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Abstract: Soft growing robots, which mimic the biological growth of plants, have demonstrated
excellent performance in navigating tight and distant environments due to their flexibility and
extendable lengths of several tens of meters. However, controlling the position of the tip of these
robots can be challenging due to the lack of precise methods for measuring the robots’ Cartesian
position in their working environments. Moreover, classical control techniques are not suitable for
these robots because they involve the irreversible addition of materials, which introduces process
constraints. In this paper, we propose two optimization-based approaches, combining Moving
Horizon Estimation (MHE) with Nonlinear Model Predictive Control (NMPC), to achieve superior
performance in point stabilization, trajectory tracking, and obstacle avoidance for these robots.
MHE is used to estimate the entire state of the robot, including its unknown Cartesian position,
based on available configuration measurements. The proposed NMPC approach considers process
constraints by relying on the estimated state to ensure optimal performance. We perform numerical
simulations using the nonlinear kinematic model of a vine-like robot, one of the newly introduced
plant-inspired growing robots, and achieve satisfactory results in terms of reduced computation times
and tracking error.

Keywords: growing robots; model-based control; moving horizon estimation; nonlinear model
predictive control; soft robots

1. Introduction

Harmless robotics exploration of confined spaces, such as the application of Minimally
Invasive Surgeries (MIS) in human bodies [1], or inspection of archaeological sites [2], is chal-
lenging while considering the existing rigid robot designs. Thus, designing new materials and
locomotion systems for robots is crucial to perform in such challenging environments. Inspired
by biological systems such as elephant trunks, octopus tentacles, and snakes, designs of soft
continuum robots with continuous bending backbones have alleviated the non-destructive
navigation in congested environments [3,4]. Nonetheless, the small lengths of continuum
robots are limiting their applicability in the exploration of distant spaces [5].

Taking inspiration from plants, a novel type of mobility called growth mobility was
recently introduced. Namely, growing robots can mimic the biological growth of plants
by gradually extending their lengths, volumes, or knowledge: [6]. Due to their soft
materials or flexible joints, growing robots can extend their lengths to reach distant spaces
while showing compliance when working in confined environments. Earlier research
has shown few attempts for designing long flexible robots that can work in tight spaces.
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For instance, a multiple-degrees of freedom growing robot called “Active Hose” is proposed
by Tsukagoshi et al. [7] for search and rescue applications. The proposed robot design was
based on stacking two degrees of freedom units in series to enable the robot to extend its
length and achieve the required flexibility. Isaki et al. [8] have come up with a flexible
thin and extended cable with an attached camera to explore narrow spaces. Moreover,
a pneumatically driven expendable soft arm known as “Slime Scope” [9] was developed
for rescue applications in rubble environments. Nevertheless, the locomotion of these
developed growing robots requires the movement of the entire robot’s body, which in turn
causes significant friction between the robot and the environment.

Recently, two designs of novel plant-inspired growing robots were proposed, each
having the capability of extending their body lengths with the addition of materials at
their distant tips. In particular, in [10,11], a plant root-like growing robot is proposed,
and a three-dimensional (3D) printer-like head is attached to its tip to deposit the circular
body layers of the robot incrementally. The steering capability is achieved efficiently
by varying the speed of material deposition along the robot circumference. However,
the robot’s growth speed of the robot is limited based on the environment. On the other
hand, a vine-like growing robot has been developed by Hawkes et al. [12] based on a
novel mechanism called "tip-eversion” [13]. It is a pneumatically-driven robot made of
thin-walled polyethylene tubing that can evert from inside to outside, enabling the robot
to extend for tens of meters into slippery and sticky environments. The steering of vine
robots was achieved by either utilizing the environment’s obstacles to guide the robot’s
movements [4] or by placing three or four Series Pneumatic Artificial Muscles (SPAM)
which are inflated along the circumference of the robot to establish the required steering
moment at the robot’s tip [14]. Thus, the lengthening capacity, the ratio of the length
to the diameter, and the compliance body enable vine-like robots to navigate distant
cluttered environments as demonstrated in [15], where three key applications could obtain
the benefits of vine-growing robots, namely, showing the deploying and reconfiguring
structures, navigating constrained environments, and applying forces on the environment.

