
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g

in
fo

rm
at

ik
k

M
as
te
ro
pp

ga
ve

Lars Murud Aurud

Improving Fetch and Issue
Bandwidth in the Vortex GPU

Masteroppgave i Datateknologi
Veileder: Magnus Jahre
Juni 2023

Lars Murud Aurud

Improving Fetch and Issue Bandwidth
in the Vortex GPU

Masteroppgave i Datateknologi
Veileder: Magnus Jahre
Juni 2023

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for datateknologi og informatikk

Assignment Text

The objective of this master thesis is to work towards leveraging the Vortex soft
Graphics Processing Unit (GPU) to create an FPGA-accelerated evaluation infra-
structure for GPUs at NTNU’s Computer Architecture Lab. The starting point of the
thesis is the (potential) performance issues that the candidate identified in Vortex
during his project work by enabling Vortex to generate CPI stacks. In the master
thesis, the candidate should propose, implement, and evaluate solutions to at least
one of the (potential) performance issues. If time permits, the candidate should
broaden the analysis by evaluating the observed problems and proposed solutions
with benchmarks from commonly used GPU benchmark suites (e.g., Rodinia).

iii

Abstract

While software simulation is a common method for performing computer architec-
ture research, it is slow for highly parallel architectures such as GPUs. A detailed
simulation of a fully sized GPU can take several days. FPGAs are reconfigurable
integrated circuits, which can be used to accelerate computer architecture simu-
lations. They are thus a middle ground between slow software simulations and
expensive hardware prototypes.

Vortex is a RISC-V based GPGPU capable of being FPGA-accelerated, thus be-
ing a good candidate for GPU architecture research. In my project thesis [1], I
added support for generating cycles per instruction (CPI) stacks for Vortex, which
enabled me to identify potential performance bottlenecks in Vortex’ frontend and
schedulers. These issues inhibit Vortex from exploiting parallelism and hiding
stalls, reducing its throughput.

In this thesis, I implement and evaluate three improvements to the Vortex
microarchitecture. First, I implement ready scheduling, enabling Vortex to know
which warps are ready before issuing them. Secondly, I improve the throughput
of Vortex’ frontend by allowing it to fetch instructions without stalling. I also im-
plement stall prediction to make Vortex learn when stalls are required. Finally,
I implement a greedy then oldest (GTO) scheduling algorithm and compare its
performance with the existing loose round-robin (LRR) scheduler.

In my project thesis, the generation of CPI stacks was closely connected to the
existing issue scheduler. It only sampled the stall cause of the warp selected by the
scheduler. In this thesis, I expand upon this method, sampling the stall cause of all
warps in the issue stage. This gives a greater overview of why Vortex is stalling.
Additionally, I broaden Vortex’ lacking benchmark suite by porting 16 benchmarks
from Rodinia, a commonly used set of GPU benchmarks. This involves altering
core components of Vortex’ system for reading performance data and changing the
benchmarks’ source code to accommodate for some missing OpenCL functionality.

Implementing ready scheduling, removes all missed opportunities for issuing
warps. For benchmarks with low-latency stalls, such as psort, this change is enough
to hide the stalls, reducing CPI by 20%. Ready scheduling does however have less
impact on benchmarks bounded by long-latency stalls. The frontend improve-
ments are able to increase the frontend bandwidth, reducing the average num-
ber of frontend-related stalls by 71%. For sfilter, all frontend stalls are removed.
This is because the improved frontend only stalls to handle control flow, and sfil-

v

vi L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

ter does not have any control flow instructions. However, the CPI is not reduced
to the same degree. On average, the combined improvement of the frontend and
ready scheduling, reduces CPI by 5.4%. This is because the latencies are too long
to be hidden by the current Vortex configuration, which is too small. The bottle-
neck is thus moved to the backend. The size of the Vortex configuration is also the
reason why there is no significant performance difference between using an LRR
and GTO scheduler.

Sammendrag

Softwaresimulering er en mye brukt metode for å forske på datamaskin arkitek-
turer. Dessverre er det tregt, spesielt for større parallelle arkitekturer, som GPUer.
En detaljert simulering av en GPU kan ta opptil flere dager. FPGAer er konfig-
urerbare integrerte kretser som kan brukes for å akselerere datamaskin arkitektur
simuleringer. De er dermed en middelvei mellom trege softwaresimuleringer og
kostbare prototyper.

Vortex er en RISC-V basert GPGPU som kan FPGA-akselereres, og er dermed
en god kandidat for forskning innen GPU arkitekturer. Gjennom min prosjektop-
pgave [1], la jeg til støtte for å generere CPI stacks for Vortex. Det gjorde at jeg
identifiserte mulige ytelsesproblemer knyttet til Vortex sin frontend og skedulerer.
Disse problemene hindrer Vortex i å utnytte parallellitet og skjule venting, som re-
duserer gjennomstrømningen av instruksjoner.

I denne oppgaven, implementerer jeg og evaluerer tre forbedringer til Vortex
sin mikroarkitektur. Først implementerer jeg klar skedulering, som gjør det mulig
for Vortex å vite hvilke instruksjoner som er klare før de blir utstedt. For det andre,
øker jeg gjennomstrømningen av instruksjoner i Vortex sin frontend ved å gjøre
det mulig å hente instruksjoner uten å blokkere. I tillegg implementerer jeg stans-
forutsigelse for at Vortex skal lære når den må blokkere. Til slutt implementerer
jeg en grådig så eldst (GTO) skeduleringalgoritme, og sammenlikner dens ytelse
med den eksisterende loose round robin (LRR) skedulereren.

I prosjektoppgaven min var genereringen av CPI stacks koblet til den eksist-
erende skedulereren. Den samplet bare stansårsaken til instruksjonen valgt av
skedulereren. I denne oppgaven utvider jeg denne metoden ved å sample stansår-
saken til alle instruksjonene. Dette gir et bedre overblikk over hvorfor Vortex står
stille. I tillegg utvider jeg Vortex sin testbenk ved å overføre 16 testprogrammer fra
Rodinia, et mye brukt sett med testprogrammer for GPUer. Denne overføring in-
volverer å endre sentrale komponenter av Vortex sitt system for å lese ytelsesdata,
og endre testprogrammene sin kildekode for å tilrettelegge for noe manglende
OpenCL funksjonalitet.

Implementasjonen av klar skedulering fjerner alle sykler hvor instruksjoner
er klare, men ingen blir utstedt. For testprogrammer med lav-latens blokkader,
som psort, er denne endringen nok for å skjule at andre instruksjoner må vente.
Dermed fører det til en CPI reduksjon på 20%. Klar skedulering har en mye mindre
effekt på testprogrammer som er bundet av høy latens. Forbedringene av fron-

vii

viii L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

tenden øker frontendens båndbredde og reduserer det gjennomsnittlige antallet
blokkeringer relatert til frontenden med 71%. For sfilter, blir alle blokkeringer re-
latert til frontenden fjernet. Dette er fordi den forbedrede frontenden bare blok-
kerer for å håndtere flytkontroll, mens sfilter ikke har noen flytkontroll instruks-
joner. CPIen blir derimot ikke redusert i samme grad som blokkeringene relatert
til frontenden. Ved å kombinere alle endringene, blir den gjennomsnittlige CPIen
redusert med 5.4%. Dette er fordi latensen blir for stor til at den kan skjules av den
nåværende Vortex konfigurasjonen, som er for liten. Flaskehalsen blir dermed flyt-
tet til backenden av GPUen. Størrelsen på Vortex konfigurasjonen er også grunnen
til at det ikke er noen forskjell i ytelse for LRR og GTO skedulererene.

Contents

Assignment Text . iii
Abstract . v
Sammendrag . vii
Contents . ix
Figures . xi
Tables . xiii
Code Listings . xv
Acronyms . xvii
Glossary . xix
1 Introduction . 1

1.1 Motivation . 1
1.2 Assignment Interpretation . 2
1.3 Contributions . 3
1.4 Outline . 3

2 Background . 5
2.1 GPU Overview . 5

2.1.1 GPU Programming Model . 5
2.1.2 GPU Architecture . 6

2.2 Warp Scheduling . 8
2.3 GPU Simulation . 9

3 Changes to Vortex . 11
3.1 Vortex Architecture . 11

3.1.1 Vortex ISA . 11
3.1.2 Pipeline . 13
3.1.3 Workload Distribution . 15

3.2 Scheduling Algorithms . 16
3.2.1 Ready Scheduling . 16
3.2.2 Greedy then Oldest . 17
3.2.3 Matching Warp and Issue Schedulers 18

3.3 Frontend . 19
3.3.1 No Stall Scheduling . 19
3.3.2 Stall Prediction . 20
3.3.3 Back Pressure Reduction . 22

4 Adding Rodinia to Vortex . 23

ix

x L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

4.1 Reading Performance Data . 23
4.2 Adapting Benchmarks for Vortex . 25

4.2.1 Offline Compilation . 26
4.2.2 Memory Allocation . 26
4.2.3 Selecting Work Sizes . 27

4.3 Fast-Forward, Warm-Up and Early-Exit 27
5 CPI Stacks for Vortex . 29

5.1 GPU Stall Inspector . 29
5.2 CSV Overview . 30
5.3 Improving CSV . 31

6 Experimental Setup . 33
6.1 Vortex Configuration . 33
6.2 Benchmarks . 33
6.3 IDUN Cluster . 36

7 Results and Evaluation . 39
7.1 CPI Stack Overview . 39
7.2 Reduction of Control Stalls . 40
7.3 Utilization of Functional Units . 42
7.4 Memory Stalls . 43
7.5 Workload Distribution . 46
7.6 Warp Scheduling . 48
7.7 Sensitivity Analysis . 50

8 Conclusion and Further Work . 53
8.1 Conclusion . 53
8.2 Further Work . 54

Bibliography . 55

Figures

1.1 High-level overview of the Vortex GPU 2
1.2 Thesis outline . 4

2.1 Relation between the kernel, thread blocks, threads and warps . . . 6
2.2 High-level block diagram of a GPU . 7
2.3 Thread block scheduling . 8
2.4 Demonstration of how LRR and GTO selects warps for scheduling . 9
2.5 Demonstration of how LRR and GTO handles long-latency stalls . . 9

3.1 Vortex RISC-V 5-stage pipeline of a streaming multiprocessor 12
3.2 Clustering of streaming multiprocessors in Vortex. 12
3.3 Illustration of Vortex’ icache-stage. 14
3.4 Illustration of Vortex’ issue stage . 14
3.5 Demonstration of the unready baseline issue scheduler 16
3.6 Illustration of the new issue stage. 17
3.7 Implementation of greedy then oldest (GTO). 17
3.8 Demonstration of Vortex’ find-first warp scheduler. 18
3.9 Illustration of the improved icache-stage. 20
3.10 Illustration of the stall table. 21
3.11 Illustration of back pressure from the ibuffer to the icache-stage. . . 22

4.1 Timeline of the three stages of multi-kernel benchmarking. 25
4.2 Timeline explaining fast-forward, warm-up and early-exit. 28

5.1 Examples of TIP-inspired stall classification with 4 warps in an SM. 31
5.2 Flowchart for CSV’s cycle attribution. 32

6.1 Vortex simulation stack . 34
6.2 Dcache hit rates over time during startup. 36

7.1 Normalized CPI stacks before and after the changes. 40
7.2 Normalized CPI attributed to the frontend 41
7.3 Normalized CPI for benchmarks with missed schedule opportunities. 42
7.4 Normalized CPI for benchmarks where memory stalls are revealed . 43
7.5 Average bandwidth usage between the L2 cache and main memory. 43

xi

xii L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

7.6 Average dcache hitrate . 44
7.7 Average memory latency on logarithmic scale 45
7.8 Distribution of executed instructions in clusters for Hotspot3D . . . 46
7.9 Distribution of executed instructions per SM. 47
7.10 Normalized CPI stacks for benchmarks with idle cycles 48
7.11 Normalized CPI stacks comparing schedulers. 49
7.12 Normalized CPI stacks when using 8 warps per SM. 50
7.13 Normalized CPI stacks with double the available memory bandwidth 51
7.14 Normalized CPI stacks when using only L1 caches 52

Tables

4.1 Rodinia benchmarks added to Vortex 27

6.1 Configurations for the Vortex architecture. 34
6.2 Overview of benchmarks and the adjusted input sizes. 35

xiii

Code Listings

4.1 Example of using the perf macros to create and use the initialization
and dump kernels . 25

xv

Acronyms

ALU arithmetic logic unit. 15, 30

ASIC application specific integrated circuit. 10, 54

BPR back pressure reduction. 22, 39, 40, 49, 50

CAL computer architecture lab. 2, 10

CPI cycles per instruction. v–viii, xi, xii, xvii, 1–3, 29, 39–43, 48–53

CSR control status register. 13, 15, 23

CSV CPI stacks for Vortex. xi, 1–3, 29–32, 53

FPGA field-programmable gate array. v, vii, 2, 10, 25, 33, 54

FPU floating point unit. 15

FU functional unit. 6, 16

GPGPU general purpose graphics processing unit. v, 1, 10

GPR general purpose registers. 15

GPU graphics processing unit. v, vii, viii, xi, 1–3, 5–8, 10, 15, 23–26, 30, 48, 54

GSI GPU stall inspector. 29–31

GTO greedy then oldest. v–viii, xi, 8, 9, 17–20, 39, 40, 45, 48, 49, 53

HPC high-performance computing. 1

IL intermediate language. 9

IPDOM immediate postdominator. 11

ISA instruction set architecture. 10, 11, 26

LRR loose round-robin. v–viii, xi, 8, 9, 16–19, 39, 45, 48, 53

xvii

xviii L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

LSB least-significant bit. 21

LSU load-store unit. 15, 30, 44

MLP memory level parallelism. 6, 51

NoC network on chip. 6, 45, 46, 48, 51

NSS no stall scheduling. 19, 20, 22, 39–41

PC program counter. 11, 20, 21

ROP render output unit. 10

RTL register transfer level. 10, 29

SIMT single instruction multiple threads. 1, 5, 11

SM streaming multiprocessor. xi, xii, 2, 6–8, 11–13, 15, 19, 23, 24, 27, 28, 30,
31, 33, 34, 42, 45–48, 50, 51, 54

TB thread block. xi, 5–9, 13, 15, 18–21, 26, 27, 40, 41, 45, 46, 48–51, 54

TLP thread level parallelism. 6

UUID universally unique identifier. 19

Glossary

PoCL PoCL (Portable Compute Language) is an open source implementation of
the OpenCL 1.2 standard with some OpenCL 2.0 features. 26

RISC-V RISC-V is an open instruction set architecture based on RISC (Reduced
Instruction Set Computer) principles. v, vii, xi, 10–12, 26

Rodinia Rodinia is a benchmark suite designed for heterogeneous computing in-
frastructures with OpenMP, OpenCL and CUDA implementations. v, vii, 3,
26

Vortex Vortex is an open source RISC-V based GPGPU architecture aiming at en-
abling architecture research and FPGA-accelerated simulation. v–viii, xi, xiii,
xvii, 1–3, 5, 10–15, 18, 19, 23–30, 33, 37, 39, 40, 42–45, 48, 50, 51, 53, 54

xix

Chapter 1

Introduction

1.1 Motivation

Computer architects and engineers have for a long time been able to increase com-
puter performance by increasing clock frequencies and the reduction of feature
sizes following Moore’s Law [2]. However, with the end of Dennard scaling [3],
we have hit a power wall [4], forcing designers to look at other possibilities for
increasing performance.

