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Abstract

In this thesis, different methods of dividing consignments are investigated. The
motivation is to provide the Norwegian logistics and robotics company, Solwr,
with more knowledge on what gives suitable results for their automated packing
robot Grab. As of writing this thesis, they are searching for a suitable approach
which takes Grabs performance into account.

The different approaches investigated were how a baseline heuristic used to
solve the bin packing problem, Next Fit, performs compared to methods with
the goal of minimizing the number of pallets needed to assign all the items to
an order. Specifically, a MIP and the heuristic simulated annealing. Expanding
the cost function for simulated annealing was tested to see if a multi-objective
cost function would be more suitable than the single-objective cost function.
The possibility of using machine learning to incorporate a model to predict the
quality of an order according to Grab and use it as a cost function in simulated
annealing was investigated.

The results indicate that the method of dividing a consignment which was the
most promising to explore further was using a machine learning model in the
cost function. This was the only method showing an increase in the average
stability compared to the baseline method.

i



iiiiii



Sammendrag

I denne masteren blir ulike metoder for å dele opp større, sammensatte ordre
til mindre ordre som har plass på en enkelt pall undersøkt. Motivasjonen bak
detter er å gi det norske logistikk- og robotikkselskapet Solwr mer kunnskap om
hva som gir gode resultater for deres automatiserte pakkingsrobot, Grab. Per
dags dato søker de etter en egnet fremgang for å dele ordre som tar hensyn til
Grab, og dens svakheter.

De ulike metode for å dele en større ordre som ble undersøkt, var hvordan en
baseline heuristikk brukt til å løse pakkings problemet, kalt Next Fit, gjør det
i forhold til metoder med mål om å minimere antall paller som trengs for å
tildele alle varene til en bestilling. Spesifikt ble en Mixed-Integer Programming
(MIP)-metode og heuristikken simulated annealing brukt. Utvidelse av kost-
nadsfunksjonen for simulated annealing ble testet for å se om en multiobjektiv
kostnadsfunksjon ville være mer egnet enn en enkeltobjektiv kostnadsfunksjon.
Muligheten for å bruke maskinlæring for å inkludere en modell for å forutsi
hvilken kvalitet Grab hadde gitt ordren, og bruke det som en kostnadsfunksjon
i simulated annealing, ble undersøkt.

Resultatene indikerer at metoden som virket mest lovene av de metodene som
er testet og som kan være aktuell å utforske nærmere, var å bruke en maskin-
læringsmodell i kostnadsfunksjonen. Dette var den eneste metoden som viste en
økning i gjennomsnittlig stabilitet sammenlignet med grunnleggende metoden.
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Chapter 1

Introduction

The boom in technology since the 2000s have sparked a new wave of the indus-
trial revolution, also known as The fourth industrial revolution or Industry 4.0.
With this, the subfield Logistics 4.0 emerged, with the aim to provide support
for the processes in industry 4.0. In this subfield of logistics, technologies such
as robotics and automation are included. This is to improve safety levels, re-
duction of errors, necessary labor and costs, among other things. Radivojević
and Milosavljević stated that it is not a matter of choice, but a matter of time
before every company uses these technologies of the future [1].

One company reaping the benefits of using the technologies of logistics 4.0 is
Amazon. Amazon is one of the largest e-commerce companies in the world and
are currently deploying robots in their warehouses. They estimated that adding
robots to their warehouses reduced operational cost by around 20%. In addition,
it also allowed them to maximize inventory space, since the robots did not need
as much space as a human would to navigate through the aisles [2].

Not all companies are looking to make their warehouses fully automated, which
is why hybrid order picking system exists. This system is categorized as an
environment where human workers and picking robots are working together in
a shared space. Research conducted on this picking system shows that it can
provide a reduction in both costs and human energy expenditure, while still
keeping the average throughput time near a manual system [3].

A norwegian company working in the field of combining logistics and robotics
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Chapter 1. Introduction

is Solwr. Solwr states that their goal is to creating scalable, sustainable and
integrable solutions [4]. One of these solutions is the fully automated robot
Grab, which creates a new way for distribution centers to fulfill orders. Grab
can be integrated in distribution centers without any major structural changes
and can aid workers with tasks that are heavy and repetitive. At the time of
writing this thesis, the workflow in a distribution center employing Grab can be
described as follows;

Customers order a collection of items from the distribution center.
These can be regular orders or orders of a higher urgency. The orders
are then pooled together based on the customer they are going to, this
is called a consignment. These consignments are then split into orders
or pick routes, where one order is meant to fit on one pallet. In today’s
solution, the Warehouse management system (WMS) have their own
heuristics for splitting a consignment into orders. Some of these orders
are then sent to Grab, where it will start from the top of the order
list and work its way sequentially down to the last item. The finished
order is then placed with the other orders going to the same store,
ready to be loaded onto a transportation truck.

The current solution for dividing consignments does not factor in that Grab
might be the one packing the order. Grab cannot pack everything in the ware-
house like a human worker, which means that orders must be filtered before
being sent to Grab. Solwr therefore is interested in a new way of dividing con-
signment, where the method is tailored to suit Grab’s strengths and weaknesses.
Solwr found that filtering orders and giving Grab the ones they believed would
play to its strengths increased the weight and volume Grab was able to pack in
a day, see table 1.1. The hope is that having a generalized method for dividing
a consignment which suits Grab will be more efficient, which in turn will give
an increase in the value added for a distribution center choosing to implement
Grab.

Orders picked in a workday
Priority vs random

Weight (kg) Volume (m3) # Dimension diversity
/ Stability # D-packs # pick orders # aisles / distance D-pack per hour

Prioritized 5062 8.94 202 473 13 23 63
Random 3011 6.22 440 333 17 52 44

Change (%) 68% 44% -54% 42% -25% -56% 43%

Table 1.1: Results from Solwr’s research on prioritizing orders vs choosing them
randomly
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Chapter 1. Introduction

During the initial discussions with Solwr, the focus was on solving their multiple
container loading cost problem. The problem involved the loading of multiple
boxes onto pallets, with each loaded pallet having a cost. The objective was to
minimize the total cost for all the pallets going to a store. While Solwr had the
algorithm of how to pack an order, they faced the challenge of determining an
appropriate cost function for splitting the consignment into orders which Grab
would pack. They expressed that adding a pallet to the solution should result
in a higher cost but were unsure about the specific cost function to use.

Solwr provided valuable insights related to the factors influencing the loaded
pallets’ costs. These factors included the total weight picked per minute picking
time, stack capacity, and stability. However, it was decided to exclude the
picking time from the problem formulation. As a result, the penalty for driving
distance was removed.

In terms of the cost function, Solwr suggested several possibilities and made cer-
tain assumptions. The suggested cost function options included item dimension
heterogeneity, item height heterogeneity, weight distribution, or a combination
of these factors. These suggestions were based on what Solwr thought might
produce pallets which were stable and compact. Additionally, Solwr assumed
that the items were ordered by weight in the finished order and that the picking
time was proportional to the number of items.

This thesis is a continuation of a research project written for the subject "TDT4501-
Computer Science, Specialization Project” in the second to last semester of my
masters at NTNU. In the project, I started to investigate how dividing a con-
signment using different approaches would affect the performance of Grab. The
findings from the project have been improved upon and expanded in this thesis.
The overall goal of this thesis is to gather information on what might be the
best way forward if Solwr wants to divide a consignment in a way that would
improve Grab’s performance compared to today’s solution. To figure this out,
the following research questions have been defined.

Research Question 1: Given the baseline heuristic Next-Fit for dividing a
consignment, how does a MIP with the goal of minimizing the number of pallets
preform compared to the baseline?

Research Question 2: Given the baseline heuristic Next-Fit for dividing a
consignment, how does a heuristic method like simulated annealing with the
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Chapter 1. Introduction

cost function of minimizing the number of pallets preform compared to the
baseline?

Research Question 3: What changes can be observed if the cost function
for simulated annealing is expanded to include the goal of minimizing the item
height heterogeneity and weight distribution, compared to only using the goal
of minimizing the pallets?

Research Question 4: Can Grab’s stability calculation be emulated using a
machine learning model to create more stable pallets using simulated annealing?
And what effects does it have? To test the models and choose the best suited,
a data set needs to be defined. To answer this research question, the following
must be investigated:

• Research Question 4.1: What is a suitable data set to represent the
relationship between an order and its stability?

• Research Question 4.2: Given the data set in RQ 4.1 what is a suitable
model for implementing a stability prediction in the simulated annealing
cost function?

1.1 Structure

This thesis is divided into six chapters. Chapter 1, the current chapter, intro-
duces the problem motivating this thesis and the research questions which will
be explored. Chapter 2 presents the relevant theory for the implementations
which will be presented in chapter 3. The results from running the implemen-
tations are gathered in chapter 4. These are then discussed in chapter 5 along
with ideas of future work, before concluding in chapter 6.

1.2 Related Work

The pallet loading problem has been vastly studied throughout the years given
the relevance to the logistics industry. Where E. E. Bischoff and M. S. W.
Ratcliff were pioneers in the field in the late nineties [5], [6], [7]. In more modern
times the problem of using machine learning in order to solve the pallet loading
problem has been studied by Batin Latif Aylak et al. [8] but does not seem
to be a huge focus in the field. The problem of dividing order without trying
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to create a packing pattern first seemed to be little research on. I was unable
to find relevant papers discussing it. The idea of using simulated annealing in
order to solve the bin packing problem has been explored by R. L. Rao AND S.
S. Iyengar and Kämpke, T. [9] [10].
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Chapter 2

Background

In this chapter the relevant theory for understanding the implementations and
their results is presented. Starting off with discussing the bin packing problem
and some relevant heuristics to solve it. How the pallet loading problem can
be seen as a variant of it is also discussed in section 2.1. The robot introduced
in the introduction, Grab, is discussed in section 2.2. The theory behind the
heuristic which will be compared to the baseline method is presented in section
2.3. Lastly the theme of regression, along with the theory behind the relevant
models that are explored later in the thesis, is discussed in section 2.4.

2.1 Bin Packing and Pallet Loading Problem

The one-dimensional bin packing problem is well known in the field of combi-
natorial optimization problems. The classical bin packing problem is defined by
an infinite supply of bins with a capacity C and a list of items L = a1, ..., an.
Each item is given a value si which indicates the size of the item ai, si ≡ s(ai).
The value given to si has to satisfy the criteria 0 < si ≤ C, 1 ≤ i ≤ n. The
goal is to pack all the elements in the list into the minimal number of bins, so
that the total size of all items packed in each bin does not exceed the capacity
C.

The bins can either be opened or closed, where open bins are bins available for
items to be assigned to and closed ones are off limits. If a bin contains items, the
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Chapter 2. Background

current content of the bin is denoted as shown in equation 2.1. It is assumed
that bins are opened in the order they are indexed, starting from the lowest
index.

C(Bj) =
∑

ai∈Bj

si (2.1)

The problem is strongly NP-hard, which has created many heuristics approaches
since the problem first was introduced in the thirties [11]. They different ap-
proaches can be categories into on-line and off-line. In the on-line algorithms,
the algorithm will pack the items sequentially as they appear in the list, without
knowing what comes next. An off-line algorithm has the option for preprocess-
ing, reordering and grouping before starting, since it has all the items visible
from the start. For the scope of this thesis, only some of the most common
on-line algorithms will be explored, namely First Fit and Next Fit.

Starting off with a problem instance, borrowed from Michael T. Goodrich of The
Donald Bren School of Information and Computer Sciences [12], where the bins
have a capacity of C = 1 and the following list of items L = 0.5, 0.7, 0.5, 0.2, 0.4, 0.2, 0.5, 0.1, 0.6.
The optimal number of bins for this problem instance is 4, see figure 2.2.

Figure 2.1: The starting point for the problem instance, with the unallocated
list L
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Chapter 2. Background

Figure 2.2: The optimal allocation of the items in the problem instance

The Next Fit algorithm will try to fit the current item into the bin that currently
is opened, if the bin still has capacity left it will place the item there. If not, it
will open a new bin and place it there. Using this method will give us 6 bins
to solve the problem instance. How it places the items is illustrated in figure
2.3.