Thus far, however, there has been little discussion about the control of growing robots’
movements in spatial environments. Feedback control is particularly crucial in vine robots
because their nonlinear dynamics are coupled with the absence of effective methods to
deploy sensors throughout their long bodies. In the literature, few studies have aimed to
control the growth of robots, whether in the joint or task space. As an example, a stimulus-
based feedback controller has been employed in [10] to control the locomotion of a root-like
growing robot. This was based on the tactile measurements perceived from the sensors
embedded in the robot’s tip. In [16], minimizing the energy spent during the penetration of
soil environments was achieved by controlling the tip of a plant-inspired root robot through
an optimal control technique. To guarantee the performance of the robot when it comes
to trajectory following, research in [17] applied a joint-space Proportional-Derivative (PD)
controller with gravity compensation to the obtained dynamics model of vine robots to
guarantee the robot’s performance. A visual servoing Jacobian-based controller is proposed
in [18] to maneuver a vine robot into the environment until reaching the desired target
defined in image space. However, two key challenges were encountered in the mentioned
control schemes, namely, the lack of incorporating the process constraints inhibited by the
growing robot, and dealing with the nonlinearity of the coupled dynamics of the robot.
Handling the process constraint is particularly critical since the extension of growing robots
is managed by an irreversible addition of materials to the robot’s tip, and once the robot
has grown to a certain length, it can not be retracted back to smaller values. Moreover, such
conventional controllers assume complete knowledge of the robot state; however, in reality,
measuring all the states could be cumbersome in lengthy growing robots, or it could not be
advisable from an economic perspective.

In this paper, a Nonlinear Model Predictive Control (NMPC) combined with Moving
Horizon Estimation (MHE) is proposed for controlling the growth of vine-like growing
robots in terms of point stabilization, trajectory tracking, and obstacle avoidance. The con-
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tribution of this paper is twofold: (1) a nonlinear MPC control scheme is proposed to control
the movement of the vine growing robot while considering the process constraints utilizing
an adaptive nonlinear kinematic model of the vine robot, and (2) a precise online estimation
of the vine robot’s state, including its Cartesian coordinates, is introduced based on the
MHE scheme considering that no such practical methods exist to deploy sensors to measure
the spatial location of the vine robot’s tip. Instead of applying the well-known Extended
Kalman Filters (EKF) as in [19], an optimization-based nonlinear MHE framework has
proposed an online state estimation technique in this research.

In this paper, a Nonlinear Model Predictive Control (NMPC) combined with Moving
Horizon Estimation (MHE) is proposed for controlling the growth of vine-like growing
robots in terms of point stabilization, trajectory tracking, and obstacle avoidance. The con-
tribution of this paper is twofold: (1) a nonlinear MPC control scheme is proposed to control
the movement of the vine-growing robot while considering the process constraints utilizing
an adaptive nonlinear kinematic model of the vine robot, and (2) a precise online estimation
of the vine robot’s state, including its Cartesian coordinates, is introduced based on the
MHE scheme considering that no such practical methods exist to deploy sensors to measure
the spatial location of the vine robot’s tip. Instead of applying the well-known Extended
Kalman Filters (EKF) as in [19], an optimization-based nonlinear MHE framework has
proposed an online state estimation technique in this research.

Section 2 describes the model of the vine robot utilized in this study. The moving
horizon state estimation is explained in detail in Section 3 while Section 4 describes the
nonlinear model predictive control problem. The numerical simulations are presented in
Section 5 and the results and their discussion. Finally, the conclusions from this research
are summarized in Section 6.

