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Background: The serum metabolome is a potential source of molecular

biomarkers associated with the risk of breast cancer. Here we aimed to

analyze metabolites present in pre-diagnostic serum samples collected from

healthy women participating in the Norwegian Trøndelag Health Study (HUNT2

study) for whom long-term information about developing breast cancer

was available.

Methods: Women participating in the HUNT2 study who developed breast

cancer within a 15-year follow-up period (BC cases) and age-matched women

who stayed breast cancer-free were selected (n=453 case-control pairs). Using a

high-resolution mass spectrometry approach 284 compounds were

quantitatively analyzed, including 30 amino acids and biogenic amines,

hexoses, and 253 lipids (acylcarnitines, glycerides, phosphatidylcholines,

sphingolipids, and cholesteryl esters).

Results: Age was a major confounding factor responsible for a large

heterogeneity in the dataset, hence age-defined subgroups were analyzed

separately. The largest number of metabolites whose serum levels

differentiated BC cases and controls (82 compounds) were observed in the

subgroup of younger women (<45 years old). Noteworthy, increased levels of

glycerides, phosphatidylcholines, and sphingolipids were associated with

reduced risk of cancer in younger and middle-aged women (≤64 years old).

On the other hand, increased levels of serum lipids were associated with an

enhanced risk of breast cancer in older women (>64 years old). Moreover, several

metabolites could be detected whose serum levels were different between BC

cases diagnosed earlier (<5 years) and later (>10 years) after sample collecting, yet

these compounds were also correlated with the age of participants. Current

results were coherent with the results of the NMR-based metabolomics study

performed in the cohort of HUNT2 participants, where increased serum levels of
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VLDL subfractions were associated with reduced risk of breast cancer in

premenopausal women.

Conclusions: Changes in metabolite levels detected in pre-diagnostic serum

samples, which reflected an impaired lipid and amino acid metabolism, were

associated with long-term risk of breast cancer in an age-dependent manner.
KEYWORDS

breast cancer, cancer risk, serum metabolome, metabolic profiling, population study
1 Introduction

Breast cancer (BC) is currently the most commonly diagnosed

malignancy with the highest number of cancer-related deaths

among women. In 2020, there were over 2 million new cases and

approximately 685,000 deaths due to BC worldwide; by 2040, both

numbers are expected to increase by 40-50 percent (1). Primary

prevention by limiting exposure to risk factors is the most effective

measure to reduce the number of BC cases, which includes

maintaining a healthy lifestyle through a proper weight, diet,

physical activity, and avoiding smoking and drinking alcohol (2).

Secondary prevention, i.e., early detection of the disease, further

reduces mortality associated with BC. To increase the chances of

successful treatment, BC screening programs were introduced in the

1980s and 1990s in several developed countries (2). Imaging tests,

such as mammography, ultrasound, and magnetic resonance

imaging, are primarily used, which, however, have some

disadvantages. For example, mammography, the gold standard in

BC screening gives a high percentage of false-positive results and is

less reliable for the so-called dense breasts (3, 4). Therefore, there is

a necessity to find the least invasive method with high sensitivity

and specificity that would enable the detection of BC even before the

pathological changes are visible in the biomedical images.

New opportunities for cancer diagnostics are created by

metabolomics - a science that involves studying the most

dynamically changing system in the human body - the

metabolome. Nuclear magnetic resonance (NMR) spectroscopy

and mass spectrometry (MS) are the two analytical techniques

most often used in metabolomics. The analysis of metabolites in

blood and other biological samples allows the detection of even

subtle changes related to the development of a disease, including BC

(5–9). Several studies reported that serum/plasma metabolome

profiling could be used to provide signatures associated with a

risk of BC. A few nested case-control studies compared pre-

diagnostic samples collected from women who were cancer-free

at the baseline, then developed breast cancer during a few years of

follow-up, and matched women who remained healthy. These

studies indicate that an increased risk of breast cancer was

associated with an increased level of certain amino acids (10–12)

or sex steroid metabolites (especially for postmenopausal women)

(13, 14). On the other hand, an inverse association between the risk

of BC and serum/plasma level of phosphatidylcholines (15),
02
lysophosphatidylcholines (11, 16), cholesterol esters (12), and

other lipid compounds (10, 12, 14) was observed. However, the

importance of individual metabolites differed between studies and a

common metabolic signature of the risk of breast cancer is yet to

be proposed.

Recently, our group published the results of a study on risk

assessment of breast cancer in the Norwegian population of women

using an NMR-based metabolomics approach (17). The serum

metabolites and lipids analysis included a large cohort of healthy

women (more than 2400 individuals) from the Norwegian

Trøndelag Health Study (HUNT2 study). The analysis enabled

the detection of serum lipoprotein subfractions whose levels

differentiated participants who were diagnosed with BC several

years after the blood collection and those who remained free of BC

during the same follow-up. Noteworthy, observed inverse

associations between several very-low-density lipoprotein (VLDL)

subfractions and breast cancer risk were observed primarily in the

case of pre-menopausal women. In the current study we aimed to

validate this observation and perform an in-depth analysis of the

lipid components of serum using a targeted approach based on

high-resolution MS. Current analysis included pre-diagnostic

material from a group of 453 healthy participants of the HUNT2

study who were diagnosed with BC during the 15-year observation

time and 453 matched women who remained cancer-free during

this follow-up, which allowed for detection of components

putatively associated with a risk of breast cancer.
2 Materials and methods

2.1 Study subjects

The material used in our study came from the second part of the

Norwegian Trøndelag Health Study where about 65,000 healthy

participants were included [the HUNT2 study (18)]; serum samples

were collected between 1995 and 1997 and stored at -80°C until

analysis. The matching of the HUNT2 participants to the

Norwegian Cancer Registry performed in 2019 allowed the

identification of 1208 women who developed breast cancer within

a 22-year follow-up period (the average time to cancer diagnosis

was 11.7 years). For each breast cancer case (BC), a participant that

remained breast cancer-free during the whole follow-up was
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randomly selected as a control (Ctr), matched for age at inclusion

