
1

Communication-Efficient and Privacy-Aware
Distributed Learning

Vinay Chakravarthi Gogineni, Senior Member, IEEE, Ashkan Moradi, Member, IEEE, Naveen K. D.
Venkategowda, Senior Member, IEEE, Stefan Werner, Fellow, IEEE

Abstract—Communication efficiency and privacy are two key
concerns in modern distributed computing systems. Towards
this goal, this paper proposes partial sharing private distributed
learning (PPDL) algorithms that offer communication efficiency
while preserving privacy, thus making them suitable for applica-
tions with limited resources in adversarial environments. First,
we propose a noise injection-based PPDL algorithm that achieves
communication efficiency by sharing only a fraction of the
information at each consensus iteration and provides privacy by
perturbing the information exchanged among neighbors. To fur-
ther increase privacy, local information is randomly decomposed
into private and public substates before sharing with the neigh-
bors. This results in a decomposition- and noise-injection-based
PPDL strategy in which only a fraction of the perturbed public
substate is shared during local collaborations, whereas the private
substate is updated locally without being shared. To determine the
impact of communication savings and privacy preservation on the
performance of distributed learning algorithms, we analyze the
mean and mean-square convergence of the proposed algorithms.
Moreover, we investigate the privacy of agents by characterizing
privacy as the mean squared error of the estimate of private
information at the honest-but-curious adversary. The analytical
results show a tradeoff between communication efficiency and
privacy in proposed PPDL algorithms, while decomposition- and
noise-injection-based PPDL improves privacy compared to noise-
injection-based PPDL. Lastly, numerical simulations corroborate
the analytical findings.

Index Terms—Average consensus, communication efficiency,
distributed learning, multiagent systems, privacy-preservation.

I. INTRODUCTION

In distributed multiagent networks, local interactions among
neighboring agents contribute to the overall network perfor-
mance. For instance, in systems such as internet-of-things
(IoT) and networked-control systems, agents engage in local
learning and subsequent communication with neighbors to en-
hance collective learning performance and network robustness
against dynamic changes [1]–[3]. The agents are often associ-
ated with limited computing and energy resources. Although
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local interactions improve learning performance, they consume
a large amount of power and render the network vulnerable to
adversaries [4]. In light of this, a distributed learning procedure
that reduces the amount of communication overhead as much
as possible without compromising the privacy of agents and
overall learning accuracy is desirable.

In distributed information processing scenarios, such as
consensus [5], [6], optimization [7], [8], filtering [9], and
state estimation [10]–[12] privacy can be ensured through
the implementation of cryptography-based mechanisms. Vari-
ous cryptography-based security approaches, including partial
homomorphic cryptography [13], [14] and Paillier encryp-
tion [15], were used to enforce privacy in average consensus
and dynamic state estimation algorithms. In addition, homo-
morphic encryption has also been extended to federated learn-
ing to protect the private data of edge devices [16]. Although
these cryptography-based approaches preserve the privacy of
an individual agent against external adversaries, they are
ineffective against privacy theft by honest-but-curious agents.
Moreover, their utilization is limited in resource-constrained
networks due to significant demands for communication and
computation [14], [17], [18].

In contrast to cryptography-based security approaches,
perturbation-based mechanisms are less complex and maintain
the privacy of individual agents [19]–[21]. In this category,
differential privacy techniques inject uncorrelated noise into
the exchanged information to ensure data privacy [5]. Due
to its simplicity, differential privacy has been extensively
used in distributed learning frameworks, including federated
learning [22]. However, differential privacy is a pessimistic
approach and ignores any available side information about
the adversary or learning tasks. The privacy-accuracy tradeoff
can be improved by perturbing the shared information using
correlated noise sequences with decaying variances [19]–[21].
In [23], a graph topology-aware noise injection-based dis-
tributed learning strategy is introduced. It effectively cancels
out the added noise during local aggregation steps, thereby
enhancing the performance and privacy of the distributed
learning algorithm. Meanwhile, a decomposition-based privacy
technique makes inference more challenging for adversaries by
randomly decomposing private information into two substates,
of which only one is shared among agents [24]–[27]. In [28],
a privacy-aware collaborative estimation strategy is proposed
in the context of networked vehicles, wherein the vehicles
transform their sensitive information into an alternative do-
main prior to exchanging it with others. An approach for
crafting transformation matrices is also proposed in [28];
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however, the transformation is computationally intensive and
thus unsuitable for resource-constrained scenarios. Despite
providing privacy for individual agents, these approaches are
ineffective from a communication perspective. Thus, designing
a distributed mechanism that provides privacy while improving
communication efficiency and accuracy remains challenging.

Several techniques have been suggested in the literature
to reduce the frequency of information exchanges between
agents, such as clustering [29], ordered transmission [30],
agent selection [31], [32], and probabilistic communica-
tion [33]. Furthermore, the literature includes more sophisti-
cated strategies for censoring redundant information exchanges
in the estimation process [34]. Besides reducing communi-
cation frequency, a decrease in data payload also enhances
communication efficiency, akin to the sign-bit transmission
method in [35]. Censoring and quantization approach proposed
in [36] enhances communication-efficiency by combining the
above mentioned both features such as reduced transmission
frequency and a reduction in data payload size. Moreover,
a few other schemes perform dimensionality reduction [37]
and 1-bit quantization [38] before sharing the information to
further limit local interactions among agents. Federated learn-
ing framework also adopted these approaches to reduce the
communication burden associated with edge devices [39], [40].
Even though these methods reduce communication costs, they
add a substantial computational burden on agents. Further-
more, partial-sharing-based communication [41]–[43] reduces
the consumption of resources by allowing agents to share only
a fraction of information during each inter-node interaction.
The ease of implementation has made partial-sharing concepts
popular in distributed and federated learning [44]. Majority of
the existing distributed learning approaches tend to address
privacy and communication efficiency as separate entities.
Therefore, this paper emphasizes a comprehensive distributed
learning framework that concurrently mitigates communica-
tion overhead while enhancing agent privacy.

This paper proposes partial-sharing private distributed learn-
ing (PPDL) algorithms that achieve communication efficiency
through partial sharing of information with neighbors and
privacy by combining decomposition- and noise-injection-
based average consensus techniques. We first develop a noise
injection-based PPDL algorithm that enables agents to col-
laborate locally by sharing only a fraction of their perturbed
information, thereby reducing resource consumption while
maintaining privacy. We also propose a decomposition and
noise injection-based PPDL algorithm in which agents de-
compose local information into public and private substates
and participate in the learning algorithm by sharing only a
fraction of their perturbed public substate. The private substate
updates locally and will not be shared with neighbors. We
conduct mean and mean-square convergence analyses of the
proposed strategies to examine the impact of the partial-
sharing-based communication along with the noise injection
and decomposition methods on the performance.

We quantify the privacy of an agent in the presence of
an honest-but-curious (HBC) adversary, which is a network
agent that participates in the learning process but is curious
about the private information of other agents. To this end,

we define privacy metric as the mean squared error (MSE)
of the estimate of private information at an HBC adversary.
MSE is suited better to capture the information leakage and
quantify the private information acquired by the adversary in
distributed multiagent networks with limited and streaming
data. Further, unlike differential privacy, the setup considered
in this paper provides a specific attack model and information
available to the adversary that can be exploited to obtain
a better privacy-accuracy trade-off. In both noise-injection-
based PPDL and decomposition- and noise-injection-based
PPDL, the analysis shows a tradeoff between privacy and
communication efficiency, where energy savings obtained by
sharing a smaller portion of the information results in a lower
privacy level. However, the decomposition and noise injection-
based PPDL improve privacy significantly compared to the
noise injection-based PPDL. Finally, numerical simulations are
provided to validate the analytical results.

The remainder of this article is organized as follows. Sec-
tion II presents the system model and provides background
information. Section III proposes partial-sharing private dis-
tributed learning algorithms employing noise-injection- and
decomposition-based techniques. Section IV presents the first
and second-order convergence analysis of the proposed noise-
injection-based PPDL and decomposition and noise injection-
based PPDL, while Section V characterizes the agent privacy.
Simulation results are demonstrated in Section VI, and Sec-
tion VII concludes the article.

Mathematical notation: Scalars are denoted by lowercase
letters, column vectors by bold lowercase, and matrices by
bold uppercase. Superscripts (·)T and (·)−1 denote the trans-
pose and inverse operators, respectively. The symbol 1K

represents the K × 1 column vector with all entries equal to
one, and IK is the K×K identity matrix. The right Kronecker
product, right block Kronecker product and Hadamard product
of two matrices are denoted by ⊗, ⊗b and ⊙, respectively,
while λi(A) denotes the ith eigenvalue of matrix A. Oper-
ators col{·} and blockdiag{·} denote column-wise stacking
and block diagonalization operations, respectively. The trace
operator is denoted as trace(·) and matrix diag(·) denotes
a diagonal matrix whose diagonals are the elements of the
argument vector.

II. BACKGROUND AND PROBLEM FORMULATION

Consider a sensor network modeled as a connected graph
G = {N , E}, where the node set N represents the agents of the
network and E is the set of edges that represent bidirectional
communication links between the nodes, i.e., (k, l) ∈ E if
nodes k and l are connected. Furthermore, the set Nk indicates
the neighborhood of the node k, including itself, and the
cardinality of the set Nk is denoted by |Nk|, while K = |N |
is the number of agents in the network.

