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i

Abstract

The advances in large language models have been noticeable to researchers and
the general public in recent times [56]. We see the development of large language
models in conjunction with vision models and multimodal models becoming an
exciting research space because of the ability to process more information from
additional modalities.

In our work, we leverage publicly available large language and multimodal mod-
els for the quite established natural language processing task of named entity
recognition. Using novel approaches, we explore adapting the task to generative
models through prompting to leverage the capabilities of such models without
modifying the architecture or training weights. Further, we use the multimodal
models with multimodal named entity recognition datasets to experiment with
the modelâs ability to leverage visuals for better performance.

Our approach fits into the larger prompting trend but leverages it for a tra-
ditional classification task through a novel approach using question-answering
prompting with generative models, demonstrating state-of-the-art or competi-
tive performance in the case of zero or very few training examples.
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Sammendrag (Norwegian Abstract)

Fremskrittet til store spr̊akmodeller har vært merkbare ikke bare for forskere, men
ogs̊a for allmennheten i nyere tid [56]. Vi ser utviklingen av store spr̊akmodeller
i sammenheng med visuelle modeller slik at multimodale modeller kan være in-
teressante for forskning fordi man kan h̊andtere mer informasjon n̊ar man bruker
flere typer data.

I v̊art arbeid prøver vi å utnytte b̊ade noen o↵entlig tilgjengelige store spr̊akmodeller
og multimodale modeller for den ganske etablerte spr̊akbehandlingsoppgaven
navngitt entitetsgjenkjenning. Ved å bruke nye tilnærminger utforsker vi hvor-
dan tilpasse oppgaven til generative modeller via spørsmål, for å kunne utnytte
mulighetene til slike modeller uten å måtte endre arkitekturen eller trene vek-
ter. Videre utnytter vi de multimodale modellene i forbindelse med multimodale
datasett for navngitt entitetsgjenkjenning for å eksperimentere med modellens
evne til å utnytte visuelle elementer for bedre ytelse.

V̊ar tilnærming passer inn i den større spørringstrenden, men utnytter den for en
tradisjonell oppgave gjennom en ny tilnærming som bruker spørsmåls-svar med
generative modeller, og viser state-of-the-art eller høy ytelse i tilfeller med null
eller svært f̊a treningseksempler.
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Chapter 1
Introduction

This chapter explains the conceptual background for the work before introducing
our motivation. Further, it proposes research questions and presents the thesis
structure.

1.1 Named entity recognition

Named entity recognition (NER) can be segmented into two sub-tasks. First
identifying the entities in the text, and then classifying them into some classes,
normally predefined.

The CoNLL-2003 format uses four entity classes, person, location, organization,
and miscellaneous, in addition to the negative/none class. The miscellaneous is
a grouping of all the entities which do not correspond to the first three classes.

Some examples of entities are: John Hancock was a person, Apple is an or-
ganization, Times Square is a location and Wednesday is a misceallanous
entity.

In a single example, we might structure it like this with the labels marking the en-
tities: [David Carmack, Person] who works at [Starbucks, Organization] in
[Seattle, Location] is looking forward to the [Super Bowl, Miscellaneous].



2 Motivation

1.1.1 Multimodal

In the case of named entity recognition, multimodal has meant including images
as an additional visual input to text [86, 77]. In the work by Zhang et al. [105]
and Lu et al. [53], this consists of social media posts that have both images and
text. The idea is that there is information in the image which is not present in
the text itself and that by including the image, the model can better understand
the data and classify the entities correctly.

1.2 Motivation

Deep learning has had a great development in the last few years. As large visual-
language models become increasingly available, the potential for leveraging mul-
tiple modalities becomes more of an accessible and interesting research topic.

In addition, larger models have opened up a new world of few-shot learning at
inference, often being able to adapt to new tasks with very few examples. This
combination of being able to handle di↵erent modalities and quickly adapt to a
few examples can make for a potentially very powerful ability to learn a range of
new tasks very quickly.

Therefore it is interesting to examine how these abilities can be used for not just
ordinary language and image processing and generation, but applicability for
narrower classification tasks. Named entity recognition is a relatively traditional
NLP task that recently has been combined with utilizing multiple modalities and
also being able to use pre-trained models for few-shot learning. We, therefore, are
interested in exploring the ability of generative and large visual-language models
to deal with multimodal named entity recognition in a few-shot learning context.

Most multimodal models [1, 45, 51, 39] are benchmarked across a range of multi-
modal benchmarks. As of writing, we have not found other work which leverages
these types of generalizable vision-language models for multimodal named entity
recognition. This, therefore, presents an opportunity for novel experiments with
regards to finding another performant way to do low-resource/few-shot unimodal
or multimodal named entity recognition and benchmarking the ability of these
generalizable vision and language models in their ability to recognize named en-
tities in text.
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1.3 Research Questions and goals

We firstly propose an overall goal for the work, which is:

Goal Use pre-trained generative models for few-shot named entity recognition

Our main interests are in the pre-trained and accessible generative models and
the integration of visuals and language. How this a↵ects named entity recogni-
tion, and especially the e↵ects of adding visual data. We propose the research
questions:

Research question 1 Can prompting generative LLMs be a viable alternative
approach for named entity recognition with little training data?

RQ1 means having similar performance as current state-of-the-art methods under
conditions where there is very little training data available.

Research question 2 Is performance increased when integrating visuals for named
entity recognition via pre-trained multimodal models?

RQ2 asks if the addition of images can help make the models give better pre-
dictions. This would then be under the supposition that the images can benefit
named entity recognition.

Research question 3 Does more examples improve performance for the LLMs
and multimodal models?

RQ3 means that we are interested in if more examples, under the constraints
that these models can handle, can produce better results or not.

1.4 Thesis Structure

The structure of the thesis is as follows. We stress that the background theory
and related work are explained in brevity and are not supposed to be treated as
an extensive dive into each topic but as a text adapted for the purpose of some
foundational understanding for our experiment.

Chapter 1 - Introduction Presents the essential concepts, motivation, research
questions, and goals.

Chapter 2 - Background Theory Presents essential foundational theory for
the work. The relevant essentials of machine learning and deep learning, and the
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more specific theory for named entity recognition, visuals, language, and multi-
modal models which we will be working with.

Chapter 3 - Related work This chapter presents the related work concern-
ing prompting generative models, and unimodal and multimodal named entity
recognition.

Chapter 4 - Method and experiment This chapter lays out our approach.
The methodology will enable us to execute a defined and concrete experiment
and generate results.

Chapter 5 - Results Presentation of results from the experiment.

Chapter 6 -Discussion The results are discussed in light of the methodology
and related work. Evaluation of the approaches, strengths, and weaknesses.

Chapter 7 - Conclusions and future work Conclusions are made concerning
the work and research questions. Following, we present future work.



Chapter 2
Background Theory

2.1 Machine learning

This section briefly presents machine learning, its paradigms, and essential com-
ponents of modern machine learning like artificial neural networks and deep learn-
ing.

2.1.1 Artificial intelligence and paradigms

Machine learning is, outside the obvious meaning of the word, the attempt to
make computational systems adapt to new data, from which it then can do things
like have better representational understanding, make predictions, and decisions,
or in other ways leverage what it has learned. A broad topic, it can be described
as a subfield of artificial intelligence. An essential component of machine learning
is an attempt to make models leverage information directly instead of relying on
explicit programmed instruction.

It is possible to describe Artificial intelligence paradigms as symbolic or subsym-
bolic. As a rule of thumb, the symbolic approaches use symbols with inherent
representational properties to construct systems that can then learn. Subsym-
bolic then refers to systems that utilize values that do not inherently represent
something, like a floating point number, to have what is called emergent proper-
ties.

The subsymbolic approach can be exemplified by artificial neural nets, where
there are neurons that act as singular functions themselves, but with the interplay
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between other neurons, learning, and artificial intelligent expression can emerge.
Still, while artificial neural networks can express behavior like answering ques-
tions, their explainability and logical mechanisms if they behave logically, are not
plainly visible. The symbolic approach can be exemplified by an object-oriented
programmed system that uses classes, and rules, and responds explainable and
predictably.

The rapid development and use of new and better AI systems and models in
recent years have largely been associated with the subsymbolic approach, lever-
aging new techniques, architectures, and larger models.

2.1.2 Types of learning

Meanwhile, there are not only di↵erent approaches to the construction of repre-
sentation but also to learning.

Supervised learning refers to situations where we have labeled output data
so that we can train the model for what it should output based on the training
data. Perhaps the most intuitive form of learning is that it shows what is the
input, and then what should be the output for a training example.
Unsupervised does not have labeled data but utilizes what’s available to find
and express patterns or features. This can, for example, be done by finding
anomalies, clustering data points, or dimensionality reduction.
Self-supervised learning is quite similar to unsupervised learning in that it
does not have labeled data, but self-supervised learning can be di↵erentiated in
that it, in layman’s terms, uses techniques to make the input data trainable on
itself. It, therefore, is unsupervised but also supervises itself. Techniques may
include predicting masked words, contrastive learning, etc. Often useful because
it can leverage unlabeled data to learn features or representations so that, for ex-
ample, later fine-tuning on a labeled task will achieve much better performance.
Reinforcement learning works by not explicitly having input-output data but
rather works through punishment or reward mechanisms.

2.1.3 Artificial neural networks

The foundations for artificial neural networks (ANNs) were laid by the Rosen-
bladt perception in the ’50s. The perceptron takes inputs, weights the inputs,
adds a bias and then is able to produce an output value depending on this con-
figuration. It is the basis for ANNs and is essentially like a neuron in the neural
network. The perceptron then works as a linear classifier.
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Figure 2.1: An illustration of the perception. The incoming inputs from the left
get computed as a weighted sum before going through the activation function,
producing an output.

The activation function maps the input to the output. This can often be a sigmoid
function, like so:

�(x) =
1

1 + e�x
(2.1)

Or it can be any number of functions. There are many, but some notables include
the logistic function, Binary step function, Hyperbolic Tangent (Tanh), Rectified
Linear Unit (ReLU), and the Leaky ReLU Parametric Leaky ReLU (PReLU) [60].

When we construct an artificial neural network, a fully connected one for exam-
ple, we connect layers of neurons together to form successive layers which then
can propagate values from the input layer to the output layer through the hidden
layers.

Forward passes

The propagation of values from the input to the output takes place in what we
call a forward pass. The forward pass for a single neuron can be mathematically
represented as :

y = f (Wx+ b) (2.2)

where W is the weight matrix, x is the input vector, b is the bias vector, and f
is the activation function [31].

In the network, the activation of a neuron i in layer l is given by:

ali = �

0

@
X
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A (2.3)
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Figure 2.2: Shallow neural network illustrating the propagation of values from
input to output.
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Figure 2.3: A bit deeper neural network with more hidden layers than Figure 2.2.
The increased depth illustrates the added complexity.
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where � is the activation function, ali is the activation of neuron i in layer l, wl
ij

are the weights between neuron i in layer l and neuron j in layer l � 1, and bli is
the bias of neuron i in layer l [31].

2.1.4 Deep learning

When we then construct networks with multiple neurons in layers, and multiple
layers which we want to make adapt to some data we start to approach what is
called deep learning. To have the neural nets be learning from data, we need a
mechanism for altering the weights depending on the error between the output
we get, and the output we want. Here enters the loss function and the backprop-
agation algorithm.

Loss functions

Loss functions are a tool for how far o↵ the network is from the mark. This can
further be utilized for optimizing the network, by finding what we can change to
minimize the loss function.

A loss function can, like the activation function, be set up in several ways. An
example is using the mean squared error defined as [65]:

MSE =
1

N

NX

i=1

(y(i) � ŷ(i))2 (2.4)

where N is the number of samples. ŷ(i) is the output of the system for the i-th
sample. y is the actual output for the i-th sample [65].

Backpropagation

Introduced by Rumelhart et al. [73], the backpropagation algorithm can be used
for training the network together with an optimization method. It works by
first doing a forward pass, and then a backward pass which computes gradients
throughout the network layers backward with respect to the loss function. With
these gradients, optimization methods like gradient descent, stochastic gradient
descent, or alike, make it possible to gradually by some factor ↵ move the weights
and biases of the network so that it should lower the loss.

The updating of the weights can be represented as:

wij(t+ 1) = wij(t)� ↵
@E

@wij
(2.5)
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Figure 2.4: Incremental progress towards a minima using gradient descent on a
3D surface. We see the stepwise movement from origin towards the local minima.

where wij(t) is the weight between neuron i and the neuron j at time t, ↵ is the
learning rate, and @E

@wij
is the partial derivative of the loss function for the weight

wij [31].

Gradient descent

Gradient descent (SG) is an optimization method that can be described as up-
dating parameters to find the minima of some function (loss function) [72]. By
using backpropagation gradient descent enables the parameters to step closer and
closer to local minima. There are varieties of SG (Stochastic gradient descent,
Batch Gradient Descent) [71], but what we just explained is some of the funda-
mental essences of how deep learning is done, by iteratively moving towards an
optimum based on tweaking parameters.

2.2 Vision language models

This section lays out the current techniques that are developed for handling visual
and language modalities in themselves, and how they can be utilized together.
Vision and language represent di↵erent modalities for data or information to
be represented. In the case of language, we have the di↵erentiation between
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Figure 2.5: Visualization of Self-Attention across text input. Example values are
fictitious.

written and oral, or textual and audio. With visuals, we have the presence or the
absence of the temporal dimension, time, which di↵erentiates images and video.
For our work, we are concerned with images and textual information. This is a
consequence mainly of named entity recognition normally being concerned with
textual representation, as it is usually annotated word by word. Concerning the
visual as images rather than video, it’s a consequence of the available datasets
and models at the current time. This does not mean that we think video for
example is not a possible modality for future work (see section 7.2).

2.2.1 Unimodal techniques

We present the di↵erent foundational methods for handling visuals and language.
We include what we believe are the essential modern architectures for visual and
language by convolutions neural networks or transformers.

The self-attention mechanism

Attention as a concept is well known in fields like biology and psychology [41].
The human eye, for example, uses attention so that some parts of the visual field
are more in focus [54]. The concept of attention has been incorporated into com-
puter science, where we now have both attention and self-attention introduced
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by Vaswani et al. [82].

The self-attention mechanism is able to have each input element learn relations
to all other input elements. It does this by using query Q, key K, and value V
vectors constructed from inputs that then can do operations for each input in
parallel before producing an output that is influenced by all inputs.

The self-attention mechanism means that we can score each element in the input
relative to another for their respective pairwise attention scores:

Attention(Q,K, V ) = softmax(
QKT

p
dk

)V (2.6)

where Q, K, and V are queries, keys and values, respectively, and dk is the
dimension of the key vector [82].

Transformers

The transformer architecture, introduced by Vaswani et al. [82] uses the self-
attention mechanism to not only be able to understand the singular words in the
sentence themselves but contextualize them. This means being able to infer from
the surrounding future and previous words the meaning, which in isolation might
be ambiguous or lacking context.

The architecture consists of an encoder and a decoder which are able to encode
and decode textual representations, see 2.6. The benefit of Transformers over
the previous popular methods, like RNNs [32] is that they can handle the entire
input at once, meaning that they can infer the attention and contextualize a word
using both previous and future words in parallel. The Transformer architecture
proposed by Vaswani et al. [82] is laid out in Figure 2.6.

Vision transformers

Transformers have also been applied to images by Dosovitskiy et al. [23], but due
to the computational complexity of having to do pairwise relations between all
pixels in an image, the Vision Transformer sections the image into parts from
where it can extract features.

There are many di↵erences between Vision Transformers (ViT) and CNNs. But
in general, the Vision Transformers are thought to require more training data to
perform well than CNNs [20].
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Figure 2.6: The Transformer model architecture by Vaswani et al. [83] ©CC
BY-NC-SA 4.0. Encoder on the left, decoder on the right.
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Figure 2.7: Illustration of vision transformer’s attention map for di↵erent images,
done using a ViT based on the work by [23].

Convolutional neural networks

Convolutional neural networks (CNNs) are, like neural nets themselves inspired
by biology [62]. The neurons are clustered together, enabling the network to
learn district features. This is especially useful for images since they often con-
tain recurring shapes and forms. Further, CNNs are much more e�cient than
traditional ANNs when it comes to handling large image data [62].

The three main components of a CNN are the convolutional layers, the pooling
layers, and finally the fully-connected layers [62]. The convolutional layer ex-
tracts features from the image, while the pooling layer then downsamples it. The
fully connected layer then works as a classifier head, for example, classifying the
image in a binary output shown in figure 2.8.

CNN’s have long been the most popular choice of computer vision model, with
milestones from the first backpropagation to train them by LeCun et al. [42] in
1989, to the advent of AlexNet by Krizhevsky et al. [40] in 2012 which demon-
strated the e↵ectiveness of CNNs compared to other approaches. AlexNet can
be attributed to sparking o↵ a series of deep learning models for vision [28].
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Figure 2.8: Illustration of the steps in a convolutional neural network classifica-
tion task. Sourced from Aphex34 [3] ©CC BY-SA 4.0.

2.2.2 Multimodal integration

While vision and language models each separately have had extraordinary progress
in the last decade, the merging of these modalities into integrated vision-language
models has not been immediate. This can be attributed to the integrated models
being very much dependent on the progress that happens in each modality and
that the prospect of having generalizable visual-language models has not been
seen as a very feasible prospect, at least not in the same way as it has become in
the last years.

For an integrated model to leverage each modality it has to, in some way have
an architecture that integrates them. Several approaches have been tried. No-
tably, PICA by Yang et al. [99] demonstrated that by captioning images directly
to language models, they were able to obtain state-of-the-art results on visual
question-answering tasks and perform well in a few-shot setting.

Fusion

Integrating modalities in end-to-end models may require fusion at the latent level.
Fusing multi-modal information at some stage. This can be sectioned into early,
mid, and late fusion [46]. Early fusion would mean that the modalities interact
at the first stage/layer of the model, and so all the layers of the model would be
multimodal layers.

Late fusion would mean having the di↵erent modalities go through the layers
without interaction, meaning it would be similar to two separate models, but
where the outputs of each model then are fused at the end somehow.

Mid-fusion would mean somewhere in between so that the model can interact
with each modality separately at first, but at some stage, start having them in-
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teract together, and having some degree of learning at both a unimodal level and
later also multimodal through the layers of the model.

Single stream then means having early fusion so that the end-to-end model
handles the fused input end-to-end and learns the fused representation rather
than individually [10].

Dual stream would then use two di↵erent streams for the two di↵erent data
types and use some fusion mechanism, contamination, multiplication attention,
or otherwise to leverage the two streams together at a later time [10].

Attention-Based fusion would then mean having an attention, co-attention, or
transformer-like mechanism that learns the relationship between the modalities
[46, 11].

This would then be somewhat similar to a transformer architecture binding the
di↵erent modalities together in order to learn to weight the image features vs
latent word embeddings against each other.

2.3 Pre-training and downstream learning

Downstream learning has become very popular, especially with the advent of
Transformers, and pre-trained models leveraging self- or semi-supervised up-
stream training on large corpora have become a useful way to increase perfor-
mance for later fine-tuning or few-shot learning [28]. In this section, we dive into
these terms before we introduce few-shot learning and prompt engineering, which
are important subjects for our work.

Transfer learning is leveraging learning from one domain to another. In this con-
text want to leverage pre-trained models trained with large amounts of data to
be able to say something specific about entities.

Upstream and downstream: For practical usage, we use the term upstream to
refer to the self-supervised pre-training phase which trains the model and makes
it learn features, but not with any specific task in mind. The term downstream
then means training/fine-tuning the model so that it is able to solve the specific
tasks we want leveraging the pre-trained features.

2.3.1 Techniques for pre-training

Here we highlight a couple of self/semi-supervised learning approaches that often
lay the foundation for pre-training models.
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Masked learning

Masked learning can be described as generating its own labels through masking
part of the data so that the model can be trained to predict the masked data.
An example of masked learning for NLP could be the sentence:

“I’m going to the [MASK] store to buy apples”.

We would then have the masked word grocery as a label, and the model would
be trained to predict the masked token. When applied over large amounts of
corpora, this technique has shown success, as demonstrated by Devlin et al. [21]
with BERT, more on that in subsection 2.3.2.

Contrastive learning

Contrastive learning is, as the name implied, implemented leveraging contrast, or
that is di↵erences between two or more examples [12]. Techniques for contrastive
learning are many since it only requires some augmentation of the data to create
a contrastive example.

By augmenting data, it can create an augmented image that would function as
a positive example, that the model should treat as more similar, and totally
di↵erent images are treated as negative examples, which should be less similar.

2.3.2 Modern pre-trained models

Among modern pre-trained models (PTM) there have been some families of mod-
els or milestones that have played notable roles. We use these to showcase exam-
ples of modern PTMs and how they are applied.

