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Abstract

This thesis explores the applicability and effectiveness of direct policy trans-
fer in reinforcement learning (RL), with a focus on environmental configura-
tions within the open-source game openSURVIVORS. We investigate how policy
transfer can decrease the time to threshold and enhance jumpstart and asymp-
totic performance across various environmental configurations. Our experi-
mental results highlight the strong influence of the game’s unique environmental
dynamics on policy effectiveness and transferability, with different RL agents ex-
hibiting varied performance based on their respective training environments.
While the asymptotic performance of agents trained via policy transfer re-
mains inconclusive due to non-convergence within the study’s scope, our findings
demonstrate that policy transfer outperforms training from scratch, indicating
its potential advantages in learning new environments. This research advances
the understanding of policy transfer in RL, offering insights into training agents
more effectively across diverse environments.
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1 Introduction

Reinforcement learning has achieved great success in playing games at a high level such
as Go, Starcraft 2 and Dota 2.[1][2][3] However, the computational costs and demands
associated with the successful reinforcement learning results pose a major barrier to
widespread adoption of reinforcement learning techniques in practical application.
Therefore, incorporating reinforcement learning techniques into practical applications
requires decreases in costs which can be primarily attributed to the training time of
agents.

To approach the task of decreasing the training time of agents this thesis introduces
the concept of environmental configurations. An environmental configuration can be
understood as a partition of the broader environment. In essence, each environmental
configuration presents a unique yet similar problem for the reinforcement learning
agent to solve. For instance, in the context of autonomous driving, various car models
can be viewed as different environmental configurations. Each model presents unique
driving characteristics due to differences in their engineering, design, and operating
conditions. Despite these differences, the overall task of driving remains the same.

If the knowledge acquired in one environmental configuration could be effectively
transferred to another, then the learning time could be decreased in the training
of agents in subsequent environmental configurations. This is especially promising
considering that these configurations are usually known to be inherently similar, in-
dicating the greater potential for successful knowledge transfer.

Transfer learning is an established method used in machine learning and has seen
success especially in computer vision.[4]. Transfer learning is also a growing field
within reinforcement learning as seen in a survey from 2009[5] and more recently in
2022.[6] Many different techniques have been developed to transfer knowledge both
between domains and within domains. This thesis focuses on direct policy transfer
between environmental configurations.

openSURVIVORS, which is an environment inspired by Survivor games, presents an
environment that can be partitioned cleanly into multiple environmental configura-
tions. Additionally openSURVIVROS strikes a balance between trivially solvable toy
problems and complex real-world problems. The proportion of the dynamics that are
different between the different environmental configurations is also neither negligible
nor unreasonable. These factors make openSURVIVORS an environment well suited
for transfer learning between environmental configurations.

1.1 Research Goal

The research goal of this thesis is to explore the impact of pre-training and transfer
learning in reinforcement learning across environmental configurations in Survivors
games. Transfer learning across environmental configurations has the potential to to
decrease training times in games and real-world scenarios such autonomous driving.

Before presenting the research questions a few important terms need to be defined.
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Direct policy transfer refers to using the learned policies from one environmental con-
figuration as a starting point for training in other environmental configurations. Time
to threshold denotes the amount of training time it takes for a reinforcement learning
agent to attain a predefined level of performance. Jumpstart performance corresponds
to the initial performance improvement observed as a result of transferred knowledge
which in this case is the direct policy transfer, while asymptotic performance repres-
ents the final performance level of the reinforcement learning agent once it has fully
adapted to the new environment. These three terms are common metrics used in
transfer learning literature as seen in [5] and [6]

1.2 Research Questions

In order to investigate the impact of pretraining and transfer learning in survivor type
games, we consider two research questions:

RQ1 To what extent does direct policy transfer decrease the time to threshold over
environmental configurations?

RQ2 To what extent does direct policy transfer increase jumpstart and asymptotic
performance across environmental configurations?
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2 Background

2.1 Reinforcement Learning

Reinforcement learning is a method in machine learning that aims to solve the problem
of what actions an agent should perform in an environment to maximise its reward.
In this type of learning, an agent performs actions in its environment and receives
positive or negative rewards and an updated state. The reinforcement learning agents
then learn to modify their behavior through trial and error to maximise their rewards.

Figure 1: The Reinforcement Learning Loop

2.1.1 Markov Decision Processes

The environments that an agent acts in are often formalized as a Markov Decision
Processes. A Markov Decision process is a 6 − tuple(S,A, p, r, s0, sf ). S is the set
of possible states. A is the set of all actions the agent can perform. p(s′|s, a) is the
transition function which gives the probability of transitioning into s’ from s given
action a. r(s, a, s′) is the reward function which defines the reward that is received
for taking action a and transitioning into state s’. s0 and sf are the possible initial
states and terminal states. An essential property of Markov decision processes is the
Markov property. The Markov property means that future states are independent of
past states given the current state. Effectively this means that memory mechanisms
are not required in the agents and they can act on purely on information from the
current state and still perform optimally.

2.1.2 Policies

The way an agent acts in its environment is through its policy π. The policy is a
function that maps states to actions. The goal of a reinforcement learning algorithm
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is to generate this policy so that the action mapped to from state s is the action that
maximises the agents reward.

2.1.3 Value Functions

The value function is a function that maps a state to the reward received from that
state and all future visited states. The future visited states are defined by a policy.
Given an optimal policy then the respective value function represents the maximum
reward that can be received from each state.

2.1.4 Exploration versus Exploitation

The problem of exploration versus exploitation is often described in the context of
the multi armed bandit problem. Consider multiple levers that can be pulled. Each
lever has a reward associated with it that the agent receives when the lever is pulled.
The exploration versus exploitation problem is then when should the agent pull the
lever that gives the most reward based on its current knowledge versus when it should
try to pull a new lever to gain more information. This problem becomes drastically
more difficult to solve effectively when the number of possible levers, which can be
generalized to the number of unique state action pairs, grows very large.

2.1.5 Q-Learning

Q-Learning is a model-free, off-policy reinforcement learning algorithm. Model free,
means that the the algorithm is not given a model of how the environment transitions
from state to state given an action. The model of the environment is instead implicit
in the agent’s learned policy. Off-policy means that the policy that explores that
environment and generates learning examples is not the policy that is being optimized.
The algorithm learns by iteratively updating the Q-function.

The Q-function is very closely related to the value function where the Q-value rep-
resents the expected cumulative reward an agent will receive by taking a particular
action in a specific state. The Q-value is updated using a variation of the Bellman
equation.

