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Abstract: In cases when it is desirable to transport medication through blood vessels, especially when
dealing with brain cancer being confronted with the narrow arteries in the brain, the blood–brain
barrier makes medical treatment difficult. There is a need of expanding the diameters of the arteries
in order to facilitate the transport of medications. Recent research has pointed to various ways to
improve this situation; in particular, the use an ultrasound acting on microbubbles in the blood stream
has turned out to be a promising option. Here, a different possibility of enlarging the diameters
of arteries is discussed, namely to exploit the electrostrictive pressure produced by internal strong,
ultrashort and repetitive laser pulses. Each pulse will at first give rise to inward-directed optical
forces, and once the pulse terminates, there will be a hydrodynamical bouncing flow in the outward
radial direction, giving an outward impulse to the vessel wall. In the absence of friction, a symmetric
oscillation picture emerges. Clearly, a supply of repetitive pulses will be needed (at a parametric
resonance) to make the effect appreciable. The effect has, to our knowledge, not been discussed before.
We give an approximate optical and hydrodynamical theory of it. The calculations indicate promising
results for the wall pressure, although experimental work is desirable to demonstrate whether the
idea can be useful in practice. Our calculation is made from a general physical perspective that is not
necessarily linked to medical applications.

Keywords: electrostriction; optofluidics; medical technology; brain cancer

1. Introduction

As is known, symmetry properties often play a dominant role in fluid mechanical
systems—cf., for instance, the collection of papers discussing such themes in [1]. Here,
we will consider a situation which combines classical laser physics with hydromechanics:
Assume that a long liquid-filled circular tube is exposed to one or more longitudinal short
laser pulses. If the fluid is compressive, each pulse will give rise to a radial electrostrictive
force in the inward direction. When the pulse has left, the fluid rebounds, producing in turn
an outward hydrodynamic pressure on the wall. Such a force may be of physical interest.
If the fluid is nonviscous, there results a stationary symmetric oscillatory wave situation.

The physical motivation for the present study actually came from a well known
problem in medical technology. The human brain has a filter that protects it as well as the
rest of our nervous system from foreign elements that can damage the tissue. This is the
blood–brain barrier, and is normally a useful and vital organ. A problem arises, however,
in the case of diseases when one wants to make medication penetrate the barrier. This
filter problem is accentuated in the case of brain tumours. Recent research has indicated
that there are promising measures that can be taken to overcome the problem, such as to
inject microbubbles into the blood, and thereafter expose the brain to a focused ultrasound;
cf., for instance, Refs. [2,3]. This “Acoustic Cluster Therapy” (ACT), as it is called, is an
ingenious method; the ultrasonic waves transfer energy to the microbubbles, which in turn
merge into a single large microbubble, effectively opening the blood–brain barrier.

Some general remarks: the blood–brain barrier (BBB), as a semi-permeable membra-
nous barrier, is located at the interface between the blood and the cerebral tissue. It is
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composed of a complex system of endothelial and perivascular mast cells, and is responsible
for controlling the exchanges between two compartments, allowing only certain molecules
or ions to pass through. In the process of drug delivery, only lipid-soluble molecules
with a low weight and of a positive charge can cross the BBB. Other molecules require
carrier-mediated transport systems. Some strategies consist of the injection of therapeutic
proteins directly into the cerebrospinal fluid. A promising approach seems to be the use of
lipid- and polymer-based nanosized particles that assure a controlled release of their cargo
by protecting loaded drugs from being metabolized. A useful review article on crossing the
blood–brain barrier can be found in Ref. [4].

Among other methods, we mention how a magnetically driven soft continuum micro-
robot can be used for intravascular operations in a microscale [5]. Whereas conventional
continuum robots have the miniaturization challenge, this paper reviews a microscale
soft continuum robot with steering and locomotion capabilities based on magnetic field
actuation. In Ref. [6], a new approach is discussed about how the combination of a FET
biosensor with a rolled-up microtube can be used to develop a microfluidic diagnostic
biosensor. Finally, in Ref. [7], the BBB is discussed in connection with patients having
Alzheimer’s disease; the use of MR-guided focused ultrasound turned out to be a promis-
ing avenue experimentally.

