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Abstract

A hindrance in the development of process control and digital twins in the bioprocess
industry is the scarcity of real-time direct measurements. Bacteria are used to produce a
range of products within the pharmaceutical and food industry, however, they are often
described by nonlinear time-varying dynamics, making them hard to model accurately.
Moving Horizon Estimation (MHE) can address this issue by combining measurements
with a process model, incorporating physical constraints to estimate states. The MHE can
thereby act as a soft sensor allowing for real-time monitoring, and enabling control to
improve product quality and yield.

This thesis investigates the implementation of real-time MHE to overcome the challenge
of limited sugar measurements in continuous cultivation of Corynebacterium glutamicum.
This consisted of experimental work related to running a bioreactor, and programming us-
ing optimization techniques. Online measurements of volume, cell density, and CO, were
available, with periodic at-line sugar measurements every hour and offline cell dry weight
(CDW) samples every 2-4 hours. Calibrations of pumps and an optical density probe
were performed. In silico Model Predictive Control determined a fixed input profile for
continuous cultivation. Parameter Estimation was performed to determine the parameters
for the model, followed by tuning of the MHE to the process. Two real-time runs with
MHE were performed and evaluated using root mean squared error (RMSE) between the

estimates of biomass and sugar compared to offline CDW and sugar measurements.

The study demonstrates the feasibility of real-time sugar state estimation in C. glutamicum
cultivation using MHE, but questions its current reliability as a soft sensor. The estima-
tor follows the sugar dynamics with a low RMSE for the three experimental runs (two in
real-time). The study highlights the importance of reliable measurements from stable and
correctly calibrated equipment for optimal soft sensor performance. Suggestions for im-
provement include revisiting calibration steps, exploring alternative arrival cost updates,
and conducting longer cultivation experiments to assess long-term efficiency. Future work
should involve closed-loop control experiments to determine the robustness of the soft

sensor for control purposes.



Sammendrag

En hinder i utviklingen av prosesskontroll og digitale tvillinger i bioprosessindustrien er
mangel pa direkte malinger i sanntid. Innen farmasgytisk- og matindustri brukes bakterier
til & produsere mange ulike produkter, men de beskrives ofte av ikke-linezre tidvarierende
dynamikker som gjgr dem vanskelige & modellere ngyaktig. Moving Horizon Estimation
(MHE) kan adressere dette problemet ved a kombinere sanntidsmalinger med en prosess-
modell, samt inkorporere fysiske begrensninger for a estimere tilstander. MHE kan dermed
fungere som en "soft sensor" som tillater sanntids overvakning og muliggjgr kontroll for &
forbedre produktkvalitet og utbytte.

Denne oppgaven undersgker implementeringen av sanntids MHE som en lgsning pa be-
grensede malinger av sukker i kontinuerlig dyrking av Corynebacterium glutamicum. Ar-
beidet besto av eksperimentelt arbeid relatert til kjgring av bioreaktor og programmering
ved bruk av optimalisering. Sanntidsmalinger besto av volum, celletetthet og CO,, med
periodiske malinger av sukker hver time, og offline prgver av tgrrvekt av biomasse (CDW)
hver 2-4 timer. Pumper og en optisk tetthetsprobe ble kalibrert. In silico Model Predictive
Control ble brukt til & forhdndsbestemme inn- og utstrgmmer til dyrkingen. Parameter-
stimering ble utfgrt for & bestemme parametere for modellen, fulgt av tilpasning av MHE
til prosessen. To sanntidskjgringer med MHE ble utfgrt og evaluert ved bruk av kvadratisk
gjennomsnittsavvik (RMSE) mellom estimater av biomasse og sukker i forhold til offline-
malinger av sukker og CDW.

Studien viser at sanntids estimering av sukker er mulig i en C. glutamicum-dyrking ved
bruk av MHE, men stiller spgrsmal til den navarende robustheten av estimatoren. Esti-
matoren fglger sukkerdynamikken med lav RMSE for de tre eksperimentelle kjgringene
(to i sanntid). Studien understreker viktigheten av palitelige malinger fra stabilt og rik-
tig kalibrert utstyr for optimal ytelse av "soft-sensor" teknologi. Forslag til forbedring
av estimator inkluderer ny gjennomgang av kalibreringsprosessen, utforsking av alterna-
tive arrival cost oppdateringer og utfgrelse av lengre dyrkingseksperimenter for & vurdere
langtidseffektiviteten av MHE. Fremtidig arbeid bgr innebere eksperimenter med lukket
slgyfekontroll for a fastsla MHE sin robusthet for kontrollformal.
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Previous work

In the fall of 2022, the author wrote a project thesis on "Moving horizon optimization
strategies for feeding and estimation in bioprocesses". In the project, a closed loop con-
troller with a nonlinear model predictive controller (NMPC) was implemented to optimize
feeding for cell density setpoint tracking of Corynebacterium glutamicum. The Moving
Horizon Estimator (MHE) was used as a state estimator, using volume, cell density, and
CO;, measurements to provide full-state feedback for control. The strategies were ap-
plied to a Fed-Batch and Continuously Stirred Tank Reactor (CSTR) in-silico model. The
implemented controller successfully reached the Fed-Batch setpoint with minimal input
usage, while the CSTR had higher input usage and chattering issues. State estimation for
closed-loop systems had low root mean square errors. The code developed in the project
thesis serves as a basis for this thesis, where the focus is on real-time state estimation using
a fixed input profile for continuous cultivation.
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Chapter

Introduction

1.1 Motivation

Bacteria are versatile and useful organisms that play a vital role in various industries by
producing a wide range of products. Their use as fermentors in the dairy industry is well-
known where they produce commodities like cheese and yoghurt (Kumar, 2017; Yang
et al., 2012). Bacteria are also utilized in the pharmaceutical and biotechnology industry,
where they have been used to produce antibiotics and vaccines, enzymes, vitamins and
other chemical compounds (Kadner and Rogers, 2023). According to a recent report by
Mikulic (2022) the biotechnology and pharmaceutical industry is expected to generate
revenue of 505 billion US dollars in 2026. Furthermore, bacteria have been identified as
having great potential in the production of biofuels from renewable sources, as they can
convert organic matter into usable fuel (Chintagunta et al., 2021; Koppolu and Vasigala,
2016; Liao et al., 2016).

In this master thesis, the aerobic bacteria Corynebacterium glutamicum ATCC 13032 (C.
glutamicum) will be cultivated. This bacteria is known as an industrial workhorse for its
ability to produce a range of amino acids, such as L-glutamate and L-lysine (Kalinowski
et al., 2003; Wendisch et al., 2016), organic acids (Wieschalka et al., 2012) and to grow on
arange of substrates (Becker et al., 2016). It can also grow through fluctuating conditions
in O,, CO, and pH (Bdumchen et al., 2007; Follmann et al., 2009; Nishimura et al., 2007),
though its main drawback is a relatively small maximum growth rate compared to other
bacteria (Graf et al., 2019).

Bacteria, functioning as tiny industrial cell factories, exhibit complex dynamics that are

1
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not easily modeled.Although they are widely used in industrial production, the integration
of process monitoring and control remains a challenge in the biopharmaceutical industry
(Pittman and Wetterhall, 2022). Developing accurate models of bioprocesses can not only
improve the efficiency, performance, and quality of current production methods but also
enable new applications and sustainable production. Luttmann et al. (2012) highlights how
process monitoring and control are key when transitioning bioprocesses into commercial
production, where products need to meet complex regulations. In addressing these chal-
lenges, model-based approaches that comprise of a controller and an estimator have shown

promise in automating bioprocesses (Lucia et al., 2017).

In control engineering, a comprehensive understanding of process state variables and pos-
sibly parameters is crucial for controlling system output. However, creating accurate mod-
els for biological systems is difficult and often requires a deep understanding of the process
(i.e. Flux Balance Analysis1 (Jabarivelisdeh et al., 2020)). In practice, bioprocesses are
often modelled using unstructured Monod kinetics?, which uses lumped parameters to de-
scribe intracellular phenomena in a simplistic way (Jabarivelisdeh et al., 2020). When
relevant state and parameter measurements are not available, state and parameter estima-

tion that exploits online measurements is necessary.

Bioprocess control faces a significant challenge in the limited availability of real-time di-
rect measurements. While online sensors like temperature, optical density, pH, and gas
flow rates are commonly used, the options for online glucose measurements are non-
existent. Glucose serves as the primary carbon source for bacterial metabolism, and mon-
itoring its levels provides valuable insights into the current growth state of the bioprocess
(Mann et al., 2017). Existing measurement methods mainly rely on offline approaches
(Galant et al., 2015), such as enzymatic assays (Blackwell, 2018) for glucose detection
and analysis. Although there are some alternatives like single-use in-line optical glucose
biosensors (Lederle et al., 2021) and at-line measurements using high-performance liquid
chromatography (HPLC) providing periodic values, these methods still have limitations.
At-line measurements often involve manual operations and provide infrequent data, mak-

ing closed-loop feedback control challenging (Alford, 2006).

The lack of online measurements can be addressed by developing soft sensors (state esti-

IFlux balance analysis (FBA) is a modeling approach based on the genome-scale metabolic reconstruction
of an organism. It describes intracellular metabolism by considering a network of metabolites and metabolic
fluxes. These models, defined by the network’s stoichiometry, determine an optimal metabolic flux distribution
by maximizing a biological objective (Orth et al., 2010; Varma and Palsson, 1994).

2The Monod model is the commonly used relationship describing the specific growth rate (1) and substrate
concentration (S) for pure cultures on one growth-limiting substrate, described by ¢t = pmax %Kb (Yoon
etal., 1977).
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mators (Dochain, 2003)), which are capable of accurate real-time estimation of the values
of process and product quality variables. A soft-sensor is an indirect measurement that
combines a mathematical model and frequently measured process data to predict an out-
put, bypassing the challenge of infrequent or non-existent measurements (Desai et al.,
2006). With a soft sensor compensating for lacking measurements, we construct a digital
twin of the bioprocess, a digital representation of a real product instance (physical twin)
(Schleich et al., 2017).

1.2 Thesis objective
The aim of this master thesis work is to investigate the thesis statement:

The implementation of moving horizon estimation can overcome
the challenge of limited sugar measurement in bioprocesses, en-
abling reliable real-time state estimation in a continuous culti-

vation of C. glutamicum.

In this work reliability is defined as the MHE’s ability to continuously perform its core
function, estimating sugar with reasonable values (here 0-20g/L), without disruptions, or
significant reductions in performance. To determine the validity of the statement, we will
use the Root Mean Square Error (RMSE) as a quantifier to compare the measured (y) cell
dry weight (CDW) and sugar, with the estimated (2) biomass and sugar. We will also
compare the real-time state estimation results to those obtained from the nominal state
model and online measurements. A soft sensor that provides a low RMSE for sugar, will
not only provide insights into the current growth state of the bioprocess but also full state
feedback enabling closed-loop control in bioprocesses. The novelty of the master lies in
investigating the real-time performance of MHE on a bioprocess, not with offline in-silico

simulations as has been done before (see Section 3.1).