Accelerators are specialized hardware for a specific domain or application, and
they are a key component of improving computing power in high-performance
computing (HPC). Graphics processing units (GPUs) are by far the most common
type of accelerator [5], as most desktop and laptop computers have dedicated
GPUs. GPUs utilize SIMT and exploit data level parallelism to achieve high through-
puts for large parallel workloads. In the beginning, they were mainly used for
graphics applications, but later generations of GPUs consists of a set of highly
parallel and programmable cores for more general purpose computation [6]. Due
to the prevalence of GPUs, and the increased possibilities for general purpose
computation, GPU research is becoming more essential.

Vortex [7] is an open-source GPGPU with a focus on enabling architecture
research. Vortex comes with its own simulation environment, giving cycle-accurate
software simulations. The main attraction of using Vortex in GPU research is
that the simulation can be FPGA-accelerated. This bridges the gap between slow
software simulations and expensive prototyping. FPGA-acceleration also allows
for simulating larger systems than what is realistically possible in software. Being
able to simulate larger systems is important to be more representative of real
world GPUs.

In this thesis, I continue the work done in my project thesis [1] and the master’s
thesis of M. Rekdal [8]. In my project thesis, I implemented CPI stacks for Vor-
tex (CSV) breaking down, and classifying the cycles of Vortex. I used CSV to
further investigate the performance of Vortex. I found that Vortex was stalling
mostly because the available instructions were waiting for memory requests to
resolve, making it latency bound. This was possibly due to problems with Vortex’

1

2 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 1.1: High-level overview of the Vortex GPU based on [7]. The overview
also shows how the tasks and contributions relate, and where in the project the
contributions are made.

schedulers and frontend. The issue scheduler was at times unable to issue ready
instructions, and the frontend was struggling to fetch enough instructions. This
reduced Vortex’ throughput and its ability to exploit parallelism.

Figure 1.1 provides a high-level overview of the Vortex GPU and its environment.
It also shows how the tasks and contributions presented in Section 1.2 and 1.3
relate to Vortex and to each other. I have first and foremost proposed and imple-
mented improvements to the frontend and schedulers of Vortex’ streaming multi-
processors (SMs). On average, these changes give a 71% decrease in frontend
related stalls and a 5.4% decrease in CPI. Additionally, I have broadened the
existing benchmark suite by porting 16 benchmarks from Rodinia [9, 10]. Lastly,
I improve CSV, to give a better overview of why Vortex is stalling, allowing me to
give a better evaluation of the improvements.

1.2 Assignment Interpretation

In this thesis, I will continue the work done in my project thesis [1]. The overarching
goal of the project- and master thesis is to aid the Computer architecture lab (CAL)
at NTNU to simulate and evaluate GPUs using FPGAs. I define the following list
of tasks based on my interpretation of the assignment text:

T1 Propose and implement a set of improvements to the Vortex GPU based on
results and CPI stacks obtained in my project thesis.

T2 Improve CSV to give a better overview of the issue stage.
T3 Evaluate the implemented improvements.
T4 If time permits, evaluate the observed problems and proposed solutions us-

ing a commonly used GPU benchmarks suite such as Rodinia.

Chapter 1: Introduction 3

Task T2 was added during the development of the improvements, as I dis-
covered that my existing version of CSV was too connected to Vortex’ issue sched-
uler. This blocked CSV from giving a good overview of the issue stage and stall
causes.

1.3 Contributions

In this thesis, I make the following key contributions:

C1 I propose and implement changes to Vortex’ fetch, decode and issue stage to
increase fetch and issue bandwidth, solving the problems identified in my
project thesis.

C2 I improve upon CSV, enabling it to identify the stall cause for all warps in
the instruction buffer and attributing them accordingly.

C3 I evaluate the implemented improvements using CPI stacks and other col-
lected performance metrics. I find that the changes move the frontend bot-
tleneck to the backend of the Graphics processing unit (GPU), showing that
Vortex is unable to hide latency stalls.

C4 I expand Vortex’ benchmark suite by porting a majority of the Rodinia bench-
marks. Additionally, I improve core components of Vortex’ mechanisms to
collect performance metrics, making it more accurate and allowing multi-
kernel programs to be used for benchmarking.

The tasks and contributions are linked one-to-one, i.e. Tx↔ Cx. Figure 1.1
also describe how the tasks and contributions relate and where in the project the
contributions are made.

1.4 Outline

Following is an outline of the rest of the thesis:

• Chapter 2 covers background information regarding GPUs, the GPU pro-
gramming model and GPU simulation.
• Chapter 3 first describe in detail the main components of Vortex, and why

the frontend is a bottleneck. Then it covers my proposed changes to solve
the problems.
• Chapter 4 contains details regarding how I ported a wide range of Rodinia

benchmarks to run on Vortex.
• Chapter 5 describes my methodology for collecting performance metrics to

generate CPI stacks.
• Chapter 6 includes information regarding the experimental setup and Vor-

tex configuration.
• Chapter 7 contains the results and evaluation of the proposed changes, in

addition to a sensitivity analysis.
• Chapter 8 contains the conclusion and thoughts regarding further work.

4 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 1.2: Outline of the thesis. Chapter 3, 4, 5 and 7 contain the contributions
made by me.

Chapter 2

Background

2.1 GPU Overview

Graphics processing units (GPUs) are designed for executing highly parallelizable
workloads. They achieve high throughput by exploiting SIMT. This section will
first cover the GPU programming model, before describing the general architec-
ture of a GPU.

2.1.1 GPU Programming Model

OpenCL is a commonly used programming framework for heterogeneous paral-
lel computing for cross-vendor and cross-platform hardware. As Vortex supports
OpenCL, I will refer to the OpenCL programming model [11], although the con-
cepts described are transferable to CUDA. The program running on the GPU is
known as the kernel. The kernel is a function which can be executed in paral-
lel over a predefined number of dimensions. The kernel is divided into a set of
threads, also referred to as work-items. As illustrated in Figure 2.1, these threads
are grouped into thread blocks (TBs) which are also known as work-groups or co-
operative thread arrays (CTAs).

All the threads execute the same kernel function in an N-dimensional domain
over a region of memory, i.e. the threads execute the same instructions on different
data, based on their thread and TB index. The size and number of dimensions of
the TBs are determined by the local work sizes. The dimensions of the kernel grid
and the number of TBs are then given by the global work sizes divided by the
number of threads per TB. Both the local and global work sizes are given by the
application when executing the kernel on the GPU.

After defining the grouping of the threads into TBs, each TB will be executed
concurrently within a compute unit. All the threads within the TB will execute
in lockstep, i.e. they will all execute the same instruction at the same time. An
instruction executed by all the threads in a TB is known as a warp. If the kernel
contains branches, the threads within a TB might diverge and have to execute
different execution paths. As the threads are executed in lockstep, one execution

5

6 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 2.1: Illustration of how the kernel is divided into a grid of thread blocks
with threads running in lockstep. The number of threads in the kernel is determ-
ined by the global work sizes, and the number of threads in each thread block is
set by the local work sizes

path has to be executed before the other. When executing branching paths, threads
are masked out to make only the correct threads execute the instructions. How
this is handled varies based on the architecture of the GPU.

2.1.2 GPU Architecture

A high-level block diagram of a GPU is shown in Figure 2.2. To achieve high
throughput for highly parallel workloads, GPUs dedicates a large number of its
transistors to computation. GPUs have a number of streaming multiprocessors (SMs)
all having a set of parallel execution cores. The SMs can execute a set of logically
independent threads by executing each thread on an execution core. The threads
do however run in lockstep, as the control logic is shared among the execution
cores.

Typically each SM have a dedicated L1 cache, and share an L2 cache with the
other SMs in the same cluster. These caches are often smaller than CPU caches as
GPUs are less latency sensitive. By having multiple TBs allocated to each SM, the
GPU can mask stalls by interleaving their warps. As SMs have multiple functional
units (FUs) to execute different instructions, it is likely that if a warp stalls, a
warp from another TB can be executed. This results in a high degree of thread
level parallelism (TLP) and memory level parallelism (MLP). Due to the amount
of MLP, GPUs require high memory bandwidth [12]. The NoC and memory system
have to handle this high bandwidth requirement, which is why GPUs typically use
specialized memory types such as GDDR or HBM.

Chapter 2: Background 7

Figure 2.2: High-level block diagram of a GPU

When a kernel is executed on a GPU, the TBs have to be divided among the
SMs. This is the job of the TB scheduler. The TB scheduler attempts to balance
the workload evenly among the SMs during execution. Figure 2.3 shows an ex-
ample of how a TB scheduler might distribute TBs among SMs. For Nvidia GPUs,
it attempts to maximize TB occupancy [13], i.e maximize the number of TBs in
SMs at all times. This is done by periodically obtaining information from every
SM regarding the available resources over a dedicated network, and selecting the
SM best fit for the next TB. The TB scheduler can account for factors such as data
locality when selecting the best fitting SM. In the case of clustered SMs, the TB
scheduler can also aim at distributing TBs evenly among the clusters, or map close
TBs to the same cluster [14]. Having good load balancing will allow the SMs to ex-
ecute the kernel efficiently and balance the load evenly to obtain high utilization
of the SMs and reduce idling.

8 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 2.3: Thread block scheduler scheduling TBs in a round-robin order among
the SMs in the same cluster, but attempting to map neighbouring blocks to the
same cluster to exploit locality.

2.2 Warp Scheduling

The warp scheduler is a part of the SM’s control logic, it selects the next warp to
be executed. It does this by selecting one of the allocated TBs and scheduling its
next warp. The scheduling algorithm used by the warp scheduler can be integral
to the performance of the GPU. Two commonly used warp scheduling algorithms
are loose round-robin (LRR) and greedy then oldest (GTO) [15]. Figure 2.4a and
2.4b respectively illustrate how LRR and GTO schedules warps. LRR schedules
warps in a round-robin order. If a warp is stalled, it is skipped, and the next warp
can be scheduled. GTO selects the TB with the oldest ready warp and schedules
warps from the TB until it stalls [16].

In the case of memory intensive applications, LRR can cause a situation where
all warps arrive at long latency stalls at the same time [17], as shown in Fig-
ure 2.5a. If all warps are stalled, the long latency stalls cannot be hidden, resulting
in low throughput. The goal of the GTO scheduling algorithm is to reach a stall
for a single warp before scheduling other warps. This may enable more stalls to
be hidden, as shown in Figure 2.5b, and even achieve better cache locality [16,
17].

There are also other notable warp schedulers which can give somewhat better
performance than GTO, but also require more information about the state of the
GPU and the warps.

Cache-conscious wavefront scheduling (CCWS) [16] attempts to dynamically
determine how many, and which warps should be allowed to access, using feed-
back from the L1 cache. The goal of CAWS is to reduce the number of memory

Chapter 2: Background 9

(a) Loose round-robin (b) Greedy then oldest

Figure 2.4: Demonstration of how LRR and GTO selects warps for scheduling.
For GTO, the ages of the ready warps are written in the cells

(a) Loose round-robin (b) Greedy then oldest

Figure 2.5: Demonstration of how LRR and GTO performs in conjunction with
long-latency stalls. GTO is able to hide the stalls, while LRR is unable to because
all warps stall at the same time

accesses between re-references by the same TB, to keep cache hit rates high.
Criticality-aware warp scheduling (CAWS) [18] attempts to improve the exe-

cution time of critical warps, i.e. warps which require more time and resources to
complete. By doing this, the execution time disparity between the TBs is equalized,
reducing the total execution time.

Lazy warp scheduling (LWS) [15] attempts to schedule low-latency warps first,
such that they can be masked by scheduling longer latency warps afterwards. By
prioritizing low-latency warps, there are fewer stall cycles.

2.3 GPU Simulation

GPGPU architecture research is mainly focused on using software simulations [19–
21] modeling the architecture at the intermediate language (IL) level, such as
PTX and HSAL. There are however significant deviations between GPU simulat-
ors using high-level abstractions and real hardware. Simulating IL instructions

10 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

can add up to 33% error when comparing the absolute runtimes to real hard-
ware [22]. High-level abstraction models have substantially less functional state
associated with the instructions. Thus they are unable to model important micro-
architectural interactions, such as instruction fetching and control flow diver-
gence.