In this paper, we will discuss a different approach to the enlargement problem. As
already mentioned, to our knowledge it has not been considered before. Assume that an
ultrashort strong laser pulse is sent longitudinally in the z direction through the blood
vessel. As blood is a compressible liquid, there will be electrostrictive radial forces com-
pressing the liquid inward, as long as the pulse lasts. From a hydrodynamic point of
view, this compressive event can be regarded to be instantaneous. When the pulse has
left, the hydrodynamic response causes the fluid to move radially inwards, and build up a
maximum pressure around the symmetry axis. Assuming as an example that the pulse has
a strong power of 3 kW, the excess hydrodynamic pressure on the axis will be quite large,
about one atmosphere. After this, a hydrodynamic rebound occurs, causing the fluid to
move radially outwards and transfer an outward momentum to the vessel wall. The liquid
then flows back, and becomes compressed near the centerline r = 0 again. At first, we
will neglect the shear viscosity, so that a hydrodynamic stationary wave pattern becomes
established. To make the effect big enough in practice, it is clear that a large number N of
successive laser pulses per second will be needed. This is actually an example of parametric
resonance: every new pulse is imaged to be sent through the system during the phase
when the flow is running inwards. If one, as the next point, takes into account viscosity, it
turns out that the viscous damping will not have time to make any appreciable influence
on the first rapid hydrodynamic oscillations at all. For longer time spans, the viscosity will
naturally be important.

Note: we have here assumed that the compressed fluid is temporarily prevented from
leaking out in the longitudinal direction. That is, there must be an effective blockade against
longitudinal fluid motion at the instant just after the onset of the pulse. This seems to be a
reasonable assumption for these short times, in view if the many sharp turns of the artery
system. For longer times, of course, the fluid is free to move longitudinally.

The method described is conceptually simple, and our calculations below indicate that
the electrostrictive forces may give rise to an effect of noticeable magnitude. To describe
the physics of the opto-electromagnetic process accurately, would, however, seem difficult.
To obtain a realistic knowledge about the usefulness of the method in practice, one needs
experimental investigations, preferably at larger dimensions than those envisaged here.

For readers interested in further works about the electrostrictive effect considered from
various perspectives, we list a number of papers (not meant to be exhaustive): Refs. [8–24].
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2. The Electrostrictive Force Density

The basic expression for the electrostrictive electromagnetic force density is [25,26]

f =
1
2

ε0∇
(

E2ρm
dε

dρm

)
, (1)

where ε = n2 with n the refractive index, and ρm is the density of the fluid. We assume the
medium to be nonmagnetic. The electric field E refers to the rms-value. Strictly speaking,
the equation above is referred to as a nonpolar medium, so that ε is a function of ρm only,
but the equation is also approximately valid for many other media. We will, moreover,
make use of the Clausius–Mossotti relation. This implies that if we, in general, write the
force density as

f = ∇χ, (2)

we obtain the following explicit expression for the scalar χ,

χ =
1
6

ε0E2(ε− 1)(ε + 2). (3)

Consider now the intensity of the incident laser pulse, which is taken to be constant
during the time t0 the pulse lasts. With cylindrical coordinates r = (ρ, θ, z), we shall assume
the form

E2(r, t) = E2(r)T(t), (4)

where T(t) is the temporal function of the pulse,

T(t) = Θ(t)−Θ(t− t0), (5)

Θ(t) being the step function, equal to +1 when t > 0 and 0 when t < 0. For the spatial
variation of the quadratic electric field, we adopt the Gaussian form

E2(r) =
2P

πε0ncw2(z)
exp

[
− 2ρ2

w2(z)

]
, (6)

where P is the power of the pulse, and w(z) is the beam radius

w(z) = w0

√
1 + z2/l2

R, (7)

with w0 being the minimum radius at the waist. The length lR = πw2
0/λ is called the

Rayleigh length, where λ is the wavelength in the medium. We will focus on the region
near the center of the beam (taken to be z = 0), assuming z/lR � 1, so that w ≈ w0. It
means neglect of the convergence of the beam, and complies with the restriction λ/w0 � 1.