into HUNT2 (17). For the current analysis, the above set was first

split into subgroups of women who were diagnosed with breast

cancer during follow-up within one-year intervals after inclusion

(together with their matched controls), then 30 (or 31) case-control

pairs were randomly chosen from each one-year interval from 0-1

year to 14-15 years. This ensured that the number of case-control

pairs increased proportionally with the time to diagnosis. All

HUNT2 participants have completed a written informed consent

form, and the study was approved by the Ethics Committee of

Central Norway (REK numbers #1995/8395 and #2017/2231). The

baseline characteristics of 453 cases and 453 controls included in the

study are shown in Table 1.
2.2 LC-MS targeted metabolomics

The Absolute IDQ p400 HR kit (test plates in the 96-well

format; Biocrates Life Sciences AG, Innsbruck, Austria) was used to

perform targeted quantitative analysis of the metabolites, according

to the manufacturer’s protocol. The kit allows the quantitative

measurement of up to 408 compounds (or their isomer groups)

covering 11 classes of metabolites (including amino acids, biogenic

amines, hexoses, acylcarnitines, di- and triglycerides, (lyso)

phosphatidylcholines, sphingolipids, and cholesteryl esters) in 10

µl of sample thanks to the combination of direct flow injection and

liquid chromatography (LC) with mass spectrometry (MS). The MS

analyses were performed using Orbitrap Q Exactive Plus

spectrometer (Thermo Fisher Scientific, Waltham, MA, USA),

which was equipped with a 1290 Infinity UHPLC (Agilent, Santa

Clara, CA, USA) system; Xcalibur 4.1 software (Thermo Fisher

Scientific, Waltham, MA, USA) controlled the whole system. The

concentrations of metabolites in µM were established by processing

the registered spectra and chromatograms using Xcalibur 4.1. and

MetIDQ DB110-2976 software (Biocrates Life Sciences AG) (19).
2.3 Data processing

The metabolomics dataset consisted of 906 samples, each

described by measured levels of 389 metabolites. Two types of

missing values were detected in the dataset: (i) values below the

limit of detection (i.e., missing not at random), and (ii)

measurements lacking due to the internal standard error (i.e.,

missing completely at random). Fifty and ten percent of missing

values in all samples were allowed for either type of error,

respectively, as recommended by (20); otherwise, the compound

was excluded from further analyses. The final dataset qualified for

quantitative analysis comprised 284 metabolites; for 105

metabolites the thresholds for the acceptable number of missing

values were exceeded. The final dataset of 284 metabolites was

batch-corrected using an empirical Bayes method (21). We assumed

that samples measured using one 96-well sample preparation plate

represent one batch. Before batch adjustment, data were
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transformed using the log base 2 function. The batch-corrected

data were processed for missing values imputation. Values below

the limit of detection were replaced with random numbers

generated from normal distribution truncated to a segment

between 0 and the median value of the limits of quantitation for

all test plates. Other lacking measurements (missing completely at

random) were filled by values imputed using the k-nearest neighbor

approach; the nearest observed data were identified using a

correlation distance metric, and the mean value of the three

nearest neighbors was used [based on measurements collected for

the same group (cases or controls)].
2.4 Statistical and bioinformatics analyses

The difference in baseline characteristics between future breast

cancer patients and controls was tested with Student’s t-test for

continuous variables and Pearson’s chi-square test for categorical

variables. The Mann-Whitney U test was applied to test the

statistical significance of differences between the analyzed groups

of individuals in measured levels of 284 compounds qualified for

quantitative analysis. The Benjamini-Hochberg procedure was

applied to minimize the number of false positive results. All

statistical hypotheses were tested at the 5% significance level.

Moreover, following the Mann-Whitney U test, the “r” effect size

was calculated according to the formula: r = z
ffiffiffi

N2
p (where z is the

value of the test statistic and N is the total number of observations

in two compared groups) with interpretation according to the

Cohen’s criterion (r ≤ 0.1 represents negligible effect size) (22).

The chi-square independence test was applied for the remaining set

of 105 metabolites not qualified for quantitative analysis to test

whether a given compound’s absence/presence status was a group-

related feature. In addition, Spearman’s rank correlation coefficients

were calculated to determine the degree of association between the

levels of metabolites and the age at inclusion or time of cancer

diagnosis. Three age-related subgroups of participants (i.e.,

younger, average, older) were identified using the Gaussian

mixture model. Odds ratios (OR) and 95% Wald confidence

intervals (CI) were calculated for one standard deviation (SD)

increase in the concentration of each variable using unconditional

logistic regression; the logistic regression models were fitted

separately for three age-related subgroups of women. Multivariate

predictive models were fit using partial-least squares discriminant

analysis (PLS-DA) for discriminating between cases and controls in

age-related subgroups of women. The number of latent variables

(LVs) giving the minimum cross-validated test error (inner loop)

was chosen; the models were validated using double tenfold cross-

validation with 30% of the samples included in the test sets of the

inner and outer loops, and their significance (Pperm ≤ 0.05) was

assessed by permutation testing (1000 permutations). The

metabolic pathway enrichment analysis was performed using the

MetaboAnalyst 5.0 platform for all quantitative data (https://

www.metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtml,

accessed on 26 August 2022).
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3 Results

Metabolite profiles were analyzed by a mass spectrometry-based

approach in a set of 906 serum samples collected from healthy

women participating in the HUNT2 population-based study. The
Frontiers in Oncology 04
set included 453 women who developed breast cancer within a

follow-up period and 453 age-matched women who remained free

of breast cancer during the follow-up (BC and Ctr, respectively,

afterward). Baseline characteristics for the study cohort are

presented in Table 1. According to provided data, two known
TABLE 1 Baseline characteristics for the study cohort.

