage velocities and the thermodynamic
velocities shown in Eqs 19, 20. We use these two equations together
with Eqs 49, 59 to form the vector

�̂v − �v � v̂w − vw( ) �ew + v̂n − vn( ) �en
� vm
Ap

An �ew − Aw �en( )
� vm
Ap

Ar sin ϕ �ew − Ar cos ϕ �en( ), (63)

where we have used Sw = Aw/Ap and Eqs 38, 39. We rewrite this
equation in terms of �eϕ, Eq. 41, finding

�̂v − �v � − vm
cos ϕ + sin ϕ

�eϕ. (64)

We define

v̂m � vm
cos ϕ + sin ϕ

(65)

so that Eq. 63 may be written as

�v � �̂v + �̂vm, (66)
where

�̂vm � v̂m �eϕ. (67)

In polar coordinates, the relation in Eq. 66 is isolated to the ϕ-
coordinate. Using Eqs 51, 62, we can express the relation between
the vector components v̂ϕ and vϕ as

vϕ � v̂ϕ + v̂m. (68)

We illustrate this relation in Figure 4. This figure also
demonstrates why Q � �̂v · �A � �v · �A; it is due to ( �v − �̂v) � �̂vm ⊥ �A.
Hence, we have that

�̂vm · �A � 0. (69)

5 Coordinate-free representation

Since the difference between the thermodynamic- and seepage
velocities in the previous section was shown to sit in the tangent
vector components, we can benefit from examining the problem
from a position where these components are easier to work with. In
this section, we therefore introduce differential forms and exterior
algebra [41, 42] to make this treatment more economic. In addition,
this makes it easier to formulate the equations met so far in a way
that does not depend on the coordinate system used.

Eq. 44, Q � v̂rAr, may be differentiated to give

dQ � v̂rdAr + dv̂rAr � v̂rdAr + v̂r′Ardϕ, (70)
where v̂r′ � dv̂r/dϕ. Here, dQ, dAr, and dϕ are one-forms.
Furthermore, we have that

dQ � zQ

zAr
( )

ϕ

dAr + zQ

zϕ
( )

Ar

dϕ

� v̂rdAr + v̂ϕArdϕ.
(71)

Comparing Eqs 70, 71 gives

v̂ϕ � v̂r′. (72)

We do the same using the coordinate system (Aw, An). From Eq.
50, we find

dQ � v̂wdAw + v̂ndAn + Awdv̂w + Andv̂n
� v̂wdAw + v̂ndAn.

(73)

In the second equality, we assumed that dQ is an exact
differential, and in the first equality, we applied the differential to
Q � v̂wAw + v̂nAn. This implies the relation

Awdv̂w + Andv̂n � 0. (74)
This equation corresponds to the Gibbs–Duhem equation in

thermodynamics, which is a statement of the dependency amongst
the intensive variables.

We express v̂w and v̂n in terms of v̂r and v̂ϕ by inverting Eqs 61,
62 to find

v̂w � v̂r cos ϕ − v̂ϕ sin ϕ, , (75)
v̂n � v̂r sinϕ + v̂ϕ cos ϕ. (76)
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By applying the exterior derivative, we get the relations

dv̂w � cos ϕ dv̂r − sinϕ dv̂ϕ − v̂ndϕ, (77)
dv̂n � sinϕ dv̂r + cos ϕ dv̂ϕ + v̂wdϕ. (78)

Combining Eqs 75–78 with Gibbs–Duhem Eq. 74 gives

dv̂r
dϕ

� v̂ϕ, (79)

which is identical to Eq. 72. Hence, this is the Gibbs–Duhem
equation in polar coordinates.

The thermodynamic velocity, Eq. 59, is, therefore, given by

�̂v � v̂r �er + v̂r′ �eϕ. (80)

We now have one of the main results of Hansen et al. [32] in a
very compact form.