The approximate form of the radially dependent part χ(ρ) of the scalar χ(ρ, t), thus becomes

χ(ρ) = χ(0) exp

[
−2ρ2

w2
0

]
, (8)

where the value on the centerline

χ(0) =
(ε− 1)(ε + 2)P

3πncw2
0

(9)

is a constant. The full, time-dependent, electrostrictive force density is

f(ρ, t) = χ(0)T(t)
d

dρ

[
e−2ρ2/w2

0

]
æ̂. (10)
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The expression is negative, corresponding to a compressive radial force. The force is
constant in time, as long as the pulse lasts.

3. Hydrodynamic Analysis of the Fluid Motion—The Build-Up Phase

There are clearly two widely separated time scales in this problem. The electrodynamic
scale is determined by the light velocity c (for definiteness taken in vacuum), while the
hydrodynamic scale is determined by the sound velocity u. Hydrodynamically, the pulse of
duration t0 can be regarded as an instantaneous flash, transferring an impulse to the fluid.
We will first write down the general governing equations for the fluid motion, neglecting
the viscosity. Let V be the fluid velocity, and start from the equation of continuity,

∂tρm +∇ · (ρmV) = 0. (11)

A linear expansion to the first order, ρm = ρm0 + ρ′m, p = p0 + p′, with ρ′m � ρm0, p′ �
p0, then yields the linearized version

∂tρ
′
m + ρm0∇ ·V = 0. (12)

Next, consider the Euler equation when the nonlinear convective term is neglected,

ρm∂tV = −∇p +∇χ. (13)

In a linearized form, it reads

ρm0∂tV = −∇p′ +∇χ. (14)

From this the sound velocity, u follows naturally via the equation

p′ =
(

∂p
∂ρm0

)
S
ρ′ = u2ρ′. (15)

This equation is used to replace the ρ′m term in the continuity Equation (12). [A note
on the time scales: after imposition of the pulse, the time required to reach the state of
maximum pressure is of order w0/u. With w0, a few µm and u = 1500 ms−1, the building-
up time becomes of order ns. This short time makes it natural to apply the subscript S
(constant entropy) in Equation (15)].

As the fluid is so far assumed nonviscous, we can introduce the velocity potential Φ,

V = ∇Φ. (16)

Introducing this into the Euler Equation (13), we obtain, after the removal of the nabla op-
erator,

p′ = −ρm0∂tΦ + χ. (17)

Differentiating this with respect to t and comparing it with the continuity equation,
we obtain the general governing equation for Φ,

∇2Φ(ρ, t)− 1
u2 ∂2

t Φ(ρ, t) = − 1
ρmu2 ∂tχ(ρ, t), (18)

in which we have replaced ρm0 with ρm.
Now consider the case where the time function T(t) has the form of Equation (5), from

which we derive
∂tχ(ρ, t) = χ(ρ)[δ(t)− δ(t− t0)]. (19)

Equation (18) can be solved using Green function methods. We shall do that here,
although, as a simplifying element, we shall assume that there is an infinite fluid around
the laser beam. To include the finite width of the blood vessel would be quite complicated,



Symmetry 2023, 15, 793 5 of 12

and not justified by the approximate calculation here given. Our simplified equation for
the Green function becomes thus

(∇2 − u−2∂2
t )G(r, r′, t, t′) = δ(r′ − r)δ(t′ − t), (20)

which has the solution

G(r, r′, t, t′) = − 1
4π|r′ − r| δ

(
t′ − t +

|r′ − r|
u

)
. (21)

Then, the velocity potential can be written as

Φ(ρ, t) = − 1
ρmu2

∫ t

−∞
dt′
∫

d3r′G(r, r′, t, t′)∂tχ(r′, t′). (22)

It is now convenient to introduce a nondimensional length ξ and a nondimensional
time τ,

ξ =

√
2 ρ

w0
, τ =

√
2 ut
w0

. (23)

Under the present conditions, they are both of order unity. Then, the velocity potential
can be written as [20]

Φ(ρ, t) =
χ(0)w0√

2 uρm

[
Φ̃(ξ, t)− Φ̃(ξ, τ − τ0)

]
, (24)

