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Abstract: This paper presents a novel extended state observer (ESO) approach for a class of plants
with nonlinear dynamics. The proposed observer estimates both the state variables and the total dis-
turbance, which includes both exogenous and endogenous disturbance. The study’s changes can be
summarized by developing a sliding mode higher-order extended state observer with a higher-order
augmented state and a nonlinear function for the estimation error correction terms (SMHOESO). By
including multiple enhanced states, the proposed observer can monitor total disturbances asymp-
totically, with the second derivative of the total disturbance serving as an upper constraint on the
estimation error. This feature improves the observer’s ability to estimate higher-order disturbances
and uncertainty. To extend the concept of the linear extended state observer (LESO), a nonlinear
function can modify the estimation error in such a way that the proposed observer can provide
faster and more accurate estimations of the state and total disturbance. The proposed nonlinearity
also reduces the chattering issue with LESOs. This research thoroughly examines and analyzes the
proposed SMHOESO’s convergence using the Lyapunov technique. According to this analysis, the
SMHOESO is asymptotically stable, and the estimation error can be significantly reduced under
real-world conditions. In addition to the SMHOESO, a modified Active Disturbance Rejection Control
(ADRC) scheme is built, which includes a nonlinear state error feedback (NLSEF) controller and a
nonlinear tracking differentiator (TD). Several nonlinear models, including the Differential Drive
Mobile Robot (DDMR), are numerically simulated, and the proposed SMHOESO is compared to
several alternative types, demonstrating a significant reduction in controller energy, increased control
signal smoothness, and accurate tracking of the reference signal.

Keywords: mobile robot; sliding mode control; extended state observer; output tracking; feed-
back stabilization

1. Introduction

As a result of unknown system dynamics or external perturbations, almost all physical
systems in the real world have disturbances and uncertainties. Disturbance observers
and related techniques are powerful tools for dynamically estimating, compensating, and
controlling diverse disturbances in such systems [1]. This section describes the extended
state observer (ESO), the disturbance observer (DOB), the perturbation observer (POB),
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and several other classes of approaches (ESO). The external disturbance is modelled as an
enhanced state and estimated with a state observer in the Unknown Input Observer (UIO),
one of the oldest disturbance estimators dating back to 1969 [2].

The DOB is another important class of disturbance estimators because it avoids using
the plant’s nominal transfer function in some of its variants. DOB is based on the function’s
inverse. Although POB and DOB are theoretically equivalent, POB is conceptualized in
state space and designed in a discrete-time environment. UIO and DOB have been shown
to be equally good at estimating disturbances, but UIO also provides state estimation [2].

An extended state observer (ESO) is used as a central component of Han’s active
disturbance rejection control method and analyzes all internal and external disturbances [1].
As a result, it was possible to estimate both the extended state and the system state at the
same time. Accurate uncertainty estimation contributes to improved disturbance rejection
and a smooth control profile for the closed-loop system. Because an ESO can estimate
internal uncertainties, the model’s required accuracy is reduced without compromising
control performance [3]. Because of its convenience and high efficiency, the ESO is used in
a wide range of industries, including robotics, aerospace, and electrical machines [1].

Throughout its rapid development in recent years, the ESO has been divided into two
common types: linear ESO (LESO) and nonlinear ESO (NLESO). The LESO was developed
as a backup option that also demonstrated the ease of tweaking parameters for theoretical
analysis [4]. Significant gains may also result in peaking behavior, as seen in other high-gain
observers [1,5–7]. The NLESO, on the other hand, was chosen in the early study due to its
ability to effectively estimate nonlinear structures. Nonlinear ESO (NLESO) is created by
feeding back the output estimation error using nonlinear functions. The nonlinear function
is the mathematical fit of “big error, small gain” or “small error, big gain” and is usually
chosen as a piecewise continuous, saturating, and monotonously increasing function.
NLESO’s nonlinear gains are intended to reduce “peaking phenomenon” and to avoid
large transient behaviors. A nonlinear observer is also used to ensure fast convergence and
robustness against noise. Furthermore, because of its complex nonlinear features, proving
the stability of a system using an NLESO is difficult. Han evaluated the convergence of the
ESO estimation errors using the Lyapunov approach. Unfortunately, many assumptions
were made in this study, and it can be difficult to find suitable nonlinear functions in
practice. More generalized convergence results for single-input single-output (SISO) and
multiple-input multiple-output (MIMO) systems have recently been discovered in [8,9],
respectively.