Variable
Breast cancer (BC) cases

(n = 453)
Matched controls (Ctr)

(n = 453) P-valuea

Age at blood collection (years) 55.7 [13.9] 55.7 [14.0] 0.97

Age at first menstrual period (years) 13.5 [1.4] 13.4 [1.4] 0.64

Missing data 16 (3.5%) 37 (8.2%)

Number of full-term pregnancies (n) 0.004*

0 44 (9.7%) 30 (6.6%)

1 47 (10.4%) 44 (9.7%)

2 158 (34.9%) 143 (31.6%)

3 125 (27.6%) 123 (27.2%)

≥ 4 78 (17.2%) 106 (23.4%)

Missing data 1 (0.2%) 7 (1.5%)

Age at first full-term pregnancy (years) 24.0 [4.6] 23.5 [4.0] 0.09

Missing data 47 (10.4%) 41 (9.1%)

Age at last full-term pregnancy (years) 30.7 [5.1] 30.9 [5.0] 0.55

Missing data 88 (19.4%) 84 (18.5%)

Family history of cancer (mother) (n) 63 (13.9%) 55 (12.1%) 0.43

Hormone replacement therapyb (n) 0.004*

Systemic use 75 (16.6%) 38 (8.4%)

Local use 14 (3.1%) 8 (1.8%)

Previous use 25 (5.5%) 31 (6.8%)

Never use 248 (54.7%) 267 (58.9%)

Missing data 91 (20.9%) 109 (24.1%)

Menopausal agec (years) 48.2 [5.3] 47.0 [5.6] 0.14

Missing data 355 (78.4%) 352 (77.7%)

BMI (kg/m2) 27.0 [4.8] 26.7 [4.6] 0.29

Missing data 4 (0.9%) 3 (0.7%)

WHR 0.80 [0.06] 0.80 [0.06] 0.55

Missing data 2 (0.4%) 1 (0.2%)

Fasting status at blood collection
(time since last meal) 0.62

< 3 h 311 (68.7%) 308 (68.0%)

3-6 h 118 (26.0%) 307 (26.0%)

> 6 h 21 (4.6%) 26 (5.7%)

Unknown 3 (0.7%) 4 (0.9%)
fro
Values are reported as mean with standard deviation [S.D.]. BMI, Body mass index; WHR, Waist-to-hip ratio. a P-value for the comparison between breast cancer cases and controls using
Student’s t-test for continuous variables or Pearson’s chi-square test for categorical variables; b Current use of systemic estrogen in the form of tablet or patches; c Missing values include women
that have not reached menopause and women that did not answer; * Implies significance (P-value < 0.05).
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epidemiological factors were associated with breast cancer risk in

the study cohort: multiple pregnancies were more frequent among

controls (p=0.004) while systemic use of hormone replacement

therapy (HRT) was more frequent among BC cases (p=0.004).

There were 389 metabolites detected, among which 284

compounds were quantified in the majority of samples and used

in quantitative analyses, including 30 amino acids and biogenic

amines, one sugar (hexose), and 253 lipids or their isotope groups

(32 acylcarnitines, 56 glycerides, 119 glycerophospholipids, 32

sphingolipids, and 14 cholesteryl esters). When differences in

serum concentrations of quantified compounds were assessed

between both major groups in total, no statistically significant

differences remained after multiple testing corrections; similarly,

the effect size of differences was negligible for all compounds.
3.1 Levels of serum metabolites correlate
with the participant’s age

The mean concentrations of quantified compounds and the

strength of differences between the groups of participants are

presented in Figure 1A (and specified in Supplementary Table

S1). Moreover, the remaining set of 105 metabolites not qualified

for quantitative analysis tested for the absence/presence status did

not show any differences between the groups (likewise, such
Frontiers in Oncology 05
differences were not detected in any other comparisons

performed further; not shown). Unsupervised principal

component analysis (PCA) of all 906 samples showed a large

heterogeneity (Figure 1B), with no clear clusters according to the

BC and Ctr groups. Interestingly, we found that the age of

participants was the major factor responsible for observed

variation, which is depicted in Figure 1C. Subsequently, we noted

a strong correlation between the participant ’s age and

concentrations of serum metabolites (Figure 1D), which was

irrespective of the BC or Ctr statuses (Supplementary Table S2

and Supplementary Figure S1). This correlation is exemplified by

the aggregated concentration of serum lipids – increased total lipid

concentrations were generally observed in older women

(Figure 1E); importantly, only the aggregated level of

lysophosphatidylcholines (LPC) did not correlate with age when

major classes of lipids were considered.
3.2 The serum metabolome profiles differ
for participants that later develop breast
cancer and controls

Considering the strong correlations between metabolite

concentrations and participants’ age, we analyzed differences

between the BC and Ctr groups in smaller subgroups to limit age-
A B

D

E

C

FIGURE 1

Characterization of the serum metabolome profile in participants of the HUNT2 study. (A) – Levels of metabolites in pre-diagnostic serum samples
from 453 participants who were diagnosed with breast cancer during 15-year follow-up (BC) and 453 age-matched women who remained cancer-
free during this time (Ctr); heatmap represents average levels of analyzed metabolites in each group (represented as z-score) and significance of
differences between groups (represented as “r” effect size). (B) – Principal component analysis (PCA) of general similarities between samples;
samples of women diagnosed with cancer or remaining cancer-free are marked separately (large circles represent the average for each group).
(C) – PCA in a total of 906 samples with subsequent deciles of participant ages marked separately. (D) – the significance of the correlation between
serum metabolite concentrations and the age of study participants (all participants together). (E) – the correlation of aggregated concentration of all
analyzed lipids and age of study participants (controls and BC cases are marked separately).
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related variance. We assumed that three age-defined subgroups could