Figure 2.3: The final distribution of items among the bins after running the
Next Fit algorithm

The Next Fit algorithm guarantees that it never uses more than 2 times the
optimal number of bins needed to pack the items. The following theorem and
proof was borrowed from Subhash Suri, a professor from University of California,
Santa Barbara [13].

Theorem 1. If M is the number of bins in the optimal solution, then Next Fit
never uses more than 2M bins. There exist sequences that force Next Fit to use
2M − 2 bins.

Proof. Consider any two adjacent bins. The sum of items in these two bins
must be 1; otherwise, Next Fit would have put all the items of the second bin
into the first. Thus, total occupied space in B1 + B2 is > 1. The same holds
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Chapter 2. Background

for B3 + B4 etc. Thus, at most half the space is wasted, and so Next Fit uses
at most 2M bins.

Moving on to the First Fit algorithm, which scans the bins in order and places
the current item in the first bin with available capacity. It only opens a new
bin when an item does not fit in the previously opened bins. Using this algo-
rithm gives us 5 bins. Figure 2.4 shows how the algorithm distributes the items
between the 5 bins. The First Fit algorithm guarantees that the solution is no
worse than 17/10 of the optimal solution, [14]. The proof for this is complicated
and has been omitted in the papers viewed discussing it. It has therefore been
omitted here.

Figure 2.4: The final distribution of items among the bins after running the
First Fit algorithm

Bin packing can be modified to suit multiple real-life problems. In this thesis, the
problem of packing items onto pallets can be modeled as a bin packing problem.
In this problem instance, the value of the items indicates their volume, and a
bin has a capacity of C volume. The bin represents the pallet which the items
will be placed on. The capacity of the bin is based on the dimensions of the
pallet and its max allowed height. To calculate the how much of the capacity
of a bin that is used, one just sums up the volume of all items in the bin, or
more accurately, on the pallet. This is known as the pallet loading problem in
the literature.

Building upon the concept of packing items into bins or pallets, the process of
transporting goods involves additional stages, such as stacking pallets into con-
tainers. These stages can be viewed as the process of packing three-dimensional
items onto larger, rectangular objects, commonly referred to as containers. The
objective is to optimize a given objective function, which may vary depending
on the specific use-case [15]. As previously noted, in this thesis, we focus on
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packing items onto pallets, where the items exhibit varying dimensions, result-
ing in a strongly heterogeneous data set. This problem instance is known as the
distributor’s pallet loading problem (DPLP), which is a generalization of the
well-known bin packing problem (BPP) [16]. Like the bin packing problem, the
DPLP is strongly NP-hard. For a solution to the DPLP to be suitable, it must
adhere to the hard constraints set. These can vary depending on the problem
instance, but for this thesis they can be divided into pallet-related, item-related,
and load-related constraints. The pallet related constraints concern the limi-
tations enforced by the pallet type used, such as the weight limit and height
limit. The item related constraints can tackle the limitation of what items can
be stacked on top of each other or orientation limitations. Lastly, load related
constraints tackle constraints related to the items stacked on the pallet, such as
the total stability of a fully stacked pallet [15].

2.2 Grab

Grab was engineered to aid distributors in the new age of logistics. Grab is an
automated guided vehicle, which allows it to drive around the warehouse without
the need of assistance. It is equipped with a robotic arm with a vacuum gripper
allowing it to pick up items weighing up to 30kg. It uses 3D cameras as well as
sensors to be able to place items on the pallet. An illustration of Grab is shown
in figure 2.5.

The goal of Grab is to allow for distribution centers to either have the robot work
alongside the human workers, or replace the need for human workers entirely,
depending on the demand from the distribution centers.

Orders sent to Grab are stacked onto the pallet in the same order they are
listed in, which makes the ordering of the order important. For this thesis we
will assume that the input is optimized so that the order is sorted by weight.
We also assume that the picking time is proportional to number of items, which
means no penalty for driving distance. The items would be ordered after where
they were in the distribution center. This would add the complexity of route
planning to find the fastest route, while also making the order to pick a good
fit.

To stack orders Grab is equipped with a heuristic for solving the pallet loading
problem. This heuristic is based in a beam search algorithm, which takes in a
list of items, where each item includes their height, width, depth, and weight.
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The output is then a mapping of where each item will be placed on the pallet.
The algorithm is treated as a black box algorithm and will not be discussed
further in this thesis.

Compacity Compacity is Solwr’s measure on how efficiently the stack is uti-
lizing the available space on the pallet. This is calculated as the ratio of the
total volume occupied by the boxes in the stack to the total volume of the space
available on the pallet. This is given in percentages, where 100% is fully utiliz-
ing the available space. Solwr considers pallets with a compacity of 80% to be
ideal, since these pallets have shown to hold up the best when trying to pack in
real life.

Stability Each stack is given a stability measure, which tells us how well it
will withstand an acceleration in the worst direction. Solwr has a cutoff at
1.73, where orders yielding a lower stability are deemed as non-stable since
Grab cannot stack them. The orders that are deemed unstable are not given a
stability number of a compacity percentage, Grab’s algorithm discards it.

Figure 2.5: An illustration of Grab loading items onto pallet
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Chapter 2. Background

2.3 Simulated Annealing

Many large-scale combinatorial optimization problems can only be solved ap-
proximately, since many of these problems are NP-hard. For this, one uses a
heuristic, which is an approximation algorithm. This is when the algorithm
cannot guarantee the optimal solution but can guarantee that it is completed
in polynomial time. Simulated annealing falls under this category of algorithm,
more specifically, it is a general optimization technique for solving combinatorial
optimization problems. Simulated annealing provides a probability of escaping
local minima; however this does not guarantee finding the optimum solution.
Simulated annealing is a non-deterministic process, which means that each run
will create a different outcome for the same problem. Simulated annealing was
introduced by Kirkpatrick et al. and Cerny independently in the 1980s [17]
[18].

2.3.1 Iterative Improvement
Simulated annealing builds on the idea of iterative improvement, where we try
to perturb some existing suboptimal solution in the direction of a better, lower
cost solution. This cost is measured by a set of parameters, which we want to
minimize. This function is usually referred to as the cost or objective function.
It is how we measure the quality of a solution. Iterative improvements typically
start with a random initial configuration, or a heuristically constructed solu-
tion, depending on which of those might be less computationally expensive. To
improve upon this solution, we attempt some small random perturbation to the
solution to produce a new nearby solution. This process is repeated until no
further improvements can be made, which is when the process terminates. The
main problem with using iterative improvement is that the solution is easily
stuck in local minima, since the solution looks good in some small neighbor-
hood of the cost surface but is not necessarily the global optimum. Simulated
annealing is like this method but has one major improvement, it allows pertur-
bations to move uphill in a controlled fashion. This gives simulated annealing
the same generality as iterative improvement, while offering a solution for the
problem of getting stuck in local minima. Summarized, simulated annealing
can be described as a generalization of iterative improvement in that it accepts,
with non-zero but gradually decreasing probability, deterioration in the cost
function.
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2.3.2 An Analogy
Simulated annealing uses the analogy of statistical mechanics of annealing in
solids to that of approximating a solution for a combinatorial optimization prob-
lem. In the annealing of solids, a solid is converted to a low energy state, which
means it is in a highly ordered state, for example a crystal lattice. To do this, the
material is annealed, which is the process of heating the solid to a high enough
temperature to allow for atomic rearrangement in the material. Then cooling
it slowly, allowing it to come to a temporal equilibrium at each temperature to
bring it into a good crystal. If the cooling happens too rapidly, and the solid
does not reach temperate equilibrium at each temperature, it can cause defects
to be frozen into the solid. This can result in a metastable amorphous struc-
ture instead of the low energy crystalline lattice structure. Simulated annealing
uses the same concept on the optimization problem to bring a poor unordered
solution into a highly optimized desirable solution. In the literature the same
process has been referred to by other names such as Monte Carlo annealing,
statistical cooling, probabilistic hill climbing to name a few.

2.3.3 Metropolis Criteria
The idea, similarly, to iterative improvement, is to propose some random per-
turbation, much like moving one particle to a new location, then evaluating
the resulting change in energy. If the energy is reduced, the perturbation is ac-
cepted as the new starting point for making the next perturbation. If the energy
is increased, unlike iterative improvement, it may still be accepted. This also
happens in physical annealing, but the current temperature controls if a worst
perturbation is accepted. At higher temperatures, this probability is high, but
gets smaller as the temperature decreases. The metropolis criteria models this
with the Boltzmann distribution [19]. This gives the probability of an uphill
move to be:

P (accept) =

{
e−∆E/T if Ej > Ei

1 otherwise
(2.2)

In practice, the probability is given by generating a uniform random number
R in [0, 1] and comparing it with P (accept), where the one giving the higher
number is chosen. By successively lowering the temperature while applying
the metropolis criteria, the process of a material coming to equilibrium at each
temperature can be simulated. The temperature is just a control parameter,
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but in combination with a cooling schedule, which is a sequence of decreasing
temperatures, it allows for the modification of the acceptance of uphill moves
over the course of the solution. The starting temperature must be high enough
to allow for essentially a random search of the configuration space. This means
that at higher temperatures the number of allowed uphill moves is higher, and
this decreases with the temperature, just as with physical annealing. At lower
temperatures the system is close to freezing into the final form, so few disruptive
uphill moves are allowed. This makes the system essententially just standard
iterative improvement.

2.3.4 Requirments for implementation
The requirement for simulating the process of annealing is the ability to simulate
how the system reaches temporal equilibrium at each fixed temperature. The
following four formulations have to be defined.

1. Configurations: a model of what a legal configuration is. These repre-
sent the possible solutions to the optimization problem. This is the space
in which we will search for the solution in.

2. Move set: A set of allowed moves to go from one configuration to another
in order to reach a feasible solution. These should be easily computed.

3. Cost function: A measure of how good a configuration is. This has to
return a value which can be compared to another configuration in order
to determine the change in “energy”.

4. Cooling schedule: This includes a starting temperature or a heuristic
to calculate it. Rules for when the temperature should be lowered, and
how much it should be lowered, and when the annealing process should
be terminated.

(a) One cooling schedule proposed by Kirkpatrick is one called geomet-
ric, [20]. This is given by the formula 2.3. The best suited cooling
schedule is determined empirically for best results.

Tnew = α · Told, α < 0 (2.3)
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2.4 Regression

Regression is a form of supervised learning used to model continuous variables
and make predictions. In the context of stability prediction, we aim to pre-
dict the stability of orders by considering multiple different characteristics that
provide valuable information. This multivariate regression problem involves
examining various order attributes to achieve a comprehensive and accurate
prediction. Given a set of parameters X = X1, X2, ..., Xn, where Xi represents
the value of the i-th parameter, and target values Y = Y1, Y2, ..., Yn, our goal is
to find an expression that reduces the difference between the predicted values Ŷ
and the target values Y to a minimum. The data set comprises n observations,
where we want to find the best possible approximation of the target values based
on the given parameters and their corresponding values. It is also important
to keep in mind the trade-off between performance and generality, where mod-
els can become overfitted which gives good results when training but lacks the
generality when introducing a new problem which might yield bad results. We
also don’t want the model to become too general where the performance tanks
and the results are given by it is unusable, also known as underfitting. In this
thesis some models are especially relevant, the theory surrounding them will be
presented in this chapter.

2.4.1 Decision Trees
A decision tree, as the name suggests, is a tree that is constructed for deter-
mining the prediction of new data. A decision tree can be either a binary tree,
which only has at most two children per node, or a multiway tree, which can
have more than two children. In this thesis, when we are discussing a decision
tree, we are specifically referring to a binary tree. The process of finding the
optimal partitioning of the data is NP-complete, so the most common way to
construct a decision tree is by recursively partitioning the input space into a tree
structure until only leaf nodes remain [21]. An example of how a tree might
look for a regression problem is shown in figure 2.6.
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X1 ≥ 0.14

1.73 X4 ≥ 12.36

X2 ≥ 0.71

2.19 3.55

0.98

Figure 2.6: An example on how a regression decision tree might look

When passing unseen data through the tree, each internal node contains a ques-
tion. In regression, this question typically compares a feature value with a value
set in the question. Depending on the result of this comparison, the input passes
through the tree until it reaches a leaf node. The leaf node determines the value
that the prediction will receive.