2. Model of Vine Robots

The “vine growing robot” introduced in [15] is considered in this research. Vine robots
are capable of elongating their tips as far as several tens of meters based on the eversion
mechanism introduced in [18]. The robot’s core body is constructed from a thin-walled
polyethylene tube that is initially flipped inside out as depicted in Figure 1. To achieve
tip extension, air pressure is applied to the robot’s chamber, and hence the robot’s tip is
pushed forward away from its base. This inside-out eversion mechanism makes vine robots
perfect for the exploration of sticky environments. The steering movement in a vine robot
is accomplished by applying air pressure to one or two of the serial Pneumatic Actuator
Muscles (sPAM) mounted around the robot’s circumference [15]. To facilitate shape sensing
of the robot as will be discussed, an Inertial Measurement Unit (IMU) and a shaft encoder
are attached to the robot’s tip and the material rod at the base, respectively.

P P

P1

IMU

P P

sP
A
M
s

pump

eversion

encoder
steeringextension

(a) (b) (c)

Figure 1. Working principal of the growing vine robot. (a) Air pressure is applied to the robot’s core
tube to facilitate the tip extension in (b). Steering in (c) is carried out by varying the air pressure in
one or two of the sPAMs placed around the vine robot.
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Kinematics of Vine Robots

To obtain the vine-robot’s forward kinematic model, the constant-curvature assump-
tion is commonly used [20]. The vine-like robot is considered a one-section extensible
continuum-like robot where two degrees of freedom are responsible for the robot’s curva-
ture and bending, while another is for lengthening the robot. The pose Tb

r of the robot’s
distant tip to its base is determined in terms of the robot’s configurations q ∈ IR3; this
includes the robot’s length s, the curvature angle θ and the angle of curvature plan φ as
illustrated in Figure 2. Thus, Tb

r is obtained as follows:

Tb
r =


C2

φ(Cθ − 1) + 1 SφCφ(Cθ − 1)
SφCφ(Cθ − 1) C2

φ(1− Cθ) + Cθ

CφSθ SφSθ

0 0

−CφSθ

(
sCφ(Cθ − 1)

)
/θ

−SφSθ

(
sSφ(Cθ − 1)

)
/θ

Cθ sSθ/θ
0 1

 (1)

where S. and C. represent the trigonometric sine and cosine of an angle. The robot’s tip
position p = [x, y, z]T ∈ R3 in Cartesian space can be stated from Equation (1) as

x =
(
sCφ(Cθ − 1)

)
/θ,

y =
(
sSφ(Cθ − 1)

)
/θ,

z = sSθ/θ

(2)

θ 

s

ϕ 

β d β d

p

li

x

y

z

Figure 2. Schematic of vine-like growing robot and its configuration parameters.

The sPAMs lengths l = [s, l1, l2, l3] are the actual actuation space of the vine-robot.
However, using the shape parameters generalizes the control problem to accommodate
any continuum-like robot with the constant-curvature model mentioned earlier.

The velocity ṗ ∈ R3 of the vine robot’s tip relies on the time derivatives of the robot’s
configuration q̇ as follows:

ṗ = J(q) q̇ (3)
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where J(q) ∈ R3×3, representing the Jacobian matrix, is computed analytically as follows:

Jq(q) =
∂p
∂q

=
∂p

∂(s, κ, φ)
(4)

p represents the Cartesian position of the robot’s tip mentioned in Equation (2).

3. Moving Horizon Estimation (MHE)

Having complete knowledge about the state components is essential to obtain a
well-performing closed-loop control scheme for a particular dynamical system. However,
in reality, measuring all the system state components could be dis-encouraged from an
economic perspective. The number of system components that could be practically mea-
sured is usually fewer than the number of state components required for describing the
dynamics of that system [21]. Notably, in vine-like growing robots which lengthen up to
tens of meters, measurement of the robot’s tip Cartesian position with adequate precision
could be challenging in unstructured environments. Therefore, in this section, we discussed
how the optimization-based MHE is utilized to estimate the entire state components of
the nonlinear model of vine robots from the few available measurements. The estimation
in MHE is performed over a fixed-sized sliding time window while complying with the
system dynamics and system state and input constraints. More details on constrained MHE
could be found in [22].

