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This study investigated how proactive and reactive cognitive control processing in the brain was associated with habitual sleep health.
BOLD fMRI data were acquired from 81 healthy adults with normal sleep (41 females, age 20.96–39.58 years) during a test of cognitive
control (Not-X-CPT). Sleep health was assessed in the week before MRI scanning, using both objective (actigraphy) and self-report
measures. Multiple measures indicating poorer sleep health—including later/more variable sleep timing, later chronotype preference,
more insomnia symptoms, and lower sleep efficiency—were associated with stronger and more widespread BOLD activations in fronto-
parietal and subcortical brain regions during cognitive control processing (adjusted for age, sex, education, and fMRI task performance).
Most associations were found for reactive cognitive control activation, indicating that poorer sleep health is linked to a “hyper-reactive”
brain state. Analysis of time-on-task effects showed that, with longer time on task, poorer sleep health was predominantly associated
with increased proactive cognitive control activation, indicating recruitment of additional neural resources over time. Finally, shorter
objective sleep duration was associated with lower BOLD activation with time on task and poorer task performance. In conclusion,
even in “normal sleepers,” relatively poorer sleep health is associated with altered cognitive control processing, possibly reflecting
compensatory mechanisms and/or inefficient neural processing.
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Introduction
Cognitive control underlies the regulation of thoughts, actions,
and emotions and relies on rapid, dynamic communication
between widespread brain regions (Badre 2008; Braver 2012;
Diamond 2013; Cole et al. 2014; Menon et al. 2020). Sleep is vital for
brain health, everyday functioning, and quality of life (Walker and
Stickgold 2006; Mignot 2008; Palmer and Alfano 2017; Tahmasian
et al. 2020). Both cognitive control dysfunction and sleep–wake
disturbances are transdiagnostic risk factors for developing
mental health problems (McTeague et al. 2016; Freeman et al.
2020; Wainberg et al. 2021) and associated with negative outcomes

across neurological and psychiatric disorders (Goschke 2013;
Snyder et al. 2015). However, we still lack knowledge on potential
links between cognitive control function and “normal” habitual
sleep in the general adult population, as most studies on this topic
have focused on clinical, adolescent, or aging populations, and/or
have included experimental manipulations of sleep or circadian
rhythm (Scullin and Bliwise 2015; Krause et al. 2017; Lowe et al.
2017; Short et al. 2020; Tahmasian et al. 2021; Qin et al. 2023).

Even in “normal sleepers” (persons without sleep or mental
health complaints), there is considerable inter- and intraindivid-
ual variability in habitual sleep patterns and sleep need, i.e. sleep
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health (Buysse 2014; Beattie et al. 2015; Allen et al. 2018). Sleep
health is a multidimensional construct—encompassing the dura-
tion, efficiency, timing, and subjective perception of sleep—and
may be assessed via self-report (e.g. questionnaires) and objective
(e.g. polysomnography, actigraphy) measures (Buysse 2014; van
Langenberg et al. 2022). Better sleep health is characterized by a
regular sleep schedule with an appropriate sleep timing, adequate
sleep duration (Hirshkowitz et al. 2015; Watson et al. 2015), good
sleep efficiency (Ohayon et al. 2017), and experiencing little or no
problems with sleep or daytime alertness (Buysse 2014; Allen et al.
2018). Meanwhile, indicators of poorer sleep health, including
short sleep duration, poor sleep quality, and later chronotype (a
preference for later sleep timing), have been linked with poorer
health outcomes (Itani et al. 2017; Knutson and von Schantz 2018;
Dong et al. 2019; Freeman et al. 2020).

To date, most studies on habitual sleep and cognitive function
have relied on retrospective, self-report measures of singular
aspects of sleep (typically sleep duration and/or quality) (Buysse
2014; Scullin and Bliwise 2015; van Langenberg et al. 2022; Qin
et al. 2023). This limits the interpretation of results, as self-
report measures may be biased by a multitude of contextual and
personal factors (Bliwise and Young 2007; Lauderdale et al. 2008;
Lavie 2009; Matthews et al. 2018; Robbins et al. 2021). Furthermore,
self-report and objective sleep measures—even within the same
dimension—have low-to-modest correlations (Landry et al. 2015;
Matthews et al. 2018; Thurman et al. 2018) and appear to be
differently associated with cognitive function (Bernstein et al.
2019; McSorley et al. 2019; Hokett et al. 2021; Scarlett et al. 2021).
While several large-scale studies have demonstrated an inverse
U-shaped relationship between self-reported sleep duration and
cognitive performance (poorer cognitive performance with both
shorter and longer sleep durations) (Richards et al. 2017; Wild et al.
2018; Mantua and Simonelli 2019; Tai et al. 2022), studies using
objective assessment of adult habitual sleep duration—which are
far fewer in number—have provided mixed results (Scullin and
Bliwise 2015; Fueggle et al. 2018; Kato et al. 2018; Scarlett et al.
2021; Suemoto et al. 2022; Qin et al. 2023). There is also growing
evidence that other dimensions of habitual sleep health (such as
the timing/variability and efficiency of sleep) are important for
cognitive function (Owens et al. 2016; Facer et al. 2019; Hershner
2020; Zhang et al. 2020; Stefansdottir et al. 2022; Qin et al. 2023).
However, these dimensions are more difficult to quantify (Buysse
2014), and the data on sleep variability are not presently viewed
as robust (Bei et al. 2016; Chaput et al. 2020). To further elucidate
the links between sleep and cognitive function, there is a need to
include multidimensional assessment of “normal,” habitual sleep
health, using both subjective and objective measures (Chaput
et al. 2020; van Langenberg et al. 2022).

The interplay between sleep and cognitive function is likely
mediated by brain structure and functioning (Avinun et al. 2017;
Alfini et al. 2020; Grumbach et al. 2020; Tahmasian et al. 2020;
Schiel et al. 2022). Measures of poorer sleep health have been
associated with lower white matter integrity (Yaffe et al. 2016;
Khalsa et al. 2017; Grumbach et al. 2020), lower gray matter
volume and thickness (Sexton et al. 2014; Cheng et al. 2020;
Kim et al. 2021; Wang et al. 2021), as well as altered functional
connectivity within and between widespread brain regions (Curtis
et al. 2016; Cheng et al. 2018; Tashjian et al. 2018; Lunsford-
Avery et al. 2020). In task-based functional magnetic resonance
imaging (fMRI) studies, shorter habitual sleep has been asso-
ciated with reduced frontal, occipital, and insular blood oxy-
gen level-dependent (BOLD) activations during negative distractor
processing (Dimitrov et al. 2021), threat perception (Tashjian and

Galván 2020), and risky decision making under stress (Uy and
Galván 2017). Poorer self-reported sleep quality has been linked
to lower activation within the insular and anterior cingulate
cortices during emotion processing (Klumpp et al. 2017; Guadagni
et al. 2018), and inconsistent sleep timing has been linked to
less occipital activation and worse task performance during high
working-memory loads (Zhang et al. 2020). In sum, the emerging
pattern is that different indicators of poorer sleep health are
associated with altered functional and structural characteristics
of specific brain regions important for cognitive control function
(Dosenbach et al. 2008; Olsen et al. 2013; Cole et al. 2014). However,
there is a lack of theoretical frameworks to aid interpretation of
extant literature, which is based on heterogeneous study samples,
and mainly comprises evidence from structural and resting-state
neuroimaging methods, as well as task-based activity related to
affective processing (Salehinejad et al. 2021).

The “dual mechanisms framework of cognitive control” focuses
on the temporal aspects of cognitive control processing (Braver
2012). In this framework, “proactive” cognitive control supports
processing occurring over relatively longer time periods, such
as the maintenance of goal-relevant information and continu-
ous monitoring of incoming stimuli. “Reactive” cognitive control
underlies more rapid processing occurring on a trial-to-trial basis
and typically engages when a conflicting or interfering stimulus
is detected. Anatomically, these temporal modes of cognitive
control rely on distinct, yet closely interacting brain networks
(Seeley et al. 2007; Dosenbach et al. 2008; Braver 2012; Olsen
et al. 2013; Cole et al. 2014), and converge on “core” control
regions including fronto-parietal, insular, and subcortical areas
(Dosenbach et al. 2006; Niendam et al. 2012; Olsen et al. 2013;
Cole et al. 2014; Cai et al. 2016). Optimal cognitive functioning
relies on a dynamic interplay between proactive and reactive
cognitive control processes (Braver 2012; Olsen et al. 2013), where
either type of processing may be more or less beneficial depending
on context (Lesh et al. 2013; Vanderhasselt et al. 2014; Olsen
et al. 2015, 2018; Kleerekooper et al. 2016; Huang et al. 2017).
A relative increase in proactive cognitive control processing is
associated with healthy brain development (Staub et al. 2014;
Chevalier et al. 2015; Kubota et al. 2020; Niebaum et al. 2020)
and has been linked to compensatory mechanisms associated
with better every day cognitive control function in people with
moderate/severe traumatic brain injury (Olsen et al. 2015). On
the other hand, a relative increase in reactive cognitive control
processing has been linked to poorer white matter organization,
lower fluid intelligence, as well as higher levels of anxiety and
stress (Fales et al. 2008; Burgess and Braver 2010; Schmid et al.
2015; Olsen et al. 2018; Husa et al. 2022).

