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A B S T R A C T   

Previous research has emphasized the unique impact of Alzheimer’s Disease (AD) pathology on the medial 
temporal lobe (MTL), a reflection that tau pathology is particularly striking in the entorhinal and transentorhinal 
cortex (ERC, TEC) early in the course of disease. However, other brain regions are affected by AD pathology 
during its early phases. Here, we use longitudinal diffeomorphometry to measure the atrophy rate from MRI of 
the amygdala compared with that in the ERC and TEC in cognitively unimpaired (CU) controls, CU individuals 
who progressed to mild cognitive impairment (MCI), and individuals with MCI who progressed to dementia of 
the AD type (DAT), using a dataset from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Our results 
show significantly higher atrophy rates of the amygdala in both groups of ‘converters’ (CU→MCI, MCI→DAT) 
compared to controls, with rates of volume loss comparable to rates of thickness loss in the ERC and TEC. We 
localize atrophy within the amygdala within each of these groups using fixed effects modeling. Controlling for 
the familywise error rate highlights the medial regions of the amygdala as those with significantly higher atrophy 
in both groups of converters than in controls. Using our recently developed method, referred to as Projective 
LDDMM, we map measures of neurofibrillary tau tangles (NFTs) from digital pathology to MRI atlases and 
reconstruct dense 3D spatial distributions of NFT density within regions of the MTL. The distribution of NFTs is 
consistent with the spatial distribution of MR measured atrophy rates, revealing high densities (and atrophy) in 
the amygdala (particularly medial), ERC, and rostral third of the MTL. The similarity of the location of NFTs in 
AD and shape changes in a well-defined clinical population suggests that amygdalar atrophy rate, as measured 
through MRI may be a viable biomarker for AD.   

1. Introduction 

Alzheimer’s disease (AD) is the leading cause of dementia worldwide 
(Association, 2021). Diagnosis and characterization of AD in its early 
stages remain key challenges, as existing technologies limit the identi-
fication of the neuropathological patterns thought to emerge years 

before symptom onset (Sperling et al., 2011; Nauen and Troncoso, 2021; 
Villemagne et al., 2018). In clinical practice, AD is typically first char-
acterized by progressive clinical changes in memory and behavior, and 
subsequently through imaging changes that indirectly reflect AD 
neuropathology (i.e. misfolded proteins, tau and amyloid-Beta (Aβ)) 
(Braak and Braak, 1991; Braak et al., 2006; Hyman et al., 2012). Efforts 
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to identify and understand the spatiotemporal profile of AD in its early 
stages have centered on these biomarkers (Jack et al., 2018)–measures 
that indirectly reflect the underlying pathology, which are obtainable 
over the course of disease. Of the methods used, neuroimaging has 
emerged as a prominent player with the ability to localize pathology 
non-invasively (e.g. tau/amyloid positron emission tomography (PET)) 
(Zetterberg and Bendlin, 2021; Young et al., 2020), and with proposed 
surrogates such as shape diffeomorphometric markers (e.g. magnetic 
resonance imaging (MRI)) (Younes et al., 2014; Younes et al., 2019; 
Kulason et al., 2019). While these imaging measures have shown con-
sistency with progression of clinical manifestations and with Braak 
staging (Braak and Braak, 1991; Braak et al., 2006; Mattsson et al., 2019; 
Therriault et al., 2022), accurate rendering of the 3D spatiotemporal 
profile of tau and Aβ at the micron scale has not been achieved (Zet-
terberg and Bendlin, 2021; Young et al., 2020). The principal challenge 
has been integrating the 2D sparse measurements of histology, which are 
direct measures of disease, with the MRI 3D markers, which are at much 
lower in-plane resolution. Consequently, these imaging measures have 
tended to emphasize MTL regions, including the entorhinal cortex (ERC) 
and hippocampus. These measurements, have not, however, been linked 
directly to micron level patterns of tau and Aβ pathology–the hallmark 
findings of AD. 

The amygdala is one region that has undergone relatively limited 
study in AD (Wang et al., 2021) compared to its adjoining regions of the 
ERC and hippocampus in the medial temporal lobe (MTL) highlighted by 
Braak and Braak (1991). Neuropathological and connectivity-based 
studies suggest a role for the amygdala in neurodegenerative diseases 
such as Argyrophilic Grain Disease (AGD) (Ferrer et al., 2008), Lewy 
Body dementia (Popescu et al., 2004), and AD (Nelson et al., 2018; 
Arnold et al., 1991) with the observed inclusion of misfolded proteins in 
the amygdala and the its strong connectivity patterns to areas of the 
hippocampus, basal ganglia, and basal forebrain (Nelson et al., 2018). 
Imaging studies from our group and others have observed cross- 
sectional differences in amygdala volume between cognitively unim-
paired (CU) individuals, those with mild cognitive impairment (MCI), 
mild AD dementia patients and later stage AD patients (Miller et al., 
2015a; Miller et al., 2015b; Kulason et al., 2019; Ortner et al., 2016). 
These shape differences complement recent findings in tau PET illus-
trating cross-sectional differences in tau load in areas of the rostral MTL 
including ERC, transentorhinal cortex (TEC), and amygdala, in early 
stages of AD (Berron et al., 2021). Two studies have also shown corre-
lation between neuropsychiatric symptom severity and amygdalar at-
rophy in AD (Poulin et al., 2011; Wang et al., 2021). These findings, 
together with emerging evidence of the neuropsychiatric syndromic 
complex known as Mild Behavioral Impairment (MBI) amongst in-
dividuals prior to the onset of dementia (Johansson et al., 2021; 
Matuskova et al., 2021) suggest amygdalar changes early in the disease 
course may be related to the emotional and behavioral syndrome of MBI. 
Consequently, assessment of amygdala atrophy via modes such as MRI 
holds promise as a biomarker for early diagnosis and management of 
AD. However, the exact timing and rate at which this atrophy occurs 
have not been well established as in other regions such as the ERC 
(Kulason et al., 2020), but which is necessary for development of an 
appropriate biomarker. 

To assess these rates, we compute both ERC thickness and amygdalar 
volume over time in MRI scans from a subset of the Alzheimer’s Disease 
Neuroimaging Intiative (ADNI) subjects in one of three categories: (1) 
CU subjects at baseline who remain CU at follow-up, (2) CU subjects at 
baseline who progress to MCI, and (3) subjects with a diagnosis of MCI at 
baseline who progress to dementia of the Alzheimer’s type (DAT) on 
follow-up. These groups are designated with the abbreviations CU→CU, 
CU→MCI, and MCI→DAT, respectively. Using an established approach 
of longitudinal diffeomorphometry (Tward and Miller, 2017), we esti-
mate percent atrophy per year in each structure for each subject by 
fitting each subject’s series of scans to a smooth trajectory to extract 
signal from noise. We additionally use the mappings estimated through 

longitudinal diffeomorphometry to compute average atrophy rate across 
each group of subjects at each location on a common amygdala hyper-
template. We use linear fixed effects modeling and control for the 
familywise error rate (FWER) to deduce which areas of the amygdala 
show significant differences in atrophy rate across these three groups. 

We subsequently link both these ERC and amygdalar atrophy rates as 
MRI-based measures at a millimeter scale to patterns of AD pathology. 
We recently developed a method, referred to as Projective LDDMM 
(Large Deformation Diffeomorphic Metric Mapping), which facilitates 
the integration of multi-scale, multi-modal data into a single coordinate 
system (Stouffer et al., 2022). Here, we use this approach to reconstruct 
3D distributions of neuropathology within the MTL of advanced cases of 
AD, with a focus on comparing relative load of pathology between the 
ERC and amygdala and other regions of the hippocampus and within 
particularly the amygdala as relates to the areas of significant atrophy 
seen in CU→MCI and MCI→DAT groups. As tau has exhibited stronger 
predisposition over Aβ for segregating to particular brain regions (ERC, 
Cornu Ammonis 1 (CA1), subiculum) and layers (superficial) of cortex in 
AD (Braak and Braak, 1991), we use machine-learning based methods to 
detect neurofibrillary tangles (NFTs) from histological images. We 
quantify these detections in the space of histology images as measures of 
NFT density (per cross sectional tissue area) and carry these measures to 
the space of high field 11T 3D MRI and the Mai Paxinos Atlas (Mai et al., 
2008) using the transformations we estimate via Projective LDDMM. 
Using manual delineations on high field ex vivo MRI of subregions in the 
MTL and within both the amygdala and ERC, we quantify relative pa-
thology within and among substructures for further corroboration of 
manifest atrophy rate in clinical populations progressing to MCI and 
early AD. 