BERT: A notable pre-trained model based on the pre-trained Transformer archi-
tecture is BERT, introduced by Devlin et al. [21]. BERT is composed of layers of
encoders and trained using masked learning on large corpora, the English version
of Wikipedia, and the Toronto BookCorpus [21]. This could then be leveraged
for a wide range of tasks that benefited from language understanding.

ResNet’s Today, pre-trained convolutional neural nets like ResNet’s [30] have
been popular vehicles in conjunction with fine-tuning for tasks like visual ques-
tion answering, image captioning, etc [28].

GPT: The Generative Pre-trained Transformer from Radford and Narasimhan
[66] uses the decoder from the transformer in addition to the encoder, so that it
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can both understand language input and generate new language. It showcased
how self-supervised learning could be applied to the transformer architecture,
with fine-tuning for specific tasks later. The GPT models were developed, and
the successors as mentioned in 3.3.4 like GPT-3 [7] and ChatGPT demonstrate
impressive ability in text generation.

2.3.3 Few shot learning

Few-shot learning means as the name implies, learning from only a few exam-
ples. The corresponding amount of ”shots” and performance is compared with
zero-shot, one-shot, and so on. The potential of few-shot learning is to be able to
reach viable levels of performance on models for novel tasks, having only a few
examples available [24].

But, this term is sometimes used for two di↵erent techniques. Few-shot learning
by fine-tuning [27] and in-context learning [7] are two di↵erent variants that few-
shot learning can imply. The former does traditional tuning of the weights but
with a smaller amount of training data. In the latter, no weights are tuned.
Still, the training data is provided as input at inference so that the models would
leverage the additional information in the input to better handle the actual,
without changing any weights or doing any tuning.

Fine tuning

Fine-tuning is more like traditional training (see chapter 2). The process can
consist of leveraging a pre-trained model, unfreezing some of the last layers,
usually some of the last ones, or all of them, and possibly adding an extra layer,
a classification layer for example, to the model before training it so that the model
can leverage earlier learned features but adapt to the new task [27]. The amount
of few-shot training data that is used can vary greatly, with some attempting
only a handful or several orders of magnitude more [47, 13].

Instruction tuning

Recently, instruction tuning has shown the ability to enhance large language
model’s zero and few shot ability [88]. This involves fine-tuning the models on
datasets that contain instructions so that the models are more adept at adapt-
ing to natural language instructing prompts. Instruction learning has also been
showcased to be e↵ective for multimodal zero-shot learning by Xu et al. [95].
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In-context learning

In-context learning has had a rising interest with the advent of especially large
language models like GPT-3, introduced by Brown et al. [7]. Gao et al. has argued
that pre-trained models can leverage in-context learning better than fine-tuning
under some circumstances. On the other hand, it’s also been shown that how,
and how able large language models are to do in-context learning di↵ers [90]. In-
context learning has also been demonstrated to be e↵ective in conjunction with
instruction tuning [101].

Often for in-context learning the training data can mean only a handful or so
examples as the number of examples that can actually be fed to the model is
constrained by the maximum input length.

2.3.4 Prompt engineering

Prompt engineering is about designing and modifying prompts to models which
can positively a↵ect the probability of a getting a type of output at inference
time [48, 29, 91]. Based on how the model is prompted, the output can change
significantly depending on the sensitivity of the prompt, and the task can change
the output and, for tasks, performance on them [4, 48].

Prompt engineering potentially makes models able to solve new tasks by having
the task reformulated [79].

Prompt based learning

Because of the power the prompting can have on the ability of the models to per-
form well, in-context learning leveraging prompt engineering is sometimes called
prompt-based learning [48].

The applicability of prompt-based learning is large, as shown by the numerous
tasks exemplified in the survey by Liu et al. [48]. For prompt-based learning to
be e↵ective, there must be a design methodology for the prompting.

Prompt design

Prompting the models usually requires designing a prompt that will leverage the
natural language capabilities the models have gained from being trained on a
large corpus. [4] has found that QA-based prompt structures can be e↵ective for
prompting vs open-ended prompting in some cases. Meaning that when struc-
turing prompts as:



20 Named entity recognition

Question: What does Parker work as?
Answer: Parker works as a clerk.

Can be more e↵ective than an open-ended version:

Prompt: Parker works as a
Output: Clerk

Liu et al. [48] classifies prompt shapes into two categories, close, and prefix,
whereby the former works by insertion into text, and prefix is completed at the
end of the input. The prompting discussed in this work is exclusively prefix.

2.4 Named entity recognition

In this section, we explain the established methods for named entity recognition,
including the current state-of-the-art approaches.

2.4.1 Flat and nested NER

The named entity recognition entity classes are usually either flat/exclusive,
meaning that there can be no overlapping entity classes. Or, they can be nested
so that an entity potentially can belong to several entity classes, where one class
is part of another [25].

An example of such a hierarchically nested entity class is that an animal may
belong to an animal class and a nested class of, say dogs inside the animal class.

It’s also possible to construct entity classes that may overlap but are not nested
inside one another [44]. But most approaches today are not very adaptable to
this because they usually require one single entity classification for each token.

2.4.2 Granularity of entities

The granularity of the entity classes signifies the number of di↵erent entities
we may use for a single NER classification. Many NER datasets, like CONLL
[74, 96], leverage only four entity types, mentioned in section 2.4. Others may
use more, but it is mentionable that the required labeling for a representative
amount of entity labels in a dataset increases proportionally to the granularity
of the dataset.
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A survey by [96] also mentions that the data source can significantly impact the
entity types that are present. Twitter datasets, by comparison, can therefore
have more variable entity types [96].

2.4.3 NER today

Here we try to give some overview of how named entity recognition is typically
approached in recent years.

Prevailing methods

The advancements of transformer-based models have also found their way to
named entity recognition. Using pre-trained encoders, like BERT [21], and fine-
tuning them for NER has been found e↵ective [9], but more traditional methods
like LSTMs and Conditional Random Fields are also used [9, 81].

Prevalent datasets

CONLL-2003 CONLL-2003 has four entity classes person, organization, lo-
cation, and miscellaneous (other classes). It has become one of the standard
datasets for named entity recognition [49, 2].

Evaluation

Evaluation is normally done using precision, recall, and F1-scores on the test
dataset. Rarely accuracy is used as well [70]. Precision is defined as:

Precision =
TP

TP + TN

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

F1 =
2 ⇤ precision ⇤ recall
precision+ recall

(2.7)

TP is true positives, TN is true negatives, FP is false negatives, FN is false neg-
atives [92, 97].

When done across the dataset as a whole the F1 score across all entities is called
the micro F1 score, when done individually on each entity and then averaged
so each entity counts equally independently of presence in the dataset, is called
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macro F1. For the rest of our work, we will use and refer to F1 as the micro F1
score, as the related research and ourselves use this as the main F1 score [81].



Chapter 3
Related work

In this chapter, we present the work that closely relates to our experiment. This
includes few-shot learning for NER, multimodal named entity recognition, few-
shot learning for large visual models, and multimodal tasks which we find some-
what close to ours.

3.1 Unimodal named entity recognition

Named entity recognition in a few-shot learning context has had recent advance-
ments, so it’s possible to reach higher-performant models in a low-resource setting
[9]. In this section, we explore some of the related work on methods aligned with
prompting and low-resource contexts.

3.1.1 Prompting for NER

Prompt-based methods have also been attempted for NER, notably by including
either template for prompts to fill with training data [17], or manually designed
prompts [86].

QA-NER

QANER, proposed by [47], provides a prompt-based approach to NER by prompt-
ing an extractive QA model for which entity/entities are in the text. Through
converting the data to question-answering formats and leveraging a Bert model
pre-trained on SQUAD2 [69] they showed significant performance, SOTA at the
time for few-shot learning [47].
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Templates for NER

Cui et al. [17] showed with TemplateNER that NER tasks can leverage a template
format to be reconfigured as statements or prompts. This approach proved better
than fine-tuning in their experiment.

LightNER

Chen et al. [13] presented a method where they attempt to make domain transfer
from one NER dataset to another more e�cient by using the generation of entity
span together with entity types.

3.2 Multimodal named entity recognition

Moon et al. [57] and Zhang et al. [105] introduced the first public datasets and
perhaps the first notable examples of leveraging images for named entity recog-
nition successfully. Further work [53, 103, 86, 102, 76, 104, 78, 11] has showed
that with the publicly available datasets, the images can enhance performance.
Showcasing that images can help with named entity recognition on the corpus by
providing additional information. This is also very much in line with the think-
ing that leveraging multiple modalities, in general, can provide more information
that can be useful for tasks at hand [59]. On the other hand, this is not always the
case as additional information can provide noise, the dataset could have images
that actually conflict with the task. There could for example be a dataset that
shows the CEO (person) as an image when describing the organization textually,
which then could sway the classification towards a person, while really being an
organization. This correlation between images is discussed by Chen et al. [11],
where they constructed a dataset from Snapchat data hypothesizing Snapchats
might have more alignment between images and text than the publicly available
Twitter datasets.

3.2.1 PromptMNER

PromptMNER [86] is the first prompt approach to MNER which tries to leverage
a prompt-based technique on NER with images. It follows from the work done by
Liu et al. [48]. They provided general prompts corresponding to entity types used
to score image vs prompt co-similarity. Thereby extracting relevant information
from the images. The similarity score between the prompt and image was used
to guide the language model for classification. PromptMNER achieved state-of-
the-art results on the Twitter2015 and Twitter2017 datasets [86].
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3.2.2 Other approaches

Several other approaches than prompt-related ones have been tried for MNER.
A commonality is that they use fine-tuning on the Twitter datasets, and uti-
lize quite specialized techniques targeting MNER. As such, the works’ relevancy
seems limited, and we will therefore describe only a few very briefly.

Wang et al. [84] extracted text from images so that visual clues could be rep-
resented in language through captioning and optical character recognition, and
added to the textual information. Sun et al. [77] uses forget gates to select vi-
sually relevant information. Zhang et al. [103] uses graph-based techniques for
multimodal alignment. Chen et al. [14] uses a dynamic gating strategy that
enables them to use visual information as guidance for textual processing. Xu
et al. [94] design cross-modal-alignment and matching modules to handle the two
modalities. And Zhao et al. [107] uses graph convolutional networks on each
modality before fusion.

3.3 Prompting large models

As more generalizable and larger generative models become available, utilizing
them for a larger range of tasks has become more achievable. This section de-
scribes relevant work that uses these types of large unimodal or multimodal mod-
els.

Prompt engineering has had advancements as these models have become larger
since there appears to be a correlation between the size of the model and the
ability to handle in-context learning [7].

3.3.1 Chain-of-thought (CoT) prompting

Chain-of-thought (CoT) prompting involves adding intermediate steps of reason-
ing that have shown the ability to produce better outputs from models by making
them have to elaborate reasoning behind outputs [89].

This can, for example, include steps in a calculation of numbers or an equation,
such that the model is able of handling more complex tasks. Generalizable models
have shown great ability to produce sentences and text by putting one word in
front of another, but for reasoning tasks like arithmetic scaling up the model
has not always had the same performance improvement [89]. Seemingly, the way
generative models work today produces some output that looks ”something like”
what is expected but has no logical anchoring in its reasoning, such that it is fully
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possible for the model to output 2+2=5, because it produces similar outputs to
what is in the corpus, but does not actually have mathematical intuitions. By
adding intermediary steps, these foundational intuitions, such as 1+1=2 can aid
more complex prompts.

3.3.2 Prompt tuning

Recently, prompt tuning has emerged as an alternative to prompt engineering and
fine-tuning [43, 50]. While prompt engineering essentially seeks to find the best
prompt through the methodology and manual experiment, prompt tuning rather
engineers this by having an additional encoder being tuned to output encoded
representations of prompts that fit the prompted LLM the best [50].

3.3.3 Flamingo

Flamingo is a model by DeepMind, introduced by [1]. It showcases the ability of
the visual-language model to do in-context few-shot learning, as demonstrated
in the figure Figure 3.1. This was a decidedly important step in showcasing
visual-language few-shot capabilities. Further, most openly accessible generaliz-
able visual-language models mention Flamingo and usually benchmark against it
[45, 39].

Flamingo fuses pre-trained and a frozen language model with a visual model by
the inclusion of Perceiver Resamplers for the visual modality outputting visual
tokens which then the gated cross attention layers fuse with the language modal-
ity [1]. These components are then trained to align the frozen unimodal language
and visual models.

By leveraging an NFNet-F6 vision encoder and Chinchilla language models Flamingo
was able to perform near or SOTA at tasks, using only few-shot or zero-shot
learning [1].

3.3.4 Latest GPT models

Large language models, with special focus on GPT models, and notably GPT-3
has shown an ability to benefit from prompt engineering [7]. GPT-3 was explic-
itly published as a few-shot learning capable model [7], and has since become an
important model demonstrating the advancement of large language models [36].

Since the recent popularity of chatGPT, prompting GPT models has become
even more accessible. After 2 months there were approximately 100M users with
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Figure 3.1: Demonstration of Flamingo-80B. The figure shows how Flamingo was
able to adapt to new inputs and contexts and produce useful outputs with very
few examples. Sourced from Alayrac et al. [1].

access to ChatGPT [56], interacting with the model through prompting.

Since then the GPT-4 model has also been released, which is able to handle im-
ages in addition to text input [61]. We infer from this that the development and
popularity of leveraging large language and visual-language models have been on
the rise and that with more accessibility, the experimentation with prompting
such models may continue [51, 8].

3.4 Similar applications of MLLMs and LLMs

Our approach builds on the advent of generalized visual-language models, but
there are also specialized models and tasks which by virtue of their similar inputs
and outputs are presented here.

3.4.1 Document Image Understanding (DIU)

Document Image Understanding seeks to handle textual content with images of
documents for information extraction. Models from Microsoft like LayoutLM
have been adapted to question answering, meaning it can answer questions us-
ing textual context and images, extracting the answer from parsed text from the
image. The key di↵erentiator for us is that the model is trained on document
images, and extracts text from them instead of leveraging the context.

Still, if there was a dataset where the textual content was classified as in an image
form, these models could be used. Work by [87] used such models to do few-shot
entity recognition. But again, the images are documents and are not used as
visual cues in addition to the actual text.
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3.4.2 Visual question answering (VQA)

Visual questioning involves being asked questions about images, and for the model
to answer them. Some VQA models also incorporate a textual context input. So
that these models in theory can be prompted with a question, a text, and an
image. But for this task, the models are trained so that the image is the main
focus. Meaning that the questions are concerned with the image, and not the
context, the context only guides the VQA.

3.4.3 LLMs with image captioning for VQA

Image captioning models produce textual descriptions of images. These have
been used in conjunction with large language models in the work done by [99]
where they present the PiCa method. They showed that using captioning and
then feeding it to an LLM like GPT-3 could be an e↵ective way to do VQA.

This is an interesting and flexible example of using separate visual and language
models in conjunction so that the LLM can leverage the visual modality.



Chapter 4
Method and experiment

In this chapter, we present our method and our experiment which will be a
concrete implementation of the method. We describe our method for how we
adapt NER to generative question-answering. From there we describe the spe-
cific datasets, models, prompts, and other factors for our concrete experiment.
These other factors include but are not limited to preprocessing, inference, post-
processing, and evaluation.

4.1 Adapting NER for open-ended prompting

Since we are approaching this task from a relatively novel angle, using open-ended
question answering, we are dedicating a section for describing how we aim to make
the datasets and the task amenable to open-ended and generative answering.

4.1.1 Templates and instructing prompts

For our use case, we construct di↵ering template prompts. Template-based
prompts use random examples from the datasets. In addition to the prompt-
ing template the prompts for generative models are fed some instructions in
prompting.

Instructions

The prompt to be answered has appended structure when fed to a generative
model, as follows:
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PROMPT TEXT N ANSWER N
PROMPT[person] TEXT N ANSWER[person] N
PROMPT[organization] TEXT N ANSWER[organization] N
PROMPT[location] TEXT N ANSWER[location] N
PROMPT[miscellaneous] TEXT N ANSWER[miscellaneous] N

Table 4.1: Example of asking for each entity type. For the CONLL format [74]
one input would have the four following prompts.

Intention: Explaining that we want to do named entity recognition.
Image specifier: When using an image the prompt has an added sentence spec-
ifying that the image is supposed to aid the question. When applicable an image
token is also inserted.
Negative output establishment: The prompt specifies what to output if there
is no answer or no entity.
Multiple answer clarification: A sentence specifying how it should answer
if there are multiple entities.
Entity type enumeration: A sentence enumerating the entity types in the
dataset.

This additional information is also suspect to the way its framed in natural lan-
guage. We have opted for some examples we believe to be concise and clear and
resort to discussing further considerations regarding the prompt engineering in
6.

4.1.2 Entity classes and N-prompts

The entities are converted to their natural language equivalents as in work done
by [47]. PER becomes ”person”, etc. In addition, we do, also as [47] and prompt
a single input N times when there are N entity classes, each time asking if there is
a certain entity class in the input. This that for N entity classes we run inference
N times across the dataset.

4.1.3 Handling answers

The usual structure of NER prediction and evaluation was covered in section 2.4.
We understand that the open-ended format makes it necessary to handle the an-
swers di↵erently.
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Interpreting answers

The specifying prompt structure described above 4.1.1 exists so that the model
hopefully adapts to our choices of format. For example, when we ask it to an-
swer if there are any person entities it then answers ”none”. Or that if there
are multiple, it answers ”A” & ”B”, specified to deliver multiple answers with ””
between them.

The inputs and predictions for the tasks are therefore both structurally di↵erent
from a classifier. How we handle that we are dealing with an open-ended model
is the following:

1. We post-process the answer, adapted to how the model answers the ques-
tion, stripping away text it consistently outputs indi↵erent to what it’s
being fed. This di↵ers from model to model, but can, for example, be
appending a newline token to its answer.

2. When running the evaluation, if the answer from the model is not to be
found in the input text, we discard the answer and considered it the same
as answering negatively, “none” for example. We, therefore, look in the
input for a match. This restricts the model to the input text. We stress
that we consider the answer by omission, so that if the model does not
answer (so if the output is empty) we considered it a negative answer. Also
when there should be multiple predictions. So that if the ground truth has
entity A and entity B, and the model answers just A, we consider it to have
a true positive on A and false negative on B.

3. We are not getting placement specifying output like a classifier or closed-
QA model would. When the model says Apple we don’t know if it means
Apple at index X, and there could be two mentions of “Apple”, that just
one, both, or neither could be entities. In this case, we treat the first out-
putted answer as corresponding to the first match in the input. We then
require multiple outputs when there are repeating examples of the same
entity in the input. We exemplify this below:

“Apples cool new iPhone is the best, also I like Apples”.

In the first case of Apples we are looking at a slight misspelling that nonethe-
less is supposed to be treated as an entity, while the latter occurrence should
not. If the Apples were reversed, and the latter was an entity, we could not
give it a correct entity classification without further methods. This edge
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case relies on the input having an entity and a non-entity spelled exactly
the same, including the same capitalization. This is further discussed in
chapter 6. We are nothing that this edge case does not occur anywhere in
our datasets.

Adapting to flat NER

For flat NER, there can be no overlapping entity classes. To achieve this, we
think of three methods that are believed to be applicable.

1. Get the scores for the generated outputs and for conflicts pick the one with
the highest score.
2. Running an additional prompt for disambiguation. So that if there are any
overlapping entity classifications, the model is essentially prompted to choose.
3. Automatic handling through preference or negation. So that either an entity
class would take preference, for example, if MISC always has the lowest prefer-
ence. Or/and that if some entity classes overlap, we throw them out.

For our experiment, we resort to the first. This is because we want a leaner pro-
cessing pipeline and not add more additional intermediary steps as required by
2., and we believe that using 3. will lower the performance of the models because
it will throw out correct classifications relative to 1.

In nested NER, classes can overlap, and would therefore rather involve prioritizing
the nested entity. In that way, our approach is also considered applicable to nested
NER, or NER with discrete overlapping entities.

4.1.4 Examples for few-shot learning

For our in-context few-shot learning, we need to have some valid examples which
the models can take inspiration from and apply to the inputs. Here we present
how we do this given the visual and language modality.

The visual modality in examples

For our experiment, we are restricting the in-context examples to using only the
language modality. This is because some models can only handle one image, and
feeding concatenated example images with the input image was seen as adding a
lot of complexity to the interaction between the visual and language modalities if
the model in addition was to be instructed to di↵erentiate and learn from them.
Nonetheless, some of the models, like FROMAGe and OpenFlamingo are able to
handle interleaved images and text, and the Flamingo model [1] also showcases
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Question + Text Answer
person? + Text1 person-entity
location? +Text2 location-entity
organization? + Text3 organization-entity
miscellaneous? + Text4 miscellaneous-entity

Table 4.2: Example of a 4-few-shot/1-set training set in our experiment for when
there are 4 entity types.

this ability to have multimodal training examples. Meaning it’s possible in sec-
tion 7.2.