MHE Optimization Problem

The MHE problem is formulated as follows: At time tk, NE system measurements
represented as ỹk−NE+1, . . . , ỹk ∈ Rny corresponding to the past instants tk−NE+1, . . . , tk
along with the nominal system inputs ũk−NE+1, . . . , ũk−1 ∈ Rnu corresponding to the past
instants tk−NE+1, . . . , tk−1 have to be available to estimate the full system state x̃i ∈ Rnx for
all i = 0, 1, . . . , k. Thus, the MHE recursively solves the following nonlinear constrained
optimization problem along the NE estimation horizon:

min
x(.),u(.)

i

∑
k=i−NE

||ỹk − h(xk, uk)||2V

+
i−1

∑
k=i−NE

||ũk − uk||2W

s.t.

ẋ(k + 1) = f (x(k), u(k))
xmin 6 x(k) 6 xmax,
umin 6 u(k) 6 umax

(5)

where h(.) : Rnx+nu → Rny is the measurement model that characterizes the sensor transfer
function with respect to the system state x and input u while f (.) : Rnx+nu → Rnx indicates
the system dynamics. As noted, in (5), the control inputs are included as well in the
optimization problem to consider the deviation that could exist between the nominal
controls applied and the controls received by the robot due to actuator noise and/or
inaccuracy [23].

The matrices V � 0 and W � 0 are semi-positive weighting matrices assumed to be
constant over the estimation horizon and are inversely proportional to the co-variances of
the noise added to the sensor and the control inputs as follows:

V = [diag(σs, σθ , σφ)]
−1,

W = [diag(σṡ, σθ̇ , σφ̇)]
−1 (6)
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In vine robots, we assumed that the joint–space values, i.e., the robot length sk, the an-
gle of curvature θk, and the plane angle φk, are measured at each k sample. As discussed
in [15], the robot length is indirectly sensed using an incremental encoder placed on the
shaft of the motor that holds the robot material. In addition, according to what has been
proposed in [24], the robot angle of curvature θ and the plane angle φ could be anticipated
from the tip quaternion that is measured using an Inertial Measurement Unit (IMU) place
on the robot’s tip. Thus, to find the measurement model h(.) in (5), we assume that the
robot’s output yk = [sk, θk, φk]

T is measured at a sampled time with a T interval. Hence,
with the help of the closed-form Inverse kinematic (IK) solution for one-section continuum
robots proposed in [25], the measurement model is mainly depending on the tip Cartesian
position (x, y, z) and could be formulated as:

 s
θ
φ


k

=


cos−1

(
1− 2(x2+y2)

r2

)(
r2

2
√

x2+y2

)
cos−1

(
1− 2(x2+y2)

r2

)
tan−1( y

x )


k

(7)

where r =
√

x2 + y2 + z2 while the subscript k means the measurements and state compo-
nents at sample k. It is worth mentioning that increasing the estimation horizon NH will
increase the state estimation accuracy. However, the computational time will increase on
the other hand. Thus, choosing the value of NH is a trade-off between speed and accuracy.

4. Nonlinear Model Predictive Growth Control

This segment discusses the NMPC-based growth control method that has been pro-
posed to control the growth of vine robots in a closed-loop manner. The NMPC intends to
take into account the irreversible growing constraint and the feedback restrictions shown
by vine robots to achieve the control objectives: collision avoidance, point stability, and tra-
jectory following in task space.