Φ̃(ξ, τ) = Θ(τ)e−ξ2−τ2
∫ τ

0
dxI0(2ξ

√
τ2 − x2)ex2

, (25)

where I0 is the modified Bessel function of the first kind of order zero. The pressure becomes

p(ξ, τ) = χ(0)[P(ξ, τ)− P(ξ, τ − τ0)], (26)

P(ξ, τ) = 2τe−ξ2
Θ(τ)

∫ τ

0

xdxe−x2

√
τ2 − x2

[
I0(2ξx)− ξ

x
I1(2ξx)

]
. (27)

Of special interest is the build-up of pressure on the symmetry axis, ξ = 0. Then, the
formulas above reduce to

Φ̃(0, τ) = Θ(τ)F(τ), (28)

where
F(x) = e−x2

∫ x

0
et2

dt (29)

is the Dawson’s integral, and

p(0, τ) = 2χ(0)[Θ(τ)τF(τ)−Θ(τ − τ0)(τ − τ0)F(τ − τ0)]. (30)

The numerically calculated Fig. 4 in Ref. [20] shows for the typical input data how the
pressure nicely builds on the axis, almost linearly, until a maximum, somewhat in excess of
χ(0), is reached around the time it takes for sound to traverse the laser beam. For practical
purposes, we may say that

pmax = αχ(0), α ≈ 1.25. (31)

After this maximum, the pressure decreases slowly as long as the pulse lasts, and for
τ > τ0, it decreases quickly.

Our next task will be to calculate the elastic energy in the fluid, imparted by the
pulse. Only the first build-up phase will then be of interest. We take the pulse to start at
t = 0, and follow it until a maximum pressure is established. We start from the velocity
potential given in Equation (25), but make the simplifying assumption that the argument
2ξ
√

τ2 − x2 in I0 is small. As this Bessel function increases only slowly for small arguments,
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I0(z) ≈ 1 + 1
4 z2, this restriction is not very strong. In the lower limit x = 0, the argument

is 2ξτ, whereas in the upper limit x = τ, the argument is zero. One may estimate that
the main contribution to the integral occurs when ut ∼ w0/2, i.e., ξ ∼ 1/

√
2, and at the

position ρ ∼ w0/2, i.e., ξ ∼ 1/
√

2, what corresponds to 2ξτ ∼ 1 at most. To the present
accuracy, the approximation is acceptable.

In this way, we obtain an expression for the velocity potential in which Dawson’s
integral is the main ingredient,

Φ̃(ξ, τ) = e−ξ2
F(τ), (32)

which gives the following expression for the dimensional radial fluid velocity,

V(ρ, t) =
dΦ(ρ, t)

dρ
=

χ(0)
uρm

F(τ)
d

dξ
e−ξ2

. (33)

Similarly, the radial component of the electrostrictive force density becomes

f (ρ) = χ(0)

√
2

w0

d
dξ

e−ξ2
. (34)

It is worth noticing that whereas V(ρ, t) depends on time, f (ρ) does not. The latter
behavior is related to the constancy of the pulse as long as it acts.

The produced elastic energy Eelastic (per unit length) in the fluid is equal to the work
conducted by the inward directed electrostrictive forces,

Eelastic =
∫

2πρdρ f (ρ)V(ρ, t)dt. (35)

Making use of Equations (33) and (34), we obtain, after some calculation

Eelastic =
πw2

0
2ρmu2 χ2(0)

∫ τmax

0
F(τ)dτ, (36)

where pmax is given in Equation (31).
We now turn to some numerical estimates. Our main interest is the small arteries;

as informed in the review article [27], these arteries may have an outer diameter of about
1 mm. With a wall thickness of about 200 µm, this gives an inner radius a of a few hundred
µm. For calculational convenience, we will choose the low value 100 µm in the following.
This will also enhance the pressure effect. The refractive index for blood is 1.37; the density
is 103 kg m−3 as for water, and for the power P of the pulse, we adopt the same value 3 kW
as used by Ashkin and Dziedzic in their classic radiation pressure experiment on water [28]
(this value was reported to lie below the region of nonlinearity). For the beam radius at the
waist, we choose 2 µm. To summarize,

a = 100 µm, n = 1.37, P = 3 kW, w0 = 2 µm. (37)

A remark on the nondimensional time τ: as defined in Equation (23), this parameter
will take a convenient value of order unity when t = w0/u, which is the hydrodynamically
important scale. This follows directly from τ =

√
2t/(w0/u) ∼ 1 at that instant.