Rather we focus on instructing the models to utilize the image for the input
to be answered, and for it to leverage its pre-trained abilities for visual feature
extraction to make it useful for entity disambiguation. Considering our dataset,
it’s not clear that our data leverages the images explicitly, as mentioned by [57]
the Twitter datasets. The usage of example images was therefore considered out
of scope for our work and is discussed in section 7.2.

Textual examples

The few shot examples are inserted before the input prompt. They are structured
the same as the prompt, with the addition of a completed answer.

Normally, few-shot NER would consist of having 1-shot be a collection of ex-
amples so that all entities are represented 1 time, this would mean that for N
entities there could be N examples in 1-shot. For example in the work by [47]
where an M-shot example means one of each entity class, and also possibly adding
negative examples. Because we are experimenting with in-context learning the
maximum of possible examples is much smaller than for fine-tuning because of
the constraints on input size, and we therefore will look more granularly at the
N-shot examples.

In our work, we, therefore, adopt 1-shot as 1 singular example from the training
set, where for N-entities, N-shot would therefore signify the same meaning as
1-shot in much other work. This is explicitly shown in the results as well. Exem-
plified below in table 4.2, where each text from 1-4 has a corresponding positive
answer in the form of a matching entity class. This is to include the full range of
examples which any random example input can encounter.
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English CONLL-2003
Training set Development set Test set

Articles 946 216 231
Sentences 14,987 3,466 3,684
Tokens 203,621 51,362 46,435
LOC 7140 1837 1668
MISC 3438 922 702
ORG 6321 1341 1661
PER 6600 1842 1617
Total entities 23499 5942 5648

Table 4.3: Description of CONLL-2003 dataset. The used dataset is the English
variant [74].

4.2 Datasets

In this section we describe the datasets we utilize, we first introduce unimodal
language datasets and multimodal ones which include images.

4.2.1 Unimodal language datasets

To compare our methods without visual to existing few-shot methods in liter-
ature [47] we use the CONLL, MIT Restaurant, and MIT Movies datasets as
benchmarks. Statistics for the CONLL dataset are in Table 4.3, MIT Restaurant
in Table 4.4 and for MIT Movies in Table 4.5:

4.2.2 Multimodal datasets

The availability of openly accessible MNER datasets is at the current time quite
limited. We find two openly accessible datasets, Twitter2015 by Zhang et al. [105]
and Twitter2017 by Lu et al. [53]. We note that another dataset was created by
Moon et al. [57] at Snapchat, but that this is not openly accessible. Common for
all of them is that they use the same four entity types from CONLL-2003. We
discuss the limited amount of datasets in section 7.2.

Twitter-15 and Twitter-17

Twitter-15, published by [105] is a public multimodal dataset based on tweets.
Twitter-2017 by [53] is also a public dataset based on tweets. These are the two
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English
MIT Restaurant

Training set Validation set Test set
Sentences 6900 760 1521
Tokens 63269 7256 14256
Location 3355 462 812
Cuisine 2532 307 532
Amenity 2249 292 533
Restaurant Name 1755 146 402
Dish 1353 122 288
Rating 987 83 201
Hours 871 119 212
Price 655 75 171
Total entities 13757 1606 3151

Table 4.4: Description of MIT Restaurant dataset, the training and validation
set is the split of the original training set.

English
MIT Movies

Training set Validation set Test set
Sentences 6816 1000 1953
Tokens 138462 20361 39035
Plot 5666 802 1577
Actor 4419 591 1274
Genre 2997 387 789
Year 2391 311 661
Director 1581 206 425
Character Name 921 104 283
Opinion 723 87 195
Origin 669 110 190
Relationship 511 69 171
Award 268 41 66
Quote 113 13 47
Soundtrack 45 5 8
Total entities 68393 2726 5686

Table 4.5: Description of MIT Movies dataset. The training and validation set
is the split of the original training set.
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Entity
Type

Twitter-2015 Twitter-2017
Train Dev Test Train Dev Test

Person 2217 552 1816 2943 626 621
Location 2091 522 1697 731 173 178
Organization 928 247 839 1674 375 395
Miscellaneous 940 225 726 701 150 157
Total 6176 1546 5078 6049 1324 1351
Number of Tweets 4000 1000 3257 3373 723 723

Table 4.6: Twitter-2015 and Twitter-2017 datasets

publicly available MNER benchmark datasets. The test sets are used for bench-
marking; the metrics for the datasets are in Table 4.6

As we can see, and as we will see in all the available datasets, there is an unequal
distribution among entities. This disparity is something we take special notice of
and that we discuss further in chapter 6.

4.3 Models

The multimodal models leverage existing language, and visual models, bridging
the modalities with some alignment procedure. The models have in common
that the available pre-trained checkpoints all use a limited set of large language
models, and they all use CLIP [67] as a vision model. We, therefore, elaborate
on the language models and CLIP before we describe the multimodal models.
This is useful because we also use the unimodal language models in themselves in
experiments for comparison with the multimodal models. The repositories used,
and the origin of weights for the pre-trained models can be found in section B in
the appendix.

4.3.1 Unimodal models

The generative large language models used are Flan-T5, OPT and LLaMA with
sizes ranging from 2.7B-11B parameters. The visual model for all of the multi-
modal models is CLIP. The unimodal language models are also tested on their
own, in addition to the multimodal models that use them. In addition, we repro-
duce the work done by Liu et al. [47], for a comparative baseline using a BERT
model trained on the SQUAD2 dataset.
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Unimodal
Language
Models

Parameter size (B
for billions, M for
millions)

Flan-T5 XL 3B
Flan-T5 XXL 11B
OPT 2.7B
OPT 6.7B
LLaMA 7B
BERT-large 336M

Table 4.7: Large language models used and parameter sizing.

Comparative baseline model

By using a BERT-based model pre-trained on SQUAD2, we reproduce the exper-
iment by Liu et al. [47], whereby we can compare our methods directly to theirs
using our prompts and training examples. Because their implementation only
used training sets of N-entity (so sets of all entity types, not singular examples),
we do that in our experiment as well for this one model. Notably, this model
will be fine-tuned, and not use in-context learning, meaning that the comparison
is for the method with respect to another available method with the same low-
resource data. We used the GitHub repository by Paiheng [63] as inspiration for
our implementation.

Flan-T5

Flan-T5 was proposed by Chung et al. [16] as an improvement to the existing
T5 models [68]. It is instruction fine-tuned. This means tuning the models on
instructive data which results in the models being able to better adapt to new
zero or few-shot tasks. The instructive data contains both zero-shot instructions,
few-shot examples, and chain-of-thought prompting [16].

The Flan-T5 models are therefore pre-trained on both large amounts of unlabeled
data, like T5, and also on a large collection of instructive datasets, Chung et al.
[16] mention SQUAD as an example.

OPT

The Open Pre-trained Transformers (OPT) models were introduced by Zhang
et al. [106] from Meta AI with sizes ranging from 125M to 175B parameters.
The models were pre-trained on a large volume of mostly English text. They are
open-sourced and meant to contend with GPT-3. The intention is therefore to
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Multimodal Model Language Model LM-Parameters Vision Model

BLIP2

Flan-T5 XL 3B CLIP
Flan-T5 XXL 11B CLIP
OPT 2.7B CLIP
OPT 6.7B CLIP

FROMAGe OPT 6.7B CLIP
OpenFlamingo LLaMA 7B CLIP
mPLUG-Owl LLaMA 7B CLIP

Table 4.8: Multimodal language models and their corresponding LLMs and CLIP
visual model. We note that all models were released this year (2023).

make publicly available LLMs for research. Zhang et al. [106] report comparative
performance with the same amount of parameters, but varying on the task.

LLaMA

LLaMA is also an LLM made public by Meta AI, introduced in the paper
”LLaMA: Open and E�cient Foundation Language Models” by Touvron et al.
[80]. Trained exclusively on public data, the authors notably report that the
LLaMA models can achieve comparable performance on many NLP benchmarks
as larger models like GPT-3 and PaLM. LLaMA weights are licensed, and we
received licensing for this work.

4.3.2 Multimodal models

The multimodal models used are BLIP2, FROMAGe, OpenFlamingo, and mPLUG-
Owl. A notable factor is that publicly available large multimodal models like
these, which are able to flexibly generate textual input with both language and
visual input are a quite recent phenomenon and that all of the models mentioned
here were released this year. Notably, they all leverage distinct large language
models and vision models and then integrate them later, meaning they use some-
thing akin to a dual-stream approach. In Table 4.8 we show an overview of the
models where parameter sizing corresponds to the language model size.

CLIP

CLIP (Contrastive Language-Image Pre-training) is used in all the multimodal
models as the model handles the visual component. CLIP is one of the OpenAI
models introduced by Radford et al. [67]. It has been compared as a visual model
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to the language models GPT2 and GPT-3 in its ability to do zero-shot predictions
[67]. Our CLIP version leverages a ViT (Vision Transformer), an image encoder,
and a transformer text encoder, which can align similarity scores for vision and
language.

BLIP2

BLIP2 (Bootstrapping Language-Image Pre-training) results from work done by
Li et al. [45] where they freeze pre-trained language and vision models, bridg-
ing the modalities with a Querying Transformer (Q-Former). The Q-Former is
a transformer trained to align the visual modality to language. It does this by
inserting querying vectors and training the Q-Former to be best able to pass on
information from the vision encoder to the LLM that will improve the output (of
the LLM).

BLIP2 is reported to have zero-shot image-to-text generation capabilities, mean-
ing that when combined with a language model with zero and few-shot learn-
ing capabilities, it can be useful for multimodal zero and few-shot learning [45].
BLIP2 can leverage a variety of ”o↵-the-shelf” language and language models.
We have chosen to leverage the available Flan-t5-XL, XXL and the OPT-2.7b
and OPT-6.7B models for language. CLIP vision model.

FROMAGe

The Frozen Retrieval Over Multimodal Data for Autoregressive Generation (FRO-
MAGe) model utilizes image captioning and contrastive learning to visually
ground the language model [39]. They do this by keeping the language and
visual models frozen and training linear layers to map from one modality to an-
other.

FROMAGe has been reported as having strong few-shot and in-context capabil-
ities [39]. We leverage the available pre-trained model, which uses an OPT-6.7B
language model and a CLIP vision model.

OpenFlamingo

The OpenFlamingo model [5, 108] is, as the name implies, an open-sourced im-
plementation of the Flamingo[1] model. It bridges the modality like the Flamingo
model, utilizing Perceiver resamplers for handling visuals and outputting visual
tokens and cross-attention layers. The cross-attention layers are inserted and
interleaved with the blocks of the LLM and trained to handle the input from
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both vision and language. The mechanism is then an attention-based approach.
The cross-attention layers were constructed such that at initialization the vision
inputs would not interfere with the LLM and therefore, when merging the modal-
ities the vision modality did not interfere with the language model before being
trained to do so supposedly improving performance [1].

The group behind OpenFlamingo Awadalla and Gao [5] describes the goal of the
model development to match the power of GPT-4 [61]. The model can handle
interleaved images and text, and they describe it as having in-context few-shot
learning capabilities [5].

We are working with an early released pre-trained model, the OpenFlamingo-9B,
which leverages a LLaMA 7B model and a CLIP vision model, sourced from the
OpenFlamingo repository Awadalla et al. [6].

mPLUG-Owl

mPLUG-Owl developed by Ye et al. [100], leverages a modular technique for
language and visual models. They use a two-stage method for processing the
visual input before feeding it to the LLM. The modality-merging approach is
therefore concatenation based. We use the weights from the instruction-tuned
combined LLaMA LLM and a CLIP visual model from their huggingface[93]
checkpoint(see appendix B).

4.4 Experimental setup

This section describes the technical setup and process of our work. It explains
the data pre-processing, prompting, in-context learning, model configuration,
pipeline setup and evaluation metrics.

4.4.1 Pre-processing

We don’t do any significant alterations to the corpus, as we are not looking to
alter the data integrity. But we do construct new prompts which fit our new
format. Entities from the text are extracted from examples, then linked to their
corresponding entity. These then become answers for the text when that entity
is asked for. We create examples for each of the N-entity types, so that for each
entity there is a range of examples.
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No. Prompt
1 What word(s) in the text corresponds to a ENT entity?
2 ENT in text?
3 ENT entity in text?
4 What is the ENT entity in the text?
5 What is the ENT in the text?

Table 4.9: Question prompts to identify < ENT > entities in text.

Further, we process the given prompting structure for each 0-8 shot example case
so that there are fully constructed prompts in the data frame, with an associated
image path.

4.4.2 Prompt generation

There are multiple snippets of text involved in our prompt. The templates we
use for our prompts are as follows:
[Training�examples]+Instruction : {}+Question : {}+Text : {}+Answer :
{}. Where training examples denote examples in the form Question: {} Text: {}
Answer: {}.

Question prompt templates

For our question template prompts, we take inspiration from some of the tem-
plates by Liu et al. [47], Cui et al. [17] and add our own (in the case of prompt no.
1) using more detailed language. The question templates are shown in Table 4.9.

Instructions

Most obviously prompts that can make or break the performance of the experi-
ment, we did piloting experiments to better decide on the instructing text.

As mentioned in methods there are some instructions we think of, initially, we
declare the intention of the prompt, provide negative output establishment, to
instruct it what to output if there is no answer (it would degrade performance
to get outputs matching the input), multiple answer instruction, how to answer
when there are multiple right answers. And in the case of visuals being present
what the image is for.
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Instruction Prompt
Intention We want to do named entity recognition.

Negative output If there is no entity the answer is none.
Multiple output If there are multiple answers, output them with ’

’ between.
Image specifier The image is meant to help with the question.
Entity types NA

Table 4.10: Instructions in the prompts to guide the prompting. Instructions
come before the question and after the training examples.

After some piloting experiments and with conciseness and clarity in mind found
the following to be e↵ective instructions:

Interestingly, we found that performance as a whole actually degraded if the
input contained the enumeration of all the entity types. So the entity that is
being asked about is really what seems to matter.

Training examples

We construct training examples by using randomly selected examples from the
training data and using our prompt templates. The examples are created at
random from the dataset, but a new entity class is added each time so that the
training examples never contain more than a 1-more in di↵erence regarding the
number of entity types. We do 5 random samplings of prompts for each type of
few-shot example creation to minimize the risk of bad sampling [47].

For experiments, we are limited by the length of the input, which is possible
or practically useful for the models to take in. The part of the prompt that
eventually takes up the most tokens is the examples at eight-shot length. Some
of the models have input size constraints at 512, which are not necessarily hard
constraints as they can be altered, but that reflects the size of their training. By
sampling some generated examples, we found that eight examples in addition to
the relevant prompt would be, on average, at around 512 token lengths. After
this, the performance of some models would drop due to not being trained to
handle such long inputs.

4.4.3 Hardware and running inference

We run our pipelines on A100 GPUs with either 40 or 80GB of VRAM, depend-
ing on the need. OpenFlaming quickly becomes too large when fed with longer
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inputs and ran only on 80GB VRAM.

Batching was done at varying degrees during development. For some models,
when fed with longer inputs from the examples, it is not viable to do any signif-
icant batching. On the other hand, at zero-shot, some models could do upwards
of batches of 64. For the final experimental results, we used bathing of 1 to avoid
any suspicion of unstable results, which occurred for some models when batching.
We refer to Table A1 and Table C4 in the appendix for more details on inference
parameters and notable software used.

4.4.4 Evaluation metrics

The standard evaluation method for named entity recognition is the stringent
metric, as laid out in section 2.4. Other metrics include a more nuanced ap-
proach, giving credence to partly-correct predictions.

Stringent NER metric The stringent metric only considers a prediction that
exactly matches all tokens and the right entity type as correct. This means that
for a sentence like:

Maria Carey is looking for her next tour destination.
We would only consider the prediction correct if it predicts Maria Carey, not
Maria, and not Carey.

The standard CONLL [74] dataset usually only considers the stringent NER
metric, and because of the large number of data points in the result we, for this
work, only consider the stringent metric.



44 Experimental setup



Chapter 5
Results

In this chapter, we present the results of the experiment according to the de-
scription and methods from the previous chapter 4. This chapter is sectioned
by presenting the baseline results first, then experiments with our models for
datasets containing only language, and the datasets containing language with
the addition of images. Lastly, we present results of particular interest in more
detail, with more details for some results appended in section D in the appendix
to reduce the already numerous score results that are presented. All F1 scores
are micro F1 scores, if not specified otherwise.

The following tables contain as mentioned micro F1 scores, these are the mean
of the 5 runs where the training examples are randomly sampled (but the same
random samples across di↵erent models and prompts). This is also where the
deviations from the mean come from, as the inferential parameters make sure the
models perform the same under reproduction. As a consequence, the zero-shot
experiments result in no variance/deviation. As we have a large number of F1
scores, we saw that the significant results for our findings in the discussion needed
only zero-shot results, while the few-shot results rather would be demonstrative,
and congruent with the zero-shot results. As a consequence, for deviations, we
report from all experiments that all zero-shot results in our experiment has
±0 deviation from the mean. Meaning we can more easily and statistically
significantly compare the zero-shot results against each other, and this is su�-
cient for our discussions and conclusions. Still, we append the deviations for the
unimodal dataset experiments in appendix section E

The prompting templates used are the ones earlier mentioned in Table 4.9, and
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Dataset
Micro F1

with deviations ± Configuration

CONLL 0.56 ±0.01 Blip2-Flan-t5-xxl, 3-shot with prompt no. 2
MIT Restaurant 0.45 ±0.03 Flan-t5-xxl, 1-shot with prompt no. 2
MIT Movies 0.59 ±0.01 Blip2-Flan-t5-xl, 8-shot with prompt no. 5

Twitter2015 0.64 ±0.00
Blip2-Flan-t5-xl using visuals,
zero-shot with prompt no. 4

Twitter2017 0.60 ±0.00

Flan-t5-xl not using visuals,
zero-shot with prompt no. 4.

Also, Blip2-Flan-t5-xxl not using visuals,
zero-shot with prompt no. 2.

Table 5.1: Short summary of the best performing configurations for each dataset.

the numbering of prompts in the results corresponds to the number given in that
prompt template table. Unless specified all the results also use the instructions
from Table 4.10.

More technical details for the experiment can be found in the appendix section A.
For brevity with regards to the best scores, we include Table 5.1 which showcases
the best scoring configurations in our experiment.

5.1 Baseline results

As our QA-NER baseline handles a few shot sets and not singular examples, we
provide all the baseline results for the language datasets (CONLL, MIT Restau-
rant, and MIT Movie) first in this section. The results are reported in Table 5.2.
For these results, only sets/shots, which means N times the entity type are used,
where N is the number of entity types. This is the same method as in the origi-
nal implementation, as opposed to our subsequent results for generative models
where we use 0-8 singular examples, as a consequence of restrictions on input
length for in-context learning versus fine-tuning which is adopted for QA-NER.

As the results show, maybe unexpectedly, the micro F1 scores often go down
with 1 or 2 sets of training examples. We validated that our method gave similar
results for the order of 10-100 results as was reported by Liu et al. [47], and found
it to be congruent with those. We discuss further in chapter 6.
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QA-NER Prompt Zero-shot 1-set 2-set

CONLL

1 0.10 0.08 0.08
2 0.22 0.24 0.27
3 0.09 0.08 0.08
4 0.19 0.10 0.10
5 0.34 0.34 0.34

MIT Restaurant

1 0.07 0.00 0.00
2 0.17 0.00 0.02
3 0.10 0.00 0.08
4 0.17 0.00 0.18
5 0.27 0.03 0.18

MIT Movies

1 0.10 0.08 0.26
2 0.39 0.27 0.39
3 0.21 0.05 0.35
4 0.28 0.08 0.34
5 0.48 0.44 0.41

Table 5.2: F1 scores for the QA-NER reimplementation with bert-large-squad2
across the unimodal datasets. Scores are shown for corresponding prompt and
few shot examples. In this case the examples are the traditional sets, so N-times
each entity type. The best results for each row are bolded. Best for the dataset
is underlined.
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5.2 Language datasets

The experiment on language datasets, CONLL, MIT Restaurant and MIT Movie,
are presented here. For each dataset, we present tables showing the results across
all models and prompt variations, according to the number of in-context exam-
ples.

5.2.1 CONLL

Results for the CONLL-2003 dataset with the stringent metric are presented in
Table 5.3. In the appendix, Table D9 shows the relative di↵erence between the
multimodal models and their underlying LLMs.

5.2.2 MiT Restaurant

Results for the MiT Restaurant dataset with the stringent metric are presented
in Table 5.4. In the appendix, Table D10 shows the relative di↵erence between
the multimodal models and their underlying LLM’s

5.2.3 MiT Movie

Results for the MiT Movie dataset with the stringent metric are presented in
Table 5.5. In the appendix, Table D11 shows the relative di↵erence between the
multimodal models and their underlying LLM’s

5.3 Multimodal datasets

As in the previous section, the results for each dataset (Twitter2015 and Twit-
ter2017) are presented for all models and prompt variations. In addition, the
results with and without using images from the dataset are presented for the
comparative di↵erence in results. We do this by providing the results as the rela-
tive di↵erence with and without images, the absolute results with images can be
found in appendix section D.