4.1. Model Description

To account for the vine robots’ irreversible growth constraint, the state x = [p q]T ∈
R6 was chosen to incorporate both the position of the robot’s p in Cartesian space and its
joint variables q. Due to the lack of full state information, the proposed MHE is combined
to predict the full state of the robot. As a result, the nonlinear model representing vine
robot motion kinematics is defined as

ẋ =



ẋ
ẏ
ż
ṡ
θ̇
φ̇

 = f (x, u) =
[

J(q)
I3

]
u (8)

where J(q) ∈ R3×3 is the Jacobian of the robot in Equation (3), and u = q̇ ∈ R3 is the
velocity in the robot’s configuration space reflecting the manipulated variables. x is the
vine robot’s state. It is the controlled variable, and it is fully observed with the help of
the MHE state estimation that has been mentioned earlier. The vine robots’ irreversible
growing constraint is described as an inequality constraint forced on the robot’s growing
velocity and length, i.e., [

0
0

]
≤
[

ṡ(t)
s(t)

]
≤
[

ṡmax
smax

]
, ∀t ≥ 0 (9)
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4.2. Control Objective

The main intention of the proposed MPC-based growth control scheme is to confirm the
vine robot’s stabilization performance over a desired reference state xr = [xr, yr, zr, sr, θr, φr]T

specified in task and joint spaces. The proposed controller has to take into account the irre-
versible growth of the robot and the actuators’ limit constraints while finding the optimal
control actions. The objective function J is selected such that the tracking performance is
enhanced, and the control effort over a prediction horizon N is minimized as follows:

J(k) =
N

∑
j=1

eT
(k+j) Q e(k+j)

+
N

∑
j=1

∆uT
(k+j−1) R ∆u(k+j−1)

(10)

The tracking error is represented as e = x− xr, while ∆u represents the control increment.
The objective function’s weighting matrices, Q ≥ 0 and R ≥ 0, are assumed to be fixed
over the prediction horizon N.

4.3. Controller Design

The MPC approach introduced regulating the growing process of the vine robots that
is explained in Figure 3. The robot’s velocities (u = q̇) in the configuration space are chosen
as the manipulated variables that are involved to extend or bend the vine robot. The goal
is to get the robot state x(t) to be as close as possible to the reference state xr in the point
stabilization scenarios and to the reference trajectory xr(t) in trajectory tracking for all time
instances t. Meanwhile, taking into account the growth and control limit constraints is
necessary for the control approach.

Vine Robot 

Kinematics Model

Model Predictive 

Control (MPC)

Prediction 

Model

xr

x

NMPC Strategy

u
u

xp

Moving Horizon 

Estimation (MHE)

Sensors
y

x̂

δp δs 

Figure 3. Block diagram of the proposed Model-predictive control (MPC) strategy involved to control
the growth of the vine-like growing robot.

As pictured from Equation (8), the vine-like growing robot kinematic model is con-
tinuous and nonlinear as it relies on q, which is the robot’s configuration. In standard
MPC, the prediction model commonly consists of a discrete-time linear model for the
process under discussion. However, the prediction model in the proposed NMPC-based
growth control is chosen as the discrete variant of the robot’s kinematic model. The Euler
discretization technique at each instance k along the predication horizon,

x(k + 1) = x(k) + ∆T
[

J(q(k))
I3

]
u(k) (11)
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∆T indicates the sampling time. Using this prediction model, the NMPC is able to
predict the robot’s state xp along the prediction horizon while looking into every possible
control action ū as indicated in Figure 3.

5. Results and Discussion

We conducted a series of simulation experiments to assess the performance of the pro-
posed Nonlinear MPC scheme for control of the growing robot. Namely, the performance
of the MHE robot’s state estimation, point stabilization, obstacle avoidance, and trajectory
tracking performance. In these experiments, MATLAB is used to simulate the robot in
different scenarios, where the robot initially has an initial length s0 with curvature equal
to zero.