We can now calculate, from Equation (9),

χ(0) = 4.9× 105 Pa, (38)

which is quite a high pressure, at about 5 atmospheres. The elastic energy evaluates to

Eelastic = 6.6× 10−10
∫ τmax

0
F(τ)dτ. (39)
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The function F(τ) has a maximum of 0.541 at τ = 0.924. The integral (39) is divergent
for high arguments, but we have made a simple numerical evaluation of it assuming the
upper limit τmax = 2, which seems to be reasonable. The result was approximately 0.8, and
so we finally obtain

Eelastic = 5.3× 10−10 Jm−1. (40)

This is thus the energy imparted to the fluid from one single pulse.

4. Hydrodynamic Analysis: The Nonviscous Oscillating Phase

We now analyse the fluid motion after the pulse has left. To begin with, defined
hereafter as t = 0, the fluid is at rest at maximum pressure, and for t > 0, it rebounds
radially outwards, giving rise to a radial oscillating wave pattern. As long as the viscosity
is ignored, the pattern will be stationary. When reflected against the outer wall, the fluid
imparts an outward force on it. This is the force we intend to calculate. At first, we consider
the influence from one single pulse only.

The governing equation for the velocity potential is now Equation (18), with the right
hand side equal to zero, (

∂2
ρ +

1
ρ

∂ρ −
1
u2 ∂2

t

)
Φ(ρ, t) = 0. (41)

We will write the solution as

Φ(ρ, t) = −AJ0(kρ) sin ωt, k = ω/u, (42)

with J0 being the ordinary Bessel function of order zero and A a positive constant. The
radial velocity, which is positive to begin with, is thus

V(ρ, t) = ∂ρΦ(ρ, t) = kAJ1(kρ) sin ωt. (43)

The kinematic condition J1(ka) = 0 at the wall (the radial movement of the wall
negligible in this context) determines the allowable values of the wave number k. We shall
consider the lowest mode only,

ka = 3.83, (44)

which corresponds to the wavelength λ = 2π/k = 1.64 a of the fluid oscillations. The
angular frequency becomes

ω =
5.75

a
× 103 rad s−1, (45)

which means a frequency of ω/2π ≈ 10 MHz when a = 100 µm.
We now calculate the kinetic energy Ekin, exploiting the useful general property of any

linearly varying mechanical system, namely that its total mean energy is evenly divided
between the kinetic and potential energy. We thus have simply Ekin = 1

2 Eelastic, where the
latter quantity was found in the previous section. We start from the general expression,

Ekin =
∫ a

0

1
2

ρmV22πρdρ = πρm A2 sin2 ωt
∫ ka

0
xJ2

1 (x)dx, (46)

take the time average over a period, and make use of the following formula [29],∫
xJ2

µ(x)dx =
1
2

x2[J2
µ(x)− Jµ−1(x)Jµ+1(x)] (47)

to obtain
Ekin =

1
4

πρm A2(ka)2|J0(ka)J2(ka)|. (48)
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Since this is equal to one half of the total energy Eelastic given in Equation (36), we
have now the opportunity to determine the value of the constant A,

A =
w0χ(0)
ρmuka

∣∣∣∫ τmax
0 F(τ)dτ

J0(ka)J2(ka)

∣∣∣1/2
. (49)

Inserting w0 = 2 µm, χ(0) = 4.9× 105 Pa, J0(ka) = −0.40, J2(ka) = +0.40 for
ka = 3.83, and adopting the same value 0.80 for the τ integral as above, we obtain

A = 3.8× 10−7 m2s
−1

. (50)

The radial fluid velocity follows from Equation (43). As an example, for an interme-
diate point kρ = 1, we find V = (0.64 sin ωt) cm s−1. The fluid velocities are moderate.
Although the ratio between the angular frequency and the wave number for the fluid wave
is fixed by the velocity of sound, ω/k = u, the magnitude of V is much smaller than u
because of the weakness of the velocity potential Φ.