5.3.1 Twitter2015

Results for the Twitter2015 dataset with the stringent metric are presented in
Table 5.6. Further the relative di↵erence with regards to using the image from
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Model Prompt Zero-shot 1-shot 2-shot 3-shot
4-shot/
1-set

5-shot 6-shot 7-shot
8-shot/
2-sets

FROMAGe

1 0.00 0.19 0.20 0.20 0.22 0.20 0.19 0.20 0.18
2 0.01 0.17 0.19 0.20 0.22 0.19 0.19 0.20 0.18
3 0.00 0.16 0.18 0.19 0.21 0.19 0.20 0.20 0.19
4 0.01 0.20 0.20 0.21 0.24 0.22 0.20 0.21 0.20
5 0.02 0.20 0.20 0.21 0.23 0.21 0.20 0.22 0.21

BLIP2-opt-2.7b

1 0.03 0.17 0.09 0.13 0.17 0.22 0.22 0.21 0.21
2 0.01 0.18 0.07 0.10 0.14 0.15 0.19 0.20 0.20
3 0.01 0.16 0.09 0.12 0.15 0.19 0.20 0.19 0.20
4 0.01 0.18 0.11 0.14 0.21 0.23 0.23 0.25 0.24
5 0.02 0.19 0.09 0.13 0.19 0.22 0.23 0.24 0.24

BLIP2-opt-6.7b

1 0.00 0.22 0.23 0.23 0.24 0.22 0.18 0.19 0.16
2 0.00 0.23 0.24 0.23 0.25 0.23 0.22 0.24 0.20
3 0.00 0.23 0.24 0.23 0.24 0.22 0.23 0.22 0.19
4 0.00 0.22 0.26 0.25 0.25 0.24 0.22 0.22 0.19
5 0.01 0.24 0.26 0.25 0.26 0.24 0.23 0.23 0.19

BLIP2-flan-t5-xl

1 0.50 0.51 0.52 0.52 0.52 0.51 0.51 0.52 0.50
2 0.41 0.50 0.52 0.53 0.54 0.53 0.53 0.53 0.51
3 0.44 0.51 0.53 0.54 0.55 0.53 0.53 0.53 0.50
4 0.53 0.52 0.54 0.54 0.55 0.53 0.52 0.53 0.51
5 0.35 0.45 0.49 0.50 0.51 0.49 0.50 0.50 0.49

BLIP2-flan-t5-xxl

1 0.41 0.38 0.41 0.42 0.42 0.41 0.43 0.44 0.43
2 0.51 0.55 0.55 0.56 0.55 0.53 0.55 0.54 0.52
3 0.49 0.51 0.52 0.52 0.52 0.50 0.51 0.51 0.50
4 0.47 0.50 0.50 0.51 0.50 0.50 0.50 0.50 0.50
5 0.47 0.49 0.51 0.52 0.52 0.51 0.52 0.52 0.51

mPLUG-Owl

1 0.29 0.25 0.28 0.28 0.28 0.27 0.28 0.27 0.28
2 0.27 0.27 0.30 0.29 0.29 0.29 0.29 0.29 0.30
3 0.22 0.24 0.28 0.26 0.27 0.27 0.26 0.27 0.29
4 0.27 0.27 0.29 0.31 0.29 0.29 0.31 0.30 0.32
5 0.29 0.27 0.30 0.30 0.30 0.30 0.30 0.32 0.32

OpenFlamingo

1 0.11 0.19 0.18 0.17 0.21 0.19 0.20 0.22 0.22
2 0.06 0.08 0.12 0.10 0.13 0.11 0.13 0.14 0.15
3 0.07 0.07 0.08 0.08 0.10 0.10 0.10 0.12 0.12
4 0.11 0.17 0.19 0.17 0.21 0.20 0.20 0.23 0.23
5 0.07 0.14 0.17 0.14 0.18 0.18 0.18 0.21 0.21

FlanT5-XL

1 0.53 0.50 0.52 0.51 0.53 0.51 0.51 0.51 0.50
2 0.48 0.49 0.51 0.52 0.54 0.53 0.53 0.53 0.51
3 0.53 0.50 0.52 0.53 0.54 0.53 0.52 0.53 0.50
4 0.55 0.51 0.52 0.54 0.54 0.53 0.53 0.52 0.51
5 0.47 0.44 0.50 0.50 0.51 0.49 0.51 0.50 0.49

FlanT5-XXL

1 0.41 0.37 0.41 0.41 0.42 0.41 0.42 0.44 0.42
2 0.52 0.54 0.54 0.55 0.54 0.52 0.54 0.54 0.51
3 0.47 0.50 0.50 0.50 0.50 0.49 0.50 0.50 0.49
4 0.45 0.49 0.49 0.50 0.49 0.49 0.49 0.50 0.49
5 0.46 0.47 0.50 0.51 0.51 0.50 0.50 0.51 0.50

OPT-2.7B

1 0.03 0.18 0.20 0.19 0.20 0.22 0.20 0.22 0.22
2 0.04 0.17 0.20 0.20 0.21 0.21 0.20 0.22 0.22
3 0.06 0.15 0.18 0.17 0.20 0.21 0.20 0.21 0.20
4 0.05 0.16 0.21 0.20 0.23 0.23 0.22 0.24 0.23
5 0.03 0.16 0.21 0.19 0.22 0.22 0.22 0.23 0.23

OPT-6.7B

1 0.00 0.14 0.20 0.18 0.21 0.20 0.20 0.21 0.20
2 0.00 0.14 0.20 0.17 0.21 0.19 0.21 0.21 0.20
3 0.00 0.10 0.17 0.16 0.20 0.19 0.20 0.20 0.19
4 0.00 0.16 0.20 0.18 0.22 0.22 0.22 0.23 0.23
5 0.00 0.18 0.22 0.19 0.22 0.22 0.22 0.24 0.23

LLAMA-7B

1 0.25 0.24 0.27 0.26 0.26 0.27 0.28 0.29 0.29
2 0.16 0.25 0.27 0.27 0.27 0.27 0.27 0.29 0.29
3 0.16 0.22 0.25 0.24 0.25 0.26 0.26 0.28 0.27
4 0.26 0.27 0.30 0.30 0.30 0.30 0.30 0.31 0.31
5 0.25 0.27 0.29 0.30 0.30 0.30 0.31 0.31 0.32

Table 5.3: Mean Micro-F1 scores for the CONLL dataset using the stringent eval-
uation metric. Score averages are for models with their corresponding prompts
and amount of random N-singular few-shot examples. Selected high scores are
bolded, best score for each column is underlined.



50 Multimodal datasets

Model Prompt Zero-shot 1-shot 2-shot 3-shot 4-shot 5-shot 6-shot 7-shot
8-shot/
1-set

FROMAGe

1 0.01 0.07 0.07 0.09 0.08 0.08 0.08 0.08 0.09
2 0.02 0.06 0.07 0.08 0.09 0.08 0.07 0.07 0.08
3 0.00 0.05 0.07 0.08 0.09 0.09 0.07 0.07 0.08
4 0.03 0.06 0.06 0.08 0.09 0.08 0.07 0.07 0.09
5 0.03 0.06 0.05 0.07 0.09 0.08 0.08 0.07 0.09

BLIP2-opt-2.7b

1 0.01 0.09 0.05 0.05 0.06 0.09 0.09 0.09 0.09
2 0.02 0.09 0.04 0.05 0.03 0.07 0.07 0.07 0.08
3 0.00 0.08 0.03 0.05 0.04 0.05 0.05 0.06 0.07
4 0.00 0.08 0.03 0.04 0.05 0.08 0.07 0.07 0.08
5 0.02 0.09 0.03 0.05 0.06 0.07 0.08 0.09 0.10

BLIP2-opt-6.7b

1 0.00 0.09 0.09 0.11 0.11 0.11 0.11 0.10 0.10
2 0.01 0.09 0.10 0.10 0.12 0.11 0.11 0.10 0.10
3 0.00 0.09 0.10 0.10 0.11 0.11 0.10 0.09 0.10
4 0.00 0.10 0.10 0.11 0.13 0.12 0.10 0.10 0.11
5 0.00 0.10 0.11 0.12 0.13 0.12 0.12 0.11 0.11

BLIP2-flan-t5-xl

1 0.24 0.30 0.30 0.31 0.30 0.31 0.30 0.31 0.30
2 0.19 0.35 0.33 0.35 0.33 0.34 0.35 0.34 0.33
3 0.22 0.30 0.32 0.32 0.32 0.32 0.33 0.32 0.32
4 0.24 0.29 0.29 0.30 0.30 0.30 0.32 0.32 0.32
5 0.26 0.34 0.34 0.35 0.34 0.35 0.35 0.35 0.35

BLIP2-flan-t5-xxl

1 0.30 0.31 0.33 0.32 0.32 0.33 0.32 0.33 0.33
2 0.37 0.44 0.41 0.42 0.42 0.42 0.41 0.41 0.42
3 0.36 0.40 0.39 0.41 0.41 0.40 0.40 0.40 0.40
4 0.39 0.41 0.40 0.41 0.42 0.42 0.42 0.42 0.41
5 0.37 0.41 0.39 0.41 0.41 0.41 0.42 0.41 0.42

mPLUG-Owl

1 0.17 0.13 0.13 0.14 0.14 0.15 0.14 0.14 0.13
2 0.14 0.13 0.17 0.18 0.18 0.17 0.17 0.16 0.16
3 0.15 0.12 0.15 0.15 0.15 0.15 0.15 0.15 0.13
4 0.16 0.13 0.16 0.16 0.16 0.16 0.15 0.14 0.14
5 0.21 0.20 0.20 0.21 0.21 0.22 0.20 0.19 0.19

OpenFlamingo

1 0.13 0.12 0.13 0.15 0.15 0.15 0.14 0.14 0.14
2 0.11 0.10 0.10 0.13 0.13 0.14 0.12 0.13 0.13
3 0.10 0.09 0.11 0.13 0.14 0.14 0.13 0.12 0.13
4 0.10 0.11 0.12 0.14 0.15 0.15 0.12 0.12 0.13
5 0.11 0.14 0.15 0.18 0.18 0.17 0.15 0.15 0.15

FlanT5-XL

1 0.24 0.30 0.29 0.31 0.30 0.32 0.30 0.30 0.30
2 0.23 0.36 0.35 0.36 0.35 0.36 0.36 0.35 0.35
3 0.25 0.31 0.33 0.35 0.33 0.34 0.34 0.33 0.33
4 0.25 0.32 0.32 0.32 0.31 0.31 0.34 0.33 0.32
5 0.28 0.34 0.36 0.36 0.36 0.36 0.36 0.35 0.35

FlanT5-XXL

1 0.30 0.31 0.32 0.32 0.32 0.32 0.32 0.33 0.33
2 0.37 0.45 0.42 0.42 0.43 0.42 0.43 0.42 0.43
3 0.36 0.40 0.39 0.40 0.41 0.40 0.41 0.41 0.40
4 0.38 0.42 0.42 0.42 0.43 0.42 0.42 0.42 0.42
5 0.36 0.44 0.42 0.42 0.42 0.42 0.43 0.42 0.43

OPT-2.7B

1 0.01 0.06 0.10 0.10 0.10 0.10 0.09 0.09 0.10
2 0.02 0.07 0.09 0.11 0.11 0.11 0.10 0.09 0.09
3 0.01 0.05 0.09 0.10 0.10 0.10 0.09 0.09 0.09
4 0.01 0.06 0.08 0.10 0.10 0.10 0.09 0.08 0.09
5 0.01 0.06 0.09 0.11 0.11 0.12 0.10 0.10 0.10

OPT-6.7B

1 0.00 0.07 0.09 0.09 0.11 0.11 0.10 0.09 0.11
2 0.01 0.06 0.09 0.10 0.11 0.10 0.10 0.08 0.09
3 0.00 0.05 0.09 0.08 0.10 0.10 0.10 0.08 0.10
4 0.00 0.07 0.09 0.10 0.11 0.12 0.12 0.11 0.11
5 0.00 0.07 0.09 0.10 0.12 0.12 0.13 0.11 0.12

LLAMA-7B

1 0.11 0.10 0.11 0.12 0.12 0.12 0.11 0.12 0.12
2 0.12 0.12 0.13 0.14 0.15 0.15 0.14 0.14 0.14
3 0.13 0.11 0.11 0.13 0.14 0.14 0.13 0.13 0.14
4 0.09 0.11 0.12 0.14 0.14 0.14 0.13 0.13 0.13
5 0.12 0.16 0.16 0.17 0.17 0.17 0.16 0.16 0.16

Table 5.4: Mean Micro-F1 scores for the MIT Restaurant dataset using the strin-
gent evaluation metric. Score averages are for models with their corresponding
prompts and amount of random N-singular few-shot examples. Selected high
scores are bolded, best score for each column is underlined.



Chapter 5. Results 51

Model Prompt Zero-shot 1-shot 2-shot 3-shot 4-shot 5-shot 6-shot 7-shot 8-shot

FROMAGe

1 0.03 0.04 0.07 0.09 0.09 0.09 0.09 0.09 0.09
2 0.06 0.06 0.09 0.11 0.13 0.11 0.12 0.12 0.11
3 0.04 0.05 0.08 0.10 0.10 0.09 0.10 0.11 0.10
4 0.07 0.06 0.10 0.13 0.13 0.12 0.13 0.12 0.10
5 0.25 0.06 0.11 0.14 0.15 0.14 0.16 0.16 0.14

BLIP2-opt-2.7b

1 0.00 0.01 0.00 0.00 0.01 0.03 0.02 0.05 0.03
2 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.02
3 0.00 0.01 0.00 0.01 0.01 0.01 0.02 0.02 0.01
4 0.00 0.02 0.00 0.00 0.01 0.01 0.02 0.03 0.04
5 0.01 0.03 0.01 0.00 0.01 0.01 0.02 0.05 0.06

BLIP2-opt-6.7b

1 0.01 0.05 0.07 0.10 0.11 0.11 0.10 0.09 0.05
2 0.03 0.08 0.09 0.15 0.12 0.14 0.12 0.11 0.07
3 0.01 0.06 0.08 0.11 0.10 0.12 0.10 0.08 0.05
4 0.06 0.05 0.08 0.12 0.13 0.14 0.13 0.12 0.06
5 0.13 0.05 0.12 0.18 0.18 0.19 0.18 0.18 0.13

BLIP2-flan-t5-xl

1 0.53 0.51 0.52 0.50 0.50 0.49 0.47 0.47 0.47
2 0.55 0.55 0.57 0.57 0.57 0.57 0.57 0.58 0.59
3 0.56 0.57 0.58 0.59 0.58 0.58 0.58 0.57 0.59
4 0.57 0.56 0.57 0.57 0.57 0.58 0.58 0.57 0.58
5 0.53 0.55 0.55 0.57 0.58 0.58 0.58 0.59 0.59

BLIP2-flan-t5-xxl

1 0.39 0.38 0.42 0.41 0.41 0.42 0.42 0.42 0.42
2 0.51 0.52 0.52 0.53 0.53 0.53 0.52 0.52 0.52
3 0.44 0.47 0.50 0.50 0.50 0.50 0.49 0.49 0.48
4 0.47 0.50 0.52 0.53 0.52 0.52 0.52 0.51 0.51
5 0.49 0.52 0.52 0.54 0.53 0.54 0.53 0.53 0.52

mPLUG-Owl

1 0.27 0.07 0.16 0.18 0.15 0.15 0.17 0.18 0.16
2 0.39 0.06 0.21 0.22 0.21 0.23 0.22 0.20 0.20
3 0.37 0.07 0.16 0.19 0.18 0.20 0.19 0.18 0.18
4 0.39 0.08 0.20 0.22 0.20 0.21 0.20 0.20 0.18
5 0.45 0.12 0.27 0.29 0.27 0.29 0.27 0.28 0.26

OpenFlamingo

1 0.04 0.04 0.06 0.11 0.11 0.08 0.11 0.13 0.10
2 0.16 0.04 0.05 0.07 0.04 0.03 0.04 0.05 0.04
3 0.12 0.02 0.05 0.07 0.06 0.03 0.06 0.06 0.06
4 0.12 0.04 0.07 0.08 0.06 0.03 0.06 0.08 0.07
5 0.17 0.05 0.08 0.10 0.07 0.05 0.07 0.09 0.08

FlanT5-XL

1 0.51 0.49 0.50 0.49 0.49 0.47 0.46 0.46 0.47
2 0.56 0.54 0.55 0.55 0.55 0.55 0.56 0.56 0.57
3 0.57 0.55 0.56 0.56 0.56 0.57 0.56 0.56 0.57
4 0.59 0.56 0.57 0.58 0.57 0.58 0.58 0.58 0.58
5 0.56 0.53 0.55 0.57 0.58 0.58 0.58 0.58 0.58

FlanT5-XXL

1 0.39 0.37 0.42 0.42 0.42 0.43 0.43 0.43 0.42
2 0.51 0.51 0.53 0.53 0.54 0.53 0.52 0.52 0.52
3 0.48 0.48 0.51 0.51 0.51 0.50 0.51 0.50 0.49
4 0.50 0.51 0.53 0.53 0.53 0.53 0.53 0.52 0.51
5 0.52 0.51 0.53 0.54 0.54 0.54 0.54 0.53 0.52

OPT-2.7B

1 0.01 0.05 0.05 0.07 0.06 0.06 0.07 0.07 0.07
2 0.07 0.05 0.07 0.10 0.09 0.08 0.08 0.10 0.09
3 0.01 0.04 0.06 0.08 0.07 0.07 0.07 0.09 0.08
4 0.05 0.04 0.07 0.09 0.08 0.07 0.08 0.08 0.08
5 0.07 0.05 0.09 0.12 0.11 0.10 0.11 0.12 0.10

OPT-6.7B

1 0.01 0.05 0.06 0.08 0.07 0.08 0.08 0.10 0.08
2 0.02 0.07 0.10 0.12 0.12 0.13 0.12 0.12 0.10
3 0.02 0.05 0.08 0.10 0.10 0.11 0.10 0.10 0.09
4 0.01 0.05 0.07 0.09 0.09 0.10 0.10 0.11 0.09
5 0.01 0.07 0.09 0.11 0.12 0.13 0.12 0.14 0.11

LLAMA-7B

1 0.13 0.04 0.08 0.12 0.13 0.12 0.14 0.15 0.14
2 0.22 0.05 0.14 0.16 0.14 0.16 0.15 0.14 0.14
3 0.18 0.05 0.10 0.15 0.14 0.16 0.15 0.15 0.14
4 0.26 0.05 0.13 0.15 0.14 0.15 0.15 0.16 0.15
5 0.30 0.07 0.19 0.20 0.19 0.21 0.19 0.20 0.20

Table 5.5: Mean Micro-F1 scores for the MIT Movie dataset using the strin-
gent evaluation metric. Score averages are for models with their corresponding
prompts and amount of random N-singular few-shot examples. Selected high
scores are bolded, best score for each column is underlined.
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the dataset versus an empty (black) image is presented in Table 5.7. Results
when using the images can be found in appendix Table D5

5.3.2 Twitter2017

Results for the Twitter2015 dataset with the stringent metric and not using im-
ages are presented in Table 5.8. Further, the relative di↵erence with regards to
using the image from the dataset versus an empty (black) image is presented in
Table 5.9. Results when using the images can be found in appendix Table D6

5.4 Entity level sampled results and ablations

In this section, we present a detailed sample of the results, where we show the
entity level accuracy and ablations. The results are too numerous to generate
figures for, so we focus on some of the most performant models. Further sampled
results can be found in appendix section D.

5.4.1 Entity level accuracy for the Twitter datasets

5.4.2 Ablations Twitter datasets

Since the Twitter datasets have the same entity types and the same as CONLL,
and images we use them for ablations to see both a sample for the e↵ect of in-
structions without and with visuals. The entity enumeration is ”The entities are
persons, locations, organizations, and miscellaneous (other)”.