Q(st, at) = Q(st, at) + α[rt+1 + γmaxa(Q(St+1, a)−Q(st, at)]

This states that the Q-value of the state and action pair (s, a) is equal to the current
Q-value plus an error term. This error term represents the difference between the
maximum Q-value over actions that can be taken in the next state minus the current
Q-value.

In problems with small and discrete state spaces the Q-function be represented in a
table which is called the Q-table. This is known as tabular reinforcement learning.
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Two policies can be derived from the Q-function one that is responsible for generating
values in the table and one that defines the current most optimal policy. The first
is called the ϵ-Greedy policy and the other is the pure Greedy policy. The ϵ-Greedy
policy picks the action that has the highest Q-value for a given state with probability
1-ϵ and a random action with probability ϵ. This allows the policy to achieve a balance
between exploration and exploitation based on the value of ϵ. When after training
the Q-table for multiple iterations until optimally the Greedy policy, which purely
takes the action that has the highest Q-value, is now equal to the optimal policy.

2.1.6 Function Approximators

For most environments it is infeasible to have direct representations of the value
functions and Q-functions such as in a Q-table. Therefore they are often approximated
using function approximators. Artificial neural networks, initially inspired by the
biological brain, act as universal function approximators[7] and are generally used for
this purpose in reinforcement learning.

2.2 Proximal Policy Optimization

Proximal Policy Optimization(PPO) is a state-of-the-art(SOTA) reinforcement learn-
ing algorithm that belongs to the policy gradient family[8]. Policy gradient algorithms
are trained by optimizing an objective function through gradient ascent. In contrast
to Q-learning, PPO is an on-policy reinforcement learning algorithm which means
that the policy that is being updated is the same policy that is acting in and ex-
ploring the environment. In the case of PPO, the objective function is the clipped
surrogate objective function, which is designed to minimize the divergence between
the next policy and the current policy.

Loss(θ) = min(rt(θ)Ât, clip(rt(θ)), 1− ϵ, 1 + ϵ)Ât

rt(θ) =
πθ(at|st)

πθold(at|st)

Where rt(θ) is the ratio of the probability of action a being taken at state s at time t
for the updated policy versus the current policy. The advantage can be any advantage
estimation, but in the case of the StableBaselines3 implementation the advantage is
calculated using the Generalized Advantage Estimator [9]. The advantage is based on
the value function and Q-function to estimate the relative advantage of each action.
Formally the advantage is defined as A(s, a) = Q(s, a)− V (s).

PPO is a SOTA algorithm within reinforcement learning and has become the default
algorithm used by OpenAI[10] and was therefore chosen as the learning algorithm
for this thesis. The robustness and simplicity of PPO made it a desirable choice
compared to the alternatives such as Deep Q-Networks, Advantage Actor Critic, and
Deep Deterministic Policy Gradient.
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Figure 2: A screenshot of the early game of vampire survivors with a wave of bats
approaching the player

2.3 Vampire Survivors

Vampire Survivors is an example of a Survivor type game. The game puts both
the player’s strategy and reflexes to the test. With the objective of surviving for 30
minutes, the player is given the opportunity to choose from a variety of weapons,
items, and upgrades to help them along the way. These items are selected and used
automatically based on their individual cooldowns. Experience points can be collected
from defeating enemies and accumulating enough experience points will result in a
level up. When the player levels up they can choose from a pool of three options
sampled from total remaining weapons, items, and upgrades. Many of the items
have synergistic effects, allowing for the player to create unique strategies for tackling
the oncoming waves of enemies. Only by combining the player’s movement with the
selection of synergistic items can the player survive the 30 minute challenge.

The waves of enemies in the game become increasingly more difficult as the game
progresses, with the properties of the wave changing every minute. These properties
include the type of enemies, the number of each type, additional wave events, and
bosses. Because the sequence of these waves is predetermined, players can exploit
the sequence to maximize their chances of surviving until the 30-minutes are up.
Particularly challenging waves can also serve as bottlenecks for a player’s progression,
as they must learn to successfully overcome them. A classic example is the wave that
appears at the 11-minute mark, in which the player is surrounded by enemies from
all sides. The only way to survive is to have a powerful enough loadout to create a
path through the horde. This can serve as both a bottleneck and an opportunity,
as a player with a powerful enough loadout can use the wave as a chance to become
even more powerful by killing a large number of enemies which will result in more
potential experience that can be used to level up.
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(a) Item choices on level up
(b) The current loadout with their level show-
ing as filled dots

The game can be decomposed into two main challenges. The first challenge involves
moving the character around the map while avoiding enemies and positioning oneself
to get the most out of current loadout of weapons and upgrades. The second challenge
is selecting the items and upgrades that will allow the player to most easily survive
the oncoming onslaught. The corresponding action space is selecting either the first,
second or third option that is presented to the player when leveling up.

2.3.1 Game Trajectory

The game starts with the player having a default weapon based on their chosen
character. In this trajectory the starting weapon will be the whip. A screenshot of
the game can bee seen in 2 with a wave of bats approaching the player. The player
can move their player character through the game world with the arrow keys. The
whip weapon will then be automatically be used and damage enemies that are caught
within its area of effect. When enemies have received enough damage they will die and
have a chance to drop experience crystals. Throughout the report these experience
crystals will be referred to as experience. Experience will automatically be picked up
by the player when they are within a small distance from each other. When enough
experience has been gathered the player levels up and is given a choice. An example
of the choices given is shown if 3a. Here the player is provided with the choice of
three weapons, Santa Water, Pentagram, and Ebony Wings. The selection could also
include items which have passive effects such as increasing damage, or decreasing
weapon cooldowns. The player will be able to choose fill their load out with six
unique weapons and six unique items. Once an item has been added to their loadout
the pool of choices may include upgrading a weapon or item from their loadout to
increase their power. The player will take damage from the enemies if they get too
close. If the player takes too much damage they will die and lose the game. If the
player manages to survive for 30 minutes they win the game.

2.3.2 Environmental Configurations

The openSURVIVORS environment which is an environment inspired by Vampire
Survivors removes the choosing of weapons and items as a part of the game loop.
The player is instead granted one weapon which is leveled up automatically when
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enough experience is gained. Each loadout now consists of only a single weapon and
can be seen of as individual environmental configurations.
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3 Related Work

3.1 Transfer Learning

Transfer Learning explores the idea that the encoded knowledge required to solve
one task can be utilized to solve other tasks. Transfer learning has achieved success
in other machine learning fields such as computer vision[4] and has also seen a lot
of focus within reinforcement learning. There are two important questions that are
important to consider in the context of transfer learning. What are the potential
differences in tasks and what kind of knowledge can be transferred across these tasks.
This requires a formalization over what a task is in reinforcement learning and how
they can differ from one another. All of the properties that make up an MDP set the
stage for the potential variations in environments and the tasks that are to be learned
within those environments.