It ought to be recalled that, instead of using the expression (48), one might equally
well calculate Ekin directly from Equation (36),

Ekin =
πw2

0
4ρmu2 χ2(0)

∫ τmax

0
F(τ)dτ. (51)

Now, we turn to the pressure. We are concerned only with the dynamic pressure
p′ = −ρm∂tΦ. (The physiological range for blood pressure is between 80 and 120 mm Hg,
where 1 mm Hg = 133 Pa, and plays, in our context, the role of the background pressure,
p0.) For simplicity, we omit hereafter the prime on p. From Equation (42), we have thus

p(ρ, t) = ρm Aω J0(kρ) cos ωt. (52)

As J0(ka) is negative, the pressure p(a) on the wall becomes positive in the half-
period π/2 < ωt < 3π/2. It is this pressure that we wish to maximize. To make the
effect appreciable, it is clear that one has to make use of a succession of short pulses. The
maximum case is when one pulse is sent through the system each oscillation period, during
the part of the cycle where the fluid is moving inwards, corresponding to the π < ωt < 2π
above. Then, each new pulse serves to increase the inward velocity. Physically, this is a
parametric resonance effect.

Ideally, we shall assume that by sending in N pulses per second, the pressure becomes
enhanced by a factor N. Moreover, as another approximation, we shall confine ourselves to
calculating the root-mean-square (rms) pressure, called 〈p〉rms. The mean pressure at the
wall becomes, accordingly

〈p(a)〉rms =
Nρm√

2
Aω|J0(ka)|. (53)

To obtain information about what influence this pressure has on the wall, one has
to take into account its Young’s modulus. Before touching on this, we shall estimate the
influence from viscosity on the oscillating fluid system.

5. Viscous Damping of the Oscillating Fluid

The two viscosity coefficients of the fluid—shear viscosity η and bulk viscosity ζ—
cause the oscillating motion to be damped out. For simplicity, we consider the oscillating
stationary wave picture from the previous section as our starting point, and will neglect
the bulk viscosity, as its magnitude seems to be largely unknown for blood. The measured
values of η lie roughly in the interval from 2 to 5 ×10−3 Pa s. For definiteness, we adopt
the value

η = 2× 10−3 Pa s. (54)
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Consider now the time derivative Ėkin of the kinetic energy [30],

Ėkin = −1
2

η
∫
[∂kVi + ∂iVk −

2
3

δik(∇ ·V)2]2d3r. (55)

We may calculate this expression by first employing Cartesian coordinates, as given
in the expression above, and thereafter transfer the result to cylindrical coordinates. If we
assume a one-dimensional harmonic motion along the x axis, with velocity V = V(x, t),
we obtain, after some manipulations,

Ėkin = −4
3

η
∫
(∂xV)2d3r. (56)

Now replace (∂xV) with∇ ·V = 1
ρ

d
dρ (ρV) in cylindrical coordinates, and insert V(ρ, t)

from Equation (43) to calculate

Ėkin = −(2
3

η)πk2 A2
∫ ka

0

dx
x

[
d

dx
(xJ1(x))

]2
, (57)

where we have averaged over one period. Now make use of Eqsuations 10.6(ii) and 10.22.7
in Ref. [29], (

1
x

d
dx

)k
(xν Jν(x)) = xν−k Jν−k(x), (58)

∫
x2µ+1 J2

µ(x)dx =
x2µ+2

2(2µ + 1)
[J2

µ(x) + J2
µ+1(x)], 2µ 6= −1, (59)

to obtain
Ėkin = −2

3
ηπ(kA)2(ka)2 J2

0 (ka). (60)

We want to find how much of the initial kinetic energy Ekin becomes dissipated into
heat per second. Calling the fraction γ we have, using the expression (48) for Ekin,

γ =
∣∣∣ Ėkin
Ekin

∣∣∣ = 8η

3
k2

ρm

∣∣∣ J0(ka)
J2(ka)

∣∣∣. (61)

With η as given above, and with a = 10−4 m, ka = 3.83, this gives

γ = 7.8× 103 s−1. (62)