At every time instant n, the node k has access to an input
signal xk,n and the desired signal yk,n, whose relation is
described as

yk,n = xT
k,n w⋆ + ϵk,n, (1)

where w∗ ∈ RL is the optimal parameter and needs to be
estimated. The vector xk,n ≜ [xk,n, xk,n−1, . . . , xk,n−L+1]

T
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is the input signal vector and the observation noise ϵk,n is a
zero-mean Gaussian random sequence with variance σ2

ϵ,k. The
estimate of w⋆ at time instant n, i.e., wn, is chosen so that it
minimizes

Jn ≜
1

K

∑
k∈N

E[e2k,n], (2)

where ek,n ≜ yk,n − ŷk,n with ŷk,n as the estimated filter
output at node k. At every time instant n, wn can be
recursively updated in a steepest descent manner as

wn+1 = wn − η

2
∇Jn, (3)

where ∇ denotes the gradient operator and η is the positive
real-valued gain. Using an instantaneous approximation of the
gradient, the learning rule for wn becomes

wn+1 = wn + η
∑
k∈N

xk,nek,n =
1

K

∑
k∈N

ψk,n+1, (4)

where ψk,n+1 is the intermediate estimate of w⋆ at node k
and time instant n and is defined as

ψk,n+1 = wn + µ xk,n ek,n, (5)

with µ = ηK as the step size.
The average of the intermediate estimates ψk,n+1 in (5)

across the entire network can be evaluated in a distributed
manner using an average consensus filter (ACF) [46]–[48]. In
the ACF, agents update their states through an iterative process
of sharing their information and utilizing the information of
neighboring agents at each consensus iteration. Operation of
the ACF at its mth iteration is stated as [47]

hk,(m) =
∑
l∈Nk

alk hl,(m−1), (6)

where hk,(m) with hk,(0) = ψk,n+1, is the state of the ACF at
node k after m iterations. The combiner coefficients alk are
non-negative and satisfy

∑
l∈Nk

alk = 1. If matrix A with
[A]l,k = alk, is doubly stochastic and satisfies the conditions
stated in [47], all agents reach consensus on the exact average,
i.e.,

lim
m→∞

hk,(m) =
1

K

∑
l∈N

hl,(0). (7)

To reach an average consensus, agents exchange local
information ψk,n+1 with their neighbors. Potential adversaries
attempt to access the node-sensitive information by exploiting
the shared information. Agents are therefore required to safe-
guard shared information when performing distributed learning
in order to prevent node-sensitive data from being inferred by
adversaries.

In particular, the input signal xk,n is considered to be
sensitive and must be protected since it contains private
information about the agent k. We have seen that agents
only exchange their intermediate estimates ψk,n+1 in order to
estimate the parameter w∗, which includes local information
about the sensitive input signal xk,n. Consequently, since
adversaries are able to infer xk,n using ψk,n+1, we consider
the information shared, i.e., hk,(0) = ψk,n+1, to be private and

therefore needs to be protected. Moreover, since the distributed
agents have limited battery and computational power, the
inter-agent communication overhead must be minimized while
maintaining the advantage of collaboration.

A. Noise Injection-based ACF

To protect the node-sensitive information from being in-
ferred by adversaries, agents exchange perturbed versions of
their private information [19]–[21]. Thus, the operation of
noise injection-based privacy-preserving ACF at mth iteration
is given by [19]:

hk,(m) =
∑
l∈Nk

alkh̃l,(m−1), (8)

where h̃l,(m−1) = hl,(m−1) + ωl,(m−1) is the perturbed local
information from the lth agent and ωl,(m−1) is the pertur-
bation noise at (m − 1)th consensus iteration. The designed
perturbation noise at each consensus iteration is given by

ωl,(m) =

{
νl,(0), m = 0,

ϕmνl,(m) − ϕm−1νl,(m−1), otherwise,
(9)

where ϕ ∈ (0, 1), same for all agents and νk,(m) ∈ RL is a
zero-mean Gaussian sequence with E[νk,(m)ν

T
k,(m)] = σ2

νIL.
If matrix A is a doubly stochastic matrix that satisfies the
conditions stated in [47] and the perturbation noise fol-
lows (9), all agents reach a consensus on the average, i.e.,
h̄ = 1

K

∑
l∈N hl,(0), in the mean square sense [19].

B. Decomposition and Noise Injection based-ACF

Decomposition-based ACF takes a different approach from
noise-injection-based ACF to preserve local information. In
decomposition-based ACF, each agent k decomposes its local
information hk,(0) into public and private substates. The public
substate is exchanged with neighbors while the private substate
is updated internally and will not be observed by neighbors
[24]. Although the private substate is invisible to neighbors,
it contributes directly to the evolution of the public substate.
To this end, agent k chooses the initial public and private
substates αk,(0) and βk,(0) randomly from the set of all real
numbers such that

αk,(0) + βk,(0) = 2hk,(0). (10)

To simplify the mathematical derivations, one can set
βk,(0) = γhk,(0), where γ is randomly chosen from the
uniform distribution U(0, 1). This simplification subsequently
results αk,(0) = (2 − γ)hk,(0). To further protect the
node-sensitive information, at each consensus iteration m,
agents share only a perturbed version of their public substate
with their neighboring agents. Subsequently, at agent k, the
decomposition and noise injection-based privacy-preserving
ACF [27], at mth iteration is stated as

αk,(m) =αk,(m−1) + εθk
(
βk,(m−1) −αk,(m−1)

)
+ ε

∑
l∈N−

k

δlk
(
α̃l,(m−1) −αk,(m−1)

)
,

βk,(m) =βk,(m−1) + εθk
(
αk,(m−1) − βk,(m−1)

)
,

(11)



4

where α̃l,(m−1) = αl,(m−1)+ωl,(m−1) is the perturbed public
substate from lth agent and the perturbation noise ωl,(m−1) is
the same as described in (9). The interaction weight between
agents l and k is denoted by δlk that satisfies δlk = δkl, ∀l, k
and δl,k = 0 for (l, k) /∈ E , while θk is the kth agent coupling
weight that controls the level of contribution of each substate
in the updating process. Moreover, we constrained δlk and
all θk to reside in the interval [η, 1) [24], where η ∈ (0, 1).
The consensus parameter ε resides in the range (0, 1/(∆ +
1)], where ∆ ≜ maxk∈N

∑
l∈Nk

δlk. It is important to note
that both substates of the kth agent converge to the average
consensus value for sufficiently large consensus iterations, i.e.,

lim
m→∞

αk,(m) = lim
m→∞

βk,(m) =
1

|N |
∑
l∈N

hl,(0). (12)

III. PARTIAL SHARING PRIVATE DISTRIBUTED LEARNING
STRATEGIES

As can be seen from (6), collaboration between agents
is vital for distributed learning. There is no exception to
privacy-preserving distributed consensus techniques (9) and
(11). Although collaboration among agents improves learning
accuracy, it is resource-intensive. In multiagent networks,
agents are usually limited in battery power and computa-
tional resources. Thus, it is essential to reduce inter-node
communication while maintaining the benefits of inter-node
cooperation. To this end, we aim to develop privacy-preserving
distributed learning strategies that preserve privacy while also
ensuring communication efficiency by using techniques to
reduce local information exchange. Although several attempts
have been made in the literature to improve the communica-
tion efficiency in distributed multiagent networks, none have
been applied to the noise-injection- and decomposition-based
privacy-preserving distributed consensus strategies. Therefore,
by employing partial sharing-based communication [41], [42]
among agents in private distributed consensus strategies, we
achieve both privacy preservation and communication effi-
ciency in a single framework.

A. Noise Injection-based PPDL

In the proposed noise injection-based PPDL, during each
consensus iteration m, every agent only shares a fraction of
the perturbed version of its private information with neighbors
(i.e., L′ entries of hk,(m), with L′ ≤ L) to reduce the
inter-node communication overhead while maintaining pri-
vacy. At each agent k, instant n and consensus iteration m,
the entry selection procedure is characterized by a diagonal
selection matrix Sk,n,(m) that consists of L′ numbers of
ones and L − L′ numbers of zeros on its main diagonal.
The position of ones in Sk,n,(m) indicates which entries
of the perturbed private information are to be shared with
neighbors. The selection of L′ out of L entries can be made
stochastically or sequentially as in [41], [42]. To keep the
selection procedure simple, we adopt coordinated partial-
sharing, a special case of sequential partial-sharing-based
communication method [42]. In coordinated partial sharing-
based communication, all agents are initialized with the same

selection matrices i.e., S1,0,(0) = S2,0,(0) · · ·SK,0,(0) = S0,(0).
This implies every agent in the network shares the same
portion of the perturbed private information with its neighbors.
In the partial sharing-based communication, the selection
matrix at the current consensus iteration Sk,n,(m) can be
obtained by performing τ right circular shift operations on
the main diagonal elements of the entry selection matrix
used in the previous consensus iteration Sk,n,(m−1), i.e.,
diag{Sk,n,(m)} = circularshift(diag{Sk,n,(m−1)}, τ), with
Sk,n,(0) = Sk,n−1,(m). Here, the integer τ indicates the
number of right circular shifts, and diag{·} operator returns a
column vector that consists of the main diagonal elements of
its argument matrix. Since every agent in the network uses the
same selection matrix at each time instance n and consensus
iteration m, we drop node index in Sk,n,(m) and continue with
Sn,(m). In coordinated partial sharing-based communication,
each entry of the perturbed private information will be shared
L′ times during L subsequent iterations. Thus, the frequency
of each entry being shared is equal to pe =