2. Material and methods 

2.1. Subject selection and image processing 

2.1.1. Longitudinal data selection 
The subjects and scans analyzed in this study were selected from the 

ADNI database (adni.loni.usc.edu) according to the criteria used in our 
previous studies (Kulason et al., 2019; Kulason et al., 2020), where 
groups are identified based on cognitive status. The ADNI was launched 
in 2003 as a public–private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has been to test 
whether serial MRI, PET, other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the pro-
gression of MCI and early AD. 

In this current study, all subjects in all groups were required to have 
at least three 3T MR scans for longitudinal comparison. To ensure ac-
curate and consistent segmentation of the entorhinal and trans-
entorhinal regions across subjects with varying types of collateral sulcus 
(CS), all subjects were required to have an anteriorly continuous CS, as 
detailed in Kulason et al. (2020). The differences in the resulting ge-
ometries of these regions between subjects with and without an ante-
riorly continuous CS are demonstrated in Fig. 1, highlighting the 
complexity and consequently the ambiguity introduced in maintaining a 
consistent segmentation protocol across subjects. This restriction to 
subjects only with an anteriorly continuous CS enabled us to reduce any 
confounding factors that may have arisen in the smoothing process 
when mapping a template geometry of one type to a target geometry of 
potentially another. Instead, we mapped the same single template to 
each subject’s time series for longitudinal smoothing as the subset of 
subjects with an anteriorly continuous CS maintained a more consistent 
geometry in the entorhinal region than the group as a whole. 

Three subgroups of this subset were selected based on diagnostic 
diagnosis at baseline and follow-up: (1) CU subjects at baseline and 
follow-up, abbreviated as “CU→CU”; (2) subjects unimpaired at baseline 
and diagnosed with MCI on follow-up, abbreviated as “CU→MCI” (NB: 
based on ADNI procedures, the subjects with normal cognition were 
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labeled (CN), had a CDR score (Hughes et al., 1982) of 0, and normal 
range performance on the Logical Memory Subtest of the Wechsler 
Memory Scale (Wechsler, 1945) according to education adjusted 
norms); (3) subjects with a diagnosis of MCI at baseline who subse-
quently progressed to a diagnosis of dementia of the Alzheimer’s type at 
follow-up, abbreviated as “MCI→DAT”. Table 1 summarizes the de-
mographics of each of these three groups. Additionally, all subjects in 
the CU→CU group carried Aβ negative status, as measured by cerebro-
spinal fluid (CSF) Aβ1 − 42 with a cutoff of 192pg/mL, as determined by 
the ADNI Biospecimen core. In contrast, those in the MCI→DAT group 
had Aβ positive status at baseline. Aβ status varied in the CU→MCI group 
with 7 subjects with confirmed Aβ positive status at baseline, 4 
confirmed with Aβ negative status at baseline, and 5 without recorded 
CSF measures. Note that the accelerated scans of the ADNI 3 protocol 
were not included in this study. 

2.1.2. Ex vivo specimen preparation and imaging 
Brain tissue samples for ex vivo analysis were prepared from two 

cases of advanced AD by the Johns Hopkins Brain Resource Center. One 
hemisphere from each sample was reserved for neuropathological 
staging and diagnosis. The two samples examined in this study had 
clinical diagnoses of advanced AD and Braak stage VI pathology (Braak 
et al., 2006), indicative of high levels of tau pathology throughout the 
MTL. Detailed demographics and pathological staging of each sample 
analyzed are summarized in Table 2. 

The other hemisphere was immersion fixed in 10% buffered formalin 
prior to dissection. A portion of the MTL extending from the temporal 

pole to the hippocampal tail was excised in 3 contiguous blocks of tissue, 
sized 20–30 mm in height and width, and 15 mm rostral-caudal. Each 
block was imaged with an 11T MR scanner at 0.125 mm isotropic res-
olution by the Mori lab at Johns Hopkins. Subsequently, the blocks were 
serially sliced into 10 micron thick sections, with sets of 5–6 sections 
taken approximately every 1 mm. Each block yielded between 7 and 15 
sets of sections. The first section from each set was stained with PHF-1 
for tau tangle detection. Remaining sections in each set were reserved 
for calibration of NFT detections between brain samples (see Section 
2.4.2) or Nissl staining for confirming 3D MRI segmentations (see Sec-
tion 2.1.3). All stained sections were digitized at 2 micron resolution. 

2.1.3. Regional segmentations 
Manual segmentations of MTL subregions were delineated on clinical 

(3T) and ex vivo (11T) MRI by a team of two individuals (CC and EX) 
guided by a neuroanatomist (MW). All segmentations were drawn with 
Seg3D version 1.13.0 (CIBC, 2016). Prior to segmentation, brightness 
and contrast on the MRI was adjusted for better visualization. A brush 
size of 1 voxel was selected for precision. Segmentation was primarily 
done on the coronal plane, while the axial and sagittal plane were used 
to clarify borders. 

In 3T MR scans, ERC and TEC were delineated following the protocol 
used previously (Kulason et al., 2019; Kulason et al., 2020; Tward and 

Fig. 1. 3D surfaces of ERC + TEC geometry rendered from manual segmentations of 3T MR scans. Left panel shows surface with corresponding cortical columns 
(bottom) estimated between inner and outer layers (top right) for estimation of thickness. Right panel shows ERC (red) and TEC (blue) geometry for individuals with 
anteriorly continuous CS (left) and those without (right). 

Table 1 
Demographics of three subgroups of ADNI dataset. Statistics reported as mean ±
standard deviation where appropriate. Time of diagnosis reported as onset of 
MCI in CU→MCI group and onset of dementia in MCI→DAT group.  

Category CU→CU CU→MCI MCI→DAT 

Sample Size 33 16 18 
Baseline Age (years) 72.3 ± 5.5 74.6 ± 5.2 72.8 ± 6.6 
Sex (% female) 45.5 75.0 61.1 
# of scans 3.9 ± 0.2 4.0 ± 0.6 3.8 ± 0.4 
Scan period (years) 2.3 ± 0.7 1.9 ± 0.9 1.8 ± 0.4 
Time of Diagnosis — 4.1 ± 2.6 2.7 ± 1.8 
(years since baseline)     

Table 2 
Donor demographics and pathological staging for ex vivo brain samples.  

Category Subject 1 Subject 2 

Age 93 87 
Sex M F 
Clinical Diagnosis Dementia Dementia 
Braak NFT stage VI/VI VI/VI 
CERAD Neuritic Plaque 

Score (Mirra et al., 
1991) 

B B 

Thal Aβ Plaque Score ( 
Thal et al., 2002) 

5 5 

TDP-43 − +

Pathologic Diagnosis ( 
Hyman et al., 2012) 

High level AD pathologic 
change; multiple cerebral 
infarcts 

High level AD 
pathologic change  
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Miller, 2017). Visible anatomical landmarks were defined to match 
described cytoarchitectonic borders (Insausti et al., 1998; Ding and Van 
Hoesen, 2010). Anteriorly, the ERC and TEC extended 4 mm beyond the 
hippocampal head. Posteriorly, the ERC and TEC extended 2 mm beyond 
the gyrus intralimbicus (GI) (Insausti et al., 1998). Medially, the ERC 
extended to the edge of the visible gray/white matter boundary. Later-
ally, the TEC extended to the deepest portion of the collateral sulcus. 
Finally, the border between lateral ERC and medial TEC was defined at 
the medial bank of the collateral sulcus, depending on the depths of the 
sulcus in each individual following a previously described protocol 
(Insausti et al., 1998). In this work, both ERC and TEC were combined 
into a single entorhinal region as a point of single comparison to the 
atrophy rates measured in the amygdala in these same subjects. 

The amygdala was segmented manually in all individuals in coronal 
slices. Segmentation was done slice by slice from posterior to anterior 
following a protocol based on intensity contrast and comparison with 
anatomical landmarks identified for the hippocampus. Posteriorly, the 
region of dark contrast superior to the hippocampus, representing the 
inferior horn of the lateral ventricle, was used to delineate the anterior 
hippocampus from the posterior start of the amygdala. At that level, the 
first set of voxels marked as amygdala were those exhibiting an inter-
mediate gray level of intensity, rather than white matter contrast as 
appears posteriorly. Over its antero-posterior extent, the amygdala was 
defined as an area with even intensity contrast that increased in size 
anteriorly. The anterior border was demarcated by the disappearance of 
contrast, which occurred, on average, 11.8 mm ± 2.0 mm from the 
marked posterior border. For consistency, a space of one voxel width is 
left unsegmented between the amygdala and ERC and TEC. 