3.1.1 Differences in Environments

Cartpole, which was used in one of the earliest transfer learning works[11] in rein-
forcement learning, will be used as an example environment for potential differences
between environments. The Cartpole task is a simple classic control problem that
involves balancing a pole vertically on a cart through applying forces to it. The goal
is to keep the pole balanced for as long as possible.

An environment can be split up into three main categories the environment’s trans-
ition dynamics, states, and actions. Environments can differ along these categories to
arbitrary degrees. For example chess and a robotics control are different in transition
dynamics, states, and actions available. However, large differences such as these are
outside the scope of this thesis. While the degree of similarity or difference between
two environments is not formally defined, some informal estimations of similarity act
as a good starting point.

3.1.2 Transition Dynamics

Within Cartpole the transition dynamics are defined by a physics model. This physics
model is dependent on different parameters such as the mass of the cart and the pole,
the length of the pole, friction coefficients for the cart and the pole, and the frequency
of physics updates. These variables can be modified, removed, or new variables can
be added all together to change the transition dynamics of the environment. In [11]
the mass and length of the pole where changed as the difference between the source
and the target task.

3.1.3 State Spaces

The environment’s state is the information that is presented to the agent acting in
the environment. In Cartpole the state is usually represented as four variables. Cart
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position (x): The horizontal position of the cart on the track. Cart velocity (dx/dt):
The rate of change of the cart’s position. Pole angle (θ): The angle between the
pole and the vertical axis. Pole angular velocity (dθ/dt): The rate of change of the
pole’s angle. Information can be added or removed, or modified to change the state
representation. However it is important to keep in mind that for an agent to be able
to learn to act in an environment it the information present in the state has to be
sufficient for the desired behavior.

3.1.4 Action Space

The actions in an environment define what an agent can do within the environment. In
Cartpole the agent can take one of two discrete actions to control the cart every time
step. Move left: Apply a force to the left to push the cart. Move right: Apply a force
to the right to push the cart. Similarly to the states, actions can be added, removed
or modified. In the case of modifying the actions, since the transition dynamics are
dependent on action, changes in the actions can also be thought of as modifying the
transition dynamics of the environment.

3.1.5 Practical Consideratios

Common reinforcement learning algorithms such as DQN and PPO are fixed in their
inputs and outputs which relate to the state space and action space respectively.
In the standard Cartpole case this is 4 variables describing the state and 2 possible
actions. This means that if the size of the state space or action space changes from the
source task to the target task then directly reusing the policy is not possible. If it is
still desirable to reuse the policy directly an additional transfer function is necessary
to map source states to target states and source actions to target actions.

3.1.6 Transfer Learning Metrics

Some metrics have been established within transfer learning[5][6] 1. Jumpstart per-
formance: The initial performance of an agent after transfer before any additional
training takes place compared a default initialization of the agent. 2. Asymptotic
Performance: The the final performance the transfer learning agent compared to
learning without transfer. 3. Total Reward: The total reward accumulated by the
transfer learner compared to without transfer. 4. Transfer Ratio: The ratio of the
total reward accumulated by the transfer learner and the total reward accumulated
by the non-transfer learner. 5. Time to Threshold: The learning time needed by
the agent to achieve a pre-specified performance level may be reduced via knowledge
transfer.

3.1.7 Negative Transfer

In some cases transfer learning can lead to worse performance on downstream tasks.[12]
This survey does not cover reinforcement learning, but raises the point of transfer
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learning can be detrimental when the source task and the target task are too dis-
similar. It highlights 4 major contributors to negative transfer. Differences in the
domains, Efficacy of the transfer methodology, Quality of the data that was used in
the source domain, and Quality of the data used in the Target domain. Additional
research is also being done in estimating the similarity between domains such that a
quantitative analysis on domain divergence and negative transfer can be established.
Other targets of research have been to improve the efficacy of the transfer methodo-
logies.

3.1.8 Behavior Cloning

Behavior Cloning is a successful method related to transfer learning. The Atari Grand
Challenge Dataset[13] presents a large amount of human demonstrations of Atari game
play which is used to train policies directly to mimic their behavior. The AlphaGO
policy, was initially trained on human demonstrations of GO games, before being
trained further with Monte Carlo Tree Search.[14]

A combination of pretraining on videos, reward shaping, and finetuning has shown
promising results in Minecraft[15].The agent was tasked to to try to recreate the
behavior from the videos as accurately as possible. By the pretrained policy as a base
for reinforcement learning with an evolving reward function performance that was
previously unobtainable was achieved.

These works in behavior cloning are similar to the work in this thesis as that they
leverage pre-trained policies as a starting point for further training. The pre-trained
policies are, however, trained on human performance, which is generally very expens-
ive to produce. However the success of these both AlphaGO and the Minecraft agents
show promise for policy transfer over environmental configurations.

3.1.9 Knowledge Distillation

Knowledge Distillation uses one or more teacher policies to inform a student policy.
The knowledge can be distilled to the student policy through supervised learning by
minimizing the divergence between he output of the teacher policy and the student
policy.[16] In the case where there are multiple teacher policies the contribution of
each teacher agent can be weighted

3.2 Curriculum Learning

Curriculum learning, a concept within machine learning, aims to enhance learning
by presenting training examples or learning tasks in a specific order that facilitates
the learning process. Notably, arranging training examples in ascending order of
difficulty has been shown to expedite convergence and improve overall performance.
Curriculum learning can be thought of as a generalization of transfer learning.

In reinforcement learning, the sequencing of tasks or experiences into a curriculum
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has primarily been achieved through manual generation for each problem.[17] When
transitioning from one task to another within a curriculum, RL agents employ transfer
learning techniques to transfer knowledge. Since the tasks within a curriculum can
differ in terms of state and action spaces, transition functions, and reward functions,
effective transfer and integration of relevant information across tasks become crucial.
The foundation of curriculum learning heavily relies on prior research in transfer
learning, as knowledge transfer from one stage to another within the curriculum is
essential.
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4 Method

4.1 Environment

The environment used in this thesis to explore transfer learning is the openSUR-
VIVORS environment. openSURVIVORS is inspired by the game Vampire Survivors
which has spawned a genre of Survivor games. This environment was initially created
in the prestudy to this thesis and has been further refined to accommodate the re-
search goals of this thesis. Survivor games are uniquely suited to explore the branch
of transfer learning that this thesis is concerned with. Each weapon that the player
character utilizes can be thought of as separate environmental configurations, where a
subset of the transition dynamics are changed, but the state spaces and action spaces
stay the same.