Table 1.1: Available measurements, where online measurements are volume (V), cell density (X)
and CO,. CDW refers to cell dry-weight samples. * Sugar measurements (S) have a 40-minute
delay, before being registered.

Measurement Frequency Type

\'% 60 s Online
X 60 s Online
S 1 h* At-line
CO, 60 s Online
CDW 3-4h Offline
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To check the performance of the real-time MHE, a fixed feeding curve with an initial batch
phase of 6 hours is used, followed by continuous feeding and flow out. The input profile is
to be determined with model predictive control on a nominal model. Available measure-
ments are shown in Table 1.1, and the estimated states will be volume, cell density, sugar
and CO;. To reduce uncertainty, multiple pieces of equipment are calibrated, including
the OD probe, and inlet and outlet pumps. To our knowledge, a continuous cultivation
with C.glutamicum utilizing the nominal model in Equation (2.1) has not been carried out.
Therefore, it is essential to perform a parameter estimation to determine the appropriate

parameters to be used in the MHE. The steps mentioned above are presented in Figure 1.1

. . . Parameter . Real-time
FeEdlng proﬁle MHE tunlng

Figure 1.1: Summary of the work performed in this master thesis, presented through a flowsheet.
The light purple boxes signify that laboratory work has been involved, in addition to programming.
The smaller boxes beneath the main titles indicate either methods used (e.g. MHE & MPC) or
instruments calibrated (e.g. acid, base and in/outlet pump, NIR probe), or parameters decided (e.g.
Umaz, By NvrE). Note here that to perform parameter estimation a continuous cultivation had
to be performed, with a feeding profile equal to the one intended for the real-time MHE. For this
reason, a feeding and input profile was found using parameters from (Tuveri et al., 2021), a Fed-
batch cultivation, before carrying out a parameter estimation for our continuous process.

1.3 Thesis outline

This section presents the structure of the thesis. The thesis consists of seven chapters

including this chapter, and Appendices A to E.

Chapter 2 presents the bioprocess investigated described by a system model of four equa-
tions, and the RMSE, the quantitative measure of how well the estimator is performing.
Section 2.2 presents the parameter estimation performed to determine the parameters in

the system model.

Chapter 3 gives a general introduction to optimization, a state of the art on controllers and

4
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state estimators (summarized in Figure 3.2), before shifting focus to MPC and MHE, the
controller and state estimator used in this thesis. The following sections, Section 3.2 and
Section 3.3, commence with the underlying theory on the respective topics, including the
methodologies used to solve the Nonlinear Programming Problems (NLPs). Lastly, the

sections present the methodology that serves as the foundation for the results.

Chapter 4 gives a general introduction to bioprocesses, and the bacteria used, before pre-
senting the experimental setup. Chapter 4 goes into detail on how the experimental work
was performed and how measurements were collected through signal processing. Sec-
tion 4.3 presents how the peristaltic pump and OD-probe were calibrated. The majority
of the thesis work consisted of experimental work, and an evaluation of the experimental
methods related to their uncertainty is therefore also included. Four experimental biore-
actor runs are presented in this thesis. The first was used for calibration of the OD-probe.
The second experimental run was used for parameter estimation and MHE tuning. The
third and the fourth runs were real-time MHE, referred to as the first and second real-time
MHE run in the thesis.

Chapter 5 presents the results of the calibrations, parameter estimations, MHE tuning,

two real-time MHE runs and offline tuning on the experimental runs.

Chapter 6 discusses the results presented in the previous chapter with regards to if the
implementation of moving horizon estimation can overcome the challenge of limited sugar
measurement in bioprocesses, enabling reliable real-time state estimation in a continuous

cultivation of C. glutamicum. Section 6.1 presents recommendations on further work.
Chapter 7 summarizes the overall conclusions and recommendations for further work.

Appendix A shows statistics on publications and citations on Moving Horizon Estimation

over time.

Appendix B presents calculations and details regarding experimental work, like offgas

calculations, and linear calibration curves for the OD-probe.
Appendix C lists model parameters used for the MPC.
Appendix D contains the protocol for running the bioreactor.

Appendix E showcases the code developed for the thesis in the form of a file directory
accompanied by explanations. The code has been provided as a .zip file, which is attached

to the Inspera delivery.



Chapter

Process Description

2.1 System model

> Qout

qin

Fin' Sin Y E — F

out’

B —

0
o
N)

ﬂ

) 4

:@----» V

Figure 2.1: The bioprocess system for Corynebacterium glutamicum cultivation, described as ODEs
in Equation (2.1), includes inputs, outputs, and measurements. Solid lines represent flows, with gas
flows (¢in, and gou:) and liquid flow in (F;,) having constant composition (.S;y,). Liquid flow out
(Fout) exhibits a varying sugar concentration (S). Dashed lines represent measurements, including
biomass concentrations (X), offgas production (CO,), and volume (V') determined by the inflow and
outflow rates. Air supply (gq:r) is denoted by bubbles in the tank supplied by gir,.

The system model is built upon the work in Tuveri et al. (2021) which describes aerobic
bacterial cultivation, using a simple Monod model. For the system model we assume the

6
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tank is mixed homogeneously, temperature and pH are constant, all vital nutrients are
available and the microbes in the reactor are a pure culture. The dynamics of the nominal

system are described by the following ordinary differential equations (ODEs),

dV
-, — Fin - Fou
dt ¢
dX F;, S
ryelaiia X mariX — kg X
dt v Hmar g d .
a5 _Fuig g, S X D
dt - V wm ,uma;zS + KS YXS
dCO, S X

= Mmax 5 75 - airCO
it PSR, Yxco, 1YY

where F},, and F},,, is the feed into and liquid flow out of the system, and ¢, represents

a constant gas flow of ambient air into the system. The states vector is given by,

0= vy x@) St cow | 2.2)

where V is the volume, X is the biomass concentration, S is the substrate concentration,
which here is glucose, referred to as sugar, and CO; the offgas. The volume is given
in liter, the cell mass and substrate as a concentration in g/L, and C'O5 is given as a

percentage of the gas flow out. The input variable, u is given by,

T
u(t) = [ Fin(t)  Foul(t) } 2.3)

where F;,, and F,,; given in L/h. For continous cultivation Fj, is set equal to F,,;. The

variables in the system model are shown in the bioprocess in Figure 2.1.

The parameters are given by the vector

T
0= tmee Ks ha Yxs Yxco, (2.4)

Where the parameter values in the equations above are given in Table 5.3, determined by
the method in Section 2.2.

The differential equations can be concisely written as,

[dv dx dS dco, 1"

P = & ¢4 a0 25
&= flwu) dt dt dt dt 25)

The change in cell density, X, is equal to the formation of new cells (dependent on available

7
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sugar), a decrease in cell concentration (due to dilution caused by flow in), and death. The
change in substrate glucose, S, is equal to the substrate added, and substrate decrease due
to dilution and bacterial consumption. The change in carbon dioxide is equal to the CO,
generation (due to cell respiration) and loss through the gas flow out. The term SJFLK takes
into account the saturation in the bacterial system, also known as the Monod equation,

where fi,,q, represents the maximum growth.

As a quantitative measure of how well the estimator is performing, we will use the root
mean square error (RMSE) defined as,

’I’Lyx

RMSE,- = ! Z(y* — )2 (2.6)

i=1

where i is the current timestep for the offline measurements and 7~ the amount of offline
measurements . The RMSE is calculated using the deviation between the offline measure-
ments (y*) of biomass (y%) and sugar (yg) and the state estimates of biomass (£ x) and
sugar (Zg). For comparison to the MHE, the RM SE,» between the nominal model )

and the offline measurements is also calculated.

2.2 Parameter estimation

The parameters in Equation (2.4) must be determined for the process investigated, a contin-
uous cultivation. Parameter estimation is the process of determining the values of unknown
quantities in a model (called parameters) based on available data. In biological systems,
these parameters may include reaction rates, Hill coefficients', or binding affinities (Jeong
and Qiu, 2018). Estimating these parameters is important because they help describe the
relationships between the variables in the model and lead to a deeper understanding of a
given process. However, measuring these parameters directly is often difficult or impossi-
ble. The goal of parameter estimation is therefore to find the parameter values that best fit
the available data. To achieve this, the estimation process uses available measurements and
compares them to predicted values from the model. As an objective function, a norm of
the measurement error is typically used. The type of norm used depends on the statistical
distribution of the measurement errors. For example, if the errors are independent, nor-

mally distributed with a zero mean and known variances, a weighted least squares function

The Hill Coefficient (nf7) is a measure of cooperativity in biomolecular binding or enzymatic reactions,
indicating how the binding or reaction rate changes with ligand or substrate concentration. A coefficient greater
than 1 signifies positive cooperativity, while a coefficient less than 1 suggests negative cooperativity (Nelson and
Coc, 2017).
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can be interpreted as a maximum likelihood estimate (Bock et al., 2012; Kostina, 2004).

To have a model that gives satisfactory predictions, the model parameters must be both
identifiable and estimable. A model is identifiable if a unique input-output behaviour
for each set of candidate parameter values exists. Identifiability analysis can be used to
uncover problems with model structure, while estimability, on the other hand, is related to
whether parameters can be uniquely estimated using existing experimental data (McLean
and McAuley, 2011).

To evaluate the accuracy (standard deviation) of estimated parameters the Fisher Infor-
mation Matrix (FIM) can be applied. FIM contains information on the measurement un-
certainty and sensitivities of predicted responses to model parameters at all times. The
FIM can be approximated by the number of samples (N), the weighted residual sum of
squares (RSS) and the Jacobian matrix (J) for the set of optimal parameters (p = p) in the
following manner (Karakida and Osawa, 2021; Natal A W Van Riel, 2011),

FIM, = N(RSS) ' JJ" |, (2.7)

The parameter covariance matrix can be calculated as,

cov(p) = FIM, ™ (2.8)

2.2.1 Method

According to Tuveri et al. (2021) the investigated system in equation (2.1) is structurally
identifiable and estimable, making it susceptible to parameter estimation. The experi-
mental data were obtained by running a bioreactor following the procedure given in Sec-
tion 4.2.1. The parameters were obtained through parameter estimation on the experimen-
tal data set of volume, biomass, glucose and CO, values from the off-gas analyzer. The
estimation was performed using a nonlinear least-squares data fitting algorithm (Isqnonlin
© 1994-2023 The MathWorks (2006a)). We assume independent and normally distributed

9
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errors and therefore use the least squares estimator defined as,

N 2
e (0
Gin 2 : || Yik mz,k( ) H
P mazx(

k)
st g1 = F(2:(0),u;) i=0---,N—-1 (2.9)
zo(0) = yo i=0
Omin < 0 < Opmas i=0,---,N

where y is the measurements of V, X, S and CO,, where S is the at-line sugar measure-
ments. z:(6) are the states calculated from the estimated parameters. Volume is not seen as
an important state and is therefore not included in the square estimator, seen by the use of
subscript k, which refers to measurements of X, S and CO,. CDW samples were taken to
verify if calibration curves (Equation (5.3)) were sufficient. max(yy) is used as a scaling
factor to make the solver run more reliably (© 1994-2023 The MathWorks, 2006b). 6,,;x,
0nin and the initial guess, 6, are given in Table 5.2, found by trial and error. The results

of the parameter estimation are presented in Chapter 5.