MRI scans from each subject at each time point were all segmented 
individually to maximize the accuracy of each segmentation to each 
scan. To reduce inter-rater variance, one individual (CC) segmented only 
amygdalas whereas the other (EX) segmented only ERC + TECs. To 
reduce intra-rater variance, both individuals underwent one month of 
training in which they segmented similar structures across different 
datasets of 3T MRIs prior to beginning work on this select ADNI subset. 
Measures of intra-rater variance for the scans included in the present 
study were assessed by comparing the Dice overlap score between 
replicate segmentation masks of the same structure in the same MR scan, 
made by the same individual at different points in time. Supplementary 
Table A.1 shows the distribution of overlap scores in a subset of 2 scans 
from 6 subjects from the ADNI data set. Each scan’s amygdala was 
segmented three times by the same individual and overlaps were 
computed between the first and second times and second and third times 
to assess consistency. Average overlap between two replicated seg-
mentations was 0.87 ± 0.04, with 4 − 11 days between segmentation 
attempts. See Supplementary Section Appendix A for details. 

In ex vivo 11T scans, MTL subregions included amygdala, ERC, CA 
fields, subiculum, presubiculum, parasubiculum, and dentate gyrus. 
Segmentations were drawn following manual alignment of individual 
block MRIs into a single MRI using an in-house rigid alignment tool. 
Boundaries for each region were defined based on intensity differences 
and published MR segmentations (Ding et al., 2017; Wisse et al., 2012; 
Yushkevich et al., 2009). Where available, Nissl-stained histology sec-
tions were overlaid with MRI for validation of the intensity-based pro-
tocol. For assessment of NFT density distribution within the amygdala, 
the amygdala segmentation in a control brain sample was subdivided 
into five individual regions based on visible intensity differences in 11T 
images, combined with anatomical markers and previously published 
delineations (Amunts et al., 2006; Saygin et al., 2017; Olga et al., 2017). 
Regions include basolateral (BLA), basomedial (BMA), combined 
cortical, medial, and central (CMA), and lateral (LA) nuclei and peri-
amygdaloid area (PA). 

For evaluating accuracy of alignment between digital pathology and 
MRI, as done previously (Stouffer et al., 2022), all digital pathology 
images from a single brain sample were segmented into corresponding 
MTL subregions. These segmentations were drawn on histology images 

that had been downsampled by four times to a resolution of 32 microns 
in both the x and y directions. The protocol for segmentation of 2D 
images used previously published delineations of MTL subregions based 
on cytoarchitectonic characteristics (Amunts et al., 2006; Olga et al., 
2017; Ding, 2013; Ding and Hoesen, 2015; Insausti et al., 1995; Insausti 
et al., 2019). 

2.2. Morphometric measuring of atrophy rate 

2.2.1. Smoothing via longitudinal 3D diffeomorphometry 
We use geodesic shooting as described in Tward and Miller (2017) 

and Thomas Fletcher (2013) to estimate a smooth atrophy rate for each 
individual’s time series by shooting a hypertemplate through each time- 
series. This yields a smooth evolution of each patient’s starting geometry 
effectively acting as a filter, eliminating variance in volumetric calcu-
lations due to both imaging parameters such as head placement, specific 
machine, etc. and intra-rater variability in manual segmentation of the 
given structure. As in Large Deformation Diffeomorphic Metric Mapping 
(LDDMM) (Beg et al., 2005), we generate a flow, φt, from a smooth time- 
varying velocity field acting as the control vt satisfying φ̇t = vt∘φt, with 
initial condition φ0. Shooting implies the geodesic flows are defined 
entirely by their initial momentum at time t = 0 (Miller et al., 2006), 
which is denoted here as p0: 

ṗt = − DvT
t ∘φtpt, initial condition p0, (1a)  

determining the control and flow: 
⎧
⎪⎨

⎪⎩

vt

(

⋅

)

=
∑

i
K

(

⋅,φt

(

xS
i

))

pi,t

φ̇t = vt∘φt, initial condition φ0

, (1b)  

where D denotes the Jacobian over space and K(⋅, ⋅) the reproducing 
kernel in the Hilbert space of smooth vector fields. The kernel de-
termines the norm for the momentum ‖p‖2

=
∑

i,jpT
i K(xi,xj)pj. 

The connected subvolumes of amygdala and combined ERC and TEC 
for each subject are represented as a time-series, St1 ,…, Stk with the 
simulation time interval normalized as 0 < t1 < … < tk < 1. Each Sti is a 
surface triangulation of vertices S = {xS

i ∈ R3}i=1:Vconstructed from the 
segmentation masks for each scan (see Section 2.2.2 for details). 
Geodesic shooting solves for the flow of the population template Stemp 

through the time-series by moving the points in each surface under the 
diffeomorphism according to φ⋅S = {φ(xS

i ) ∈ R3}i=1:V . We insert the 
template into the time series at the optimized time t*, denoting the 
template surface here as Stemp

t* . Using geodesic shooting, we parameterize 
the flows with the initial momentum, ρ at t* and flow the template 
backwards φρ−

t , t < t* fitting the early surfaces Sti , ti < t*, and forwards 
φρ+

t , t⩾t* fitting the later surfaces Sti , ti⩾t*, with the flows given ac-
cording to: 
{

φ̇ρ+
t = vρ+

t ∘φρ+
t , [t*⩽t⩽1]

φ̇ρ−
t = vρ−

t ∘φρ−
t , [0⩽t < t*]

, φρ+
t* = φρ−

t* = Id. (2) 

The variational problem thus optimizes on the single initial condition 
p−

t* = p+

t* = ρ, with (1a) and (1b) satisfied for vρ−
t ,vρ+

t ,φρ+
t ,φρ−

t : 

inf
ρ
‖ρ‖2

+
∑

ti<t*
‖Sti − φρ−

ti ⋅Stemp
t* ‖

2
W* +

∑

ti⩾t*
‖Sti − φρ+

ti ⋅Stemp
t* ‖

2
W* . (3) 

At the interface, vρ−
t* = vρ+

t* = Kρ (Tward and Miller, 2017). For each 
subject’s time-series we also optimize over the insertion point t* and the 
flow of the fixed common template onto the unique target Stemp

t* . We do 
this by jointly optimizing (3) with the flow of the common template onto 
the target Stemp

t* . 
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2.2.2. Amygdala volume measurements 
3D surface mesh renderings of the amygdala were generated for each 

subject at each time point using restricted Delaunay triangulation 
(Cheng et al., 2013). As described in the previous section, we define each 
surface S as a collection of vertices, S = {xS

i ∈ R3}i∈I, together with a 
family of 3-tuples, C = (c = (c1, c2, c3) ∈ I3) of indexes such that each 

cell is defined as γc(S) =
{∑3

i=1aixci ,
∑

iai = 1, ai⩾0
}

, with non-empty 

interior, with positive orientation, area |γc(S)| := 1
2|(xc2 − xc1 )

×(xc3 − xc1 )| and cell centers mc(S) = 1
3(xc1 + xc2 + xc3 ). Amygdalar 

volumes were computed from triangulated surfaces by summing the 
signed individual volumes of tetrahedrons formed by each cell together 
with the origin V =

∑
c∈C

1
6(xc1 × xc2 ⋅xc3 ). 

Atrophy rate per subject was measured in the amygdala as change in 
volume per time (mm3/year). Rates of change were estimated per sub-
ject for a subject’s entire time series via least squares fitting for each of 
the three groups. For comparison between subjects, rates were 
computed as a percent change in volume from the starting measure in 
each series of time points. The hyper-template surface mesh from a high 
field ex vivo MRI (0.125 mm resolution) of a 27 year old male without 
AD pathology allowing us to bring the clinical population into register 
with the pathology specimen. This sample was prepared according to the 
protocol described in Section 2.1.2, and both regional and subregional 
delineations of the amygdala were drawn on this MRI following the 
protocol described in Section 2.1.3. This process is summarized in Fig. 2, 
where amygdala surfaces for one subject at each of four time points are 
shown in blue, overlaid with corresponding surfaces of the template’s 
flow sampled at these same time points. 