be hypothetically distinguished: “younger than average”, “average/

middle-aged”, and “older than average”. Based on the actual age

distribution in the study cohort these three subgroups were identified

as components of the Gaussian mixture model: below 45-year-old

(112 BC/Ctr pairs), 45-64-year-old (206 BC/Ctr pairs), and above 64-

year-old (135 BC/Ctr pairs), which is depicted in Figure 2A. After

such a split of the study cohort, several compounds with statistically

significant differences between the BC cases and controls were

detected. In general, for 123 compounds effect size was higher than

negligible (r>0.1) in either age-defined subgroup (Supplementary

Table S3). It is noteworthy, that the largest differences between the BC

cases and controls were noted for younger women (< 45 years old): 82

compounds with r>0.1 (median of effect sizes equal to 0.068). For the

two remaining subgroups, there were 16 and 52 differentiating

compounds (median of effect sizes equal to 0.042 and 0.046) for

the 45-64-year-old and > 64-year-old, respectively (Figure 2B).

Differences between the BC cases and controls in three age-defined

subgroups are depicted for aggregated concentrations of major classes
Frontiers in Oncology 06
of serum lipids in Figure 2C. In general, except for LPC, lipids

concentrations increased with age, however, differences between the

BC cases and controls were more heterogenous among age-defined

subgroups. For younger and middle-aged women, lipids

concentrations were generally lower in the BC cases (except LPC).

Interestingly, in contrast to phosphatidylcholines (PC),

concentrations of LPC increased in younger women (<45 yrs) who

eventually developed breast cancer during follow-up, which resulted

in a higher overall LPC to PC ratio. On the other hand, for older

women (>64 yrs.), lipids concentrations (particularly glycerides) were

generally higher among the BC cases.
3.3 In younger women, higher
concentrations of serum lipids reduce the
risk of breast cancer

To further assess the association between the risk of breast cancer

and the concentration of serum metabolites, odds ratios (with 95%
A B

D
E

C

FIGURE 2

Metabolome profiles in serum of younger and older participants of the HUNT2 study. (A) – Distribution of age of participants selected for the
analysis (all participants together); three subgroups were identified by the components of the Gaussian mixture model: <45-year-old, 45-64-year-
old, and >64-year-old (bottom). (B) – Distribution of metabolites that showed the increased significance of differences between BC cases and
controls in three age-defined subgroups of participants (vertical lines represent the median of effect sizes). (C) - Differences in aggregated
concentration of different classes of lipids between BC cases and controls (in three age-defined subgroups of participants); hashtags marked at least
a small effect size. (D) – Odds ratios (and 95% confidence intervals) for the association between increased concentration of selected metabolites and
risk of breast cancer during follow-up in age-defined subgroups. (E) – The correlation between the concentration of serum lipids measured by HR-
MS (current study) and levels of NMR-measured lipoprotein particles (Debik et al., 2021) in the subgroup of younger participants (<45-year-old);
showed lipids with at least a small effect size of differences between BC and Ctr groups (r>0.1) and lipoprotein particles with adjusted p-value <0.05
(AC – acylcarnitines, DG – diglycerides, CE – cholesteryl esters, Cer – ceramides, FC – free cholesterol, LPC – lysophosphatidylcholines, PC –

phosphatidylcholines, PL – phospholipids, SM – sphingomyelins, TG – triglycerides).
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confidence intervals) were estimated for all 284 compounds in each

age-defined subgroup separately. Though a few specific metabolites

showed some association with cancer risk, it was generally weak in all

age-defined subgroups (Supplementary Figure S2). Further, odds

ratios were estimated for aggregated concentrations of major classes

of serum lipids (Figure 2D). We observed that in subgroups of

younger and middle-aged women, increased concentrations of

glycerides (both DG and TG), phosphatidylcholines, and

sphingolipids were generally associated with a reduced risk of

cancer. On the other hand, increased concentrations of lipids

(except LPC) with the highest increases in glycerides and

ceramides, were associated with an increased risk of cancer in the

subgroup of older women. However, only a few of these associations

appeared statistically significant: TG and SM in the <45-year-old

subgroup while DG, TG, and Cer in the 45-64-year-old subgroup.

Moreover, we applied partial-least squares discriminant analysis

(PLS-DA) for discriminating between BC cases and controls in age-

defined subgroups of women (Supplementary Figure S3). This

analysis showed low prediction accuracy of the classification

models, which was in the range between 52% and 55% (highest in

the group of older women), and only the model for the older women

was significant (Pperm<0.05).
3.4 Lipids whose levels are associated with
breast cancer risk correlate with
lipoprotein subfractions

We observed that differences in serum lipid concentrations

between BC cases and controls were more frequent in the subgroup

of younger women (below 45 years old), which were putatively pre-

menopausal (actual menopause status was missing for the majority

of study participants). Hence, this observation was coherent with

our previous results of the NMR-based metabolomics study

performed in the cohort of HUNT2 study participants (17). In

that study, the inverse correlation between the level of several VLDL

subfractions and triglycerides (total serum level and HDL4 TG) and

the long-term risk of breast cancer was observed for pre-

menopausal women (actual status or age below 51 years).