Instruction ablations Twitter2015 Twitter2017
Intention Entity enumeration Image specifier With image Without image With image Without image

0.37 0.43 0.34 0.36
X 0.48 0.45 0.39 0.36

X 0.44 0.48 0.42 0.44
X 0.51 0.53 0.40 0.42

X X 0.50 0.49 0.44 0.44
X X 0.50 0.53 0.43 0.44
X X 0.54 0.54 0.43 0.42
X X X 0.54 0.54 0.46 0.44

Table 5.10: Ablation over the di↵erent instructions for Twitter2015 and Twit-
ter2017. X indicates the inclusion of the relevant instruction. The configuration
is Blip2-Flan-T5-XL, with zero-shot and prompt no. 2.
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Twitter2015 Without image

Model Prompt Zero-shot 1-shot 2-shot 3-shot
4-shot/
1-set

5-shot 6-shot 7-shot
8-shot/
2-sets

FROMAGe

1 0.01 0.13 0.16 0.17 0.14 0.15 0.16 0.17 0.18
2 0.00 0.10 0.13 0.15 0.15 0.14 0.16 0.14 0.16
3 0.00 0.10 0.13 0.15 0.15 0.14 0.14 0.13 0.14
4 0.01 0.16 0.16 0.18 0.17 0.17 0.19 0.18 0.20
5 0.02 0.14 0.16 0.20 0.18 0.18 0.20 0.19 0.20

BLIP2-opt-2.7b

1 0.01 0.08 0.11 0.12 0.12 0.13 0.15 0.13 0.13
2 0.01 0.07 0.09 0.10 0.13 0.14 0.16 0.16 0.18
3 0.00 0.07 0.11 0.12 0.13 0.12 0.13 0.15 0.16
4 0.01 0.09 0.13 0.12 0.13 0.13 0.15 0.16 0.17
5 0.02 0.10 0.12 0.12 0.12 0.12 0.14 0.15 0.15

BLIP2-opt-6.7b

1 0.00 0.11 0.12 0.17 0.17 0.17 0.23 0.26 0.26
2 0.00 0.13 0.11 0.19 0.22 0.20 0.21 0.25 0.22
3 0.00 0.14 0.11 0.20 0.20 0.20 0.21 0.23 0.23
4 0.00 0.15 0.15 0.19 0.18 0.17 0.20 0.22 0.22
5 0.00 0.16 0.14 0.20 0.19 0.18 0.22 0.24 0.24

BLIP2-flan-t5-xl

1 0.60 0.60 0.57 0.55 0.56 0.56 0.57 0.54 0.55
2 0.54 0.59 0.59 0.57 0.57 0.57 0.57 0.53 0.53
3 0.60 0.61 0.59 0.57 0.57 0.57 0.57 0.54 0.55
4 0.63 0.60 0.60 0.56 0.57 0.57 0.57 0.54 0.54
5 0.52 0.59 0.59 0.57 0.57 0.57 0.56 0.53 0.54

BLIP2-flan-t5-xxl

1 0.40 0.38 0.39 0.35 0.39 0.41 0.43 0.40 0.42
2 0.59 0.60 0.57 0.52 0.53 0.52 0.53 0.50 0.50
3 0.53 0.51 0.50 0.49 0.50 0.50 0.50 0.50 0.50
4 0.50 0.49 0.50 0.49 0.50 0.50 0.50 0.50 0.50
5 0.54 0.52 0.51 0.49 0.51 0.51 0.51 0.50 0.50

mPLUG-Owl

1 0.30 0.22 0.27 0.30 0.32 0.32 0.31 0.31 0.30
2 0.31 0.32 0.32 0.32 0.33 0.34 0.33 0.32 0.31
3 0.27 0.30 0.29 0.30 0.30 0.32 0.31 0.29 0.30
4 0.34 0.29 0.31 0.33 0.33 0.34 0.35 0.33 0.34
5 0.34 0.36 0.34 0.34 0.36 0.36 0.36 0.34 0.34

OpenFlamingo

1 0.11 0.21 0.27 0.32 0.31 0.33 0.31 0.28 0.28
2 0.11 0.20 0.24 0.25 0.28 0.27 0.25 0.19 0.19
3 0.09 0.20 0.23 0.25 0.27 0.27 0.23 0.19 0.20
4 0.12 0.23 0.29 0.31 0.32 0.33 0.32 0.29 0.27
5 0.15 0.27 0.32 0.34 0.33 0.36 0.34 0.32 0.30

Table 5.6: Mean Micro-F1 scores for the Twitter2015 dataset using the stringent
evaluation metric when using empty (black) images. Score averages are for models
with their corresponding prompts and amount of random N-singular few-shot
examples. The highest scores for each row are bolded with a preference for
smaller amounts of training data, the best score for each column is underlined.
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Twitter2015 Di↵erence in score between with image and without image

Model Prompt Zero-shot 1-shot 2-shot 3-shot
4-shot/
1-set

5-shot 6-shot 7-shot
8-shot/
2-sets

FROMAGe

1 -0.01 -0.04 -0.04 -0.03 -0.01 -0.02 -0.03 -0.02 -0.01
2 0.00 -0.01 0.01 -0.01 0.00 0.02 -0.01 0.01 0.01
3 0.01 -0.00 -0.00 -0.00 -0.01 0.02 0.01 0.01 0.02
4 -0.00 -0.03 -0.02 -0.01 -0.02 -0.00 -0.01 0.00 -0.01
5 0.01 -0.02 -0.00 -0.03 -0.02 -0.02 -0.02 -0.01 -0.00

BLIP2-opt-2.7b

1 0.01 -0.01 -0.01 -0.01 0.00 0.01 0.01 0.02 0.02
2 0.01 -0.01 -0.01 0.01 -0.01 0.01 0.01 0.01 -0.00
3 0.01 -0.01 -0.01 -0.00 0.00 0.02 0.03 0.02 0.01
4 0.02 -0.01 -0.01 0.01 -0.01 0.02 0.01 0.02 0.01
5 0.01 -0.02 -0.01 0.01 0.00 0.03 0.03 0.02 0.02

BLIP2-opt-6.7b

1 0.01 -0.02 0.03 0.00 0.03 0.02 -0.01 -0.05 -0.06
2 0.00 -0.02 0.01 -0.02 -0.02 -0.02 -0.01 -0.07 -0.05
3 0.00 -0.03 0.02 -0.03 -0.02 -0.02 -0.03 -0.07 -0.06
4 0.01 -0.01 0.03 -0.00 0.02 0.02 0.01 -0.03 -0.03
5 0.03 -0.03 0.03 0.01 0.01 0.02 -0.01 -0.03 -0.04

BLIP2-flan-t5-xl

1 0.00 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
2 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01
3 0.01 -0.01 -0.00 -0.01 -0.01 -0.00 0.00 -0.01 -0.01
4 0.01 -0.01 -0.01 -0.01 -0.01 0.01 -0.00 -0.00 0.00
5 -0.02 -0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02

BLIP2-flan-t5-xxl

1 -0.00 0.01 -0.01 0.01 -0.02 -0.02 -0.02 -0.00 -0.02
2 -0.01 0.00 -0.01 -0.01 -0.01 -0.00 -0.01 -0.01 -0.00
3 -0.01 -0.00 -0.00 -0.00 -0.01 -0.00 -0.01 0.00 0.00
4 0.00 -0.01 -0.01 -0.00 -0.00 -0.01 -0.01 -0.00 -0.01
5 -0.03 -0.00 -0.01 -0.00 -0.01 -0.01 -0.01 -0.00 0.00

mPLUG-Owl

1 0.00 0.00 0.01 0.02 0.00 0.02 0.01 0.01 0.01
2 -0.02 0.01 -0.01 0.00 -0.00 -0.00 0.01 0.01 -0.00
3 -0.01 0.01 -0.00 0.01 0.01 -0.01 0.00 0.00 -0.01
4 0.02 0.00 0.01 0.01 0.00 0.02 0.01 0.01 0.01
5 0.03 -0.01 0.01 0.01 0.01 0.02 0.01 0.01 -0.00

OpenFlamingo

1 0.02 -0.01 0.01 -0.00 -0.00 0.00 0.02 0.02 0.01
2 0.04 0.02 0.00 0.01 -0.01 -0.00 -0.02 0.01 -0.00
3 0.05 0.01 0.02 0.00 -0.01 0.00 0.01 0.00 -0.02
4 0.00 0.02 0.03 0.01 0.01 0.00 0.01 -0.01 -0.00
5 -0.04 -0.00 0.01 -0.00 0.00 -0.01 0.01 0.00 0.01

Table 5.7: Di↵erence in Micro-F1 scores for the Twitter2015 dataset using the
stringent evaluation metric when using the dataset’s images and subtracting the
scores for when using an empty (black) image. Scores averages are for models
with their corresponding prompts and amount of random N-singular few-shot
examples.
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Twitter2017 Without image

Model Prompt Zero-shot 1-shot 2-shot 3-shot
4-shot/
1-set

5-shot 6-shot 7-shot
8-shot/
2-sets

FROMAGe

1 0.00 0.19 0.19 0.20 0.21 0.16 0.17 0.15 0.14
2 0.01 0.18 0.15 0.20 0.18 0.14 0.14 0.15 0.15
3 0.00 0.17 0.15 0.20 0.18 0.14 0.15 0.15 0.15
4 0.00 0.22 0.18 0.21 0.22 0.15 0.18 0.16 0.16
5 0.02 0.22 0.18 0.21 0.22 0.15 0.17 0.17 0.16

BLIP2-opt-2.7b

1 0.01 0.14 0.01 0.02 0.18 0.14 0.14 0.12 0.15
2 0.02 0.16 0.01 0.02 0.08 0.14 0.15 0.17 0.18
3 0.01 0.15 0.01 0.02 0.08 0.13 0.13 0.15 0.19
4 0.02 0.13 0.04 0.06 0.15 0.18 0.19 0.20 0.18
5 0.03 0.18 0.02 0.06 0.14 0.19 0.19 0.19 0.18

BLIP2-opt-6.7b

1 0.00 0.24 0.25 0.26 0.26 0.24 0.24 0.24 0.26
2 0.00 0.26 0.25 0.25 0.27 0.25 0.25 0.25 0.26
3 0.00 0.22 0.23 0.24 0.26 0.25 0.24 0.24 0.26
4 0.00 0.29 0.29 0.27 0.29 0.26 0.26 0.25 0.28
5 0.00 0.30 0.30 0.28 0.28 0.27 0.26 0.26 0.28

BLIP2-flan-t5-xl

1 0.59 0.57 0.56 0.56 0.55 0.56 0.55 0.55 0.55
2 0.44 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51
3 0.54 0.55 0.55 0.54 0.54 0.54 0.54 0.54 0.54
4 0.58 0.57 0.55 0.55 0.55 0.55 0.54 0.55 0.54
5 0.45 0.51 0.51 0.50 0.51 0.51 0.52 0.51 0.51

BLIP2-flan-t5-xxl

1 0.42 0.36 0.46 0.47 0.46 0.47 0.44 0.45 0.45
2 0.60 0.56 0.54 0.54 0.53 0.53 0.53 0.54 0.54
3 0.54 0.51 0.53 0.53 0.54 0.54 0.53 0.53 0.53
4 0.51 0.51 0.53 0.53 0.53 0.53 0.53 0.53 0.53
5 0.53 0.49 0.51 0.51 0.52 0.52 0.52 0.52 0.52

mPLUG-Owl

1 0.29 0.30 0.29 0.31 0.31 0.26 0.27 0.27 0.28
2 0.27 0.26 0.23 0.28 0.28 0.24 0.25 0.26 0.27
3 0.22 0.28 0.25 0.27 0.27 0.23 0.24 0.24 0.26
4 0.32 0.32 0.29 0.32 0.33 0.27 0.30 0.31 0.31
5 0.32 0.30 0.27 0.31 0.34 0.28 0.31 0.32 0.32

OpenFlamingo

1 0.09 0.29 0.24 0.30 0.31 0.32 0.32 0.31 0.32
2 0.09 0.14 0.10 0.17 0.22 0.28 0.27 0.25 0.26
3 0.08 0.16 0.15 0.22 0.25 0.28 0.28 0.26 0.27
4 0.10 0.33 0.27 0.31 0.32 0.32 0.32 0.32 0.33
5 0.10 0.31 0.20 0.29 0.31 0.33 0.33 0.32 0.32

Table 5.8: Mean Micro-F1 scores for the Twitter2017 dataset using the stringent
evaluation metric when using empty (black) images. Score averages are for models
with their corresponding prompts and amount of random N-singular few-shot
examples. The highest scores for each row are bolded with a preference for
smaller amounts of training data, the best score for each column is underlined.
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Twitter2017 Di↵erence in score between with image and without image

Model Prompt Zero-shot 1-shot 2-shot 3-shot
4-shot/
1-set

5-shot 6-shot 7-shot
8-shot/
2-sets

FROMAGe

1 0.00 -0.10 -0.04 -0.01 -0.04 0.04 0.03 0.05 0.03
2 0.00 -0.10 -0.02 -0.01 0.00 0.04 0.05 0.02 0.04
3 0.01 -0.09 -0.03 -0.02 -0.00 0.06 0.05 0.03 0.04
4 0.00 -0.09 -0.02 0.00 -0.03 0.06 0.03 0.04 0.04
5 -0.00 -0.09 -0.03 -0.01 -0.02 0.05 0.05 0.06 0.06

BLIP2-opt-2.7b

1 0.01 -0.03 0.07 0.08 -0.01 0.00 0.01 0.03 -0.02
2 -0.01 -0.08 0.03 0.03 0.01 0.00 -0.03 -0.04 -0.01
3 -0.00 -0.08 0.03 0.03 0.01 0.00 -0.00 -0.01 -0.02
4 0.01 -0.00 0.02 0.04 -0.00 -0.03 -0.05 -0.03 -0.03
5 0.02 -0.07 0.03 0.02 0.02 -0.06 -0.04 -0.01 -0.03

BLIP2-opt-6.7b

1 0.00 -0.09 -0.05 -0.04 -0.04 -0.05 -0.06 0.01 -0.00
2 0.00 -0.09 -0.07 -0.03 -0.03 -0.03 -0.05 0.00 0.01
3 0.00 -0.07 -0.05 -0.02 -0.03 -0.03 -0.04 0.01 0.01
4 0.02 -0.10 -0.06 -0.02 -0.03 -0.01 -0.04 0.02 0.00
5 0.02 -0.09 -0.08 -0.04 -0.02 -0.01 -0.03 0.01 0.01

BLIP2-flan-t5-xl

1 -0.03 -0.02 -0.01 -0.00 0.00 0.00 0.00 0.00 0.01
2 0.02 -0.01 -0.00 0.00 -0.00 0.00 0.00 0.00 0.00
3 0.01 -0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00
4 -0.02 0.00 0.01 0.00 -0.00 0.00 0.01 0.00 0.01
5 -0.04 0.01 0.00 0.01 -0.00 0.00 -0.00 0.00 0.01

BLIP2-flan-t5-xxl

1 -0.01 0.01 -0.02 -0.03 -0.03 -0.04 -0.04 -0.05 -0.04
2 -0.03 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02
3 -0.02 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.01 -0.02
4 -0.03 -0.02 -0.02 -0.02 -0.01 -0.01 -0.02 -0.01 -0.01
5 -0.03 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02

mPLUG-Owl

1 0.01 -0.00 0.01 0.00 0.01 0.01 0.01 0.02 0.01
2 0.00 0.01 0.00 -0.00 -0.01 -0.00 0.01 0.01 -0.00
3 0.02 -0.01 -0.01 -0.01 0.00 -0.00 0.00 0.00 0.00
4 0.02 0.00 0.00 0.00 -0.00 0.01 0.01 0.02 0.02
5 0.01 0.00 0.02 0.01 0.00 0.01 0.01 0.02 0.02

OpenFlamingo

1 0.04 0.02 0.02 0.01 0.00 0.01 -0.00 0.00 -0.01
2 0.04 0.04 0.04 0.02 0.02 -0.00 0.01 -0.00 -0.01
3 0.04 0.05 0.01 0.00 0.02 0.00 -0.00 -0.01 0.00
4 0.03 -0.00 0.01 0.00 0.01 0.01 0.00 -0.00 -0.00
5 0.01 0.02 0.03 0.01 0.00 0.00 -0.00 -0.01 -0.01

Table 5.9: Di↵erence in Micro-F1 scores for the Twitter2017 dataset using the
stringent evaluation metric when using the dataset’s images and subtracting the
scores for when using an empty (black) image. Scores averages are for models
with their corresponding prompts and amount of random N-singular few-shot
examples.
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Figure 5.1: Accuracy per entity for Twitter2015 with BLIP2-Flan-T5-XL using
prompt no. 2 with and without images. With images is the original in the legend,
while without is the specified by ”noimg”. We observe the relative changes in
entity accuracy. This also generalizes across most of the results using Flan-T5
models.
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Figure 5.2: Accuracy per entity for Twitter2015 with BLIP2-Flan-T5-XXL using
prompt no. 2 with and without images. With images is the original in the legend,
while without is the specified by ”noimg”. We observe the relative changes in
entity accuracy. This also generalizes across most of the results using Flan-T5
models.
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Figure 5.3: Accuracy per entity for Twitter2017 with Flan-T5-XL using prompt
no. 3 without images. With images is the original in the legend, while without
is the specified by ”noimg”. We observe the relative changes in entity accuracy.
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Chapter 6
Discussion

With the presented results in chapter 5, we interpret them with our research ques-
tions in mind and relative to performance in other research. We include surveyed
results from other research that use techniques that prohibit re-implementation
with either our methods or our very low-resource training data context, but from
which we can reflect on the comparative performance.

The chapter is sectioned by first discussing the validity of the results, then the
results using only language over all the datasets since the approach is identical
to multimodal without images. This is the discussion of prompting generative
models with only language. We then discuss the results obtained when integrat-
ing images and how they compare to only using language. Finally, we discuss the
results reflecting on the underlying data and the evaluation metrics.

6.1 Validity

The large amount of data points (F1 scores) generated by the experiment show-
cases the impact of slight alterations of factors on the results. We see that for
the baseline, only slight fine-tuning can cause a sudden drop, as mentioned by
Mosbach et al. [58], fine tuning can be quite unstable process. Still, our initial
zero-shot results are in line with the reported results by Liu et al. [47].

What becomes more pronounced is the wildly varying results from changing small
parts of the prompts for the generative models. The reliance on o↵-the-shelf
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models that may have instabilities themselves or covert overriding parameters.
in addition to the ability to rely on the multimodal models that are fed empty
images versus the LLM, they are based on. We see clear discrepancies between
the LLM and the multimodal model, and it makes the prospect of attributing
any relative gain to using the actual image from the Twitter datasets somewhat
harder. Still, the relative gain should, as far as we know only be impacted by the
inclusion of the image versus an empty image, and all models do run stable and
deterministically at zero-shot experiments, producing the same outputs.

Additionally, the e↵ect of which training data the pre-trained models have used
is not elaborated. And this is due to the fact that it is practically very di�cult
to elaborate through the large amounts of di↵erent datasets for so many pre-
trained models and confidently say that there is no relevant NER material in
the pre-training data. The mitigating factor for this is that the NER task has
not really been rephrased in the way we have and made widespread in natural
language form (any more than normal conversation allows for). So that while
there probably is useful similar data, the models have been trained on, it’s not
specifically like what our method takes in and produces.

6.2 Unimodal language results

The results for unimodal language are the most important analysis of how well
the generative models can solve named entity recognition as a traditional task.
Firstly we discuss the overall performance concerning training data versus other
surveyed results. Then we concern ourselves with the varying scores in our results.

6.2.1 Comparative analysis

We include survey results from low-resource or fully fine-tuned research on our
language-only datasets to discuss our results compared to other research. Sur-
veyed results for CONLL are presented in Table 6.1. The results use the stringent
metric and are not from the same low-resource environment as ours, as the meth-
ods use domain transfer from other NER datasets.

As mentioned earlier, fine-tuning or transfer learning from another similar dataset
can lead to very good performance, and fully fine-tuned models can reach F1
scores of 90+% on CONLL-2003 [85, 49]. We see that our methods, which have
no domain transfer, can achieve results that hover around the 1-shot/set domain
transfer results for CONLL-2003 as shown in Table 6.1. Additionally, we mention
that COPNER got an F1 score of 46.26 with domain transfer and zero-shot on
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Method 1 shot/set 5 shot/sets
CONTaiNER [19] 57.8±5.5 72.8±2.0
ProML [15] 69.16±4.47 79.16±4.49
StructShot [98] 62.4±10.5 74.8±2.4
NNShot [98] 61.2±10.4 74.1±2.3
COPNER [35] 67.0±3.8 74.9±2.9

Table 6.1: Surveyed results for low-resource F1 scores on CONLL-2003, us-
ing domain transfer. The methods are then trained on another dataset, like
OntoNotes v5, before being fine-tuned on CONLL.

Domain transfer /
Source

Methods
MIT Restaurant MIT Movies
10-sets 20-sets 10-sets 20-sets

None
Sequence Labeling BERT [17] 21.8 39.4 25.2 42.2
Template-based BART [17] 46 57.1 37.3 48.5

CONLL-2003

Ziyadi et al. [109] 27.6 29.5 40.1 39.5
Huang et al. [33] 46.1 48.2 36.4 36.8
Sequence Labeling BERT [17] 27.2 40.9 28.3 45.2
Template-based BART [17] 53.1 60.3 42.4 54.2

Table 6.2: Surveyed results for low-resource F1 scores on MIT Restaurant and
MIT Movies, using fine-tuning on few samples, or domain transfer on another
dataset.

CONLL.

For MIT Restaurant and MIT Movies, we show in Table 6.2 results also using
domain transfer, and a couple of results without, but with significantly more
training data than we used.