2.2.3. ERC plus TEC thickness measurements 
3D surface mesh of the combined ERC and TEC were generated for 

each subject at each time point as above. Vertex-wise thickness of 

combined ERC and TEC surfaces was computed following the estab-
lished approach of Ratnanather et al. (2019), as used in our previous 
work (Kulason et al., 2019; Kulason et al., 2020). Surfaces were cut into 
an outer (pial) surface and inner (gray/white matter boundary) surface 
using an in-house manual tool. Diffeomorphic transformations of the 
inner surface to the outer surface were estimated with LDDMM with the 
added constraint that the deforming inner surface flowed normal to it-
self at each sampled point in the flow. Vertex-wise thickness was esti-
mated as the distance each inner surface vertex traveled over the course 
of the diffeomorphic flow to the outer surface, as shown in the bottom 
left panel of Fig. 1. Composite ERC and TEC thickness measures for each 
subject at each time point were estimated as the average vertex-wise 
thickness from the set of vertices in the inner surface correspondingly 
labeled as ERC or TEC respectively. 

Rates of change in the ERC and TEC were computed as change in 
thickness per time (mm/year). For each subject, average atrophy rate 
was estimated by least squares fitting to the subject’s entire time series 
of smoothed measurements. As with amygdalar atrophy rates, ERC plus 
TEC rates were computed as a percentage change in thickness per year 
from baseline measurement. The combined ERC and TEC hypertemplate 
used in shooting was generated based on population surface generation 
(Ma et al., 2008). 

2.3. Fixed effects modeling 

Linear mixed effects (LME) and linear fixed effects (LFE) models 
(Bernal-Rusiel et al., 2013; Miller et al., 2013; Younes et al., 2014; 
Younes et al., 2014; Kulason et al., 2019; Kulason et al., 2020) have been 
used to represent the spatially normalized deformation marker, Jv(⋅), for 
a set of discrete points on anatomical surfaces for various groups of 
subjects. For each subject s in a cohort, Jv(s) captures the local expan-
sion/atrophy for subject s at point v. P-values are computed at the set of 

Fig. 2. Smoothed flow of amygdalar surface for sub-
ject in CU →MCI group. Coronal slice of MRI at each 
time point shown with amygdala segmentation (top), 
from which original amygdalar surfaces are gener-
ated. Measured volumes of original surfaces plotted in 
blue (middle). Longitudinal shooting estimates flow 
from template to target, entry point into target series 
(t*), and flow through time series backward and for-
ward (φ−

t , φ+
t ). Flowed template surface sampled at 

each of four time points shown in red overlaying 
original subject surfaces in blue (bottom). Measured 
volumes of estimated smoothed surfaces plotted in red 
(middle).   
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points, V, corrected for multiple comparisons (Nichols and Hayasaka, 
2003) with covariates such as age, sex, and log intracranial volumes 
(icv). In the setting of two clinical groups (e.g. CU→CU and CU→MCI), 
the LFE models, under the null and alternative hypotheses, on Jv(⋅) at 
point v take the form 

H0
v : Jv(s) = αv + γvd(s) + δvi(s) + κva(s) + ∊v(s)

H1
v : Jv(s) = αv + βv1MCI(s) + γvd(s) + δvi(s) + κva(s) + ∊v(s)

respectively, for 1MCI(s) = 1 if s ∈ CU→MCI and 0 otherwise, and 
covariates d(s) = sex, i(s) = log − icv, and a(s) = age. The ∊v(s) is the 
error term, assumed to be independent identically distributed Gaussian 
noise. The p-values are computed using random permutation (Nichols 
and Hayasaka, 2003) of the residuals, examining the global test statistic 
between the models under the null and the alternative hypotheses. This 
statistic is defined as 

S* = max
v

(
Sv := ℓH1

v − ℓH0
v

)
,

where ℓv denotes the Gaussian log likelihood under each model. P- 
values are computed as the fraction of times S* is larger than the p-values 
obtained with the Sv’s calculated in the model at the maximum- 
likelihood parameter estimates of α and β. For this, we permute the re-
siduals ∊0

v (s) for the H0
v model with π a random permutation of the 

subjects, giving 

Jπ
v (s) = α0

v + γ0
vd(s)+ δ0

v i(s)+ κ0
va(s)+∊0

v(πs).

Permutation testing delivers the familywise error rate (FWER), 
which we control for to deduce the subset of points for which the null 
hypothesis is rejected at 5% defined as D = {v : Sv⩾q*} where q* is the 
95th percentile of the observed value over the permutations (Nichols 
and Hayasaka, 2003). 

Here, we use our estimated mappings from longitudinal diffeo-
morphometry (see Section 2.2.1) to compute for each subject s and the 
center of each triangle v on our hypertemplate surface, the deformation 
marker Jv(s) as the log determinant Jacobian of the estimated mapping φ 
from initial to final time point in each subject’s time series. We compute 
the average and standard deviation of these markers across subjects 
within each group to compare relative atrophy between groups at each 
point on the amygdalar surface. We use fixed effects models with per-
mutation testing to assess where in the amygdala this atrophy differs 
significantly between both CU→MCI and MCI→DAT groups versus the 
CU→CU group and compare the location of these regions to the spatial 
distribution of postmortem pathology. 

2.4. Ex vivo tau reconstructions 

2.4.1. 3D reconstruction of 2D digital pathology 
Sets of 2D digital histology images at 2 μm resolution were mapped 

to the space of 3D high field ex vivo MRI at 0.125 mm resolution using 
Projective LDDMM (Stouffer et al., 2022). Each histology section is 
modeled as a Gaussian random field in the random orbit model 
(Grenander and Miller, 1998) with mean field modeled as an image in 
the orbit of a template Itemp under the group of diffeomorphisms, I ∈
I = {I = φ⋅Itemp,φ ∈ Gdiff}. To accommodate differences in geometric 
dimension of digital histology images (2D) and MRI (3D), the mean field 
is given by the projection operation Pn : I ↦ Jn = PnI + noise,n = 1,…,

N, with observed target images Jn modeled as conditional Gaussian 
random fields with mean PnI. The projections PnI(y) are intrinsic to the 
histology process prescribing the weight an image value I(x) at location 
x contributes to the target image value J(y) at y. For serial sectioning at 
1 mm intervals along the anterior-posterior axis of the brain: 

PnI
(

y
)

=

∫

pn

(

y, dx
)

I
(

x
)

, y ∈ Y⊂R2

with pn
(
y, dx

)
= δy,zn

(
dx
)
,

where the Dirac delta measure, δy,zn (dx), assigns nonzero measure only 
to the image value I(x) for x = (y(1), y(2), zn), effectively restricting the 
template image to that within the image plane of target Jn at location zn 
along the anterior-posterior axis of the brain. The tissue sectioning in 
histology introduces additional deformation modeled as 2D trans-
formations ϕn in the 2D image plane, independent from section to sec-
tion n = 1,…,N: 

Jn = ϕn⋅PnI + noise, n = 1,…,N, (4)  

with I = φ⋅Itemp.

Here, each ϕn, is modeled as a diffeomorphism. We estimate φ and each 
ϕn as the flow of time-varying velocity fields, following the approach of 
LDDMM of Beg et al. (2005). We alternately optimize our cost function 
(5) for φ and each of the ϕn while holding the other fixed, as described in 
Stouffer et al. (2022). Estimation of φ is explicitly given for optimizing 
over vt , t ∈ [0, 1] to: 

inf
(vt)0⩽t⩽1∈L2([0,1],V)

∫ 1

0
‖vt‖

2
V dt +

∑N

n=1
‖Jn − ϕn⋅PnI‖2

2 (5)  

with ‖⋅‖V a norm defined over a space V of smooth time varying velocity 
fields and ‖⋅‖2 the integral square norm. Estimation of each ϕn proceeds 
via estimation of velocity field (ut)0⩽t⩽1 ∈ L2([0, 1],V) with ϕ̇t,n = ut∘ϕt,n,

ϕ0,n = Id. 
To resolve differences in the multi-scale resolution and contrast of 

the digital histology micro-scale images in relation to the tissue scale 
MRI, we expand the histology images using a Scattering Transform 
(Mallat, 2012). The Scattering Transform is comprised of an alternating 
sequence of convolutions with wavelets and non-linear modulus oper-
ations (i.e. modulus) that generate a sequence of multi-scale images S :

J ↦ (S1
J , …, S48

J ), which reflect the tissue characteristics originally 
encoded at the high resolutions of digital pathology. We use Principal 
Component Analysis (PCA) to build a 7-dimensional linear predictor 
from the scattering images with a constant image (Stouffer et al., 2022), 
which approximates an MR contrast image of histology as a function of 
the predictor Jn(α), α = α1, …, α7. The optimization problem simulta-
neously solves for the diffeomorphism transforming the template onto 
the target histology with (5) and the low-dimensional linear predictor, 
with estimation of αn following least squares minimization: 
minα∈R7‖Jn(α) − ϕn⋅PnI‖2

2 (Stouffer et al., 2022). 
For distortion extending to tears, tissue folding, and other artifacts, 

we introduce a set of latent variables in the context of Gaussian mixture 
models, assigning each pixel location in the image plane to one of three 
classes: foreground tissue, background tissue, or artifact, as described in 
Tward et al. (2020). Estimation of latent variable values together with 
each ϕn is achieved with the Expectation–Maximization (EM) algorithm 
(Dempster et al., 1977), resulting in a cost function with matching term 
weighting each location in the image plane according to its iteratively 
estimated posterior probability of being foreground tissue (Stouffer 
et al., 2022). 