L′

L .
Using the selection matrices, at agent k, noise injection-

based privacy-preserving ACF is expressed alternatively as

hk,(m) = akkh̃k,(m−1)

+
∑

l∈N−
k

alk
(
Sn,(m−1)h̃l,(m−1) + (I− Sn,(m−1))h̃l,(m−1)

)
,

(13)

where N−
k indicates the neighborhood of node k exclud-

ing itself. Due to incomplete information exchange among
agents, resulting from partial sharing, agents lack access to
unshared portions of local information from neighbors. Allow-
ing agents to use their local information instead effectively
resolves this issue. At each agent k, we therefore substitute
(I−Sn,(m−1))h̃k,(m−1) in the place of (I−Sn,(m−1))h̃l,(m−1)

for l ∈ N−
k that results in

hk,(m) = akkh̃k,(m−1)

+
∑

l∈N−
k

alk
(
Sn,(m−1)h̃l,(m−1) + (I− Sn,(m−1))h̃k,(m−1)

)
·

With further simplification and employing akk+
∑

l∈N−
k
alk =

1, we obtain

hk,(m) = h̃k,(m−1)

+
∑

l∈N−
k

alkSn,(m−1)

(
h̃l,(m−1) − h̃k,(m−1)

)
, (14)

The workflow of the noise injection-based PPDL is summa-
rized in Algorithm 1.

B. Decomposition and Noise injection-based PPDL

In the proposed decomposition and noise injection-based
PPDL, during each consensus iteration m, every agent only
shares a portion of the perturbed version of its public substate
with neighbors (i.e., L′ entries of α̃k,(m), with L′ ≤ L) to re-
duce the inter-node communication overhead while preserving
the privacy of its private substate. With the help of selection
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Algorithm 1 Noise Injection-based PPDL
At each time index n for nodes k = 1, 2, · · · ,K;
Initialize: Sn,(0) and τ ,
ŷk,n = xT

k,nwk,n,
ek,n = yk,n − ŷk,n,
Local Update:

ψk,n+1 = wk,n + µxk,n ek,n, (15)

ACF:
Set hk,(0) = ψk,n+1 ,
For m = 1 to M
Share Sn,(m−1)h̃k,(m−1),
Receive

{
Sn,(m−1)h̃l,(m−1) : ∀l ∈ N−

k

}
,

Update hk,(m) as in (14)
diag{Sn,(m)} = circularshift(diag{Sn,(m−1)}, τ)
Endfor
wk,n+1 = hk,(M).

matrices, at agent k, the update equations in (11) can be
expressed alternatively as

αk,(m) = αk,(m−1) + εθk
(
βk,(m−1) −αk,(m−1)

)
+ ε

∑
l∈N−

k

δlk

(
Sn,(m−1)α̃l,(m−1)

+ (I− Sn,(m−1))α̃l,(m−1) −αk,(m−1)

)
,

βk,(m) = βk,(m−1) + εθk
(
αk,(m−1) − βk,(m−1)

)
.

(16)

Using the own public substate portion (I−Sn,(m−1))α̃k,(m−1)

in the place of unshared portion of neighbors public substate
(I− Sn,(m−1))α̃l,(m−1) for l ∈ N−

k , we finally have

αk,(m) = αk,(m−1) + εθk
(
βk,(m−1) −αk,(m−1)

)
+ ε

∑
l∈N−

k

δlk

(
Sn,(m−1)α̃l,(m−1)

+ (I− Sn,(m−1))α̃k,(m−1) −αk,(m−1)

)
,

βk,(m) = βk,(m−1) + εθk
(
αk,(m−1) − βk,(m−1)

)
.

(17)
The workflow of the proposed decomposition-based PPDL is
summarized in Algorithm 2.

Communication Savings: During each consensus iteration,
every agent in the network shares a subset of its local
information with neighboring agents, i.e., L′ number of el-
ements. This approach enables the proposed algorithms to
achieve communication savings, quantified by the percentage
(L−L′)

L × 100%. It is important to emphasize that the PPDL
algorithms presented in this work offer communication savings
while protecting local information without imposing additional
computational burdens on the agents. The update process of
selection matrices involves simple shifting operations, which
do not require extensive computations like dimensionality
reduction [37] and 1-bit quantization [38] methods.

IV. LEARNING PERFORMANCE ANALYSIS

Throughout this section, we examine the convergence be-
havior of the proposed PPDL strategies. In particular, we

Algorithm 2 Decomposition and Noise Injection-based PPDL
At each time index n for nodes k = 1, 2, · · · ,K;
Initialize: Sn,(0) and τ ,
ŷk,n = xT

k,nwk,n,
ek,n = yk,n − ŷk,n,
Local Update:

ψk,n+1 = wk,n + µ xk,n ek,n, (18)

ACF:
Set hk,(0) = ψk,n+1, and partition it into two substates
Private substate: βk,(0) = γhk,(0),
Public substate: αk,(0) = (2− γ)hk,(0),
For m = 1 to M
Share Sn,(m−1)α̃k,(m−1),
Receive

{
Sn,(m−1)α̃l,(m−1) : ∀l ∈ N−

k

}
α̃′

l,(m−1) = Sn,(m−1)α̃l,(m−1) + (I− Sn,(m−1))α̃k,(m−1)

αk,(m) = αk,(m−1) + εθk
(
βk,(m−1) −αk,(m−1)

)
+ ε

∑
l∈Nk

δlk

(
α̃′

l,(m−1) −αk,(m−1)

)
,

βk,(m) = βk,(m−1) + εθk
(
αk,(m−1) − βk,(m−1)

)
,

(19)

diag{Sn,(m)} = circularshift(diag{Sn,(m−1)}, τ),
Endfor
wk,n+1 = αk,(M).

study the impact of partial-sharing-based communication on
the convergence of privacy-preserving distributed learning.

To begin with, we first define certain network-level quan-
tities at time instance n as follows: optimal parameter vec-
tor w⋆

net ≜ 1K ⊗ w⋆, estimated parameter vector wn ≜
col{w1,n,w2,n, . . . ,wK,n}, at mth consensus iteration private
information h(m) ≜ col{h1,(m),h2,(m), . . . ,hK,(m)} with
h(0) ≜ col{ψ1,n,ψ2,n, . . . ,ψK,n}, private and public sub-
states at mth consensus iteration β(m) ≜ col{β1,(m),β2,(m),

. . . ,βK,(m)} and α(m) ≜ col{α1,(m),α2,(m), . . . ,αK,(m)},
input data Xn ≜ blockdiag{x1,n,x2,n, . . . ,xK,n}, and obser-
vation noise ϵn ≜ col{ϵ1,n, ϵ2,n, . . . , ϵK,n}. Using the above
definitions, the network-level data model and error vector can
be expressed as

yn ≜ col{y1,n, y2,n, . . . , yK,n} = XT
nw

⋆
net + ϵn,

en ≜ col
{
e1,n, e2,n, . . . , eK,n

}
= yn −XT

nwn.
(20)

For establishing the convergence conditions and to obtain
the closed-form expressions for network-level mean square
error (MSE) of the proposed PPDL strategies, we make the
following assumptions:
A1: For all k ∈ N , the input signal vector xk,n is drawn from
a WSS multivariate random sequence with correlation matrix
Rk ≜ E[xk,nx

T
k,n]. Furthermore, the input signal vectors xk,n

and xl,m are independent for all k ̸= l and n ̸= m.
A2: The observation noise process ϵk,n is assumed to be zero-
mean i.i.d. and independent of any other quantity.
A3: The perturbation sequences νk,(m) are assumed to be
mutually independent for all agents k ∈ N .
A4: For all k ∈ N , the section matrix Sn,(m) is independent
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of any other data. Additionally, the selection matrices Sn,(m)

and Sn′,(m′) are independent for all n ̸= n′ and m ̸= m′.
A5: For sufficiently small learning rate µ, the terms involving
higher-order powers of µ can be neglected.

Denoting the network-level weight error vector w̃n =
w⋆

net − wn, the network-level error can be alternatively ex-
pressed as en = XT

n w̃n + ϵn. Thus, the network-level mean
square error (MSE) at time instance n: ζn = 1

KE[eTnen] =
E[w̃T

nXnX
T
n w̃n] +E[ϵTnϵn] = E[∥w̃n∥2R]+ trace(Λϵ), where

R = E[XnX
T
n ] = blockdiag{R1,R2, . . . ,RK} and Λϵ =

E[ϵTnϵn] = diag{σ2
ϵ,1, σ

2
ϵ,2, . . . , σ

2
ϵ,K}. The term E[∥w̃n∥2R] is

often referred to as network-level excess MSE (EMSE).