Another temporal aspect of cognitive control function is
the effect of time on task, typically observed as decline in
performance and vigilance with sustained task performance
(Langner and Eickhoff 2013). Such effects have been linked to
mental fatigue and depletion of cognitive resources over time
(Lim et al. 2010). Proactive cognitive control processing seems to
be more sensitive to time-on-task (TOT) effects (Olsen et al. 2013,
2015), possibly due to having a higher metabolic cost (engaging
more wide-spread brain areas over longer time periods), and
consequently being more taxing to uphold over time (Burgess
and Braver 2010; Braver 2012). Importantly, TOT effects are
exacerbated by sleep deprivation (Hudson et al. 2020), and the two
have been linked to brain activity changes in overlapping areas,
suggesting possibly shared underlying mechanisms (Asplund
and Chee 2013; Satterfield et al. 2017). Investigating associations
between TOT effects and habitual sleep health may therefore

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/11/7100/7036616 by M

alardalen U
niversity user on 26 O

ctober 2023



7102 | Cerebral Cortex, 2023, Vol. 33, No. 11

shed light on more subtle neural processes underlying the
association between sleep and cognitive function in the healthy
brain.

The main aim of this study was to investigate whether and
how proactive and reactive cognitive control processing in the
brain are associated with sleep health in adult, “normal sleepers.”
To this end, we used a well-validated, fMRI-adapted continuous
performance test which was specifically developed to assess the
temporal dynamics of cognitive control, including TOT effects
(Olsen et al. 2013, 2015). Our primary analysis (i) investigated
associations between sleep health and BOLD activation during
proactive and reactive cognitive control processing. As a sec-
ondary analysis (ii), we examined the associations between sleep
health and changes in BOLD activations (proactive and reactive
cognitive control) with time on task. Age, sex, education, and fMRI
task performance were selected as covariates of no interest a-
priori, to control for possible confounding factors related to sleep
health, cognitive control function, and BOLD activation (Price
et al. 2006; Yarkoni et al. 2009; Olsen et al. 2015; Shanmugan
and Satterthwaite 2016; Gurvich et al. 2018; Evans et al. 2021;
van Langenberg et al. 2022). This is the first study to investigate
how sleep health may be associated with proactive and reactive
cognitive control processing in the brain. We therefore took an
exploratory approach aimed at capturing the multidimensionality
of sleep health and included a comprehensive selection of objec-
tive (actigraphy-based) and self-reported (questionnaire-based)
measures, encompassing those measures which have been most
often used in previous literature (e.g. Beattie et al. 2015; Klumpp
et al. 2017; Grumbach et al. 2020; Zhang et al. 2020).

Materials and methods
Study design and procedure
Data were collected as part of a randomized controlled trial
spanning 3 weeks. The current study uses data from the first week
of this trial (baseline—before randomization or any intervention).
The study had a prospective design, which included two on-site
visits separated by seven days (questionnaires and cognitive test-
ing at visit 1, fMRI at visit 2; see Fig. 1a). Naturalistic sleep–wake
data were recorded between visits using actigraphy and sleep
diaries. Participants were asked to “sleep as usual” throughout
the study period. At visit 1, participants performed a standard-
ized test of cognitive control function and completed question-
naires assessing demographic information and sleep health. They
received their actigraph and sleep diary and were instructed to
keep the actigraphs on 24/7 throughout the study period.

At visit 2, participants completed a continuous performance
test during fMRI (“Not-X-CPT”, Fig. 1b) and were asked to report
their levels of mental fatigue and sleepiness halfway through the
task. All on-site testing was conducted between 8 AM and 3 PM.
Participants were scheduled for testing at the same time of day
on both visits to control for circadian effects in each individual.
They were also asked to avoid caffeine and nicotine in the last 2 h
before testing.

Participants
Healthy volunteers without sleep complaints (assessed using
criteria described below) were recruited via online advertise-
ments, public posters, and word-of-mouth in and around the
city of Trondheim, Norway. Inclusion and exclusion criteria were
assessed in a structured phone interview. Inclusion criteria were:
(i) being between 20 and 40 years of age, (ii) having normal or
corrected-to-normal vision, and (iii) f luency in the Norwegian
language. Exclusion criteria were: (i) contraindications for MRI,

Fig. 1. Overview of study design and sleep health measures. a) Partic-
ipants completed two study visits, and naturalistic, habitual sleep was
measured during the 7 nights between visits using actigraphy. Visits were
at the same time of day (between 8 AM and 3 PM) for each participant.
At visit 1, participants completed a computerized, standardized test
of cognitive control (Conners CPT-3), as well as a series of validated
questionnaires on sleep health and fatigue. They also received actigraphs
and sleep diaries (used for quality control of actigraphy data). At visit
2, participants completed a ∼30-min task fMRI session and were asked
to report their current level of mental fatigue and sleepiness halfway
through the task. b) To test cognitive control function, we used a “Not-
X-CPT” task adapted to a mixed block/event-related fMRI design (Olsen
et al. 2013, 2018). Letters were consecutively presented on the screen
and participants were asked to respond to press a response button as
quickly and accurately as possible whenever a target (letters A–Z) was
presented, and not respond when a nontarget (letter X) was presented.
The task consisted of a total of 480 stimuli (10% nontargets), with a
stimulus duration of 250 ms, and varying interstimulus intervals of 1, 2, or
4 s (jittered), to allow for event-related fMRI analysis (Petersen and Dubis
2012). The task was presented in two separate runs, each lasting ∼15 min,
containing 16 task blocks (duration ∼39 s) and 16 baseline blocks (varying
interblock intervals of 14, 16, or 18 s). To eliminate systematic order
effects, the different task parameters (interblock intervals, stimulus type,
block type, and interstimulus intervals) were counterbalanced within
and between the two task runs. See Olsen et al. (2013, 2018) for more
details on the task design. For use in our primary/secondary analyses, the
following contrasts were computed: (i) Proactive Cognitive Control (task
blocks > fixations), Reactive Cognitive Control (nontargets > targets), as
well as (ii) TOT change for each contrast (� Proactive Cognitive Control
and � Reactive Cognitive Control). CPT = continuous performance test,
PSQI = Pittsburgh Sleep Quality Index, ISI = Insomnia Severity Index,
ESS = Epworth Sleepiness Scale, MEQ = Morningness-Eveningness Ques-
tionnaire, CFS = Chalder Fatigue Scale, TOT = time-on-task.

(ii) any chronic or ongoing medical, neurological, or mental
illness (including sleep disorders), and (iii) obvious factor(s) that
would likely influence results or adherence to the study protocol,
such as night work or shift work, irregular sleep or perceived

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/11/7100/7036616 by M

alardalen U
niversity user on 26 O

ctober 2023



Hanne Smevik et al. | 7103

Fig. 2. Overview of inclusion process.

sleep problems, excessive alcohol use, previous habitual use of
psychotropic drugs (e.g. marijuana, stimulants), or any use of
such drugs in the last 3 months.

Assessment of “normal sleep” was based on the Research Diag-
nostic Criteria for Normal Sleepers (Edinger et al. 2004). According
to these criteria, the individuals must have (i) no complaints of
sleep disturbance or daytime symptoms attributable to unsatis-
factory sleep, (ii) have a routine standard sleep/wake schedule
characterized by regular bedtimes and rise times, (iii) no evi-
dence of a sleep-disruptive medical or mental disorder, (iv) no
evidence of sleep disruption due to a substance exposure, use,
abuse, or withdrawal, and (v) no evidence of a primary sleep
disorder (Edinger et al. 2004). The criteria were operationalized
and assessed in the structured interview at what is referred to
as levels 1 and 2 (simple self-report and personal history) in rec-
ommendations made by Beattie et al. (2015). Importantly, “normal
sleep” is not necessarily equal to “good sleep” (Buysse 2014; Beattie
et al. 2015), and even in normal sleepers, there is an expected
inter- and intraindividual variability in sleep health (sleep timing,
duration, and quality). Normal sleepers may therefore still report
issues with sleep health as measured through a questionnaire
(e.g. symptoms of insomnia) without meeting the criteria for a
significant sleep complaint or clinical diagnosis (e.g. insomnia
disorder).

A flowchart of the inclusion process is presented in Fig. 2.
Of the 92 participants enrolled in the study, four were excluded
due to only having completed visit 1, four were excluded due
to technical problems with the MRI scanner, one was excluded
due to technical problems with logging task fMRI behavioral
data, and two were excluded due to missing (n = 1) or poor (n = 1)
actigraphy data. This left a final sample of 81 participants who
completed both study visits and had usable fMRI, actigraphy, and
questionnaire data (41 women; mean age = 27.82 years, SD = 5.42;
mean education = 16.28 years, SD = 2.34).