The high field MRI was collected in three blocks. To integrate mea-
sures across blocks, we used an in-house tool to rigidly align each set of 
three MRI blocks. The Mai Paxinos Atlas (Mai et al., 2008), was rigidly 
aligned to a surface rendering of the complete hippocampal geometry of 
each brain sample manually to a surface rendering of the Mai hippo-
campus. The findings reported in Section 3 reflect the coordinate system 
of the Mai atlas. 

2.4.2. Neurofibrillary tau tangle density measures 
We quantified tau pathology from digital histology images as number 

of neurofibrillary tau tangles (NFTs) per cross-sectional tissue area. 
Measures of NFT density were computed over each section following the 
approach described previously (Stouffer et al., 2022). For each brain 
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sample, a UNET (Ronneberger et al., 2015) with architecture specified in 
Supplementary Section Appendix B, was trained on a subset of patches 
of background and foreground tissue with NFTs manually annotated. 
Separate UNETs were trained for each brain sample to account for dif-
ferences in staining intensity that resulted from executing the same 
protocol at different times by different handlers. Resulting probability 
maps predicted the likelihood of each pixel’s being part of an NFT. 
Probability maps were then segmented using an available implementa-
tion of the Watershed algorithm (Bradski, 2000) to delineate individual 
NFTs. Each histology image was segmented into foreground tissue and 
background using Otsu’s method (Otsu, 1979), and final measures of 
NFT density per slice, region, or subregion were computed by taking a 
sum of NFTs within foreground tissue divided by the square mm area of 
foreground tissue in the region of interest. 

2.4.3. 3D reconstruction of NFT densities 
Distributions of tau pathology in 3D were reconstructed per brain 

sample following estimation of geometric mappings between histologi-
cal images and 3D MRI (see Section 2.4.1). Estimated NFT densities 
within each image plane were modeled as features, fi, associated to 
“particles” at locations, xi, in a regular voxel grid, using a measure-based 
framework, as described in Miller et al. (2021). Weights, wi, reflecting 
the square mm area of tissue captured by the ith particle at each position 
xi were associated with the particle measures (mathematical measures, 
see Miller et al. (2021)) and carried to the Mai coordinate space, 
together with MRI and associated MTL segmentations, following the 
prescribed action of diffeomorphisms on measures (Miller et al., 2021). 

In the Mai coordinate space, measures were pooled across histolog-
ical sections and resampled within the dense volume. Physical and 
feature space were transformed independently, as enabled by the 
decomposition of measures into a physical density (cross-sectional tissue 
area (mm2) per unit of 3D space) and conditional feature probability 
(number of 2D detected NFTs in unit of 3D space given its physical 
density). Spatial resampling to a regular grid within the volume of the 
Mai atlas at a resolution of MRI was achieved with a Gaussian kernel, 
assigning a fraction of each particle measure’s weight, wi, to each new 
particle x′ with new weight, w′

i in the resampled space. Feature values 
for each new particle x′ were computed as the expected first moments 
according to the empirical distribution defined by the spatial reassign-
ment of weights. 

2.4.4. Laplace–Beltrami resampling to surfaces 
In addition to resampling within the dense volume, resampling along 

the surface manifold of MTL subregions was achieved with a nearest 
neighbor kernel, “projecting” NFT density measures to the boundary of 
each surface by assigning the entirety of each particle’s tissue area 
within a given region at high resolution to a single particle within the 
manifold. Smoothed NFT densities were estimated as the ratio of 
smoothed NFT counts (ĝτ ) to smoothed cross-sectional tissue areas (ĝa) 
following expansion of each vertex defined function gτ(xi) := fi, ga(xi) :=

wi in the Laplace–Beltrami basis, as described previously (Qiu et al., 
2006; Stouffer et al., 2022). Specifically, for each of g = ga(⋅) and g =

gτ(⋅), we compute its smoothed approximation, ̂g = ĝa(⋅), ĝ = ĝτ(⋅), as: 

argmin
ĝ
‖ĝ − g‖2

2 + k‖∇ĝ‖2
2

=
∑N

i=1

〈g, βi〉V βi(⋅)
1 − kλiw(⋅)

, with 〈g, βi〉V :=
∑

y∈V
β*

i (y)g(y)w(y)

where B := {β1,⋯, βN} is a basis for the Laplace–Beltrami operator, w(⋅ 
) defines a weight for each vertex based on partitioning the surface area 
of adjoining faces, and k is the smoothing constant, with value of 2 in the 
results presented in Section 3. 

3. Results 

3.1. Spatial distribution of amygdalar atrophy 

As described in Sections 2.2.1 and 2.3, we estimated mappings of a 
common hypertemplate of the amygdala and of the combined ERC +
TEC to each subject’s trajectory and the consequent flow from start to 
end scan time through this trajectory. Using this method, we have pre-
viously reported the spatial distribution of thickness change observed in 
the ERC + TEC in subsets of both the ADNI and BIOCARD datasets, with 
greatest shape change observed anteriorly in the ERC + TEC (Kulason 
et al., 2019; Kulason et al., 2020). Here, we compare the magnitude and 
the spatial distribution of atrophy within the amygdala across our three 
groups. 

For comparison to atrophy rates per individual subject, described in 
the following section, we estimated the atrophy per year on each tri-
angle of the template amygdala for each subject’s trajectory as the 
determinant Jacobian of this subject-specific flow from first to last scan 
time divided by the difference in these times. We consequently 
computed the average atrophy rate at each triangle on the amygdala 
surface for each group of subjects. Fig. 3 shows the average atrophy rate 
at each triangle on the hypertemplate amygdalar surface for CU→CU, 
CU→MCI, and MCI→DAT groups and corresponding standard deviation 
of this atrophy rate at each triangle within each group. Average atrophy 
rate ± standard deviation across triangle regions within the CU→CU, 
CU→MCI, and MCI→DAT groups are 0.94 ± 2.53%, 3.58 ± 3.7%, and 
7.51 ± 4.79%, respectively. 

As described in Section 2.3, we used fixed effects modeling with 
permutation testing to control for the FWER and select the set of tri-
angles for which the model under the null hypothesis is rejected with a 
p-value of 0.05. This yielded an assessment of where within the amyg-
dala the reported average atrophy rate of the CU→MCI and MCI→DAT 
groups (Fig. 3) was significantly different than that of the CU group, 
which we used to compare these in vivo results to ex vivo tau re-
constructions (see Section 3.4). 

3.2. Amygdalar and entorhinal individual atrophy rates 

Following estimation of a smoothed trajectory over time for each 
subject via longitudinal diffeomorphometry (see Section 2.2.1), this 
trajectory was resampled at each subject’s each original scan time point, 
enabling the assessment of each individual’s atrophy over time. The 
results of this resampling are plotted for each subject in Fig. 4. Average 
atrophy rates for ERC thickness and amygdala volume were computed 
from the smoothed measures for each series of time points for each 
subject via least squares fitting. Scan periods ranged from 1 year to 5.1 
years for sets of time points, and each subject had between 3 and 7 scans. 
In both entorhinal and amygdalar regions, those in the CU→MCI and 
MCI→DAT groups exhibited higher atrophy rates than stable controls. 
Mean atrophy rates of the ERC plus TEC were 1.1,3.8, and 7.0% thick-
ness loss per year, and of the amygdala, were 1.5,6.8, and 11.6% volume 
loss per year for CU→CU, CU→MCI, and MCI→DAT subjects, respec-
tively. These are recorded with standard deviations in Table 3. 