10



Chapter

Optimization

Optimization involves making the best use of resources to maximize or minimize an objec-
tive, a quantitative measure of the performance of the system (Nocedal and Wright, 2006).
Optimization algorithms are crucial for efficient decision-making in chemical process sys-
tems, where small design and operation changes can yield significant improvements in
efficiency, product quality, environmental impact, and profitability (Biegler and T., 2010).
An optimization problem includes an objective function (¢(x)), a system model (x), vari-
ables, and constraints (c(x), g(x)). A general constrained optimization problem can be

expressed as,

in ¢
e

st c(x) (3.1

0
g(xr) <0

In optimization, the objective function serves as a metric for evaluating the performance of
minimizing (or maximizing) a quantity of interest. This function can take various forms,
such as the cost, profit, or yield of a system. States and variables in an optimization
problem are typically subject to constraints that restrict their feasible values, either as
equality (c(x)) or inequality (g(x)) constraints. Decision variables (x in Equation (3.1))
represent the variables that can be modified to achieve optimal performance. In engineer-
ing problems, decision variables can be thought of as the degrees of freedom that govern

the system’s behaviour.

Dynamic optimization involves solving differential and algebraic equation mathematical
models that are time-dependent (Floudas et al., 1999). The Direct method is a common

approach for solving dynamic optimization problems. This method discretizes continuous

11
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time variables, transforming the problem into a finite-dimensional nonlinear programming
problem (NLP) (Biegler and T., 2010). Multiple shooting and Direct collocation are popu-
lar Direct methods, with other approaches also available, as seen in Figure 3.1. Simultane-
ous methods, such as the previous mentioned, discretize both control inputs and the states,
allowing large-scale NLP solvers to find solutions at specified intervals in a time horizon
problem (Biegler and T., 2010).

DAE
Optimization
Problem

Indirect
Approach

Simultaneous Sequential

Approach Approach

Direct Multiple
Collocation Shooting

Figure 3.1: The figure shows different approaches to solving dynamic optimization problems. The
indirect approach is also known as Optimize then Discretize. The sequential approach is more
commonly known as Single Shooting (Biegler and T., 2010).

3.1 Review on Controllers and State Estimators

3.1.1 Controllers

Controller technology is a crucial aspect of commercializing bioprocesses to meet complex
regulations (Luttmann et al., 2012) and improve the efficiency, performance and quality
of current production. One widely used control strategy in the chemical industry is the
Proportional-Integral-Derivative (PID) controller, known for its simplicity and ease of im-
plementation. However, in fermentation processes, simple PI(D) controllers only work
well for a restricted phase as their parameters are static and do not change in accordance
with the system dynamics (Gnoth et al., 2008). There are alternatives to PI(D)s that can
handle non-linearity, like fuzzy control, but these still lack some dynamic adaptability
(Rathore et al., 2021).

To overcome the limitations of PID controllers, alternative control strategies have been

12
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investigated. One such strategy is Model Predictive Control (MPC), a control technique
that takes into account the dynamic nature of the system and can handle multiple inputs
and outputs (Rawlings et al., 2017). MPC has been applied for optimal setpoint tracking in
bioprocesses modelled by basic Monod equations (Ramaswamy et al., 2005; Tebbani et al.,
2008), and utilized to incorporate economic objectives, such as maximizing product yields
(Ashoori et al., 2009; Raftery et al., 2017). One advantage of MPC is its ability to consider
future predictions and operational constraints, enabling early detection of potential issues
and providing system decoupling by capturing the interactions between input and output
variables (Seborg et al., 2016). This does however come at the cost of high computational

costs compared to other control strategies (Rathore et al., 2021).

Another emerging approach in control is the use of reinforcement learning, a machine
learning approach that focuses on optimizing an agent’s behaviour within an environment.
The agent learns to select actions based on observed states to maximize an external re-
ward. Training is typically done through episodes, which consist of sequences of states,
rewards, and actions until a terminal state is reached, with the total reward obtained dur-
ing an episode referred to as the return (Kaelbling et al., 1996). Reinforcement learning
has shown promise in process control applications and has the potential to challenge tra-
ditional MPC and PID controllers (Hedrick et al., 2022; Oh et al., 2022; Pan et al., 2021;
Petsagkourakis et al., 2020; Treloar et al., 2020b; Xie et al., 2020). Its advantage lies in its
adaptability to varying conditions, as demonstrated in the control of microbial co-cultures
in bioreactors (Treloar et al., 2020a). However, a barrier to real-world application is the

requirement for large amounts of training data (Dulac-Arnold et al., 2021).

3.1.2 State estimators

A state estimator is a technique developed to address the lack of system measurements
by providing estimates of unmeasured variables in a process (Gadkar et al., 2005). It has
applications in process monitoring, mathematical model fitting and update, transient data
reconciliation, and feedback control (Salau et al., 2012). By estimating essential variables
that are not directly measured, such as substrate, biomass, and product concentration, state
estimators can be successfully applied for process monitoring and feedback control ensur-
ing the proper functioning of industrial plants (Salau et al., 2012). Several state estimators
for nonlinear systems exist, where the extended Kalman filter (EKF), particle filter (PF)
and Moving Horizon Estimator (MHE) are well-known Bayesian estimators. Bayesian
estimators are a category of estimators that utilize probability distribution estimation to
estimate the state variables of a system based on available data. These estimators assume

13
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Figure 3.2: Summary of the topics presented in the state of the art for state estimators and controllers
of nonlinear processes, and how they are connected. The state estimator receives measurements, y,
from the process, and uses one of the methods listed to provide a state estimate (Z); Artificial Neural
Networks (ANN), Moving Horizon Estimator (MHE), Extended Kalman filter (EKF), Unscented
Kalman Filter (UKF) or Particle Filter (PF). The controller recieves the state estimate () and pro-
vides an input action (u) to the process by using one of the strategies listed; PID, Model Predictive
Control (MPC) or Reinforcement learning (RF).

Process

State estimator

that all variables are stochastic, allowing for the determination of the distribution of state

variables using measured variables (Ali et al., 2015).

The EKF is an extension of the traditional Kalman filter that can handle nonlinear system
models by linearizing them around the current state estimate. It has gained significant at-
tention as a nonlinear state estimator due to its relative simplicity and low computational
requirements, demonstrating effectiveness in handling some nonlinear problems (Salau
et al., 2012). However, the implementation of EKF suffers from numerical challenges
due to linearization, particularly when dealing with highly non-linear processes, it cannot
accurately incorporate physical state constraints (Kandepu et al., 2008), and may fail to
converge when given a poor initial guess of the state (Haseltine and Rawlings, 2004). The
Constrained Extended Kalman Filter (CEKF) is able to incorporate constraints but suf-
fers from similar convergence issues when given poor initial guesses (Salau et al., 2012).
Yousefi-Darani et al. (2020) presents several applications of EKF for cultivation processes
in the period of 1991-2020, while there are other recent applications as in Tuveri et al.
(2021).

Particle Filters (PF) and Unscented Kalman Filters (UKF) are nonlinear estimation tech-
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niques used to address the numerical challenges associated with nonlinear systems. PFs
use a set of particles to represent the probability density function of the system state. By
propagating these particles through the system model and weighting them based on mea-
surement likelihood, PFs provide estimates of the state distribution (Sileshi et al., 2015).
PFs have been applied to several bioprocesses such as; estimating states during penicillin
production (Golabgir and Herwig, 2016; Kager et al., 2018), and online-monitoring of a
cultivation using complex substrate mixtures (Sinner et al., 2021). PFs are flexible in their
application as they do not pose any requirements on the functions or distribution, however,
they suffer from requiring more computational effort than the EKF and cannot deal with
constraints (Stelzer et al., 2017).

On the other hand, UKF is an extension of the unscented transformation to the Kalman
filter. It addresses the limitations of the EKF by using a fixed number of deterministically
chosen sampling points (sigma points) to represent the state distribution. These sigma
points are propagated through the nonlinear function, and the mean and covariance of the
resulting propagation are approximated (Julier et al., 1995). The method yields more ac-
curate state estimates, capturing state uncertainty more effectively compared to estimates
obtained from the EKF. While this approach incurs a higher computational cost, it remains
less demanding than PFs (Kandepu et al., 2008). The UKF has been applied to several
bioprocesses such as; bioprocess monitoring of a Fed-Batch cultivation of C.glutamicum
(Tuveri et al., 2021) , joint estimation for state and parameter in the bio-dissimulation
process of glycerol to 1,3-PD in batch culture (Zhu and Feng, 2012) and to estimate the
glucose and biomass in lactic acid fermentation (Gonzalez et al., 2015).

Moving Horizon Estimation (MHE) is a state estimator that has gained increasing attention
in recent years (of Science, 2021). MHE formulates the state estimation problem as an op-
timization task, where the objective is to minimize the discrepancy between the predicted
system outputs and the measured outputs over a finite time horizon. MHE is particularly
useful in cases where the system is subject to noise and uncertainty, and when the system
model is nonlinear or time-varying (Rawlings et al., 2017). The MHE can easily incorpo-
rate constraints in states and parameters, recover from bad initialization and if expanded,
handle delayed multi-rate measurements (Elsheikh et al., 2021b; Kiihl et al., 2011b). MHE
has been implemented in-silico on several bioprocess (Elsheikh et al., 2021b; Kim et al.,
2023; Taylor et al., 2022; Tebbani et al., 2013), however, the implementation of MHE com-
bined with experimental data is slim with only two applications in Goffaux and Wouwer
(2008); Tuveri et al. (2022) to the best of our knowledge.