A. Analysis of Noise Injection-based PPDL

Using the above stated network-level definitions, from (15),
(14) and (20), the network-level recursion of noise injection-
based PPDL is given by

wn+1 = Bn

(
wn + µXn en

)
+ ρn, (21)

with

Bn =

m−1∏
i=0

Bn,(i), and ρn =

m−1∑
i=0

(m−1∏
j=i

Bn,(j)

)
ω(i), (22)

where Bn,(i) = A⊗ Sn,(i) + IK ⊗ (IL − Sn,(i)) and ω(i) ≜
col{ω1,(i),ω2,(i), . . . ,ωK,(i)}. Here, the network-level pertur-
bation noise vector is given by

ω(m) =

{
ν(0), m = 0,

ϕmν(m) − ϕm−1ν(m−1), otherwise,
(23)

with ν(m) ≜ col{ν1,(m),ν2,(m), . . . ,νK,(m)}.
1) First-Order Convergence Analysis: Recalling that

w⋆
net = Bnw

⋆
net (since the row sum of Bn,(i) is unity and due

to the structure of w⋆
net, ∀i = 0, 1, . . . ,m − 1; we will have

Bn,(i)w
⋆
net = w⋆

net and thus,
∏m−1

i=0 Bn,(i)w
⋆
net = w⋆

net),
form (21), the recursion for w̃n+1 can be stated as

w̃n+1 = Bn

(
ILK − µXnX

T
n

)
w̃n − µBnXnϵn − ρn. (24)

Theorem 1: Let A1-A4 hold true. Then, noise injection-
based PPDL converges in the mean if and only if

0 < µ <
2

max
∀p,k

{λp(Rk)}
· (25)

Proof: Taking the expectation E[·] on both sides of (24)
and using assumptions A1-A4, we have

E[w̃n+1] = E[Bn]
(
ILK − µR

)
E[w̃n]. (26)

From (26), one can see that limn→∞ E[w̃net,n] attains a finite
value if and only if ∥E[Bn]

(
ILK − µR

)
∥ < 1, where ∥ · ∥

is any matrix norm. In order to establish the convergence
condition, we use the block maximum norm of the matrix, i.e.,
∥ · ∥b,∞ [49]. From the properties of block maximum norm,
one can write ∥E[Bn]

(
ILK−µR

)
∥b,∞ ≤ ∥E[Bn]∥b,∞∥ILK−

µR∥b,∞. Following the similar procedure as in [41], one can

easily prove E[Bn,(i)] = pe(A ⊗ IL) + (1 − pe)ILK and its
row sum equals to one. We then have

∥E[Bn]∥b,∞ ≤
m−1∏
i=0

∥E[Bn,(i)]∥b,∞ = 1. (27)

Thus, using [50, Lemma D. 5], it is seen that E
[
w̃n

]
converges

under ∀p, k : |1− µλp(Rk)| < 1. After some simplifications,
we arrive at (25).

2) Second-Order Convergence Analysis: Let Σ be an ar-
bitrary positive semi-definite matrix. Then from (24), the
recursion for the weighted mean-square deviation (MSD), i.e.,
E[∥w̃n∥2Σ] = E[w̃T

nΣw̃n], is stated as

E[∥w̃n+1∥2Σ] = E[∥w̃n∥2Σ′
NI
] + µ2E[ϵTnXT

nB
T
nΣBnXϵn]

+ E[ρT
nΣρn], (28)

where the cross terms are vanished under the assumption A2
and A3. The matrix Σ′

NI is given by

Σ′
NI = E

[(
I− µXnX

T
n

)
BT

nΣBn

(
I− µXnX

T
n

)]
. (29)

Using the properties of block vectorization operator bvec{·}
and block Kronecker product [51], one can relate σ ≜
bvec{Σ} and σ′

NI ≜ bvec{Σ′
NI} as

σ′
NI = bvec

{
E
[
(I− µXnX

T
n)B

T
nΣBn(I− µXnX

T
n)
]}

= FT
NIσ, (30)

with

FNI = QB − µQB(I⊗b R)− µQB(R⊗b I), (31)

where

QB = E[Bn ⊗b Bn] =

m−1∏
i=0

E[Bn,(i) ⊗b Bn,(i)]. (32)

The higher-order powers of µ are ignored in (31) under A5.
We continue the analysis with this approximation. In the above
E[Bn,(i)⊗Bn,(i)] = pe

(
(A⊗A)⊗ IL2

)
+(1−pe)IL2K2 , and

its row sum equals to one.
Next, the second term in the RHS of (28) can be evaluated as

E[ϵTnXT
nB

T
nΣBnXnϵn] = E[trace(BnXnϵnϵ

T
nX

T
nB

T
nΣ)] =

trace(E[BnXnE[ϵnϵTn ]XT
nB

T
n ]Σ) = trace(E[BnΦnBT

n ]Σ),
with Φn = XnΛϵX

T
n . From the properties of block vector-

ization, we finally have

trace
(
E[BnΦnBT

n ]Σ
)
= γT

NIσ, (33)

with

γNI = bvec{E[BnΦnBT
n ]} = QB γϵ, (34)

where γϵ ≜ bvec{E[Φn]} = bvec{E[XnΛϵX
T
n )]}.
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Finally, the last term on the RHS of (28) can be evaluated
as

E[ρTnΣρn]

=

m−1∑
i=0

E
[
ωT

(i)

(m−1∏
j=i

Bn,(j)

)T
Σ
(m−1∏

j=i

Bn,(j)

)
ω(i)

]

=

m−1∑
i=0

E
[

trace
((m−1∏

j=i

Bn,(j)

)
ω(i)ω

T
(i)

(m−1∏
j=i

Bn,(j)

)T
Σ

)]

=

m−1∑
i=0

trace
(
E
[(m−1∏

j=i

Bn,(j)

)
Λω,(i)

(m−1∏
j=i

Bn,(j)

)T]
Σ

)
,

(35)

where Λω,(i) ≜ E[ω(i)ω
T
(i)] = σ2

ω,(i)ILK . From the properties
of block vectorization one can simplify it further as

m−1∑
i=0

trace
(
E
[(m−1∏

j=i

Bn,(j)

)
Λω,(i)

(m−1∏
j=i

Bn,(j)

)T]
Σ

)

=

m−1∑
i=0

φT
i σ, (36)

with

φi = bvec
{
E
[(m−1∏

j=i

Bn,(j)

)
Λω,(i)

(m−1∏
j=i

Bn,(j)

)T]}

=

(m−1∏
j=i

E
[
Bn,(j) ⊗b Bn,(j)

])
γω,(i),

(37)

where γω,(i) ≜ bvec{Λω,(i)}.
Integrating all of these results together, the recursion for the

weighted MSD of noise injection-based PPDL can be stated
as

E[∥w̃n+1∥2bvec−1{σ}] = E[∥w̃n∥2bvec−1{FT
NIσ}] + µ2γT

NIσ

+

m−1∑
i=0

φT
i σ,

(38)

where bvec−1{·} is the reverse operation of block vectoriza-
tion.

Theorem 2: Let A1-A5 hold true and (38) represents
weighted MSD dynamics of noise injection-based PPDL.
Then, it exhibits stable MSD under

0 < µ <
1

max
∀p,k

{λp(Rk)}
· (39)

Proof: Iterating (38) downwards to n = 0, we obtain

E[∥w̃n+1∥2bvec−1{σ}] = E[∥w̃0∥2bvec−1{(FT
NI)

n+1 σ}]

+ µ2 γT
NI

(
I+

n∑
j=1

(FT
NI)

j
)
σ

+

m−1∑
i=0

φT
i

(
I+

n∑
j=1

(FT
NI)

j
)
σ,

(40)

where w̃0 = w⋆
net−w0. For the convergence of E[∥w̃n∥2Σ] =

E[∥w̃n∥2bvec−1{σ}], ∥FNI∥b,∞ < 1. From the properties of
block maximum norm, we then can write
∥FNI∥b,∞ ≤

∥∥QB
(
I− µ(I⊗b R)− µ(R⊗b I)

))
∥b,∞

≤ ∥QB∥b,∞∥I− µ(I⊗b R)− µ(R⊗b I)∥b,∞,
(41)

Using the fact that the row sum of E[Bn,(i)⊗Bn,(i)] is equal
to one, we will have ∥QB∥b,∞ = 1. Therefore, the condition
for the convergence of E[∥w̃n∥2Σ] is ∥I−µ(I⊗bR)−µ(R⊗b

I)∥b,∞ < 1, or, equivalently, |1 − µ(λp(R) + λq(R))| < 1,
p, q = 1, 2, · · · , LK. Thus, a sufficient convergence condition
is given by 0 < µ < 1

max
p=1,··· ,LK

λp(R) , which proves (39).

3) Transient and Steady-State network-level EMSE: Using
(38), E[∥w̃n+1∥2bvec−1{σ}] and E[∥w̃n∥2bvec−1{σ}] can be re-
lated as

E[∥w̃n+1∥2bvec−1{σ}]

= E[∥w̃n∥2bvec−1{σ}] + µ2γT
NI(F

T
NI)

n σ (42)

+

m−1∑
i=0

φT
i (F

T
NI)

n σ + E[∥w̃e,0∥2bvec−1{(FT
NI−I)(FT

NI)
nσ}].

By choosing σ = bvec{R}, network-level EMSE of noise
injection-based PPDL at time instance n can be obtained.
Furthermore, letting n → ∞ on both sides of (38), we have

lim
n→∞

E[∥w̃n∥2bvec−1{(I−FT
NI)σ}] = µ2γT

NIσ +

m−1∑
i=0

φT
i σ.