To obtain results which most accurately reflect the performance of an ar-
chitecture, cycle-accurate simulations are required. A solution to the inaccurate
high-level abstraction simulations is register transfer level (RTL) implementations.
These implementations are cycle-accurate, but require substantially more time
and memory to simulate. This is because the entire state of the system is repres-
ented. There exist several RTL implementations of open-source GPGPUs, such as
MIAOW [23], Nyami [24] and FlexGrip [25]. However, the ISAs used in these
GPUs are either custom or proprietary, which restricts application support. Vortex
solves this by basing its ISA on the open source RISC-V ISA and including a cus-
tom compiler. By additionally having OpenCL support, adapting applications for
Vortex becomes easier.

In addition to creating Vortex, the team at Georgia Tech presented Skybox [26]
at ASPLOS 2023. Similarly to Vortex, Skybox can be FPGA-accelerated, but is more
focused on rendering graphics. It has support for Vulkan, a modern graphics ren-
dering API, and it has a hardware rasterizer and render output unit (ROP). This
results in a GPU more suitable for graphics workloads than Vortex, as the Vortex
GPGPU is mostly suited for compute workloads.

Simulating entire systems in software is rather slow, especially for large par-
allel systems as the simulations are difficult to parallelize due to fine-grained syn-
chronization [27, 28]. To speed up architecture simulation, FPGA-acceleration can
be used. RAMP-gold [29], an FPGA multicore simulator, achieved a 263× spee-
dup over GEMS [30], a software-based simulator. FPGA-acceleration serves as a
middle ground between software simulation and ASICs. As high-end FPGAs are
becoming more prevalent in the consumer market, implementing full-feature GP-
GPUs is becoming a possibility.

There is however a critical problem when running FPGA-accelerated simu-
lations, modeling the timing and behaviour of I/O and peripherals [31], e.g.
DRAM. To obtain representative results using FPGA-accelerated GPUs, both the
memory bandwidth and the latency needs to be scaled to match the discrep-
ancy between FPGAs and ASICs. Chipyard [31] achieves this using Firesim [32].
Firesim, use a token mechanism which can stall individual SoCs of the simulated
system to advance the system in target time. Vortex does not have any mech-
anisms to solve this problem, however, work is currently being done at NTNU’s
computer architecture lab (CAL) to implement Vortex into Chipyard. Meanwhile,
I have to simulate Vortex and DRAM in software to obtain representative results.

Chapter 3

Changes to Vortex

In this chapter, I will first give an overview of the Vortex architecture and pipeline.
Then I will describe the identified bottlenecks, and how I propose fixing them.

3.1 Vortex Architecture

Other than what is written in the Vortex paper [1], Vortex is mostly undocu-
mented. Most of my understanding of Vortex’ architecture and software stack is
therefore derived from reading the source code. The Vortex microarchitecture is
illustrated in Figure 3.1 and 3.2. Each SM is a 5-stage pipeline containing a fetch,
decode, issue, execute and commit stage. The SMs of Vortex all have their own
L1 and instruction caches. There are also options for Vortex to include L2 and
L3 caches, which are shared among SMs, as shown in Figure 3.2. If the L2 or L3
caches are not included, they are replaced by memory arbiters. Vortex’ pipeline is
elastic [33], i.e. it is using ready and valid signals to communicate between the
modules and pipeline stages. This makes it easier to add new or configure existing
components, as the modules can be more flexible in the number of cycles they use.

3.1.1 Vortex ISA

Vortex extends the RISC-V ISA [34] with six new instructions. The added instruc-
tions are essential primitive for supporting the SIMT execution model and graph-
ics processing. All of the instructions are RISC-V R-Type instructions and fit in one
opcode.

• wspawn: Controlling warps by activating a number of warps at a specified
PC.
• tmc: Controlling threads by activating or deactivating threads within a warp.
• split & join: Handling control divergence. Split pushes information about

the current state of the thread mask and branching to the immediate postdom-
inator (IPDOM) stack, and join pops the information off the stack to recon-
verge the branches.

11

12 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 3.1: Vortex RISC-V 5-stage pipeline of a streaming multiprocessor

Figure 3.2: Example of SMs clustering in Vortex using 2 clusters and 4 SMs per
cluster. The L2 and L3 caches are optional, if they are not included, memory
arbiters are used.

Chapter 3: Changes to Vortex 13

• bar: Synchronizing warps, both intra-core and inter-core, using barriers.
The barrier is released when the expected number of warps has reached it.
• tex: Texture lookup using normalized coordinates and texture mipmap level.

Other specifications regarding the texture lookup, such as dimension and
format are configurable via CSRs.

3.1.2 Pipeline

Following is a description of the five pipeline stages shown in Figure 3.1.

The fetch stage is responsible for scheduling warps, and keeping track of branches,
divergence and barriers. The warp scheduler keeps track of the active, stalled and
blocked warps using bitmasks. To select which warp to schedule next, the warp
scheduler uses a find-first algorithm. The find-first algorithm prioritizes warps
based on their warp ID. This will be further explained in Section 3.2.3. Upon
scheduling a warp, the warp scheduler sends an instruction fetch request to the
icache-stage in decode. In the baseline version of Vortex, only one warp from each
TB can be fetched concurrently. Since Vortex does not support branch prediction,
the warp has to be stalled until it is known that it cannot change the control flow.
The first point in the pipeline where this can be known is after decoding the in-
struction. If the instruction is not a branch, barrier or thread mask control, the
warp will be marked as ready in the warp scheduler. Otherwise, the warp contin-
ues to be stalled until the instruction completes execution.
The decode stage contains the decoder and the icache-stage. The icache-stage
is illustrated in Figure 3.3. The purpose of the icache-stage is to enable fetching
instructions from multiple TBs concurrently. The icache-stage uses dual-port RAM
with one address per TB in the SM, to store information about the request. The
request is simultaneously sent to the icache. Upon receiving a response from the
icache, the corresponding request information is read from RAM and combined
with the instruction data to create the response. The response is then sent to the
decoder, which decodes the instruction using combinational logic. The decoder
also informs the fetch stage whether or not the instruction can change the control
flow. After decoding, the instruction is sent to the instruction buffer in the issue
stage.

The issue stage, shown in Figure 3.4, is responsible for issuing the warps to the
functional units. To handle data dependencies, Vortex utilize scoreboarding. The
warps are issued in-order, but are committed as soon as their execution completes.
When instructions are decoded, they are transferred to the instruction buffer
(ibuffer). The ibuffer contains a queue for each TB in the SM. The issue stage
has an instruction scheduler which schedules warps from the front of the ibuffer
and dispatches it to the corresponding functional unit in the execution stage.

The instruction scheduler used in the baseline version of Vortex is a round-
robin scheduler. For a warp to be issued, the source and destination registers must
be available in the scoreboard and the corresponding functional unit must be avail-
able in dispatch. The instruction scheduler attempts to issue the warps by selecting

14 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 3.3: Illustration of Vortex’ icache-stage.

Figure 3.4: Illustration of Vortex’ issue stage

Chapter 3: Changes to Vortex 15

one of the warps available in the ibuffer. The issue stage can however only check
for one warp whether it is ready or not in each cycle. Thus if the warp selected
by the instruction scheduler cannot be issued, no other warp can be issued in that
cycle.

The execute stage consists of five functional units. The arithmetic logic unit (ALU)
performs logic and integer arithmetic operations in addition to handling branches.
The load-store unit (LSU) performs memory loads and stores. The control status
register (CSR) holds a number of status registers which can be read and written
to using CSR instructions. Some of these influence how graphics are rendered, by
controlling sampling modes, texture addresses etc. The CSR also tracks a num-
ber of performance metrics, such as the number of committed instructions and
the number of cycles used. The graphics processing unit (GPU) performs texture
sampling as well as sending control signals to the fetch stage in regards to warp
spawning, divergence, barriers and thread masks. Lastly the floating point unit
(FPU) performs floating point operations.

The commit stage is the last stage in the pipeline. When instructions are finished
in the execute stage, the results are written back to the general purpose registers
(GPR). The registers, which were reserved by the instruction, are also released in
the scoreboard.

3.1.3 Workload Distribution

Vortex’ workload distribution and TB scheduling is performed statically. Upon
starting the execution of a kernel, each SM calculates the total number of act-
ive SMs required. The number of SMs required is calculated as:

#SMsact ive =min(
#T Bs

#WarpsPerSM ×#ThreadsPerSM
, #SMs) (3.1)

The TBs are then divided evenly among the active SMs. If there are more TBs
than the total number of slots available in Vortex, the last SM is allocated all of
the remaining TBs. This can result in very inefficient workload distribution. To
get the best performance, programs have to be adjusted before compilation to
best fit the architecture. Static workload distribution also has another weakness.
If for some reason the SMs require different amounts of time to complete their
workload, the SMs which finish early, end up idling while waiting for the other
SMs to complete their workloads. The difference in execution time can stem from
multiple causes. The memory system could for example prioritize requests from
certain SMs, or the workloads could differ in terms of divergence. This results in
unused computational power and reduces the throughput of the GPU. While I do
not propose or implement any solutions to this problem in this thesis, it is relevant
for understanding the results and evaluation in Chapter 7.

16 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 3.5: Demonstration of the baseline issue scheduler. The unready LRR
scheduler wastes cycles by attempting to issue stalled warps from the ibuffer

3.2 Scheduling Algorithms

3.2.1 Ready Scheduling

The baseline instruction scheduler, described in Section 3.1.2, attempts to issue an
available warp before checking if it is ready. As the scheduler is round-robin, this
can potentially be detrimental to the performance. If 1 out of N warps are ready,
while the N − 1 other warps are stalling, the scheduler could potentially waste N
cycles before issuing the warp. An example of this is illustrated in Figure 3.5. While
this is the most extreme case, cases of similar severity are likely to occur. Using a
ready scheduler, which checks for ready warps before scheduling, will guarantee
that it only takes 1 cycle to schedule a warp if at least one is ready.

Figure 3.6 illustrates the new issue stage proposed by me. It performs the ready
check for all warps before the instruction scheduler selects which warp to issue.
Each warp checks if it is ready by: 1⃝ Checking in dispatch if the corresponding
FUs is available. 2⃝ Checking in the scoreboard if the required operands are avail-
able. 3⃝ Use bitwise AND to create a bitmask of ready warps. 4⃝ Create a bitmask
of valid warps which can be issued, by finding the bitwise AND of the ready warps
and the warps available in the ibuffer. The instruction scheduler can then select
a ready warp from this bitmask. 5⃝ The selected warp ID is then sent back to the
ibuffers, dispatch and scoreboard to update their values. These changes result in
a ready loose round-robin (LRR) scheduler as described in Section 2.2.

The implementation of the new issue stage does not require much additional
hardware. All the information is already available in the scoreboard and dispatch,
thus it mainly requires selectors for reading the correct registers. The scheduler
does not need to be changed, as it continues to select a warp from a bitmask.

Chapter 3: Changes to Vortex 17

Figure 3.6: Illustration of the new issue stage allowing the instruction scheduler
to check for ready warps before selecting which warp to issue.

Figure 3.7: Implementation of greedy then oldest (GTO).

3.2.2 Greedy then Oldest

After implementing ready scheduling, the possibility of implementing other schedul-
ing algorithms becomes available. Greedy then oldest (GTO) is a common and
easy-to-understand algorithm with a potential to give improved performance over
loose round-robin (LRR). I was unable to find implementation details of existing
GTO schedulers, thus I had to implement my own. Figure 3.7 illustrates my im-
plementation of GTO. 1⃝ Is the set of ready warps in the form of a bitmask. 2⃝
Contains the ages of the warps, i.e the number of valid schedules which occurred,
while the warp was ready. The age is calculated as described by Equation 3.2. Is-
suing a warp might cause structural stalls for the other warps. Thus an alternative
would be to use the warps’ presence in the instruction buffer rather than it being
ready, as a condition for incrementing the age. 3⃝ Use combinational logic to find
the oldest ready warp using the ready mask and the age of each warp. 4⃝ Is the
warp ID of the previously scheduled warp. If the previously scheduled warp ID
is still ready, the greedy selector 5⃝ continues to select this warp, otherwise, it
selects the oldest ready warp.

18 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 3.8: Demonstration of Vortex’ find-first warp scheduling algorithm. When
the length of the stalls is shorter than #Warps− 1 cycles, the low-priority warps
are scheduled substantially less than the high-priority warps.

agei =

agei , if valid= 0 or readyi = 0

0, if valid = 1 and Scheduled WID = i

agei + 1, otherwise

(3.2)

3.2.3 Matching Warp and Issue Schedulers

The scheduling algorithm currently used by the warp scheduler in fetch is find-
first. This algorithm prioritizes warps based on warp ID. Figure 3.8 illustrates
how this algorithm can end up scheduling low-priority warps substantially less
than high-priority warps. This can make some warps finish long before others,
resulting in idle cycles. This does not happen for the baseline version of Vortex,
as there are few warps and too many frontend stalls. However, as I am going to
reduce the number of frontend stalls in the next section, it is probably better to
use a fairer algorithm.

The interaction between the instruction scheduler and the warp scheduler is
likely important for the algorithms to achieve their goals. For example, if the warp
scheduler fetches warps in LRR order, a GTO instruction scheduler will not have
enough warps from the same TB to see the effects of greedy scheduling. It is
thus desirable to use scheduling algorithms in the warp and instruction schedulers
which can support each other. To do this, I also implemented the LRR and GTO
algorithms in the warp scheduler.