Artificial Neural Networks (ANN) have also been investigated as state estimators. ANN
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refers to a network of interconnected nodes, known as neurons, where the connections be-
tween neurons (edges) have associated weights. The output of each neuron is calculated
by considering the weighted inputs. Typically, an ANN consists of an input layer, an out-
put layer, and one or more hidden layers in between. The hidden layers help in capturing
complex relationships and patterns in the input data, while the output layer provides the
final predictions or estimates. ANNSs are therefore capable of learning complex mappings
between inputs and outputs and can be trained to estimate system states based on avail-
able measurements (Wang, 2003). Helleckes et al. (2022) discusses several examples of
ANNSs used as soft sensors in bioprocesses. ANN are black box models, meaning no a pri-
ori knowledge about the system is required (Wilson and Zorzetto, 1997). However, high
dependency on correct initial conditions for the process states and a significant body of
experimental data limits its performance (Kriling et al., 2008).
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3.2 Model Predictive Control

3.2.1 Theory

Model predictive control (MPC) is a widely used optimization-based strategy that can
handle multivariable, constrained systems. When faced with nonlinear constraints and
dynamics, nonlinear MPC (NMPC) strategies can be used. We will continue using the
term MPC, not NMPC although we are referring to a nonlinear MPC. It is crucial that the
system model is a good representation of the actual process, as an inaccurate model will
result in inaccurate predictions of the output variables (Seborg et al., 2016). In MPC, a
quadratic objective function is used to control variables, driving them towards their de-
sired values while stabilizing input variable profiles (Biegler and T., 2010). This quadratic
programming problem (QP) is solved online, and can be defined by the MPC QP equation,

np N
13151 %(Z(le - ySP,i)TQ(yi —Yspi)t+ Z(Uz - Uifl)TRl (i —ui—1)
nlm i
+ ) (i —usp) Ro(ui — usp;))
i
st xip1 = F(zg,u;) i=0,--,m,—1
xo = 2(0) i=0,---,m
y; = C(x4,u;) i=1,---,my
G(zi,ui) <0 i=1,,m,
Umin < Ui < Umaz =0, 0
— Atmar < Aty < Atpmar =1, ny,
Atypar =0 T=Ny+ 1,0,

(3.2)
where x is the state variables, y is the system output, u is the input variables, n,, is the
control horizon, and n,, is the prediction horizon. ¢ty is the maximum difference the
manipulated variable may vary at each iteration, while w,,;,, and .4, are boundary values
for the MV.

The objective function in Equation (3.2) consists of three terms. The first term serves to
track the state and penalize deviations from the desired state. The remaining two terms
are regularization terms that promote MPC stability and minimize the utilization of inputs.
The tuning parameters ), R, and Rs determine the relative significance of these terms,
allowing for prioritization based on specific requirements (Biegler and T., 2010). It is
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worth noting that the inclusion of all terms in the objective function is contingent upon the
user’s preferences and intentions. The constraints in Equation (3.2) encompass both hard
constraints (set as equal to or less than zero) and soft constraints. Hard constraints must
be strictly satisfied throughout, but in certain scenarios, it may be inevitable to encounter
constraint violations, leading to an infeasible Quadratic Programming (QP) solution. An
example of such violations can occur when output variables are affected by significant
disturbances. To tackle this challenge, the concept of soft constraints is introduced, allow-
ing for violations within a penalty framework incorporated into the cost function. This

flexibility empowers MPC to effectively handle constraint violations.

At each time step, an optimization problem is solved over a prediction horizon (the time
span where states are included), minimizing an objective (cost function) while obeying the
system constraints. When an optimal solution is found, the first component of the vector
of control inputs is extracted and applied to the system. As this procedure is repeated at
each time instant, the strategy is called a receding-horizon (Morari and Lee, 1999).

Multiple shooting

Direct multiple shooting is a simultaneous approach (see Figure 3.1) used to solve a dy-
namic optimization problem, for example, MPC problems, as it simultaneously solves the
optimization problem and the system ODEs. By applying multiple shooting, the MPC can
be solved as a nonlinear program with continuity constraints over the subintervals. This
approach, using segmentation, provides a computationally efficient way to solve MPC
problems, even for systems with unstable or nonlinear dynamics (Biegler and T., 2010).
Multiple shooting is a method used to solve dynamic optimization problems by splitting
the time horizon into multiple subintervals. This allows the ordinary differential equation
(ODE) to be transformed into a set of nonlinear algebraic equality constraints, referred to
as gap constraint, seen as c(w) in equation (3.5). It is this equality constraint that provides
a continuous solution, and forces the states (x) to become decision variables in addition to

the inputs (u). The subintervals, [y, t;+1] are in the range
to <tp < <tpo1 <ty =ty

where to and ¢y mark the start- and end-time of the discrete-time horizon respectively, and
n is the number of subintervals. At each subinterval, the input function, u, is parameter-
ized,

u(t) = ugt € [tk,tey1], k=0,...,n—1 3.3)
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The parameterization of the initial condition of the state vector and the state trajectories,

yr = h(xr), k=0,....,n—1

i = far(t), uk, t), t € [tr, tht1)

(3.4)

The multiple shooting NLP can then be defined in the following manner including the

continuity constraints,

min J(w)
ho - ZL’(O)
h1 — X
st c(w) = hs — 1 =0
3.5)
hn-1—2xNn_2
g(ho,uo)
g(w) = <0
g(hN—l, UN—1)

where J, is the objective function, and the parameter vector for all subintervals becomes

w = [T, U, T1,U1, -, TN_1,UN_1,2Zn] " . (Tamimi and Li, 2009)

3.2.2 Method

To enable continuous cultivation to gather experimental data for parameter estimation,
and perform real-time Moving Horizon Estimation (MHE), it was necessary to establish
an input profile for the inflow and outflow. This section presents the method employed to

determine the optimal input profile.

A nonlinear MPC was implemented with multiple shooting to find an optimal feeding pro-
file for a continuous cultivation process. The NLP was solved using IPOPT, an interior
point optimizer embedded in CasADI. The integration was solved using the CVODE inte-
grator also embedded in CasADI. The goal of the optimization was to find an optimal feed
profile that drives the system to a cell density of X,.; = 15 g/L throughout the process
runtime of 24 hours. The optimization problem is formulated so that the first term of the
objective function is setpoint tracking and the second term penalizes for large input usage.
The quadratic non-linear problem is formulated in the following manner,
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grgg %(Z(Xi = Xresi)TQ(Xi — Xyepi) + Z Au] Ry Auy)
st xip1 = F(ag,uy) i=0,--,mn,—1

x(0) = xg i=

0<V;<25 i=1---,np

0<X; i=1,--,m,

0<S; i=1,-,ny

0<COy; i=1,--,mp

0 < u; <0210 i=1,

0.0178 < u; < 0.210 t > 13h

— 0.8Umaz < Aty < 0.5Umaq i=1,--,nm

Au; =0 i=nm+1,---,n
(3.6)

The feed (F7,,) is considered to be the manipulated variable (MV), and the biomass density
(X) is the controlled variable (CV). To ensure continous cultivation Fj,, is set equal to
Foui. Ay is the difference between the current input and the previous input. Increases in
input are limited to small changes, while decreases in input can have larger changes. This
is done to imitate the pump found in the laboratory. The prediction and control horizon is
presented in Table 5.1 and the input profile and dynamics in Chapter 5.

3.3 Moving Horizon Estimation

3.3.1 Theory

Moving Horizon Estimation (MHE) is a constrained optimization-based method utilized
for estimating the current state of a dynamic system. The MHE estimates the state by
minimizing the sum of squares errors between past measurements and state or output pre-
dictions over an N-length sliding window while incorporating the dynamic system model
and constraints. The finite sliding-estimation window in MHE is a way to overcome the
computational burden associated with solving the full optimization problem for the entire
trajectory of states online (Alexander et al., 2020).

MHE can be understood as the dual of Model Predictive Control (MPC), a more well-
known constrained optimal control problem on a finite horizon (Kiihl et al., 2011a). The
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Figure 3.3: The figure shows the concept of MHE. The figure is reprinted and edited with permis-
sion from "A comparative review of multi-rate moving horizon estimation schemes for bioprocess
applications" (Elsheikh et al., 2021a).

duality between MHE and MPC becomes apparent as both are iteratively solved at each
sampling instance. While MPC predicts the future states, the MHE estimates previous

states.

The MHE problem, described by Kiihl et al. (2011a), can be expressed as a minimization

problem,

N N-1
. . 2 2 2
min | |& —zllp, + D i — b))l + D lwilly,

i=L i=L

S.t. X411 = F(xi, Uj, wi) t=L,--- N—1 3.7

The goal of the optimization is to find the values of z; and w; that minimize the sum of
squared error subject to the system model and constraints. The objective function consists

of three terms. The first term,

&r, — xr||p, , of the objective function takes into account
the arrival cost, which summarizes the effect of measurements prior to the estimation win-

dow up until point L. Z;, denotes the optimal state estimate, while x 1, represents the actual

N
state at that point. The second term, Y ||y; — h(x;) ||€/ is the measurement error cost, it

i=L
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penalizes the distances of the expected output, h(z), (based on the state estimates) from

N—-1

the actual measurements, y. The third term, ) ||wl\|$%, takes into account the process
i=L ’

noise cost, so the evolution of the state in terms of the state equation. Incorporating pro-

cess noise in the model is essential to account for model integration errors and modelling

approximations.

The weighting matrices, Pr, V, and Wy, are defined as,
P,=pP7 Y2 vV =R Wy = Qi Y/? (3.8)

Here P, R, and )y, are covariance matrices for error, measurement noise (v;) and process
noise (w;). N is the number of data points in the estimation horizon, z; the vector con-
taining the states, u; the vector containing inputs, and F'(z;, u;, w;) describes the system
model, which can be non-linear. P is the uncertainty of the estimated value, reflecting
the confidence in the initial condition. So i.e. a high value, or high arrival cost, means
high uncertainty in estimates. This means the algorithm trusts the initial state values more,
which reduces how much the state value is adjusted by the estimator. R is the measure-
ment uncertainty, so the values in R determine how the estimator weights prediction errors
for the different measurements. @, is the model uncertainty that reflects the confidence in
the process model predictions, so the values in ), affect how much the estimator punishes
variations in states (Elsheikh et al., 2021b). The process noise matrix, (), can be obtained

by multiplying the Jacobian matrix GG, by the covariance matrix ,,,

Qr=GCr-Qu G}, (3.9)
where G}, is the Jacobian
G = [ M ] (3.10)
Oow

Gt is the matrix of partial derivatives of the system model with respect to the noise vector
w € R™%*+"%  The tuning parameter w is different from w which is the process noise

random variable. (), is a constant related to the statistics of the parameter uncertainty

The covariance matrix (,, has variances of the noise parameters (#) and states (z) along
the diagonal, and covariances of zero for all parameters off the diagonal. The MHE is
tuned by adjusting values in the diagonals of the covariance matrices R and @,,, and the
weights for each state in the initial arrival cost (Fp). R and @), have constant values, while
G, and P are updated on every iteration by finding an analytical solution to the arrival cost,
described in detail in Kiihl et al. (2011Db).
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Orthogonal collocation on finite elements

To solve the MHE NLP, orthogonal collocation can be applied. Direct Orthogonal Collo-
cation on Finite Elements is a method used to solve dynamic optimization problems. The
approach is based on a full discretization scheme, meaning that the optimization problem
is discretized using symbolic variables instead of using an ODE/DAE solver. This is in

contrast to shooting methods that use solvers to approximate the solution.