�v � v̂r �er + v̂r′ + v̂m( ) �eϕ. (81)

We note that since v̂r only depends on ϕ, the same must be true
for v̂m. Hence, v̂m � v̂m(ϕ). Here, we see that the relation between
the thermodynamic- and seepage velocities are not captured in the
extensive structure tied to the radial coordinate, but instead in the
intensive quantities which only has a dependency on ϕ.

We now differentiate Eq. 56, Q � �v · �A written in the saturation
coordinate system, to find

dQ � v dAp + dv

dSw
ApdSw. (82)

We note that

dAp � dAw + dAn, (83)
from differentiating Eq. 3. Likewise, we note that

dSw � zSw
zAw

( )
An

dAw + zSw
zAn

( )
Aw

dAn

� 1

A2
p

AndAw − AwdAn( ),
(84)

using Eq. 4. We combine Eqs 82–84 and find

dQ � v + 1 − Sw( ) dv

dSw
( )dAw + v − Sw

dv

dSw
( )dAn. (85)

By using Eq. 13, definitions of Eqs 15, 16, and transformations
Eqs 19, 20, we may write

dQ � v̂wdAw + v̂ndAn � vw − 1 − Sw( )vm( )dAw

+ vn + Swvm( )dAn.
(86)

Equating Eq. 85 and Eq. 86 gives Eqs 24, 25.
Let us now rewrite the differential dQ as follows:

dQ � d Apv[ ] � d Ap Swv̂w + 1 − Sw( )v̂n( )[ ]
� Ap v̂w − v̂n( )dSw + v dAp,

(87)

where we have used Eq. 74. We now combine this equation with Eq.
82 to get

dv

dSw
� v̂w − v̂n. (88)

By using Eqs 19, 20, we may rewrite this equation in terms of the
seepage velocities, resulting in Eq. 26.

We differentiate Q a second time, which is zero according to the
Poincaré lemma [41, 42]. We see that this is indeed so by using
Eq. 70,

d2Q � d v̂rdAr + v̂r′Ardϕ( )
� v̂r′ dϕ ∧ dAr( ) + v̂r′ dAr ∧ dϕ( )
� v̂r′ − v̂r′( )dϕ ∧ dAr � 0,

(89)

where the wedge ∧ signifies the antisymmetric exterior product.
The same equation expressed in the coordinate system (Aw, An)

gives

d2Q � d v̂wdAw + v̂ndAn( )
� zv̂n

zAw
( )

An

− zv̂w
zAn

( )
An

⎡⎣ ⎤⎦dAw ∧ dAn

� 0.

(90)

FIGURE 4
Vectorial representation for eqs. 52, 58, where Ar � | �A| is illustrated. The difference in the vectors �̂v and �v, v̂m , is orthogonal to �A, and cannot be
detected by the properties of �A alone.
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We rewrite the coefficient in terms of the saturation coordinate
system,

zv̂n
zAw

( )
An

− zv̂w
zAn

( )
An

�
dv̂n
dSw

zSw
zAw

( )
An

− dv̂w
dSw

zSw
zAn

( )
Aw

�

Sw
dv̂w
dSw

+ 1 − Sw( ) dv̂n
dSw

� 0,

(91)

which is nothing but the Gibbs–Duhem equation yet again.
Writing this equation in terms of the seepage velocities gives
us Eq. 28.

We see that the different equations relating the velocities can all
be found from the differential geometric structure of the space
spanned by the areas, with addition to Euler homogeneity, see
Figure 3. All relations are either a consequence of writing dQ
using different coordinate systems or a consequence of the
Poincaré lemma, expressed as d2Q = 0.