We observe from our best results in Table 5.1 that our methods perform very
well, relatively speaking when accounting for the fact that we do not use any
explicit domain transfer and that we outperform both the baseline results by
a considerable margin and that our methods can produce zero-shot results ap-
proaching low-resource domain transfer performance methods for CONLL and
MIT Restaurant. And in the case of MIT Movies actually, it actually outper-
forms the surveyed results with only eight singular training examples, which is
less than the number of entity types (less than 1-set).
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6.2.2 Performance according to examples

We see that some models, like the Flan-T5 models, perform well on zero-shot but
that the F1-metric tapers o↵ with more examples. When looking at the F1-score
per entity type, it seems like the additional examples benefit mainly the MISC
label and that there is a direct inverse relationship between the MISC label and
the overall F1 score (and accuracy). It’s also noteworthy that the MISC entity
has a lower occurrence in the dataset than the other datasets and that for all our
experiments, and most low-resource experiments we have surveyed, the training
data few-shot regime is not sampled according to the occurrence, but by includ-
ing as many of each entity type.

Zero-shot The zero-shot performance of our experiments, where Flan-T5 is used
directly or in a multimodal model, is considerably higher than anything we can
find in the existing literature. The emphasis of existing literature we find has been
on domain transfer from another NER dataset, and not on true low-resource set-
tings.

Many-shots The relative gain in performance for each additional training ex-
ample varies between the models and across datasets. While the OPT-based
models largely start with lower scores and have increasing performance corre-
lated with the number of examples, LLaMA-based models start with moderate
zero-shot performance, and the relative gain with examples depends on the data.
We see, roughly speaking, that the LLaMA gains more on CONLL and the Twit-
ter datasets, with MIT Restaurant following where the development is not very
noticeable, and then MIT Movies where the inclusion of few examples overall
decreases performance. This then also matches the number of entities so that
the less granular, the more LLaMA was able to leverage the additional singular
examples, which could make sense as it then has more relevant examples for each
entity type.

Impact of prompts on results

We also observe that the di↵erent prompts vary and across both models and data.
As a general rule of thumb, prompt no. 2 showed strong performance, being
included in several of the best scoring configurations and having few anomalous
bad scoring results.

6.2.3 Notes on entities and distribution

We observe some clear, as already noted, variance among the entity distribution.
And we see some clear discrepancies in our results concerning predicting what
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miscellaneous entities are. And while we do think that there are mitigating steps
that can be taken, modification of prompting or language used, ”other(s)” could
be used instead, for instance. We want to reflect on the entity types set for a
dataset.

The task in and of itself is a↵ected by the enumeration of entity types and what
entity types are valid. We note that our multimodal dataset has adapted the
four entity types from CONLL, which is relatively few entity types, and that the
miscellaneous entity class still composes the smallest classified class in the dataset.

It is then interesting that the miscellaneous entity type seems to be the greatest
benefiter from adding more examples. And that few-shot training has equally
many training examples for each entity type irrespective of the actual distribu-
tion.

We also see that there is very little impact of having an enumeration of entities
or not. Which for the miscellaneous entity type seems like a confounding fact
when the negation of the other entity types defines it.

6.3 Multimodal results integrating visuals

We see a small di↵erence regarding having a black image (no information) vs. an
actual image. This di↵erence seems to vary across all factors of the experiment,
where we can see that there are almost no rows or columns in either Table 5.7 or
Table 5.9 that consistently has only either positive or negative values.

6.3.1 Comparative analysis

We include surveyed results from research on the same multimodal datasets to
discuss the results in light of other performing methods.

Surveyed results for Twitter2015 and Twitter2017, where there is a clear dif-
ferentiation for using the method’s performance with and without images, are
presented in Table 6.3. The results use the stringent metric. General results for
fully fine-tuned models showing surveyed performance for fully-fine tuned models
are shown in Table 6.4.

We see that the relative gain in the surveyed results for using the images has not
been very large. Most literature we found has been unable to show more than
a 2% higher micro F1 score using visuals. And as such, our results, zero-shot
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Method
Twitter2015 Twitter2017
Text Text+Image Text Text+Image

ITA-All+CVA [84] 78.25 78.03 89.47 89.75
MRC-MNER [38] 72.74 74.63 85.55 86.85
MNER-QG [37] 72.74 74.94 85.55 87.25

Table 6.3: Surveyed F1 scores for methods showing the results for only text, and
for text with the addition of images with the respective datasets.

Modality Method Twitter2015 Twitter2017

Text
BERT [37] 71.32 82.95
BERT-CRF [37] 71.81 83.44

Text + Image

ACoA [86] 70.69 82.15
ATTR-MMKG-MNER [37] 73.27
UMT-BERT-CRF [102] 73.41 85.31
MAF [94] 73.42 86.25
RIVA [76] 73.8
MRC-MNER [38] 74.63 86.85
RpBERT [77] 74.8 85.51
UMGF [103] 74.85 85.51
MNER-QG [37] 74.94 87.25
ITA-All+CVA [84] 78.03 89.75
PromptMNER [86] 78.6 90.27

Table 6.4: Surveyed F1 scores for methods fully-fine-tuned on Twitter2015 and
Twitter2017.

results, for example, show the largest relative di↵erences. But this is not nec-
essarily very noteworthy, as the results generally have large volatility regarding
which model, data, and amount of training examples are used, even by just ex-
amining zero-shot performance across the Twitter datasets, which can be found
in Table 5.9 and Table 5.7, we can not find a model which is consistently able
to show gains irrespective of which prompt is used. And it’s quite visible that
smaller alterations in the prompt can change the relative gains displayed wildly.
Still, we can display that it’s possible to arrange circumstances where experiments
will show relative gains larger than the existing literature by relative gain over an
empty (black) image. When we compare the results with the underlying LLMs,
the relative di↵erences are circumstantial, meaning that they are not consistent
and vary in the same fashion.

The lack of low-resource MNER means that it is also hard to evaluate per-
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formance relative to other research since it mostly emphasizes tuning with all
available training data. Still, our methods, as shown for unimodal datasets, also
perform what we would call relatively well compared to the fully tuned mod-
els in Table 6.4, since we are able to reach around 60% F1 scores with trivially
small amounts of data, compared to the current state-of-the-art results towering
around 70+% for Twitter2015 and 80-90% for Twitter2017.

6.3.2 Interpretation with regards to the modality merging

Each multimodal model has di↵ering approaches to merging the language and
image. From the results showing di↵erences for image versus not, we can again
look at the zero-shot columns in Table 5.9 and Table 5.7, and what is perhaps the
most relative or noteworthy gain there is from the OpenFlamingo model, posting
upwards of 5% gains in F1 score. But as we see, this is still volatile as we also have
prompts causing decreased performance. And the fact that the OpenFlamingo
model is the one that has the largest relative decreased performance relative to
its underlying LLM.

Still, while there are many confounding factors, the zero-shot results on the Twit-
ter datasets demonstrate that OpenFlamingo can perform relatively better with
significant results (for zero-shot) by having visuals included. But there are too
many circumstantial factors to say anything generalizable about the e↵ectiveness
of di↵erent approaches to modality merging.

6.3.3 The image modality data

From both our results and the surveyed data, we see that current methods are
only able to leverage images for around a 1-2% increase in the F1 scores. As
pointed out by Moon et al. [57], the experiment will show the ability of a method
to leverage the imaging modality depending on the underlying data’s poten-
tial. From the surveyed research and experiment, it is unclear what the highest
relative performance for the underlying dataset is, and by virtue of there only
being two openly accessible MNER datasets, which also only have data from one
domain, the current research does not have great generalizable demonstrative
power. Meaning that any generalizable relative e↵ect of including images for
named entity recognition is hard to derive from the currently accessible datasets
or potentially any restricted sets since the potential is always dependent on the
underlying data.
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Chapter 7
Conclusions and future work

In this chapter we review our work in light of the results and discussion, conclude
our findings, and propose further work.

7.1 Conclusion

Our work involved building pipelines with various LLMs and MLLMs that could
modify the standard named entity recognition task to apply to generative pre-
trained models. Then we adopted a prompt engineering and a few-shot in-context
learning approach, where we varied the prompts and number of examples fed to
the models.

Three research questions guided our work:

Research question 1 Can prompting generative LLMs be a viable alternative
approach for named entity recognition?

Research question 2 Is performance increased when integrating visuals for named
entity recognition via pre-trained multimodal models?

Research question 3 Does more examples improve performance for the LLMs
and multimodal models?

Regarding RQ1. From our results and analysis, we find that some LLMs outper-
form the other competing approaches and models under few-shot circumstances,
especially for zero-shot learning, also because the amount of existing approaches
able to do zero-shot for NER is tiny. But also compared to surveyed low-resource
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results, our method performs well and outperforms the baseline method we con-
structed, and rank well against surveyed methods. Especially for zero-shot, where
we improve drastically (10-20%) over the comparable methods depending on the
dataset. It then seems that with the right pre-trained model, the answer to RQ1
is yes, for a low-resource environment and given the right pre-trained model.

For RQ2 we find that under some conditions, circumstantial based on the prompt,
examples, and data. There is a slight performance increase when integrating the
visuals. And that there are as many circumstances where it does not help. The
relative gain is small at around a few percentage points, which is consistent with
existing literature examining integrating images with NER. On the other hand,
while existing research has attempted specialized approaches for constructing
models able to leverage the visual component, our work finds that the o↵-the-
shelf visual-language models are able to do this for NER without much work
(in our case all we provided was an instructive sentence saying the image was
supposed to help). But, that the gains only come circumstantially, the method
can also show relatively decreased performance for similar conditions and are as
such quite volatile with regards to the prompt. But we also find that the ex-
isting literature has a lacking analysis of relative gains, with most only looking
to report their top-scoring performance and not doing ablations with regards to
image versus no-image. This also makes the feasible gain from the data hard to
reflect on.

RQ3 has a more di↵use conclusion in our case. The relative gain that comes with
a few training examples also varies for each model, prompt, and data. There
are many cases it is true that more examples improve performance. But the
underlying data poses us questions regarding our methods. Some models have
relatively consistent gains with prompts, while those, especially those that have
the strongest zero-shot performance start having lower or stable F1 scores, but
with the inclusion of a low-occurring MISC entity type start performing better
at that specific entity.

We see when examining the MISC entity type that it poses some problems, which
we think are more novel for QA-NER and our methods than earlier research. Our
approach seems to benefit from the entity classes having fairly understandable
names to leverage the pre-trained model. From the data, we expect that for NER
tasks utilizing the ”other” class for collecting the entities not enumerated by the
ones provided, our method can have decreased performance, due to it not being
able to cope very well with the identification of entities other than the types pro-
vided which has a direct understandable class to them. For circumstances where
there is no need for a MISC type, we expect our approach with those Flan-T5
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models to fare better than in the alternative, which we see is the case for the
MIT Restaurant and MIT Movies datasets.

Finally, we conclude that our work has brought results forward that are in line
with the movement of leveraging large generalizable models for new tasks [79],
and our work has provided non-trivial results for the ability of LLMs and MLLMs
to do named entity recognition. Our work also prompts some questions that we
try to synthesize into future work in section 7.2.

7.2 Future work

In this section, we provide some suggestions and thoughts regarding future work.
We attempt to split these topics into data, approaches, and models.

7.2.1 Datasets

The underlying data that the method is benchmarked against is obviously very
important. We propose some di↵erent data that could be used in a similar ex-
periment.

Alternatively structured NER: Our method, as it is applicable to sparse
data, could be tested for a large range of NER data. Notably, data that shows
greater granularity, and is nested, or has overlapping disjoint entity types. Both
should not be very di�cult to adapt to, possibly could it be easier than flat-NER
since the asking of N-entities can handle nested entities without having to flatten
the conflicting entity types. The main issue with more granular entity types is
that, for our approach, the run-time across the data increases linearly with the
number of entity types. Which for very large models could introduce a significant
computational cost.

Other available datasets: A dataset we considered but was out of scope given
the included work was CrossNER [52] which handles several domains. Our exper-
iment only handled data from the news, restaurant, movies and Twitter domain.
Another notable dataset is FewNERD by Ding et al. [22], which is explicitly
made for few-shot NER. One factor that made us not go with this dataset is that
the creators intended for the benchmarking that the models are tuned on some
training data sectioned according to entity types, and then have some query data
with the relevant entity types for fine-tuning. The proposed benchmark would in
our case then seem to be only inference over some fine classes belonging to two
coarse-grained entity types which correspond to location and organization [22].
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7.2.2 Alternative approaches

Our approach focused only on a singular example of what can be done with LLMs
and MLLMs. We suggest some alternatives.

Modalities and data handling

There are other classes of modalities that could be worth looking into. Flamingo
by example, also handles video content, so there may be some cases where video
and text go together, either in social media or on short-video content sites which
could benefit.

Direct audio is also sometimes available together with textual description, mean-
ing that you could have transcription from an audio source, which then should
be tagged. There may be latent information in the audio data that could add to
the ability to understand what entities are in the text.

Interleaved images and text

Our work used images only from the example input at inference, not from the
training examples. As more models are able to deal with interleaved images
and text, it might be interesting to see if the multimodal models are able to
leverage in-context examples of images to further understand, or align, the visual
component with the instructive language task.

Prompting

Di↵erent approaches to the prompts are an area that could improve performance.
Our prompts have had a very limited design process. Chain of thought (COT)
prompting is an exciting domain of prompting. Although we have not seen a way
to do a chain of thought zero-shot prompting, it can improve upon the manually
made prompt templates in a few-shot environment. A rephrasing of the prompt
to be not in the question answering form, but in some sort of filling out of an
empty placeholder is also possible.

Fine tuning: Since our experiments consisted of only in-context learning, we
would be interested in seeing how they compare vs fine-tuning with very few ex-
amples. The obvious downside is that for such large models, the computational
cost of fine-tuning with large amounts of di↵ering amounts of prompts and train-
ing examples can be burdensome, but can be worth looking into.
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Prompt tuning: Prompt tuning [43] could be an e�cient way to avoid the
volatile prompt engineering process, and rather tune the prompt to most e↵ec-
tively increase performance. We consider this interesting both for the unimodal
case, and perhaps especially for the multimodal case, as we saw that the relative
gain, or loss, from visuals, was surprisingly volatile with regard to the prompt.

7.2.3 Models

The models, especially the multimodal models we have used have been very much
a result of what is currently openly available. As we see more models being cre-
ated and made publicly available, there are some existing models which would
be of interest for similar experiments, and some other modality fusion.

Flamingo: Flamingo [1] has been the benchmark comparison for much of our
multimodal models [5]. While there have been larger generalizable visual-language
models released recently, Flamingo has an explicit few-shot learning focus, mak-
ing this an interesting model which we think has potential for further experiment.
The development of OpenFlamingo [108] also continues, so it’s possible more in-
teresting checkpoints of that will be released.

InstructBLIP: As a further development of BLIP2, InstructBLIP [18] was newly
released. It builds on BLIP2 but is instruction tuned as a multimodal model.

KOSMOS-1: The KOSMOS-1 model is a generalizable multimodal model by
Microsoft, introduced by Huang et al. [34]. It has the ability to learn in-context,
and like Flamingo can handle a wide range of tasks related to understanding
visuals and language.

GPT-3 and GPT-4: A commonality for many of the multimodal models is
that they mention or compare themselves to GPT-4 [61]. Our approach for
LLMs should be adaptable to GPT-3 [7], as well as GPT-4. As these are very
large performant models accessible through API, it should be possible to conduct
a similar experiment to ours with them if someone sees it worthwhile relative to
the costs.



74 Future work



Acknowledgements

I like to acknowledge the computational resources provided by NTNU via the
IDUN cluster, without which I would not have been able to work with these
large models [75].



76 Future work



Bibliography

[1] Jean-Baptiste Alayrac, Je↵ Donahue, Pauline Luc, Antoine Miech, Iain
Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm
Reynolds, Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda Han, Zhi-
tao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian
Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj
Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karen
Simonyan. Flamingo: a visual language model for few-shot learning, 2022.
URL https://arxiv.org/abs/2204.14198. [Last Accessed: 2023-06-24].
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traction andÂ integration forÂ multimodal named entity recognition. In
Arnab Bhattacharya, Janice Lee Mong Li, Divyakant Agrawal, P. Kr-
ishna Reddy, Mukesh Mohania, Anirban Mondal, Vikram Goyal, and Rage

https://arxiv.org/abs/2205.00034
https://arxiv.org/abs/1706.03762
https://www.researchgate.net/figure/The-Transformer-model-architecture_fig1_323904682
https://www.researchgate.net/figure/The-Transformer-model-architecture_fig1_323904682
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://arxiv.org/abs/2112.06482
https://arxiv.org/abs/2112.06482
https://aclanthology.org/2021.acl-long.206
https://aclanthology.org/2021.acl-long.206


BIBLIOGRAPHY 89

Uday Kiran, editors, Database Systems for Advanced Applications, pages
297–305, Cham, 2022. Springer International Publishing. ISBN 978-3-031-
00129-1.

[87] Zilong Wang and Jingbo Shang. Towards few-shot entity recognition in
document images: A label-aware sequence-to-sequence framework. In
Findings of the Association for Computational Linguistics: ACL 2022,
pages 4174–4186, Dublin, Ireland, May 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.findings-acl.329. URL https:
//aclanthology.org/2022.findings-acl.329.

[88] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei
Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le. Finetuned
language models are zero-shot learners, 2022. https://arxiv.org/abs/
2109.01652.

[89] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter,
Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting
elicits reasoning in large language models, 2023. https://arxiv.org/abs/
2201.11903.

[90] Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu,
Xinyun Chen, Hanxiao Liu, Da Huang, Denny Zhou, and Tengyu Ma.
Larger language models do in-context learning di↵erently, 2023. https:
//arxiv.org/abs/2303.03846.

[91] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry
Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. A
prompt pattern catalog to enhance prompt engineering with chatgpt, 2023.
https://arxiv.org/abs/2302.11382.

[92] Wikipedia. Precision and recall — Wikipedia, the free encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Precision%20and%
20recall&oldid=1122267443, 2022. [Online; accessed 13-December-2022].

[93] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: Sys-
tem Demonstrations, pages 38–45, Online, October 2020. Association for

https://aclanthology.org/2022.findings-acl.329
https://aclanthology.org/2022.findings-acl.329
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2303.03846
https://arxiv.org/abs/2303.03846
https://arxiv.org/abs/2302.11382
http://en.wikipedia.org/w/index.php?title=Precision%20and%20recall&oldid=1122267443
http://en.wikipedia.org/w/index.php?title=Precision%20and%20recall&oldid=1122267443


90 BIBLIOGRAPHY

Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL
https://aclanthology.org/2020.emnlp-demos.6.

[94] Bo Xu, Shizhou Huang, Chaofeng Sha, and Hongya Wang. Maf: A
general matching and alignment framework for multimodal named en-
tity recognition. In Proceedings of the Fifteenth ACM International Con-
ference on Web Search and Data Mining, WSDM ’22, page 1215â1223,
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Appendices

A Inference parameters

Parameter Value Comment
Temperature 0 Set to 0 for less randomness.

Inference batch size 1
Some of the models acted unstable with batches higher than 1,

so for the final results presented in this thesis, batch inference was run at 1.
During development we used batching for those models that were stable, like Flan-related models.

Search parameter
OpenFlamingo Beam search with beam size of 3 (as in the original Flamingo paper)

Others Greedy decoding/Greedy search
Max new tokens 20 Set to 20 to limit the lenght of answers that were likely to be generated our of the models.

Max input lenght >1024
All models, except for BERT was configured to be able

to handle inputs of at least 1024 tokens without truncation.

Table A1: Relevant inference parameters for the experiment.

B Model repositories and weights

Model name Github repo (github.com/+) Comment
FROMAGe kohjingyu/fromage Used the standard checkpoint, not the additionally stronger linear layer.
OpenFlamingo mlfoundations/open flamingo Needs self-sourced LLAMA weights.
BLIP2 salesforce/LAVIS Huggingface was used instead of original repo.
mPLUG-Owl X-PLUG/mPLUG-Owl Needs self-sourced LLAMA weights.

Table B2: Github repositories that were used for the models. Other models than
the ones mentioned here were integrated in the transformers/huggingface library.
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Model group Model name
Huggingface weight link
(huggingface.co/)

Comment

Language models

Flan-T5-XL google/flan-t5-xl
Flan-T5-XXL google/flan-t5-xxl
OPT-2.7b facebook/opt-2.7b
OPT-6.7b facebook/opt-6.7b

LLAMA decapoda-research/llama-7b-hf
We got the licence for LLAMA weights
(required for usage) and used these
huggingface weights for practicality later

QA-NER deepset/bert-large-uncased-whole-word-masking-squad2 Weights for the pre-trained BERT model
BLIP2 Flan-T5-XL Salesforce/blip2-flan-t5-xl

Flan-T5-XXL Salesforce/blip2-flan-t5-xxl
OPT-2.7b Salesforce/blip2-opt-2.7b
OPT-6.7b Salesforce/blip2-opt-6.7b

mPLUG-Owl MAGAer13/mplug-owl-llama-7b-ft
OpenFlamingo openflamingo/OpenFlamingo-9B
FROMAGe N/A Weights are included in the FROMAGe repo

Table B3: Almost all weights for the models in the experiment were sourced
from huggingface, except for FROMAGe. Models not totally integrated into
huggingface still published their weights there.