The study was approved by the Regional Committee for Medical
and Health Research Ethics in Central Norway (REK number
2018/2413) and conducted in accordance with the 1964 Helsinki
Declaration and its later amendments or comparable ethical
standards.

Measures of sleep health, fatigue, and
standardized measure of cognitive control
function
Objective measures of sleep health
Objective, prospective assessment of participants’ habitual sleep
was obtained using actigraphy (Actiwatch Spectrum Pro, Philips
Respironics Inc., Murrysville, PA, USA). The actigraphs recorded
the participants’ light exposure and daily activity via a light
sensor and a piezoelectric accelerometer, respectively. Data were
recorded using 15-s epoch lengths. Participants were asked to
use an event marker on the actigraph to indicate when they lay
down to sleep each night. Sleep–wake periods were automatically
classified using the Actiware software (Philips Actiware 6.0.9)
using a medium sensitivity setting, and thereafter systematically
inspected by trained study staff (Boyne et al. 2013). For qualitative
assessment of the actigraphy data, participants filled out sleep
diaries based on the Consensus sleep diary each morning (Carney
et al. 2012). In cases of obvious misclassifications of rest periods,
or large discrepancies between actigraphy and sleep diary data,
rest interval onsets and offsets were manually adjusted according
to event markers, activity, light levels, and/or sleep diaries using a
standardized procedure (Follesø et al. 2021).

For each night, the following variables were extracted from
the raw actigraphy data: sleep onset, sleep offset, sleep duration
(total sleep time during the night, excluding brief wakes after
sleep onset), sleep efficiency (sleep duration divided by time in
bed), and sleep onset latency (interval between going to bed and
sleep onset). Sleep midpoints were calculated by dividing the
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sleep interval (sleep offset—sleep onset) by 2 and subtracting the
resulting duration from the sleep offset time point. Individual,
7-day averages of sleep duration, midpoint, efficiency, and SOL
were calculated for use in statistical analyses, and the standard
deviation of sleep duration and midpoint was used as measures
of the intra-individual variability of sleep. Of the 81 subjects
included, 80 had seven nights of actigraphy data and one had six
nights.

Self-report measures
Questionnaire-based, retrospective measures of sleep health were
obtained at visit 1 using a selection of validated and commonly
used inventories. The Pittsburgh Sleep Quality Index (PSQI; Buysse
et al. 1991) was used to assess sleep quality (global score) and
self-reported habitual sleep duration (item 4), the Insomnia Sever-
ity Index (ISI; Morin 1993) was used to assess insomnia symp-
toms, the Epworth Sleepiness Scale (ESS) was used to assess
daytime sleepiness (Johns 1991), and the Horne-Östberg Morning-
ness/Eveningness Questionnaire (MEQ; Horne and Ostberg 1976)
was used to assess chronotype preference. Participants were also
asked to report their usual duration of sleep on weekdays (WD)
versus weekends (WE), and the difference score was used to esti-
mate self-reported sleep variability (WE-WD difference). Finally,
the Chalder Fatigue Scale (CFS) was used to assess problems with
fatigue in daily life (Chalder et al. 1993). For the PSQI, the global
score was calculated where higher scores indicate poorer sleep
quality. For the ISI and ESS, the sum score of all items was used,
where higher scores indicate more problems with insomnia symp-
toms and daytime sleepiness. For the MEQ, the global score was
calculated, where higher scores indicate a stronger preference for
morningness. For alignment with actigraphy midpoint data, the
MEQ global score was inverted in all correlation analyses such
that higher scores indicate a preference for eveningness (later
chronotype preference). For the CFS, the mean of all items was
calculated, where a mean of 1 indicates no current problems with
fatigue and higher scores indicate more problems.

Standardized measure of cognitive control function
To obtain a standardized measure of cognitive control function,
participants completed the widely used Conners Continuous Per-
formance Test 3 (CPT-3) at visit 1 (Conners 2014). In this computer-
ized task, a series of letters (A–Z) appear on the screen in random
order, and participants are asked to press the spacebar everytime
they see a letter, except for the letter X (Not-X-CPT). Participants
were told to respond as quickly and accurately as possible. Using
norms from the test provider (MHS Scoring Software, version 5.6.0,
Multi-Health Systems Inc., Canada), T-scores for hit reaction time
(hit RT), hit reaction time standard deviation (hit RT SD), com-
mission errors (nontargets responded to), omission errors (targets
missed), as well as the derivative measure detectability (d’) were
extracted for a descriptive characterization of the participants.

Neuroimaging protocol and data acquisition
fMRI task
To assess the neural correlates of cognitive control processing,
we used a well-validated Not-X-CPT task which was specifically
developed for a mixed block/event-related fMRI design and allows
for the study of proactive and reactive cognitive control pro-
cessing, including TOT effects (Olsen et al. 2013, 2015, 2018).
Briefly, letters from A–Z were presented for 250 ms each, with an
interstimulus interval varying between 1, 2, and 4 s. Participants
were asked to respond whenever they saw a letter appear (targets),

but to withhold their response when the letter X appeared (nontar-
gets) (Fig. 1b). They were told to respond as quickly and accurately
as possible. Response speed and accuracy were recorded using
fiber-optic response grips (Nordic Neurolabs, Bergen, Norway)
held in the participants’ dominant hand (determined using the
Edinburgh Handedness Inventory, Oldfield 1971). In total, 480
stimuli were presented, and nontarget (X) frequency was 10%.
The task paradigm consisted of two task runs (duration ∼15 min
each), which were counterbalanced with regard to stimulus pre-
sentation to allow for investigation of TOT effects. The paradigm
and stimulus presentation are described in greater detail else-
where (Olsen et al. 2013). The task was presented on an HDMI
monitor (Nordic Neurolabs, Bergen, Norway) via the EPrime 3.0
software (Psychology Software Tools, Pittsburgh, PA, USA). Partici-
pants viewed the HDMI screen via a coil mounted mirror (Siemens,
Erlangen, Germany). The following performance measures were
extracted from the behavioral logs and used in further analy-
ses: hit RT and hit RT SD in milliseconds (target stimuli), omis-
sion errors (targets missed), and commission errors (nontargets
responded to).

Mental fatigue and sleepiness during fMRI task
performance
To assess subjective levels of mental fatigue and sleepiness during
fMRI task performance, participants were asked the following
questions via the MRI speaker system halfway through the task:
(i) “On a scale from 1 to 10, how mentally fatigued do you feel right
now, where 1 equals ‘not at all’ and 10 equals ‘severely’?” and
(ii) “On a scale from 1 to 10, how sleepy do you feel right now,
where 1 equals ‘extremely alert’ and 10 equals ‘can’t keep
awake’?”. The question about sleepiness was adapted from the 10-
point version of the Karolinska Sleepiness Scale (KSS, Akerstedt
and Gillberg 1990; Shahid et al. 2011).

MRI data acquisition and preprocessing
MRI data were acquired on a 3 T Skyra scanner using a 32-
channel head-coil (Siemens, Erlangen, Germany). For the task
fMRI, two series of multiband T2

∗-weighted echo planar images
(EPIs) with whole-brain coverage were acquired (947 volumes;
phase encoding direction = A-P; SMS = 6; TR = 0.970 s; TE = 34.2 ms;
FA = 60◦; voxel size = 2.5 mm isotropic, FOV = 260 mm). For
correction of susceptibility-induced distortions, two series of
spin-EPIs in opposite phase encoding directions (AP-PA) were
acquired after each fMRI run (3 volumes; TR = 7.33 s; TE = 60.8 ms;
FA = 90◦; voxel size = 2.5 mm isotropic, FOV = 260 mm). For
anatomical co-registration, a high-resolution, 3D T1-weighted
MPRAGE volume was acquired (TR = 2.3 s; TE = 29.2 ms; FA = 9◦,
voxel size = 1 × 1 × 1.2 mm; FOV = 256 mm).

Anatomical T1-weighted (T1w) images were preprocessed
using fMRIPrep version 20.2.3 (Esteban et al. 2018, 2019)
(RRID:SCR_016216), which is based on Nipype 1.6.1 (Gorgolewski
et al. 2011, 2018) (RRID:SCR_002502). The T1w images were
corrected for intensity nonuniformity with N4BiasFieldCorrection
(Tustison et al. 2010), distributed with ANTs 2.3.3 (Avants et al.
2008) (RRID:SCR_004757) and thereafter skull-stripped with a
Nipype implementation of the antsBrainExtraction.sh workflow
(from ANTs), using OASIS30ANTs as a target template. Brain
tissue segmentation of cerebrospinal fluid, white-matter, and
gray-matter (GM) was performed on the brain-extracted T1w
image using FAST (FSL 5.0.9, RRID:SCR_002823) (Zhang et al. 2001).
Brain surfaces were reconstructed using recon-all (Dale et al.
1999) (FreeSurfer 6.0.1, RRID:SCR_001847), and the T1 brain mask
was refined with a custom variation of the method to reconcile
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ANTs-derived and FreeSurfer-derived segmentations of the
cortical GM of Mindboggle (Klein et al. 2017) (RRID:SCR_002438).
The resulting brain mask was used to run brain extraction on
the T1w image using BET (Smith 2002), after mean dilation of
nonzero voxels to ensure full brain coverage in the resulting brain-
extracted image.