This large number may at first appear to be a difficulty for the present theory, but here
one needs to consider how the numbers appear in the physical process: As observed above,
the maximum pressure on the symmetry axis is established a very short time after the onset
of the laser pulse, τ ∼ 1 or t ∼ 1 ns. The fluid rebounds immediately, and the return wave
propagates with velocity u and reaches the wall in about 100 ns. If we assume as a simple
model that the decay of kinetic energy occurs exponentially, Ekin ∝ e−γt, we observe that
the kinetic energy has by then diminished only by the fraction∣∣∣∆Ekin(100 ns)

Ekin

∣∣∣ ∼ 0.1 %. (63)

There is thus ample time for the wave to rebound and strike upon the wall, before the
viscosity begins to be appreciable. Actually, the viscosity is a helpful factor here, because in
the long run it reduces the amplitude of the contracting phases of the wall. This was in fact
the physical idea behind the introduction of the rms pressure in Equation (53). Namely, for
an ideal nonviscous fluid, a pulsating force on the wall without any damping would have
given rise to an oscillating behavior of the wall only, around its equilibrium position, and
thus not provide a net outward force.
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6. Mean Deformation of the Wall

Now, return to the expression (53) for the mean pressure on the artery wall, having
observed that it is roughly justified to omit the influence from viscosity. The maximum case,
as mentioned above, is that one pulse is sent in synchronously with the natural oscillations
of the fluid. To estimate how much the wall becomes expanded by the repetitive bouncing
forces, we must know the approximate value of Young’s modulus Y for the arteries. For
most condensed bodies, Y is known to lie in the GPa region. In the present case, however,
the actual values are considerably smaller, in the MPa region. Taking the internal mammary
artery as an example, we may use data from Refs. [27,31] to choose

Y = 10 MPa. (64)

Thus, using the expression (53) for the mean pressure 〈p(a)〉rms, we may write

Nρm√
2

Aω|J0(ka)| = Y
∆a
a

, (65)

where ∆a means a small or moderate expansion of the radius a. Insertion of the number
given above leads to the relationship

N ∼ 103 ∆a
a

. (66)

This is actually a promising number in our context. It means, for instance, that in order
to make the radius to expand by a fraction of 0.1, we need a moderate number of about
100 successive laser pulses per second. This is much less than the theoretical optical limit
which is one pulse per fluid oscillation frequency, which is in the MHz region, as we have
observed (Equation (45)). At least in principle, the effect seems to be appreciable.

7. Summary

In this paper, we have gone through the following items, and can summarize them
as follows:

(1) The basic idea behind the above analysis was to investigate whether a rapid succession
of short laser pulses sent longitudinally through a long cylindrical tube of radius a is
able to expand the radius to some extent, via the electrostrictive effect. The possibility
of enlargement is of great interest in medical applications, and for that reason we used
in our analysis a typical radius of a = 100 µm for a small blood artery. There may
evidently be other technological applications also, and in most cases one would find
it natural to assume larger dimensions than those used here.

(2) In Section 3, we used Green function methods to describe the build-up of an inner
hydrodynamic pressure in the central region, caused by one single laser pulse. The
important scale in this initial part of the process is given by the velocity u of sound. It
turns out that the pressure is established very quickly, when the nondimensional time
parameter τ defined in Equation (23) is of the order unity.

(3) In Section 4, we analyzed the hydrodynamical problem with transverse oscillations in
the tube after the laser pulse had left, and derived an expression for the kinetic energy
per unit length, as well as the rms pressure on the wall.

(4) The shear viscosity in the fluid was taken into account in Section 5. The effect of the
viscosity is to damp the hydrodynamic energy in general, although we found that
the rebound of the fluid after the initial compression takes so short a time that the
damping effectively does not come into play.

(5) As shown in Equation (66), the number N of successive laser pulses necessary to make
an appreciable enlargement of the tube is moderate. So far, the results are promising.

(6) What can be said about future developments of this idea? Obviously, our analysis
above is crude, and we should point out that the heating effects have not been
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discussed at all. To the author, it seems most natural that the proposed effect could
be tested experimentally, preferably under larger geometric dimensions than those
assumed in the biomedical case above. It is clear that the effect physically exists; what
is unclear is its magnitude in practice.
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