4.1.1 Environment Description

openSURIVORS is a top down game where the player controls a character has one
of four weapons Garlic, Knife, Whip, and Bible. Figure 4 shows the player character
with the Garlic weapon. The The objective of the environment is to survive for five
minutes while waves of enemies approach the player. The only actions available to
the player is its movement which allows it to move both orthogonally and diagonally
for a total of 8 directions. The player has to move to dodge the incoming enemies and
utilize their weapon which attacks automatically to facilitate their survival. Every
30 seconds the difficulty increases with both a more difficult and a greater number of
enemies spawning to assault the player.

4.1.2 Implementation details

openSURVIVORS is meant to be a learning environment for reinforcement learning
and as a result does not contain all the content and intricacies of Vampire Survivors.
Vampire Survivors contains over 32 weapons[18] and 198 enemies[19]. openSURVIV-
ORS is limited to four weapons and two enemies.

The chosen weapons were chosen to exhibit the particular interesting dynamics present
in Survivors games. Each weapon is reliant on avoiding enemies, but requires a distinct
movement styles to be utilized effectively. The difficulty of the environment progresses
with time and it can be useful to classify this progression of difficulty into two stages.
A power gathering phase and a survival phase. In the power gathering phase the
enemies that spawn are simpler to defeat allowing the player to collect experience
crystals to level up and become more powerful. The survival phase begins when the
difficulty has progressed and more powerful enemies spawn and require the player to
focus more on avoiding enemies than collecting experience.
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Figure 4: A screenshot of openSURVIVORS with a wave of bats and goblins ap-
proaching the player with the Garlic weapon

4.1.3 Weapons in openSURVORS

The 4 weapons that were implemented can also fit into two categories where the
required movement is qualitatively similar. Both Garlic and Bible damage enemies
in a ring surrounding them requiring the player to stay relatively close to enemies to
damage them, but where the direction between the player and the enemies is arbitrary.
The knife and whip weapons are both dependent on the direction that the player is
facing where the direction of the attack is equal to the direction of the the players
movement1. This means that the position of the player relative to the enemies is more
important for the Knife and Whip weapons and the Garlic and Bible weapons.

4.1.4 Enemies in openSURVIVORS

The two enemies implemented in openSURVIVORSS are designed to fill two roles.
The first role is that of a weak enemy that can easily be killed to drop experience and
let the player become more powerful. The second role is that of a strong enemy that
is much more difficult to kill and is best avoided until the player has become more
powerful.

1Whip only attacks horizontally while knife can attack in all 8 directions the player can face
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Weapons
Name Description
Knife The knife weapon fires multiple small square projectiles in

the direction the player last moved, Each projectile deals
6.5 damage. New projectiles are fired every 3 seconds.

Whip The whip weapon creates a rectangular area of damage
either to the left or the right of the player depending on
if the player last moved to the left or the right dealing 10
damage. The attack occurs every 1.35 seconds.

Garlic The Garlic weapon creates a permanent circular area of
damage around the player, dealing 5 damage every 1.3
seconds.

Bible The Bible weapon spawns multiple projectiles that orbit
the player for 2 seconds dealing 5 damage. The projectiles
are re spawned every 4 seconds.

Table 1: openSURVIVORS Weapon Descriptions

Enemies
Name HP damage speed
Bat 10 3 15
Goblin 40 6 18

Table 2: Stats of the enemies in openSURVIVORS
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The environment’s action space is of the format (3, 3). This means that the game
expects two separate actions to be given each frame. The first action can be either a
0, 1, or 2 which represents noop, left, or right respectively. The first action controls
the movement of the character in the horizontal direction. The second action is the
same but with noop, up, or down instead controlling the character in the vertical
direction.

The environments observation space is originally a 600x600x3 rgb image which is
the rendered screen. The environment is wrapped in a custom wrapper that resizes
the observation to a 84x84 grey scale image with the information about the current
level of the weapon concatenated. The size of 84x84 for the observation space is a
standard used in many other environments that use image observation spaces such as
the Arcade Learning Environment and Procgen. It was important the agent is also
presented with information on what level the agent currently is so that the agents can
know their weapons current capabilities. The Level Observation which is represents
the level of the agent’s weapon in an a array of length 8. A custom MultiInputPolicy
is also used with the following network parameters shown in 4 following the structure
shown in 5.

4.1.5 Seeding

The environment was seeded with seed value equal to 1 for all experiments in this
thesis. This means that the location of enemy spawns is consistent from game to game.
This does affect the generality of the produced agents across multiple different seeds.
However, the training time decreases dramatically and stability of training is also
improved. The environment becomes simpler to solve by seeding the environments
and still allows for the central focus of this thesis to be studied which is transfer
learning across environmental configurations and not across seeds.
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4.2 PPO

Each agent trained on the openSURVIVORS environment was trained with PPO with
the hyper parameters shown in Table 3. The hyper parameters were selected after
an initial hyper parameter search. The reward function was also selected during this
hyper parameter search. The rewards function was a composite reward function.
A negative reward was given equal to the amount of health lost by the player to
encourage the agent’s to avoid enemies. And a positive rewards of 1 was given for
each experience point accumulated.

While the environment is seeded the PPO agents still sample their actions from their
policy which is a probability distribution over actions dependent on the current state.
The randomness present in PPO is essential for the algorithms exploration. This
means that there is inherent randomness in the training trajectories that occur while
using PPO.

Figure 5: Network Architecture of the Policy used in the PPO algorithm

4.3 Experiments

Through this project two major experiments were conducted to answer the research
questions presented in this thesis. The first experiment focuses on the the first research
question and sets the stage for the following experiment by creating the pre-trained
agents whose policies will be used in the policy transfer. The second experiment
focuses on the second research question utilizing direct policy transfer.

4.3.1 Experiment 1: Pre-training

To be able to say anything about the jump start performance of agents across environ-
mental configurations, agents that are trained on those environmental configurations
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Hyper Parameters

Learning Rate 0.0003

N Steps 4096

Batch Size 64

N Epochs 10

Gamma 0.99

GAE Lambda 0.95

Clip Range 0.2

Entropy Coefficient 0

Value Function Coefficient 0.5

Max Gradient Norm 0.5

Table 3: Hyperparameters for PPO.

have to be created. An agent is trained on each of the four environmental configura-
tions present in the openSURVIVORS environment.