To assess the potential of amygdalar atrophy rate, measured via 3T 
MRI, as a biomarker for AD, we illustrate the estimated volume trajec-
tories following smoothing in comparison to the subjects’ change in 
cognitive status. Fig. 5 shows these trajectories for both CU→MCI and 
MCI→DAT groups, with volume loss observed as early as 7–8 or 6–7 
years prior to diagnosis in each group, respectively. We additionally 
compared distributions of estimated atrophy rates in the CU→CU group 
to those of the CU→MCI and MCI→DAT groups via receiver operating 
curve (ROC) analysis to estimate a distinguishing cutoff between groups. 
This yielded an optimal threshold of discrimination between CU→CU 
subjects and both CU→MCI and MCI→DAT subjects at 4.7% volume loss 
per year, with sensitivity of 0.91, specificity of 0.91, and AUC of 0.96. 

For comparison to other studies, we also analyzed smoothed trajec-
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tories of ERC + TEC thickness and amygdala volume in a subset of the 
CU→MCI cohort with confirmed Aβ positive status at baseline. Mean 
atrophy rates for the ERC + TEC and amygdala in this subset were 
estimated as 2.52 ± 0.98% and 5.76 ± 1.81%, respectively. See Sup-
plementary Section Appendix C for details. 

3.3. Geometric reconstructions of postmortem brain samples 

Two sets of 35 digitized histological sections stained with PHF-1 
were aligned to 3D high field MRI blocks of corresponding MTL tissue 
following the approach described in Section 2.4.1. Alignment accuracy 
was evaluated qualitatively by visual comparison of overlap between 
deformed MRI and histological images (see Fig. 6, and quantitatively by 
comparing 2D segmentations of MTL subregions on histological images 
to 3D segmentations of corresponding regions deformed to 2D. Dice 
Score and 95th Percentile Hausdorff distance for each region on each 
slice of one brain were computed with average overlap scores of 0.85, 
0.82 and average 95th percentile Hausdorff distance of 1.886 mm and 
1.039 mm for the amygdala and ERC, respectively. Positions of each 
section within each block are shown for one brain sample in Fig. 7 with 
manual segmentations of MTL subregions illustrated across the rigidly 

Fig. 3. Mean per triangle percent atrophy rate in the amygdala in CU→CU, CU→MCI, and MCI→DAT cohorts (n = 33, n = 16, n = 18 respectively) (top). Standard 
deviation of per triangle percent atrophy rate in the amygdala shown in bottom row. Percent atrophy rate computed as percent change in surface area per year 
(100⋅ Afinal − Ainitial

Ainitial ⋅(tfinal − tinitial)
), estimated following longitudinal diffeomorphometry. Average percent atrophy rate over entire surface for CU→CU, CU→MCI, and MCI→DAT 

groups are 0.94,3.58 and 7.51%, respectively. Average per triangle standard deviation over entire surface for three groups are 2.53,3.7, and 4.79%, respectively. 
Triangles exhibiting atrophy rates significantly different from those in the CU→CU group after controlling for FWER are outlined in black (0/1696, 526/1696, and 
1345/1696 in three groups, respectively). ERC shown in grey for reference. 

Fig. 4. Smoothed measures of ERC plus TEC thickness (top) and amygdala volume (bottom) plotted against subjects’ ages at each scan time point. CU→CU group in 
green (left), CU→MCI in blue (middle), and MCI→DAT in red (right). Female patients outlined with black circles. 

Table 3 
Mean and standard deviation of percent atrophy rate in the combined ERC and 
TEC and in the amygdala for each of three groups. Percent atrophy rate 
computed as percent change in thickness or volume per year, respectively, for 
ERC + TEC and amygdala.   

CU→CU CU→MCI MCI→DAT 

Mean Entorhinal Atrophy Rate 1.1 ± 1.6% 3.8 ± 1.9% 7.0 ± 3.4% 
Mean Amygdalar Atrophy Rate 1.5 ± 2.0% 6.8 ± 4.1% 11.6 ± 5.8%  
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aligned MRI blocks. Following alignment of 2D histological sections to 
3D MRI, both sets of images were transported to the space of the Mai 
Paxinos atlas (Mai et al., 2008) with estimation of rigid alignment be-
tween hippocampal surfaces for each brain sample and that of the atlas. 
Fig. 8 exhibits surface renderings of select MTL subregions for one brain 
sample in the coordinate system of the Mai Paxinos atlas. Snapshots of 
the atlas show coronal slices in the area of the anterior MTL intersecting 
with select histological slices. 

3.4. NFT densities in advanced AD 

NFTs were detected on each histological image for each brain sample 
with separate UNETs trained independently on a subset of training data 
for each sample. We evaluated the accuracy of UNET-predicted per-pixel 
probability of tau using 10-fold cross validation. For the two brain 
samples, mean area under curve (AUC) was estimated at 0.9860 and 
0.9873, and mean accuracy at 0.9729 and 0.9546, respectively (see 
Supplementary Section Appendix B for details). We evaluated the 

Fig. 5. Smoothed measures of amygdala volume plotted against relative time to change in cognitive status, established by a diagnosis of MCI or AD dementia, 
respectively, in each of the CU→MCI and MCI→DAT groups. 

Fig. 6. Visual comparison of 2D histology slices (top row) and corresponding estimated 2D slices of deformed 3D MRI to histology coordinates (middle row). Select 
slices taken from the first two blocks of tissue and ordered left to right in rostral to caudal order. Overlap between estimated deformed MRI slice (green) and PHF-1 
image (magenta) illustrates areas of match and mismatch between tissue boundaries (bottom row). 

Fig. 7. Complete sets of digitized PHF-1 stained histology sections for 3 blocks of MRI for an AD brain sample. 3D MRI shown with manual segmentations of MTL 
subregions (left). Boundary of each histological section on right shown in white in position following transformation to 3D space (left). Detected NFTs plotted as black 
dots over each histology slice (right). 
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accuracy of discrete NFT detections following segmentation with the 
watershed algorithm by direct comparison of the number of NFT de-
tections to the number of NFTs manually annotated in a set of ten image 
patches reserved for validation. The number of NFT detections varied on 
average 19 ± 1% from the number of annotated NFTs across the set of 
patches, with similar trends in both numbers of NFTs from patch-to- 
patch, ordered anterior to posterior, exhibiting similar relative 

measures in density between predictions and annotations. Further de-
tails and exact measures provided in Supplementary Section 
Appendix B. 2D measures of NFT density were carried to the space of the 
Mai Paxinos atlas, together with MRI and manual segmentations of the 
MTL. NFT density measures were pooled across sections and resampled 
at 0.2 mm resolution within the coordinate space of the Mai atlas (see 
Fig. 9). Deformation of 3D MTL segmentations to 2D histology images 

Fig. 8. 3D Reconstruction (left) of 4 MTL subregions for an AD brain sample in the coordinate space of the Mai Paxinos Atlas. Example section of histology and 
corresponding MRI slice (right) shown at approximate location of intersecting coronal planes taken from the pages of the Mai Atlas (bottom). 

Fig. 9. Distributions of NFT densities computed from 
digital histology at 2 μm (top) reconstructed in 3D for 
an advanced case of AD. Densities within a subset of 
regions of MTL (amygdala, ERC, CA1, and subiculum) 
sampled within the dense metric of the 3D MRI at 0.2 
mm resolution (right) or projected to the surface of 
each structure and smoothed with the Lap-
lace–Beltrami operator (left). Sections of MRI shown 
at 6, 10, and 14 mm, corresponding to coronal slices 
in the Mai Paxinos atlas.   
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enabled assignment of NFTs into MTL subregion. NFT densities per MTL 
subregion were computed overall (see Fig. 10) and over the surface 
boundary of each region (see Fig. 9), following smoothing with the 
Laplace–Beltrami operator, as described in Section 2.4.4. 