Active Disturbance Rejection Control (ADRC) is becoming more popular as a tech-
nology, having been used successfully in engineering on numerous occasions. The recent
implementation of ADRC technology at a Parker Hannifin Extrusion Plant in North Amer-
ica resulted in over 50% energy savings per line across 10 production lines, as well as
significant improvements in product quality. Furthermore, thanks to the Kinetis® motor
suite’s simple interface and design approach, the field-oriented control (FOC) motor control
design time cycle is reduced, system performance is increased, and support costs with
ADRC are reduced [10]. It supports three-phase BLDC and PMSM motors via an algorithm
with controls that are either low-cost but without sensors or very accurate with sensors.
ADRC is used in [11] to evaluate the nonlinear kinematic model of the differential drive
mobile robot (DDMR). Texas Instruments used ADRC technology in the development and
global distribution of a new series of motion control chips (InstaSPINTM-MOTION). LineS-
tream Technologies’ SpinTAC Motion Control Suite also includes an ADRC implementation.
SpinTAC [12] is a Texas Instruments microcontroller (MCU) that uses InstaSPIN-MOTION
technology. The National Superconducting Cyclotron Lab in the United States has used
ADRC in several high-energy particle accelerators as a result of significant advances in the
amplitude and phase regulation of electromagnetic fields [13].

This paper proposes a continuous nonlinear error function that is beneficial near the
origin with limited large error values. A higher-order extended observer is also proposed,
which allows an accurate estimation of high-order total disturbance. In this paper, a



Machines 2023, 11, 470 3 of 34

brief stability analysis is presented for both single-input single-output and multi-input
multi-output systems.

This paper’s content is divided into six sections, with the related work outlined in
Section 2. The proposed SMHOESO is described in Section 3, along with the relevant
stability tests for single-input single-output systems, and the stability analysis for multi-
input multi-output systems is covered in Section 4. Section 5 contains numerical simulations
that confirm the accuracy of the proposed configuration, and Section 6 concludes.

2. Related Works

The LESO is similar to the Luenberger observer [14]. It is employed to simplify the
calculation for an nth-order single-input-single-output system [9,15],

.
ξ1(t) = ξ2(t), ξ1(0) = ξ10,
.
ξ2(t) = ξ3(t), ξ2(0) = ξ20,

...
.
ξn(t) = f (t, ξ1(t), ξ2(t), . . . , ξn(t)) + u(t) + w(t), ξn(t) = ξn0
y(t) = ξ1(t)

(1)

where ξ(0) = (ξ10, ξ20, . . . , ξn0) is the initial state, ξ(t) = (ξ1(t), ξ2(t), . . . , ξn(t)) is the state
vector of the system, y(t) is the measured output, f (.) ∈ C(Rn, R) is an unknown system
function, w(t) ∈ C(R,R) is the uncertain exogenous disturbance, u(t) ∈ C(R,R) is the
control input, L(t) = f (t, .) + w(t) is denoted “total disturbance” [16]. By adding the

extended state ξn+1(t)
def
= f (t, .) + w(t), the system (1) can be restated as,

.
ξ1(t) = ξ2(t), ξ1(0) = ξ10,
.
ξ2(t) = ξ3(t), ξ2(0) = ξ20,

...
.
ξn(t) = ξn+1(t) + u(t), ξ(t) = ξn0.
ξn+1(t) =

.
f (t, ξ1(t), ξ2(t), . . . , ξn(t)) +

.
w(t), ξn+1(t) = ξn+1,0,

y(t) = ξ1(t)

(2)

A linear extended state observer [1],

.
ξ̂1(t) = ξ̂2(t) + β1(y(t)− ξ̂1(t)),.
ξ̂2(t) = ξ̂3(t) + β2(y(t)− ξ̂1(t)),

...
.
ξ̂n(t) = ξ̂n+1(t) + u(t) + βn(y(t)− ξ̂1(t)),.
ξ̂n+1(t) = βn+1

(
y(t)− ξ̂1(t)

)
,

(3)

where βi =
ai
εi is the observer coefficient to be designed, i ∈ {1, 2, . . . , n, n + 1}.