Each agent was trained for 2 million time steps. The trained agents are not expected
to reach optimal performance, but training for 2 million time steps guaranteed that
the agents learned to perform significantly better than random. The four agents
produced from this experiment will be referred to as Pre-Train-Garlic, Pre-Train-
Knife, Pre-Train-Whip, and Pre-Train-Bible.

After training was completed the performance of the trained agents was evaluated on
each environmental configurations to show the jump start performance achieved. To
account for the variability in performance due to the random nature of PPO policies
each agent was evaluated on each environmental configuration 30 times

4.3.2 Experiment 2: Direct Policy Transfer

The second experiment was designed to gather information about how the agents
learned from a random starting point versus a pre-trained policy. Various random
factors contribute to variation in training reinforcement learning agents including the
initialization of weights in the neural networks and random sampling of actions from
the agent’s policy. To account for this variation multiple agents were trained for each
source and target environmental configuration. To be able to perform the training
runs within the allotted time for this thesis the agents were trained for 200k time
steps.

To establish a baseline to compare the pre-trained policies too, 10 agents for each
environmental configuration were trained from scratch for 200k time steps.

Pre-Train-Garlic will be used as an example. The Pre-Train-Garlic agent is selected
as a source which means that the weights that define the agents policy are loaded as
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Image Observation Extractor

Layer In Features Out Features Kernel Size Stride Slope
Conv2d 1 32 5, 5 1, 1 NA

MaxPool2d NA NA 2 2 NA
LeakyReLU NA NA NA NA 0.01
Conv2d 32 64 3, 3 1, 1 NA

MaxPool2d NA NA 2 2 NA
LeakyReLU NA NA NA NA 0.01
Flatten NA NA NA NA NA

Level Observation Extractor

Linear 8 16 NA NA NA

Fully Connected Network

Concatenate NA 23120 NA NA NA
Linear 23120 128 NA NA NA

LeakyReLU NA NA NA NA 0.01
Linear 128 128 NA NA NA

LeakyReLU NA NA NA NA 0.01

Policy Head

Linear 128 6 NA NA NA

Value Head

Linear 128 1 NA NA NA

Table 4: Network Parameters for the PPO policy
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a starting point for further training.2 For each other environmental configuration, in
this case Knife, Whip, and Bible, 10 agents are trained from that starting point for
200k time steps.

4.3.3 Agent Analysis

The policies that the agent’s learn define the movement of the player character in
the openSURVIVORS environment. Qualitative descriptions of the different agent’s
movement can serve as a useful tool for analysing the learned behavior and how that
relates to the transferal of knowledge from one environmental configuration to another.
However being able to back up the qualitative descriptions with quantitative data
on the movement of the agents within the environment would be greatly beneficial.
Therefore during the evaluation of the agents produced in the previous experiments,
the x and y positions of the agents were recorded as well as the number of kills.

2Since the weights are loaded directly from the pre-trained agents policy there is no variation in
weight initialization across these 30 agents.
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5 Results

5.1 Experiment 1

Figure 6: Pretraining agents trained for 2 Million steps for each weapon

The results from training agents across different environmental configurations are
presented in Figure6 Notably, the Knife, Whip, and Bible agents all began with similar
performance levels, which is confirmed by the pre-training test results in Table. 5.
However, the Garlic agent initially outperformed the others, surviving over twice as
long initially.

After reaching a performance where the agents survive for around 1000 time steps the
performance fluctuates around that level with the exception of garlic agent. The Gar-
lic agent’s performance far surpasses the other agents until performance deteriorates
back to a level comparable to the other weapons.

As demonstrated in Table6 the final performance of each agent showed significant im-
provement compared to their untrained state. The Garlic weapon and bible also show
a much greater degree of variation in performance compared to Knife and Whip. Even
amongst the high variation weapons Garlic has almost a two times larger variation
than Bible.

Weapon Mean Episode Length STD
Garlic 720 20
Knife 280 25
Whip 278 20
Bible 283 31

Table 5: Initial performance of non-trained agents
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Weapon Mean Episode Length STD
Garlic 1390 1115
Knife 1108 165
Whip 732.0 175
Bible 1044 619

Table 6: Mean Episode Length and Standard Deviation of baseline agents

5.2 Experiment 2

Figure 7: Baseline performance after 200k time steps for each weapon averaged over
10 training runs with standard error

Figure 7 shows the average of training 10 agents from scratch for each weapon. There
is a lot of variation in the training of the agents this can be seen in more detail in the
appendix. There seems to be a slight upward trend amongst all the weapons, with
the Whip weapon showing the greatest degree of improvement. This upward trend
indicates that the agents do have the ability to learn to varying degrees within the
first 200k time steps.

Weapon Mean Episode Length STD
Knife 292 112
Whip 311 155
Bible 368 202

Table 7: Jumpstart performance with Garlic as Source Weapon

Table 7 shows the jump start performance of the Pretrain-Garlic agent in the other
environmental configurations. Performance does not generalize well to the other en-
vironmental configuration showing performance comparable to untrained agents, but
with a higher degree of variation. The higher variation is an indication that the
learned behavior of the agents sometimes perform better than random behavior.

Figure 8 shows the results of transfer training from the Pretrain-Garlic agent. The
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Figure 8: Training 200k time steps from Garlic base averaged over 10 runs versus
from scratch

initial starting points for the training are all similar, but the transfer learning agents
begin to learn much quicker than the from scratch counterparts.

Weapon Mean Episode Length STD
Garlic 924 204
Whip 1117 159
Bible 980 241

Table 8: Jumpstart performance with Knife as Source Weapon

Table 8 shows the jump start performance of the Pretrain-Knife agent in the other
environmental configurations. Performance generalizes to the other environmental
configurations maintaining almost identical performance to the original environmental
configuration it was trained on. The standard deviation in jump start performance is
also quite low compared to the mean which indicates consistency in its performance.

Figure 9 shows that the Bible and Whip transfer learning agents start of much better
then the from scratch counterparts. The Bible and Whip agents have a flat curve on
average which indicates a lack of learning. The Garlic agents on the other hand do
show an upward trend in performance after pretraining.

Weapon Mean Episode Length STD
Garlic 860 202
Knife 516 215
Bible 537 367

Table 9: Jumpstart performance with Whip as Source Weapon

Table 9 shows the jump start performance of the Pretrain-Whip agent in the other
environmental configurations. Performance generalizes quite well to other environ-
mental configurations with a slight deterioration compared to the environmental con-
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Figure 9: Training 200k time steps from Knife base averaged over 10 runs versus from
scratch

figuration it was trained on.