(43)

The network-level steady-state EMSE of noise injection-based
PPDL can be obtained by setting σ = (I−FT

NI)
−1bvec{R}

in (43). As shown in (43), the steady-state performance of
the noise injection-based PPDL depends on the number of
consensus iterations and is degraded by the injected noise.

B. Analysis of Decomposition and Noise Injection-based
PPDL

Using the above-stated network-level definitions and from
(18)-(20), the network-level recursion of decomposition and
noise injection-based PPDL is described as

wn+1 = I
(
GnΓ

(
wn + µXn en

)
+ τn

)
, (44)

with
I =

[
ILK 0LK

]
,

Gn =

m−1∏
i=0

Gn,(i),

τn =

m−2∑
i=0

(m−2∏
j=i

Gn,(j+1)

)
Cn,(i)ω(i) +Cn,(m−1)ω(m−1),

(45)

where

Gn,(i) =

[
ILK − εΘ− ε

(
D− (∆⊗ IL)

)
Sn,(i) εΘ

εΘ ILK − εΘ

]
,

Cn,(i) =

[
ε(∆⊗ IL)Sn,(i) + εD(ILK − Sn,(i))

0

]
,

Γ =

[
(2− γ)ILK

γILK

]
. (46)
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In the above [∆]l,k = δlk, D = diag({δ1, δ2, . . . , δK}) ⊗ IL
with δl =

∑
k∈N−

l
δlk, Θ = diag({θ1, θ2, . . . , θK})⊗ IL and

Sn,(i) = IL ⊗ Sn,(i).

1) First-Order Convergence Analysis: Using the fact that
w⋆

net = IGnΓw
⋆
net (since the row sum of Gn,(i) is one for

i = 0, 1, . . . ,m− 1), then form (44), recursion for the weight
error vector of the decomposition and noise injection-based
PPDL can be expressed as

w̃n+1 = I
(
GnΓ

(
ILK − µXnX

T
n

)
w̃n − µGnΓXnϵn − τn

)
.

(47)
Theorem 3: Let the assumption A1-A4 hold true. Then, the

decomposition and noise injection-based PPDL converges in
the mean if and only if

0 < µ <
2

max
∀p,k

{λp(Rk)}
· (48)

Proof: Taking expectation E[·] on the both sides of (47)
and using the assumptions A1 − A4, we have

E[w̃n+1] = IE[Gn]Γ
(
ILK − µR

)
E[w̃n]. (49)

From (49), one can see that limn→∞ E[w̃n] attains a finite
value if and only if ∥IE[Gn]Γ

(
ILK − µR

)
∥b,∞ < 1. From

the properties of the block maximum norm, one can write

∥IE[Gn]Γ
(
ILK − µR

)
∥b,∞

≤ ∥I∥b,∞∥E[Gn]∥b,∞∥Γ∥b,∞∥ILK − µR∥b,∞.
(50)

From the definition of I , Γ, and ∥E[Gn]∥b,∞, we have
∥I∥b,∞ = 1, ∥Γ∥b,∞ = 1, and ∥E[Gn]∥b,∞ =
∥
∏m−1

i=0 E
[
Gn,(i)

]
∥b,∞ ≤

∏m−1
i=0 ∥E[Gn,(i)]∥b,∞ = 1 (since

E[Sn,(i)] = peILK , the row sum of E[Gn,(i)] equals to
one). Thus, the condition for the convergence of E

[
w̃n

]
is

∀p, k : |1 − µλp(Rk)| < 1 and after some simplifications
leads to (48).

2) Second-Order Convergence Analysis: Given an arbitrary
positive semi-definite matrix Σ, from (49), the recursion for
the weighted MSD of decomposition and noise injection-based
PPDL is

E[∥w̃n+1∥2Σ] = E[∥w̃n∥2Σ′
DNI
]

+ µ2E[ϵTnXT
NΓTGT

nI
TΣIGnΓXnϵn]

+ E[τT
nI

TΣIτn],

(51)

where the cross terms turned zero under the assumption A2
and A3. The matrix Σ′

DNI is given by

Σ′
DNI = E

[(
I− µXnX

T
n

)
ΓTGT

nI
TΣIGnΓ

(
I− µXnX

T
n

)]
.

(52)

Then, σ and σ′
DNI ≜ bvec{Σ′

DNI} can be related as

σ′
DNI

= bvec
{
E
[(
I− µXnX

T
n

)
ΓTGT

nI
TΣIGnΓ

(
I− µXnX

T
n

)]}
= FT

DNI σ, (53)

where

FDNI = QG − µQG(I⊗b R)− µQG(R⊗b I), (54)

with

QG = (Γ⊗b Γ)E[Gn ⊗b Gn](I ⊗b I)

= (Γ⊗b Γ)

(
m−1∏
i=0

E[Gn,(i) ⊗b Gn,(i)]

)
(I ⊗b I).

(55)

The higher-order powers of µ are ignored in (51) under A5.
We continue the analysis with this approximation. Using the
results E[Sn,(i)] = peILK and E[Sn,(i)⊗bSn,(i)] = peIL2K2 ,
one can easily evaluate the term E[Gn,(i) ⊗b Gn,(i)].

Next, the second term in the RHS of (51) can be evaluated
as

E[ϵTnXT
NΓTGT

nI
TΣIGnΓXnϵn]

= trace
(
E[IGnΓΦnΓ

TGT
nI

T]Σ
)

= γT
DNI σ,

(56)

where

γDNI = bvec{E[IGnΓΦnΓ
TGT

nI
T]}

= QG γϵ.
(57)

The quantity γϵ is the same as in Section IV-A2.
Finally, the last term on the RHS of (51) can be evaluated

as

E[τT
nI

TΣIτn]

=

m−2∑
i=0

trace

I E


(m−2∏

j=i

Gn,(j+1)

)
Cn,(i) Λω,(i)

× CT
n,(i)

(m−2∏
j=i

Gn,(j+1)

)T
ITΣ


+ trace

(
I E

[
Cn,(m−1)Λω,(m−1)C

T
n,(m−1)

]
ITΣ

)
=

m−1∑
i=0

ϑT
i σ, (58)

where Λω,(i) is the same given in the Section IV-A2, and

ϑi = bvec

I E


(m−2∏

j=i

Gn,(j+1)

)
Cn,(i) Λω,(i)

× CT
n,(i)

(m−2∏
j=i

Gn,(j+1)

)T
IT


+ bvec

{
IE
[
Cn,(m−1)Λω,(m−1)C

T
n,(m−1)

]
IT
}

= (I ⊗b I)

 m−2∏
j=i+1

E
[
Gn,(j+1) ⊗b Gn,(j+1)

]
E
[
Gn,(i)Cn,(i) ⊗b Gn,(i)Cn,(i)

]
γω,(i)

+ (I ⊗b I)E
[
Cn,(m−1) ⊗b Cn,(m−1)

]
γω,(m−1), (59)

where γω,(i) is the same as defined in the Section IV-A2.
Putting all these results together, the recursion for the

weighted MSD of decomposition and noise injection-based
PPDL can be described as

E[∥w̃n+1∥2bvec−1{σ}] = E[∥w̃n∥2bvec−1{FT
DNIσ}] + µ2γT

DNIσ

+

m−1∑
i=0

ϑT
i σ. (60)
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Theorem 4: Let A1-A5 hold true and (60) describes
weighted MSD dynamics of decomposition and noise
injection-based PPDL. Then, it exhibits stable MSD under

0 < µ <
1

max
∀p,k

{λp(Rk)}
· (61)

Proof: Iterating (60), downwards to n = 0, we obtain

E[∥w̃n+1∥2bvec−1{σ}] = E[∥w̃0∥2bvec−1{(FT
DNI)

n+1σ}]

+ µ2 γT
DNI

(
I+

n∑
j=1

(FT
DNI)

j
)
σ

+

m−1∑
i=0

ϑT
i

(
I+

n∑
j=1

(FT
DNI)

j
)
σ.

(62)

where w̃0 = w⋆
net − w0. The convergence of

E[∥w̃n∥2bvec−1{σ}] requires ∥FDNI∥b,∞ < 1. From the
properties of the block maximum norm, one can write

∥FDNI∥b,∞ ≤ ∥QG∥b,∞∥I− µ(I⊗b R)− µ(R⊗b I)∥b,∞·
(63)

Using the fact that the row sum of QG is one, the convergence
of E[∥w̃n∥2Σ] requires |1 − µ(λi(R) + λj(R))| < 1, i, j =
1, 2, · · · , LK, which in turn simplifies to (61).

3) Transient and Steady-State network-level EMSE: From
(60), E[∥w̃n+1∥2bvec−1{σ}] and E[∥w̃n∥2bvec−1{σ}] can be re-
lated as

E[∥w̃n+1∥2bvec−1{σ}]

= E[∥w̃n∥2bvec−1{σ}] + µ2γT
DNI(F

T
DNI)

n σ (64)

+

m−1∑
i=0

ϑT
i (F

T
DNI)

n σ + E
[
∥w̃e,0∥2bvec−1{(FT

DNI−I)(FT
DNI)

nσ}
]
.