There are two common techniques for LESO tuning: pole placement [17] and the
bandwidth method [18]. If the ultimate goal is to limit the number of ESO parameters
(i.e., only one ESO parameter should be selected or modified), the ESO coefficients can be
expressed in terms of the ESO’s bandwidth [19]. Choosing a bandwidth that is too large
will result in a decrease in estimation error within a reasonable bound [20]. To avoid this,
the observer bandwidth is set to be lower than the frequency of the unmodeled dynamics
but higher than the frequency of the disturbance [21]. The ESO, on the other hand, will
perform worse if its bandwidth is set to a value that is either too low or too high. When
the ESO and controller bandwidth are too large, strong tracking performance and external
disturbance rejection are possible.
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The negative effects of using a large bandwidth value include the following, measure-
ment noise degrades output tracking and introduces chattering on the control signal [22].
Secondly, the transient response of the ESO is reduced because large bandwidth values
result in high-gain observers [23]. Finally, some unmodeled high frequencies dynamics may
be activated above a certain frequency, leading to inconsistency in the closed-loop system.
The two main reasons that prevent the bandwidth from being expanded are regarded to
be noise and sample rates. As a result, an estimator bandwidth that balances tracking
performance with noise tolerance must be chosen. To outperform the LESO, the authors
of [1] developed a new class of adaptive ESO (AESO) in which the observer bandwidth
changes over time. The disadvantage of this method is that as the AESO order increases,
parameter adjustment may become more difficult [1].

The small variable ε was set as in [24] to mitigate the peaking phenomenon brought
on by various ESO initial values,

1
ε
=

{
100t3 0 ≤ t ≤ 1
100 t > 1

Optimization methods such as Bacterial Foraging Optimization (BFO), Particle Swarm
Optimization (PSO), and Evolutionary Algorithms (EA) are used instead of manually
adjusting the ESO parameters. Eventually, the ESO begins to estimate the states. As a
result, aggregated disturbances have no effect, and the controller compensates for them
in real-time [11]. The parameters of ESO were also determined using a non-dominated
Sorting Genetic Algorithm (NSGA-II) [25].

The nonlinear gains of NLESO are designed to reduce such peak phenomenon, as
well as to avoid large transient behaviours [26]. A nonlinear observer is also applied
to guarantee fast-convergence and robustness with respect to the noise [27]. A general
nonlinear ESO is given by [28],

.
ξ̂1(t) = ξ̂2(t) + g1(y(t)− ξ̂1(t)),.
ξ̂2(t) = ξ̂3(t) + g2(y(t)− ξ̂1(t)),

...
.
ξ̂n(t) = ξ̂n+1(t) + u(t) + gn(y(t)− ξ̂1(t)),.
ξ̂n+1(t) = gn+1

(
y(t)− ξ̂1(t)

)
.

(4)

If nonlinear functions gi : R→ R, i ∈ {1, 2, . . . , n + 1} were chosen, the state variables
of the nonlinear system might track the state variables of the original system and the total
disturbance L(t). The mathematical representation of “high error, small gain or small error,
big gain” is known as a nonlinear function gi(.) [29]. This function can be illustrated as
follows [30–34], and is typically chosen as a nonlinear combination power function,

f al(e, α, δ) =

{ e
δα−1 |e| ≤ δ

|e|αsgn(e) |e| > δ
(5)

where δ is a small number that is used to express the length of the linear part. The func-
tion f al(.) is a piecewise continuous, nonlinear, saturation, and monotonically increasing
function. Studies have shown that when the value of δ is too small, it is still easy for the
phenomenon of high-frequency chattering to appear. Conversely, when the value of δ is too
large, there is still a chattering phenomenon owing to its non-smooth feature at the point
e= δ [35]. When α = 0.75, the degree of linearity of f al(.) function is best. Practically, the
value of α is generally selected as α = 0.01 [28] in order to select the appropriate observer
gains and f al(.) function parameters.

In this case, a genetic algorithm (GA) is used to find better ESO parameters. Other
effective optimization algorithms, on the other hand, may be good candidates for this
purpose [33]. The function proposed in [28] eliminates non-smooth transitions between
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linear and nonlinear parts of the f al(.) function. To allow it to be applicable under many
different circumstances, this function is able to adjust the curve shape, the range, and
the central location. On the other hand, the function in [36] is smoother, and the shape
and center position of the function can be better controlled. The work suggested in [37]
proposes a nonlinear function that not only has a nonlinear characteristic but is also very
smooth. In particular, this function can be separately adjusted as the function in [28] to
adapt to the practical application of different situations and requirements [37]. There are
further nonlinear control laws proposed in [38–42].