Figure 10 shows that all transfer learning agents start of much better then the from
scratch counterparts. Agents trained in each environmental configurations all have a
upward trend with the garlic and knife weapons having the most significant trend.

Weapon Mean Episode Length STD
Garlic 875 446
Knife 893 311
Whip 969 378

Table 10: Jumpstart performance with Bible as Source Weapon

Table 10 shows the jump start performance of the Pretrain-Bible agent in the other
environmental configurations. Performance also generalizes quite well to other en-
vironmental configurations with almost no deterioration in performance compared to
the environmental configuration it was initially trained on.

Figure 11 shows that all transfer learning agents start of much better then the from
scratch counterparts. With the whip starting point deteriorating quickly during train-
ing before beginning to recover. While the performance doesn’t increase relative to
the starting point it does still relearn faster than the from scratch counterpart. All en-
vironmental configurations have an upward trend with the Whip and Garlic weapons
having the most significant trend.
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Figure 10: Training 200k time steps from Whip base averaged over 10 runs versus
from scratch

5.3 Agent Analysis

Results of the recording the X and Y position of the player over 30 evaluations for
each weapon of the pre-trained agents from experiment one. Lists of the X and Y
positions were accumulated in a list during each evaluation. The Table 11 shows the
average of the average X and Y positions in the accumulated lists. As well as the
average standard deviation of the X and Y position lists. These results can be used to
give a rough indication of trends present in the movement of the agents. The amount
of kills was also recorded during the previous evaluations. The results can be seen in
Table12.

Garlic Knife Whip Bible
Average Average X -486 -548 -433 -590
Average Average Y 202 -1360 141 405
Average X STD 314 266 277 276
Average Y STD 202 716 95 191

Table 11: Movement Analysis of pre-trained agents

Garlic Knife Whip Bible
Average Kills 10.7 1.1 3.3 3.6
Kills STD 5.6 0.9 2.0 1.9

Table 12: Average Kills by Environmental Configuration
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Figure 11: Training 200k time steps from Bible base averaged over 10 runs versus
from scratch

6 Discussion

The following discussion provides an analysis of the experiments conducted in this
thesis, aiming to address the research questions concerning time to threshold, jump
start performance, and asymptotic performance in the context of direct policy transfer
across environmental configurations. By examining the results and their implications,
we gain insights into the applicability and effectiveness of policy transfer in openSUR-
VIVORS.

6.1 Results Summary

The results section indicates significant improvements in agent performance following
training across various environmental configurations. Initial performance levels were
similar for Knife, Whip, and Bible agents, but the Garlic agent initially demonstrated
superior survival times. The Garlic agent’s performance fluctuated significantly and
was initially exceptional before regressing to levels comparable to other agents. Gar-
lic’s fluctuation will be looked at in more detail later in the discussion.

Average training results of from scratch agents revealed substantial variation, with
a slight upward trend suggesting that the agents learn to varying extents within the
first 200k time steps. Notably, the Whip agent showed the most significant rate of
improvement within these first 200k time steps.

Upon testing jump start performance, the Pretrain-Garlic agent exhibited no sig-
nificant improvement in other environmental configurations compared to untrained
agents, albeit with greater variation. In contrast, the Pre-Train-Knife agent main-
tained almost identical performance across different environmental configurations,
demonstrating a high consistency as well. The Pre-Train-Whip and Pre-Train-Bible
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agents also generalized well to other environments with a small performance deteri-
oration.

The results from the experimentations to not reveal any clear answers relating to
asymptotic performance and time to threshold. The final, or asymptotic, performance
of the agents could not be conclusively determined within the scope of this study,
since the performance did not converge. However, the agents trained using policy
transfer did consistently demonstrate higher performance levels than those trained
from scratch, but this higher performance seems to mostly be attributed to the great
increase in jump start performance.

Policy transfer from the Pre-Train-Garlic agent did show faster learning compared to
the the non policy transfer agents. Due to the great increase in jump start perform-
ance the differences in learning speeds are hard to compare, though some results do
stand out. The Whip and Garlic agents emerged as the most effective target mod-
els for transfer learning, showing the highest upward performance trends from policy
transfer.

6.2 Environmental Differences and Policy Adaptation

To further understand the observed variations in performance and the potential for
policy generalization, it is important to consider the qualitative and quantitative
differences between the environmental configurations in openSURVIVORS.

Qualitatively, the environmental configurations exhibit distinct characteristics as the
differences between the weapons Garlic, Knife, Whip, and Bible. These variations
contribute to the uniqueness of each configuration and provide distinct opportunities
for exploitation.

6.2.1 Consistent Environment Dynamics

The main dynamic present in the openSURVIVORS environment other than the
weapons and the movement of the player character are the enemies. These spawn
in at a random point3 on a circle with the player defined as the center. Every 30
seconds the amount and type of enemies that spawn change. The first wave consists
only of the weak bat enemy. The second wave starts including the more difficult
Goblin enemy.

6.2.2 Garlic: Environmental Configuration

The Garlic weapon is the much stronger than the other weapons which is shown by the
higher relative performance even in untrained agents seen in Table 5. This is because
garlic damages enemies in a circle surrounding the player and allows the agents to
defeat the bat enemies quite easily making it difficult for the bat enemies to pose a

3Due to the seeding of the environment this is consistent from episode to episode
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threat to the player. This means that the primary threat to the Garlic agents are the
Goblin enemies that start spawning at at the 30 second mark. Since the game is run
with a 0.064 delta time per frame, then there are 300 / 0.064 = 469 time steps before
the Goblins begin to spawn. Considering the time it takes for the Goblins to reach the
player after spawning an average survival time of 720 time steps starts to emerge as
a natural conclusion. Considering the similar movement speed of the bat and goblin
enemies shown in Table 2 the time it takes to reach the player and kill them is likely
the time that the agents in the other environmental configurations survive which is
consistently around 280 time steps which can be seen again from Table 5. 469 +
280 = 749 which is roughly equivalent to the average survival of the untrained garlic
agents at 720 time steps.

It is therefore likely that the only threat to the Garlic agents are the Goblin enemies
and the Bat enemies can be mostly ignored. This sets the stage for the analysis of
the Garlic agents both as a source for policy transfer and a target for policy transfer.