Therefore, to deepen knowledge about this effect, data regarding

levels of NMR-detected lipoproteins were retrieved for all 906

women included in the present study. The general correlations

between all NMR-assessed lipid particles and MS-assessed lipids

species are depicted in Supplementary Figure S4. As one could

expect, we observed a strong positive correlation between

concentrations of the majority of serum glycerides (both DG and

TG) and concentrations of VLDL, intermediate-density

lipoproteins (IDL), and triglyceride-containing high-density

lipoproteins (HDL-TG) We also found positive correlations

between concentrations of some cholesteryl esters (e.g., CE(16:1)

and CE(18:3) and acyl-alkyl-phosphatidylcholines (A-AG-

phosphocholines) and levels of low-density lipoproteins (LDL)

and HDL. Moreover, several sphingolipids (both SM and

ceramides) correlated with levels of VLDL, LDL, and HDL-TG

particles. In the next step, we searched for the correlation between
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concentrations of selected serum lipids that showed significant

differences between BC cases and controls in the subgroup of

younger women (<45-year-old, at least small effect size) and levels

of lipoprotein subfractions, mostly VLDL ones, associated with risk

of breast cancer in the subgroup of pre-menopause women

according to Debik et al. (17), which is shown in Figure 2E. In

general, strong associations were observed between discriminatory

lipoprotein subfractions and discriminatory triglycerides. However,

levels of discriminatory VLDL particles also correlated positively

with concentrations of certain discriminatory cholesteryl esters,

phosphatidylcholines, ceramides, and sphingomyelins (compounds

marked in Figure 2E), which suggested their presence in the

lipoprotein (sub)fractions of interest.
3.5 Earlier and later diagnoses of breast
cancer correlate with serum
metabolome profiles

The method of selection of participants for the current study

(i.e., equal distribution of BC cases diagnosed with cancer at

different time intervals from sample collection matched with

corresponding controls) was aimed to analyze whether time to

cancer diagnosis affected molecular differences observed between

BC and Ctr groups. Hence, in the next step, we compared

differences between BC cases and controls in subgroups where

breast cancer was diagnosed up to 5-year follow-up (“early”

diagnosis), during 5 to 10 years follow-up, and during 10 to 15

years follow-up (“late” diagnosis). However, this analysis revealed

similar numbers of discriminatory compounds in all three time-of-

diagnosis-related subgroups. There were 16, 18, and 18 compounds

with higher than negligible effect size (r>0.1) between BC and Ctr in

subgroups <5, 5-10, and 10-15 years-to-diagnosis, respectively

(details in Supplementary Table S4); corresponding medians of

effect sizes were equal to 0.040, 0.036, and 0.035 (Figure 3A).

Moreover, when a small subgroup of women who were diagnosed

with cancer within one year after participation in the HUNT2 study

(n=30) was analyzed, only a few metabolites showed significantly

different levels compared to matched controls (3 compounds with a

medium effect size r>0.3 and the median of effect sizes equal to

0.073; Supplementary Table S5). Nevertheless, we observed several

metabolites whose concentrations in BC cases were correlated with

the time of diagnosis (Figure 3B; Supplementary Table S6).

Interestingly, we noted a statistically significant negative

correlation between the participant’s age (at the moment of

sample collection) and the time of cancer diagnosis (length of the

follow-up) (Supplementary Figure S5). We found that in the

subgroup of BC cases with early-detected cancer (i.e., <5 years

follow-up) was an over-representation of older women (>64-year-

old), while in the subgroup of BC cases with late-detected cancer

(i.e., 10-15 years follow-up) was an over-representation of younger

women (<45-years-old) (p=0.003), which is depicted in Figure 3C.

This observation suggested that the correlation between metabolite

concentrations and time of cancer diagnosis was a function of a

much stronger correlation between metabolite concentrations and
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the age of participants (which could be exemplified by compounds

with the strongest correlation with time-to-diagnosis: citrulline, PC

(39:5), and serotonin). Nevertheless, this observation indicated

that hypothetical differences between “early-diagnosed” and “late-

diagnosed” cases should be analyzed in the age-defined

subgroups separately.
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3.6 Metabolic features of women with
different time to cancer diagnoses depend
on their age

We noted that the number of metabolites differentiating BC

cases with early/late diagnosis was similar in the subgroups of
A B D E

F G

C

FIGURE 3

Metabolome profiles in pre-diagnostic serum samples of HUNT2 study participants with earlier and later diagnoses of breast cancer.
(A) – Distribution of metabolites that showed the increased magnitude of differences between BC and corresponding controls in three subgroups of
participants with different times to cancer diagnoses during follow-up, 5 years (early); 5-10 years; and 10-15 years (late). (B) – The significance of the
correlation between serum metabolite concentrations in pre-diagnostic samples and time to cancer diagnosis. (C) – Contribution of women at
different ages during inclusion (<45-year-old; 45-64-year-old; and >64-year-old) in subgroups of BC cases diagnosed during 5 years (early); 5-10
years; and 10-15 years (late) follow-up. (D) – Distribution of metabolites that showed the increased magnitude of differences between participants
with early (<5 years) and late (10-15 years) diagnoses of breast cancer in three age-defined subgroups of participants (<45-year-old; 45-64-year-old;
and >64-year-old). (E) – Distribution of metabolites that showed the increased magnitude of differences between BC and corresponding controls in
four subgroups of participants, younger/early diagnosis; younger/late diagnosis; older/early diagnosis; and older/late diagnosis. (F) – Differences in
concentration of selected metabolites (Asn; Trp; and LPC(18,1)) between BC cases and controls in four subgroups of participants, younger/early
diagnosis; younger/late diagnosis; older/early diagnosis; and older/late diagnosis; differences in pre-diagnostic samples of participants with an earlier
and later cancer diagnosis are also marked (# - small effect size; ## - medium effect size). (G) – Metabolic pathways associated with compounds
whose levels were different between BC cases and controls in subgroups of younger and older participants (<45-year-old and >64-year-old;
respectively) as well as between younger and older participants with an early and late cancer diagnosis (<5 years and 10-15 years follow-up;
respectively); significantly overrepresented pathways are marked with asterisks (size of a dot corresponding to the number of differentiating
compounds associated with a given pathway).
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younger and older participants: 104 and 93 metabolites with higher

than negligible effect size (r>0.1), respectively; median values of

effect sizes equal to 0.078 and 0.065, respectively (Figure 3D).