C Software

Software/library Comment
Pandas Data analysis library used for handling datasets [55].
PyTorch Machine learning framework [64]

Transformers
Library from Huggingface integrating with
PyTorch for handling of models and weights [93]

Python We used python 3.9.12 for all experiments

Table C4: Notable software used for the experiment.
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D Additional experimental results

Twitter2015 With image

Model Prompt Zero-shot 1-shot 2-shot 3-shot
4-shot/
1-set

5-shot 6-shot 7-shot
8-shot/
2-sets

FROMAGe

1 0.00 0.09 0.12 0.14 0.13 0.14 0.14 0.15 0.17
2 0.01 0.09 0.14 0.15 0.15 0.16 0.15 0.15 0.17
3 0.01 0.10 0.13 0.15 0.14 0.16 0.15 0.14 0.16
4 0.01 0.13 0.14 0.16 0.15 0.16 0.18 0.18 0.19
5 0.02 0.12 0.16 0.17 0.16 0.17 0.18 0.18 0.19

BLIP2-opt-2.7b

1 0.01 0.07 0.11 0.11 0.12 0.14 0.16 0.15 0.14
2 0.01 0.06 0.09 0.11 0.11 0.15 0.17 0.16 0.18
3 0.01 0.05 0.09 0.12 0.13 0.14 0.17 0.17 0.17
4 0.03 0.08 0.12 0.13 0.12 0.15 0.16 0.18 0.18
5 0.03 0.08 0.11 0.13 0.13 0.15 0.16 0.17 0.18

BLIP2-opt-6.7b

1 0.01 0.10 0.15 0.17 0.19 0.20 0.22 0.21 0.20
2 0.00 0.11 0.12 0.17 0.19 0.18 0.19 0.17 0.17
3 0.00 0.11 0.14 0.17 0.18 0.18 0.18 0.16 0.17
4 0.02 0.14 0.18 0.19 0.20 0.19 0.21 0.20 0.19
5 0.03 0.14 0.17 0.20 0.20 0.20 0.21 0.21 0.20

BLIP2-flan-t5-xl

1 0.60 0.57 0.55 0.53 0.54 0.55 0.55 0.52 0.53
2 0.55 0.60 0.60 0.58 0.58 0.58 0.58 0.54 0.55
3 0.61 0.60 0.59 0.56 0.57 0.57 0.57 0.53 0.54
4 0.64 0.60 0.59 0.56 0.56 0.57 0.57 0.54 0.54
5 0.50 0.59 0.59 0.58 0.59 0.59 0.58 0.55 0.56

BLIP2-flan-t5-xxl

1 0.40 0.40 0.38 0.35 0.38 0.39 0.41 0.39 0.40
2 0.59 0.60 0.56 0.52 0.52 0.52 0.52 0.49 0.50
3 0.52 0.51 0.50 0.49 0.50 0.50 0.50 0.50 0.50
4 0.50 0.48 0.49 0.49 0.50 0.50 0.50 0.50 0.49
5 0.51 0.52 0.49 0.49 0.50 0.50 0.50 0.50 0.50

mPLUG-Owl

1 0.30 0.22 0.29 0.32 0.32 0.33 0.32 0.31 0.30
2 0.29 0.33 0.31 0.33 0.33 0.34 0.34 0.33 0.31
3 0.26 0.31 0.29 0.31 0.31 0.31 0.31 0.30 0.30
4 0.36 0.30 0.33 0.34 0.34 0.36 0.36 0.34 0.34
5 0.37 0.35 0.35 0.35 0.37 0.37 0.37 0.35 0.34

OpenFlamingo

1 0.13 0.20 0.28 0.32 0.31 0.34 0.33 0.30 0.29
2 0.15 0.22 0.24 0.25 0.27 0.27 0.24 0.20 0.19
3 0.14 0.21 0.25 0.25 0.26 0.27 0.24 0.20 0.19
4 0.13 0.25 0.32 0.33 0.33 0.34 0.32 0.28 0.26
5 0.11 0.27 0.32 0.34 0.34 0.35 0.36 0.32 0.30

Table D5: Mean Micro-F1 scores for the Twitter2015 dataset using the stringent
evaluation metric when using the datasets images. Score averages are for models
with their corresponding prompts and amount of random N-singular few-shot
examples. The highest scores for each row are bolded with a preference for
smaller amounts of training data, the best score for each column is underlined.
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Twitter2017 With image

Model Prompt Zero-shot 1-shot 2-shot 3-shot
4-shot/
1-set

5-shot 6-shot 7-shot
8-shot/
2-sets

FROMAGe

1 0.00 0.09 0.15 0.19 0.18 0.20 0.20 0.21 0.17
2 0.01 0.08 0.13 0.19 0.19 0.18 0.19 0.17 0.19
3 0.01 0.08 0.12 0.19 0.18 0.19 0.19 0.18 0.18
4 0.00 0.13 0.16 0.21 0.20 0.22 0.21 0.20 0.20
5 0.02 0.13 0.14 0.20 0.20 0.19 0.22 0.23 0.23

BLIP2-opt-2.7b

1 0.01 0.11 0.07 0.10 0.17 0.15 0.15 0.15 0.13
2 0.01 0.07 0.04 0.05 0.09 0.14 0.12 0.13 0.18
3 0.00 0.07 0.04 0.05 0.09 0.14 0.13 0.14 0.17
4 0.03 0.13 0.06 0.10 0.15 0.15 0.14 0.16 0.15
5 0.04 0.10 0.05 0.08 0.15 0.13 0.15 0.18 0.14

BLIP2-opt-6.7b

1 0.00 0.15 0.21 0.22 0.23 0.19 0.17 0.25 0.26
2 0.00 0.16 0.18 0.22 0.23 0.22 0.20 0.25 0.27
3 0.00 0.15 0.18 0.22 0.23 0.22 0.20 0.24 0.27
4 0.02 0.19 0.23 0.25 0.26 0.25 0.22 0.27 0.28
5 0.02 0.21 0.22 0.24 0.27 0.26 0.23 0.27 0.29

BLIP2-flan-t5-xl

1 0.55 0.55 0.56 0.56 0.56 0.56 0.56 0.56 0.56
2 0.46 0.51 0.51 0.51 0.51 0.52 0.52 0.51 0.51
3 0.55 0.55 0.55 0.54 0.54 0.54 0.55 0.54 0.54
4 0.57 0.57 0.55 0.55 0.55 0.55 0.55 0.55 0.55
5 0.42 0.52 0.51 0.51 0.51 0.51 0.51 0.51 0.51

BLIP2-flan-t5-xxl

1 0.41 0.37 0.44 0.44 0.43 0.44 0.40 0.41 0.41
2 0.57 0.54 0.53 0.53 0.52 0.52 0.52 0.52 0.52
3 0.52 0.50 0.53 0.52 0.52 0.52 0.51 0.52 0.51
4 0.48 0.49 0.52 0.51 0.51 0.51 0.51 0.51 0.51
5 0.50 0.48 0.50 0.50 0.50 0.50 0.50 0.50 0.50

mPLUG-Owl

1 0.29 0.29 0.30 0.31 0.32 0.27 0.27 0.29 0.29
2 0.27 0.28 0.24 0.27 0.28 0.24 0.26 0.27 0.27
3 0.25 0.28 0.24 0.26 0.27 0.23 0.24 0.25 0.26
4 0.34 0.32 0.29 0.32 0.33 0.28 0.31 0.33 0.33
5 0.32 0.30 0.29 0.33 0.34 0.29 0.32 0.34 0.34

OpenFlamingo

1 0.13 0.31 0.26 0.31 0.31 0.33 0.32 0.31 0.31
2 0.13 0.18 0.13 0.19 0.24 0.27 0.28 0.25 0.25
3 0.12 0.20 0.16 0.22 0.27 0.28 0.28 0.26 0.27
4 0.13 0.33 0.27 0.31 0.33 0.33 0.33 0.32 0.33
5 0.11 0.32 0.23 0.30 0.31 0.34 0.33 0.31 0.31

Table D6: Mean Micro-F1 scores for the Twitter2017 dataset using the stringent
evaluation metric when using the dataset’s images. Score averages are for models
with their corresponding prompts and amount of random N-singular few-shot
examples. Highest scores for each row is bolded with preference for smaller
amounts of training data, best score for each column is underlined.
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Model Prompt Zero-shot 1-shot 2-shot 3-shot
4-shot/
1-set

5-shot 6-shot 7-shot
8-shot/
2-sets

opt-2.7b

1 0.03 0.16 0.17 0.18 0.18 0.18 0.20 0.20 0.19
2 0.03 0.11 0.15 0.16 0.18 0.17 0.19 0.20 0.19
3 0.02 0.12 0.16 0.17 0.19 0.18 0.19 0.19 0.19
4 0.03 0.16 0.19 0.21 0.21 0.20 0.22 0.22 0.22
5 0.03 0.15 0.17 0.18 0.19 0.19 0.21 0.22 0.22

opt-6.7b

1 0.00 0.18 0.20 0.21 0.23 0.22 0.23 0.22 0.21
2 0.00 0.16 0.18 0.20 0.22 0.23 0.22 0.24 0.23
3 0.00 0.13 0.17 0.20 0.21 0.21 0.22 0.22 0.22
4 0.00 0.18 0.20 0.22 0.24 0.24 0.25 0.24 0.25
5 0.00 0.17 0.21 0.22 0.24 0.24 0.24 0.25 0.24

flan-t5-xl

1 0.57 0.55 0.56 0.56 0.55 0.56 0.55 0.55 0.54
2 0.54 0.52 0.51 0.50 0.50 0.50 0.50 0.50 0.51
3 0.59 0.55 0.54 0.53 0.54 0.54 0.54 0.54 0.54
4 0.60 0.56 0.55 0.54 0.54 0.53 0.53 0.53 0.53
5 0.53 0.53 0.51 0.50 0.50 0.50 0.50 0.50 0.50

flan-t5-xxl

1 0.41 0.34 0.46 0.47 0.46 0.48 0.44 0.46 0.46
2 0.58 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54
3 0.52 0.51 0.53 0.52 0.53 0.53 0.52 0.52 0.53
4 0.49 0.52 0.53 0.52 0.52 0.52 0.52 0.52 0.53
5 0.49 0.49 0.51 0.51 0.51 0.51 0.51 0.51 0.51

llama-7b

1 0.25 0.28 0.28 0.28 0.30 0.30 0.29 0.29 0.29
2 0.21 0.27 0.27 0.28 0.29 0.29 0.29 0.29 0.30
3 0.17 0.26 0.27 0.27 0.28 0.29 0.28 0.29 0.29
4 0.27 0.31 0.31 0.30 0.31 0.31 0.30 0.31 0.30
5 0.29 0.31 0.29 0.30 0.31 0.32 0.30 0.31 0.31

Table D7: Mean Micro-F1 scores for unimodal models on the Twitter2017 dataset
using the stringent evaluation metric when not using the dataset’s images. Score
averages are for models with their corresponding prompts and amount of ran-
dom N-singular few-shot examples. Highest scores for each row is bolded with
preference for smaller amounts of training data, best score for each column is
underlined.
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Model Prompt Zero-shot 1-shot 2-shot 3-shot
4-shot/
1-set

5-shot 6-shot 7-shot
8-shot/
2-sets

opt-2.7b

1 0.02 0.12 0.12 0.15 0.15 0.17 0.21 0.20 0.18
2 0.01 0.11 0.13 0.19 0.17 0.18 0.21 0.23 0.23
3 0.01 0.09 0.14 0.18 0.16 0.18 0.21 0.21 0.21
4 0.02 0.12 0.15 0.18 0.17 0.19 0.23 0.24 0.23
5 0.02 0.11 0.15 0.18 0.18 0.20 0.23 0.24 0.24

opt-6.7b

1 0.00 0.10 0.12 0.18 0.19 0.17 0.19 0.19 0.18
2 0.00 0.08 0.11 0.16 0.17 0.17 0.17 0.17 0.18
3 0.00 0.08 0.11 0.15 0.16 0.15 0.16 0.16 0.17
4 0.00 0.13 0.15 0.18 0.19 0.19 0.21 0.19 0.19
5 0.00 0.11 0.13 0.20 0.21 0.21 0.22 0.20 0.20

flan-t5-xl

1 0.55 0.58 0.57 0.55 0.56 0.56 0.56 0.54 0.55
2 0.59 0.59 0.59 0.57 0.57 0.57 0.57 0.53 0.53
3 0.63 0.61 0.59 0.57 0.57 0.57 0.57 0.54 0.55
4 0.63 0.59 0.58 0.56 0.56 0.57 0.57 0.54 0.54
5 0.59 0.58 0.57 0.55 0.55 0.55 0.55 0.52 0.52

flan-t5-xxl

1 0.40 0.37 0.40 0.35 0.39 0.41 0.43 0.40 0.42
2 0.57 0.58 0.54 0.51 0.52 0.52 0.52 0.48 0.49
3 0.49 0.49 0.49 0.49 0.50 0.50 0.49 0.49 0.50
4 0.48 0.49 0.49 0.49 0.50 0.50 0.50 0.50 0.50
5 0.49 0.50 0.50 0.49 0.50 0.50 0.50 0.49 0.49

llama-7b

1 0.25 0.14 0.20 0.24 0.25 0.27 0.26 0.25 0.25
2 0.20 0.17 0.18 0.23 0.23 0.25 0.25 0.24 0.25
3 0.17 0.14 0.17 0.21 0.23 0.25 0.24 0.24 0.24
4 0.28 0.20 0.25 0.26 0.28 0.29 0.29 0.27 0.28
5 0.28 0.20 0.24 0.27 0.27 0.29 0.28 0.27 0.27

Table D8: Mean Micro-F1 scores for unimodal models on Twitter2015 dataset
using the stringent evaluation metric when not using the dataset’s images. Score
averages are for models with their corresponding prompts and amount of ran-
dom N-singular few-shot examples. Highest scores for each row is bolded with
preference for smaller amounts of training data, best score for each column is
underlined.
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Model Prompt Zero-shot 1-shot 2-shot 3-shot
4-shot/
1-set

5-shot 6-shot 7-shot
8-shot/
2-sets

FROMAGe

1 0 0.05 0 0.02 0.01 0 -0.01 -0.01 -0.02
2 0.01 0.03 -0.01 0.03 0.01 0 -0.02 -0.01 -0.02
3 0 0.06 0.01 0.03 0.01 0 0 0 0
4 0.01 0.04 0 0.03 0.02 0 -0.02 -0.02 -0.03
5 0.02 0.02 -0.02 0.02 0.01 -0.01 -0.02 -0.02 -0.02

BLIP2-opt-2.7b

1 0 -0.01 -0.11 -0.06 -0.03 0 0.02 -0.01 -0.01
2 -0.03 0.01 -0.13 -0.1 -0.07 -0.06 -0.01 -0.02 -0.02
3 -0.05 0.01 -0.09 -0.05 -0.05 -0.02 0 -0.02 0
4 -0.04 0.02 -0.1 -0.06 -0.02 0 0.01 0.01 0.01
5 -0.01 0.03 -0.12 -0.06 -0.03 0 0.01 0.01 0.01

BLIP2-opt-6.7b

1 0 0.08 0.03 0.05 0.03 0.02 -0.02 -0.02 -0.04
2 0 0.09 0.04 0.06 0.04 0.04 0.01 0.03 0
3 0 0.13 0.07 0.07 0.04 0.03 0.03 0.02 0
4 0 0.06 0.06 0.07 0.03 0.02 0 -0.01 -0.04
5 0.01 0.06 0.04 0.06 0.04 0.02 0.01 -0.01 -0.04

BLIP2-flan-t5-xl

1 -0.03 0.01 0 0.01 -0.01 0 0 0.01 0
2 -0.07 0.01 0.01 0.01 0 0 0 0 0
3 -0.09 0.01 0.01 0.01 0.01 0 0.01 0 0
4 -0.02 0.01 0.02 0 0.01 0 -0.01 0.01 0
5 -0.12 0.01 -0.01 0 0 0 -0.01 0 0

BLIP2-flan-t5-xxl

1 0 0.01 0 0.01 0 0 0.01 0 0.01
2 -0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0.01
3 0.02 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01
4 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0 0.01
5 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01

mPLUG-Owl

1 0.04 0.01 0.01 0.02 0.02 0 0 -0.02 -0.01
2 0.11 0.02 0.03 0.02 0.02 0.02 0.02 0 0.01
3 0.06 0.02 0.03 0.02 0.02 0.01 0 -0.01 0.02
4 0.01 0 -0.01 0.01 -0.01 -0.01 0.01 -0.01 0.01
5 0.04 0 0.01 0 0 0 -0.01 0.01 0

OpenFlamingo

1 -0.14 -0.05 -0.09 -0.09 -0.05 -0.08 -0.08 -0.07 -0.07
2 -0.1 -0.17 -0.15 -0.17 -0.14 -0.16 -0.14 -0.15 -0.14
3 -0.09 -0.15 -0.17 -0.16 -0.15 -0.16 -0.16 -0.16 -0.15
4 -0.15 -0.1 -0.11 -0.13 -0.09 -0.1 -0.1 -0.08 -0.08
5 -0.18 -0.13 -0.12 -0.16 -0.12 -0.12 -0.13 -0.1 -0.11

Table D9: Relative di↵erence between Micro-F1 scores for the CONLL dataset
when subtracting the underlying LLM from the MLLM. Score averages are for
models with their corresponding prompts and amount of random N-singular few-
shot examples.
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Model Prompt Zero-shot 1-shot 2-shot 3-shot 4-shot 5-shot 6-shot 7-shot
8-shot/
1-set

FROMAGe

1 0.01 0 -0.02 0 -0.03 -0.03 -0.02 -0.01 -0.02
2 0.01 0 -0.02 -0.02 -0.02 -0.02 -0.03 -0.01 -0.01
3 0 0 -0.02 0 -0.01 -0.01 -0.03 -0.01 -0.02
4 0.03 -0.01 -0.03 -0.02 -0.02 -0.04 -0.05 -0.04 -0.02
5 0.03 -0.01 -0.04 -0.03 -0.03 -0.04 -0.05 -0.04 -0.03

BLIP2-opt-2.7b

1 0 0.03 -0.05 -0.05 -0.04 -0.01 0 0 -0.01
2 0 0.02 -0.05 -0.06 -0.08 -0.04 -0.03 -0.02 -0.01
3 -0.01 0.03 -0.06 -0.05 -0.06 -0.05 -0.04 -0.03 -0.02
4 -0.01 0.02 -0.05 -0.06 -0.05 -0.02 -0.02 -0.01 -0.01
5 0.01 0.03 -0.06 -0.06 -0.05 -0.05 -0.02 -0.01 0

BLIP2-opt-6.7b

1 0 0.02 0 0.02 0 0 0.01 0.01 -0.01
2 0 0.03 0.01 0 0.01 0.01 0.01 0.02 0.01
3 0 0.04 0.01 0.02 0.01 0.01 0 0.01 0
4 0 0.03 0.01 0.01 0.02 0 -0.02 -0.01 0
5 0 0.03 0.02 0.02 0.01 0 -0.01 0 -0.01

BLIP2-flan-t5-xl

1 0 0 0.01 0 0 -0.01 0 0.01 0
2 -0.04 -0.01 -0.02 -0.01 -0.02 -0.02 -0.01 -0.01 -0.02
3 -0.03 -0.01 -0.01 -0.03 -0.01 -0.02 -0.01 -0.01 -0.01
4 -0.01 -0.03 -0.03 -0.02 -0.01 -0.01 -0.02 -0.01 0
5 -0.02 0 -0.02 -0.01 -0.02 -0.01 -0.01 0 0

BLIP2-flan-t5-xxl

1 0 0 0.01 0 0 0.01 0 0 0
2 0 -0.01 -0.01 0 -0.01 0 -0.02 -0.01 -0.01
3 0 0 0 0.01 0 0 -0.01 -0.01 0
4 0.01 -0.01 -0.02 -0.01 -0.01 0 0 0 -0.01
5 0.01 -0.03 -0.03 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

mPLUG-Owl

1 0.06 0.03 0.02 0.02 0.02 0.03 0.03 0.02 0.01
2 0.02 0.01 0.04 0.04 0.03 0.02 0.03 0.02 0.02
3 0.02 0.01 0.04 0.02 0.01 0.01 0.02 0.02 -0.01
4 0.07 0.02 0.04 0.02 0.02 0.02 0.02 0.01 0.01
5 0.09 0.04 0.04 0.04 0.04 0.05 0.04 0.03 0.03