5.1. MHE Performance Evaluation

In the first set of simulation experiments, we evaluated the performance of the pro-
posed MHE towards full state estimation of the vine robot. Measurements of joint-space
values ym were involved in the estimation process with estimation horizon Ne = 10 and
sample time T = 0.1. A sensor noise was added to the measurements with σs = 0.1 (m),
σθ = 10 deg., and σφ = 10 deg. while uncertainties in the control inputs with σṡ = 0.1
(m/s), σθ = 10 deg./s, and σφ = 10 deg./s were considered. Figure 4 shows the joint-space
values se, θe and φe estimated from measurements se, θe and φe. Meanwhile, the robot’s
Cartesian position, xe, ye and ze are estimated and compared to the ground-truth data
generated beforehand. A satisfactory small Sum of Root Mean Square Errors (SRMSE) is
achieved of 74.5 mm where

SRMSE = RMSEx + RMSEy + RMSEz (12)

and where

RMSE =

√√√√ 1
Ns

Ns

∑
i=1

(ψ− ψe)2, ψ = x, y or z

with Ns samples of the estimated ψe and the ground-truth ψ data.
Table 1 shows how increasing the estimation horizon values could affect the estimation

performance and the mean computation time of the MHE. Particularly, increasing Ne values
will increase the mean computation time dramatically. However, surprisingly, there is no
significant enhancement achieved in terms of reduced SRMSE. This is due to the initial
state estimation at tk = Ne that mainly depends on the unknown initial state x(0). It is
worth mentioning that increasing the estimation horizon has negative effects when it comes
to incorporating the state estimation of MHE with MPC, since the controller has to wait for
Ne samples until having a reliable estimation of the unknown state. Otherwise, during the
time tk < Ne, the MPC will rely on inaccurate estimation, as will be shown shortly.

Table 1. Effect of increasing the estimation horizon Ne on the performance and the average computa-
tional time of the MHE.

Ne RMSE (m) Avg. Computational Time (ms)

6 0.1333 19.3
8 0.0785 19.8
10 0.0745 21.4
15 0.0609 24.6
20 0.0625 29.0
40 0.0633 44.0

100 0.0645 112.2
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Figure 4. Estimation of vine-robot state components xe = [xe, yy, ze, se, θe, φe]T from joint-space
measurements ym[sm, θm, φm]T

5.2. Point Stabilization Results

As previously discussed, one of the purposes of vine-like growing robots is to act as
a channel to transport supplies to those in dangerous situations. In this first simulation
experiment, based on the state estimation achieved by the proposed MHE framework,
the vine robot began at an initial state x0 = [0, 0, 0.4, 0.4, 0, 0]T , and the suggested NMPC-
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based growth controller is involved in maintaining the robot’s tip at predefined desired
states in the space, i.e., xd ∈ R6. These goals could describe potential places for the robot to
attend within the working environment. The sampling time is decided to be Ts = 0.1s with
a prediction horizon N = 10. Diagonal state and input weighting matrices in (10) are taken,
where Q = diag(1, 1, 1, 0, 0, 0), while R = diag(0.5, 0.5, 0.5). The working environment is
designed to be constrained between [−4, 4] m amongst the three Cartesian coordinates.
The extremes of the robot’s shape variables were selected based on the robot’s configuration
limits discussed beforehand in the kinematics section.

−4 ≤

x(m)
y(m)
z(m)

 ≤ 4,

 0
−π
−π

 ≤
 s(m)

θ(rad)
φ(rad)

 ≤
10

π
π


(13)

On the other side, we chose the input inequality constraints that consider the ir-
reversible characteristics of the growing vine-like robot and the actuator boundaries as
follows:  0

− π
10
− π

10

 ≤
 ṡ(m/s)

θ̇(rad/s)
φ̇(rad/s)

 ≤
0.1

π
10
π
10

 (14)