However, different metabolites discriminated cases with early and

late diagnosis in either age-defined subgroup (Supplementary Table

S7). Furthermore, we searched for metabolites discriminating

between BC cases and controls within different subgroups defined

by age and time of cancer diagnosis (Supplementary Table S8). The

number of metabolites discriminating BC and Ctr was higher in the

case of late-diagnosed cancers than in the case of early-diagnosed

cancers in either age-defined subgroup and the significance of

differences was highest in the subgroup of younger women

(median of effect sizes equal to 0.109; Figure 3E). However,

different metabolites discriminated BC cases and controls in

different age-defined and diagnosis-related subgroups, which is

exemplified by the 3 compounds in Figure 3F. For example,

serum concentration of asparagine (Asn) was significantly higher

in late-detected BC cases compared to early-detected BC cases only

in the subgroup of older women. On the other hand, the

concentration of this amino acid was higher in BC samples (when

compared to Ctr samples) in the case of older women with late-

diagnosed cancer, while its concentration was lower in BC samples

in the case of younger women with late-diagnosed cancer. To

further analyze these age- and diagnosis-related differences,

metabolic pathways associated with different sets of

discriminatory compounds were identified. We found that some

of the metabolic pathways associated with compounds

differentiating BC and Ctr cases, including degradation of

branched amino acids and glutathione metabolism, differed

among younger (<45 yrs.) and older (>64 yrs.) women

(Figure 3G). Overrepresentation of pathways associated with

metabolites differentiating early and late-diagnosed cancer (His

metabolism and Ala metabolism) was observed only in the

subgroup of older women. Hence, this observation further

confirmed the age-related nature of metabolic features associated

with the risk of breast cancer.
4 Discussion

In this study, pre-diagnostic serum samples frommore than 900

healthy participants of the population-based HUNT2 study were

analyzed by a targeted high-resolution mass spectrometry-based

approach to defining the quantitative profile of the serum

metabolome. The analyzed group included women who were

diagnosed with breast cancer during a 15-year observation period

and age-matched women who remained breast cancer-free during

this follow-up. This allowed us to search for components putatively

associated with a risk of breast cancer. This work has a similar

design to a few other studies performed recently using different

analytical platforms and targeting different cohorts (10–17, 23, 24).

A strong correlation between serum metabolite concentrations and

participants’ age was observed in our study, which putatively

reflected the adaptation of energy and lipid metabolism due to

age-related changes in hormonal balance. Aging women experience

decreased estrogen and increased androgen levels, which together
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with lifestyle changes affect overall energy metabolism and body fat

redistribution. Enhanced lipolysis of visceral fat results in the

production of excessive free fatty acids, which in the combination

with reduced b-oxidation increases lipid synthesis (25, 26).

Moreover, in addition to lipids and fatty acids, serum

concentrations of amino acids also changed with women’s age

(27). As a consequence, age was the major confounding factor

contributing to a large heterogeneity in the data that affected the

ability to find discriminatory components associated with higher

risks of developing breast cancer. Therefore, analyses were

performed in smaller subgroups of age-matched case-control

pairs. Nevertheless, it is important to note that previously

published reports addressed cohorts of women of different ages;

with an average age ranging from 45 to 68 years. Hence, different

participants’ ages (together with different analytical platforms) may

contribute to possible discrepancies among published studies

regarding specific metabolites.

We found that several specific metabolites showed different serum

concentrations between women who eventually developed breast

cancer and matched controls, yet the effect sizes of such differences

were relatively low. Therefore, assuming the possible functional

redundancy of compounds that belong to the same class of lipids,

aggregated concentrations of lipid classes were also addressed. We

found that in the group of younger and middle-aged women,

particularly women below 45 years, increased levels of glycerides

(diglycerides and triglycerides), phosphatidylcholines, and

sphingolipids (ceramides and sphingolipids) were associated with

reduced risk of cancer. This general observation was coherent with

the results of previously published reports. Brantley and coworkers

reported that poly-unsaturated triglycerides and cholesteryl esters were

inversely associated with breast cancer in the American Nurses’Health

Study (12). His and coworkers, using an earlier version of the analytical

platform applied in the current study, showed the inverse correlation of

several phosphatidylcholines and sphingomyelins with breast cancer

risk in the European Prospective Investigation into Cancer (EPIC)

cohort (15). Notably, a similar risk association of two specific

metabolites studied in-depth in that report, acylcarnitine AC(2:0)

and PC(36:3), was found in our study (increased and reduced risk,

respectively). Furthermore, similar to the study performed by Kühn

and coworkers (16), a reduced level of LPC(18:0) was noted in women

who developed breast cancer. Therefore, the association between

reduced levels of serum lipids (glycerides, phosphatidylcholines, and

sphingolipids in particular) and increased risk of breast cancer, at least

in younger andmiddle-aged women, appeared as a general observation

in several independent studies.