Implementing the algorithms in the warp scheduler is quite simple, as the
modules can be reused. The warp masks in fetch can also continue to be used
as input for the warp scheduler. An issue which arises when implementing GTO
in the warp scheduler is that GTO ideally wants to fetch warps from the same
TB multiple cycles in a row. As explained in Section 3.1.2, the warps are stalled
after being scheduled to avoid potential control flow hazards. Thus a GTO warp
scheduler will not have the intended behaviour when integrated into the existing
pipeline. Section 3.3.1 will describe changes to the frontend, which solve this
issue.

Chapter 3: Changes to Vortex 19

3.3 Frontend

In my project thesis [1], I found that Vortex’ frontend was unable to fetch enough
instructions to the issue stage, impeding its ability to hide stalls. This section de-
scribes a set of changes done to improve the throughput of the frontend.

3.3.1 No Stall Scheduling

The root of the frontend problem is that TBs are stalled whenever their warps
are fetched. Most of the instructions do however not require stalling and are un-
stalled after being decoded. As the default configuration of Vortex has 4 TBs per
SM, it is unable to hide the latency of the instruction fetch. The high number of
stalls thus reduces the throughput of the frontend. To avoid this, I propose no stall
scheduling (NSS), allowing the frontend to schedule warps without stalling, and
instead flush the frontend if stalling is required. To further improve the efficiency
of NSS, I propose stall-prediction to reduce the number of flushed instructions,
and to make the frontend stall only when required.

To implement NSS, two mechanisms are required. First, the icache-stage needs
to handle multiple concurrent instruction fetches from the same TB. The responses
to these requests have to be reordered, as the icache is non-blocking. Secondly,
the requests have to be flushed in case a stall is required. Figure 3.9 illustrates
my design of the improved icache-stage. Instead of using dual-port RAM, which
allows only one concurrent fetch request for each TB, the new design uses an
insert queue, which allows for up to 8 concurrent instruction fetches per TB. It
is possible to implement an even larger queue, but I found that the number of
in-flight requests per TB rarely exceeded 8. The insert queue has two ports for
writing data. 1⃝ First the fetch request is pushed into the queue and sent to the
icache. By using a queue, the order of the requests is maintained. 2⃝ Secondly, as
the response is returned, the instruction data is inserted into the queue. The UUID
of the request and response is used to match the data with the request. When the
first element in the queue is ready, i.e 3⃝ it contains both a valid request and the
instruction data, it becomes available for 4⃝ the scheduler to forward it to decode.

A scheduler is required, as it is possible for multiple queues to have ready
elements at the same time. This is because the response data can be reordered,
or the ibuffer can be full, causing back pressure. I elected to use GTO for the
icache-stage scheduler as it is likely to conform with both an LRR and GTO issue
scheduler. I do however believe that the choice of algorithm will not impact the
performance. Some preliminary testing also support this belief.

To not stall every time a fetch request is sent, the warp scheduler has to predict
if the instruction requires stalling or not. NSS initially predicts that instructions do
not require stalling. This scheme has low overhead, as the scheduling continues as
if nothing changed. Upon decoding an instruction, it might require the frontend to
stall. When this happens, 5⃝ all requests in the corresponding queue are flushed.
This is done in the insert queue by setting the valid bit of each entry low. While the

20 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 3.9: Improved icache-stage allowing for multiple concurrent instruction
fetch requests from each TB

requests are flushed from the insert queue, the requests continue to be processed
by the instruction cache. When data from flushed requests are returned, there will
not be any valid matches in the queue, and the data will be ignored. Note that in
the case of a join instruction, it would be possible to change the thread mask after
fetching the instructions, and not flush. This would however require additional
control logic and is not done in this thesis.

Upon flushing, the warp is marked as stalled in the warp scheduler, and the
PC is set to address after the instruction requiring the flush. This is done by send-
ing the PC of the stalling warp back to the warp scheduler from decode. As the
instructions now only stall when required, there are more opportunities for what
order the warps can be fetched. Because of this, using a GTO warp scheduler is
now possible.

3.3.2 Stall Prediction

The implementation of NSS presented in Section 3.3.1 has one main weakness.
The cost of mispredicting is large. Mispredicting will likely waste cycles, as there is
a high probability that the GPU could fetch other non-speculative warps. The cost
is therefore not relative to not fetching any warps, but rather relative to schedul-
ing a number of other warps. To combat this issue I propose implementing stall-
prediction, allowing the warp scheduler to learn if an instruction will require the
frontend to stall.

Chapter 3: Changes to Vortex 21

Figure 3.10: Illustration of the stall-table, which is used to check if an instruction
is known to require stalling

Figure 3.10 shows the stall-table, which is used to learn which instructions are
causing a frontend stall. The stall-table is included in the fetch stage and is used
to check whether the next warp should be blocked from being fetched. 1⃝ The PC
of the fetched warp is used as an index in the stall-table. It is split into a number
of tag and index bits. The number of index and tag bits is dependant on the size
of the table, see Equation 3.3. 2⃝ If the tags are matching and the table entry is
valid, the instruction will require the next warp to stall. By stalling the next warp,
other warps can be fetched instead of continuing to fetch instructions which will
be flushed.

#IndexBits =
�

log2(TableSize)
�

#TagBits = #PCBits−
�

log2(TableSize)
�

− 2
(3.3)

For the stall-table to learn, 3⃝ the PC and stall status of the decoded instruc-
tions are sent to the stall-table. If the instruction is a stall, the tag and the valid bit
are set at the corresponding index. Note that this may invalidate a previous entry
by overwriting the tag. If the instruction does not cause a stall, nothing is written
to the stall-table. Because of this, the stall-table contains only instructions which
are known to cause a stall.

The index bits can be any subset of the PC bits, but I elected to use the least-
significant bits (LSBs), except the last two which are always zero. By using the
LSBs as the index, the stall-table will be able to handle consecutive stalling in-
structions. The stall-table will only be effective when instructions are executed
multiple times, i.e. loops, or TBs executing the same instructions. Thus it is more
valuable for the stall-table to have high accuracy within loops, than wide cover-
age. Preliminary testing showed that having 128 entries gave a high hit rate in
the stall-table. Increasing the size further gave diminishing returns and did not
improve the hit rate by much.

22 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 3.11: Back pressure from the instruction buffer to decode. Ready warps
in the icache-stage are blocked from being decoded and sent to the instruction
buffer because the instruction buffer of the decoded warp is full. The instruction
buffers of W1, W2 and W3 are empty, and have to wait for W4 to issue before being
filled

3.3.3 Back Pressure Reduction

When implementing NSS and stall-prediction, the throughput of the frontend is
increased. The increase in throughput may cause the instruction buffer to fill up,
which can result in back pressure, as illustrated in Figure 3.11. This occurs when
the decoder decodes an instruction that there is no space for in the instruction
buffer. As the decoder is unable to send the instruction to issue, it is blocking
until there is space in the ibuffer. This may be problematic because the back pres-
sure could prevent ready instructions from being decoded. This will impair the
throughput, as these warps might be able to issue.

This problem can be resolved by implementing what I will refer to as back
pressure reduction (BPR). BPR is quite simple a bitmask sent from the ibuffer to
the icache-stage indicating which ibuffers are full. This allows the icache-stage to
always decode instructions which will not cause back pressure. This signal is also
sent to the warp scheduler such that it can schedule other warps.

Chapter 4

Adding Rodinia to Vortex

One of Vortex’ weaknesses is its benchmark suite. Vortex includes only a few
benchmarks, all of which are quite small and which behaviours does not match
real-world applications. When lacking reasonable benchmarks, it is difficult ob-
tain conclusive results about the performance of Vortex. To solve this, I brought
Rodinia [9, 10], a commonly used set of benchmarks for parallel computing [35],
to the Vortex ecosystem. This chapter describes the work done to enable Rodinia
benchmarks to run on Vortex.

4.1 Reading Performance Data

All the benchmarks included with Vortex execute one kernel once. The existing
setup for gathering performance data, created by the Vortex team, took advantage
of this. Vortex utilize internal performance counters to collect performance data.
Each SM has its own counters, which are accessible as addressable CSR registers.
Before a kernel is enqueued, the GPU and the performance registers are reset. After
the reset, the kernel begins executing. Throughout the execution, different metrics
are collected and stored in the CSR registers. When an SM finishes the execution
of its allocated workload, it ends by reading the relevant CSR registers and writing
their contents to memory. The code related to dumping the performance counter
to memory is included in every kernel by a stub. At the end of the benchmark,
the host can read the memory, and collect the performance metrics for each of the
SMs, and the GPU as a whole.

Most of the benchmarks in Rodinia have more than one kernel, or execute a
single kernel multiple times. When executing a multi-kernel benchmark, only the
last execution would be recorded, because the GPU would reset between kernel
executions. Obtaining performance data for all kernels in a benchmark is import-
ant as they might possess radically different behaviours. An example of this would
be the streamcluster benchmark which has two kernels: memset and pgain. The
memset kernel sets global memory to a given value. This results in a short loop
and many writes to memory. The pgain kernel is more complex, having multiple

23

24 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

branches, loops, calculations and memory operations. As the kernels are so dif-
ferent, it is important to capture the behaviour of both to be representative of the
benchmark’s performance.

The method used to read the performance data also has other issues which
affect the accuracy and performance of the simulation.

1. The process of reading performance registers and writing data to memory,
alters the results while reading. The performance metrics read first, will not
represent the same state as the ones read last.

2. If SMs does not finish at the same time, performance metrics are written to
memory while other SMs are running. Writing to memory may reduce the
available memory bandwidth for the remaining cores.

3. For programs running multiple kernels, or a single kernel multiple times, it
is unnecessary to write the data to memory at the end of each kernel. This
is especially significant when using software simulation, as it increases the
simulation time.

To solve these problems, I had to stop the performance metrics from being re-
set between kernel executions, and only collect performance metrics at appropri-
ate times. To do this, I introduced two new CSR registers: perf-lock and perf-reset-
lock. Setting perf-lock stops the collection of performance metrics. When perf-reset-
lock is set, the performance metrics are not reset when the GPU resets. However,
as perf-reset-lock controls what is reset, it cannot be controlled by reset itself. To
ensure the performance metrics are reset before starting the benchmark, I have
to first execute a kernel to specifically set the lock low. This solves the problem of
benchmarking multiple kernels.

Problems 2 and 3 listed above, can be resolved by moving the code responsible
for writing the performance data to memory, into a separate kernel which is ex-
ecuted after the benchmark has been completed. Doing this makes sure that all of
the SMs complete their workloads before starting the process of reading perform-
ance data. The kernel reading the performance data, sets the perf-lock to ensure
that it does not interfere with the data while reading, thus also solving problem 1.

The final solution, illustrated in Figure 4.1, can be divided into three phases.
1⃝ Before starting the execution of a benchmark, the initializing kernel is ex-

ecuted. It is responsible for setting the perf-reset-lock low, to allow the perform-
ance metrics to reset correctly. 2⃝ The kernels belonging to the benchmark are
then executed. They also set the perf-reset-lock high, to keep the data from reset-
ting. The benchmark continues to execute its kernels until it has been completed.
3⃝ Finally, the performance dump kernel is executed, setting the perf-lock high to

stop it from altering the results.
To make this solution viable to implement for all benchmarks, I created a

header file, containing macros for creating and starting the two new kernels. To
add new benchmarks to Vortex, it is only required to include the header and insert
the macros at the correct location. The macros take the current OpenCL context,
command queue and device ID as input. An example snippet of how this can be

Chapter 4: Adding Rodinia to Vortex 25

Figure 4.1: Timeline of the three stages of multi-kernel benchmarking: initializ-
ation, execution of benchmark and dumping of performance data

used is shown in Code listing 4.1. Doing this allowed for more rapid adjustments
to the implementation, in addition to making the process of adding new bench-
marks quicker.

Code listing 4.1: Example of using the perf macros to create and use the initial-
ization and dump kernels

#include "../vortex_perf.h" // Header containing perf macros

PERF_VARIABLES // Macro declaring variables required to run perf kernels

// -- Code for setting up OpenCL: create context, command-queue and device

PERF_CREATE_PROGRAM(context, device_id) // Macro for creating the perf kernels
PERF_ENQUEUE_INIT_KERNEL(command_queue) // Macro for starting the init kernel

// -- Code for running the benchmark

PERF_ENQUEUE_DUMP_KERNEL(command_queue) // Macro for starting the dump kernel
PERF_CLEANUP // Macro for perf kernel cleanup

4.2 Adapting Benchmarks for Vortex

When simulating Vortex in software, Verilator [36] is used to compile the System-
Verilog implementation of Vortex into a vortex library. This library can simulate
the entire GPU cycle-accurately. When executing a benchmark, it is linked with
the Vortex driver and Vortex library generated by Verilator. This allows the host
to treat the simulated GPU as if it was a normal GPU using an OpenCL interface.
The software and FPGA simulations thus provide the same interface. Because of
this, the changes done in this section should also work for FPGA-accelerated sim-
ulations.

26 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

4.2.1 Offline Compilation

Vortex has support for OpenCL, and uses PoCL [37] to implement the compiler
and runtime software, which provides an OpenCL interface for the host. The com-
piler has been modified to support the generation of kernel binaries targeting the
extended RISC-V ISA used by Vortex. The PoCL driver does however not support
online compilation. Thus all kernels have to be compiled offline and loaded as bin-
aries. This means that variables can not be passed from the program to the kernel
before compilation. Because of this, the buffer sizes of some of the benchmarks
had to be hard-coded, instead of changing with the input of the benchmark. This
makes the benchmarks less flexible.

The hybridsort and myocyte benchmarks from Rodinia have kernels which re-
quire specific functions. This includes atomic_add, expd, powdd and sqrtd. These
functions were missing from the PoCL compiler. These benchmarks could therefore
not be included in Vortex’ benchmark suite. After further inspections, it became
apparent that none of the atomic functions are included by the PoCL compiler.