By selecting σ = bvec{R}, network-level EMSE of the de-
composition and noise injection-based PPDL at time instance
n, can be obtained. Letting n → ∞ on both sides of (64), we
obtain

lim
n→∞

E[∥w̃n∥2bvec−1{(I−FT
DNI)σ}] = µ2γT

DNIσ +

m−1∑
i=0

ϑT
i σ.

(65)

By substituting σ = (I − FT
DNI)

−1bvec{R} in (65), the
network-level steady-state EMSE of decomposition and noise-
injection-based PPDL can be obtained. As shown in (65),
the steady-state performance of the decomposition and noise
injection-based PPDL depends on the number of consensus
iterations and is degraded by the injected noise.

Remark 1: The convergence conditions of the noise-
injection-based PPDL and combined decomposition and noise-
injection-based PPDL strategies are those of the traditional
distributed LMS (without communication-saving and data
protection). Partial-sharing-based communication and noise
perturbation do not alter the convergence of the proposed
strategies.

Remark 2: When L′ = L and σ2
ν = 0, the second term in

(43) and (65) becomes zero. Thus, the steady-state MSD of
the proposed strategies is the same as that of the traditional

distributed LMS. On the other hand, when L′ < L and σ2
ν > 0,

the second term in (43) and (65) will be larger than zero. This
means that the MSD of the proposed strategies at steady-state
is slightly higher than that of the traditional distributed LMS.
However, this slight degradation comes with enhanced privacy
and communication efficiency, as detailed in the next section.

V. PRIVACY ANALYSIS

This section examines the impact of communication savings
on the privacy of agents. To this end, we analyze the privacy
of agents in the presence of an HBC adversary and external
eavesdropper. Before proceeding to the privacy analysis, we
denote the privacy measure at agent l after m consensus
iterations by El,(m), which is defined as the mean squared
estimation error at the adversary attempting to infer the private
information hl,(0), i.e.,

El,(m) ≜ trace
(
E
[
(ĥl,(m) − hl,(0))(ĥl,(m) − hl,(0))

T
])

,

(66)
where ĥl,(m) denotes the estimate of the private information
at the adversary after m consensus iterations. The MSE is
used here as a privacy metric to measure how accurately the
adversary can estimate the private information of an agent.
Unlike differential privacy scenarios, the attack model and
information available to the adversary are specified, allowing
the MSE metric to precisely quantify the information leakage.
In the following, we quantify the privacy leakage of private
information in both noise injection- and decomposition and
noise injection-based PPDL algorithms.

A. Honest-but-Curious (HBC) Agent

The HBC agent is a network agent that has access to
node-specific information and is curious about the private
information of other agents. Without loss of generality, we
consider agent k to be an HBC agent, attempting to estimate
the private information of other agents.

1) Noise Injection-based PPDL: The HBC agent, i.e., agent
k, attempts to estimate private information of other agents, i.e.,
hl,(0) = ψl,n+1, for l ∈ N\{k} using its own local information
{hk,(m),Sn,(m)} and the shared information of its neighboring
agents Sn,(m)h̃l,(m), for l ∈ N−

k . The following theorem
quantifies the privacy metric (66) for the noise injection-based
PPDL algorithm.

Theorem 5: Let agent k be the HBC agent that has
access to its own information and the exchanged information
from its neighborhood at each consensus iteration m, i.e.,
{hk,(m),Sn,(m),Sn,(m)h̃l,(m)}, for l ∈ N−

k . Then the privacy
metric (66) at each agent l, after m consensus iterations is
given by

ENI
l,(m) = trace

(
(cTl ⊗ IL)P

NI
(m)(cl ⊗ IL)

)
, (67)

where cl is the (K − 1)-dimensional canonical vector cor-
responding to agent l, which contains 1 as lth element and
zeros elsewhere, and PNI

(m) is the associated error covariance
to the maximum likelihood (ML) estimator at the HBC agent
to estimate the private information hl,(0), for l ∈ N \{k}.
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Proof: The proof begins by stating the fact that the
HBC agent is one of the network agents and has ac-
cess to its own information and the exchanged information
from its neighborhood at each consensus iteration m, i.e.,
{hk,(m),Sn,(m),Sn,(m)h̃l,(m)}, for l ∈ N−

k . Then from (14),
the network-level consensus operation in noise injection-based
PPDL can be recursively computed as

h̃(1) =Bn,(0)h(0) +Bn,(0)ω(0) + ω(1),

... (68)

h̃(m) =
( m∏

i=0

Bn,(i)

)
h(0) +

m∑
i=0

( m∏
j=i

Bn,(j)

)
ω(i).

Recall that the HBC agent already knows its own information
and is only interested in estimating the private information
of other agents. Thus, we reduce the dimension of the state
parameters by removing the corresponding entries of the
HBC agent from h̃(m), ω(m),ν(m),h(0), and,Bn,(m), and
continue the privacy analysis with their respective reduced
quantities ξ(m), ω̌(m), ν̌(m), ȟ(0), and, B̌n,(m). Subsequently,
the reduced version of the network-level consensus operation
in noise injection-based PPDL, as in (68), can be stated as

ξ(m) =
( m∏

i=0

B̌n,(i)

)
ȟ(0) +

m∑
i=0

( m∏
j=i

B̌n,(j)

)
ω̌(i) (69)

Without loss of generality, we consider agent K to be an HBC
agent in the following. Thus, we consider κ(m) = Cξ(m)

as the observation vector at the HBC agent that comprises
of the information of its neighboring agents. To captured the
neighboring information at mth consensus iteration, we define
C ≜ C̄T ⊗ IL with C̄ ∈ R(K−1)×|N−

K |. The lth column of C̄
represents the canonical vector corresponding to lth neighbor
of agent K. Note that the canonical vector corresponding to
agent l, denoted by cl ∈ RK−1, is a vector with 1 at lth
element and zeros elsewhere. Following similar procedure as
in [19] and after substituting (9) in (69), observation model at
the HBC agent can be described as

κ(m) =Cξ(m)

=C
( m∏

i=0

B̌n,(i)

)
ȟ(0) + ϕmCB̌n,(m)ν̌(m)

+C

m−1∑
i=0

ϕi
( m∏

j=i+1

B̌n,(j)

)
(B̌n,(i) − I)ν̌(i)·

(70)

After collecting all the observed information up to consensus
iteration m, the overall observation vector can be stated as

κ̄(m) = H̄(m)ȟ(0) + F(m)ν̄(m), (71)

with

κ̄(m) ≜ col{κ(0),κ(1), . . . ,κ(m)},
H̄(m) ≜ col{H(0),H(1), . . . ,H(m)},
ȟ(0) ≜ col{h1,(0),h2,(0), . . . ,hK−1,(m)},
ν̄(m) ≜ col{ν̌(0), · · · , ν̌(m)},

where H(m) = C
∏m

i=0 B̌n,(i), and

F̄(m) = ( Im+1 ⊗C )F(m),

with

F(m) =


B̌n,(0) 0 0 · · · 0
F(1),(0) ϕB̌n,(1) 0 · · · 0
F(2),(0) ϕF(2),(1) ϕ2B̌n,(2) · · · 0

...
...

...
. . .

...
F(m),(0) ϕF(m),(1) ϕ2F(m),(2) · · · ϕmB̌n,(m)

 ,

with F(m),(i) =
∏m

t=i+1 B̌n,(t)(B̌n,(i) − I). Using the overall
observation model in (71); the HBC agent can find a maximum
likelihood (ML) estimate of private information vector ȟ(0),
with associated error covariance

PNI
(m) =

(
H̄T

(m)

(
F̄(m)Λ̄ν,(m)F̄

T
(m)

)−1H̄(m)

)−1

, (72)

where Λ̄ν,(m) ≜ E{ν̄(m)ν̄
T
(m)} = σ2

νI. As the HBC agent
collects more information from neighbors, the mean squared
error of the ML estimator decreases and the privacy metric
(66) at each agent l can be obtained as

ENI
l,(m) = trace

(
(cTl ⊗ IL)P

NI
(m)(cl ⊗ IL)

)
, (73)

which completes the proof.
2) Decomposition and Noise Injection-based PPDL: Simi-

lar to the noise injection-based method, let agent k be an HBC
agent, attempting to estimate the private information of other
agents, i.e., hl,(0) = ψl,n+1, for l ∈ N\{k}. The HBC agent has
access to it own local information {αk,(m),βk,(m),Sn,(m)} as
well as the shared information by its neighbors Sn,(m)α̃l,(m)

for l ∈ N−
k . We can observe that agent privacy depends on

the availability of the interaction and coupling weights for
all agents at the HBC adversary [27]. Thus, to investigate the
privacy leakage in the worst-case scenario, we also assume that
the HBC agent has also access to the coupling and interaction
weight matrices Θ and ∆.

Theorem 6: Let agent k be the HBC agent that has access
not only to its own information and exchanged information
in its neighborhood at every consensus iteration m, but also
to the interaction and coupling weights of the entire network,
i.e., {αk,(m),Sn,(m),Sn,(m)α̃l,(m), for l ∈ N−

k } ∪ {Θ,∆},
then, the privacy metric (66) at each agent l is obtained as

EDNI
l,(m) = trace

(
(cTl ⊗ IL)P

DNI
(m)(cl ⊗ IL)

)
, (74)

where PDNI
(m) is the associated error covariance to the ML

estimator at the HBC agent to estimate the private information
hl,(0), for l ∈ N \{k}.