Similar to the MS-based studies mentioned above, NMR-based

profiling of plasma in the French SU.VI.MAX cohort revealed that

women with lower levels of glycerol-derived compounds,

unsaturated lipids, and lipoproteins, had a higher risk of

developing breast cancer (10). Another NMR-based profiling of

pre-diagnostic serum samples was performed more recently by our

group in the large group of the HUNT2 study participants (1199

case-control pairs), which revealed the inverse association of breast

cancer risk with several subfractions of VLDL particles (as well as

TG-containing HDL particles) specifically in the subgroup of

premenopausal women (17). Using the same set of samples, we
frontiersin.org

https://doi.org/10.3389/fonc.2023.1116806
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mrowiec et al. 10.3389/fonc.2023.1116806
searched for correlations between levels of lipid species (analyzed

here by MS) and lipoprotein particles (analyzed previously by

NMR). It is known that triglycerides are major constituents of

VLDL particles, cholesterol, and cholesteryl esters are major

constituents of LDL particles, and cholesterols and phospholipids

are major constituents of HDL particles (28). The results of our

correlation analysis fit this general pattern, adding some interesting

extensions like the possible enrichment of certain diglycerides,

phosphatidylcholines, ceramides, and sphingomyelins in VLDL

part ic les . Nevertheless , a strong correlat ion between

discriminatory VLDL particles and discriminatory triglycerides

(and certain phospholipids) was noted, which further confirmed

the robustness of serum lipids as potential markers of breast

cancer risk.

Except for lipids, serum concentration of several “small

molecule” metabolites (amino acids, biogenic amines, and

hexoses) was addressed in the current study, and such

compounds were also associated with breast cancer risk (though

the magnitude of differences established by effect size was relatively

low). Nevertheless, a few amino acids showed a similar trend of

association with breast cancer risk as described in previous studies.

This included the association between a reduced risk of cancer and

higher levels of Arg, Gln, Lys, and Thr, previously reported by

others (12, 15). Moreover, when metabolic pathways associated

with risk-related compounds were identified, pathways involved in

the metabolism of aromatic amino acids (Phe, Tyr, Trp) and

branched-chained amino acids (Val, Leu, Ile) were found both in

our study and the study of Yoo and coworkers (11). Therefore,

reduced serum level of specific amino acids seems a general

metabolic feature associated with an increased risk of breast

cancer. Notably, metabolites putatively associated with breast

cancer risk are known to be key components of cancer-related

metabolism in actual breast cancer. For example, glutamine

metabolism (putatively associated with reduced levels of Gln and

Glu in BC cases) connected to a tricarboxylic acid cycle is an

important pathway supporting cancer cell growth (29). Reduced

plasma/serum levels of amino acids putatively associated with

cancer risk (Ala, Arg, Ile, Leu, Tyr, Trp, Val) were observed in

patients with actual breast cancer (30, 31). On the other hand,

increased accumulation of amino acids (and over-representation of

metabolic pathways related to amino acids) is a characteristic

feature of breast tumors (32). Hence, it is important to note that

reduced levels of circulating amino acids could be associated with

the overexpression of amino acid transporters typical for breast

cancer cells (33).

Data presented in our study, in coherence with previously

published reports, revealed that reduced serum levels of several

lipids and amino acids were associated with an increased risk of

developing breast cancer. It has been observed that reduced levels of

certain metabolites in the blood of actual cancer patients could

reflect the increased transfer to tumor tissue due to higher

consumption of these metabolites by cancer cells (34). However,

it is unlikely that the increased demand for metabolites by cancer

cells contributes to the reduced concentration of these metabolites
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in the serum of women who developed cancer during follow-up yet

were considered cancer-free at the time of blood collection. One

could assume that women who were diagnosed with cancer shortly

after the inclusion in the study actually might have cancer at an

early pre-clinical stage, yet the impact of these hypothetical cases

would be low when the whole cohort is considered. Although we

found a correlation between metabolite concentrations in pre-

diagnostic samples and time to breast cancer diagnosis, such a

correlation putatively reflected a reverse correlation between age

and time of diagnosis and a very strong association of metabolite

concentration with age. Moreover, the extent of differences between

BC cases and corresponding controls was similar for women who

were diagnosed earlier (within 5 years of follow-up) and later (after

more than 10 years of follow-up). Furthermore, the extent of such

differences was comparably low even in the subgroup of women

who were diagnosed with cancer within one year after sample

collection (i.e., women who probably had the asymptomatic disease

during sample collection). Additionally, when age-defined

subgroups were analyzed separately, there were more metabolites

differentiating BC and controls for late-diagnosed than early-

diagnosed cases. Therefore, specific features of the serum

metabolome profile detected in women who eventually developed

cancer during follow-up were associated rather with cancer-

promoting/enabling factors affecting their metabolism than

metabolic changes related to the presence of pre-clinical/

asymptomatic disease.

In general, breast cancer represents a hormone-dependent

malignancy, hence conditions affecting hormonal homeostasis are

among known risk factors, including reproduction-related factors

(e.g., number and age of pregnancies) (35) and the usage of

hormone replacement therapy (36). In our cohort, multiple full-term

pregnancies were associated with a reduced risk of breast cancer while

systemic usage of HRT was associated with an increased risk of cancer,

which brought our attention to the metabolic changes associated with

these two conditions. The usage of HRT markedly affects metabolism

and the serum metabolic profile (37, 38). A newer metabolomics study

showed that postmenopausal usage of estrogen (alone or in

combination with progestin) affected serum concentrations of about

200 metabolites in women from the American Cancer Prevention II

Nutrition Cohort. In general, levels of several amino acids,

acylcarnitines, sphingolipids, phosphatidylcholines, and steroids were

reduced in HRT users (triglycerides were not assessed in that study)

(39). Noteworthy, among these metabolites were those whose reduced

levels were associated with increased cancer risk in middle-aged and

older women in our study (e.g., Glu, Gly, LPC(18:0), or AC(18:2)). On

the other hand, it was reported that HRT in postmenopausal women

was associated with increased serum levels of triglycerides and VLDL

particles (40). However, a larger meta-analysis showed that the

influence of HRT on serum levels of cholesterols, triglycerides, and

lipoprotein particles depends on the combination of hormones and

methods of their application (41), which indicated a more complex

nature of the association between HRT and metabolism. Nevertheless,

since HRT is applied in postmenopausal women, other metabolism-

affecting risk-related factors should be considered in a group of younger
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premenopausal women. Among them is pregnancy, which requires

complex physiological adaptation and reprogrammingmetabolism of a

mother. (Multiple) full-term pregnancies, which are inversely

associated with the risk of breast cancer, could participate in the

metabolic characteristics of premenopausal women. Therefore, it

should be mentioned that the concentration of triglycerides and

cholesterol (total and lipoprotein) increases during normal pregnancy

(42). A more recent metabolomic study showed increased levels of

several amino acids and phospholipids (phosphatidylethanolamines

and phosphatidylcholines) during pregnancy (43). Moreover, this

study showed significantly reduced levels of LPCs in pregnant

women, which resembled the association between generally increased

levels of LPCs and enhanced risk of breast cancer. Therefore,

pregnancy-related changes in metabolism might contribute to serum

metabolome features observed in the group of younger women.