6 The co-moving velocity in
coordinate-free representation

The co-moving velocity appears in several equations in the
previous sections. Common to all of them is that they all are
written out in terms of a given coordinate system. We may write
the representation of the co-moving velocity in the saturation
coordinate system, Eq. 28, as

Apvm � �A · d �v

dSw
. (92)

We may write Eq. 65 in polar coordinates as

Arv̂m � − �A · d �v

dϕ
. (93)

Expressed in terms of the seepage velocities, we have that

dQ � vwdAw + vndAn + Awdvw + Andvn. (94)
In order to obtain an expression for the co-moving velocity

which is independent of the coordinate system, we construct

Awdvw + Andvn � vm
AndAw − AwdAn

Aw + An� vmApdSw � −v̂mArdϕ,
(95)

where the second line only reflects Eqs 92, 93.
We write dQ as

dQ � d[ �A · �̂v] � v̂idAi, (96)
using Eq. 74. Here, Einstein summation convention has been
applied, with the index i running over w, n{ } in the basis (Aw, An).
In terms of the seepage velocities, this becomes

dQ � d[ �A · �v] � vidAi + Aidvi. (97)
Combining Eqs 96, 97, 66 gives us

v̂imdAi + Aidvi � 0, (98)

where v̂im denotes the components of �̂vm. This holds in any
coordinate system, since it is just obtained by differentiating a
function, namely �A · �v. We have, therefore, obtained an
expression for the co-moving velocity which is independent of
the chosen coordinate system.

We can introduce vector-valued differential forms [42] to make
a connection between the interpretation in terms of (tangent)
vectors used up until now and the language of differential forms.
Let �ei{ } be an arbitrary basis for vectors on the area space as we have
discussed until now, be it area-, saturation-, or polar coordinates.We
now take �A as an example. We write

A � βi �ei, (99)
where we have applied the Einstein summation convention.A is now
regarded as a vector-valued differential form (thus seeing �ei as
components written out in the βi basis, i.e., a reversal of
viewpoint), the βi are 0-forms, just functions, and the index i
runs over the coordinate indices. We can still treat A as a vector,
but the difference in viewpoints is apparent when we apply the
exterior derivative d to A, which gives

dA � ∑
i

�ei ⊗ dβi( ) � dβi( ) �ei, (100)

where we have suppressed the tensor product of the forms and basis
vectors since we are working over a vector space, as is standard
notation in for example [42]. Strictly speaking, the exterior
derivative d should be replaced by the exterior covariant
derivative in this setting, a generalization of d which is defined
on both tangent vectors and forms (there is currently no term in Eq.
100 that reflect the changes in the basis �ei). The terms Aidvi are then
possible to interpret in terms of connection forms. However, this is
outside the scope of the current discussion, and we leave this topic
for future work.

If we write out Eq. 100 in the coordinate system (Aw, An), we get
dA � dAw �ew + dAn �en. (101)

With this formalism in mind, we now return to polar
coordinates. Eq. 98 may be written in these coordinates by using
Eqs 40, 41 to define the vector valued 0-forms,

ωr � cos ϕ �ew + sin ϕ �en, , (102)
ωϕ � −sin ϕ �ew + cos ϕ �en, (103)

which are equivalent to the corresponding basis vectors in Eqs 40,
41, but interpreted as 0-forms. We then compute

dωr � �eϕdϕ, , (104)
dωϕ � −ωrdϕ (105)

so that

dA � d Arωr( ) � dArωr + Ardωr

� dAr �er + Ar �eϕdϕ,
(106)

where in the second equality, we have used ωr which is just another
way of writing the basis vector �er that emphasizes its role as a form.

We can similarly define vector valued 1-forms dv̂ and dv from
Eqs 59, 49 respectively. We then straightforwardly obtain

dv̂ � dv̂w �ew + dv̂n �en, , (107)
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dv � dvw �ew + dvn �en. (108)
We express dv in polar coordinates as

dv � vr′ �erdϕ + vr �eϕdϕ + vϕ′ �eϕdϕ − vϕ �erdϕ

� vr′ − vϕ( ) �er + vr + vϕ′( ) �eϕ[ ]dϕ, (109)

giving

Arv̂mdϕ � Ar vϕ − vr′( )dϕ, (110)
or

v̂m � vϕ − vr′. (111)

By combining Eqs 54, 68, 72, we obtain the same equation. Eq.
98 written in the saturation coordinate system yields Eq. 28.

7 Applications

We give in this section a couple of examples of practical use of
the ideas that have been presented. We consider first the
Brooks–Corey relative permeability model [43] and then a
capillary fiber bundle model [44, 45].