NFT densities are reported on different scales for each brain sample. 
To compare NFT densities across brain samples, subsets of 4–5 addi-
tional sections from each brain were selected in the rostral hippocampus 
at approximate locations of original sections. These two subsets were 
stained simultaneously to achieve consistency between them and the 
respective UNET trained on the original training data from each brain 
was used to detect NFTs in these sets of replicate slices. Ratios of NFTs 
detected on the original and new version of each section were computed, 
yielding average ratios of 2.7 and 27.2 for brain samples from subjects 1 
and 2, respectively. These differences in level of detection speak to the 
effect that variation in staining intensity, timing, and handling of tissue 
samples has on absolute counts of NFTs. Therefore, to compare relative 
distributions of tau tangles between the two brain samples (see Fig. 10), 
we normalized NFT density measures accordingly in each brain to the 
range 0 to 1. Average NFT densities per MTL subregion showed highest 
amounts of NFTs in amygdala, hippocampal-amygdalar transition area 
(HATA), ERC, CA1, and subiculum for both advanced AD samples (see 
Fig. 9, 10). Indeed, highest NFT densities within the ERC, amygdala, and 
HATA constitute a propensity of NFTs within the rostral third of the 
MTL. 

Tau pathology localized not just to particular regions (e.g. amygdala, 
ERC, CA1, subiculum), but also within them. As illustrated in Fig. 10, 
high densities of NFTs in amygdala and ERC concentrated particularly at 
the border between the two structures. Within the amygdala, tau was 
concentrated at the inferior, medial boundary of the amygdala, partic-
ularly in its basomedial and basolateral regions, with the lateral region 
largely devoid of pathology. These high pathology regions were also 
those regions showing significant atrophy in both CU→MCI and 
MCI→DAT diagnostic groups after permutation testing and control of 
FWER at 5% (see Section 2.3). As illustrated in Figs. 3 and 10, approx-
imately 1

3 of the amygdala was found to have atrophy significantly 
different in the CU →MCI group than in the CU→CU group (526/1696 

triangles), with all of these regions concentrating to the medial, and 
inferior-medial regions of the amygdala. Within the DAT group, a large 
majority of the amygdala (1345/1696 triangles) exhibited atrophy 
significantly different from that of the CU→CU group, with the lateral 
region, as in observed distributions of ex vivo pathology, being the re-
gion without such atrophy (see Fig. 3). 

4. Discussion 

There are two primary findings from this research. First, these results 
demonstrate that the amygdala atrophies at a significantly faster rate in 
subjects progressing from CU to MCI and from MCI to AD dementia, 
compared with those who remain CU. In both the ERC and amygdala, 
our examined CU→CU group exhibited some level of atrophy (1.1% 
thickness loss and 1.5% volume loss, respectively). Likely an aspect of 
normal aging independent of disease, these atrophy rates nevertheless 
suggest that these subjects, if they live long enough, might develop 
cognitive impairment given the accumulated atrophy of the ERC and 
amygdala. However, the differences between those in CU→MCI and 
CU→CU in volumetric atrophy rate as measured by MRI from a series of 
3–6 scans are comparable to those in thickness atrophy rate of the ERC 
plus TEC, with CU→MCI individuals atrophying at a rate over 3x that of 
CU→CU individuals, and MCI→DAT individuals at a rate over 6x that of 
CU→CU individuals. In terms of onset, we have previously shown that 
the MTL as a grouped structure including ERC, TEC, and amygdala ex-
hibits a changepoint nearly a decade before clinical time (Younes et al., 
2019). The findings here explicitly analyzing amygdala and ERC sepa-
rately in individuals converting from CU to MCI and from MCI to AD 
dementia indicate an early role for this MTL aggregate marker. 

Second, these results demonstrate concordance between patterns of 
microscopic NFT pathology, specific to pathologically confirmed AD, 
and macroscopic ex vivo measures of atrophy through reconstruction of 
microscopic measures in the dense, submillimeter metric of high field 
MRI. Previous studies have shown correlation between single time point 
ex vivo measures of thickness and levels of NFT and TDP-43 pathology, 
particularly in the areas of ERC and hippocampus (Ravikumar et al., 

Fig. 10. Posterior view of amygdala-ERC boundary in 
hypertemplate (middle) and two advanced AD post-
mortem samples (top). NFT densities for postmortem 
samples shown following projection to each surface 
and smoothing with the Laplace–Beltrami operator. 
Outline of CA1 and subiculum surfaces for postmor-
tem samples shown in black mesh (top). Mean per 
triangle percent atrophy rate in the amygdala for 
CU→MCI group (middle left). Edges outlined in black 
for triangles with average amygdala atrophy rate that 
differ significantly from those of CU→CU group after 
controlling for FWER at 5%. Basolateral amygdalar 
subregion delineation shown in hyptermplate (middle 
right). Average NFT density within each MTL subre-
gion normalized to maximum average for each AD 
brain sample (bottom).   
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2021; Llamas-Rodríguez et al., 2022). Here, we show significant atrophy 
rates measured longitudinally in vivo in both the ERC and amygdala, 
which are correspondingly supported by our observation of highest 
densities of NFTs in our postmortem specimens not only in the ERC, but 
also in the amygdala. Furthermore, the variation in level of atrophy seen 
over the surface of the amygdala (Fig. 3) and previously reported by our 
group and others in the ERC (Kulason et al., 2020; Holbrook et al., 2020) 
shows highest and significantly different atrophy in the medial amyg-
dala and anterior ERC, in CU→MCI and MCI→DAT subjects compared 
with CU→CU individuals, which echo the areas where we observed 
highest NFT densities postmortem (Fig. 10). These findings are consis-
tent with the ex vivo correlation observed in the anterior ERC in Rav-
ikumar et al. (2021) and with those in the ERC and amygdala observed 
in Yushkevich et al. (2021). Together, our coupled in vivo and ex vivo 
results suggest that such NFT pathology is underlying observed atrophy. 
Also, as MTLs from advanced cases of AD, these reconstructed distri-
butions exhibiting highest end stage densities in ERC, HATA, and 
amygdala (see Fig. 10) suggest that these regions are involved 
throughout the course of disease to accumulate such high end stage 
densities. The spatial organization of these structures further suggests 
that one may consider AD as a preferentially rostral disease within the 
MTL. However, further studies across the full spectrum of AD progres-
sion will be needed to establish the exact timing and progression of this 
spatial segregation. 

The emergent role of the amygdala, here, is supported by our own 
work in shape diffeomorphometry (Miller et al., 2015a; Miller et al., 
2015b) as well as recent studies in MRI (Wang et al., 2021), tau PET 
(Berron et al., 2021), and tau pathology (Yushkevich et al., 2021) that 
have seen similarly high levels of atrophy or tau pathology in the 
amygdala, particularly in early AD. Further work is needed to suffi-
ciently delineate which areas of the amygdala might be more involved in 
early AD, but in both brain samples analyzed here, basolateral and 
basomedial regions of the amygdala, often classified together with the 
lateral nucleus as “core” amygdala (Sheline et al., 1998), demonstrated 
higher tau densities as those adjacent to the ERC (Fig. 10). These 
regional findings echo those found both in postmortem histological 
analysis (Arnold et al., 1991) and more recently, the 3D reconstruction 
of postmortem pathology in Yushkevich et al. (2021), which both cite 
the accessory basal nucleus, in particular, as regions of high NFT pa-
thology. In addition, as highlighted above, both CU→MCI and 
MCI→DAT groups showed on average higher levels of atrophy, differing 
significantly from that in controls, within the medial inferior region of 
the amygdala in contrast to the lateral superior region (see Fig. 3). Ev-
idence of differential involvement of amygdalar nuclei has been cited in 
other neuropsychiatric diseases, such as Parkinson’s Disease (Harding 
et al., 2002) and depression (Sheline et al., 1998). Following Amunts 
et al. (2006), we are currently segmenting subregions of the amygdala in 
high field MRIs of MTLs from subjects with early and advanced AD to 
further assess specificity of tau pathology for particular amygdalar 
nuclei in the context of AD. 

This work has both strengths and limitations. It is foremost one of 
few studies integrating microscopic and macroscopic scales of both 
spatial and temporal analysis through digital pathology and longitudinal 
MR imaging measures. Having developed the technology and mathe-
matical infrastructure to integrate these two data types, we are poised to 
analyze other cohorts to corroborate the putative link between amyg-
dala and ERC atrophy observed in MR imaging to underlying NFT 
pathology. 

Regarding in vivo analysis, many previous clinical imaging studies 
from our own group as well as others (Miller et al., 2015a; Miller et al., 
2015b; Wang et al., 2021; Berron et al., 2021) have compared control 
and disease groups only cross-sectionally at a single time point. The 
longitudinal analysis here tracks subject specific measures over time. As 
such, it reduces variance inherent to the use of single measures, such as 
single time point thickness, to indicate disease status. Similar to the 
findings presented here in the ERC, others have reported significant 

differences in atrophy rate, particularly of the anterior-lateral entorhinal 
region, across three similar groups of the ADNI dataset (Holbrook et al., 
2020). Further longitudinal analysis amongst additional datasets will 
provide greater insight into the exact timing, spatial distribution, and 
progression of both ERC and particularly amygdala involvement in AD, 
as necessary for the development of biomarkers and understanding the 
emerging role of the amygdala in AD’s early stages. 