Proof: The proof begins by stating that the available
information set at the HBC agent can be represented as
{αk,(m),Sn,(m),Sn,(m)α̃l,(m), for l ∈ N−

k } ∪ {Θ,∆}. On
the other hand, using (19), the network-level consensus opera-
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tion in decomposition and noise injection-based PPDL can be
recursively computed as

ι(m) =
( m∏

i=0

Gn,(i)

)
ι(0) +Cn,(m)ω(m)

+

m−1∑
i=0

(m−1∏
j=i

Gn,(j+1)

)
Cn,(i)ω(i) (75)

where ι(m) ≜ [αT
(m),β

T
(m)]

T.
Since the HBC agent already knows its own information

and is only interested in estimating the private information of
other agents, we reduce the dimension of the state parameters
by removing the corresponding entries of the HBC agent
from quantities of Gn,(m), Cn,(m), ι(m), α(m), and β(m)

and use Ǧn,(m)and Čn,(m), ι̌(m), α̌(m), and β̌(m), respec-
tively. Following the same procedure as in the noise-injection-
based PPDL method, the reduced version of the network-level
consensus operation in the decomposition and noise injection-
based PPDL, as in (75), can be stated as

ι̌(m) =
( m∏

i=0

Ǧn,(i)

)
ι̌(0) + Čn,(m)ω̌(m)

+

m−1∑
i=0

(m−1∏
j=i

Ǧn,(j+1)

)
Čn,(i)ω̌(i) (76)

where ι̌(m) ≜ [α̌T
(m), β̌

T
(m)]

T. Without loss of generality, we
consider the case where agent K is an HBC agent. At the
HBC agent, let κ′

(m) = C′ι̌(m) be the observation vector
that comprises of the information captured at mth consensus
iteration. Thus, the matrix C′ is defined as C′ ≜ [C,0]
and contains two blocks: the first block captures the public
substates of the neighbors, and the second block shows that it
does not have access to the private substates. Then, following
the similar procedure as stated in the noise injection-based
PPDL method and after substituting (9) in (76), the observation
model at the HBC agent can be described as

κ′
(m) =C′ι̌(m)

=C′
( m∏

i=0

Ǧn,(i)

)
ι̌(0) + ϕmC′Čn,(m)ν̌(m) (77)

+C′
m−1∑
i=0

ϕi
( m∏

j=i+2

Ǧn,(j)

)
(Ǧn,(i+1)Čn,(i) − Čn,(i+1))ν̌(i)·

Subsequently, by collecting all the observed information up to
consensus iteration m, the overall observation vector can be
stated as

κ̄′
(m) = H̄′

(m)ι̌(0) + F′
(m)ν̄(m), (78)

with

κ̄′
(m) ≜ col{κ′

(0),κ
′
(1), . . . ,κ

′
(m)}

H̄′
(m) ≜ col{H′

(0),H′
(2), . . . ,H′

(m)}.

where H′
(m) = C′∏m

i=0 Ǧn,(i), and

F̄′
(m) = ( Im+1 ⊗C′ )F′

(m),

with

F′
(m) =


Čn,(0) 0 0 · · · 0
F′

(1),(0) ϕČn,(1) 0 · · · 0
F′

(2),(0) ϕF′
(2),(1) ϕ2Čn,(2) · · · 0

...
...

...
. . .

...
F′

(m),(0) ϕF′
(m),(1) ϕ2F′

(m),(2) · · · ϕmČn,(m)

 ,

where

F′
(m),(i) =

m∏
j=i+2

Ǧn,(j)(Ǧn,(i+1)Čn,(i) − Čn,(i+1)).

Using the overall observation model in (78); the HBC agent
can find an ML estimate of the private information of agents
ȟ(0) =

1
2 Īι̌(0) with Ī = [I, I] and ι̌(0) = [α̌T

(0), β̌
T
(0)]

T. Thus,
the associated error covariance to estimate private information
of agents ȟ(0) can be expressed as

PDNI
(m) =

1

4
Ī
(
H̄′T

(m)

(
F̄′

(m)Λ̄ν,(m)F̄′T
(m)

)−1H̄′
(m)

)−1

ĪT.

(79)
As the HBC agent collects more information from neighbors,
the mean squared error of the ML estimator decreases and the
privacy metric (66) at each agent l can be obtained as

EDNI
l,(m) = trace

(
(cTl ⊗ IL)P

DNI
(m)(cl ⊗ IL)

)
, (80)

which completes the proof.

B. External Eavesdropper

The external eavesdropper is an adversary outside the net-
work that knows the network topology and can access the
information exchanged between agents. Therefore, it generally
produces a more accurate estimate of the private information
[24]. In the proposed communication-efficient and privacy-
aware distributed learning strategies, however, the selection
matrix and circular shift variable are invisible to external
eavesdroppers since they are initialized during network estab-
lishment and are never shared during collaboration. Further,
due to partial information sharing, an external eavesdropper
can only access a portion of entries in the perturbed private
information during each consensus m, while being unable to
determine their position and the size of the private informa-
tion. Thus, the proposed communication-efficient and privacy-
preserving PPDL strategies are resilient against external eaves-
droppers with no information leakage.

However, in the worst-case scenario, when the initial se-
lection matrices, the right-circular shift parameter, and the
size of the private information vector are accessible to the
adversary, the external eavesdropper can construct an observer
and estimate the private information. Besides the information
mentioned above, i.e., IEE = {Sn,(m)h̃l,(m) for l ∈ N} ∪
{Sn,(0), τ, L}, the eavesdropper must also be able to access
the consensus weights of the noise injection PPDL and the
coupling and interaction weights of the decomposition and
noise injection PPDL in order to complete the construction of
the local observer and estimate the private information.

Remark 3: Assuming that an external eavesdropper has
knowledge of the selection matrices, the circular shift pa-
rameter, the vector size of private information, consensus
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weights of the noise injection PPDL, and the coupling and
interaction weights of the decomposition and noise injection
PPDL is an unrealistic scenario in practice. Furthermore,
conducting a comprehensive analysis of the eavesdropper’s
ability to accurately estimate private information through the
construction of a local observer is beyond the scope of this
work, but it will be addressed in future research.

VI. NUMERICAL SIMULATIONS

To demonstrate the effectiveness of noise-injection- as well
as decomposition- and noise-injection-based PPDL strategies,
we conducted a series of simulations in the context of system
identification. For this, we considered a random network of
K = 50 agents, with topology shown in Fig. 1, with the goal
of estimating an unknown system of length L = 32.

Fig. 1. Network topology.

The input signal xk,n and observation noise sequence
ϵk,n, were drawn from zero-mean Gaussian distribution with
variance σ2

x,k = 1 and σ2
ϵ,k ∈ U(0.008, 0.03), respectively.

Metropolis rule [47] was used to obtain non-negative co-
efficients alk in the average consensus operations of the
noise injection-based PPDL. The interaction weights of the
decomposition-based method were set as ∆ = 0.8E where E
denotes the adjacency matrix of the network. The elements of
the coupling weight θk were chosen independently from a dis-
tribution U(η, 1) where η = 0.8 and we set γ = 0.9. Average
consensus operations for the proposed PPDL algorithms are
iterated M = 40 times and the perturbation noise sequence
at each agent follows (9). The proposed communication-
efficient and privacy-preserving distributed learning strategies
were simulated under coordinated partial-sharing scheme for
different values of L′ (say 0.75L, 0.5L, 0.25L, implying
25%, 50% and 75% communication saving). The network-
level MSE, which is given by 1

KE[eTnen]), was considered as
the performance metric. The simulation results were obtained
by averaging over 200 independent experiments.
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Fig. 2. Learning curves of the proposed communication-efficient and privacy-
preserving distributed learning strategies: (a). Noise-injection-based PPDL.
(b). Decomposition- and noise-injection-based PPDL.

First, the proposed strategies were simulated for perturba-
tion noise variance σ2

ν = 5 and the corresponding learning
curves (i.e., network-level MSE in dB vs iteration index n)
are shown in Fig. 2. From Fig. 2, we see that the proposed
distributed learning strategies simultaneously achieve commu-
nication efficiency and preserve privacy at the cost of a slight
degradation in performance. These strategies exhibit a tradeoff
between communication-saving and estimation performance,
i.e., as the communication-saving increases the estimation
performance deteriorates. Even with 50% communication sav-
ing, the proposed strategies are able to achieve comparable
performance with that of full communication case. It is also
evident from Fig. 2 that the decomposition and noise injection-
based PPDL exhibits better estimation performance than the
noise injection-based PPDL because it injects perturbation
noise only into a fraction of the public state, thus minimizing
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Fig. 3. Communication saving vs. steady-state network-level MSE for σ2
ν =

5.

the overall contamination of the private information.
To delve deeper into this, Fig. 3 illustrates the percentage

of communication savings versus the steady-state mean square
error (MSE) in decibels (dB) for the proposed strategies.
Based on the findings depicted in Fig. 3, it is evident that
the decomposition and noise injection-based PPDL approach
outperforms the noise injection-based PPDL approach in terms
of estimation performance up to a communication saving of
65%. However, beyond this point, both algorithms demonstrate
similar performance.