6.2.3 Garlic: Jump start Performance

Since the agent doesn’t need to avoid the Bat enemies the Garlic agent doesn’t learn
to avoid the bat enemies. This explains why the jumpstart performance of the Pre-
Train-Garlic agent is so low. However, it is still higher than a random policy indicating
that it is more promising than starting from scratch. Notably, the the environmental
configuration that has the highest relative jump start performance from Garlic is the
Bible weapon. As mentioned in the method section the Bible weapon is the most
similar weapon to Garlic attacking in a radius surrounding the player.

It is expected that as a target for policy transfer the Garlic agents should perform
quite well since they will at the very least have performance greater than or equal
to an average of around 700 timesteps. This is also the case empirically seen from
Table 8, 9, and 10 showing an average jump start performance of 924, 860, and 875
respectively.

6.2.4 Garlic: Time to Threshold

The Pre-Train-Garlic agent also shows the most promising increase in training speed
relative to from scratch compared to the other Pre-trained agents. Comparing this im-
provement in speed up compared to the other Pre-trained agents does however require
the consideration of some important factors. Most importantly the initial perform-
ance of the Pre-Train-Garlic agent is much lower than other pre-trained agents. The
final performance of the agent’s is also much lower than the jump start performance
of the other Pre-trained agents. Both of these facts make it in unreasonable to relate
these findings to the time to threshold and asymptotic performance metrics. How-
ever since the goal of RQ2, which pertains to these two metrics, is to evaluate the
eligibility of policy transfer across environmental configurations it is still valuable to
analyse the results in that light. From this perspective since the agents still learn
faster on average than the from scratch counterparts it indicates that there could still
be an advantage to utilizing agents with low jumpstart performance across environ-
mental configurations, regardless of the time to threshold and asymptotic performance
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achieved. Further experimentation that properly addresses the two metrics would still
support these claims to a much greater extent.

6.2.5 Knife: Environmental Configuration

The knife weapon is potentially the most difficult weapon to utilize effectively. The
knife weapon does not provide a consistently safe area around the player that the
agent can exploit such as in the case of Garlic. This forces the agent to learn to avoid
both the Bat and Goblin enemies to have any chance at survival. This proposition
is also supported by the fact that the knife weapon achieves the least kills amongst
all environmental configurations indicating an even greater reliance on the ability to
dodge.

6.2.6 Knife: Jump Start Performance

The Jumps start performance of the Pre-Train-Knife agent is the highest amongst all
environmental configurations. The performance on the whip environmental configura-
tion is even the same as the performance on its original environmental configuration.
Jumpstart performance only drops slightly in the Garlic and Bible configurations.
The survival time of all these agents corresponds with the beginning of the third
wave of enemies which starts at around 600 / 0.064 = 938 time steps. The third wave
is when the number of Goblins increases making avoiding them much more difficult.

Since the knife weapon requires the ability to dodge it is not surprising that the the
knife environmental configuration has a varying jump start performance as target for
policy transfer.

6.2.7 Knife: Time to Threshold

Due to the incredible jump start performance from the Pre-Train-Knife agent the
time to threshold metric loses a lot of its value as a metric. It is also unknown what
the asymptotic performance of the agents are. The performance of the pretrained
agents can be used as an indication for what the performance achievable by further
training. Utilizing the pretrained agent’s performance as a proxy for the asymptotic
performance shows that policy transfer from Pre-Train-Knife on average results in
equal performance in 200k time steps to the performance acheived in training from
scratch for 2 million timesteps. However, this results have some important caveats.

The first caveat is the variation within the groups of agents trained for 200k time steps.
The Whip and Bible weapons have almost no variation staying very consistently at
the initial level for the entire 200k steps. The Garlic weapon has a lot more variation
between training runs as it climbs up towards a survival of 1500 time steps which is
greater than the final performance achieved by the Pre-Train-Garlic agent. The Whip
and Bible weapons also do not increase in performance over the course of the 200k
time steps which also indicates that it is the jump start performance that is the main
contributor to the result. As mentioned previously the 1k timestep point is consistent
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with the beginning of the third wave. The difficulty of learning to overcome this wave
might be a bottleneck that requires very specific strategies to overcome.

The second cavaet relates to the variability in performance within of the agents across
the 2 million time steps they were trained for. Each weapon, with the exception of
Knife achieved a maximum performance higher than that achieved through policy
transfer. The maximum performance of Garlic was 2500 which is significantly greater
than that achieved by any policy transfer agent with Garlic as a target environmental
configurations.

6.2.8 Whip and Bible: Environmental Configurations

The Whip and Bible environmental configurations show quite similar results to the
Knife environmental configuration. Whip is similar to the knife weapon as states in
previous descriptions, while bible is similar to Garlic.

6.2.9 Whip and Bible: Jump Start Performance

The jumpstart performance from Pre-Train-Whip and Pre-Train-Bible are similar
to that of Pre-Train-Knife with, but with performance deteriorating across environ-
mental configurations to a greater degree. Both Whip and Garlic require learning
the ability to dodge, but as seen in Table12 Both weapons are provided almost three
times as much safety from kills compared to knife. The movement of the whip weapon
also seems to be coupled with the characteristics of the whip weapon. Since the whip
weapon attacks to the left and the right of the character movement in these directions
should be safer on average. This is corroborated by the data from Table11. The whip
agent is the only agent that moves more in the X direction than the Y direction with
almost a three times higher average standard deviation in the X direction compared
to the Y direction.

6.2.10 Whip and Bible: Time to Threshold

Similarly to the analysis of the Garlic and Knife weapons the policy transfer does show
an improvement over training from scratch. Whip is more similar to Garlic in this
regard as the jump start performance is lower and the final performance is lower than
the pre-trained agents performance. In this context Bible is more similar to Knife
due to the similarity in jump start performance. However the agents trained from a
bible base undergo a much greater degree of variation between agents where the Knife
weapon is seemingly overcome the 1000 time step bottleneck that was suggested in the
Knife section. This could indicate that the policies that use Pre-Train-Bible as a base
are on average to change. Figure 11 shows that the transfer to Whip also undergoes a
deterioration before beginning to regain performance. While the final performance is
the same as the initial performance there might be interesting qualitative differences
before and after the deterioration and improvement.
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6.3 Generalization across Environmental Configurations

Attributing the ability to generalize across environmental configurations to any spe-
cific causes is challenging. The space of possible policies that can be learned by PPO
is vast, and the policies explored in this thesis represent only a tiny subset of the pos-
sible policies and the behavior that they can define. The relationships between how
behavior of different policies exploit the characteristics of the different weapons defin-
itely plays an important part in the generalization capabilities of the agents. This is
further complicated by the potential of certain strategies learned by the agents at dif-
ferent stages of the game generalizing differently across environmental configurations.
For example behavior learned by an agent trained to utilize the whip weapon, which
provides a greater degree of safety directly to the left and right of the player, could
generalize well to other environmental configurations in early waves but deteriorate
quickly in later waves.