X
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Figure 3.4: Discretization of a continuous time representation using Orthogonal Collocation. This
is done to allow large-scale nonlinear programming (NLP) solvers to find solutions to differential
equations at specified intervals in a time horizon.

To implement this method, the solution of the ODE is approximated using N polynomials
of order K for a given horizon. The polynomial is approximated between each time step
using d collocation points. The position of the collocation points is determined by the
roots of either Gauss-Legendre, Gauss-Radau, or Gauss-Lobatto in an [0,1] interval and
must be scaled to the system’s interval (Biegler and T., 2010). The gap constraint ensures

that the last state in the current interval is equal to the first state in the new interval,
Tk — Th,end = 0 (3.11)

To approximate the derivative of the function x(t), we require a function q(x) ~ dx/dt.
This function is approximated using a range of orthogonal polynomials by partitioning the

horizon into finite elements and performing collocation on each element. For the ODE,

B Fe0),1),2(0) = 20 (3.12)

, the solution of the differential equations at discrete time points can be approximated by

the Lagrange interpolating polynomial of order K,
zK(t):a0+a1t+-~-+aKtK (3.13)
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By using Lagrangian interpolation polynomials and K+1 interpolation points, the state of
each finite element (7) is given by the sum of the product of Lagrangian polynomials and

their respective states,

K
2(t) =D ()75 (3.14)
=0
where
(1) = ﬁ T Tk (3.15)
’ Wty 9T TE '

The collocation equations for the DAEs can be written as a system of equations consisting
of a set of equations that enforce the collocation conditions, and another set that enforces
the algebraic equations that must hold at each time point. The collocation equations for

the DAEs can be written as,

K
Z@(T}c)zi]‘ — hif (Ziky Yik, Wik, p) =0, i € {1, .. .,N},k IS {17 . ,K} (3.16a)
j=1
9(Ziks Yiks wik,0) =0, € {l,..., N} ke{l,...,K} (3.16b)
as given in (Biegler and T., 2010).

These equations can be solved using nonlinear programming solvers to find solutions to
differential equations at specified intervals in a time horizon. Where the NLP for orthogo-

nal collocation on finite elements can then be written as,
min P (w)

(3.17)

where w = [z, Zquaa, u]”, ¢ and g are equality and inequality constraints respectively.

3.3.2 Method

As mentioned in the introduction, the code for the MHE was developed during the project
thesis. However, the MHE must be adapted with relevant parameters, tuned, and made

compatible to run in real-time in the laboratory.
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MHE was implemented in real-time in the laboratory for continuous cultivation using a
predefined feeding profile (see Section 3.2.2). The MHE NLP was solved using IPOPT,
an interior point optimizer embedded in CasADI. The MHE optimization horizon, or win-
dow was divided into N segments and each segment’s states were approximated with an
interpolation polynomial of degree 3. A sampling time, k, of 60 seconds was used. The
setup of the MHE can be seen in Figure 3.5 and the final tuning and horizon presented in
Table 5.5 in Chapter 5.

Gas Feed

Air » Gas out
F'n > F
i ¢‘ il | |_ out
Sugar media < s o
, 2

Antifoam

Liquid Feed

Acid
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I error cost cost I Qx
0 N I |
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X -> Optimization (MHE) > XN
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| Constraints Process Model |
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Figure 3.5: The figure shows the experimental setup (top section) and the MHE implementation
(below measurements box). The blue dashed box represents the objective (cost) function presented
in Equation (3.23). The orange tightly-dashed box is the optimization constraint, including the
process model and constraints in states and input. The MHE is provided with an initial state for all
states (V, X, S, CO,). Measurements (V/, X, CO,) are given to both arrival and measurement error
cost, while the measurement error covariance matrix is calculated at every iteration, to weight for
the model noise. The MHE optimizes the objective at every time step resulting in a state estimate,
and the measurement error covariance matrix, 0 to weight for the model noise. Fj,, provides the
broth with sugar media and Fj,+ removes broth from the system. Sugar is measured at-line as a
refererence, with a 40-minute delay.
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For the MHE the input vector is given by,

u(t) = [ Fin(t)  Fou(t) ] (3.18)

The outputs from the system are,
y = h(z) (3.19)

Where the measured outputs, for the MHE input vector, is given by,
y=|VvV X co, (3.20)

meaning we are blind to sugar measurements. Volume is indirectly measured as it is cal-
culated based on the system flows (see Appendix B.3). The dynamic model is given in a
continuous time form and discretized by orthogonal collocation on finite elements to allow
for an explicit relationship for the current state x1 based on the past states x; and inputs

uy,. The discretized system becomes,
Tpy1 = F(xg, up) + wy (3.21)

yr = h(xr) (3.22)

where k denotes the sampling time and wy, is the process noise random variable related to

Q-

The objective of the MHE problem is to find the states, V, X, S, CO,, and their noise by
minimizing the least squares problem. From equation (3.23) the decision variables are x;

and w;. The MHE problem is formulated as follows,

N N-1
. . 2 2 2
min (nu —apld, 3 s - b+ Y winwk.)
o i=L i=L

(3.23)
S.t. xi+1:F(xi,ui)+wi ’L‘:L,"',Nf].

Tmin < Ti < Tmaa Z:L7,N

where L is the start of the horizon and N is the last point in the horizon. The arrival
cost, as mentioned in the theory (section 3.3.1) compensates for not including the previous
measurements, and the process noise cost includes the process uncertainty and noise from
L to N-1. The states are constrained to have positive values with z,;, = [0,0,0,0] as
a lower bound, to avoid negative and therefore unfeasible concentrations. The estimated
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states x; 41 are required to follow the system dynamics, given as an equality constraint by
F(z,u) + w.

@, is the covariance matrix given as,
Qw = dZag |: w“?naz (UKS wkd wYXS wYXCOz wy wx ws o‘)6402 (3'24)

where w; for the parameters is set to the variance (o?) found through parameter estimation.

The measurement noise covariance matrix is given as,
R = diag [ Ry Rx Rco, } (3.25)
The initial error covariance is given as,
Py=diag| Poy Pox Pos Poco, | (3.26)
which according to Schneider and Georgakis (2013) be found by,

Py = diag((& — x0)" (& — 20)) (3.27)
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Chapter

Bioprocess

The first section of this chapter provides an introduction to bioprocesses, aiming to famil-
iarize the concepts even for readers without a background in biotechnology. Further, a
detailed description of the experimental setup will be presented, providing readers with a
comprehensive overview of the components and steps necessary for running a bioreactor,
along with their respective significance in the bioprocess. For more in-depth information,
readers can refer to Appendix B for the detailed procedures for running the bioreactor and

medium protocols.

4.1 Introduction to bioprocesses

Bioprocesses are used to produce a wide range of products, including biopharmaceuticals,
food ingredients, and biofuels (Kadner and Rogers, 2023). Bioprocesses are biochemical
processes in which microorganisms consume carbon sources, such as sugar, to produce
bulk chemicals like amino acids, lipids, and proteins. The major physical and chemical
factors that affect microbial growth are temperature, moisture, pH levels, oxygen levels
and nutrient availability. Microorganisms require an available source of chemical nutri-
ents, including an energy source, a nitrogen source, as well as minerals like phosphate and
trace elements, and nutrient growth factors (KGaA, 2023b). Trace elements are chemical
elements required by living organisms in minute amounts, while growth factors are organic

compounds that the organism cannot synthesize itself (Britannica, 1998).

Microorganisms grow in a medium, which is a liquid or solid nutrient mixture that contains
all of the nutrients required for a microorganism to grow. Rich media and minimal media

are two types of culture media used for growing microorganisms in the laboratory.
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Rich media refer to nutrient-rich culture media that comprise a diverse blend of organic
and inorganic compounds, including peptone, yeast extract, and glucose. These media,
which include amino acids, vitamins, and minerals, collectively offer an abundant supply
of nutrients, fostering optimal growth conditions. Examples of rich media include Luria-
Bertani (LB) medium, Tryptic Soy Broth (TSB) and 2xYT. In contrast, minimal media
contain only a minimal set of nutrients, typically a single carbon source, nitrogen source,
and inorganic salts. Minimal media are used for specific purposes such as to grow wild-

type microorganisms or to select for or against the growth of specific microbes.

The microbial growth cycle for a batch culture consists of four stages: lag, exponential,
stationary, and death phases, as shown in Figure 4.1 (Madigan et al., 2018a). The biomass
growth rate, measured by cell dry weight (CDW) or optical density (OD), indicates which

growth phase a culture is in.
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Figure 4.1: A typical growth curve for a bacterial population. The figure shows that the optical
density (turbidity) increases with the increase in cell number. A viable count measures the cells in
the culture capable of reproducing. The figure is reprinted with permission from (Liu, 2017).

In general, cell cultivation for bioprocesses can be carried out in three modes of operation:
Batch, Fed-Batch, and Continuous, where Batch is the most common. The difference lies
in the use of input and outputs, and the occurrence of feeding. Several feedings are given
in a Fed-batch, whereas in continuous cultivation, the sterilized medium is introduced
at a consistent rate, while the broth is removed at the same pace. Continuous bioreac-
tors, such as chemostats, provide precise and controlled process conditions, and constant
nutrient supply, and can achieve steady-state conditions resulting in more stable and pre-
dictable bioprocess performance (Graf et al., 2019). While continuous cultivation may
entail higher costs (Graf et al., 2019) and a higher risk of contamination (HT, 2023), the
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operation mode can be justified by its potential for process control, less manual labour
(compared to consecutive batch processes), less waste, and continuous product production
(Raftery et al., 2017). Moreover, as discussed by Kyslik and Prokop (2010), continuous
cultivation has emerged as a potent research tool, demonstrating its potential for advancing
new technologies and serving as a production processing mode for various bioprocessing

applications.

Effective mixing in tanks plays a vital role in aerobic growth by preventing oxygen from
inhibiting the growth process. Good mixing entails setting the stirrer at an appropriate
speed, typically around 200 rpm, to ensure uniform dispersion of nutrients and transfer
of oxygen from the gas phase to the liquid phase. The oxygen level in the liquid can be
monitored through pOs,. Care should be exercised when using antifoam agents, as they can
impede efficient oxygen transfer by altering surface tension. This may lead to the collapse
of gas bubbles within the bioreactor, reducing the available surface area for gas exchange
(HT, 2023).

4.1.1 Corynebacterium glutamicum

Figure 4.2: Raster electron micrograph of Corynebacterium glutamicum ATCC 13032. Figure
reprinted with permission from Wittmann and Becker (2007).