FMRI data preprocessing was carried out using FEAT (FMRI
Expert Analysis Tool) Version 6.00, part of FSL (FMRIB’s Software
Library, Oxford, UK) (Jenkinson et al. 2012). First, to improve reg-
istrations from functional to structural space, single-band refer-
ence images from the multiband EPI sequences were used, and
susceptibility distortion correction was applied by running TOPUP
(Andersson et al. 2003) on the spin-EPIs, followed by b0 unwarping
as implemented in FEAT. Registration of functional images to the
preprocessed T1w image/the 2-mm MNI standard space template
was carried out using FLIRT with boundary-based registration/12
degrees of freedom (Jenkinson and Smith 2001; Jenkinson et al.
2002) and further refined using FNIRT nonlinear registration with
a 10-mm warp resolution (Andersson et al. 2007). The following
prestatistical processing steps were applied: motion correction
using MCFLIRT (Jenkinson et al. 2002); nonbrain removal using
BET (Smith 2002); spatial smoothing using a Gaussian kernel
of FWHM 6 mm; and grand-mean intensity normalization of
the entire 4D dataset by a single multiplicative factor. High-
pass temporal filtering (Gaussian-weighted least-squares straight
line fitting) was applied using sigmas of 50.0 s for block-related
analyses and 25.0 s for event-related analyses.

Statistical analysis
IBM SPSS Statistics version 27 was used to calculate the daily sleep
midpoints, as well as 7-day averages and standard deviations for
all actigraphy outcome measures. Actigraphy, fMRI performance
and questionnaire data were then further analyzed and visualized
in RStudio (version 1.4.1103; R version 4.0.3) using the tidyverse
(Wickham et al. 2019), lubridate (Grolemund and Wickham 2011),
psycho (Makowski 2018), psych (Revelle 2022), and corrplot (Wei
and Simko 2021) packages. Functional MRI data were analyzed
using FSL FEAT (FMRI Expert Analysis Tool) Version 6.00 (FMRIB’s
Software Library, Oxford, UK).

fMRI task performance
Individual mean hit RT, hit RT SD, number of omissions, com-
missions, and detectability were calculated for use in further
analyses. Detectability was calculated using the psycho package
in R (Makowski 2018). Both overall task performance (collapsed
across the two task runs) and TOT changes (�) were calculated for
all measures. To explore associations between fMRI performance
and the different measures of sleep health, a partial correlation
analysis (adjusted for age, sex, and years of education, determined
a-priori) was performed. Spearman’s correlation coefficient was
used to account for nonnormally distributed data. Given the
explorative nature of this analysis, no formal correction for multi-
ple comparisons was performed, and results should therefore be
considered preliminary.

Whole-brain fMRI analyses
Prior to statistical analysis, all individual task fMRI runs were
checked for excessive motion. The values for relative root
mean square displacement were very low (mean: 0.1 mm: max:
0.25 mm), and all subjects were therefore included in subsequent
analyses. Single-subject general-linear models (GLM) were first
applied for each task run (run 1 and run 2), using FSL’s FILM
with local autocorrelation correction (Woolrich et al. 2001).

The following contrasts were computed for use in the primary
analysis (i): task blocks > fixation blocks (Proactive Cognitive
Control) and nontargets (X) > targets (A–Z) (Reactive Cogni-
tive Control). Contrasts from individual task runs were then
combined for each participant using a fixed effects model, to
compute mean activation across runs. For the secondary analysis
(ii), to investigate TOT effects, each task run was divided into 4
time epochs in which Proactive and Reactive Cognitive Control
BOLD activations were estimated. Mean TOT change across
runs (� Proactive Cognitive Control and � Reactive Cognitive
Control) was then computed for each participant using a
fixed effects model, by contrasting time epoch 1 with time
epoch 4.

Linear whole-brain associations between lower level contrast
estimates and sleep health measures were modeled using
a mixed-effects model (FLAME 1 + 2) (Woolrich et al. 2004).
Separate GLMs were run to test (i) associations between Proactive-
and Reactive Cognitive Control and sleep health and (ii) �

Proactive- and � Reactive Cognitive Control and sleep health. The
following sleep health measures were demeaned and included as
covariates of interest in separate models (one per fMRI contrast):
actigraphy-derived mean sleep duration, sleep duration SD,
mean midpoint, midpoint SD, sleep efficiency, and SOL; self-
reported sleep duration (PSQI), chronotype (MEQ inverse global
score), sleep variability (WE-WD difference), sleep quality (PSQI),
insomnia symptoms (ISI), problems with fatigue in daily life (CFS),
daytime sleepiness (ESS), mental fatigue during the task, and
sleepiness during the task (KSS). Additionally, (iii) group-level
average activation for all BOLD contrasts (excluding sleep health
covariates) was modeled in a supplementary analysis, to provide
context for primary/secondary results, and for evaluation of the
validity and replicability of the fMRI protocol.

All models were adjusted for age, sex, years of education, and
fMRI task performance (hit RT, omissions, and commissions), to
control for confounding factors related to sleep health, cognitive
control function, and BOLD signal (Olsen et al. 2015; Shanmugan
and Satterthwaite 2016; Gurvich et al. 2018; Evans et al. 2021;
van Langenberg et al. 2022). Adjustment for fMRI task perfor-
mance was applied as we were mainly interested in differences
in neuronal processing during cognitive control related to sleep
health, as opposed to differences in BOLD activation caused by
mere behavioral variability—which may be related to a range of
personal and/or contextual factors (Price et al. 2006; Yarkoni et al.
2009; Grinband et al. 2011). Models of Proactive and Reactive Cog-
nitive Control were adjusted for overall (whole-task) performance,
and models of � Proactive Cognitive Control and � Reactive
Cognitive Control (TOT change) were adjusted using performance
� scores. The six head motion parameters from FEAT were also
added to each model as separate regressors.

To control the family-wise error (FWE) rate, in each individual
model, cluster-based inference based on Gaussian Random Field
Theory (RFT) was applied using a cluster-defining threshold of
Z > 3.1 and a cluster probability threshold of P < 0.05 (Worsley
2001). For statistically significant results, the size (number of
voxels), P-value, maximum Z-values, and coordinates in standard
2 × 2 × 2 MNI space for significant clusters were extracted for
descriptive purposes. The minimum significant cluster size, i.e.
the minimum number of contiguous voxels (Z > 3.1) required for
a cluster to be considered significant (P < 0.05), is also reported
for each model. Anatomical locations were determined using the
FSLeyes software, version 1.3.0, with the incorporated Harvard
Oxford cortical and subcortical structural brain atlases and visual
inspection.
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Table 1. Demographics and standardized cognitive control function.

Variable n Mean (SD) Min Max

Demographics
Female/Male 41/40 n/a n/a n/a
Age (years) 81 27.82 (5.42) 20.96 39.58
Years of educationa 81 16.28 (2.39) 12 21
Standardized Cognitive Control Function (Conners CPT-3, T-scores)
Hit RT, mean 81 43.01 (6.09) 33 63
Hit RT, SD 81 41.49 (5.84) 32 66
Omission errors 81 45.60 (2.72) 43 60
Commission errors 81 50.99 (9.53) 36 78
Detectability (d’) 81 47.49 (7.39) 32 66

The standardized scores on the CPT-3 have a mean of 50 and a standard deviation of 10. Higher scores indicate poorer performance, and lower scores indicate
better performance. aYears of education = the number of years corresponding to the highest completed level or ongoing level of education (educational
attainment).

Results
Demographics and standardized cognitive
control function
An overview of demographic variables and scores on the stan-
dardized assessment of cognitive control function (Conners CPT-
3) can be found in Table 1. For the CPT-3, lower scores reflect better
performance. On the group level, participants had relatively faster
reaction times while maintaining an expected number of errors
as compared to the norm group (hit RT: mean T-score = 43.01,
SD = 6.09; commission errors: mean T-score = 50.99, SD = 9.53).