4.2.2 Memory Allocation

While porting Rodinia benchmarks to Vortex, I observed that the OpenCL func-
tions clEnqueueNDKernels, clEnqueueCopyBuffer and clCreateBuffer sometimes
aborted or resulted in segmentation faults. Looking into the cause of the crashes,
I found that clEnqueueNDKernels caused a segmentation fault when the kernel
contained local parameters. It seems like the driver is unable to dynamically al-
locate local memory for the TBs using clSetKernelArg. To solve this, I removed
the local parameters of the kernels, and instead defined local buffers in the kernel
code. By doing this, the driver does not have to allocate the buffers dynamically.
As the size of the local buffers is now defined at compile time of the kernels, I had
to hard-code the buffer sizes according with the selected input of the benchmarks.

The clCreateBuffer function creates a buffer on the GPU to store data. If
the GL_MEM_ALLOC_HOST_PTR flag of clCreateBuffer is set, the allocated memory
should be accessible by the host. For Vortex it seems like using this flag results
in a segmentation fault. To resolve this, I instead created the buffer without the
flag, and used clEnqueueReadBuffer and clEnqueueWriteBuffer to access the
memory whenever needed by the host. This issue is similar to the one above, as
it seems to be caused by issues regarding the permission to dynamically allocate
memory in specific locations.

The last OpenCL function I encountered issues with was clEnqueueCopyBuf-
fer. clEnqueueCopyBuffer copies data from one buffer on the GPU to another. I
is unclear why this is causing a crash, but it could be easily resolved by reading
the data from the device to the host using clEnqueueReadBuffer, before writing
it back to the destination buffer using clEnqueueWriteBuffer. The workarounds
described in this using the problematic OpenCL features should not affect the
measured performance, as measurements are made only during kernel execution.

Chapter 4: Adding Rodinia to Vortex 27

Table 4.1: Rodinia benchmarks added to Vortex

Applications Domains

B+ Tree Graph Traversal
Back propagation Pattern Recognition
Breadth-First Search Graph Algorithms
CFD Solver Fluid Dynamics
Gaussian elimination Linear Algebra
GPUDWT Image/Video Compression
Heart Wall Medical Imaging
HotSpot Physics Simulation
HotSpot3D Physics Simulation
Kmeans Data Mining
LavaMD2 Molecular Dynamics
LU Decomposition Linear Algebra
Needleman-Wunsch Bioinformatics
Particle Filter Medical Imaging
SRAD Image Processing
Streamcluster Data Mining

4.2.3 Selecting Work Sizes

Table 4.1 shows the list of Rodinia benchmarks which can execute on Vortex after
performing the adaptations from Section 4.2.1 and 4.2.2. However, the bench-
marks are not scheduled efficiently, by Vortex’ static TB scheduler. The scheduler
struggles to divide the work among Vortex’ SMs. For most benchmarks only a small
subset of the SMs are scheduled any work. Rekdal [8] encountered the same issue
with some of the existing Vortex benchmarks. The solution was to reduce the local
work size when enqueuing the kernels. This reduces the number of threads per TB,
resulting in more TBs, which can be scheduled to more SMs. This method worked
to some degree for most benchmarks, except heart wall, which I was unable to
improve upon.

4.3 Fast-Forward, Warm-Up and Early-Exit

Most of the added Rodinia benchmarks require substantially more time to com-
plete execution than the already included benchmarks. When using software sim-
ulation, it becomes infeasible to simulate the entire benchmarks, due to long simu-
lation times. One way of solving this would be to reduce the input sizes, however,
this would affect the TB scheduler and cache behaviour. A more common ap-
proach for reducing simulation time is using fast-forwarding and warm-up [38].
Fast-forwarding is to run a less accurate simulation to a given point in execution,
and then continue the real simulation from there. This skips the initialization, and

28 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 4.2: Timeline explaining fast-forward, warm-up and early-exit.

samples only the part of the code most representative of the whole benchmark.
After fast-forwarding using a less accurate simulator, branch predictors and caches
will not be in the same state as if an accurate simulation was used. A solution is
to then run the accurate simulation until the cache hit rate stabilizes, before col-
lecting performance metrics. This is called warm-up and removes the cold-start
bias.

There is no emulator or less accurate simulator for Vortex, thus fast-forwarding
and warm-up will have limited versatility. To further reduce simulation time, I in-
troduce early-exit to Vortex. Early-exit terminates the benchmark after a given
number of cycles. As the number of simulated cycles scales linearly with the sim-
ulation time, early-exit allows me to easily regulate the simulation time. When
implementing early-exit, it becomes more important to skip the startup, i.e. using
fast-forward and warm-up, as it becomes a larger portion of the execution time.
Figure 4.2 illustrates how fast-forward, warm-up and early-exit affect which exe-
cution cycles are sampled.

Fast-forward and warm-up are implemented by setting the perf-lock register,
described in Section 4.1, high for a given number of cycles at the beginning of
the simulation. Thus no performance data will be collected during the startup.
Caches and other components can also be warmed during this period. Note that
this is only performed for the first kernel in a benchmark. If a benchmark executes
multiple kernels before exiting, the startup cycles become representative of the
kernel’s performance. Early-exit is implemented by deactivating all the SMs after
a given number of cycles. This indicates to the driver that Vortex has completed
its execution.

This method of implementing early-exit is somewhat problematic. When ter-
minating early, the result of the kernels will not be correct. Some of the bench-
marks are affected by the results returned by the kernel execution. Streamcluster
does for example execute the kernel until the result is not getting better. If the
result is wrong due to early-exit, it might result in an infinite loop of starting and
exiting the kernel. To resolve this, I had to manually add safeguards for stream-
cluster and kmeans, setting a maximum number of iterations.

Chapter 5

CPI Stacks for Vortex

Cycles per instruction (CPI) stacks are a breakdown of the execution cycles into
a set of classes. The breakdown aids in identifying potential bottlenecks in the
architecture. In my project thesis [1], I implemented a register transfer level (RTL)
solution to create CPI stacks for Vortex (CSV). My solution utilized a classification
scheme based on GSI [39] which will be described in the next section. Section 5.2
will then briefly describe how my implementation of CSV differs from GSI, and
Section 5.3 will describe how I improved CSV in this thesis.

5.1 GPU Stall Inspector

The GPU stall inspector (GSI) [39] is a stall attribution tool that enables detailed
classification of memory stalls. They also present a set of classes for instruction
stalls, which is also used by GCoM [40]. GSI’s classification is done in two separate
steps. First, if no warps are issued, a stall type is attributed to each warp in the
issue stage. The attribution is done based on the cause most strongly preventing
execution, i.e. the stall cause most likely to remain in the next cycle. The details
regarding the priority can be found in the GSI paper [39]. Once each warp is
classified, the issue cycle is classified based on the inverse priority1 of the stalled
warps, i.e. the cause of the warp which is least likely to continue stalling in the
next cycle.

Following is a list describing the classes used by GSI:

• Base: If any of the warps are issued, the cycle is a base cycle.
• Idle: The warp is not active, indicating that the kernel is not fully utilizing

the GPU, because of poor load balancing or because there is not enough
work.
• Control stall: The warp instruction supplied by the instruction buffer is not

the next instruction to be executed by the warp. This might be due to a high
degree of divergence in the kernel.

1The priority is not exactly inversed, as memory and synchronization stalls are prioritized over
compute stalls in both steps.

29

30 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

• Synchronization stall: The warp is blocked due to a barrier, to synchronize
with other warps.
• Memory data stall: The warp cannot issue because the operands are de-

pendent on the result of a pending load.
• Memory structural stall: The warp is a memory instruction requiring the

LSU, but it cannot be issued because the LSU is not ready.
• Compute data stall: The warp cannot issue because the operands are de-

pendent on the result of a pending compute instruction. Compute instruc-
tion refers to every non-memory instruction.
• Compute structural stall: The warp is a compute instruction, but the re-

quired functional unit is not ready.

5.2 CSV Overview

This section describes how I adapted the GSI classification scheme in my project
thesis [1], to create CSV. As the baseline version of Vortex only selects one warp
to attempt to issue, the two step scheme of GSI was not required. Instead, CSV
only sampled the stall cause of the warp selected by Vortex’ issue scheduler. Every
cycle, each SM attributes its cycle to the class corresponding with its stall cause.
Later, the data from each SM is read and accumulated to create the results for the
entire GPU.

When a data stall occurs, the functional unit or combination of functional
units, which reserved the operand register(s), are used to track the type of data
stall. If both of the operands are reserved, half of the cycle is attributed to each of
the sources. For example, if a warp is waiting for results from both the ALU and
the LSU, one half of the cycle is attributed as a memory data stall and the other
half is attributed as a memory structural stall.

To simplify the implementation, I grouped control and synchronization stalls
into one class: sync & control. Sync & control stalls occur if there are no warps
in the instruction buffer, and there are no ready warps in fetch’s warp scheduler.
Additionally, I included a class for empty ibuffer which occurs if there are no warps
in the instruction buffer but there are ready warps in the warp scheduler. This
could occur if there is significant latency between fetching an instruction and it
being available in the instruction buffer.

An issue with sampling idle stalls is that the SMs terminate at different times.
The SMs will therefore not be able to track idle cycles after completing, while
other SMs continue execution. The idle cycles can thus not be read by the SMs
themselves. To solve this, the number of idle cycles can instead be calculated as

C i
idle =max(C i

ac t ive)− C i
ac t ive (5.1)

where max(Cact ive) represents the number of cycles used to run the program, and
C i

ac t ive represents the number of active cycles for the ith SM.

Chapter 5: CPI Stacks for Vortex 31

(a) The add instruction is waiting for the
result of a load. The load is waiting for
the LSU to be ready while the two re-
maining buffers are empty

(b) The add instruction is waiting for
the result of a load and a computation.
The load is waiting for the LSU to be
ready while the two remaining buffers
are empty

Figure 5.1: Examples of TIP-inspired stall classification with 4 warps in an SM.

While the data and structural stalls described by GSI can occur individually,
an instruction can also be stalled by both at the same time. This is why I included
a data & structural stall class. If a warp is waiting for both data and the functional
unit to be ready, it would thus be attributed to a separate class rather than having
to prioritize one class over another.

5.3 Improving CSV

As I see it, GSI and the version of CSV implemented in my project thesis has a key
weakness: it does not describe the entire state of the issue stage. For example, if
multiple warps are available, and all are memory structural stalls except one com-
pute structural stalled warp, the cycle will be classified as compute structural stall.
This may mislead us into thinking that the throughput of the compute functional
units is the bottleneck. Resolving the ’issue’ would just reveal the cause of all the
other warps. Another example would be a case where the GPU frontend does not
fetch enough instructions. This would result in many data stalls, due to having a
small selection of warps in the issue stage. However, the real problem might be
control or synchronization stalls. As the classification is not proportional to the
number of each stall cause, the solutions will not lead to a proportional change.
It will also be hard to say if the proposed solutions just revealed existing stalls or
actually caused new behaviour.

To resolve this weakness I took inspiration from TIP [41] to get a better over-
view of why warps stall. When a stall occurs, all warps in the SM attribute the
cause(s) of their stall. Then 1/N th of the cycle is attributed to the stall class of
each warp, where N represents the number of warps per SM. Figure 5.1a shows
an example of how the cycles may be attributed. If a warp has multiple causes for
stalling, i.e. a combination of data stalls and/or a structural stall, the 1/N th cycle
is further divided evenly among the stalls, as illustrated in Figure 5.1b. By doing

32 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 5.2: Flowchart for CSV’s cycle attribution. Data and structural stalls are
divided if they occur together. Data stalls may also be further divided if an in-
struction is waiting for results from both memory and compute.

this, the data & structural can be removed, as the causes will be attributed pro-
portionally. By attributing the cycles in proportion to the occurrence of the stalls,
we get a better overview of the entire issue stage and why no warp can be issued.

With my new attribution scheme, I have to include an additional stall class:
missed schedule. This is required as the baseline instruction scheduler might stall
due to selecting a stalling warp, while a ready warp is available. In this case, the
ready warps are attributed as missed schedule. Figure 5.2 shows a flowchart for
how the cycles are attributed.

Chapter 6

Experimental Setup

6.1 Vortex Configuration

Section 2.3 explained how FPGA-accelerated simulations have to correctly scale
memory bandwidth and latency to obtain representative results. As work is still
being done at NTNU to integrate Vortex into chipyard [31], I have to use soft-
ware simulations. The Vortex project has a built-in script for running benchmarks.
The script allows for setting several parameters and configurations for the bench-
marks, architecture and simulator. Vortex’ simulation stack, includes four simu-
lation environments shown in Figure 6.1. In this thesis, I use VLSIM. VLSIM use
Verilator [36] to simulate the full RTL design and implements the accelerator func-
tional unit (AFU) interface in software. Memory is also simulated in software us-
ing Ramulator [42]. The configurations I used are listed in Table 6.1, while the
benchmarks are listed in Table 6.2. The number of warps and threads per SM is
based on Vortex’ default configuration. In my project thesis [1], I tested a range
of configurations with different numbers of SMs and found that all benchmarks
worked as intended for up to 32 SMs. For 64 SMs, some of the benchmarks re-
turned erroneous results. Because of this, I elected to continue evaluating Vortex
with 32 SMs.

6.2 Benchmarks

In my project thesis [1], I found that the benchmarks included by Vortex required
a much larger input size than the default to give reasonable performance results.
That is, having enough work to have realistic memory usage and to activate all
the SMs. The adjusted input sizes, as well as the inputs for the new benchmarks,
are displayed in Table 6.2.

33

34 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 6.1: Vortex simulation stack reproduced from [7].