One might wonder why specific questions are chosen to be turned into nodes
when creating the tree. This comes down to what questions have the most
information gain, or what some literature refers to as lowering the impurity. In
regression, this is measured by variance, specifically the variance reduction. This
is calculated for each potential split, and the one yielding the lowest variance is
chosen. The higher the variance, the higher the impurity. The formula given by
equation 2.4 shows how the variance is calculated and equation 2.5 shows how
the variance reduction is calculated.

V ar(X) =
1

n

I∑
i=1

(yi − ŷ)2 (2.4)

V arreduction = V ar(parent)−
I∑

i=1

wi · V ar(childi) (2.5)

When the tree is created, the problem of overfitting can arise since the tree
structure can become complicated. One solution to this is to prune the tree.
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Pruning can be done during the process of creating the tree (pre-pruning) or
after having a fully grown tree (post-pruning). Zhou explain these pruning
methods as follows: "Pre-pruning evaluates the improvement of the generaliza-
tion ability of each split and cancels a split if the improvement is small, i.e.,
the node is marked as a leaf node. In contrast, post-pruning re-examines the
non-leaf nodes of a fully grown decision tree, and a node is replaced with a leaf
node if the replacement leads to improved generalization ability." [22]

The benefit of using decision trees is that they are easy to understand, relatively
robust to outliers, and scale well to large data sets. Their drawbacks are their
instability. The hierarchical nature of the tree-growing process means that small
changes in the input data can have a significant impact on the structure of the
tree, as errors higher up in the tree can propagate down and affect the rest of
the tree. To overcome the challenge of unstable trees other methods of using
decision trees have been created, these will be explored further in the sections
below.

Random Forest

One method that aims to address the issue of unstable trees is the random
forest. The random forest algorithm involves creating multiple decision trees and
combining their predictions through averaging, see equation 2.6. M is the total
number of trees in the forest and ym(x) is the prediction made by the m’th tree.
By aggregating the predictions of multiple trees, the random forest approach can
compensate for the potential shortcomings or errors of individual trees within
the forest. To prevent the trees in the forest from becoming highly correlated,
which could limit the potential variance reduction, they are built or learned
based on a randomly chosen subset of input variables, as well as a randomly
chosen subset of data cases. The latter is known as bootstrapping.

By incorporating randomness in feature selection and data sampling, random
forests can build a collection of diverse and independent decision trees. This
diversity enables the forest to capture different aspects of the underlying data
patterns and make more robust predictions. Additionally, the averaging of the
predictions helps to reduce the impact of individual tree errors and enhance the
overall accuracy and stability of the model [21].

A benefit of this method is that despite being easy to implement as well as
computationally low in cost, it still yields good performance in real life scenarios.
It does however lose some of the benefit of being easy to interoperate, since a
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forest can become quite large.

ŷ(x) =

M∑
m=1

1

M
· ym(x) (2.6)

Boosting Trees

While random forests build multiple decision trees independently and com-
bine their predictions, boosting trees construct the trees sequentially, using the
knowledge of the performance of the previous trees to improve upon the next
tree. More specifically, the idea is to take weak learners, which in the case
of boosting trees is a decision tree and apply them sequentially to a weighted
version of data, where more weight is given based on the performance of the
learners [21].

At the start all the weighted coefficients are given the same value, and after an
iteration the weights are adjusted to give data points with higher loss greater
weight and decrease data points where the loss was lower. This forces the
next models to put greater emphasis on the weaker data points. This sequential
nature allows boosting algorithms to iteratively learn from mistakes and improve
the overall performance of the ensemble. After all the trees are trained, they
are combined to form a committee using coefficients that give different weight
to different trees [23].

y(x) =

M∑
m=1

αm · ym(x) (2.7)

Here, ym(x) represents the prediction made by the m’th boosting tree, αm is
the weight assigned to the m’th tree’s prediction, and M is the total number
of boosting trees in the ensemble. The final prediction y(x) is obtained by
summing up the weighted predictions of all the trees.

Boosted trees have the same problem as random forest, where the number of
trees compared to only one makes the models hard to interoperate. Given that
the focus is to achieve a high accuracy, this doesn’t necessarily have to be an
issue.
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2.4.2 KNN
The KNN, which is short for K-nearest neighbor, is a technique for making
predictions based on the values of the k-nearest neighbors. When used in re-
gression, a prediction is typically made by taking a weighted average of the
values of the K-nearest points. To determine the distance of a point, most
methods use Euclidean distance, which calculates the distance of two points p
and q in an n-dimensional space using equation 2.8. In the equation, pi and qi
represent the coordinates of the points p and q in the i-th dimension.

d(p, q) =
√
(p1 − q1)2 + (p2 − q2)2 + · · ·+ (pn − qn)2 (2.8)

When training the model, it stores the feature vectors and corresponding target
values of the training data set, this is the points used when making new pre-
dictions. In this method, the choice of K is important since it can impact the
performance of the model. A small value of K will make the prediction sensitive
to noise or outliers in the data (overfits), while a large value of K may lead to
over smoothing and loss of local details (underfits) [21].

2.4.3 Evaluation of a Model
The goal when utilizing machine learning is to retrieve a generalized function
ŷ fitting the problem domain. When dealing with a prediction problem, where
we have a data set D = (x1, y1), (x2, y2)...(xn, yn) where yi is the actual value
for x, we need to compare ŷ(xi) to the value given in yi in order to measure
performance. The goal is that the model will do well on data it has not seen
while training, in other words the difference between yi and the prediction for yi
is small, meaning the loss is low. This value can be calculated in various ways,
depending on what fits our data the best. For a regression problem, the most
common loss functions are called Root mean square Error and Mean squared
error, see equation 2.9 and 2.10 [22].

Root mean square Error

RMSE(y) =

√√√√ N∑
i=1

|ŷ(xi)− yi|
N

(2.9)

202020



Chapter 2. Background

Mean squared error

MSE(y) =

N∑
i=1

ŷ(xi)− y2i
N

(2.10)
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Chapter 3

Implementations

In this chapter, the different implementation needed to answer the research
question in the introduction will be presented. Starting off, the data provided
by Solwr will be presented in section 3.1. The data is a crucial part of the the-
sis, since it lays the foundation for accurately representing the real-world orders
which Grab can be expected to encounter. The constraints used in the imple-
mentations are presented in section 3.2. The implementation of the baseline
approach for dividing a consignment, the Next Fit algorithm, will be presented
in section 3.3. This will be used to compare performance of alternative ap-
proaches. These alternative approaches will also be presented in this chapter,
which are a MIP in section 3.4 and the heuristic simulated annealing in sec-
tion 3.5, both with the goal of minimizing the total pallets needed to pack a
consignment. Simulated annealing and its cost function will be expanded to
conduct the experiments needed to answer research question 3 and 4. Some of
the information presented in this chapter is derived from the research project
leading up to this thesis, it is necessary to present them considering the new
discoveries and modifications made since its conclusion.

3.1 The Data

At the beginning of the research project, Solwr provided 100 MB worth of orders,
collected over four separate months. This amounted to a total number of 814
525 items going to 628 different stores. Given the run time of Grab’s algorithm,
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it was unrealistic to use all the data, when conducting the experiments which
are relevant for the first three research questions presented. The data was then
reduced to include only a month’s worth of orders. This resulted in 7.3 MB
worth of workable data, which is a considerable reduction. This contained a
total of 65 200 items which were going to 326 different stores, making up 865
different orders. In this context, when discussing an order, I am referring to a
collection of items a store has ordered, where they have not yet been divided
further to reflect the term I use when talking about orders in other parts of the
thesis. Since I defined a consignment as a collection of items going to one store,
I found the term inaccurate to use here, since multiple orders might be going to
the same store.

During the research project, the orders were not filtered furthered, but the
findings after the conclusion of the project showed that some of the orders
consisted of few enough items so that they would fit onto one pallet regardless
of what approach was used. These orders did not contribute to what this thesis
sets out to investigate and created noise in the results, making it harder to see
the effects of the different approaches tested on the data. They were therefore
removed when the thesis started up again after the research project. Instead,
the data was filtered so only orders which exceeded the max volume of five
pallets would be included. This furthered reduces the data to include 53 646
items which were distributed over 68 stores. The reasoning for using five pallets,
was to ensure larger enough consignments in the hope that it would highlight
the differences between the approaches.
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Figure 3.1: Distribution of weight of boxes in the filtered data used for the
experiments and the original data
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Figure 3.2: Distribution of height of boxes in the filtered data used for the
experiments and the original data
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Figure 3.3: Distribution of width of boxes in the filtered data used for the
experiments and the original data
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Figure 3.4: Distribution of depth of boxes in the filtered data used for the
experiments and the original data

In order to illustrate how well the new data pool, represent the data in its
entirety, the dimensions and weight of the items have been plotted. From the
figures 3.1, 3.2, 3.3 and 3.4, we can see how the item’s dimensions and weight
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are distributed. All the plots have the same bin size of 20, which was the size
that was able to capture some of the nuances while still being easy to read.
From figure 3.1, which shows the distribution of the weight of items in the data,
that most items fall between 0.1 kg to 20 kg, where more outliers are present
in the entirety of the data. This is caused by the filtering of the orders, since
orders which fit onto less than five pallets can consist of heavier items. Solwr
has registered a half pallet of beer as a single item, which as the name suggests
is half a pallet worth of beer. This might be registered under a single order,
which causes it to be filtered out. When it comes to the different dimensions,
it appears that the data selected represents the overall data well. Where the
biggest differences in the different dimension’s histograms are the frequency
of the different dimensions, which is natural since all the data contains more
boxes.

3.2 Constraints

As mentioned in section 2.1 when working with a pallet loading problem, you
define different constraints for the problem at hand. To investigate the problem
presented by Solwr the following constraints were defined.

Pallet-Related Constraints The Euro Pallet, produced by the European
Pallet Association, hereby referred to as EPA, is used as the standard pallet
through the experiments conducted in this thesis. This decision was made given
that the pallet is the most widely used exchange pallet in the world [24]. It also
is the same pallet dimensions used by Solwr in some of the code I have reviewed.
Solwr expressed that they wanted the possibility to change the pallet type when
needed, so the code developed for the experiments makes it easy to exchange
the pallet dimensions if desirable.

The EPA supports a loading volume in the x- and y-axis of 1200mm× 800mm,
when determining the limit in the y-axis, or the height, the constraint is de-
pended on the max weight and the dimensions of the container which will be
used to transport the pallet. The EPA pallet has a max workload of 1500 kg, but
in discussions with Solwr the weight limit was to be ignored, since we wanted to
encourage heavier pallets. The max height ended up being set 1100 mm after
discussions with Solwr. This gave the total volume allowed on the pallet to be
1200mm× 800mm× 1100mm
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Item-Related Constraints The boxes can only be rotated horizontally since
Grab only can access them from the top with its suction arm and rotate them
around the z-axis. Given that in this thesis the packing pattern will not be
generated, this is not relevant to the methods developed, but is included to give
context for the reader.

It is also assumed that the boxes are placed on the pallet from heaviest to
lightest. In a distribution center, Grab will grab the boxes in the order they
are placed in the warehouse, but we have already established that the order
of the items are optimal when passing it to Grab, i.e. sorted by weight when
discussing the assumptions of this thesis.

Load-Related Constraints When it comes to what makes a stacked pallet
acceptable for shipping, Grab provides measures to determine this. As men-
tioned in section 2.2, Grab requires the pallets to have a stability of 1.73 or
higher when creating a packing pattern. If Grab fails to find a packing pattern
for the order that satisfies this, it is disregarded and deemed unstable. Grab’s
algorithm also provides a measure of how compactly an order is stacked. In dis-
cussions with Solwr they stated that a compacity of 80% or more is desirable.
However, if a pattern falls below this, Grab does not disregard it, as it does
with the stability. The load also must adhere to the constraints of the pallet.
This means the total load volume must fit inside the max volume presented in
the pallet-related constraints. To implement a machine learning model, which
is discussed in detail later in this chapter, a new loaded related constraint was
added. This made the max number of items allowed on a pallet be 60. This
is only relevant when employing the machine learning model to partition the
consignments.