Measures of sleep health
Table 2 provides an overview of measures of sleep health. The
mean objective sleep duration (averaged over 7 days) was 7.21 h
(SD = 0.66 h), which is within the range of recommended sleep
duration for adults (7–8 h) (Hirshkowitz et al. 2015). The mean
sleep efficiency and SOL also indicated overall good quality sleep
(≥85% and <30 min, respectively) (Ohayon et al. 2017). For sleep
timing, the mean midpoint was at 03:52 AM, and mean of scores
on the MEQ was 54.29 (SD = 8.86). The distribution of scores on
the MEQ showed that a majority of participants fell within the
“intermediate” type, with a slight lean toward “moderately morn-
ing” (Horne and Ostberg 1976). Finally, the mean scores on the
PSQI and ISI suggest a low prevalence of sleep problems (using
a cut-off for “normal sleep” of 5 for the PSQI and 7 for the ISI,
Buysse et al. 2008; Morin et al. 2011). Taken together, the results
show that participants had good sleep overall, but that there was
interindividual variability as expected within the normal range.

fMRI task performance and associations with
sleep health
Behavioral data from the fMRI task are presented in Fig. 3 and
(Supplementary Table S1). Data are presented both for the task as
a whole and for TOT changes (�).

Results from an explorative investigation of associations
between fMRI task performance and sleep health variables are
presented in Fig. 4. Given the explorative nature of this analysis,
no formal correction for multiple comparisons was performed,
and the results should therefore be considered preliminary.
Significant correlations (at α = 0.05) are labeled according to
their P-value in the figure (∗ = P < 0.05, ∗∗ = P < 0.01, ∗∗∗ = P < 0.001)
and summarized here. Most associations were observed for
actigraphy-derived sleep duration: shorter habitual duration
was associated with poorer task performance overall (higher
hit RT SD, more errors, and lower detectability) as well as with

increased time on task (longer hit RT, higher hit RT SD, and lower
detectability). More variable habitual sleep duration (higher SD)
was also associated with more commission errors and lower
detectability. Furthermore, shorter self-reported sleep duration
was associated with poorer performance with time on task
(more omission errors and lower detectability), relatively later
chronotype preference was associated with lower hit RT SD
with time on task, and higher levels of daytime sleepiness were
associated with more omissions and longer hit RTs with time on
task. There were no other statistically significant associations
(P < 0.05), between fMRI task performance and sleep health
measures.

Whole-brain fMRI analyses
Associations between proactive and reactive cognitive
control activations and sleep health
Statistically significant associations between cognitive control
activations and sleep health measures are presented in Figs. 5 and
6 and in Table 3. Most were found for Reactive Cognitive Control
activation.

For Proactive Cognitive Control, a more variable sleep midpoint
(higher midpoint SD) was associated with higher BOLD activation
in the left postcentral gyrus (Fig. 5). None of the other sleep health
variables was associated with overall Proactive Cognitive Control
activation.

For Reactive Cognitive Control, later sleep midpoint was
associated with greater BOLD activation in the cerebellum, lingual
gyrus, thalamus, right precuneus cortex, posterior cingulate
gyrus, and right middle frontal gyrus (Fig. 6a). A more variable
sleep midpoint (higher midpoint SD) was associated with greater
Reactive Cognitive Control in the right precentral/postcentral
gyrus, as well as the juxtapositional lobule (supplementary
motor area) (Fig. 6b). Later chronotype preference was associated
with greater Reactive Cognitive Control activation in widespread
regions encompassing frontal, parietal, and temporal cortex as
well as the cerebellum, caudate, and thalamus (Fig. 6c). Finally, a
higher level of insomnia symptoms was associated with greater
Reactive Cognitive Control activation in the right precuneus and
ventromedial frontal cortex (Fig. 6d).

Associations between � proactive cognitive control,
� reactive cognitive control, and sleep health
Statistically significant associations between TOT changes in cog-
nitive control activation and sleep health measures are presented
in Figs 7 and 8 and in Table 4. Most associations with TOT effects
were found for � Proactive Cognitive Control activation.
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Table 2. Sleep health measures (n = 81).

Variable Mean (SD) Min Max

Actigraphy (7-day averages)
Sleep duration, mean (hours) 7.21 (0.66) 4.97 9.01
Sleep duration SD (hours) 0.95 (0.43) 0.28 2.68
Sleep midpoint, mean (time) 03:52 am (53 min) 02:25 am 06:20 am
Sleep midpoint SD (hours) 0.94 (0.42) 0.26 2.23
Sleep efficiency (%) 86.73 (4.04) 73.44 94.78
Sleep onset latency (SOL) (minutes) 20.44 (12.93) 4.18 68.82
Self-reported sleep and fatigue
Sleep duration (hours)a 7.46 (0.61) 6.50 9.50
Sleep quality (PSQI global score) 3.41 (1.79) 0 10
WE-WD sleep duration difference (hours) 1.04 (0.87) −1 3
Insomnia symptoms (ISI global score) 3.63 (2.84) 0 13
Daytime sleepiness (ESS sum score) 5.12 (2.84) 0 13
Chronotype (MEQ global score) 54.29 (8.86) 73 31
Fatigue (CFS global score) 1.00 (0.31) 0.27 2.09

aAssessed using PSQI item 4. PSQI = Pittsburgh Sleep Quality Index, WE-WD = weekend-weekday, ISI = Insomnia Severity Index, ESS = Epworth Sleepiness
Scale, MEQ = Morningness-Eveningness Questionnaire, CFS = Chalder Fatigue Scale.

Fig. 3. fMRI task performance. Individual means for each outcome variable are plotted as raincloud plots (Allen et al. 2021) with overlaid boxplots, as
well as dashed horizontal lines indicating group means. a) Overall task performance and b) performance change scores (�) with time on task (Time
epoch 4—Time epoch 1). Hit RT and hit RT SD refer to target responses (letters A–Z). Omissions refer to missed target letters (A–Z), and commissions
refer to pushed nontargets (X). Detectability (d’) refers to the ability to discriminate targets from nontargets.

For � Proactive Cognitive Control, later sleep midpoint was
associated with increased BOLD activation with time on task
in the cerebellum, precuneus cortex, and right middle frontal
gyrus (Fig. 7a). Lower sleep efficiency was associated with
increased Proactive Cognitive Control activation in the left
paracingulate gyrus/frontal pole with time on task (Fig. 7b).
More problems with fatigue in daily life were associated with
increased Proactive Cognitive Control activation with time on
task in widespread areas, including bilateral cerebellum, occipital
cortex, precuneus cortex, and frontal pole (Fig. 7c). More self-
reported sleepiness during task performance was associated with
increased Proactive Cognitive Control activation with time on task
in the left precentral/postcentral gyrus (Fig. 7d). Finally, shorter
self-reported sleep duration was associated with decreased

Proactive Cognitive Control activation with time on task in the
left middle temporal gyrus (Fig. 8a).

For � Reactive Cognitive Control, shorter objective (actigraphy-
derived) sleep duration was associated with decreased BOLD acti-
vation with time on task in the right paracingulate/anterior cingu-
late gyrus (Fig. 8b). None of the other sleep health measures was
significantly associated with � Reactive Cognitive Control.

Supplementary fMRI analysis: group average BOLD
activations
For transparency and evaluation of the validity (replicability)
of the fMRI protocol, and to provide context for the discus-
sion of results, we include group average activations for the
contrasts used in our study (activation without sleep health
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Fig. 4. Partial correlations between task fMRI performance and sleep health measures. The correlogram depicts partial correlation coefficients
(Spearman’s rho; adjusted for age, sex, and education) between fMRI task performance measures (Y-axis) and the different sleep health measures
(X-axis). Measures of overall task performance are listed above the horizontal black line and measures of TOT changes (�) are listed below the line.
Objective measures of sleep (actigraphy-derived) are listed to the left of the vertical black line and self-report measures are listed to the right of the
line. Statistically significant correlations (P < 0.05, not corrected for multiple comparisons) are marked with colored ellipses (positive correlations in
orange and negative correlations in blue). Given the explorative purpose of this analysis, no formal correction for multiple comparisons was performed,
and results should therefore be considered preliminary. To indicate which findings would survive stricter statistical thresholds, significant correlations
have been labeled according to their uncorrected P-value (∗ = P < 0.05, ∗∗ = P < 0.01, ∗∗∗ = P < 0.001). ACT = actigraphy, SR = self-reported, CPT = continuous
performance test.

Fig. 5. Association between proactive cognitive control processing and
sleep midpoint SD. More variable sleep midpoint (midpoint SD) was asso-
ciated with stronger proactive cognitive control activation in the left post-
central gyrus. Results were obtained using mixed-effects models and are
presented on a 1-mm MNI standard space template. Cluster-based infer-
ence was used to control the FWE rate in each model (cluster-defining
threshold = Z > 3.1, cluster probability threshold = P < 0.05). Slices that
best represent the cluster have been selected. As these are 2D representa-
tions of 3D volumes, the cluster may only be partly visible. See Table 3 for
details on cluster size/coordinates. MNI = Montreal Neurological Institute.

covariates) in (Supplementary Fig. S1, Supplementary Tables S2
and S3). Despite using a different scanner and fMRI sequence,
group average activations were as expected and highly similar
to previous studies (Olsen et al. 2013, 2015, 2018). The contrasts

(i) for Proactive and Reactive Cognitive Control demonstrated
robust and widespread BOLD activations, which converged
on fronto-parietal regions, the insular cortex, dorsal striatum,
thalamus, and the cerebellum—indicating core regions for
cognitive control processing as observed in previous studies
(Dosenbach et al. 2008; Niendam et al. 2012; Olsen et al. 2013).
Contrasts for (ii) TOT effects demonstrated a decrease in Proactive
Cognitive Control activation within core control regions with
increased time on task (which are typically “task-positive”
regions) and increased Proactive Cognitive Control activations
in the precuneus, medial prefrontal cortex, and middle temporal
gyrus (typically “task-negative” regions). Meanwhile, there was
increased Reactive Cognitive Control activation in core cognitive
control areas with time on task, largely mirroring regions
displaying decreased Proactive Cognitive Control activation. This
group-level change in activity patterns suggests a relative shift
from Proactive to Reactive Cognitive Control processing with
increasing time on task.