Corynebacterium glutamicum (C. glutamicum) ATCC 13032, see Figure 4.2, is the wild-
type microorganism investigated in this thesis. C. glutamicum is a gram-positive, aer-
obic, rod-shaped bacteria, that serves as an industrial workhorse due to its capabilities
in producing various amino acids, such as L-glutamate and L-lysine, which are essential
components of many food and feed products (Kalinowski et al., 2003; Lee et al., 2016;
Wendisch et al., 2016). The optimal growth conditions for C. glutamicum include aerobic
conditions, a neutral pH (7), temperatures ranging from 25-37°C, absence of light, and
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the presence of preferred carbon sources such as glucose, fructose, or sucrose (Eggeling
and Bott, 2005). Remarkably, C. glutamicum has exhibited robust growth under fluc-
tuating conditions, including varying oxygen and carbon dioxide levels, as well as pH
fluctuations. This adaptability makes it well-suited for industrial-scale fermentations that
involve dynamic environmental conditions (Bdumchen et al., 2007; Follmann et al., 2009;
Nishimura et al., 2007).

Indeed C. glutamicum has a wide range of physiological properties that make it a ver-
satile workhorse. These properties include being generally recognized as safe (GRAS)
for human use, fast growth to high cell densities, genetic stability due to the absence
of a recombination repair system, and a limited restriction-modification system (defence
against foreign DNA) (Gopinath and Nampoothiri, 2014; Hartbrich et al., 2000; Vertes
et al., 1993). Furthermore, C. glutamicum exhibits no autolysis and maintains metabolic
activity even under growth-arrested conditions, which is advantageous for industrial pro-
cesses (Inui et al., 2004). C. glutamicum exhibits a broad spectrum of carbon utilization,
including pentoses, hexoses, and alternative carbon sources. It also demonstrates stress
tolerance to different carbon sources, further enhancing its adaptability in diverse envi-
ronments (Becker et al., 2016; Kawaguchi et al., 2006; Sasaki et al., 2008). While C.
glutamicum possesses numerous advantageous traits, its growth rate is relatively lower
compared to some other bacteria, which can impact the overall productivity of fermenta-
tion processes (Graf et al., 2019).

4.2 Experimental setup

4.2.1 Method

Figure 4.3 shows the experimental setup of the continous cultivation experiment. To pre-
pare the inoculum, the C.glutamicum wildtype ATCC13032 strain was streaked on an agar
plate and incubated at 30°C overnight. Subsequently, a preculture was established by se-
lecting a single colony from the plate and inoculating it into 5 mL of 2xYT broth. The
preculture was then incubated overnight at 30°C and 200 rpm. From the preculture, 1
mL was transferred to a shake flask containing 200 mL of 2xYT broth, and this process
was repeated twice. The shake flask cultures were incubated overnight under the same
conditions. After incubation, the optical density (OD600) of the shake flask culture was

measured, and the necessary amount of inoculum for the reactor, which had an initial
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Figure 4.3: Scheme of the laboratory set-up for the microbial cell culture experiments. The system
has 1: a set of acid/base, sugar source and antifoam pumps, 2: an inlet liquid flow at the top of
the bioreactor, 3: air valve, 4: air mass flow controller, 5: pH Controller (pHC) with a defined
set-point (pHsp) that trigger the acid/base pumps, 6: in-situ probes including near-infrared (NIR)
measurement with an Optek OD probe or the Back Scaterring Buglab probe 7: heating and cooling
jacket, 8: pO2 controller that has a defined set-point (pO2-sp) that controls the stirring of the Rushton
type impeller, 9: temperature controller (TC) with a defined Temperature set-point (Tsp), 10: in-
situ non-invasive measurement devices, gas multiplexer, 13: blue in one sensor that monitors the
02 and CO2 concentration in the gas phase. The down process consists of a Numera system that
takes samples from the liquid phase and it consists of a 14: liquid multiplexer that samples from the
different bioreactors, 15: a dilution module, 16: filtration module, 17: an auto-sampler that preserves
the analytes into a vial. The filtered sample can also be at-line monitored in the 18: high-performance
liquid chromatography (HPLC). The bioreactor setup can be monitored with 19: Eve/Lucullus and
the information can be transferred to Matlab via OPC and API. Figure reprinted with permission
from Dr.Pedro Antonio Lira.

working volume of 1.5 L, was calculated using the following formula:
1500mL - OD1 = XmL - measured OD @4.1n

The cells were then harvested by centrifugation, the supernatant was discarded, and the
cell pellet was washed twice with CGXII medium before being resuspended in 75 mL of
CGXII. The inoculum along with 300 mL of a glucose solution (15 g/L in broth), 1 mL
of a trace element solution, and 1 mL of a biotin solution were then added to the reactor,

already containing 1125mL CGXII, to constitute the reactor broth.

The 2xYT used consists per liter of : 16 g Tryptone, 10 g Yeast Extract and 5 g NaCl.
The composition of the feeding solution for the reactor, or enriched CGXII per litre is as
follows: 200 g glucose, 50 g (NH4)2SO4, 5 gurea, 1 g KH,POy, 1 g K;HPO4 0.01325 g
CaCl, x2H,0, 0.25g MgSO4 x 7H,0, 1 mL of biotin solution (0.2 g/L), 1 mL of a trace
element solution (consisting of 16.4 ¢/L FeSO4x7H,0, 10 g/L MnSO4xH,0), 1 g/L
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ZnS04x7H;0, 0.31 g/L CuSOy, and 0.02 g/L NiCl, x 6 H,O. The CGXII medium used
for washing has no glucose, biotin, or trace elements and a lower amount of (NH4),SO4 at
20 g/L. The reactor was prepared and autoclaved according to the protocol in Appendix B
with the latter CGXII medium of 1125 mL.

A ~1day ~14h ~14h

Agar plate Complex media Complex media Minimal media Culture broth
5mL 200 mL x2 75 mL 1.5L

Figure 4.4: Growth media preparation steps. Cells are streaked on an agar plate and incubated to
develop into colonies. A single colony is picked and inoculated in increasing volumes of complex
meadia to grow a pre-culture. The necessary amount preculture is collected, centrifuged, washed
and resuspended in minimal media to be used as inoculum for the culture broth.

The cultivation was performed in a 2.7L baffled stirred tank reactor, called Labfors5 (Infors
AG, Switzerland). The reactors were equipped with two six-bladed Rushton impellers,
with a distance from the bottom of the reactor of 6 cm and 12 cm. The feed consisted of
enriched CGXII with 200 g/L of glucose. An absorbance probe for biomass monitoring
was used to measure biomass in terms of CDW in the culture broth and an infrared oft-
gas analyzer for offgas composition, details are in Section 4.2.2. Dissolved oxygen was
controlled above 30% by stirrer speed (200-1100 rpm), while the reactor was kept at 1 bar
and aerated with 2 NL/L (normal air liter per minute) pressurized air. The temperature
was kept at 30 °C and the pH was maintained at 7 by the addition of KOH (4M) and
H;PO4 (10%). Offline CDW samples were taken using a supersafe sampler from Infors
HT. Antifoam was added manually as necessary, as no ports were available for automatic
antifoam dispensing.

4.2.2 Signal processing

Signals were collected every 60s from measurement devices and processed through the
Process Information Management System Lucullus (Securecell, Switzerland) taking sig-
nals from both the Labfors 5 reactor (Infors HT), and HPLC as seen in Figure 4.5. The
volume is an indirect measurement (see Appendix B.3) based on signals from the inlet
and outlet weighing scale. The off-gas analyzer is a non-invasive infrared (IR) measure-
ment device (BlueInOne Ferm, Blue-Sens GmbH) that measures the concentration of CO,

in the outflow in a range between 0%—25%. The offgas calculations can be found in Ap-
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pendix B.8. Signals from the absorbance probe (wavelength range 840-910 nm) were con-
verted to CDW by using the calibration curves seen in Figure 5.2. The absorbance probe
is an invasive near-infrared (NIR) probe (ASD12-N Absorption Probe, Optek GmbH) that
measures absorbance in the culture broth in a range of concentration units (CU). The range
of the absorbance probe is listed as 0-4 CU, however, during experimental runs, a satura-
tion was repeatedly experienced around 1.4 CU. The calibration curve from CU to cell dry
weight (CDW) is given in Chapter 5. If the NIR measurement is lower than 0.0136, CDW

is set to zero to avoid negative values. This is also done for very high (> 3) CU values.
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Figure 4.5: The figure shows the signal processing during an experimental run. Lucullus is a bio-
process software that integrates all elements of a bioprocess workflow into an intelligent suite on a
fully digital platform. Lucullus can provide real-time data from the INFORS reactor and pass it to
the Matlab script. The script can be used to control and monitor various aspects of the bioprocess.
Numera is an advanced bioprocess sampling solution, automated samplings can be scheduled from
Lucullus. In the same way, analyses through HPLC can be scheduled from Lucullus in combination
with the Numera samplings.

4.3 Calibration

Figure 4.3 shows the many measurement devices and instruments used to monitor and
control the bioreactor and process. To ensure accuracy all of these instruments must be
calibrated. For this thesis, a calibration of the OD probe and pump was performed. A

calibration for the acid and base pumps was also performed, in addition to finding a relation
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between the laboratory spectrophotometer (OD600) and cell-dry weight (CDW), seen in
Appendices B.5 and B.7. Acid and base addition was observed insignificant for volume

changes and therefore not included in the model, and this section.

4.3.1 Peristaltic pumps

The pumps used in the laboratory are peristaltic pumps. They work by compressing a
flexible tube to move fluid through the pump, creating flow. The setpoint of the feed is
given in a flow rate (L /h), so a conversion to pump unit is necessary. The flow rate can be
calculated by dividing the volume of fluid being pumped per unit time. The unit of pump
rate in the lab is expressed in terms of percentage and can operate somewhat above 100
%. The most important advantage of using peristaltic pumps in biological processes is that
the pump ensures the liquid is sterile. Other advantages are bidirectional flow and easy

maintenance (Pump, 2022).

The setup for the calibration was one large container filled with tap water (assuming den-
sity equal to 1 g/cm?®) placed on a scale and connected to a second container through a
silicon tube that passed through the peristaltic pump. The pump percentage was varied
between 2 and 100 and the flow was measured indirectly by logging the weight change
after 60s. This was repeated four times. The result of the calibration is seen in Chapter 5,

with the corresponding regression curves.

4.3.2 OD probe

The signals obtained from the absorbance probe, were as mentioned operating within a
wavelength range of 840-910 nm, and reported in concentration units (CU). In order to
interpret these values in a meaningful unit, such as cell dry weight (CDW) measured in
g/L, a calibration curve was required. In addition, a calibration curve was also made
between the OD600 measurements of the Thermo Scientific Genesys 10S UV-Vis Spec-
trophotometer and CDW. The results of the latter are shown in Appendix B.7.