3.3 Next-Fit Heuristic

To investigate the effect an approach of partitioning a consignment had, a base-
line needed to be established. The development of it started with what I, in
discussions with my supervisor, thought would produce a workable but not op-
timal division. The idea was to start off with shuffling all the items going to a
store and then dividing it sequentially. This shuffling process aimed to create a
more diverse arrangement of items on the pallets. The rationale behind shuffling
the items was to mitigate the potential issue of some pallets having mostly, if not
all, the same box type, resulting in a significant gap in heterogeneity between
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pallets. By shuffling the items, the algorithm intended to encourage pallets to
have a similar degree of heterogeneity. However, this shuffling step was later
dropped in the final version of the algorithm due to its non-deterministic na-
ture, which increased the time required for debugging and testing. Although
it is possible to achieve reproducibility by providing a random seed and still
shuffling the items, this aspect was not prioritized as the focus of this thesis did
not revolve around the specific effects of shuffling.

The heuristic begins with one pallet and iterates over the list of the items,
assigning as many items as possible to the pallet until the volume capacity is
met. Once the capacity is reached, the pallet is closed and included in the result,
which will be passed to Grab’s algorithm. This process continues until all items
in the consignment are allocated to pallets. The implementation used in can be
viewed in appendix B.1.

As discussed in chapter 2.1, the problem of minimizing the number of pallets
required to pack a consignment can be viewed as an abstraction of the well-
known bin packing problem, where the items are considered based on volume
rather than weight. The heuristic explained above might look familiar, since it
is the same as the algorithm presented in section 2.1, which is commonly known
as the ’Next-Fit’ algorithm in the field of bin packing.

3.4 Mixed Integer Program

The first method which is going to be compared to the baseline method pre-
sented in the previous chapter is a mixed integer program (MIP) using the
Gurobi solver. Gurobi was chosen based on recommendations made by a fellow
student specializing in optimization. The solver is not freely accessible, it was
made available through the university. To solve the problem using Gurobi, a
mathematical model was formulated.

Starting off with the relevant sets and indices needed to be defined to set up the
solver. The items are categorized by type, which is denoted by i. The index of
a pallet is denoted by j, see table 3.1.

To know how many items of each type we can fit on a pallet, we need to know
the dimensions of the items, which is the volume of the item. The item of type
i’s volume is denoted by Di. In this approach, the weight is also a parameter we
consider, so this is stored as well, denoted by Wi. We also create a parameter to
denote the quantity available of an item of type i, ni. As previously mentioned,
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pallets are of the same type, where each pallet a max volume allowed denoted
by KD

j and a weight limit denoted by KW
j . All the parameters are summarized

in table 3.2.

The final partition is given by the matrix x, where xij notes how many items of
type i are going on pallet j. We also get a list y where the indices of the pallets
used are given the value 1, if not they are given 0, see table 3.3.

The optimization goal of this model is to minimize the number of pallets needed
to pack a consignment. This is expressed in equation 1. The model implements
the constraints discussed previously, starting off with ensuring that all the items
in the consignment are assigned to a pallet, 2. The model also must adhere to
the constraint that no pallet can be loaded with a load exceeding its capacity,
both in terms of volume and weight, see equation 3 and 4. To avoid exten-
sive computation and improve computational efficiency, a symmetry breaking
constraint was implemented in the form of equation 5. This constraint ensures
that the pallets are opened sequentially, introducing a preference for solutions
where the used pallets are assigned lower indices compared to the unused pal-
lets. By doing so, it breaks the symmetry between multiple solutions that have
the same number of bins used but differ in the order or index of the pallets
used. Without the symmetry breaking constraints, the model would explore
all possible arrangements of the pallets, including symmetrically equivalent so-
lutions. These symmetric solutions only differ in the ordering or index of the
pallets used, leading to redundant computations and an exponential increase in
the search space. The equation 6 enforces the model to use integer values from
xij and binary values for yj . The implementation used is shown in appendix
A.1.

Sets And Indices
i: Item Type
j: Pallet

Table 3.1: Sets and Indices
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Parameters
Di : Item Dimension
Wi : Item Weight
ni : Nr of items of type i
KD

j : Volume capacity if container j
KW

j : Weight limit of container j

Table 3.2: Parameters

Variables
xij = number of items of type i on pallet j

yj =

{
1, if pallet j is used
0, otherwise

Table 3.3: Variables

minimize
∑
j∈M

yj (1)

subject to
∑
j∈M

xij = ni, i ∈ N, (2)

∑
i∈N

Dixij ≤ KD
j yi j ∈ M, (3)∑

i∈N

WiXij ≤ KW
j yi j ∈ M, (4)

yj ≥ yj+1 j ∈ M/{|M |}, (5)

xij ∈ Z+, yj ∈ {0, 1} (6)

3.5 Simulated Annealing

To be able to use simulated annealing, the four requirements presented in section
2.3 needs to be defined for the problem definition we are investigating in this
thesis. To summarize, we need to know what configuration to use in order to
tell what a valid state of a solution of the problem is. The move set, which
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expresses the moves the system is allowed to take to reach a new state, needs to
be defined. The cost function, or optimization goal, which is what we want to
optimize, as well as the cooling schedule, which defines how fast the system will
be cooled down, needs to be defined. In this section, these requirements will be
presented. The code used to define the different requirements for this thesis is
placed in the appendix, see appendix C.

The requirements presented lay the foundation for the simulated annealing used
in this thesis, where some modification needed to be made to conduct the needed
experiment to answer some of the research questions. Namely changing up the
cost function.

3.5.1 Configurations
The problem formulation varies depending on the cost function we want to use,
but the configuration stays mostly the same throughout. To do so, we need to
represent what is a valid solution for simulated annealing. The configuration
related to the problem statement is a collection of what I have chosen to call
packed pallets. Despite the name, a packed pallet is categorized as a collection
of items that are assigned to fit onto a single pallet, rather than the packing
pattern of how the boxes will be stacked on the pallet. The packing pattern
is generated by Grab’s algorithm. A packed pallet contains as mentioned the
information on what items Grab will be stacking on one pallet. The information
about the total volume of the items being packed onto the pallet, as well as the
weight, is also stored in a single packed pallet. In order to visualize this figure
3.5 was created. On the left side you can see the pallet type and the collection
of items, each with a given volume and weight, which we want to pack onto
the pallet. This configuration is then fed through Grab’s algorithm and Grab
returns the packing pattern of the configuration as seen to the right of the arrow
in the figure.
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Figure 3.5: A single pallet in the configuration

Since we are dealing with a consignment going to a store, we need multiple
of these packed pallets to represent a solution to the problem as a whole. As
previously established, the pallet type is consistent throughout the problem,
which means that all the packed pallets created will be packed onto the same
pallet type. So in order for a solution to be a valid configuration, it has to have
assigned all the items to a pallet, where each pallet confides to the constraints
presented in section 3.2.
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Figure 3.6: Illustration of how a configuration might look

In figure 3.6 we can see the whole process from taking a consignment and split-
ting it and assigning the items to multiple pallets. These are then fed to Grab
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which returns the packing pattern along with the stability and compacity for
the pallets if they proved to be stable enough.

3.5.2 Move set
An essential part of simulated annealing is how we move from one configuration
to the next. For the changes between neighboring states to be small, a move set
where only one box is moved between two pallets was selected. The pallets that
would perform the swap were chosen at random, with the condition of having
different indices to ensure no pallet would try to give or take an item to itself.
Once the pallets were selected, the first item from the list of the chosen pallet,
or the donor, would be examined to determine if adding it would exceed the
volume limit of the receiving pallet. If the constraints were not broken, the
item would be removed from the list of the pallet it was taken from and added
to the list of the receiver. If the constraints were broken, the donor would move
on to the next item in the list and preform the same test. Should none of the
boxes from the donor pass the test, the function for the move set would return
the same configuration it started with. The process is illustrated in figure 3.7.
In this example, the item laying at index 5 is chosen (Julia starts the index at
1) and tries to give it to the receiver. Since the receiver has space left the item
is added, and then removed from the doner. The code used for this can be seen
in appendix C.1.
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Donor Item Item Item Item Item Item

Receiver Item Item Item

(a) The donor pallet tries to place the randomly chosen item onto the receiving pallet

Donor Item Item Item Item Item

Receiver Item Item Item Item

(b) Since the receiver had room left, the item is transferred from the donor to the
receiver

Figure 3.7: A donor pallet trying to give its item to the receiver

3.5.3 Cost Function
To conduct all the experiments needed to answer all the research questions,
several cost functions needed to be implemented. They all will be presented in
this section, starting off with the optimization goal of minimizing the number
of pallets in a configuration.

Minimizing Number of Pallets

The cost function takes in a configuration and gives it a score based on the
number of pallets in it, see equation 3.2. This score is then used when comparing
two neighboring states, where the acceptance probability is depending on what
state that reduces the energy of the system. If a state has a lower number of
pallets, the probability of accepting the new state is 100%. If not, the probability
of accepting the new state is given by the metropolis criteria presented in section
2.3. The implementation of the calculation of the acceptance criteria and the
cost function can be viewed in appendix C.2.
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E = Number of Pallets (3.2)

Minimizing Number of Pallets, Height Heterogeneity and the Weight
Distribution

After the first experiments were conducted, it was of interest to investigate if
performance could be improved by expanding the simulated annealing cost func-
tion. The cost function was expanded with the suggestions made by Solwr on
what an appropriate cost function might be, to see if there were any significant
changes to the stability and compacity of the output. The reasoning behind
expanding simulated annealing versus the linear model was the level of com-
plexity needed to achieve results. It was easier to formulate and experiment
with simulated annealing.

To use the average heterogeneity in the cost function, the structs for packed
pallet presented in the section for configuration were altered to include the value
over the height heterogeneity of the items. A function that calculates the ratio
of unique elements to the total number of elements in the input array, providing
a measure of how diverse or homogeneous the array is, was implemented, see
appendix C.7. This was then used in a function which takes the list of items on
a pallet to determine the heterogeneity of each of the dimensions, see appendix
C.8. Despite the heterogeneity of all the dimensions being calculated, only
the height heterogeneity is used further. The reason behind this decision was
that reducing the variation in height was expected to make it easier for Grab’s
algorithm to create even layers. These leveled layers would provide greater
stability for stacking, ultimately increasing the overall stability of the pallet.
This was then used to calculate the average height heterogeneity in a state,
which consists of multiple packed pallets, see appendix C.3.

In addition to calculating the height heterogeneity, a measure was needed to rep-
resent the distribution of weight in the system. For this, the standard deviation
of the weights for the different pallets in a state was used. The thought was that
this would encourage the pallets to distribute the weight evenly, and increasing
the weight of each pallet Grab would pack. These changes were included in the
cost function, see equation 3.3.

E = Number of Pallets ·XHeterogeneity · σweight (3.3)
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Maximizing the Stability

When implementing the machine learning model which predicts the stability of
pallets, the cost function had to be reworked. In addition, some of the other
requirements also had to be altered, to make sure the model did not crash. The
process of choosing the model is discussed later in this chapter, only the changes
made to incorporate the new cost function will be presented here.

As mentioned, the model will take one pallet and provided it with a stability
prediction to emulate the process of running an order through Grab, without
having to run Grab’s algorithm. The packed pallet struct was expanded further
by adding a field for the predicted stability. To assess a state, the collected
stability must be evaluated, so a field for the overall stability of a solution was
added to the state struct. The goal is no longer to minimize a value, but rather
maximize it, since we want the collective stability to be as high as possible. To
achieve this, a flag was implemented to change the logic on the calculation of
the acceptance criteria. A state would now be accepted with 100% probability
if there was an increase in the stability of the state, and the metropolis criteria
would be used if the stability was lowered in the new state, see appendix C.2. A
helper function was added to sum the individual stability for each pallet, which
was used to compare each state’s collective stability, see appendix C.6.