Table 6.1: Configurations for the Vortex architecture.

Vortex Configuration

GPU
32 cores, 1.2GHz, 16 threads/SM,
4 threads/warp, 4 warps/SM

Clustering 8 cores/cluster (4 clusters)

GPU L1 Cache
16KiB per SM, direct mapped,
16B blocks, 4B words

GPU L2 Cache
128KiB per cluster, direct mapped
64B blocks

GPU L3 Cache No L3 cache

DDR4
DDR4 2400R (1200 MHz), 19.2GB/s,
4Gbx8, 1 channel, 1 rank/channel
tC L = 16, tRC D = 16, tRP = 16

NoC Hierarchical tree structure

Chapter 6: Experimental Setup 35

Table 6.2: Overview of benchmarks and the adjusted input sizes. The first 6
benchmarks are the benchmarks not ported by me

Benchmark
Short
Name

Default
Input Size

Adjusted
Input Sizes

Vector Addition Vecadd 64 32768
General Matrix Multiply Sgemm 32x32 Matrix 256x256 Matrix
Matrix Filter (3x3 kernel) Sfilter 16 1024
Sorting Psort 16 8192
A times X plus Y Saxpy 16 262144 (218)
Nearest Neighbour Search Nearn 40k Records -

B+ Tree Graph Traversal B+tree 1M Elements 10K Elements
Back propogation Backprop 65536 -
Breadth-First Search BFS 4096 Nodes 65536 Nodes
CFD Solver CFD fvcorr.domn.097K missile.domn.0.2M
Gaussian elimination Gaussian 16x16 Matrix 512x512 Matrix
GPUDWT DWT2D 192x192 Bitmap -
Heart Wall HW 20 Frames -
HotSpot Hotspot 512 2 2 512 2 2
HotSpot3D 3D 512 8 100 512 8 4

Kmeans Kmeans
100 Points,
100 Features

2048 Points
128 Features

LavaMD2 LavaMD -boxes1d 10 -boxes1d 16
LU Decomposition LUD 1024x1024 Matrix -

Needleman-Wunsch NW
2048x2048 Matrix
10 Penalty

-

Particle Filter PF
-x 128 -y 128
-z 10 -np 10000

-x 512 -y 512
-z 10 -np 300

SRAD SRAD 502x458 Image 251x229 Image
Streamcluster SC 65536 Points -

36 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

(a) L1 dcache hit rate during startup

(b) L2 dcache hit rate during startup

Figure 6.2: Dcache hit rates over time for a subset of the benchmarks during
startup.

To keep the simulation time reasonable, I implemented fast-forward, warm-
up and early-exit, as described in Section 4.3. To do this, I have to find how
many cycles are required for the caches to become warm and get past the startup.
Figure 6.2a and 6.2b respectively show the cache hit rate during startup of the
L1 and L2 caches when running a subset of the benchmarks. After 30k cycles, the
cache hit rates are stabilizing for both the L1 and L2 caches. While the L1 hit rate
for backprop is fluctuating, it is probably due to its access pattern. To have some
extra margins, I chose to use 50k fast-forward and warm-up cycles. For early-exit,
I let the benchmarks run for up to 10M cycles before terminating.

6.3 IDUN Cluster

Running the simulations required a substantial amount of time and memory. The
total computing time required to run all the simulations also scales with the num-
ber of benchmarks. Adding 16 new benchmarks thus increase the total simula-
tion time significantly. Because of this, all the simulations were run on the IDUN
Cluster [43] at NTNU. Using IDUN allowed me to run all benchmarks in parallel,
thus saving a lot of time, as most benchmarks required many hours to complete.

Chapter 6: Experimental Setup 37

The installation of Vortex had to be modified due to missing permissions to
write to some of the install locations. It also followed that the locations of these
dependencies had to be changed in the Vortex makefiles.

Unfortunately, there were some discrepancies when running some of the bench-
marks on IDUN. The results of LUD, SRAD were drastically different when simu-
lated on my personal machine and on IDUN. I was also unable to run particle filter
on IDUN without crashing, although it executed without errors on my personal
machine. I was unable to identify any specific reasons for these discrepancies, but
it could be due to differences in software or library versions. Because of this, these
benchmarks are not included in the results in Chapter 7.

Chapter 7

Results and Evaluation

In this chapter, I will present the results and evaluation of the experimental setup
from Chapter 6. In this evaluation, I will consider the following configurations:

• Vortex1 is the baseline version of Vortex as presented at MICRO’21 [7].
• FGTO2 is the configuration implementing ready scheduling, and all the fron-

tend changes, i.e. BPR, NSS and stall-prediction. The GTO scheduling al-
gorithm is used for both the warp and instruction scheduler.
• FRRR2 is the configuration implementing ready scheduling, and all the fron-

tend changes, i.e. BPR, NSS and stall-prediction. The LRR scheduling al-
gorithm is used for both the warp and instruction scheduler.

7.1 CPI Stack Overview

Figure 7.1 shows the CPI stacks for all of the benchmarks, and the average CPI,
normalized to the baseline version. The changes to Vortex have varying effects on
the performance of each benchmark. In this context, performance is characterized
by CPI, where lower CPI equates to higher performance. On average the FGTO
and FRRR configurations respectively have a 5.03% and 5.48% reduction in CPI
compared to Vortex. There are however large deviations from this average. The
HW benchmark has an almost a 40% reduction in CPI for both FGTO and FRRR,
while CFD see over 20% increase in CPI for the FGTO configuration. Most of the
benchmarks see a drastic shift in the causes of the stalls. This shift does however
not necessarily reflect in an increase or decrease in CPI. In the following sections,
I will present subsets of the results shown in Figure 7.1, to explain the effects of
the implemented changes.

1https://github.com/EECS-NTNU/vortex-ntnu/tree/ntnu_main
2https://github.com/EECS-NTNU/vortex-ntnu/tree/ntnu_main_larsmaur

39

40 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 7.1: Normalized CPI stacks for the Vortex, and the new GTO and RRR
configurations

7.2 Reduction of Control Stalls

Figure 7.2 shows the normalized CPI attributed to frontend stalls and base. It is
clear that the frontend is the dominating cause for stalling in the baseline version.
On average, 50% of the CPI is attributed to sync & control or empty ibuffer stalls.
Sync & control stalls are however most prevalent, representing over 40% of the
CPI. NSS, and stall-prediction reduces the number of control stalls by removing
unnecessary stalls. Because of this, warps are now only blocked after fetching
instructions capable of changing the control flow or thread mask. The new icache-
stage, enables Vortex to perform multiple concurrent instruction fetches, which
increases the fetch bandwidth. After implementing the new frontend, less than
5% of the average CPI is sync & control stalls, and the average CPI attributed to the
frontend is reduced by 71%. This shows that most instructions were unnecessarily
blocked by the frontend.

For sfilter, FGTO and FRRR reduces the number of frontend stalls from 61% to
less than 0.01% of the Vortex CPI. This is because sfilter does not have any branch
instructions in its kernel. The warp scheduler can thus continue to fetch instruc-
tions without stalling. The few occurring frontend stalls are during the end of the
benchmark. As the instructions are never blocked in the warp scheduler, the GTO
warp scheduler would never switch which TB it schedules from. However, BPR
informs the warp scheduler when the ibuffer is full, blocking the warp from being
scheduled. BPR is thus making the GTO warp scheduler switch if the backend is
stalling, making it schedule more fairly. This becomes apparent as there are no
idle stalls caused by TBs completing before others. This demonstrates how the
new frontend is capable of removing all unnecessary control stalls.

While the new frontend has a large impact on most benchmarks, BFS seems
unable to utilize NSS. The number of sync & control stalls does not change between
Vortex, FGTO and FRRR. A large proportion of BFS’ kernel are instructions pertain-

Chapter 7: Results and Evaluation 41

Figure 7.2: Normalized CPI attributed to the base cycles and stalls caused by the
frontend.

ing to control flow and handling of divergence. Because of this, BFS has a consider-
able number of required frontend stalls, which cannot be improved by NSS. Stall
prediction ensures that these control stalls are not mispredicted. If the control-
flow instructions were not stalled, it would waste many cycles having to flush the
frontend. Stall-prediction is thus ensuring that the new frontend performs at least
as well as the baseline in terms of control stalls.

In the baseline configuration, all of the benchmarks have 5− 10% of the CPI
attributed to empty ibuffer. These occur when a TB has no warps available in the
instruction buffer, and it is not currently blocked in the warp scheduler. Some of
these stall cycles are caused by the latency between the warps being un-stalled,
and then being fetched, decoded and sent to the ibuffer. For all the benchmarks,
excluding lavaMD, DWT2D, SC and CFD, the number of empty-ibuffer stalls are
reduced. As the new frontend is able to cut down on the number of frontend
stalls, the number of un-stalls is also reduced, which in turn reduces empty ibuffer
stalls.

Figure 7.1 shows that SC has almost no stalls related to the backend for any of
the configurations. That is, when a warp arrives in the ibuffer, it is issued within
a few cycles. For SC, only the memset kernel is executed, because of early-exit.
The memset kernel has almost no data dependencies. Thus the backend is almost
never stalling, and the ibuffer is thus being emptied faster than it is filled. The
memset kernel has a short loop containing a memory write. The loop does require
the frontend to stall, due to control flow. There are however no sync & control
stalls shown for the FGTO and FRRR configurations, only empty ibuffer stalls. This
is because while the warp is stalled in the frontend, all previously fetched warps
are issued, which hides the control stalls. When the control stall is released, all
of the ibuffers are empty, causing empty ibuffer stalls. Yet, there are more empty
ibuffer stalls when using the new frontend than sync & control stalls in the baseline
version. This is likely because the icache-stage requires an additional cycle to re-

42 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 7.3: Normalized CPI for benchmarks with most missed schedule stalls.

order the icache responses. This results in a somewhat higher latency between a
warp being fetched and it arriving in the ibuffer. A similar effect can be seen for
other benchmarks such as srad and CFD. This problem can probably be solved by
having a wider frontend, allowing for scheduling more than one instruction per
cycle, or having enough warps per SM to hide the frontend latency.

7.3 Utilization of Functional Units

Figure 7.3 shows the CPI stacks of the benchmarks with the largest proportion
of missed schedule stalls. For psort, the number of stalls is nearly halved for both
FGTO and FRRR, resulting in a 20% decrease in CPI compared to the Vortex con-
figuration. Psort has a low number of frontend stalls, which does not change after
implementing the new frontend, as nearly all sync & control stalls are replaced by
empty ibuffer stalls. Psort is thus seeing limited improvements from the frontend
changes. The implementation of ready scheduling in FGTO and FRRR is able to
remove all the missed schedule stalls. In the Vortex configuration, missed schedule
stalls contribute to about 10% of the CPI, while for FGTO the CPI is decreased
by the double (20%). This is because other than frontend and missed schedule,
psort is stalled by compute data dependencies. These stalls can be hidden by the
increased number of issued instructions, as they have low latency.

The sgemm and nearn benchmarks also have a significant number of missed
schedule stalls. In addition to the improvements obtained by ready scheduling,
these benchmarks see a great reduction in frontend stalls. The increased through-
put of the frontend makes more warps available in the issue stage, increasing the
effect of ready scheduling. Because of the significant decrease in frontend stalls,
sgemm is also able to obtain a 20% reduction in CPI. This is similar to psort, but
with a smaller proportion of missed schedule stalls in the Vortex configuration. The
CPI of nearn is not reduced to the same degree as sgemm and psort. This is likely

Chapter 7: Results and Evaluation 43

Figure 7.4: Normalized CPI for benchmarks where memory stalls are revealed
using FGTO and FRRR

Figure 7.5: Average bandwidth usage between the L2 cache and DDR4 memory

caused by a combination of multiple factors. The number of frontend stalls is only
halved, thus revealing fewer additional warps in the ibuffer than sgemm. Nearn
also have less missed schedule stalls than psort and more long-latency memory data
stalls than psort. Because of this, there are fewer stalls which can be hidden by
ready scheduling.

7.4 Memory Stalls

Figure 7.4 shows the normalized CPI stacks for the benchmarks where FGTO and
FRRR reveal memory stalls. For all of these benchmarks, a significant number of
memory data stalls are revealed. Additionally for hotspot, 3D, lavaMD, saxpy, vec-
add and gaussian, memory structural stalls are also uncovered. As there is an in-
crease in memory structural stalls it would be rational to assume an increase in
memory bandwidth usage. However, the memory bandwidth usage illustrated in
Figure 7.5, shows the opposite. For the benchmarks where the changes expose
memory structural stalls, the bandwidth is either decreased or unchanged. Fig-
ure 7.6a and 7.6b show that the dcache hitrates are similar for Vortex, FGTO and
FRRR. This indicates that there are other causes for the memory structural stalls.

44 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

(a) L1 dcache hitrate

(b) L2 dcache hitrate

Figure 7.6: Average dcache hitrate

Backprop and lavaMD both have a large number of memory structural stalls,
but very different bandwidth utilization. LavaMD use 17GB/s of memory band-
width on average while backprop use 10GB/s, which is only about half of the avail-
able bandwidth. For lavaMD, the available bandwidth is likely the main cause of
memory structural stalls, as its average usage is close to the available bandwidth.
This is not the case for backprop. Unlike lavaMD, backprop uses a lot of memory
barriers. When a memory barrier is issued to the LSU, all in-flight memory instruc-
tions have to complete before the LSU will be ready. Memory structural stalls are
therefore occurring while these barriers are resolving. Because of this, the aver-
age memory bandwidth usage can be low while still producing memory structural
stalls. This is also why hotspot has an increase in memory structural stalls. It is
however a smaller increase, as it is dependant on the latency of the requests and
the frequency of the barrier instructions.