Regarding ex vivo analysis, other efforts to reconstruct distributions 
of tau pathology in 3D include efforts to analyze concordance of dis-
tributions between subjects in early AD (Ravikumar et al., 2021; Yush-
kevich et al., 2021; Llamas-Rodríguez et al., 2022) and to develop 
validation measures for in vivo molecular imaging (Ushizima et al., 
2022). These studies harbor advantages in terms of number of samples 
(Ravikumar et al., 2021; Yushkevich et al., 2021; Llamas-Rodríguez 
et al., 2022) and scope of brain region (e.g. whole brain) (Ushizima 
et al., 2022) analyzed. Here, we have focused our methods and analysis 
on reconstructing the 3D distribution of tau pathology within single 
subjects in a coordinate system (e.g. over the surface boundary of MTL 
substructures) consistent with identifying corresponding shape changes 
as measured in clinical subjects. Hence, we differ from some of these 
previous studies in providing a quantitative metric of pathology (NFT 
density as number of NFTs per square mm of tissue) over the unique 
surface geometry of each subject’s individual MTL structures rather than 
average measures in a common atlas. Furthermore, through mapping to 
11T MRI, we achieve sub-millimeter resolution of pathology measures, 
maintaining much of the precision found at microscopic scales and far 
exceeding the resolution of contemporary PET imaging (Ushizima et al., 
2022). In addition, we have measured tau pathology with the PHF-1 
antibody whereas most previous studies have used AT8, thus leading 
to slightly different staining patterns and consequently, levels and types 
of tau pathology presumably detected and reconstructed. 

Finally, manual segmentations of regions of the MTL in both in vivo 
MR images and ex vivo MRI offer an improvement over past efforts 
analyzing amygdalar atrophy and pathology in which segmentations 
were estimated from alternative templates (Kulason et al., 2019; Yush-
kevich et al., 2021; Fischl et al., 2002). While automatic segmentation 
protocols of amygdalar or entorhinal atrophy rate, as measured by MRI, 
would be optimal for measuring large numbers of individuals, existing 
algorithms have not yet achieved accuracy near that of manual seg-
mentation. Indeed, the amygdala has been cited as a structure harder to 
segment than others in the MTL (Jack et al., 1997), and recent com-
parisons of Freesurfer, FIRST, and ANTS segmentations of the amygdala 
to manual segmentations achieve Dice overlap scores only between 0.6 
and 0.7 (Alexander et al., 2020). A potential avenue for future work is 
the use of our manual segmentations to develop an accurate automatic 
segmentation algorithm. Yet, the development of more accurate auto-
matic segmentation schemes is an active area of research, for which we 
hope the marked differences in atrophy rate presented here will 
continue to motivate the field to achieve, in particular, more consistent 
segmentations of the amygdala, ERC, and TEC. 

Limitations of this study include both lack of data points (e.g. 
number of ex vivo samples) and restricted geometric diversity within in 
vivo cohorts. Here, we present ex vivo 3D reconstructions of MTL NFT 
pathology from only two brain samples. Other studies have recon-
structed distributions of pathology amidst larger cohorts, which has 
enabled the use of statistical methods to extract patterns in distributions 
across subjects (Yushkevich et al., 2021) and correlate these patterns 
with other measures such as cortical thickness (Ravikumar et al., 2021; 
Llamas-Rodríguez et al., 2022). However, these cohorts have increased 
the heterogeneity in diagnosis and both stage and type of pathology 
observed. In contrast, we present results of two cases both with neuro-
pathological diagnoses of AD and equivalent staging of tau and Aβ pa-
thology. Nevertheless, the reconstructed distributions provide a 
snapshot only of the relative distribution of tau pathology at the end 
course of disease, which precludes direct comparison to the spatial at-
rophy measured in our in vivo cohorts across these different stages. 
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However, the relative lack of pathology observed in certain regions (e.g. 
body of hippocampus, lateral and superior portions of the amygdala) 
even at this late stage of disease suggests these areas might remain 
largely devoid of pathology throughout the stages of disease. This hy-
pothesis fits with the gradual spread and continued accumulation of 
pathology described by Braak and Braak (1991) as opposed to a marked 
appearance and then disappearance of pathology. Indeed, Yushkevich 
et al., analyzing a cohort comprised primarily of early AD and mixed 
types of pathology, not only report highest NFT burdens in the amygdala 
and ERC over other areas of the MTL, as found in our two cases (see 
Fig. 10), but also highlight differing levels of pathology throughout the 
hippocampus (Yushkevich et al., 2021). Specifically, they report highest 
NFT burdens in both CA1 and subiculum, as evidenced in our cases, and 
furthermore, demonstrate a similiar lack of pathology in what they 
segment as posterior hippocampus, with both anterior counterparts and 
the tail of the hippocampus manifesting higher levels of pathology, as in 
our reconstructions (see Fig. 9). To build further support for the speci-
ficity of clinical imaging biomarkers such as MRI-measured ERC and 
amygdala atrophy rate in signature patterns of pathology in AD, we are 
currently reconstructing the distributions of both NFT and Aβ pathology 
in early, intermediate, and advanced stages of AD, following the 
methods outlined here. Future work could include the use of different 
antibodies (e.g. CP13) (Koss et al., 2016) in settings of earlier stage in-
dividuals for better detecting apparent pathology at these stages (e.g. 
pre-tangles and NFTs) and reconstructing the relative distribution in 
these individuals in 3D space. 

In our in vivo analysis, we restricted our attention to individuals with 
an anteriorly continuous CS to achieve accurate and consistent seg-
mentation of entorhinal and transentorhinal regions across subjects. We 
are currently extending our segmentation protocol for delineation of 
anteriorly discontinuous CS in a manner consistent both with the unique 
geometry of these cases and our protocol for the continuous case so that 
in future studies, we will maximize our analysis by comparison across all 
types of geometries. Additionally, given the effort involved in manually 
segmenting each structure accurately (1 − 2 hours per structure per 
scan), atrophy rates were assessed for ERC and amygdala only in the left 
cerebral hemisphere. In contrast, availability of postmortem samples 
dictated NFT reconstructions to be computed for each of one left and one 
right hemisphere. Previous studies have suggested differences of 
involvement in right versus left amygdalas (Yue et al., 2016). Future 
work will be needed to confirm or deny any differences in pathology 
versus atrophy in each hemisphere, using the manual segmentation 
protocol described here to avoid known biases in automatic segmenta-
tion protocols between right and left sided amygdalas, in particular 
(Alexander et al., 2020). 

Finally, this work has aimed to specifically link pathology at the 
micron scale to longitudinal MR imaging markers from clinically well- 
characterized groups. In addition to investigating 3D distributions of 
both NFT and amyloid pathology, future work could include the asso-
ciation of measured atrophy rate to CSF biomarker measures of amyloid 
and tau in subsets of individuals progressing from CU to MCI. This would 
enable further characterization of the specificity of these rates to “pre-
clinical AD” and to amyloid and tau status. Additionally, the immense 
increase in both robustness and availability of diverse imaging tech-
nologies including diffusion tensor imaging and molecular imaging (e.g. 
Tau and Amyloid PET) (Leuzy et al., 2019; Villemagne et al., 2018) over 
the last decade has already begun to enable the collation of longitudinal 
datasets with more advanced and diverse types of images. Such datasets 
include OASIS-3 (LaMontagne et al., 2019) and the developing Alz-
heimer’s Disease Connectome Project (Van Essen and Glassers, 2016). 
Concordant longitudinal analysis, as presented here, of cohorts in these 
datasets and across different molecular imaging modalities in the future 
will offer the potential for corroborating and coordinating biomarkers 
across multiple modalities. 

In conclusion, we have demonstrated the existence of significant 
atrophy in both the ERC and amygdala in early stages of MCI and 

Alzheimer’s dementia. Measurable from a series of MR scans and puta-
tively linked to high levels of AD specific pathology, atrophy rates in 
both ERC and amygdala present as viable biomarkers that may someday 
be used for both early diagnosis and management of AD. 
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