To obtain the experimental data a bioreactor experiment was performed, in the same
method as described above in Section 4.2.1 for two reactors, but with sugar feeding of
200 g/L and an initial sugar concentration of 15 g/L. The feeding profile was chosen ar-
bitrarily (see Appendix B.6 ) to ensure sufficient sugar for growth. Samples of the reactor
broth were taken in triplicates every 1.5 h through a super safe sampler, for a duration of
14 hours. At every sampling the OD600 was measured (at high OD 1:10 or even 1:100 di-
lutions with CGXII were made), a 9 mL sample was centrifuged and washed with CGXII,
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then resuspended to 9 mL, and 3 mL x 3 filtered under vacuum onto a preweighed 0.22um
MCE membrane filter. The filter cake was then dried for 72 hours at 70 °C and weighed

again.

The regression was performed on the means of the CDW values at each sample time,
as the samples were dependent. The result, the sinusoidal regression curve, is shown
in Equation (5.3) and Figure 5.3. A linear regression was also performed, which can
be seen in Appendix B.7 and figure 5.3 where each growth region has it’s own curve.
The corresponding linear equations are given in Equations (B.3) and (B.4). Although the
R? and RMSE are quite similar for both the linear and sinusoidal fit, the advantage of a
sinusoidal curve is that we do not have to "switch" between linear curves at specific NIR

values.

4.4 Evaluation of experimental methods

In this section, we will perform a qualitative evaluation of the experimental methods. The

purpose is to show transparency and what contributed to uncertainty in the results.

One of the main sources of uncertainty when working with living organisms is the potential
for mutations and variability within a population. Despite our efforts to select a single
colony, mutations (transcription error 1 per every 100,000 nucleotides (Pray, 2008)) can
occur during cultivation, potentially leading to unexpected dynamics. However, since the
cultivation time is relatively short and we are working with a wild-type (not GMO) under
neutral circumstances this is unlikely to have an effect. Another source of uncertainty is
contamination, which may occur after autoclaving and filtering, but the effect of this on

the cultivation is seen as low.

Regarding the preparation of media and inoculum, we used two different weighing instru-
ments with different accuracies (Sartorius ENTRIS64- 1S Analytical Balance 0.0000 g
and VWR LP-1002 precicion balance 0.00 g) to ensure precise measurements. However,
slight inaccuracies in weighing the compounds should not have affected growth behaviour
since we added the media compounds (see Section 4.2.1) in such an amount that only the
substrate should be the limiting growth factor. The accuracy of adjustable micropipettes
is affected by factors such as the viscosity of the fluid, the angle at which the micropipette
is held, and the user’s skill in operating the micropipette. These factors became apparent
when taking CDW samples, as more liquid remained in the test tube of 9 mL as the CDW
increased, despite filtering 3x3 mL each time.
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The offgas analysis in the BlueInOne can measure CO; in the range of 0 - 25 Vol.%.
To measure accurately it must be heated and calibrated with the air used during the ex-
periments. The volume is indirectly measured by measuring the weight difference in the
inlet and outlet bottle over a timestep (see details in Appendix B.3). These weights were

affected by vibrations in adjacent equipment.

The OD measurements are dependent on correct NIR-CDW calibration. The NIR mea-
surements in themselves have no physical meaning, other than showing us the changes
in density, so the calibration is necessary to have a quantitative measure in the form of
CDW. The OD probe must be calibrated to O (run on the Infors reactor) before adding the

inoculum for the correct reading.

Sugar measurements were done at-line in the HPLC, which was calibrated and heated
before experimental work by authorized lab personnel. There may arise leaks in the HPLC
tubing and column, resulting in faulty sugar measurements. This is not a problem for the
MHE, as the samples may be rerun after the experiment (this was the case for the parameter
estimation and run 1), but this is an issue if proceeding with multirate MHE. In addition,

the amount of sugar measured is highly dependent on how the program is calibrated.

During the run pH and the pO2 level is adjusted automatically through setpoint control by
the INFORS system. The pH adjustment contributes to some volume changes, but these
were registered as insignificant compared to the total volume. The pO2 level is adjusted
by the stirring rate. If the setpoint is set too high the stirring speed may disturb other
measurements in the reactor. If the setpoint is set too low the oxygen becomes a limiting
factor for bacteria growth. In Figures B.7, B.8a and B.8b the pO2 level for the runs can
be seen, where manual adjustments to the setpoints are made to reduce disturbance and
to provide a sufficient oxygen level. Antifoam was added manually during the run. From
Figure 5.11 we see that a high level of antifoam may disturb the probes, here seen as an
unnatural spike in the OD measurement around 3 hours. Too much antifoam will also
affect the surface tension, and at its worst decrease the rate of oxygen transfer from the gas

to the liquid phase.

Finally, the reproducibility of the results is dependent on instruments and calibrations at
other laboratories, but most of all the methods used in the preparation of the pre-culture.
Therefore, it is important to consider the potential sources of uncertainty when interpreting

the results obtained in this study.
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Results

The aim of this thesis, presented in Section 1.2, was to investigate whether Moving Hori-
zon Estimation (MHE) can address the challenge of limited sugar measurement in bio-
processes, allowing for reliable real-time state estimation in a continuous cultivation of
Corynebacterium glutamicum (C. glutamicum). To accomplish this, the real-time perfor-
mance of MHE as a sugar estimator was tested in a C. glutamicum continuous cultivation

process with only three available measurements.

The results of the two real-time experiments can be seen in Figures 5.9 and 5.11. To
achieve the intended input profile for continuous cultivation, shown in Figure 5.4, Model
Predictive Control (MPC) was used on the nominal model given in Equation (2.1) using
the tuning parameters provided in Table 5.1, and model parameters from a Fed-Batch

cultivation of C. glutamicum from Tuveri et al. (2021).

In order to ensure the proper functioning of the MHE, it was necessary to tune it to the
specific process investigated, the continuous cultivation of C. glutamicum. This involved
performing parameter estimation, described in Section 2.2.1, on the experimental data ob-
tained by following the method outlined in Section 4.2.1, using the input profile obtained
from MPC (Figure 5.4). The resulting parameters and variances for the MHE and covari-
ance matrix (@), ) are presented in Figure 5.6 and Table 5.2. Further, the MHE was tuned
using R, (), and Py, presented in Table 5.5, and the resulting performance of the MHE

tuning is shown in Figure 5.8.

The overall performance of the MHE, quantified by Root Mean Square Error (RMSE), is
presented in Table 5.4. The acquisition of experimental data involved running a bioreactor,
which involved extensive laboratory work, including calibration. The peristaltic pumps
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responsible for inlet and outlet flows were calibrated, and the calibration results are shown
in Figure 5.1. The Optical Density (OD) probe was also calibrated in order to measure
values from the bioreactor in terms of Cell Dry Weight (CDW) [g/L]. The calibration
results, represented by a sinusoidal curve, are presented in Figures 5.2 and 5.3.

The two real-time MHE runs encountered some issues, such as incorrect initial conditions
and disturbances in the OD measurements caused by antifoam. To assess the impact of
tuning on the estimations, the MHE was retuned offline by varying R and P, as shown
in Figures 5.13 and 5.15. Additionally, to observe the calibration curve’s effect on the
biomass and sugar estimates, the MHE was rerun offline using a linear calibration curve

for the OD measurements.

The results for each section are presented below and further discussed in Chapter 6 in
relation to the initial objective outlined in Section 1.2. It should be noted that while all red
crosses in the figures are labeled as "offline", the CDW samples are obtained offline, while

the sugar measurements are obtained at-line.

5.1 Calibration

Figure 5.1 shows the experimental data and calibration curve for the two peristaltic pumps
in the laboratory used for inlet (Figure 5.1a) and outlet (Figure 5.1b) flow. The coefficient
of determination (R?) is 0.99988 for pump 1, and 0.99922 for pump 2. The R? value
indicates that the linear fit can explain nearly 100% of the variation in pump flow. The
average deviation of the observations from the regression, the RMSE, is 0.24362 for pump
1, and 0.87418 for pump 2. The largest deviations are observed at high flow rates, however,
this does not affect the subsequent experiments since only flow rates below 1 L/h are
utilized. The graphic results are shown in figure 5.1, while the calibration equations are

given below,

Pump %, = 45.2176 - Flowrate 6.1

Pump %, = 44.7667 - Flowrate 5.2)
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Figure 5.1: Calibration of the peristaltic pump in the lab. Experimental data are seen as blue dots
showing the measured flow rate at a given pump percentage. Grey ’+  markers show outliers that
have been excluded from the regression. The red curve is the linear regression curve. The R? tells
us how many of the variations in data points (pump flow) the linear fit, y, is able to explain. The
root-mean-square error (RMSE) is the average deviation of the observations from the regression.

Calibration of the OD probe was performed by running a bioreactor according to Sec-
tion 4.3.2 for 20 hours and taking CDW samples every 2-3 hours. The calibration curve
from NIR ([CU]) to CDW ([g/L]) was obtained by regression to a sum of sine functions
from experimental data. This method of obtaining the curve is further elaborated on in

Section 4.3.2. The sinusoidal regression curve found was,

CDW = —15212.545-sin(2.0532-NIR 4 2.5893) +15197.4245 -sin(2.055-NIR +2.5887)

(5.3)
Figure 5.2 shows the obtained sinusoidal calibration curve for NIR to CDW, along with the
experimental CDW and the corresponding OD probe (NIR) values. A linear curve was also
considered (Appendix B.7), but the sinusoidal curve had a slightly better fit, so this was
chosen. The coefficient of determination (R?) is 0.98596 indicating that the sinusoidal
fit is able to explain nearly 100% of the variation in CDW within the tested intervals
of 0-1.2 CU for the NIR-signal and 0-25 g/L for CDW. The average deviation of the
observations from the regression, the RMSE, is 1.3903. Figure 5.3 shows the conversion of
NIR measurements to CDW using the calibration curve, along with manual CDW samples
and NIR values from the OD probe for the 20-hour cultivation. Apart from the second to
last sample, the converted NIR is in close proximity, 4 1 g/L, to the actual CDW samples.
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Figure 5.2: NIR-CDW calibration curve for the OD probe. Experimental measurements of NIR
vs. the mean value of the triplicate CDW measurements are seen as blue dots. The red curve is the
sinusoidal fit, where the CDW regression equation is given at the top of the figure. The coefficient
of determination (R?) and RMSE are in the box below the equation.
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Figure 5.3: Convertion of NIR measurements to CDW, for visual evaluation of fit during the culti-
vation and comparison to experimental CDW. The blue curve with purple points "0’ shows the NIR
converted to CDW with the calibration curve given in Equation (5.3) and at the top of the figure. The
red "x’ show the experimental CDW and the orange band, the variance in the triplicates. The blue
’+’ are the NIR values from the OD probe at the CDW sampling time.
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5.2 Optimal feeding profile

An optimal feeding profile for the 24-hour cultivation was found using in-silico MPC with
setpoint-tracking of biomass at 15 g/L, given in Equation (3.6). The initial conditions used
were z¢ =[Vp, Xo, So, CO2 0]T4=[1.5,0.8, 15, 0]7. To enable continuous production the
flow in and out was set to be above 0.0178 L/h! after the batch phase. The control horizon
was set to two minutes, and the prediction horizon 20 minutes, found by trial and error.
The MPC tuning and system parameters are shown in Table 5.1. For the in-silico MPC
simulations, model parameters from Tuveri et al. (2021) were applied (listed in Table C.1),
because parameter estimation for the continuous cultivation had not been performed yet,

as this depended on determining an input profile first.