Second, we examine the robustness of the proposed
communication-efficient and privacy-preserving distributed
learning strategies against the perturbation noise variance σ2

ν ,
by varying σ2

ν from 0 to 10. The steady-state network-level
MSE of the proposed strategies against σ2

ν is displayed in
Fig. 4. From Fig. 4, we see that the performance of the
proposed strategies deteriorates slightly as the variance of the
perturbation noise increases. However, Fig. 4 also shows that
the performance degradation is limited with the combined
decomposition- and noise-injection-based PPDL when com-
pared to the pure noise-injection-based PPDL. This behavior
is due to the noise-free private substate. Noise injected with
a higher variance degrades the learning performance regard-
less of the level of communication efficiency. However, the
performance degradation is more pronounced when the com-
munication savings are high. In other words, both proposed
PPDL strategies become more sensitive to the perturbation
noise variance when a smaller fraction of the information is
shared at each time instant.

Third, we investigate the impact of communication savings
on agent privacy in different distributed learning scenarios. In
order to investigate the privacy performance of different algo-
rithms, we use the average privacy of network agents, defined
as Ē ≜ 1

K

∑K−1
l=1 El,(m) with El,(m) in (66), as a privacy mea-

sure. The average privacy Ē of the proposed communication-
efficient and privacy-preserving distributed learning strategies
is demonstrated in Fig. 5 by varying the perturbation noise
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Fig. 4. Steady-state network-level MSE vs. perturbation noise variance: (a).
Noise-injection-based PPDL. (b). Decomposition- and noise-injection-based
PPDL.

variance σ2
ν from 0 to 10. From Fig. 5, we see that increasing

the variance of the perturbation noise increases the average
privacy regardless of the level of the communication savings in
both noise injection-based PPDL and decomposition and noise
injection-based PPDL. Fig. 5 also shows a tradeoff between
communication savings and privacy in both noise-injection-
based PPDL, and decomposition and noise injection-based
PPDL, where sharing a smaller fraction of the information at
each time instant results in a lower level of average privacy in
the network. Even when a larger fraction of the information is
shared at each iteration, the SNR at the HBC does not increase
due to higher cumulative noise present in the elements of
private information. This leads to higher estimation error at
the HBC when it attempts to estimate the private information
of a given agent, which ensures a higher level of privacy.
From Fig. 5 (b), it is also evident that the decomposition and
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Fig. 5. Average privacy versus perturbation noise variance: (a). Noise-
injection-based PPDL. (b). Decomposition- and noise-injection-based PPDL.

noise injection-based PPDL offers better privacy compared
to the noise injection-based PPDL for a given value of σ2

ν .
Although privacy decreases with increased communication
efficiency, the privacy achieved by decomposition and noise
injection-based PPDL with 75% communication savings is
better than the privacy achieved by noise injection-based PPDL
without communication savings, which is again due to the
noise-free private substate. The privacy-performance trade-off
can be examined by analyzing plots in Fig. 4 and Fig. 5
to determine the perturbation level. Thus, the amount of the
injected noise can be established based on the sought privacy
level, Fig. 5, and tolerable performance degradation, Fig. 4,
for the application at hand.

To further investigate the impact of communication savings
on privacy, Fig. 6 illustrates the percentage of communi-
cation savings versus the average privacy of agents in dB
for proposed PPDL strategies using the perturbation noise
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Fig. 6. Communication saving vs. average privacy for σ2
ν = 4.
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Fig. 7. Learning curves of the proposed PPDL strategies: (a). Noise-injection-
based PPDL. (b). Decomposition- and noise-injection-based PPDL.

variance σ2
ν = 4. It can be seen that the decomposition

and noise injection-based PPDL approach outperforms the
noise injection-based PPDL approach in terms of the average
privacy provided. Furthermore, Fig. 6 illustrates that in both
strategies, increasing the communication-saving percentage
decreases the obtained average privacy, indicating a tradeoff
between communication savings and privacy that must be
taken into account based on the particular application.

Finally, in order to determine the accuracy of the analytical
MSE expressions in (43) and (65), we plotted these equations
alongside their numerical equivalents. Due to limited resources
(i.e., memory and hardware limitations), the comparison re-
sults are shown for K = 20 and L = 4 while the remaining
parameters are the same as the first experiment. Figs. 7
illustrate the learning curves of the proposed strategies when
L′ = 2 (i.e., 50% saving). We see that the theoretical results
match the simulation results. Due to the small parameter vector
length L, both methods perform similarly in this experiment.

VII. CONCLUSIONS

This paper proposed partial-sharing private distributed learn-
ing (PPDL) algorithms that offer communication efficiency
while preserving privacy. The proposed noise-injection-based
PPDL achieved communication efficiency and privacy by
allowing each agent to share only a fraction of perturbed
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private information among neighbors. On the other hand,
the decomposition- and noise-injection-based PPDL randomly
decomposed the local information into public and private
substates and partially shared the perturbed version of the
public information to achieve both communication efficiency
and privacy. Mean and mean-square convergence analyses
were conducted to determine the impact of communication
savings and privacy preservation on the performance of the
proposed PPDL algorithms. The agent privacy was character-
ized in the presence of an HBC adversary, and the impact
of the communication saving on privacy was also analyzed.
Analytical results showed that agent privacy is improved
under the decomposition and noise injection PPDL, and com-
munication efficiency in the proposed PPDL algorithms is
achieved at the price of learning performance and privacy.
Numerical simulations validated the analytical findings and
showed that the decomposition and noise injection PPDL
with 50% communication savings achieved nearly the same
learning performance and improved privacy compared to the
noise injection PPDL without communication savings.
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[2] M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. V. Feljan and
H. V. Poor, “Distributed learning in wireless networks: Recent progress
and future challenges,” IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp.
3579-3605, Dec. 2021.

[3] T.H. Chang, M. Hong, H.T. Wai, X. Zhang and S. Lu, “Distributed
learning in the nonconvex world: From batch data to streaming and
beyond,” IEEE Signal Process. Mag., vol. 37, no. 3, pp. 26–38, May 2020.

[4] Q. Li, J. S. Gundersen, R. Heusdens and M. G. Christensen, “Privacy-
preserving distributed processing: Metrics, bounds and algorithms,” IEEE
Trans. Inf. Forensics Security., vol. 16, no. 3, pp. 2090–2103, Jan. 2021.

[5] J. He, L. Cai and X. Guan, “Differential private noise adding mechanism
and its application on consensus algorithm,” IEEE Trans. Signal Process.,
vol. 68, pp. 4069-4082, Jul. 2020.

[6] N. K. D. Venkategowda and S. Werner, “Privacy-preserving distributed
maximum consensus,” IEEE Signal Process. Lett., vol. 27, no. 10, pp.
1839-1843, Oct. 2020.

[7] Q. Li, R. Heusdens and M. G. Christensen, “Privacy-preserving dis-
tributed optimization via subspace perturbation: A general framework,”
IEEE Trans. Signal Process., vol. 68, no. 10, pp. 5983-5996, Oct. 2020.

[8] Z. Huang, S. Mitra and N. Vaidya, “Differentially private distributed
optimization,” in Proc. Int. Conf. Distributed Comput. and Netw., 2015,
pp. 1–10.

[9] Q. Li, M. Coutino, G. Leus and M. G. Christensen, “Privacy-preserving
distributed graph filtering,” in Proc. European. Signal Process. Conf.,
2021, pp. 2155-2159.

[10] Y. Mo and B. Sinopoli, “Secure estimation in the presence of integrity
attacks,” IEEE Trans. Autom. Control, vol. 60, no. 4, pp. 1145-1151, Apr.
2015.

[11] Z. Guo, D. Shi, D. E. Quevedo and L. Shi, “Secure state estimation
against integrity attacks: A Gaussian mixture model approach,” IEEE
Trans. Signal Process., vol. 67, no. 1, pp. 194–207, Jan. 2019.

[12] L. Su and S. Shahrampour, “Finite-time guarantees for Byzantine-
resilient distributed state estimation with noisy measurements,” IEEE
Trans. Autom. Control, vol. 65, no. 9, pp. 3758–3771, Sep. 2020.

[13] M. Ruan, H. Gao and Y. Wang, “Secure and privacy-preserving consen-
sus,” IEEE Trans. Autom. Control, vol. 64, no. 10, pp. 4035-4049, Oct.
2019.

[14] C. Zhang, M. Ahmad and Y. Wang, “ADMM based privacy-preserving
decentralized optimization,” IEEE Trans. Inf. Forensics Security, vol. 14,
no. 3, pp. 565-580, Mar. 2019.

[15] Y. Ni, J. Wu, L. Li and L. Shi, “Multi-party dynamic state estimation that
preserves data and model privacy,” IEEE Trans. Inf. Forensics Security,
vol. 16, pp. 2288-2299, Jan. 2021.

[16] X. Yin, Y. Zhu and J. Hu,“A comprehensive survey of privacy-preserving
federated learning: A taxonomy, review, and future directions,” ACM
Comp. Surveys., vol. 54, no. 6, pp. 1-36, Jul. 2021.

[17] R. L. Lagendijk, Z. Erkin and M. Barni, “Encrypted signal processing
for privacy protection: Conveying the utility of homomorphic encryption
and multiparty computation,” IEEE Signal Process. Mag., vol. 30, no. 1,
pp. 82-105, Jan. 2013.
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