OpenFlamingo

1 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.02
2 -0.01 -0.02 -0.03 -0.01 -0.02 -0.01 -0.02 -0.01 -0.01
3 -0.03 -0.02 0 0 0 0 0 -0.01 -0.01
4 0.01 0 0 0 0.01 0.01 -0.01 -0.01 0
5 -0.01 -0.02 -0.01 0.01 0.01 0 -0.01 -0.01 -0.01

Table D10: Relative di↵erence between Micro-F1 scores for the MIT Restau-
rant dataset when subtracting the underlying LLM from the MLLM. Score av-
erages are for models with their corresponding prompts and amount of random
N-singular few-shot examples.
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Model Prompt Zero-shot 1-shot 2-shot 3-shot 4-shot 5-shot 6-shot 7-shot 8-shot

FROMAGe

1 0.02 -0.01 0.01 0.01 0.02 0.01 0.01 -0.01 0.01
2 0.04 -0.01 -0.01 -0.01 0.01 -0.02 0 0 0.01
3 0.02 0 0 0 0 -0.02 0 0.01 0.01
4 0.06 0.01 0.03 0.04 0.04 0.02 0.03 0.01 0.01
5 0.24 -0.01 0.02 0.03 0.03 0.01 0.04 0.02 0.03

BLIP2-opt-2.7b

1 -0.01 -0.04 -0.05 -0.07 -0.05 -0.03 -0.05 -0.02 -0.04
2 -0.07 -0.04 -0.07 -0.1 -0.08 -0.07 -0.08 -0.09 -0.07
3 -0.01 -0.03 -0.06 -0.07 -0.06 -0.06 -0.05 -0.07 -0.07
4 -0.05 -0.02 -0.07 -0.09 -0.07 -0.06 -0.06 -0.05 -0.04
5 -0.06 -0.02 -0.08 -0.12 -0.1 -0.09 -0.09 -0.07 -0.04

BLIP2-opt-6.7b

1 0 0 0.01 0.02 0.04 0.03 0.02 -0.01 -0.03
2 0.01 0.01 -0.01 0.03 0 0.01 0 -0.01 -0.03
3 -0.01 0.01 0 0.01 0 0.01 0 -0.02 -0.04
4 0.05 0 0.01 0.03 0.04 0.04 0.03 0.01 -0.03
5 0.12 -0.02 0.03 0.07 0.06 0.06 0.06 0.04 0.02

BLIP2-flan-t5-xl

1 0.02 0.02 0.02 0.01 0.01 0.02 0.01 0.01 0
2 -0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.02
3 -0.01 0.02 0.02 0.03 0.02 0.01 0.02 0.01 0.02
4 -0.02 0 0 -0.01 0 0 0 -0.01 0
5 -0.03 0.02 0 0 0 0 0 0.01 0.01

BLIP2-flan-t5-xxl

1 0 0.01 0 -0.01 -0.01 -0.01 -0.01 -0.01 0
2 0 0.01 -0.01 0 -0.01 0 0 0 0
3 -0.04 -0.01 -0.01 -0.01 -0.01 0 -0.02 -0.01 -0.01
4 -0.03 -0.01 -0.01 0 -0.01 -0.01 -0.01 -0.01 0
5 -0.03 0.01 -0.01 0 -0.01 0 -0.01 0 0

mPLUG-Owl

1 0.14 0.03 0.08 0.06 0.02 0.03 0.03 0.03 0.02
2 0.17 0.01 0.07 0.06 0.07 0.07 0.07 0.06 0.06
3 0.19 0.02 0.06 0.04 0.04 0.04 0.04 0.03 0.04
4 0.13 0.03 0.07 0.07 0.06 0.06 0.05 0.04 0.03
5 0.15 0.05 0.08 0.09 0.08 0.08 0.08 0.08 0.06

OpenFlamingo

1 -0.09 0 -0.02 -0.01 -0.02 -0.04 -0.03 -0.02 -0.04
2 -0.06 -0.01 -0.09 -0.09 -0.1 -0.13 -0.11 -0.09 -0.1
3 -0.06 -0.03 -0.05 -0.08 -0.08 -0.13 -0.09 -0.09 -0.08
4 -0.14 -0.01 -0.06 -0.07 -0.08 -0.12 -0.09 -0.08 -0.08
5 -0.13 -0.02 -0.11 -0.1 -0.12 -0.16 -0.12 -0.11 -0.12

Table D11: Relative di↵erence between Micro-F1 scores for the MIT Movie
dataset when subtracting the underlying LLM from the MLLM. Score aver-
ages are for models with their corresponding prompts and amount of random
N-singular few-shot examples.
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Figure 1: Accuracy per entity for Twitter2015 with BLIP2-OPT-2.7B using
prompt no. 2 with and without images. With images is the original in the legend,
while without is the specified by ”noimg”. We observe the relative changes in
entity accuracy. This generalizes most of the results using OPT models.
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Figure 2: Accuracy per entity for Twitter2015 with BLIP2-OPT-6.7B using
prompt no. 2 with and without images. With images is the original in the legend,
while without is the specified by ”noimg”. We observe the relative changes in
entity accuracy. This generalizes most of the results using OPT.
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Figure 3: Accuracy per entity for Twitter2017 with BLIP2-OPT-6.7B using
prompt no. 2 with and without images. With images is the original in the legend,
while without is the specified by ”noimg”. We observe the relative changes in
entity accuracy. This generalizes most of the results using OPT.
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Figure 4: Accuracy per entity for Twitter2017 with OpenFlamingo using prompt
no. 2 with and without images. With images is the original in the legend, while
without is the specified by ”noimg”. We observe the relative changes in entity
accuracy.
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Figure 5: Accuracy per entity for Twitter2015 with OpenFlamingo using prompt
no. 2 with and without images. With images is the original in the legend, while
without is the specified by ”noimg”. We observe the relative changes in entity
accuracy.
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Figure 6: Accuracy per entity for Twitter2015 with mPLUG-Owl using prompt
no. 2 with and without images. With images is the original in the legend, while
without is the specified by ”noimg”. We observe the relative changes in entity
accuracy.
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Figure 7: Accuracy per entity for Twitter2017 with mPLUG-Owl using prompt
no. 2 with and without images. With images is the original in the legend, while
without is the specified by ”noimg”. We observe the relative changes in entity
accuracy.
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110 Deviations from the mean in unimodal results

E Deviations from the mean in unimodal results

CONLL Prompt Zero-shot 1-shot 2-shot 3-shot 4-shot 5-shot 6-shot 7-shot 8-shot

opt-2.7b

1 0.00 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.04
2 0.00 0.01 0.02 0.02 0.02 0.03 0.02 0.03 0.04
3 0.00 0.01 0.02 0.03 0.02 0.03 0.02 0.03 0.03
4 0.00 0.03 0.03 0.02 0.03 0.04 0.03 0.04 0.04
5 0.00 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.04

blip2-flan-t5-xxl

1 0.00 0.03 0.03 0.03 0.01 0.00 0.02 0.02 0.01
2 0.00 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.03
3 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.02
4 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.01
5 0.00 0.00 0.01 0.01 0.02 0.02 0.01 0.00 0.00

blip2-flan-t5-xl

1 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.02
2 0.00 0.00 0.02 0.01 0.02 0.01 0.01 0.01 0.01
3 0.00 0.00 0.01 0.02 0.02 0.02 0.03 0.02 0.03
4 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.03
5 0.00 0.04 0.00 0.01 0.02 0.02 0.01 0.01 0.01

mplug-owl-llama-7b-ft

1 0.00 0.04 0.03 0.03 0.02 0.03 0.03 0.03 0.03
2 0.00 0.05 0.04 0.03 0.03 0.02 0.02 0.02 0.03
3 0.00 0.05 0.04 0.03 0.03 0.02 0.02 0.02 0.03
4 0.00 0.03 0.03 0.03 0.03 0.02 0.04 0.03 0.03
5 0.00 0.03 0.04 0.03 0.03 0.04 0.05 0.04 0.04

flan-t5-xl

1 0.00 0.01 0.02 0.00 0.02 0.02 0.02 0.02 0.02
2 0.00 0.01 0.01 0.00 0.02 0.01 0.01 0.01 0.02
3 0.00 0.01 0.01 0.00 0.02 0.02 0.02 0.02 0.03
4 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.02 0.03
5 0.00 0.05 0.01 0.01 0.02 0.02 0.01 0.01 0.01

llama-7b-hf

1 0.00 0.05 0.03 0.04 0.03 0.02 0.03 0.04 0.04
2 0.00 0.04 0.05 0.05 0.04 0.04 0.03 0.04 0.04
3 0.00 0.05 0.05 0.03 0.03 0.03 0.03 0.04 0.04
4 0.00 0.03 0.04 0.04 0.03 0.03 0.03 0.04 0.04
5 0.00 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04

opt-6.7b

1 0.00 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.02
2 0.00 0.03 0.02 0.03 0.02 0.01 0.02 0.03 0.03
3 0.00 0.01 0.01 0.03 0.02 0.02 0.02 0.03 0.02
4 0.00 0.03 0.01 0.02 0.01 0.01 0.02 0.04 0.02
5 0.00 0.04 0.02 0.02 0.01 0.00 0.03 0.03 0.02

OpenFlamingo

1 0.00 0.03 0.01 0.03 0.03 0.02 0.03 0.02 0.02
2 0.00 0.04 0.03 0.04 0.03 0.01 0.03 0.04 0.04
3 0.00 0.02 0.01 0.05 0.02 0.02 0.03 0.05 0.03
4 0.00 0.04 0.02 0.02 0.02 0.02 0.03 0.05 0.03
5 0.00 0.06 0.03 0.03 0.02 0.01 0.04 0.05 0.03

flan-t5-xxl

1 0.00 0.02 0.03 0.02 0.01 0.01 0.02 0.03 0.00
2 0.00 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.03
3 0.00 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01
4 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
5 0.00 0.01 0.01 0.02 0.02 0.02 0.01 0.00 0.01

blip2-opt-2.7b

1 0.00 0.03 0.04 0.05 0.03 0.06 0.04 0.04 0.05
2 0.00 0.02 0.03 0.03 0.07 0.08 0.06 0.05 0.06
3 0.00 0.01 0.03 0.03 0.06 0.07 0.04 0.04 0.06
4 0.00 0.02 0.02 0.03 0.06 0.08 0.05 0.06 0.06
5 0.00 0.02 0.05 0.03 0.07 0.07 0.05 0.05 0.05

blip2-opt-6.7b

1 0.00 0.01 0.02 0.01 0.03 0.04 0.02 0.01 0.01
2 0.00 0.02 0.01 0.01 0.02 0.03 0.04 0.03 0.03
3 0.00 0.01 0.01 0.00 0.02 0.03 0.04 0.04 0.02
4 0.00 0.03 0.01 0.01 0.02 0.04 0.01 0.02 0.01
5 0.00 0.02 0.01 0.00 0.03 0.04 0.02 0.03 0.02

fromage

1 0.00 0.02 0.03 0.03 0.04 0.03 0.01 0.02 0.02
2 0.00 0.03 0.02 0.02 0.02 0.02 0.01 0.03 0.01
3 0.00 0.02 0.02 0.02 0.02 0.01 0.01 0.04 0.02
4 0.00 0.02 0.02 0.03 0.04 0.03 0.03 0.03 0.02
5 0.00 0.02 0.02 0.03 0.04 0.04 0.01 0.02 0.02

Table E12: Table of standard deviations from the mean for the CONLL dataset
experiment.
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MiT Restaurant Prompt Zero-shot 1-shot 2-shot 3-shot 4-shot 5-shot 6-shot 7-shot 8-shot

opt-2.7b

1 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01
2 0.00 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02
3 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
4 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02
5 0.00 0.00 0.01 0.02 0.01 0.01 0.01 0.02 0.01

blip2-flan-t5-xxl

1 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.01 0.02
2 0.00 0.03 0.02 0.03 0.04 0.01 0.02 0.02 0.02
3 0.00 0.02 0.01 0.03 0.02 0.02 0.02 0.02 0.01
4 0.00 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01
5 0.00 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01

blip2-flan-t5-xl

1 0.00 0.01 0.00 0.02 0.02 0.01 0.02 0.01 0.01
2 0.00 0.01 0.02 0.03 0.04 0.02 0.02 0.03 0.03
3 0.00 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02
4 0.00 0.00 0.00 0.01 0.01 0.02 0.01 0.01 0.01
5 0.00 0.01 0.00 0.01 0.02 0.01 0.01 0.01 0.01

mplug-owl-llama-7b-ft

1 0.00 0.01 0.02 0.02 0.01 0.02 0.01 0.01 0.01
2 0.00 0.00 0.03 0.04 0.03 0.03 0.02 0.02 0.02
3 0.01 0.01 0.02 0.03 0.02 0.01 0.01 0.01 0.00
4 0.00 0.01 0.02 0.02 0.02 0.02 0.00 0.00 0.00
5 0.00 0.01 0.02 0.04 0.03 0.02 0.02 0.01 0.01

flan-t5-xl

1 0.00 0.01 0.02 0.04 0.03 0.02 0.03 0.02 0.02
2 0.00 0.01 0.02 0.04 0.03 0.02 0.02 0.04 0.03
3 0.00 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02
4 0.00 0.02 0.01 0.02 0.02 0.02 0.01 0.01 0.01
5 0.00 0.00 0.01 0.02 0.02 0.01 0.02 0.01 0.01

llama-7b-hf

1 0.00 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01
2 0.00 0.01 0.04 0.03 0.03 0.03 0.02 0.01 0.01
3 0.00 0.01 0.03 0.03 0.02 0.01 0.01 0.01 0.00
4 0.00 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.00
5 0.00 0.01 0.03 0.03 0.03 0.02 0.01 0.01 0.01

opt-6.7b

1 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.01
2 0.00 0.01 0.00 0.01 0.01 0.02 0.01 0.02 0.02
3 0.00 0.02 0.01 0.00 0.01 0.01 0.01 0.01 0.02
4 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01
5 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.01 0.01

OpenFlamingo

1 0.00 0.02 0.03 0.03 0.02 0.02 0.01 0.01 0.01
2 0.00 0.03 0.03 0.03 0.02 0.02 0.01 0.00 0.00
3 0.00 0.02 0.02 0.02 0.02 0.01 0.01 0.00 0.01
4 0.00 0.03 0.03 0.03 0.02 0.02 0.01 0.01 0.01
5 0.00 0.02 0.04 0.05 0.03 0.03 0.01 0.01 0.01

flan-t5-xxl

1 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
2 0.00 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.02
3 0.00 0.01 0.01 0.03 0.02 0.02 0.02 0.02 0.01
4 0.00 0.01 0.01 0.02 0.01 0.02 0.02 0.01 0.01
5 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

blip2-opt-2.7b

1 0.00 0.01 0.01 0.03 0.01 0.00 0.01 0.02 0.01
2 0.00 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02
3 0.00 0.01 0.01 0.03 0.02 0.01 0.02 0.02 0.01
4 0.00 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01
5 0.00 0.01 0.02 0.03 0.02 0.02 0.01 0.01 0.02

blip2-opt-6.7b

1 0.00 0.01 0.02 0.03 0.01 0.02 0.01 0.00 0.01
2 0.00 0.01 0.02 0.02 0.01 0.02 0.00 0.01 0.01
3 0.00 0.02 0.02 0.02 0.01 0.02 0.00 0.01 0.00
4 0.00 0.02 0.03 0.03 0.02 0.01 0.01 0.01 0.01
5 0.00 0.02 0.03 0.03 0.02 0.01 0.00 0.02 0.01

fromage

1 0.00 0.02 0.02 0.03 0.01 0.01 0.00 0.01 0.00
2 0.00 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
3 0.00 0.01 0.02 0.01 0.00 0.00 0.01 0.01 0.02
4 0.00 0.03 0.03 0.03 0.02 0.01 0.01 0.01 0.02
5 0.00 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01

Table E13: Table of standard deviations from the mean for MiT Restaurant
dataset experiment.



112 Deviations from the mean in unimodal results

MiT Movie Prompt Zero-shot 1-shot 2-shot 3-shot 4-shot 5-shot 6-shot 7-shot 8-shot

opt-2.7b

1 0.00 0.05 0.05 0.04 0.03 0.04 0.04 0.04 0.04
2 0.00 0.06 0.05 0.04 0.04 0.04 0.04 0.05 0.05
3 0.00 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.05
4 0.00 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04
5 0.00 0.05 0.04 0.05 0.04 0.04 0.05 0.04 0.05

blip2-flan-t5-xxl

1 0.00 0.02 0.00 0.02 0.01 0.01 0.00 0.00 0.00
2 0.00 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01
3 0.00 0.02 0.02 0.03 0.01 0.01 0.00 0.01 0.01
4 0.00 0.01 0.02 0.02 0.01 0.00 0.00 0.02 0.01
5 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01

blip2-flan-t5-xl

1 0.00 0.03 0.03 0.01 0.01 0.00 0.02 0.01 0.01
2 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.00
3 0.00 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01
4 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00
5 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01

mplug-owl-llama-7b-ft

1 0.00 0.07 0.03 0.02 0.01 0.02 0.05 0.04 0.05
2 0.00 0.06 0.05 0.01 0.02 0.02 0.04 0.03 0.03
3 0.00 0.08 0.04 0.01 0.02 0.02 0.05 0.04 0.04
4 0.00 0.08 0.03 0.01 0.02 0.03 0.05 0.05 0.07
5 0.00 0.09 0.05 0.01 0.02 0.03 0.05 0.05 0.06

flan-t5-xl

1 0.00 0.03 0.03 0.02 0.01 0.01 0.02 0.01 0.01
2 0.00 0.01 0.01 0.01 0.01 0.02 0.00 0.01 0.01
3 0.00 0.04 0.01 0.00 0.02 0.01 0.01 0.01 0.01
4 0.00 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00
5 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

llama-7b-hf

1 0.00 0.05 0.04 0.03 0.03 0.04 0.04 0.04 0.05
2 0.00 0.06 0.06 0.04 0.02 0.02 0.03 0.03 0.02
3 0.00 0.06 0.04 0.03 0.02 0.02 0.03 0.03 0.03
4 0.00 0.06 0.03 0.02 0.01 0.02 0.03 0.03 0.04
5 0.00 0.08 0.04 0.02 0.02 0.03 0.04 0.04 0.04

opt-6.7b

1 0.00 0.05 0.04 0.04 0.04 0.03 0.02 0.03 0.03
2 0.00 0.07 0.05 0.04 0.05 0.05 0.02 0.04 0.04
3 0.00 0.06 0.05 0.04 0.05 0.05 0.03 0.03 0.04
4 0.00 0.05 0.04 0.04 0.03 0.03 0.02 0.04 0.03
5 0.00 0.08 0.05 0.04 0.05 0.05 0.03 0.05 0.04

OpenFlamingo

1 0.00 0.05 0.05 0.05 0.03 0.06 0.06 0.06 0.07
2 0.00 0.05 0.05 0.05 0.03 0.02 0.02 0.03 0.03
3 0.00 0.03 0.06 0.05 0.04 0.02 0.05 0.04 0.05
4 0.00 0.06 0.07 0.05 0.05 0.02 0.05 0.06 0.06
5 0.00 0.07 0.07 0.06 0.04 0.02 0.04 0.06 0.05

flan-t5-xxl

1 0.00 0.02 0.01 0.02 0.01 0.01 0.00 0.00 0.00
2 0.00 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
3 0.00 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.01
4 0.00 0.00 0.01 0.02 0.01 0.01 0.00 0.01 0.01
5 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01

blip2-opt-2.7b

1 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.02 0.03
2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.02
3 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.02 0.01
4 0.00 0.01 0.01 0.01 0.00 0.00 0.02 0.02 0.04
5 0.00 0.02 0.01 0.00 0.01 0.01 0.00 0.05 0.05

blip2-opt-6.7b

1 0.00 0.05 0.02 0.03 0.03 0.03 0.01 0.02 0.02
2 0.00 0.08 0.03 0.05 0.01 0.03 0.01 0.02 0.03
3 0.00 0.06 0.03 0.02 0.02 0.04 0.01 0.02 0.03
4 0.00 0.05 0.03 0.03 0.03 0.05 0.03 0.04 0.03
5 0.00 0.05 0.05 0.03 0.03 0.04 0.03 0.02 0.05

fromage

1 0.00 0.05 0.03 0.03 0.03 0.03 0.02 0.03 0.03
2 0.00 0.06 0.04 0.01 0.03 0.03 0.03 0.03 0.02
3 0.00 0.05 0.04 0.02 0.02 0.03 0.02 0.02 0.02
4 0.00 0.07 0.05 0.03 0.04 0.04 0.02 0.04 0.03
5 0.00 0.07 0.04 0.03 0.03 0.03 0.02 0.03 0.03

Table E14: Table of standard deviations from the mean for MiT Movie dataset
experiment.
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