For all of the benchmarks in Figure 7.4, a large number of memory data stalls
are revealed when the number of frontend stalls is reduced by FGTO and FRRR.
Because warps are waiting for the results of memory requests, these stalls are
caused by memory latency. It is most likely that these memory requests are already
in-flight, and thus the increased frontend throughput just exposes the stall sooner.
As there is such a large proportion of memory data stalls, it is clear that Vortex is
incapable of hiding them. There is simply not enough work to do while wait-
ing for the memory requests. The average latency for each benchmark is shown
on a logarithmic scale in Figure 7.7. It is a clear trend that FGTO and FRRR is
increasing the memory latency. This is likely because the memory requests are

Chapter 7: Results and Evaluation 45

Figure 7.7: Average memory latency on logarithmic scale

being queued in the memory system. It is possible that FRRR and FGTO make
the memory requests within a shorter time span than Vortex, due to the frontend
throughput. This would generate uneven memory bandwidth usage, and result
in queuing. This would explain why the latency is increased, while the average
bandwidth does not. Section 7.6 will discuss further why FGTO does not perform
better than FRRR in this situation.

Figure 7.6 shows the L1 and L2 dcache hit rates for all the benchmarks. For
most of the benchmarks, the configuration does not affect the L1 cache hit rate.
However, hotspot, sfilter, gaussian and NW see a significant increase in L1 hit rate
for FGTO and FRRR compared to Vortex. A potential cause of this increase is that
Vortex’ find-first warp scheduler is causing some warps to run ahead of others,
making them evict cache lines of memory shared between the TBs. This is not
happening when using GTO or LRR warp scheduling as they schedule the warps
more fairly.

Figure 7.8 shows the distribution of executed instructions by each of Vortex’
SMs for the 3D benchmark. It is clear that within each cluster, SM0 is executing
close to 5× more instructions than SM7. For each increasing index within the
cluster, the SMs are executing fewer instructions. As there are no idle cycles for
3D, this cannot be because less work is being allocated to the SMs. If the bench-
mark would have finished instead of exiting early, there would probably be idle
cycles, as the SMs with lower indices would finish before the higher indexed SMs.
The difference in the number of executed instructions is likely caused by the NoC
distributing the available bandwidth unfairly. A similar effect can be observed for
lavaMD in figure 7.9k, as both lavaMD and 3D exit early and have bandwidth
utilization close to the available memory bandwidth.

SAXPY, vecadd, kmeans and gaussian, see a significant decrease in bandwidth
utilization. This decrease is mainly caused by an increase in idle cycles. As some
of the cores idle, they stop sending memory requests, lowering the average band-
width utilization. Section 7.5 will explain further why these benchmarks idle.

46 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 7.8: Distribution of executed instructions per SM and cluster for
Hotspot3D (3D)

7.5 Workload Distribution

Backprop, saxpy, vecadd, b+tree, kmeans and gaussian all gain a significant num-
ber of idle cycles on FGTO and FRRR, as shown in Figure 7.10. All of these bench-
marks either finish execution, or complete multiple kernels before exiting early.
The effects of uneven memory bandwidth distribution can thus be observed as idle
cycles. As described in Section 7.4, the NoC is distributing the available bandwidth
unfairly. This makes some SMs have higher throughput than others. As the TBs
are statically distributed at the beginning of the kernel, the throughput difference
will cause some of the SMs to finish earlier than others. The SMs will then have
to idle until the kernel has finished execution. This is why the average bandwidth
becomes lower for these benchmarks after implementing the changes. The skew
in throughput cannot necessarily be observed in Figure 7.9 as these benchmarks
finish execution, which levels out the number of executed instructions by SMs
idling.

For the benchmarks which do not complete any kernels, the skewed memory
bandwidth can be observed in the distribution of executed instructions. Because
the kernels do not complete, the SMs are not idling, which is why it cannot be
observed as idle stalls. Looking at hotspot (Figure 7.9h), DWT2D (Figure 7.9e),
lavaMD (Figure 7.9k) and NW (Figure 7.9m), the difference between the SMs ex-
ecuting the most and least instructions is increased for FGTO and FRRR compared

Chapter 7: Results and Evaluation 47

(a) B+Tree (b) Backprop (c) BFS (d) CFD

(e) DWT2D (f) Gaussian (g) HW (h) Hotspot

(i) 3D (j) Kmeans (k) LavaMD (l) Nearn

(m) NW (n) Psort (o) SAXPY (p) Sfilter

(q) SGEMM (r) SC (s) Vecadd

Figure 7.9: Distribution of executed instructions per SM for each of the bench-
marks. The SMs are sorted in ascending order of their share of the executed in-
structions

48 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 7.10: Normalized CPI stacks for benchmarks with idle cycles

to Vortex. This is because FGTO and FRRR allow the SMs to issue more instruc-
tions, but the GPU is throttled by the NoC, which is why there are only small
improvements in performance.

For benchmarks such as SC, CFD, HW and BFS, the proportion of idle cycles
stays mostly the same for all three configurations. These idle cycles are caused by
the TB scheduler not being able to distribute workload to all of the SMs. This is ap-
parent in Figure 7.9c, 7.9d, 7.9g and 7.9r, where most of the SMs are not executing
any instructions. I attempted to solve this by altering the local and global work
sizes. This did however not affect the workload distribution. A better understand-
ing of the TB scheduler is probably required to solve this.

In Figure 7.10, the CPI of HW is almost halved for FGTO and FRRR. It appears
as if the improvements are a result of a reduction in idle cycles. However, as shown
in Figure 7.9g, the same number of SMs continue to idle. Because of low memory
contention, and the increased frontend and issue bandwidth, the performance of
the active SMs improve drastically. The appearance of reduced idle cycles is thus
caused by an increase in executed instructions by the active SMs, which in turn
reduces the number of idle cycles per instruction.

7.6 Warp Scheduling

The motivation for implementing new schedulers for Vortex, was to improve per-
formance over the existing find-first and LRR algorithms. In this section, I will
compare combinations of the GTO and LRR algorithms in the instruction and
warp schedulers. The configurations will be described as fetch-algorithm+issue-
algorithm. All of the configurations discussed in this section implement all the
frontend improvements as well as ready scheduling.

For most of the benchmarks shown in Figure 7.11, the scheduling algorithm
does not make a large difference. Looking at the average CPI, the performance
seems to be somewhat worse for GTO+LRR, but the average CPI stays within 1.5%

Chapter 7: Results and Evaluation 49

Figure 7.11: Comparing combinations of scheduling algorithms used in the issue
stage and fetch stage.

for all the other configurations. Most of the average CPI increase for GTO+LRR is
coming from NW. It is difficult to pinpoint an exact reason for this being an outlier.
For CFD, the performance is somewhat better when using a round-robin warp
scheduler. This is because it has a large number of empty ibuffer stalls. A round-
robin warp scheduler will be able to fetch warps from different TBs, reducing the
number of empty ibuffers, and thus reducing empty ibuffer stalls. On the other
hand, a GTO warp scheduler will attempt to fetch multiple warps from a single
TB, and thus only fill one ibuffer. If a warp fetched by GTO cannot be issued, it is
therefore less likely to be other warps available in the instruction buffer to hide
the stall.

The motivation for using GTO was to improve cache usage and reach long-
latency stalls earlier. This is clearly not happening, since there is no significant
difference in the number of memory data stalls between the configurations. There
are multiple possible reasons why the GTO scheduler might not perform as expec-
ted:

• The current implementation of GTO does not differentiate between long-
and short-latency stalls. If a warp is stalled due to a short-latency stall, e.g. a
cache hit, its age is set to 0. Thus it will become a low-priority warp before it
hits a long-latency stall. This might also lose potential cache hits, as the GTO
scheduler will then begin to schedule other warps, which can evict cache-
lines used by the short-latency stalled warp. Setting the age of the warp to
0 only upon detecting long-latency stalls would allow the warp to keep high
priority and hit long-latency stalls sooner. This might improve cache usage
and reduce the number of stall cycles due to long-latency memory requests.
• The interaction between the warp scheduler, issue scheduler and BPR might

not be ideal for GTO. To get the most out of GTO scheduling, it should be
able to consecutively issue as many warps from the same TB as possible. If
the currently selected greedy warp ID of the two schedulers are different, i.e.

50 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 7.12: Normalized CPI stacks for the baseline and final versions using 8
warps per SM

they schedule warps from different TBs, the instruction buffer might empty
before hitting the desired long-latency stall. BPR forces the warp scheduler
to fetch warps from a different TB if the instruction buffer is full. This can
prevent the warp scheduler from fetching enough instructions to hit long-
latency stalls. A solution to this would be to increase the queue size of the
instruction buffer.
• With only 4 TBs per SM, there might be too few warps to be able to hide

any significant number of long-latency stall cycles.

7.7 Sensitivity Analysis

I performed various sensitivity analyses based on the memory bandwidth, the
number of warps per SM and the caches. The goal is to see how these factors
affect FGTO and FRRR compared to Vortex, not necessarily how they affect the
overall performance.

Increase warps per SM. Figure 7.12 shows the CPI stacks for the same configura-
tion as described in the experimental setup but with 8 warps per SM. On average
FGTO and FRRR respectively reduce CPI by 12.9% and 13.2% over Vortex. This is a
greater reduction than when using 4 warps per SM. When using 8 warps per SM,
a larger proportion of the stalls in Vortex are frontend stalls. The baseline config-
uration thus continues to be inhibited by the frontend throughput. The increase
is mainly due to the increase in empty ibuffer stalls. This is because the frontend
is unable to fetch enough instructions to fill the increased number of instruction
buffers. The FGTO and FRRR are clearly still able to fill the instruction buffer, as
there are close to no frontend stalls in any of the benchmarks. SRAD, SC, BFS and
CFD continue to experience the same issues as described in Section 7.2.

The increased frontend throughput allows FGTO and FRRR to utilize memory
bandwidth and hide data stalls to a greater degree, as shown by the increased

Chapter 7: Results and Evaluation 51

Figure 7.13: Normalized CPI stacks when using two memory channels, giving a
bandwidth of 34.8GB/s

proportion of memory structural stalls. The CPI of sgemm is reduced to a much
larger degree by FGTO and FRRR when using 8 warps than when using 4 warps.
When using 4 warps, sgemm is largely dominated by memory data stalls. By in-
creasing the number of warps to 8, the low average latency of sgemm can be
hidden, resulting in a drastic performance improvement. The same goes for psort
which is close to never stalling for both FGTO and FRRR.

The increased MLP caused by having more warps, is increasing the memory
bandwidth requirement. Because of this, the NoC’s skewed bandwidth distribution
is likely to have an even greater effect. This is why benchmarks such as vecadd are
seeing a larger proportion of idle stalls. For gaussian, the increased proportion
of idle stalls is likely a combination of skewed bandwidth distribution and the
workload not being divided into enough TBs to fill the increased number of TB
slots per SM.

Increase DDR4 bandwidth. Figure 7.13 shows the CPI stacks for Vortex using 2
channel DDR4 memory, resulting in 34.8GB/s of bandwidth, giving 2× the avail-
able bandwidth of the memory configuration described in the experimental setup.
For benchmarks with high bandwidth utilization, such as lavaMD, the additional
available bandwidth enables both FGTO and FRRR to reduce CPI, instead of in-
creasing it. For most other benchmarks, the additional memory bandwidth does
not alter how the changes affect CPI. The benchmarks continue to be dominated
by memory data stalls, and are thus unable to utilize the bandwidth. Thus both
FGTO and FRRR remain latency bound. It is difficult to determine why the CPI of
NW and CFD for are almost doubled for FGTO and FRRR compared to Vortex. I be-
lieve it might be an issue with the simulation, as I previously experienced issues,
where the simulator gave erroneous results.

52 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

Figure 7.14: Normalized CPI stacks when using only L1 caches

Only L1 caches. Figure 7.14 shows the normalized CPI stacks when using only L1
caches, i.e. not using a L2 cache for each cluster. For most of the benchmarks, the
increased memory latency of having no L2 cache makes FGTO and FRRR have less
impact on performance as a smaller proportion of the stall cycles can be hidden.
Most interestingly, the idle stalls incurred by skewed bandwidth distribution in
backprop, saxpy, vecadd, b+tree, kmeans and gaussian are gone. This indicates that
the L2 cache bandwidth might be too low, or the memory arbiters replacing the L2
caches, are distributing the memory bandwidth differently. Interestingly FGTO and
FRRR reduce CPI by 7.02% and 7.42% respectively, which is more than when using
L2 caches. The extra improvement mostly comes from there being no additional
idle stalls.

The CPI is drastically increased for NW in the FGTO and FRRR configurations.
This increase is due to a large increase in memory data stalls. The increased fron-
tend throughput might cause the requests to queue up in the memory system, as
described in Section 7.4. This effect becomes even stronger as the L1 cache hit
rate is low and the L2 cache is removed. Because of this, the latency is increased
which in turn increases memory data stalls.

Chapter 8

Conclusion and Further Work

8.1 Conclusion

In this thesis, I proposed and implemented improvements to Vortex’ frontend,
increasing the bandwidth of the fetch, decode and issue stages. The proposed
changes were based on the work and findings in my project thesis. This accounts
for contribution C1 corresponding with task T1.

I improved CSV by making it consider the stall cause of all warps in the is-
sue stage. This gives a better overview of the issue stage and enables it to show
frontend stalls for individual warps. This improvement comprises contribution C2
which corresponds with task T2.