Discussion
In this prospective study of adult, normal sleepers, we observed
multiple associations between cognitive control processing and
habitual sleep health. Using whole-brain fMRI analyses, we found
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Fig. 6. Associations between reactive cognitive control processing and sleep health. a) Later sleep midpoint was associated with higher reactive cognitive
control activations in the cerebellum, lingual gyrus, thalamus, right precuneus cortex, posterior cingulate gyrus, and right middle frontal gyrus. b) More
variable sleep midpoint (midpoint SD) was associated with higher reactive cognitive control activation in the precentral/postcentral gyrus and in the
juxtapositional lobule (supplementary motor area). c) Later chronotype preference was associated with widespread higher reactive cognitive control
activation, including frontal, parietal, and temporal cortex as well as the cerebellum, caudate, and thalamus. d) Higher levels of insomnia symptoms were
associated with higher reactive cognitive control processing in the right precuneus and ventromedial frontal cortex. Results were obtained using mixed-
effects models and are presented on a 1-mm MNI standard space template. Cluster-based inference was used to control the FWE rate in each model
(cluster-defining threshold = Z > 3.1, cluster probability threshold = P < 0.05). Slices that are most representative for the overall findings (anatomical, and
across different clusters) have been selected. As these are 2D representations of 3D volumes, some of the clusters may only be partly visible. See Table 3
for details on cluster size/coordinates. MNI = Montreal Neurological Institute.

that measures indicating poorer sleep health were predominantly
associated with stronger and more widespread BOLD activations
during cognitive control processing (adjusted for age, sex, years
of education, and Not-X-CPT performance). Analyses focused on
different temporal aspects of cognitive control processing yielded
unique and complementary results. Later and more variable sleep
midpoints, a relatively later chronotype preference, and higher
levels of insomnia symptoms were associated with stronger reac-
tive cognitive control activations. Furthermore, later sleep mid-
points, lower sleep efficiency, more problems with fatigue in
daily life, and more sleepiness during task performance were
associated with increased proactive cognitive control activations
with increasing time on task, reflecting more neural recruitment
with time. Taken together, our results show that cognitive control
function is linked to different aspects of habitual sleep health
even in high-functioning, normal sleepers.

Given that fMRI task performance was adjusted for in our anal-
yses (Price et al. 2006; Yarkoni et al. 2009), the dominating pattern
of increased BOLD activations indicates that individuals with rela-
tively poorer sleep health need to recruit more neuronal resources
to support cognitive control function, which may reflect com-
pensatory mechanisms and/or less efficient neural processing
(Drummond et al. 2005; Chee and Tan 2010; Schmidt et al. 2015;

Maire et al. 2018; Olsen et al. 2020). Shorter sleep duration was
associated with decreased cognitive control activations with time
on task as well as poorer task performance, suggesting an exagger-
ated, negative TOT effect in habitually shorter sleepers—perhaps
reflecting a lower ability to maintain cognitive control function
over longer periods of time. This fits well with previous evidence
demonstrating that experimentally induced sleep loss exacer-
bates general TOT effects and that the two share common neural
substrates (Asplund and Chee 2013; Satterfield et al. 2017; Hudson
et al. 2020).

Later and more variable sleep timing, later chronotype
preference, and more insomnia symptoms were associated with
stronger reactive cognitive control activations. This indicates
that poorer sleep health is predominantly associated with a
“hyper-reactive” brain state, possibly due to increased recruitment
of cognitive control resources as a response to conflicting
(nontarget) stimuli. This may indicate increased recruitment
of cognitive control resources as a response to conflicting
(nontarget) stimuli. Increased reactive cognitive control has
previously been associated with higher levels of stress (Husa
et al. 2022) and anxiety (Fales et al. 2008; Schmid et al. 2015;
Yang et al. 2018) in healthy individuals, and with poorer white
matter organization, lower fluid intelligence, and more anxiety
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Table 3. Associations between cognitive control activations and sleep health.

Contrast/Region Right/Left Size (#voxels) P-value Peak Z Value Peak Coordinates (MNI)

X Y Z

Proactive Cognitive Control:
Higher Sleep Midpoint SD Minimum significant cluster size: 182 voxels
Postcentral Gyrus L 198 .0366 4.09 −46 −24 36
Reactive Cognitive Control:
Later Sleep Midpoint Minimum significant cluster size: 168 voxels
Cerebellum: Right Crus I R 332 0.0020 4.22 28 −74 −32
Cerebellum: Left Crus I & II L 306 0.0032 4.08 −18 −70 −36
Cingulate Gyrus, posterior division R 266 0.0068 4.37 4 −36 26
Lingual Gyrus/Intracalcarine Cortex L 248 0.0096 4.37 −6 −62 2
Precuneus Cortex R 235 0.0123 4.38 14 −60 36
Thalamus R 226 0.0148 3.98 14 −20 8
Middle Frontal Gyrus R 210 0.0204 4.59 32 12 52
Reactive Cognitive Control:
Higher Sleep Midpoint SD Minimum significant cluster size: 168 voxels
Precentral & Postcentral Gyri R 592 <0.0001 4.08 24 −18 74
Juxtapositional Lobule R 169 0.0488 3.85 0 −12 48
Reactive Cognitive Control:
Later Chronotype Preference Minimum significant cluster size: 167 voxels
Superior Parietal Lobule R 760 <0.0001 −4.69 38 −58 68
Cerebellum: Right VIIIb R 709 <0.0001 −4.40 26 −42 −54
Caudate R/L 495 0.0001 −4.68 8 8 4
Middle Temporal Gyrus,
temporooccipital part

R 367 0.0010 −4.38 48 −52 2

Superior Frontal Gyrus R 311 0.0028 −4.41 24 14 72
Inferior Frontal Gyrus, pars opercularis R 282 0.0047 −4.03 40 10 22
Frontal Pole/Frontal Medial Cortex R/L 273 0.0056 −4.22 −4 58 −10
Postcentral Gyrus L 252 0.0085 −4.38 −46 −18 30
Postcentral Gyrus R 242 0.0103 −3.95 40 −24 38
Precentral Gyrus L 228 0.0136 −4.08 −52 6 42
Reactive Cognitive Control
More Insomnia Symptoms Minimum significant cluster size = 168 voxels
Precuneus Cortex R 247 0.0097 3.81 16 −58 36
Frontal Pole/Frontal Medial Cortex R 201 0.0245 4.31 4 58 −8

Results were obtained using mixed-effects models, and only statistically significant results are reported. Cluster-based inference was used to control the FWE
rate in each model (cluster-defining threshold = Z > 3.1, cluster probability threshold = P < 0.05). Minimum significant cluster size indicates the minimum number
of contiguous voxels (Z > 3.1) required for a cluster to be considered significant (P < 0.05), determined using Gaussian RFT. Main peaks within each cluster are
reported. Anatomical regions for each peak Z value were labeled using visual inspection and the Harvard Oxford cortical/subcortical structural atlases and the
Cerebellar atlas (normalized with FLIRT) within the FSL software. Note that some clusters are relatively large and therefore span over several brain regions (see
Figs. 5 and 6 for visualization). MNI = Montreal Neurological Institute, R = Right, L = Left, RFT = Random Field Theory.

problems in adults born preterm (Olsen et al. 2018). The reactive
hyperactivations observed here therefore suggest suboptimal
cognitive control processing in those with relatively poorer sleep
health and may point to a potential mechanism linking poorer
sleep health to poorer mental health outcomes.

Beyond stronger activations in core cognitive control regions,
later chronotype preference and more insomnia symptoms were
also associated with higher activations in the ventromedial pre-
frontal cortex. The ventromedial prefrontal cortex has previously
been implicated in self-referential cognition (Jenkins and Mitchell
2011; Abraham 2013) and processing of predictive value and
reward (O’Doherty 2004; Etkin et al. 2011). Heightened activations
here may therefore indicate experiencing the conflicting stimuli
(nontargets) as more salient, and/or being more self-aware during
conflict processing. The association with insomnia symptoms is
also interesting in light of the “hyperarousal” hypothesis, which
postulates that insomnia disorder is linked to higher interoceptive
awareness (Wei and Van Someren 2020), paired with an increased
tendency to ruminate about sleep problems (Riemann et al. 2010;
Fasiello et al. 2022). It is important to note that our findings are
linked to insomnia symptoms in healthy participants, and not to

the clinical diagnosis of insomnia disorder. However, the observed
patterns of altered brain activity may still shed light on neural
substrates underlying the development and maintenance of sleep
problems (Nicolazzo et al. 2021; Faaland et al. 2022).