Figure 5 shows the proposed NMPC-based growth controller performance in the point
stabilization simulation scenario. Throughout the experiment’s initial 25 s, the controller
maintains the vine robot’s tip at (1, 1, 1) m distance from its base. Satisfying rising time
results (20 s) are achieved to attain the objective using the highlighted actuators’ inputs.
The z coordinate of the goal is doubled, as illustrated, during the next 25 s, where the length
of the robot s is required to be increased. Based on the vine robot’s kinematics, extending
the robot’s length to arrive at the new z value would have an effect on the other x and
y coordinates. As a result, when reaching this new target, both x and y positions have
been marginally affected; this is demonstrated in Figure 5. To address this problem and
restore the tip of the robot, the NMPC increased the robot length s while actuating the
curvature angle theta in the positive direction. After some time, only the robot length is
increased to accommodate for the adjusted x and y locations. Subsequently, following the
passing of 50 s of simulation time, the robot is intended to attend a new z target lower
than the preceding one. This task necessitates the robot shortening its length. However,
because of the irreversible nature of the growing mechanism, the robot is bound and unable
to shorten its grown length. As a result, the NMPC reduced the robot curvature in the hope
of achieving the current specified goal. While this helped achieve a minimal error in the
z coordinate, it substantially impacted the other two coordinates. The NMPC meets the
vine-like robot’s state and input saturation limits at all phases.

The NMPC primarily relies on incorrect state computations by solving the forward
kinematics in (1) to find the corresponding robot’s Cartesian positions, since the MHE
only estimates the robot’s state after passing at least Ne samples. As seen in Figure 5,
the approximate states and, as a result, the control behaviors are very noisy during the
initial samples of k < Ne relative to the remaining samples.
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Figure 5. Results of point stabilization simulation experiment to assess the the proposed NMPC-based
growth control.

5.3. Obstacle Avoidance

In the second simulation scenario, the proposed NMPC was assessed against avoiding
obstacles in the field. As a result, a static point obstacle with a circular structure is located
at xo = [xo, yo, zo]T within the robot’s path from a point of reference x0 to the target
xg = [1, 1, 1]T metres from its base. At this stage, the estimation horizon is set to N = 30,
and the sampling time is set to T = 0.1 s. A nonlinear inequality restriction has been added
to the NMPC’s optimal control problem to escape the obstacle by keeping the Euclidean
distance between both the tip of the robot (x, y, z) and the obstacle’s location within a
specified secure distance (rt + ro) as follows:

−∞ ≤ dr,o + (rt + ro) ≤ 0 (15)
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where
dr,o =

√
(x− xo)

2 + (y− yo)
2 + (z− zo)

2

is the span between both the robot’s tip and the obstacle, and the robot’s tip and obstacle
radii are rt = 0.1 m and ro = 0.1 m, respectively. The NMPC has successfully found a secure
way for the robot to escape the obstacle using the condition calculated from the MHE,
as seen in Figure 6. The subsequent actuation shows that, during navigation, the robot
must change its bending angle and curvature to escape the obstacle. It is worth noting
that Equation (15) only considers the tip position. This solution to avoiding obstacles
cannot promise that the vine robot’s whole body will escape the obstacle. Nevertheless,
this could be addressed in future work by splitting the body of the robot into segments
whose positions could be predicted using the robot’s shape parameters. After that, another
restriction could be applied to ensure that these segments are not in the path of the obstacle.

(a)
(b)

Figure 6. (a) The path generated by the proposed NMPC to reach a predefined goal of (1, 1, 1) m
while avoiding an obstacle with a known location; (b) the corresponding actuator inputs generated
from the NMPC and applied to the vine-like robot.