To keep the input size for the machine learning model consistent, a max limit
was imposed on how many items could be on a pallet. Changes were made to
incorporate this constraint in the move set function. As with the acceptance
criteria, a flag was added to indicate if the cost function using the model was
being employed. How the max input size was determined will be explained in
the section 3.7.

Cooling schedule

As a cooling schedule, the geometric cooling schedule presented in section 2.3
was used. Two different cooling schedules were used, one for simulated annealing
using the machine learning model and one for the rest. Starting with the one
used by most of the methods. At the start of the experiments, I wanted to keep
the cooling schedule simple. To achieve this only one iteration per temperature
was done. The exact starting temperature was 50000, which was lowered each
iteration by α = 0.998. This was run through 10000 iterations or epochs. When
the number of epochs were reached the search would terminate. The parameters
were determined through running a number of different combinations.
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For the machine learning model, the cooling schedule was altered to include
more rearranging at each temperature. Instead of only doing 1 iteration/epochs
it would do 5000 iterations/epochs for each temperature. This was determined
by testing different numbers of epochs with a α = 0.998 and the starting 50000,
which remained the same. I also implemented a different stopping criterion to
limit the time the program would use. The new criteria would stop the process
if the temperature reach zero. Or if there was no change after three consecutive
temperatures.

3.6 Creating A Suitable Data Set

Since the machine learning model is going to be used to predict the stability of
real orders, it was important to have a data set that would reflect the orders
it would be expected to pack. In section 3.1 I talked about how much of the
data was removed to keep the experiments manageable, this data ended up
being used for creating the final data set which was used to choose a suitable
model. Having a large collection of data is a good thing when creating a data
set and can be a major bottleneck when employing machine learning. The data
first needed to be labeled, which was done by running it through the stacker.
This was a time-consuming process, where some orders even ended up being
unstable and therefore did not receive a stability number which could be used.
Grab’s algorithm is still under development, which means that it might still be
containing bugs, which could affect the performance of the model. The version
used in this thesis has since received updates, but to keep the results consistent,
only the one version was used. Some order / stability pairs were removed due
to unexpected stabilities. These were pallets that were given negative stability
number, or numbers lower than the threshold set in Grab’s code which was
considered a bug. This has opened the possibility of there being some faulty
pairs that might have gone undetected. In addition to the data previously
presented, Solwr provided additional data with the required labeling. The orders
that were run through Grab combined with the orders already labeled by Solwr
gave a total of 27470 orders that could be used in the making of a data set.

3.6.1 First Iteration
At the start of creating the data set, a meeting was held with a representative
from Solwr and SINTEF to brainstorm ideas of how a suitable data set might
look. It was important to provide the model with enough information to be
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able to make accurate prediction, but challenging to know what attributes of
the pallets would provide that. The first iteration ended up using heterogeneity
of the different dimensions of the boxes in the order. Since heterogeneity was
a recurring attribute when discussing the cost function, it seemed like a good
place to start. Along with the heterogeneity, the number of boxes was included.
It was simple and easy to implement, since the functions needed to calculate
this already existed. It also gave a fixed number of input parameters, allowing
for orders with varying number of boxes to be included in the training data. As
mentioned previously, the label used along these parameters was the stability
number Grab provided.

3.6.2 Second Iteration
The data set was revised and change in the hopes that with more information,
the model would preform better. The results from the first iteration of the data
set are presented in chapter 4 and will be discussed more in chapter 5. The
idea was to give the model as much info as possible, and to give it as much
information as we have, giving it all the dimensions for the boxes along with
their weight seemed like a good way to go. The problem with this is that many
of the orders which built up the first data set had a varying number of boxes.
For the model to use the data, it needed a fixed number of input parameters,
which meant that passing all orders used in the first data set was challenging.
To ensure that every order would have the same number of parameters, the
outliers were removed, the remaining order with the most items was then used
as the upper bound. Orders which were made up of a smaller number of boxes
was padded with zeros.

To determine the outliers an analysis was preformed, here the outliers were
removed using the IQR method. This showed that the max number of boxes
needed would be 59, since this was the highest number of items in all orders
was 59. This number was rounded up to 60. The orders with fewer boxes than
the input size was padded with zeros. The last element in the data set was the
label, the stability. Figure 3.8 illustrate how the data set is organized.

h1, w1, d3, x1︸ ︷︷ ︸
box 1

, · · · , h60, w60, d60, x60︸ ︷︷ ︸
box 60

, stability (3.4)

Figure 3.8: How the boxes are organized in the data set
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This reduced the data set from the first iteration drastically from 27470 orders
down to 1125 orders. The total number of parameters ended up being 241,
since the max number of boxes was 60, and wanting to have the dimensions
and weight gives us 4 parameters for a box and then adding the stability at the
end.

3.7 Choosing the Model

To make the predictions, various models were tested from Julia’s machine learn-
ing framework MLJ.jl. The models were chosen using MLJ’s model search fea-
ture, where the data being used can be passed and several models suited are
returned [25]. This returned 63 potential models, upon further testing, where
some of the models did produce errors, the number was reduced to 26 models.
All the models using the SciKitLearn package had problems running. As a re-
sult, all the models from that package were discarded. It was decided to not
investigate what might be causing this since there still had 26 models which did
work.

To determine the best fit for our problem, all models returned from MLJ’s model
search were tested out on the first and second iteration of the data set. Since
the first data set was changed, given that the error for the models were high,
the models were chosen only on their performance on the second data set. The
models were trained on 80% of the data set and validated on the remaining 20%.
Given the threshold for a stable pallet, it was important for the model to have
a low loss. The RMSE and MAE from each model is showed in figure 4.2 and
in table 4.11.

From these results, the tree models with the lowest root-mean-square error were
chosen. If multiple models had the same result, the mean absolute error was
then used to break the ties. This resulted in the EvoTreeGaussian model from
the package "EvoTrees" [26], the KNN Regressor model from the package "Near-
estNeighborModels" [27] and the Random Forest Regressor from the "BetaML"
package [28].

The parameters of all the three models were then further tuned to find the
best preforming model of them all. This turned out to be the random forest
regressor. The best combination of tunable parameters turned out to be a forest
size of 30 where each tree had a max depth of 5.
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Results

In this chapter, the results from the experiments conducted to answer the re-
search questions will be presented. In section 4.1 the results of running the
baseline heuristic and the MIP are collected in tables to highlight the differ-
ences. The same results from the baseline heuristic are then repeated in section
4.2 to illustrate the difference between the simulated annealing using the same
optimization goal as the MIP. The results of expanding the simulated annealing
cost function are presented in section 4.3. In section 4.4, the results from chang-
ing out the cost function for simulated annealing to maximize stability is shown,
along with the results from testing the different models and data sets. Lastly,
results using all the different method on a single consignment are presented in
section 4.5.

The experiments run to produce the results presented in section 4.1, 4.2, and
4.3 were run using the data presented in section 3.1. The different splitting
algorithms presented in chapter 3 were all run on a MacBook Pro 2019 model
with a 2.4 GHz Quad-Core Intel Core i5 processor. Grab’s algorithm was run
on the NTNU cluster Idun.

4.1 Comparing Baseline Heuristic to MIP

In relation to research question 1 the data presented was run through the base-
line method. All the consignments were divided to create orders, where each
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order is assigned to a pallet. The process was then repeated for the MIP pro-
gram. The results given by Grab’s algorithm for the two approaches can be
viewed in 4.1, where the difference in result is illustrated with percentages. The
total number of pallets needed to pack all the consignemnts, according to the
splitting made by the different methods, compared to how many of the orders
were deemed unstable by Grab is shown in table 4.2. The difference in compu-
tational performance is shown in table 4.3.

Method Stability Compacity Weight Height
X σ X σ X σ X σ

Next Fit 2.33 1.312 0.749 0.109 320 179 1413 311
MIP 1.91 0.247 0.718 0.066 327 105 1486 212
Change (%) -18.0% -81.2% -4.13% -39.4% 2.19% -41.3% 5.17% 31.8%

Table 4.1: The average and standard deviasion of measurements provided by
Grab using orders created by Next Fit and MIP. The change is noted in pro-
centages difference from Next Fit.

Method Pallet Pallet % Acceptable
Used Orders Created Orders Stacked Pallets Produced
Next Fit 878 829 94,4 %
MIP 871 845 97,0 %

Table 4.2: Orders created by the Next Fit and the MIP, with how many of them
Grab was able to generate a packing pattern for.

Method Run time Nr of allocations Memory used
Next Fit 2.50 s 4.51 M 714 MiB
MIP 173 s 94.0 M 6.84 GiB

Table 4.3: Performance measures given by @time in Julia for the baseline Next
Fit and the MIP
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4.2 Comparing Baseline Heuristic to Simulated
Annealing

The results presented in the tables in this section marked as Next Fit, are
the same used in the previous section. To create tables that easily highlighted
the difference the results were repeated. The data was run through simulated
annealing, like with the baseline and MIP, to produce the orders, which were
then fed to Grab’s algorithm. The results are organized as the previous section
where the difference in the orders produced are shown in table 4.4, the difference
in the pallets needed to pack the planned orders vs the once that Grab were
able to pack shown in table 4.5 and the computational differences in table 4.6.

Method Stability Compacity Weight Height
X σ X σ X σ X σ

Next Fit 2.33 1.312 0.749 0.109 320 179 1413 311
Simulated Annealing 1.86 0.193 0.704 0.053 326 76.0 1500 182
Change(%) -20.2% -85.3% -6.01% -51.4% 1.88% -57.5% 6.16% -41.5%

Table 4.4: The average and standard deviation of measurements provided by
Grab using orders created by Next Fit and Simulated Annealing. The change
is noted in percentages difference from Next Fit.

Method Pallet Pallet % Acceptable
Used Orders Created Orders Stacked Pallets Produced

Next Fit 878 829 94,4 %
Simulated Annealing 878 875 99,7 %

Table 4.5: Orders created by the Next Fit and simulated annealing, with how
many of them Grab was able to generate a packing pattern for.

Performance
Method Run time Nr of allocations Memory used
Next Fit 2.50 s 4.51 M 714 MiB
Simulated Annealing 3.37 s 17.5 M 1.12 GiB

Table 4.6: Performance measures given by @time in Julia for the baseline
method Next fit and simulated annealing
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4.3 Comparing Simulated Annealing with Single-
Objective Cost Function to Multi-Objective
Cost Function

To compare the two cost functions the results their orders created when run
through Grab are gathered in table 4.7. The difference in orders created in
order to pack all the consignments are shown in table 4.8, along with how many
of them turned out give a stable enough result for Grab.

Cost Function Stability Compacity Weight Height
X σ X σ X σ X σ

Single Criteria 1.86 0.193 0.704 0.053 326 76.0 1500 182
Multi Criteria 1.86 0.221 0.703 0.053 326 77.8 1504 179
Change (%) 0% 14.5% -0.142% 0% 0% 2.37% 0.267% -1.65%

Table 4.7: Overview of the change in mean and standard deviation for stability,
compacity, weight and height for simulated annealing using different objective
function

Cost Function Orders Created Orders Stacked % Acceptable Pallets
Single Criteria 878 875 99.7%
Multi Criteria 877 875 99.8%

Table 4.8: Overview over how many of the orders created were able to be stacked
by Solwr’s algorithm using the different cost functions for simulated annealing

4.4 Adding Machine Learning to Simulated An-
nealing

To determine a suitable data set for training and testing the different models,
two different data sets were created and both were tested on the relevant models.
The performance of the different models on the first data set is plotted in figure
4.1. For the second data set created, the model preformance is shown in 4.2.
The exact loss given by each model on the different data sets are shown in 4.11,
where one of the models ended up not being able to run on the first data set.
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This is indicated by "-" in the table. Tables 4.9 and 4.10 shows some descriptive
statistics for the parameters for the first and second data set respectively.