Through evaluating the implemented changes, I find that the increased fron-
tend throughput and issue bandwidth has varying effects on the performance. The
improvements to the frontend, reduce frontend related stalls by 71% on average,
and even remove all frontend stalls from sfilter, as it has no control-flow instruc-
tions. The improved ready instruction scheduler removes all missed scheduling
opportunities. This is reducing the CPI of psort by 20%, as low-latency stalls can
be hidden. However, the CPI is only reduced by 5.4%. This is because the bottle-
neck is moved to the backend of Vortex, as warps have to wait for long-latency
memory stalls. I find that the uncovered memory data stalls are a consequence of
the Vortex configuration being too small. This is also why there is no significant
performance gain when using GTO instead of LRR scheduling. This evaluation
constitutes contribution C3 corresponding with task T3.

I adapt Rodinia benchmarks to enable them to run on Vortex. This is improving
the analysis, by adding a set of benchmarks more representative of real workloads.
By additionally enabling Vortex to profile multi-kernel programs, it becomes pos-
sible to add a wider range of benchmarks. This comprises contribution C4 which
corresponds with task T4.

53

54 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

8.2 Further Work

Though the improvements I proposed in this thesis improved frontend and issue
bandwidth, they did not improve the performance to the same degree. The reason
behind this is most likely that the SMs are too small to hide latency. Having more
warps per SM together with a more fitting memory system is likely required to
solve this problem. However, it is infeasible to continue using software simulation
while increasing the size of the SMs and the GPU. To solve this FPGA-acceleration
is required. Thus the natural next step is to integrate Vortex into Chipyard and
FireSim to resolve the issues regarding the discrepancies between FPGA and ASIC
clock frequencies.

There are also other issues which need to be resolved to make Vortex a reason-
able GPU. Vortex is unable to perform efficient workload balancing. In some cases,
the TB scheduler is unable to distribute work to all of the SMs, making them idle.
In other cases, SMs finish execution long before others. Gaining a better under-
standing of Vortex’ TB scheduler and workload distribution is probably required
to understand the source of the problem. It is likely better to implement a dynamic
system, similar to the one made by Nvidia [13].

Bibliography

[1] L. M. Aurud, ‘Performance Analysis of the Vortex GPGPU,’ Dec. 2022.

[2] D. Burg and J. H. Ausubel, ‘Moore’s Law revisited through Intel chip dens-
ity,’ PLOS ONE, vol. 16, pp. 1–18, 2021.

[3] R. Dennard, F. Gaensslen, H.-N. Yu, V. Rideout, E. Bassous and A. LeBlanc,
‘Design of ion-implanted MOSFET’s with very small physical dimensions,’
IEEE Journal of Solid-State Circuits, vol. 9, pp. 256–268, 1974.

[4] G. M. Amdahl, ‘Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities,’ in Proceedings of the Spring Joint Computer
Conference, 1967, pp. 483–485.

[5] A. R. Brodtkorb, T. R. Hagen and M. L. Sætra, ‘Graphics processing unit
(GPU) programming strategies and trends in GPU computing,’ Journal of
Parallel and Distributed Computing, vol. 73, pp. 4–13, 2013.

[6] C. McClanahan, ‘History and evolution of gpu architecture,’ A Survey Paper,
vol. 9, pp. 1–7, 2010.

[7] B. Tine, K. P. Yalamarthy, F. Elsabbagh and K. Hyesoon, ‘Vortex: Extending
the RISC-V ISA for GPGPU and 3D-Graphics,’ in Proceedings of the Interna-
tional Symposium on Microarchitecture (MICRO), 2021, pp. 754–766.

[8] M. Rekdal, ‘Investigating the Performance Scalability of the Vortex GPU,’
NTNU Open, 2022.

[9] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee and K. Skad-
ron, ‘Rodinia: A benchmark suite for heterogeneous computing,’ in Proceed-
ings of the International Symposium on Workload Characterization (IISWC),
2009, pp. 44–54.

[10] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang and K. Skadron, ‘A
characterization of the Rodinia benchmark suite with comparison to con-
temporary CMP workloads,’ in Proceedings of the International Symposium
on Workload Characterization (IISWC), 2010, pp. 1–11.

[11] J. Tompson and K. Schlachter, ‘An introduction to the OpenCL program-
ming model,’ Person Education, vol. 49, p. 31, 2012.

55

56 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

[12] Y. Liu, X. Zhao, M. Jahre, Z. Wang, X. Wang, Y. Luo and L. Eeckhout, ‘Get
out of the Valley: Power-Efficient Address Mapping for GPUs,’ in Proceed-
ings of the International Symposium on Computer Architecture (ISCA), 2018,
pp. 166–179.

[13] A. Ukarande, S. Patidar and R. Rangan, ‘Locality-Aware CTA Scheduling for
Gaming Applications,’ ACM Transactions on Architecture and Code Optimiz-
ation (TACO), vol. 19, 2021.

[14] L. Wang, ‘Modeling and Minimizing Memory Contention in General-Purpose
GPUs,’ Ph.D. dissertation, Ghent University, 2020.

[15] S. G. Pandey and S. Gopalakrishnan, ‘Improving GPGPU Performance Us-
ing Efficient Scheduling,’ in Proceedings of the International Conference on
Intelligent Sustainable Systems (ICISS), 2019, pp. 570–577.

[16] T. G. Rogers, M. O’Connor and T. M. Aamodt, ‘Cache-Conscious Wavefront
Scheduling,’ in Proceedings of the International Symposium on Microarchi-
tecture (MICRO), 2012, pp. 72–83.

[17] Y. Zhang, Z. Xing, C. Liu, C. Tang and Q. Wang, ‘Locality based warp schedul-
ing in GPGPUs,’ Future Generation Computer Systems, vol. 82, pp. 520–527,
2018.

[18] S.-Y. Lee and C.-J. Wu, ‘CAWS: Criticality-Aware Warp Scheduling for GP-
GPU Workloads,’ in Proceedings of the International Conference on Parallel
Architectures and Compilation (PACT), 2014, pp. 175–186.

[19] J. Power, J. Hestness, M. S. Orr, M. D. Hill and D. A. Wood, ‘Gem5-gpu:
A heterogeneous cpu-gpu simulator,’ IEEE Computer Architecture Letters,
vol. 14, pp. 34–36, 2015.

[20] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong and T. M. Aamodt, ‘Analyz-
ing CUDA workloads using a detailed GPU simulator,’ in Proceedings of the
International Symposium on Performance Analysis of Systems and Software
(ISPASS), 2009, pp. 163–174.

[21] R. Ubal, B. Jang, P. Mistry, D. Schaa and D. Kaeli, ‘Multi2Sim: A simula-
tion framework for CPU-GPU computing,’ in Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques (PACT), 2012,
pp. 335–344.

[22] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane, J. Kalama-
tianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D. Sinclair, M.
Wyse, J. Yin, X. Zhang, A. Jain and T. Rogers, ‘Lost in Abstraction: Pitfalls
of Analyzing GPUs at the Intermediate Language Level,’ in Proceedings of
the International Symposium on High Performance Computer Architecture
(HPCA), 2018, pp. 608–619.

Bibliography 57

[23] R. Balasubramanian, V. Gangadhar, Z. Guo, C.-H. Ho, C. Joseph, J. Menon,
M. P. Drumond, R. Paul, S. Prasad, P. Valathol and K. Sankaralingam, ‘En-
abling GPGPU Low-Level Hardware Explorations with MIAOW: An Open-
Source RTL Implementation of a GPGPU,’ ACM Transactions on Architecture
and Code Optimization (TACO), vol. 12, 2015.

[24] J. Bush, P. Dexter, T. N. Miller and A. Carpenter, ‘Nyami: a synthesizable
GPU architectural model for general-purpose and graphics-specific work-
loads,’ in International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2015, pp. 173–182.

[25] K. Andryc, M. Merchant and R. Tessier, ‘FlexGrip: A soft GPGPU for FP-
GAs,’ in Proceedings of the International Conference on Field-Programmable
Technology (FPT), 2013, pp. 230–237.

[26] B. Tine, V. Saxena, S. Srivatsan, J. R. Simpson, F. Alzammar, L. Cooper and
H. Kim, ‘Skybox: Open-Source Graphic Rendering on Programmable RISC-
V GPUs,’ in Proceedings of the International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), vol. 3,
2023, pp. 616–630.

[27] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J.
Eastep and A. Agarwal, ‘Graphite: A distributed parallel simulator for mul-
ticores,’ in Proceedings of the International Symposium on High Performance
Computer Architecture (HPCA), 2010, pp. 1–12.

[28] S. Mukherjee, S. Reinhardt, B. Falsafi, M. Litzkow, M. Hill, D. Wood, S.
Huss-Lederman and J. Larus, ‘Wisconsin Wind Tunnel II: a fast, portable
parallel architecture simulator,’ IEEE Concurrency, vol. 8, pp. 12–20, 2000.

[29] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson and K. As-
anovic´, ‘RAMP gold: An FPGA-based architecture simulator for multipro-
cessors,’ in Proceedings of the Design Automation Conference (DAC), 2010,
pp. 463–468.

[30] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill and D. A. Wood, ‘Multifacet’s General
Execution-Driven Multiprocessor Simulator (GEMS) Toolset,’ ACM SIGARCH
Computer Architecture News, vol. 33, pp. 92–99, 2005.

[31] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew, A.
Magyar, H. Mao, A. Ou, N. Pemberton, P. Rigge, C. Schmidt, J. Wright, J.
Zhao, Y. S. Shao, K. Asanović and B. Nikolić, ‘Chipyard: Integrated Design,
Simulation, and Implementation Framework for Custom SoCs,’ IEEE Micro,
vol. 40, pp. 10–21, 2020.

[32] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pember-
ton, E. Amaro, C. Schmidt, A. Chopra, Q. Huang, K. Kovacs, B. Nikolic, R.
Katz, J. Bachrach and K. Asanovic, ‘FireSim: FPGA-Accelerated Cycle-Exact
Scale-Out System Simulation in the Public Cloud,’ in Proceedings of the In-
ternational Symposium on Computer Architecture (ISCA), 2018, pp. 29–42.

58 L. M. Aurud: Improving Fetch and Issue Bandwidth in Vortex

[33] J. Cortadella, M. Kishinevsky and B. Grundmann, ‘Synthesis of Synchron-
ous Elastic Architectures,’ in Proceedings of the Design Automation Confer-
ence (DAC), 2006, pp. 657–662.

[34] A. Waterman, Y. Lee, D. Patterson, K. Asanovic, V. I. U. level Isa, A. Water-
man, Y. Lee and D. Patterson, ‘The RISC-V instruction set manual,’ Volume
I: User-Level ISA’, version, vol. 2, 2014.

[35] M. Naderan-Tahan and L. Eeckhout, ‘Cactus: Top-Down GPU-Compute Bench-
marking using Real-Life Applications,’ in Proceedings of the International
Symposium on Workload Characterization (IISWC), 2021, pp. 176–188.

[36] W. Snyder. ‘Verilator.’ (2022), [Online]. Available: https://www.veripool.
org/verilator/.

[37] P. Jääskeläinen, C. S. Lama, E. Schnetter, K. Raiskila, J. Takala and H. Berg,
‘pocl: A Performance-Portable OpenCL Implementation,’ Int. J. Parallel Pro-
gram., vol. 43, pp. 752–785, 2015.

[38] E. Perelman, G. Hamerly and B. Calder, ‘Picking statistically valid and early
simulation points,’ in Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2003, pp. 244–255.

[39] J. Alsop, M. D. Sinclair, R. Komuravelli and S. V. Adve, ‘GSI: A GPU Stall
Inspector to characterize the sources of memory stalls for tightly coupled
GPUs,’ in Proceedings of the International Symposium on Performance Ana-
lysis of Systems and Software (ISPASS), 2016, pp. 172–182.

[40] J. Lee, Y. Ha, S. Lee, J. Woo, J. Lee, H. Jang and Y. Kim, ‘GCoM: A Detailed
GPU Core Model for Accurate Analytical Modeling of Modern GPUs,’ in Pro-
ceedings of the International Symposium on Computer Architecture (ISCA),
2022, pp. 424–436.

[41] B. Gottschall, L. Eeckhout and M. Jahre, ‘TIP: Time-Proportional Instruction
Profiling,’ in Proceedings of the International Symposium on Microarchitec-
ture (MICRO), 2021, pp. 15–27.

[42] Y. Kim, W. Yang and O. Mutlu, ‘Ramulator: A Fast and Extensible DRAM
Simulator,’ IEEE Computer Architecture Letters, vol. 15, pp. 45–49, 2016.

[43] M. Själander, M. Jahre, G. Tufte and N. Reissmann, EPIC: An Energy-Efficient,
High-Performance GPGPU Computing Research Infrastructure, 2019.

https://www.veripool.org/verilator/
https://www.veripool.org/verilator/

	Assignment Text
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Motivation
	Assignment Interpretation
	Contributions
	Outline

	Background
	GPU Overview
	GPU Programming Model
	GPU Architecture

	Warp Scheduling
	GPU Simulation

	Changes to Vortex
	Vortex Architecture
	Vortex ISA
	Pipeline
	Workload Distribution

	Scheduling Algorithms
	Ready Scheduling
	Greedy then Oldest
	Matching Warp and Issue Schedulers

	Frontend
	No Stall Scheduling
	Stall Prediction
	Back Pressure Reduction

	Adding Rodinia to Vortex
	Reading Performance Data
	Adapting Benchmarks for Vortex
	Offline Compilation
	Memory Allocation
	Selecting Work Sizes

	Fast-Forward, Warm-Up and Early-Exit

	CPI Stacks for Vortex
	GPU Stall Inspector
	CSV Overview
	Improving CSV

	Experimental Setup
	Vortex Configuration
	Benchmarks
	IDUN Cluster

	Results and Evaluation
	CPI Stack Overview
	Reduction of Control Stalls
	Utilization of Functional Units
	Memory Stalls
	Workload Distribution
	Warp Scheduling
	Sensitivity Analysis

	Conclusion and Further Work
	Conclusion
	Further Work

	Bibliography