Weight, another hormone- and metabolism-related condition, was

not identified as a risk factor in the analyzed HUNT2 cohort. However,

several other conditions can also be considered hypothetical factors

affecting metabolism in women who will eventually develop cancer.

Among general cancer-enabling/promoting features is chronic

inflammation (44). Increased serum level of LPC was reported in

several inflammation-related conditions (45). Hence, an increased ratio

of LPC to PC observed in the serum of women who will develop cancer

also fits the cancer-enabling characteristics.

In conclusion, differences in concentration of several metabolites

were noted in pre-diagnostic serum samples between women who

eventually developed breast cancer and women who stayed breast

cancer-free. Metabolomics features detected at the baseline (i.e., during

recruitment to the study) were associated with the long-term risk of

breast cancer in an age-dependent manner and could be observed

primarily in younger (mostly pre-menopausal) women. Changes in

metabolite profiles putatively reflected the reprogramming of

metabolism connected to cancer-promoting conditions, including

changes in hormone homeostasis. The study indicated that impaired

metabolism of lipids and amino acids is an etiological factor involved

in breast cancer, that could be observed many years before cancer

diagnosis. However, despite a relatively large number of participants

and the direct quantitative value of the applied analytical platform,

which were strengths of the study, the associations between specific

metabolites and breast cancer risk were generally modest. Hence, the

predictive value of a hypothetical metabolomics signature appeared

too low for application in cancer-screening strategies. On the other

hand, thanks to the inclusion of a relatively large and heterogenous

cohort, the correlation between metabolite concentration and age has

been convincingly documented and demonstrated as an important

obstacle in the cancer risk biomarker-oriented study. Moreover, the

extended knowledge of metabolomics profiles associated with breast

cancer risk could help to develop rational prevention strategies based

on modified dietary and lifestyle patterns.
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Fernández-Navarro M, et al. Human plasma metabolomics for biomarker discovery:
Targeting the molecular subtypes in breast cancer. Cancers (Basel) (2021) 13(1):6
doi: 10.3390/cancers13010147

9. Sharma U, Jagannathan NR. MR spectroscopy in breast cancer metabolomics.
Analytical Sci Adv (2021) 2(11-12):564–78. doi: 10.1002/ansa.202000160

10. Lécuyer L, Victor Bala A, Deschasaux M, Bouchemal N, Nawfal Triba M, Vasson
MP, et al. NMR metabolomic signatures reveal predictive plasma metabolites
associated with long-term risk of developing breast cancer. Int J Epidemiol (2018) 47
(2):484–94. doi: 10.1093/ije/dyx271

11. Yoo HJ, Kim M, Kim M, Kang M, Jung KJ, Hwang SM, et al. Analysis of
metabolites and metabolic pathways in breast cancer in a Korean prospective cohort:
The Korean cancer prevention study-II. Metabolomics (2018) 14(6):85. doi: 10.1007/
s11306-018-1382-4

12. Brantley KD, Zeleznik OA, Rosner B, Tamimi RM, Avila-Pacheco J, Clish CB,
et al. Plasma metabolomics and breast cancer risk over 20 years of follow-up among
postmenopausal women in the nurses' health study. Cancer Epidemiol Biomarkers Prev
(2022) 31(4):839–50. doi: 10.1158/1055-9965.epi-21-1023

13. Moore SC, Playdon MC, Sampson JN, Hoover RN, Trabert B, Matthews CE,
et al. A metabolomics analysis of body mass index and postmenopausal breast cancer
risk. J Natl Cancer Inst (2018) 110(6):588–97. doi: 10.1093/jnci/djx244

14. Moore SC, Mazzilli KM, Sampson JN, Matthews CE, Carter BD, Playdon MC,
et al. A metabolomics analysis of postmenopausal breast cancer risk in the cancer
prevention study II. Metabolites (2021) 11(2):2–7. doi: 10.3390/metabo11020095

15. His M, Viallon V, Dossus L, Gicquiau A, Achaintre D, Scalbert A, et al.
Prospective analysis of circulating metabolites and breast cancer in EPIC. BMC Med
(2019) 17(1):178. doi: 10.1186/s12916-019-1408-4

16. Kühn T, Floegel A, Sookthai D, Johnson T, Rolle-Kampczyk U, Otto W, et al.
Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of
common cancers in a prospective metabolomics study. BMC Med (2016) 14:13.
doi: 10.1186/s12916-016-0552-3

17. Debik J, Schäfer H, Andreassen T, Wang F, Fang F, Cannet C, et al. Lipoprotein
and metabolite associations to breast cancer risk in the HUNT2 study. Br J Cancer
(2022) 127(8):1515–24. doi: 10.1038/s41416-022-01924-1

18. Krokstad S, Langhammer A, Hveem K, Holmen TL, Midthjell K, Stene TR, et al.
Cohort profile: the HUNT study, Norway. Int J Epidemiol (2013) 42(4):968–77.
doi: 10.1093/ije/dys095
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