The three models with the lowest loss were tuned further to determine the most
suitable model. From table 4.11 the three best preforming models were Random
Forest Regressor, KNN Regressor and the Evo Tree Gaussian. For the Random
Forest Regressor, the input parameters which could be tuned were the number
of trees and the max depth of these trees. The different values used for those
input parameters and the resulting loss is shown in table 4.12. From the table,
a Random Forest Regressor using 30 trees, where the max depth is set to 5,
gives the lowest loss out of the parameters tested. This gave a RMSE of 0.550
and a MSE of 0.262.

The different parameters tested on the KNN model are shown in 4.13. The best
preforming model for the KNN model was the one using three neighbors with a
RMSE of 0.588 and a MAE of 0.267.

The last model tuned was the Evo Tree Regressor, where the input parameters
which could be changed were the number of rounds and their max depth. From
the parameters tested, the best preforming was the model using 30 rounds and
3 as max depth. This gave a RMSE of 0.568 and a MAE of 0.248.

I included a table comparing the results from the Next Fit to the simulated
annealing using the machine learning model in table 4.15. The difference in
orders created by the two methods is shown in table 4.16. Finally a graph over
each consignements acumalated predicted stability compared to the stability
given by Grab is shown in 4.3.

Variable mean min median max std mode skewness
Height heterogeneity 0.4497 0.0121 0.4444 1.0 0.0801 0.5 0.2595
Depth heterogeneity 0.4045 0.0122 0.3968 1.0 0.0788 0.4 0.7547
Width heterogeneity 0.4169 0.0122 0.4118 1.0 0.07840 0.4 0.5258
Number of boxes 51.79 1.0 51.0 259.0 10.98 51.0 4.021
Stability 1.901 1.617 1.828 22.64 0.3178 1.736 22.93

Table 4.9: Descriptive statistics for the first iteration of the dataset
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Variable mean min median max std mode
Height 0.2028 0.033 0.204 1.05 0.0706 0.207
Depth 0.3602 0.086 0.38 0.8 0.1238 0.4
Width 0.2478 0.065 0.238 0.8 0.0901 0.3
Weight 6.186 0.180 5.07 83.0 4.151 12.7
Stability 2.025 1.730 1.853 15.68 0.6491 1.800

Table 4.10: Descriptive statistics for the second iteration of the dataset
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Figure 4.1: RMSE and MAE for tested models on data set 1
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Figure 4.2: RMSE and MAE for tested models using data set 2
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Models Root-Mean-Square Error Mean Absolute Error
Dataset 1 Dataset 2 Dataset 1 Dataset 2

Random Forest Regressor 4.24 0.55 0.18 0.27
KNN Regressor 4.42 0.60 0.19 0.26
Evo Tree Gaussian 4.22 0.60 0.16 0.27
Ridge Regressor 4.22 0.60 0.16 0.34
XGBoost Regressor 4.23 0.61 0.17 0.28
Linear Regressor 4.22 0.62 0.17 0.37
Decision Tree Regressor 5.65 0.62 0.22 0.30
NuSVR 4.22 0.62 0.16 0.24
EpsilonSVR 4.22 0.63 0.16 0.24
Ridge Regressor 4.22 0.65 0.17 0.29
Deterministic Constant Regressor 4.22 0.65 0.17 0.30
Constant Regressor 4.22 0.65 0.17 0.30
Gaussian Mixture Regressor 7.40 0.65 0.31 0.30
Lasso Regressor 4.22 0.66 0.17 0.32
Huber Regressor 4.22 0.69 0.17 0.30
Robust Regressor 4.22 0.71 0.16 0.28
Decision Tree Regressor 4.28 0.77 0.20 0.35
LAD Regressor 4.22 0.77 0.16 0.35
Quantile Regressor 4.22 0.77 0.16 0.35
Elastic Net Regressor 4.25 0.85 0.36 0.48
PLS Regressor 4.25 0.87 0.35 0.50
Neural Network Regressor 4.22 1.38 0.17 1.01
KPLS Regressor - 2.13 - 2.02

Table 4.11: RMSE and MAE for models using dataset 1 and 2
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Random Forest Tuning
Number of Trees Max Depth Root-Mean-Square Error Mean Absolute Error

1

unlimited 0.641 0.327
1 0.652 0.298
5 0.600 0.273
10 0.832 0.326

5

unlimited 0.661 0.300
1 0.651 0.296
5 0.559 0.270
10 0.589 0.276

15

unlimited 0.589 0.277
1 0.651 0.299
5 0.559 0.270
10 0.589 0.276

30

unlimited 0.570 0.274
1 0.651 0.297
5 0.550 0.262
10 0.565 0.263

Table 4.12: The values tested when tuning the random forest model’s parameters
on data set 2 and their resulting loss values

KNN Tuning
Number of Neighbours Root-Mean-Square Error Mean Absolute Error
K = 1 0.659 0.316
K = 3 0.588 0.267
K = 5 0.595 0.257
K = 10 0.592 0.251
K = 15 0.599 0.248

Table 4.13: The values tested when tuning the KNN model’s parameters on
data set 2 and their resulting loss values
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Evo Tree Tuning
Number of Rounds Max Depth Root-Mean-Square Error Mean Absolute Error

1 0.651 0.297
3 0.568 0.248
5 0.608 0.26730

10 0.606 0.270
1 0.651 0.297
3 0.576 0.253
5 0.611 0.26150

10 0.596 0.274
1 0.651 0.297
3 0.578 0.265
5 0.596 0.274100

10 0.589 0.269
1 0.651 0.297
3 0.577 0.243
5 0.577 0.247150

10 0.588 0.272

Table 4.14: Root mean square error and mean absolute error for different num-
ber of rounds and max depth for the evo tree model

Method Stability Compacity Weight Height
X σ X σ X σ X σ

Next Fit 2.330 1.312 74.90% 10.90% 320.0 179.0 1413 311.0
Simulated Annealing with ML model 2.470 1.461 71.65% 8.269% 232.5 93.91 1035 347.3
Change(%) 6.008% 11.36% -4.339% -24.14% -27.34% -47.54% -26.75% 11.67%

Table 4.15: The difference in results given in percentages between the baseline
method Next fit and the Simulated Annealing using ML model as cost function

Method Pallet Pallet % Acceptable
Used Orders Created Orders Stacked Pallets Produced
Next Fit 878 829 94,4 %
Simulated Annealing with ML Model 1231 1231 100,0 %

Table 4.16: pallets needed to pack the orders vs the number of orders Grab was
able to stack made by the baseline Next fit and simulated annealing using ML.
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Figure 4.3: How the prediction stability made by the model compares with the
actual stability given by Grab

4.5 Example of Splitting a Consignment

It can be hard to visualize the impact and differences made by the different
approaches using only the tables presented in the previous sections. Therefore,
I have included a closer look at how the different approaches would divide the
same consignment into orders. The consignment was chosen based on the num-
ber of pallets the different methods needed to pack it. Many of the consignments
created had over 10 pallets, which was harder to present in an organized way.
The consignment used as an example consists of 88 items. All the items have
a combined weight of 616.36 kg. To give a measure of the dimensions of the
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different items in the consignment without listing them all, I have calculated the
heterogeneity of the dimensions of the items using the calculations discussed in
chapter 3. I have summarized the attributes of the consignment in a table, see
table 4.17.

The results are grouped together by method, where each section presents the
results from Grab’s algorithm in a table, see table 4.18, 4.19 and 4.20, 4.21 and
4.22. Solwr provided software to visualize how Grab stacked the orders sent to
it. The software allows for two kinds of plotting, one where each item is colored
to be able to distinguish the boxes from each other. The other option visualizes
how stable an item is where it is place in the stack. A stable placement of an
item gives it a green color, and the lower the stability of the placed item, the
redder it gets. This was used to visualize how each of the orders made by the
different methods ended up looking, and how stable the items in the stack ended
up being.

Nr of Items Weight (Kg) Volume (m3) Heterog. W Heterog. H Heterog. D
88 616.4 1.358 59.09% 60.23% 63.63%

Table 4.17: Overview over the attributes of the consignment used in the exper-
iments

4.5.1 Baseline

Pallet Nr Mean 1 2 3 4 5 6
Stability 2.625 1.738 1.848 1.969 1.944 1.956 6.292
Compacity 70.89% 77.41% 70.58% 68.72% 79.17% 73.27% 56.20%
Height (mm) 1296 1423 1560 1605 1392 1503 290
Weight (kg) 462.3 362.2 587.6 568.9 639.5 518.3 97.48

Table 4.18: Results generated by Grab’s algorithm from consignment divided
into orders by the baseline method
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(a) Pallet 1 (b) Pallet 2 (c) Pallet 3

(d) Pallet 4 (e) Pallet 5 (f) Pallet 6

Figure 4.4: The item distribution between pallets when using the baseline
method
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(a) Pallet 1 (b) Pallet 2 (c) Pallet 3

(d) Pallet 4 (e) Pallet 5 (f) Pallet 6

Figure 4.5: The item distribution between pallets when using the baseline
method

4.5.2 MIP

Pallet Nr Mean 1 2 3 4 5 6
Stability 2.065 1.739 3.062 1.760 1.918 2.154 1.758
Compacity 75.39% 68.53% 78.70% 80.13% 73.58% 79.19% 72.20%
Height (mm) 1260 1427 838.0 1322 1253 1307 1410
Weight (kg) 462.4 580.2 370.7 543.3 404.2 412.1 463.6

Table 4.19: Results generated by Grab’s algorithm from orders made by MIP
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(a) Pallet 1 (b) Pallet 2 (c) Pallet 3

(d) Pallet 4 (e) Pallet 5 (f) Pallet 6

Figure 4.6: The item distribution between pallets when using MIP
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(a) Pallet 1 (b) Pallet 2 (c) Pallet 3

(d) Pallet 4 (e) Pallet 5 (f) Pallet 6

Figure 4.7: The item distribution between pallets when using MIP

4.5.3 Simulated Annealing

Single Objective Cost Function

Pallet Nr Mean 1 2 3 4 5 6
Stability 1.835 1.746 1.739 1.788 1.742 1.749 2.245
Compacity 71.15% 73.75% 63.24% 72.84% 72.20% 75.49% 69.38%
Height (mm) 1334 1357 1706 1184 1288 1406 1064
Weight (kg) 462.3 501.9 551.2 417.4 477.9 519.2 306.4

Table 4.20: Results generated by Grab’s algorithm from orders made by Simu-
lated Annealing
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(a) Pallet 1 (b) Pallet 2 (c) Pallet 3

(d) Pallet 4 (e) Pallet 5 (f) Pallet 6

Figure 4.8: The item distribution between pallets when using simulated anneal-
ing
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(a) Pallet 1 (b) Pallet 2 (c) Pallet 3

(d) Pallet 4 (e) Pallet 5 (f) Pallet 6

Figure 4.9: The item distribution between pallets when using simulated anneal-
ing

Multi Objective Cost Function

Pallet Nr Mean 1 2 3 4 5 6
Stability 1.765 1.811 1.769 1.757 1.771 1.738 1.745
Compacity 71.45% 77.32% 70.63% 70.11% 68.06% 67.67% 74.92%
Height (mm) 1323 1371 1306 1437 1566 1015 1240
Weight (kg) 462.4 475.5 494.4 479.2 520.7 310.2 494.1

Table 4.21: Results generated by Grab’s algorithm from orders made by Simu-
lated Annealing using the multi objective cost function
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(a) Pallet 1 (b) Pallet 2 (c) Pallet 3

(d) Pallet 4 (e) Pallet 5 (f) Pallet 6

Figure 4.10: The item distribution between pallets when using simulated an-
nealing
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(a) Pallet 1 (b) Pallet 2 (c) Pallet 3

(d) Pallet 4 (e) Pallet 5 (f) Pallet 6

Figure 4.11: The item distribution between pallets when using simulated an-
nealing

Machine Learning Model Cost Function

Since this method uses predictions I have included the predicted stabilities made
by the model compared to the actual stabilities Grab gave each pallet, see
table 4.23 and figure 4.12. From this, the MAE = 0.7011 and RSME =
0.8372.