The MPC suggests initiating feeding at 10 hours (purple profile) in Figure 5.4, but based
on experience from previous runs (Figure B.1), the feeding was adjusted to start after 6
hours (red profile) to account for the approximate duration of the batch phase before sugar
depletion. The dynamics associated with the feeding profile are shown in Figure 5.5. The
increase in cost, seen in Figure 5.4 is due to divergence from the biomass setpoint (see
purple X profile in Figure 5.5) due to keeping a sustained flow.

Table 5.1: Parameters for the MPC given in equation (3.6) finding an optimal feeding profile. The

time step (dt) and the simulation time (T) are in hours, while the horizons, n,, and n,, are in minutes.
@ and R; are tuning parameters given in Equation (3.6).

Parameter Value
Nyn, 4
Ny 20
T 24
dt 1/60
Q 500 -diag(0, 1, 0, 0)
Ry 100

10.0178 L /h is the lowest registered flow for the peristaltic pump
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Figure 5.4: Optimal input profile (inlet, F;,, & outlet, Fi,,,+) found by MPC. Fixed (shifted) feeding
and flow out are seen in red, the intended input profile for all cultivations. The MPC cost function
is seen in dashed blue and is related to the original optimal flow. For the shifted input, the batch
phase is 6 hours, following an increase in feed, until around 11 hours when the feed is kept constant

at 0.0178 L/h. The volume is kept constant at 1.5 L by the outlet flow.
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Figure 5.5: State dynamics for the optimal flow (purple) found using MPC and the shifted flow (red)
related to the input profiles in Figure 5.4. The dashed black line shows the setpoint for the biomass
(Xgoa1) in Equation (3.6).

5.3 Parameter estimation

Expermental data was obtained by performing a cultivation using the method in Sec-
tion 4.2.1 using the feeding profile found in the previous section (Figure 5.4). Following
the method in Section 2.2.1, the parameters with standard deviation in Table 5.3 were ob-
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tained. 23 data points were used, as 23 sugar measurements were available, with the initial
guess and bounds for the parameters given in Table 5.2. Figure 5.6 shows the experimental
data and integration of the nominal model (Equation (2.1)) using the obtained parameters
in Table 5.2. The feed and flow out during the cultivation are seen in Figure 5.7 where a
large initial addition of feed is observed, before the intended feed is added, shifted by 3
hours. The cause of this deviation was a pause in the experiment due to code glitch. Due
to pump malfunction, the outlet flow does not follow the intended profile as seen inFig-
ure 5.7. Details on the flow anomalies are given in Appendix B.9. The initial state for
parameter estimation was zo = [1.5000, 0.3832, 11.8238, 0]7".

Table 5.2: The initial guess (6p) and constraints ( @min, @maz) for parameter estimation.

Parameter 0,,;, N O maz
Bmaz 0.09 0.22846 0.3
K, 0.001 0.0077687 0.01

kq 0.001 0.0025287 0.009
Yxg 0.1 0.43004 0.5

Yxco, 0.1 0.39328 0.9

Table 5.3: Values of the estimated model parameters in Equation (2.1) with the unit and standard
deviations.

Parameter Description Value Unit Std. Dev.
Imaz Maximum growth rate 0.2296 h=1] 1.000-1073
Kgs Monod growth constant  0.0077556 [g-L~']  9.4749.10~°
ka Death rate constant ~ 0.0025183 (h=1]  4.4482-107°
Yxs S from X yield 042931 [g-g~1] 5.0084-10~3
Yxco, COg from X yield 0.39387 [g-g'] 1.0611-1073

The dynamics in Figure 5.6 show that the volume is not held constant at 1.5 L as intended.
This is caused by difference in flow in and out, seen in the input profile in Figure 5.4. The
fitted data follows the measurement dynamics without being overfitted>. The RMSE for
the parameter estimation shown in Figure 5.6 is 9.0377 for the CDW measurements and
1.4125 for sugar. The RMSE between the online biomass value and the value from the

simulation with parameters from the estimation is 1.8953.

2Qverfitting is the production of an analysis which corresponds too closely or exactly to a particular set of
data, and may therefore fail to fit additional data or predict future observations reliably (Press, 2023).
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Parameter Estimation
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Figure 5.6: Parameter estimation on 23 data points. The header shows the parameter values. The
standard deviations of the parameters are given in Table 5.3. The blue line is the fitted data, found by
integration of the model using the feeding profile in Figure B.7 and estimated parameters. The grey
’+’ is the experimental data used corresponding to the timestamp of the at-line sugar measurements.

The red ’x’ are at-line measurements by HPLC and offline manual CDW samples.
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Flow in & out, parameter estimation
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Figure 5.7: Inlet (blue line) and outlet (red line) flow of the reactor during the cultivation. The
aim of the experiment was to obtain data for parameter estimation. The grey dashed line shows the
intended flow in and flow out during the experimental run. The deviation from the intended feed and
flow out, is discussed in Appendix B.9.
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5.4 Moving horizon estimation

This section presents the three runs MHE was applied on. First, the MHE tuning param-
eters in Equations (3.24) to (3.26) were determined by trial and error to the values shown
in Table 5.5, resulting in state estimates with the lowest possible RMSE. The RMSE for
all MHEs, including parameter estimation is shown in Table 5.4. The horizon length was
determined by trial and error. The tuned MHE was subsequently applied in real-time for

two experiments, as described in Section 4.2.1.

Table 5.4: RMSE for all runs, including Parameter estimation, MHE tuning and the two real-time
MHE runs. The calculation of the RMSE is given in equation (2.6). * The first real-time MHE
experiment seen in Figure 5.9 and ? the second real-time MHE experiment seen in Figure 5.11

Variable Palzame-ter Tuning Real-time' Real-time?
Estimation

| Model MHE | Model MHE | Model MHE
X 9.0377 | 1.2145 08651 | 0.4021 0.8626 | 2.1408  1.3877
S 14125 | 24968 0.8440 | 11233  1.6319 | 1.15986 2.6279

5.4.1 MHE tuning

Figure 5.8 shows the results of the MHE tuning using the obtained parameters in Table 5.2.
The initial state given to the MHE was 2o = [1.5000,0.3832,11.8238, 0]7. The values
of Qw, R and P, are listed in Table 5.5. As a similar experimental setup was used as
in Tuveri et al. (2021), the same P, values from this paper were applied instead of using
Equation (3.27). The optimization horizon, N, used was 40 minutes. The horizon is equal
to the current time it takes to process sugar measurements in the HPLC. For each iteration,
the average runtime was 0.3469s, while the maximum was 1.2296s. From the experimental
data seen in Figure 5.8 sugar is observed present in the system when feeding commences
at 6 hours. After around 6 hours there are two jumps in the MHE sugar estimate which
are observed to occur simultaneously with the short feeding in Figure 5.7. Both for the
biomass (X) and CO; there is a small offset between the MHE and measurements as the

system moves towards a steady state.
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Table 5.5: Tuning parameters used for MHE. R, Q,, and P; are described in Section 3.3.2. R; and
Qu,: and Po+, ; describe the values along the diagonal of each matrix corresponding to the measure-
ment or parameter in the column ’Variable’.

Variable Type R; Q.. P},
A\ State/measurement 0.1 1.0-102 2.0946 - 10~8
X State/measurement 0.1 9.0-1072 1.0975 - 1072
S State/measurement - 1.0-1072 1.0852 - 104

CO, State/measurement  0.001 1.0-10°1 2.1669 - 1075
Pmaz Parameter - 1-108 -
K, Parameter - 1-10-8 -
k4 Parameter - 1.9786 - 109 -
Yxg Parameter - 2.508 - 10~° -
Yxco, Parameter - 1-1078 -
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Figure 5.8: MHE tuning with estimated parameters. The black dashed line is the integration of the
nominal model, the blue line is the MHE state estimate, the grey dashed line the online measure-
ments, and the red ’x’ offline CDW and at-line sugar measurements. The initial state given to the
MHE was zo = [1.5000, 0.3832, 11.8238, 0]~
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5.4.2 Real-time MHE

The initial state given to the MHE for the first real-time MHE run was xy = [1.5000,
0.3798, 11.0000, 0.0006}T. In the first real-time MHE run, it can be observed from Fig-
ure 5.9 that an incorrect initial condition for sugar was provided to the MHE. This is
apparent as the MHE starts at 11 g/L, while the first HPLC measurement indicates a value
just below 10 g/L. The reason for this discrepancy was most likely a leak found in the
HPLC. All samples were rerun offline after the experiment, resulting in a lower initial
sugar value at ~10g/L. The MHE estimates a slightly higher sugar consumption rate than
what the HPLC measurements show, while the nominal model has a slightly lower sugar
consumption rate compared to the MHE. Figure 5.10 shows that the cultivation had failed
feeding, so no feed was given. There is registered flow out at ~6h, however, this was a
disturbance caused by a fluctuation in the outlet scale, not actual flow.

MHE real-time run 1
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Figure 5.9: First real-time MHE experiment. The black dashed line is the integration of the nominal
model, the blue line is the MHE state estimate, the grey dashed line is the online measurements, and
the red ’x’ offline CDW and at-line sugar measurements. The initial state given to the MHE was
zo = [1.5000,0.3798, 11.0000, 0.0006]T. This experiment had a failed feeding, so no feed was
given in the 24-hour cultivation (see Figure 5.10). The CO, measurements do not follow the model
dynamics, as is the case for the other experimental runs.
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Figure 5.10: Inlet (blue line) and outlet (red line) flow of the reactor during the real-time MHE run
1. The grey dashed line shows the intended flow in and flow out during the experimental run. The
deviation from the intended flow out is discussed in Appendix B.9.

The initial state given to the MHE for the second real-time MHE run was xy = [1.5000,
0.3601, 10.0000 0], In Figure 5.11 the MHE estimates a significantly higher sugar con-
sumption rate than what the HPLC measurements show. Sugar was present in the system
when feeding began at 6 hours. The nominal model has a lower sugar consumption rate
than the MHE, closer to the HPLC measurements. In Figure 5.12 we see that the feed pro-
file is slightly below the intended feed. Also here there was an issue with the outlet flow
resulting in manual removal of br