Analyses of TOT effects showed that measures of poorer sleep
health were predominantly associated with increased proactive
cognitive control activations in fronto-parietal and cerebellar
regions. Mean group-level activation indicated a shift toward
more reactive cognitive control processing with time on task, with
decreasing proactive- and increasing reactive cognitive control
activations in core control regions (Supplementary Fig. S1).
Proactive cognitive control processing is believed to be more
resource-demanding than reactive cognitive control (having
a higher metabolic cost) (Burgess and Braver 2010; Braver
2012). The group-level shift toward more reactive cognitive
control processing with time on task may therefore reflect an
adaptive or more cost-efficient response—freeing up neural
resources (lowering metabolic cost) and allowing participants
to engage in other thought processes while still maintaining a
satisfactory performance (Petersen et al. 1998; Neubauer and Fink
2009). Hence, the TOT increases in proactive cognitive control
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Table 4. Associations between TOT change in cognitive control activations and sleep health.

Contrast/Region Right/Left Size (#voxels) P-value Peak Z Value Peak Coordinates (MNI)

X Y Z

Proactive Cognitive Control TOT increase:
Later Sleep Midpoint Minimum significant cluster size = 185 voxels
Cerebellum: Left Crus I & II L 810 <0.0001 4.76 −6 −78 −28
Cerebellum: Left Crus I L 355 0.0025 4.13 −40 −66 −36
Precuneus Cortex R/L 248 0.0153 5.46 12 −62 68
Middle Frontal Gyrus R 233 0.0200 4.52 34 38 46
Lateral Occipital Cortex, superior division L 193 0.0423 4.04 −24 −58 34
Proactive Cognitive Control TOT increase:
Lower Sleep Efficiency Minimum significant cluster size = 186 voxels
Paracingulate Gyrus/Frontal Pole L 301 0.0063 −4.16 −10 48 18
Proactive Cognitive Control increase:
Fatigue in Daily Life Minimum significant cluster size = 185 voxels
Cerebellum: Left Crus II L 1877 <0.0001 4.99 −4 −90 −32
Lateral Occipital Cortex, superior division R 460 0.0005 5.21 48 −68 40
Lateral Occipital Cortex, superior division/Occipital Pole L 449 0.0006 5.02 −34 −92 26
Lateral Occipital Cortex, inferior division L 391 0.0015 4.66 −56 −68 −6
Cerebellum: Right Crus II R 371 0.0020 4.61 18 −80 −54
Frontal Pole R 288 0.0077 5.66 16 70 26
Precuneus Cortex R/L 283 0.0083 4.3 10 −62 70
Frontal Pole L 280 0.0088 4.78 −42 60 12
Lateral Occipital Cortex, inferior division R 188 0.0467 4.15 62 −64 −6
Proactive Cognitive Control TOT increase: More
Self-Reported Sleepiness On Task Minimum significant cluster size = 185 voxels
Precentral & Postcentral Gyri L 284 0.0083 3.92 −14 −16 74
Proactive Cognitive Control TOT decrease:
Shorter Self-Reported Sleep Duration Minimum significant cluster size = 186 voxels
Midde Temporal Gyrus, posterior division L 193 0.0436 4.57 −68 −30 −12
Reactive Cognitive Control TOT decrease:
Shorter Objective Sleep Duration Minimum significant cluster size = 167 voxels
Paracingulate Gyrus/Cingulate Gyrus, anterior division R 173 0.0429 4.58 12 46 4

Results pertain to changes in brain activation with increased TOT (�). Results were obtained using mixed-effects models, and only statistically significant
results are reported. Cluster-based inference was used to control the FWE rate in each model (cluster-defining threshold = Z > 3.1, cluster probability
threshold = P < 0.05. Minimum significant cluster size indicates the minimum number of contiguous voxels (Z > 3.1) required for a cluster to be considered
significant (P < 0.05), determined using Gaussian RFT. Main peaks within each cluster are reported. Anatomical regions for each peak Z value were labeled
using visual inspection and the Harvard Oxford cortical/subcortical structural atlases and the Cerebellar atlas (normalized with FLIRT) within the FSL
software. Note that some clusters are relatively large and therefore span over several brain regions (see Figs. 7 and 8 for visualization). MNI = Montreal
Neurological Institute, R = Right, L = Left, TOT = time on task, RFT = Random Field Theory.

activations observed with poorer sleep health may indicate
compensatory mechanisms, i.e. recruitment of relatively more
neural resources in order to maintain cognitive control function
over time (Olsen et al. 2015, 2020).

The strongest association for TOT effects was linked to prob-
lems with fatigue in daily life, for which there were widespread
BOLD increases in cerebellar, occipital, and prefrontal areas with
longer time on task. Heightened task-related BOLD activity has
previously been observed in patient groups suffering from chronic
fatigue, as compared with healthy controls (Cook et al. 2007;
DeLuca et al. 2009; Almutairi et al. 2020). Our findings therefore
imply that analyses of TOT effects are sensitive to temporal
changes in neural activity associated with subtle symptoms also
in healthy individuals. We did not observe statistically signifi-
cant associations between TOT changes and self-reported fatigue
during task performance. There was, however, an association
with self-reported sleepiness during the task. Fatigue research
has repeatedly demonstrated a distinction between fatigue and
sleepiness, as well as “trait” (stable over time) versus “state”
(momentary) measures (Kluger et al. 2013; Wylie et al. 2022). Our
findings mirror this phenomenon, showing a widespread increase
in brain activity related to “trait” fatigue (as measured by the
CFS), no evidence for differences in brain activity related to “state”

fatigue (mental fatigue during task performance), and unique
activity changes related to task-related sleepiness centered in
motor areas. One possible interpretation of these findings is that
while the TOT increases in BOLD activity may be compensatory
in the moment, they might come with a longer term cost (higher
levels of trait fatigue) (Kohl et al. 2009; Olsen et al. 2015).

Shorter sleep duration was associated with decreased cognitive
control activations with TOT (Fig. 8). This finding is in contrast
to the general pattern of increased activations with poorer sleep
health in our study but aligns well with existing evidence link-
ing shorter sleep and sleep loss with lower task-related BOLD
activations (Krause et al. 2017; Uy and Galván 2017; Tashjian
and Galván 2020; Dimitrov et al. 2021), and provides preliminary
evidence that habitually short sleepers may have a heightened
sensitivity to TOT effects—mirroring prior results demonstrating
that general TOT effects are exacerbated by experimental sleep
loss (Asplund and Chee 2013; Hudson et al. 2020). Considering that
the participants in our study largely had sleep durations within
the recommended range for adults (7–8 h), these results further
imply that TOT analyses are sensitive to subtle changes in neural
activity within a homogenous, healthy sample.

Self-reported and objective measures of sleep duration were
differently associated with cognitive control activations and
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Fig. 7. TOT increases in proactive cognitive control associated with
sleep health. a) Later sleep midpoint was associated with increased
proactive cognitive control activations in the cerebellum, precuneus cor-
tex, and right middle frontal gyrus with TOT. b) Lower sleep efficiency
was associated with increased proactive cognitive control activations
in the paracingulate gyrus/left frontal pole with TOT. c) More prob-
lems with fatigue in daily life were associated with increased proactive
cognitive control activations in widespread areas of the brain, includ-
ing the cerebellum, occipital cortex, precuneus, and frontal pole with
TOT. d) Higher levels of sleepiness during fMRI task performance were
associated with increased proactive cognitive control activations in the
left precentral/postcentral gyrus with TOT. Results were obtained using
mixed-effects models and are presented on a 1-mm MNI standard space
template. Cluster-based inference was used to control the FWE rate
in each model (cluster-defining threshold = Z > 3.1, cluster probability
threshold = P < 0.05). Slices that are most representative for the overall
findings (anatomical, and across different clusters) have been selected.
As these are 2D representations of 3D volumes, some of the clusters may
only be partly visible. See Table 4 for details on cluster size/coordinates.
TOT = time on task, MNI = Montreal Neurological Institute.