Pallet Nr Mean 1 2 3 4 5 6 7 8
Stability 2.779 1.734 1.865 1.763 5.715 1.876 1.804 1.757 5.715
Compacity 65.67% 67.36% 69.37% 72.17% 61.05% 74.91% 71.14% 65.53% 43.79%
Height (mm) 1036 1070 1392 1166 518 1217 1223 1381 321
Weight (kg) 346.7 379.73 435.5 428.4 103.7 429.9 462.6 462.8 71.38

Table 4.22: Results generated by Grab’s algorithm from orders made by Simu-
lated Annealing using the machine learning cost function
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Pallet Nr 1 2 3 4 5 6 7 8
Predicted Stability 2.773 2.465 2.307 4.565 2.333 2.896 2.516 4.959
Actual Stability 1.734 1.865 1.763 5.715 1.876 1.804 1.757 5.715
Squared Error 1.080 0.360 0.296 1.32 0.209 1.19 0.576 0.578

Table 4.23: Results generated by Grab’s algorithm from orders made by Simu-
lated Annealing using the machine learning cost function
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Figure 4.12: How the prediction stability made by the model compares with the
actual stability given by Grab
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(a) Pallet 1 (b) Pallet 2 (c) Pallet 3 (d) Pallet 4

(e) Pallet 5 (f) Pallet 6 (g) Pallet 7 (h) Pallet 8

Figure 4.13: The item distribution between pallets when using simulated an-
nealing

(a) Pallet 1 (b) Pallet 2 (c) Pallet 3 (d) Pallet 4

(e) Pallet 5 (f) Pallet 6 (g) Pallet 7 (h) Pallet 8

Figure 4.14: The item distribution between pallets when using simulated an-
nealing
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Discussion

In this chapter, the implementations with their results after running them
through Grab will be discussed in relation to the research questions stated at
the start of this thesis. Each will be presented sequentially, starting off with
research question one.

Research Question 1: Given a baseline heuristic for dividing a con-
signment, how does a MIP with the goal of minimizing the number of
pallets preform compared to the baseline?

From table 4.1 we can see that the average stability of the pallets created using
the MIP decreases. This might be attributed to the increase in both height
and the decrease in capacity, meaning that the average pallet is higher, but
the items are less volume efficient. This means that the items higher up in the
stack are placed on average on a smaller, less sound foundation of boxes, which
might decrease the stability. Something that is important to note is that from
table 4.2 we see that the MIP has a higher percentage of planned orders that
ends up being stable enough for Grab to pack, which gives the more results
which effects the average in the calculation for stability, which could be the
reason for the stability being lower. Some of these consignments might have
had more difficult items to stack, resulting in difficult orders for Grab to stack.
Orders like these might have been eliminated from the baseline orders after
running through Grab, which results in a higher average stability, since what
potentially would have been an order with a lower stability was not included in
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the calculation.

The MIP gives an average pallet that has a lower standard deviation for weight,
stability, and height, meaning that the average pallet is more consistent and
similar than those created by the baseline. Since the MIP wants to keep the
number of pallets needed to a minimum, it will try to fit as many items as
possible on each pallet, which might eliminate the cases where the last pallet is
just a collection of the residual items in the list. This might be the case for the
baseline approach, given how it divides the items. These types of pallets might
be a contributing factor to the overall average of the stability being higher for
the baseline. Since they just consist of residual items in the list which might fit
on other pallets, but due to the nature of the Next Fit algorithm, are not able
to be placed on another pallet.

Despite needing fewer pallets to divide the different consignments, it has a higher
percentage of orders that turned out to be stable enough for Grab. Which is
preferable if we were to decide which of these methods to use, but it is not able
to pack all of them, which means it still would need reworking.

In terms of performance, the MIP requires significantly more time than the
baseline. In terms of percentages, the MIP requires 6820% more time than the
baseline. It also is much more computationally expensive according to table 4.2.
This is not surprising since MIP’s are known to be computationally expensive.
If Solwr wanted to explore this further and create better results, they probably
must increase complexity by expanding the optimization goal, which would in
turn make it a harder problem for the MIP to solve. Therefore, I think this
method is less suited for further exploration, especially given that the average
pallet is less stable than the baseline ones.

To summarize, the MIP creates pallets that are more like each other compared to
the baseline. However, they do receive a lower average score on both stability
and capacity, which are important characteristics of a good order. It is also
more computationally expensive compared to the baseline, but in turn it gives
a slightly higher percentage of orders that Grab can pack.

How will simulated annealing preform compared to the baseline? This is what
we will be discussing in research question 2.

Research Question 2: Given a baseline heuristic for dividing a con-
signment, how does a heuristic method like simulated annealing with
the cost function of minimizing the number of pallets preform com-
pared to the baseline?
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Starting off with the results from Grab, we see that simulated annealing gives
a lower average stability and compacity compared to the baseline. The average
pallet it produces is slightly heavier and higher than the baseline method, where
the height might contribute to the decreasing stability. The more items stacked
on top of each other, the more forces are at play when Grab is moving. Simu-
lated annealing likely suffers the same consequences as MIP, where the average
stability is worse due to each pallet having more items on them compared to
the orders made by Next Fit.

From table 4.5 we see that simulated annealing requires the same amount of
pallets to pack all the items, and more of the orders created by the method are
deemed stable by Grab than the baseline. This means that, like the discussion
around the previous research question, we have more orders which count towards
the average pallet, which can be causing the average stability and compacity
to be lower than that of the baseline. Simulated annealing only fails to create
0.3% of orders stable enough for Grab to pack, which is the best ratio discussed
so far.

According to table 4.6 we see that simulated annealing is more computationally
expensive than the baseline, but in terms of run time they are only 0.87 seconds
apart. And comparing their differences to the last research question, simulated
annealing is a better alternative, requiring significantly less resources.

To summarize, simulated annealing has a worse average result, but the orders
generated by the method has a higher acceptance percentage by Grab. It is
more computationally expensive, but not as expensive has the MIP discussed
in the previous section. Given that simulated annealing is highly customizable,
with some changes it might produce better division of items for Grab.

The potential of simulated annealing was further expanded with research ques-
tion 3.

Research Question 3: What changes can be observed if the cost
function for simulated annealing is expanded to include the goal of
minimizing the item height heterogeneity and weight distribution, com-
pared to only using the goal of minimizing the pallets?

Going from a single objective cost function to a multi-objective cost function
gave little improvements to the results. In fact, the average stability remained
the same as the pallets using the single objective cost function. Despite including
a measure for lowering the standard deviation of weight, it increased by 2.37%.
I mentioned earlier that including a measure for the height heterogeneity, might
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help make pallets more stable. Since, more items of similar height can be used
to create an even layer. This seemed to have no effect, since the average stability
got worse.

It did require one less pallet to pack all consignment but was still unable to get
Grab to pack everything. When using the new cost function, every parameter
was given equal weighting, this can be a factor in why the results were not dras-
tically changed, since the values were not given the proper weighting. Further,
exploring this might produce better insight into what factors can attribute to a
more stable pallet.

The last research question was a bigger question, where I will start by discussing
research question 4.1.

Research Question 4.1: What is a suitable data set to represent the
relationship between an order and its stability?

As we have seen, two different data sets have been tested to find a suitable
one for determining the stability of an order. Where the first one tested, which
had parameters which were thought to be descriptive enough, gave large root-
mean-square error values. With the scale used for stability, a lower value was
preferable. To lower the loss, the idea of expanding the data set to include
all boxes and not just some of the statistics we thought might be useful, was
implemented. This data set contained most of the information available. Things
like product name and ID were not included, because I did not think it would
have much effect. When the changes were implemented, the models gave lower
RMSE values and lowered the gap between RMSE and MSE, compared to the
first dataset.

One might think that using a classification dataset would be something better
suited, since a pallet produced by Grab which is deemed stable is acceptable,
so we only need to weed out the pallets that are potentially unstable. This
was discussed and since it was desirable to get the best possible combination
of items, a model which could be used to increase the “potential” quality of
Grab was more useful. Since the model only knows what it sees, I wanted to
include some of the unstable pallets, so they would be presented in the data
set. This would make it easier for simulated annealing to identify unsuitable
combinations of items and avoid them. The problem which stopped this from
happening was that Grab does not provide a number for these kinds of orders.
I tried to alter the code provided to make Grab’s algorithm give me the results
no matter how bad the stability was. However, I was unsuccessful. This could
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be useful to include if exploring the use of machine learning further.

The size of the data set is small compared to what is usually used for training
models. This is a limitation to the model implemented in this thesis. One way
to improve is to increase the number of items the model could handle in order
to increase the orders that could be included in the data set. Taking everything
into account, out of the data sets tested in this thesis, the one passing in all the
items as parameters to the model seems to be the best fit for our problem.

Moving on to research question 4.2, where we will discuss the choice of model,
and the predictions made by it compared to the actual stability value given by
Grab.

Research Question 4.2: Given the data set in RQ 4.1 what is a
suitable model for implementing a stability prediction in simulated
annealing?

Using the results of the different models and their loss from the second data
set, the Random Forest Regressor was chosen. The differences between the
top models were marginal before and after tuning. In discussions with Håkon
Hukkelås, a PhD candidate at NTNU, he hypothesized that the more traditional
models would be a better fit than the deep learning models that are popular
today. This proved to be the case, as we can see from table 4.11, where the neural
network model is one of the worst preforming models. It could be interesting
to implement a more customized network using Julia’s Flux, but this was not
further experimented with in the thesis, due to time. Two out of the three top
models were based on trees, which might be due to the model’s ability to combine
multiple trees that are able to capture the nuances of the data. Both models
using trees performed better when the number of trees were high. Indicating
that the data might be hard to generalize.

To summarize, according to the results the best suited model, based on the
models tested on the final data set, turned out to be the random forest regressor
with 30 trees, each with a max depth of 5.

This brings us to the larger question of research question 4.

Research Question 4: Can Grab’s stability calculation be emulated
using a machine learning model to create more stable pallets using
simulated annealing?

Since simulated annealing uses the sum of all the stabilities in the consignment,
this was also used when plotting the prediction and actual stabilities in figure
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4.3. From the figure, we see that the prediction closely resembles the actual
stability, which means that a machine learning model is capable of emulating
Grab’s stability values. Given that the predictions are so closely correlated
with the actual stabilities show that the model has a tendency to overfit. This
might be due to the model being complex, we saw that the more trees in the
models, the lower the loss got. Another reason for this might be that the orders
created by the previous methods explored, which deal with some of the same
consignments, were used in the data set. This means that the model had seen
some of the same consignments consisting of the same items in the training set.
Combining the model with simulated annealing exposes the model to multiple
different configurations a consignment can be split into, making it possible that
some of the configurations were the same as the ones in the data set it was
trained on. I know this should be avoided, but due to lack of data and wanting
to test if using machine learning was suitable in simulated annealing, the orders
were included. The results used in the data set from the other approaches were
the results generated for the project. This means that some of the orders, which
were filtered away when wanting to focus on larger orders, were included in the
data set. This could be solved by creating a larger data set and replacing the
orders which appear in the test scenario with new observations to avoid the
model being exposed to the same consignments.

If we look at the effects this have on the simulated annealing compared to the
baseline, we see that we get an increase in the overall stability as well as being
able to pack all the pallets that are planned from table 4.15 and 4.16. We
see that the pallets needed increases, which shows that the number of orders
created by the previous methods might be unrealistically low to achieve the
quality needed for Grab. The average pallet using the ML model are shorter
and lighter, which might suggest that the height of the pallets created previously
are too tall.

The case presented in section 4.5 provides some illustrations of the points made
in this discussion. Looking at the pallets set from the baseline orders, we see
that the last pallet is small compared to the others in terms of the weight and
the height. This is a result of the sequential nature of the method, where the
last pallet is sort of a residual pallet if the items cannot fill up the full pallets.
This in turn brings the average stability up. If we were to compare table 4.18
and 4.19, we might want to choose the baseline, since the average pallet looks
better. But if we want a more even distribution of the items, we might want
to pick the MIP method. From the case, we see that the cost function using
simulated annealing gives the best average stability, which can be attributed to
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the use of more pallets. We see that two of the pallets among the orders created
by this method only contain stable items on the pallet. This helps to bring the
overall stability up. The graph shows how the predicted vs actual stability is
similar, indicating that the model can give a good prediction of the individual
pallets in the consignment.