7.1 The brooks–corey model

We assume an irreducible wetting fluid saturation Sw,i and
residual non-wetting fluid saturation Sn,r so that Sw,i ≤ Sw ≤ 1 −
Sn,r and Sn,r ≤ Sn ≤ 1 − Sw,i. We renormalize the saturations to be

Sw* � Snw − Sn,r
1 − Sw,i − Sn,r

, (112)

Sn* � Sw − Sw,i
1 − Sw,i − Sn,r

. (113)

The Brooks–Corey relative permeability is [43]

krw � k0rw Sw*( )nw , (114)
krn � k0rn Sn*( )nn , (115)

The seepage velocities are

vw � −Kk0rw
φμw

Sw*( )nw−1∇P ≡ Mw Sw*( )nw−1, (116)

vn � −Kk0rn
φμn

Sn*( )nn−1∇P ≡ Mn Sn*( )nn−1. (117)

Here, K is the absolute permeability, φ is the porosity, and μw
and μn are the viscosities. We assume no gradients in the saturation
so that no capillary pressure enters, only the pressure P.

We find the average seepage velocity to be

v � Mw Sw*( )nw +Mn Sn*( )nn (118)
and the co-moving velocity to be

vm � nw − 1( )Mw Sw*( )nw−1 − nn − 1( )Mn Sn*( )nw−1. (119)

We also note that

dv

dSw*
� nwMw Sw*( )nw−1 − nnMn Sn*( )nw−1. (120)

Hence, if nw = nn = n, we get

vm � n − 1
n

dv

dSw*
, (121)

a result which is consistent with the observations in Roy et al. [34],
see Eq. 29. In the following, we assume that nw = nn = n. This is in
accordance with the findings in [46, 47], where in addition was
suggested that nw = nn = 2. We will simplify the notation for the
saturation Sw* → Sw and Sn* → Sn.

We find from Eqs 54, 55 that the seepage velocities are in polar
coordinates.

vr � Mw
cosϕ

cos ϕ + sin ϕ
( )n

cos ϕ +Mn
sinϕ

cos ϕ + sin ϕ
( )n

sin ϕ, (122)

vϕ � −Mw
cos ϕ

cos ϕ + sin ϕ
( )n

sin ϕ +Mn
sin ϕ

cosϕ + sin ϕ
( )n

cos ϕ. (123)

We find the thermodynamic velocities in polar coordinates
using Eqs 53, 79,

v̂r � vr � Mw
cos ϕ

cos ϕ + sin ϕ
( )n

cos ϕ +Mn
sin ϕ

cos ϕ + sin ϕ
( )n

sin ϕ

(124)
and

v̂ϕ � dv̂r
dϕ

� n
csc ϕ sec ϕ
cos ϕ + sinϕ

vϕ. (125)

Finally, from Eq. 81, we find the co-moving velocity in polar
coordinates,

v̂m � 1 − n
cscϕ sec ϕ
cosϕ + sin ϕ

[ ]vϕ. (126)

7.2 Capillary fiber bundle model

We now turn to the capillary fiber bundle model [44, 45] which
serves as a rudimentary model of a porous medium. We will revisit a
version of the model that has already been discussed by Hansen et al.
[32]. Consider a bundle of N capillary tubes, all of length L. Some
fraction of the tubes has a cross-sectional area as and the rest has a
cross-sectional area al. We assume al > as. The total pore areas of the
small and large capillary tubes are denoted As and Al, respectively.
These two areas sum up to the total pore area Ap,

As + Al � Ap. (127)

We assume that the thinnest capillaries are so narrow that the non-
wetting fluid may not penetrate them. Hence, the saturation due to the
wetting fluid in these capillaries is irreducible, and we have

As � Sw,iAp. (128)

Furthermore, we assume that each capillary is either fully
filled with the wetting fluid or the non-wetting fluid, but never a
mixture.