5.4. Trajectory Tracking

The performance of the proposed NMPC-based growth controller against trajectory
tracking has been evaluated using a spiral reference trajectory. The spiral movement could
come in handy in case the robot has to loop around a pillar to get to the tip. The coordinates
of the reference state xre f have been selected as follows:

xre f = 2 + cos(0.25t)

yre f = 2 + sin(0.25t)

zre f = 2 + 0.2t

(16)

We have chosen x0 = [0, 0, 2, 2, 0, 0]T as the initial state of the robot. For an overall simula-
tion time of 20 s, the controller time step is set to t = 0.1 s and the prediction horizon to
N = 20 s. R = diag(0.1, 0.1, 0.1) and Q = diag(10, 10, 1, 0, 0, 0) have been chosen as the
input and state weighting matrices, respectively. The NMPC output is seen in Figure 7
in terms of the difference between the real and comparison trajectories. The measured
Sum Root of the Mean Square Error SRMSE between both the reference and the real robot
trajectory is 1.07 m, which includes the substantial initial error related to the shortage
of MHE state estimation. This problem, we believe, could be addressed by properly de-
signed weighting Q and R matrices. With an SRMSE of 1.07 m, the proposed NMPC
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achieves adequate tracking efficiency while accepting the imposed limit and the other
robot’s locomotion constraints.

(a)
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(b)

(c)

Figure 7. (a) The trajectory tracking performance of the proposed NMPC; (b) the corresponding state
tracking in x, y and z coordinates. (c) The robot’s state in case of constraining the y-axis of the robot.

5.5. Effect of Sensors’ Noise Levels

To examine the robustness of the suggested NHE-based NMPC growth control across
an extensive range of sensor uncertainties, Monte Carlo simulations are used to assess the
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robustness of tracking performance concerning change in the added sensor noise levels.
This strategy would assess the impact of varying the sensor noise levels on the performance
of the proposed MHE and NMPC with no obligation on simulating every parameter change
separately, which would take up a significant amount of time.

Therefore, 150 values of the variance σs, σθ and σφ are randomly chosen from an
admissible uniform distributions [0.1, 0.3] m/s, [2, 10] rad/s, and [2, 10] rad/s. The level of
noise superimposed to the sensor readings is described by those uncertainties. The NMPC-
based growth control is evaluated by following the trajectory proposed in Section 5.4 by
measuring the RMSE at each simulation situation. Figure 8 shows the results of 20 scenarios
that have been chosen and ordered according to the RMSE values. We can understand that
the RMSE increased significantly in scenarios possessing low noise levels superimposed to
the robot’s sensing model. Although the obtained performance characterization depends
essentially on the chosen weighting matrices, i.e., Q and R, this could account for the fact
that, with low levels of sensors noise, the MHE is not able to cover the high variability in
the sensor readings in our model. In vine robots, where the robot moves in wide terrains,
higher noise levels should be considered to estimate the robot’s state.

2 4 6 8 10 12 14 16 18 20

Simuation scenario

0

2

4

6

8

10

12

V
a

lu
e

s
 x10 RMSE

Figure 8. (Top) The RMSE results of the conducted Monte Carlo 20 simulation scenarios at various
sensors’ noise levels.

6. Conclusions

This article introduces a Moving Horizon Estimation (MHE) coupled with a Nonlinear
Model Predictive Control (NMPC) scheme for moving a vine-growing robot’s tip to a
spatial target position in the environment. Based on the predicted robot’s state, the sug-
gested MHE-based NMPC growth control preserved the actuation and irreversible growing
constraints while effectively operating the robot in a closed-loop. The vine robot’s nonlinear
kinematic model has been used as a controlled plant, with a discrete version functioning
as the controller’s prediction model. Analyzing the proposed NMPC growth regulation
was carried out through various situations, including point stability, trajectory following,
and obstacle avoidance, and the findings are promising. Furthermore, the impact of sensor
noise levels on the efficiency of the proposed MHE-based NMPC has been investigated
using Monte Carlo simulations to assess the robot’s development under different noise
levels. Instead of the kinematic model, the dynamics model of vine robots is used to expand
our research. In addition, the use of the Inverse Optimal Control (IOC) [26] seems beneficial
in interpreting the objective function from the human demonstrations instead of hand
engineering. Meanwhile, comparing the proposed NMPC algorithm with the existing
non-traditional control scheme, such as [27–29] is promising as a future work.
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