5.1 Future Work

After concluding the experiments and assessing the results, I have several ideas
which could be interesting to explore further. Starting off with generating a
larger, more diverse data set for training the models. Is the model still able to
predict somewhat accurately if the data set is increased significantly? It could
be worth looking into what effects using the correlation between the model’s
predictions and the actual values could boost performance. Conducting ex-
periments to determine what might be a suitable weighting to the different
attributes in the simulated annealing cost function using a multi-objective opti-
mization goal. Adding the stability prediction model to the multi-objective cost
function could be interesting. As mentioned in the discussion, trying to imple-
ment a model using Flux to see if a neural network which is more customized
can be an alternative to the models tested here. Simulated annealing is highly
customizable, and some ideas I had to improve the method are further testing
different cooling schedules. The cooling schedule used in this thesis would be
further tested, which might improve the resulting solution. Experimenting with
moving more boxes in the move function could also be interesting to investigate.
In this thesis, some of the nuances were removed to make the problem smaller
and more manageable. Further work could implement some of the problems
that were simplified in this thesis, like adding back the aspect of ordering the
items in an order after their location in the warehouse. Which would add back
the issue of planning the orders with the goal of making the routes as efficient
as possible.
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Conclusion

At the beginning of this thesis, I stated that the overall goal was to gather
information on what might be the best way forward if Solwr wants to divide
a consignment in a way that would improve Grab’s performance compared to
today’s solution. To determine this, I defined and discussed several research
questions.

Methods using the goal of minimizing the number of pallets compared to the
heuristic Next Fit showed to give a lower average stability. But the methods did
make more orders which were suitable for Grab to pack. One of the methods,
simulated annealing, was easier to customize, however using a multi-objective
cost function compared to a single-objective cost function did not improve the
performance. Since the multi-objective cost function used the same weighting
for all the different parameters, it could still provide useful information, if the
weighting was investigated further.

The method showing the most promising results was simulated annealing us-
ing a machine learning model for predicting the stability as the cost function.
This increased the average stability of the pallets produced. It was also the
only method tested where Grab was able to pack all the orders created. The
prediction plotted next to the actual stability indicate that the model is over-
fitting.

Given these findings, going forward I think that expanding the data set used in
this thesis to include more orders and fixing the issue of overfitting, would be the
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most promising way forward. Using multiple parameters in the cost function is
also something that could be a way forward, where improving the weighing of the
different parameters and maybe incorporating the machine learning prediction
could a potential way forward for Solwr. After implementing and experimenting
with simulated annealing, I can say that I find the method highly customizable,
where this can be done more easily than the other method tested. So, if Solwr
were to look more on the area, I would say simulated annealing has more easily
implementable options than that of MIP.
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Appendix A

MIP

Listing A.1: Baseline - Implementation of MIP
function create_optim_model ( order , p a l l e t )

#? Sets and i n d i c i e s
# i − item/box type
# j − conta ine r

N = s i z e ( order , 1)
M = 100

#? Parameters
# D_i − Dimention o f item/box i
# W_i − Weight o f item/box i
# n_i − Number o f i tems /boxes o f type i
#∗ Al l c on ta i n e r s have the same s i z e
# K_j_d − Volume capac i ty o f conta ine r j − 180 cm x 80 cm

x 110cm
# K_j_w − Weight capac i ty o f conta ine r j − 2000 kg

D: : Array = order . "MDMITEMVOLUM_ML"
W: : Array = order . "MDMITEMGROSSWEIGHT_G"
n : : Array = order . "ORDERLINEAMOUNT"

K_d = pa l l e t . volume
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K_w = pa l l e t . max_weight_allowed

model = Model ( Gurobi . Optimizer )

#? Var iab l e s
# x_ij − Number o f i tems /boxes o f type i in conta ine r j
# yj − Binary value , 0 when conta ine r i s not used , and 1

i f conta ine r j i s used

@var iable (model , y [ 1 :M] , b inary = true )
@var iable (model , x [ 1 :N, 1 :M] , i n t e g e r = true , lower_bound

= 0)

#? Object ive func t i on
# Min Z = Sum yj f o r a l l c on ta i n e r s
@object ive (model , Min , sum(y [ j ] for j in 1 :M) )

#? Consta ints
# Sum x i j = ni , the sum of a l l i tems o f type i in

con ta i n e r s j must be equal to the number o f i tems o f
type i (we must pack a l l boxes )

# The sum of dimention o f item type i mu l t i p l i e d with the
number o f i tems o f type i must be ab le to f i t in a
con ta i n e r s dimention const ra ined , and the conta ine r
must have been ac t i va t ed

# The same as over but f o r Weight

for i in 1 :N
@constra int (model , sum(x [ i , j ] for j in 1 :M) == n [ i ] )

end

for j in 1 :M
@constra int (model , sum(D[ i ] ∗ x [ i , j ] for i in 1 :N) <=

(K_d ∗ y [ j ] ) )
@constra int (model , sum(W[ i ] ∗ x [ i , j ] for i in 1 :N) <=

(K_w ∗ y [ j ] ) )
end

for j in 1 :M−1
@constra int (model , y [ j ] >= y [ j +1])

end
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opt imize ! ( model )
nr_of_pal le ts = objec t ive_va lue ( model )
x = value . ( x )
return x , Int ( nr_of_pal l e ts )

end
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Appendix B

Next-Fit Implementation

Listing B.1: Baseline - Implementation of Next-fit Heuristic
function sp l i t_ i t ems ( p a l l e t : : Pa l l e t , o r i g ina l_ i t ems : :

Array , l im i t )
a l l_p a l l e t s : : Array{PackedPal let } = [ ]
i tems = copy ( o r i g ina l_ i t ems )
while l ength ( items ) > 0

items_on_pallet , packed_volume , packed_weight =
pack_pal let ( items , pa l l e t , l im i t )

boxes = g e t f i e l d . ( items_on_pallet , : box )
he t e r ogene i t y = heterogene i ty_diment ions ( boxes )
packed = PackedPal let ( sort_list_by_weight (

items_on_pallet ) , packed_volume , packed_weight
, h e t e r ogene i t y [ 1 ] )

for item in packed . i tems
f i l t e r ! ( e −> e != item , items )

end
push ! ( a l l_pa l l e t s , packed )

end
return Result ( a l l_pa l l e t s , p a l l e t )

end
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Listing B.2: Pack Pallet - Helper method to Next Fit
function pack_pal let ( i tems : : Array{Item } , p a l l e t : :

Pa l l e t , l im i t )

items_on_pallet : : Array{Item} = [ ]
packed_volume = 0 .0
tota l_weight = 0 .0

for item in i tems

t o t a l = item . volume + packed_volume

i f l im i t !== nothing
i f l ength ( items_on_pallet ) == l im i t | |

t o t a l >= pa l l e t . volume
break

end
end

i f t o t a l >= pa l l e t . volume
break

end

push ! ( items_on_pallet , item )

packed_volume += item . volume
tota l_weight += item . box . weight

end
return items_on_pallet , packed_volume ,

tota l_weight
end
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Appendix C

Simulated Annealing

C.1 Move set

Listing C.1: generate neighbor
function generate_neighbour_state ( s t a t e : : Result , ML)
neighbour = copy ( s t a t e )

i f ( neighbour . nr_of_pal l e ts == 1)
return neighbour

end

i f ML
max_items_on_pallet = 60
take_from , give_to = generate_exchange_pair ( neighbour ,

max_items_on_pallet )
i f give_to == −1

return neighbour
end

else
take_from , give_to = generate_exchange_pair ( neighbour ,

nothing )
end
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# Takes the f i r s t box that f i t s the new p a l l e t s volume

for i in eachindex ( neighbour . p a l l e t s [ take_from ] . i tems )
item = neighbour . p a l l e t s [ take_from ] . i tems [ i ]
i f is_valid_move ( item , neighbour . p a l l e t s [ give_to ] ,

neighbour . pa l l e t_type )

# Add the item to the new p a l l e t
push ! ( neighbour . p a l l e t s [ give_to ] . items , item )
neighbour . p a l l e t s [ give_to ] . volume += item . volume
neighbour . p a l l e t s [ give_to ] . weight += item . box .

weight

# Remove the box we moved from the o r i g i n a l p a l l e t
d e l e t e a t ! ( neighbour . p a l l e t s [ take_from ] . items , i )
neighbour . p a l l e t s [ take_from ] . weight −= item . box .

weight
neighbour . p a l l e t s [ take_from ] . volume −= item . volume

# Remove the p a l l e t i f the move l e av e s the p a l l e t
empty

i f ( l ength ( neighbour . p a l l e t s [ take_from ] . i tems ) ==
0)
s p l i c e ! ( neighbour . p a l l e t s , take_from )
neighbour . nr_of_pal l e ts = length ( neighbour .

p a l l e t s )
end

neighbour . standard_deviation_weight =
standard_deviat ion_of_pal l e t s ( neighbour .
p a l l e t s )

return neighbour
end

end
return neighbour

end

C.2 Cost Function
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Listing C.2: Function for calculating the acceptance criteria
function acceptance_probab i l i ty ( s tate , new_state , temperature ,

mode)

i f mode == " min imiz ing_pa l l e t s "

score_old_state = bas ic_eva luate_state ( s t a t e )
score_new_state = bas ic_eva luate_state ( new_state )

e l s e i f mode == " mu l t i_c r i t e r i a "

score_old_state = modi f ied_evaluate_state ( s t a t e )
score_new_state = modi f ied_evaluate_state ( new_state )

e l s e i f mode == "ML"
score_old_state = ML_evaluate_state ( s t a t e )
score_new_state = ML_evaluate_state ( new_state )

end

de l ta_score = score_new_state − score_old_state

i f mode == "ML"
i f de l ta_score > 0

return 1 .0
else

return exp ( ( de l ta_score ) / temperature )
end

else
i f de l ta_score < 0

return 1 .0
else

return return exp((− de l ta_score ) / temperature )
end

end

end

Listing C.3: Minimizing Number of pallets
function bas ic_eva luate_state ( s t a t e : : Result )
return s t a t e . nr_of_pal l e ts

end

919191



Appendix C. Simulated Annealing

Listing C.4: Minimizing Number of pallets, item height heterogeneity and
σweight

function modi f ied_evaluate_state ( s t a t e : : Result )
i f s t a t e . nr_of_pal l e ts == 1

return 0 .0
end
return s t a t e . nr_of_pal l e ts + s t a t e .

standard_deviation_weight + s t a t e . avg_heterogeneity
end

Listing C.5: Maxmizing Stability of Pallets
function ML_evaluate_state ( s t a t e : : Result )
c a l cu l a t e_s t ab i l i t y_ f o r_s t a t e ( s t a t e )
return s t a t e . s t a b i l i t y

end

Listing C.6: Helper function for calculating stability of the configuration and
individual pallets

function c a l cu l a t e_s t ab i l i t y_ f o r_s t a t e ( s t a t e )
s t a b i l i t y = 0
for p a l l e t in s t a t e . p a l l e t s

x = format_ML_input ( p a l l e t . i tems )
stab = f i r s t (MLJ. p r ed i c t (mach , x ) )
p a l l e t . s t a b i l i t y = stab
s t a b i l i t y += stab

end
s t a t e . s t a b i l i t y = s t a b i l i t y

end

C.3 Configuration

Listing C.7: Calculate Heterogeneity
function he t e r ogene i t y ( array : : Array )

return l ength ( countmap ( array ) ) / l ength ( array )
end

Listing C.8: Calculate Heterogeneity for every dimension
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function heterogene i ty_diment ions ( boxes : : Array )
he ight = g e t f i e l d . ( boxes , : he ight )
width = g e t f i e l d . ( boxes , : width )
depth = g e t f i e l d . ( boxes , : depth )

he t e rogene i tyHe ight = he t e r ogene i t y ( he ight )
heterogeneityWidth = he t e r ogene i t y ( width )
heterogene i tyDepth = he t e r ogene i t y ( depth )

return heterogene i tyHe ight , heterogeneityWidth ,
heterogene i tyDepth

end
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