Overfitting is a common problem in reinforcement learning that also increases with
the amount of training as agents get more specialized[20] Overfitting can be thought
of as the antithesis of generalization where the policies that are generated are tightly
coupled with the specifics of the observed states. In the case of openSURVIVORS
this could be policies primarily utilizing the information in the pixels that are dif-
ferent across environmental configurations. This could lead to the transfer across
environmental configurations to be more difficult. Overfitting to environmental con-
figurations in openSURVIVORS does not seem to be a problem in this thesis due to
the generality of agents produced. However, overfitting might become a greater prob-
lem as training times increase. The agent’s that were trained in this thesis were not
trained until optimal performance and the more they are trained the more specialized
they potentially become.

6.4 Training Instability

Even though PPO was used, which is known to be quite stable in its training due to
the clipping in its objective function, the training did seem to have some instabilities
present. The most notable indicator of this instability is the Garlic weapon. Garlic
did have the highest variation in performance compared to all the other weapons. This
high variation might be a contributing factor to the deterioration in performance after
around 1.3 million training steps.

The deterioration might also occur from the new policy deviating too much from
the previous policy during optimization, which could mean that the clipping fraction
hyper parameter used in PPO was too large. Further experimentation on the clipping
fraction in the openSURVIVORS environment could help narrow down the cause of
the instability.

The agents are implicitly incentivised to gather experience which increases their power
and leads to easier survival. Garlic is the environmental configuration that collects
the most experience. This means that there are more samples in the training tra-
jectories that contain experience collection and power increases. Since the location
of experience is often closer to enemies it is also much riskier behavior to try to col-
lect experience. This fact both supports the increased variance in performance of the
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garlic environmental configuration and the instability in performance during training.

6.4.1 New Environment

openSURVIVORS is a new environment and therefore there do not exist any baseline
performance results on how agents can perform in this environment in the different
environmental configurations. The relative difficulty of the different environmental
configurations is also unknown, but can be estimated by the results of the different
experiments performed in this thesis.

One estimate of difficulty is the speed at which the PPO agents learn. Figure 7 which
shows the average training performance across ten different training runs from scratch
shows that the relative training speeds are different across the different environmental
configurations. This adds weight to the claim that the different environmental con-
figurations are of differing difficulties as well as there being non trivial differences
between the environmental configurations.

Another estimate of difficulty is the initial and final average performance of the agents
across the different environmental configurations, where performance is defined as the
average survival time. When considering the average survival time it is also import-
ant to consider how consistent the performance is, where a consistent high average
would indicate a simpler environmental configuration versus an inconsistent low av-
erage would indicate a more difficult one. Garlic presents an example of a simpler
environmental configuration which is also backed up by the qualitative descriptions
given earlier in the discussion.

How different the environmental configurations are from each other is presented qual-
itatively in the environment description and some quantitative results can help back
up these qualitative differences such as the movement of the agents that utilize the
different weapons and the amount of kills achieved.

6.5 Discussion Summary

Through a comprehensive analysis of agent performance across environmental config-
urations in the openSURVIVORS game, several key findings were revealed:

The initial survival times varied based on the weapon characteristics, with the Garlic
agent displaying higher survival due to its weapon’s superior capabilities. The fluctu-
ation in Garlic agent’s performance was associated with the minimal threat from Bat
enemies in the corresponding environmental configuration.

While the Garlic agent struggled to adapt its policy in other environments, indicating
lower jump start performance, the Knife agent demonstrated high levels of policy
generalization, exhibiting superior jump start performance across different configura-
tions.

Overall, the policy transfer proved to be beneficial, with agents trained using this
method consistently outperforming those trained from scratch. This was true even
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for agents with relatively low jump start performance, implying that policy transfer
may offer speed advantages in learning new environments.

6.5.1 Research question 1

The findings suggest that direct policy transfer can reduce the time to threshold across
different environmental configurations. This is evident from the higher performance
levels of agents trained using policy transfer compared to those trained from scratch,
implying that they reach a certain performance threshold faster.

6.5.2 Research question 2

In terms of jump start performance, the benefits of policy transfer are weapon-
dependent. While the Knife agent showed high jump start performance across dif-
ferent environments, the Garlic agent struggled to adapt its learned policy to other
configurations. The asymptotic performance, however, could not be conclusively de-
termined within the scope of this study as the performance did not converge. Still, the
consistent higher performance of agents trained using policy transfer offers promising
indications.
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7 Conclusion

This thesis has explored the applicability and effectiveness of direct policy transfer in
reinforcement learning, with a specific focus on environmental configurations within
the game openSURVIVORS. Two primary research questions were investigated: the
extent to which direct policy transfer can decrease the time to threshold and improve
jumpstart and asymptotic performance across environmental configurations.

Results demonstrated that the effectiveness of policy transfer is closely tied to the
nuances of the given environmental configuration and the unique characteristics of
the weapon used. The Garlic agent’s superior initial performance highlighted the
importance of environmental dynamics in shaping agent behaviour and policy. In
contrast, the Knife agent exhibited a high degree of policy generalization, consistently
demonstrating superior jumpstart performance across different configurations.

While the asymptotic performance could not be conclusively determined within the
scope of this study, policy transfer consistently outperformed learning from scratch,
suggesting that it might offer speed advantages in learning new environments. These
findings provide strong evidence towards the effectiveness of policy transfer in rein-
forcement learning, providing insights in line with the research goals of this thesis.

Despite these significant strides, several areas require further exploration. Future work
could aim to conclusively determine the asymptotic performance of agents trained
with policy transfer, which could not be assessed within the current study due to
non-convergence of performance. This would provide a more definitive understanding
of the long-term impacts of policy transfer on agent performance.

Additionally, while this study examined policy transfer within the context of the open-
SURVIVORS game, further research could explore policy transfer across a wider range
of environments, tasks, and games to validate the generalizability of these findings.

More in-depth exploration of the role of environmental characteristics in shaping agent
behaviour and policy is also warranted. This could entail designing more nuanced and
complex environments, incorporating a broader range of dynamics and challenges for
the agent to overcome.

In conclusion, the research presented in this thesis adds valuable insights to the cur-
rent understanding of policy transfer in reinforcement learning, highlighting the crit-
ical role of environmental dynamics and paving the way for more targeted, effective
strategies for training reinforcement learning agents across diverse tasks and environ-
ments.
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