Fig. 8. TOT decreases in cognitive control processing with shorter sleep
duration. a) Shorter self-reported sleep duration was associated with
decreased proactive cognitive control activations in the left middle tem-
poral gyrus with TOT. b) Shorter objective sleep duration (7-day mean)
was associated with decreased reactive cognitive control activation in
the right paracingulate/anterior cingulate gyrus with TOT. Results were
obtained using mixed-effects models and are presented on a 1-mm MNI
standard space template. Cluster-based inference was used to control
the FWE rate in each model (cluster-defining threshold = Z > 3.1, cluster
probability threshold = P < 0.05). Slices that best represent the clusters
have been selected. As these are 2D representations of 3D volumes, the
clusters may only be partly visible. See Table 4 for details on cluster size/
coordinates. TOT = time on task, MNI = Montreal Neurological Institute.

with task performance, providing additional evidence that self-
reported versus objective measures of sleep—even within the
same dimension—capture different phenomena (Klumpp et al.
2017; Bernstein et al. 2019; Stefansdottir et al. 2020; Scarlett et al.
2021; Tahmasian et al. 2021). Whereas the objective sleep duration
was associated with TOT decreases in the anterior cingulate
cortex—a core region for cognitive control—self-reported sleep
duration was associated with TOT decreases in temporal areas,
which are typically implicated in memory function or semantic
processing. Also, objective sleep duration was most strongly
associated with task performance (shorter duration associated
with more variable RTs and more errors overall, as well as
slower and more variable RTs with time on task). This supports
extant findings linking shorter objective sleep duration to a
more inattentive response style (Kuula et al. 2018; Saksvik
et al. 2020). Taken together, our results indicate that shorter
objectively measured sleep duration is associated with poorer
cognitive control functioning in normal sleepers, whereas the
association between self-reported sleep duration and cognitive
control function was less clear.

Through assessing the multidimensionality of habitual sleep
health, some interesting overall patterns emerged. Most associa-
tions with cognitive control processing were related to later and
more variable sleep timings. This provides additional evidence
that sleep timing and variability are important aspects of sleep
health (Chaput et al. 2020) and extends and substantiates prior
studies indicating their relevance for brain functioning (Khalsa
et al. 2016; Byrne et al. 2019; Facer et al. 2019; Lunsford-Avery
et al. 2020; Zhang et al. 2020). Furthermore, actigraphy-derived
habitual sleep duration was the measure most closely associated
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with task performance, indicating that objective sleep duration is
linked to performance-based cognitive control function in healthy
young adults. For sleep efficiency and quality, cognitive control
activations were significantly associated with levels of insomnia
symptoms and actigraphy-derived sleep efficiency, but not with
self-reported sleep quality (as measured using the PSQI). Whereas
the ISI is specific to problems with going to sleep and maintaining
sleep, the PSQI is a broader measure of perceived sleep quality
(Chen et al. 2017). Our findings therefore imply that the efficiency
and consistency of sleep, rather than perceived sleep quality,
are more closely related to cognitive control function in normal
sleepers.

The lack of a significant association with the PSQI is in contrast
to several previous studies which have identified a link between
this instrument and brain function (Elvemo et al. 2015; Curtis
et al. 2016; Avinun et al. 2017; Klumpp et al. 2017; Cheng et al.
2018). However, most of these studies included patients or individ-
uals with depressive symptoms and/or were focused on emotion
processing, and the PSQI has previously been shown to correlate
with depression (Grandner et al. 2006; Klumpp et al. 2017). It is
possible that poorer self-reported sleep quality, as measured using
the PSQI, is more related to affective regulation (“hot cognitive
control function”) as compared with “cold” cognitive processes (as
was measured in our study) (Klumpp et al. 2017; Salehinejad et al.
2021). We also note that the participants in our study were con-
sidered eligible partly based on the absence of self-reported sleep
and mental health problems, and hence, the overall prevalence
of sleep problems was relatively low in our sample. These null-
findings should thus be interpreted with caution. Future studies
should continue to investigate how objective versus self-report
measures of sleep relate to objective versus self-report measures
of cognitive function, as well as mental health (Bernstein et al.
2019; Nicolazzo et al. 2021).

Due to the cross-sectional design of our study, we cannot
conclude on the directionality of our results. Our findings may
suggest that poorer sleep health leads to altered cognitive con-
trol function, or they may reflect inherent differences in cog-
nitive control and/or brain function which give rise to real-life
differences in sleep behavior. For example, those with a more
reactive cognitive control style (i.e. a more “hyper-reactive” brain
signature) may be more impulsive in nature, leading to later and
more variable bed/rise times. In line with this, previous studies
have found a link between later chronotype preference and lower
ability for self-regulation (Digdon and Howell 2008; Owens et al.
2016; Kuula et al. 2018). Also, circadian phenotype is known
to be partially dependent on genetic factors (Katzenberg et al.
1998), which could in turn affect the development of cognitive
control function and sleep behavior. On the other hand, it seems
unlikely that cognitive control function would affect actigraphy-
derived sleep efficiency, which was associated with increased
neural recruitment in frontal areas with time on task. This finding
in particular might reflect an increased need for cognitive com-
pensation, or increased efforts to maintain alertness, as a result
of insufficient sleep.

The restriction of inclusion to healthy, “normal sleepers”
between the ages of 20–40 ensured a homogenous age sample
and reduces the likelihood of results being confounded by
other factors affecting sleep health (e.g. brain aging and health
problems) (Scullin and Bliwise 2015; Bei et al. 2016; Alfini et al.
2020). This is an important strength of the current study. At the
same time, it is important to acknowledge that the generalizability
of our findings to other specific populations (e.g. other age
cohorts, clinical populations, persons with significant sleep

complaints, extreme chronotypes)—may be limited. Furthermore,
prior studies have shown that BOLD activations and task
performance can vary throughout the day and that people
perform better when test times are aligned with their natural
alertness peak (“the synchrony effect”) (Goldstein et al. 2007;
Schmidt et al. 2012; Song et al. 2018). One concern could therefore
be that our results—in particular those pertaining to sleep
timing and chronotype—were driven by interindividual circadian
effects. However, there was no systematic relationship between
chronotype preference and test times in our study, and all testing
was performed during standard working hours within a relatively
large time-span (between 08:00 AM and 03:00 PM). There were
also little-to-no associations between chronotype preference and
task performance, except that later chronotype preference was
associated with lower hit RT variability with increased time on
task (Fig. 4). As this study was not specifically designed to test
circadian effects, conclusions regarding such effects are beyond
the scope of the current study, and results should be interpreted
with this in mind.

We collected a comprehensive selection of objective and self-
reported measures in order to capture the multidimensionality of
habitual sleep health. This can be considered both a strength and
a limitation of our study. While the inclusion of different measures
yields opportunity for replication and comparability of our results,
it also introduces a considerable number of statistical tests with
an increased risk of Type I errors. Our study has a reasonably
large sample size (Poldrack et al. 2017) and is the largest study
to date using neuroimaging combined with objective (actigraphy-
based) assessment of habitual sleep health (Khalsa et al. 2016;
Lunsford-Avery et al. 2020; Zhang et al. 2020). Statistical power
may still be limited, as we are studying what is likely to be subtle
effects. Additionally, each fMRI model was adjusted for age, sex,
education, task performance, and head motion parameters in
order to minimize the influence of potential confounding factors,
which reduces the degrees of freedom. Some of our null-findings
may therefore be Type-II errors as in similarly powered fMRI
studies (Lieberman and Cunningham 2009).

To maintain a balance between the risk of Type 1 versus
Type II errors, we did not formally adjust for multiple compar-
isons across the different fMRI GLMs (Rothman 1990; Lieber-
man and Cunningham 2009). The practical implementation of
correcting P-values across different fMRI analyses based on our
analytical approach is also not straight-forward (see Feise 2002;
Lydersen 2021). However, each GLM was corrected for multiple
comparisons using cluster-based inference, with a conventional
cluster-defining threshold (Z = 3.1, corresponding to a P-value of
0.001) and a cluster probability threshold of P < 0.05—determined
using Gaussian RFT (Worsley 2011). This yielded relatively large
and robust clusters (minimum cluster size across all analyses
was 167 voxels) (Carp 2012; Woo et al. 2014). FSL’s FLAME has
been shown to control the FWE rate relatively strictly at this
cluster-defining threshold as compared with other tools (Eklund
et al. 2016), and, generally, using more stringent cluster thresh-
olds increases the risk of Type II errors substantially (Woo et al.
2014). The distinction between proactive and reactive cognitive
control processing, as well as associated TOT effects, is well
grounded in previous literature and clearly operationalized and
implemented in our well-validated fMRI protocol (Olsen et al.
2013). Our overarching interpretation of results, which is based
on multiple statistically significant findings (i.e. patterns of find-
ings), is therefore supported by a clear theoretical framework
and provides important groundwork for future testing and/or
replication.
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In conclusion, in this study of adult, normal sleepers, we found
that poorer sleep health was associated with a hyper-reactive
brain state during a test of cognitive control function, as well
as increased proactive cognitive control processing with longer
time on task. Across the different dimensions of sleep health,
later and more variable sleep timing was most closely associated
with higher cognitive control BOLD activations, whereas shorter
objective sleep duration was associated with poorer task perfor-
mance and lower BOLD activations with time on task. Given that
our fMRI analyses were adjusted for performance, we suggest
that the altered brain activity observed with poorer sleep health
may reflect compensatory neural recruitment and/or inefficient
neural processing. Future studies should continue to focus on nat-
uralistic measurement of normal sleep to elucidate the complex
relationships between sleep and brain function.
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