In the following, we sketch the analysis of Hansen et al. [32]. The
wetting area Aw is then

Aw � Sw,iAp + Sw − Sw,i( )Ap � As + Alw, (129)
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where we define Alw ≡ (Sw − Sw,i)Ap, the total wetting area in the
larger capillaries. The seepage velocity of the wetting fluid in the
smaller and larger capillaries is denoted vsw and vlw respectively. The
non-wetting fluid only flows in the larger capillaries. Its seepage
velocity is denoted by vn, and the saturation of the non-wetting fluid
is given by Sn. The total seepage velocity v is then

v � Sw,ivsw + Sw − Sw,i( )vlw + Snvn, (130)
where we have 0 ≤ Sn ≤ 1 − Sw,i. We multiply both sides of the
equation by Ap to obtain the associated volumetric flow rate Q,

Q � Apv � Asvsw + Alwvlw + Anvn. (131)
To find the co-moving velocity vm, one can explicitly compute

the thermodynamic velocities in Eq. 15 or Eq. 16, and use the
relations between the thermodynamic- and seepage velocities, Eq. 19
and Eq. 20. The resulting co-moving velocity for this system can
then be shown [32] to be

vm � Sw,i
Sw

vlw − vsw( ). (132)

We note that these expressions are fairly complicated. This is
due to the choice of origin of the coordinate system, namely Sw =
0 and Ap = 0. It is convenient to shift the origin from (Sw, Ap) = (0,
0) to (Sw,i, As), as conducted in Section 7.1. Hence, we define
Sw* � Sw − Sw,i, Ap* � Ap − As, and Aw* � Aw − As. We
immediately drop the star superscripts in these expressions.

We find the thermodynamic velocities easily,

v̂w � zQ

zAw
( )

An

� vlw, (133)

v̂n � zQ

zAn
( )

Aw

� vn. (134)

The wetting volumetric flow rate is

Qw � ApSw,ivsw + Awvlw. (135)
We subtract the volumetric flow rate due to the irreducible

wetting fluid.

Qw* � Qw − ApSw,ivsw � Asvlw → Qw. (136)
The seepage velocity vector then becomes

�v � vlw �ew + vn �en. (137)
The thermodynamic velocity vector is

�̂v � vlw �ew + vn �en, (138)
and from Eq. 66, we have

�̂vm � 0. (139)
We note the large difference between Eqs 132, 139; one is a

complicated expression, the other one is zero—but both are correct.
The difference between the two is where the origin of parameter
space is placed.

8 Conclusion and discussion

The aim of this work has been to formulate the immiscible two-
phase flow in porous media problem as a geometrical problem in
area space. We did this by

• defining the two pore area variables Aw and An, and
considering their span,

• endowing this space with different coordinate systems, (Aw,
An), (Ap, Sw), and (Ar, ϕ), and pointing out expressions using
the polar coordinate system which simplifies the discussion
considerably,

• recognizing the meaning of the volumetric flow rate being a
degree-1 homogeneous function when expressing it in polar
coordinates, and deriving a number of properties related to
the different velocities in the problem; the seepage
velocities, thermodynamic velocities, and the co-moving
velocity,

• using differential forms to derive relations between the
different velocities, and lastly,

• formulate an expression for the co-moving velocity which is
independent of the coordinates on the underlying space.

We remind the reader of the following equations. The difference
between the thermodynamic and seepage velocities may be
expressed by combining Eqs 96, 97,

dQ � v̂idAi � Aidvi + vidAi. (140)

The co-moving velocity is given by Eq. 66.

�v � �̂v + �̂vm.

These equations lead us to the three central equations
summarizing the central results of this paper. They are Eq. 58,

�v · �A � Q,

Eq. 69,

�̂vm · �A � 0,

and Eq. 98,

v̂imdAi + Aidvi � 0.

It is clear from this discussion that the co-moving velocity vm, which
together with the average seepage velocity v, determines vw and vn
through the transformations [24, 25], cannot be found by any
measurement of the volumetric flow rate Q or any expression
obtained from it and it alone such as dQ. The fundamental question
which remains open is the following: is it possible to measure the co-
moving velocity vm without explicitly measuring vw and vn?
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