3. Observer Design for SISO Systems

This section presents the nonlinear single-input single-output LESO and SMHOESO’s
convergence analysis.

3.1. Linear Extended State Observer (LESO)

Firstly, some assumptions are required:

Assumption 1. The function f is continuously differentiable for all (t, ξ(t)) ∈ R×Rn.

Assumption 2. w(t) and
.

w(t) are bounded and w(t) belongs to a known compact set W ⊂ R.

Assumption 3. There is a positive constant M such that |∆(t)| ≤ M for t ≥ 0.

Assumption 4. There exist constants λ1, and λ2, and positive definite, continuously differentiable
functions V, W : Rn+1 → R+ such that:

λ1‖y‖2 ≤ V(y) ≤ λ2‖y‖2, W(y) = ‖y‖2 (6)

∑n
i=1

∂Vi
∂yi

(yi − aiy1)−
∂V

∂yn+1
an+1y1 ≤ −W(y) (7)

Theorem 1. Assume that we have the ESO of (3) and the system presented in (2). Then,

(i) lim
t→∞

∣∣ξi(t)− ξ̂i(t)
∣∣ = O

(
1

ω0
n+2−i

)
(ii) lim

t→ ∞
ω0 → ∞

∣∣ξi(t)− ξ̂i(t)
∣∣ = 0

where ξi(t), and ξ̂i(t) symbolize the solution of (2) and (3) correspondingly, i ∈ {1, 2, . . . n + 1}.

Proof. Set ei(t) = ξi(t)− ξ̂i(t), i ∈ {1, 2, . . . n + 1}. Then by subtracting (3) from (2),

.
ξ1(t)−

.
ξ̂1(t) = ξ2(t)−

(
ξ̂2(t) + β1(y(t)− ξ̂1(t))

)
.
ξ2(t)−

.
ξ̂2(t) = ξ3(t)−

(
ξ̂3(t) + β2(y(t)− ξ̂1(t))

)
...

.
ξn(t)−

.
ξ̂n(t) = ξn+1(t) + u(t)−

(
ξ̂n+1(t) + u(t) + βn(y(t)− ξ̂1(t))

)
.
ξn+1(t)−

.
ξ̂n+1(t) = ∆(t)− βn+1(y(t)− ξ̂1(t))

The estimating error dynamics are demonstrated by a straightforward calculation to
satisfy, 

.
e1(t) = e2(t)− β1e(t)
.
e2(t) = e3(t)− β2e(t)

...
.
en(t) = en+1(t)− βne(t)

.
en+1(t) = ∆(t)− βn+1e(t)

(8)
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Let βi = aiω0
i, where ai, i ∈ {1, 2, . . . n + 1} are design parameters, and ω0 is the ESO

bandwidth. The final form of (8) is,

.
e1(t) = e2(t)−ω0a1.e1(t).
e2(t) = e3(t)−ω0

2a2e1(t)
...

.
en(t) = ei,n+1(t)−ω0

nan.e1(t).
en+1(t) = ∆(t)−ω0

n+1an+1.e1(t)

(9)

Time scale (9) to get,

de1

(
t

ω0

)
d t

ω0

= e2

(
t

ω0

)
−ω0a1.e1

(
t

ω0

)
de2

(
t

ωi0

)
d t

ω0

= e3

(
t

ω0

)
−ω0

2a2.e1

(
t

ω0

)
...

den

(
t

ωi0

)
d t

ω0

= en+1

(
t

ω0

)
−ω0

nan.e1

(
t

ω0

)
den+1

(
t

ωi0

)
d t

ω0

= ∆−ω0
n+1an+1.e1

(
t

ω0

)
(10)

Let
ηi(t) = ω0

n+1−iei(
t

ω0
), i ∈ {1, 2, . . . n + 1} (11)

ei

(
t

ω0

)
=

1
ω0n+1−i ηi(t) (12)

Taking the derivative (11) with respect to t yields,

dηi(t)
dt

= ω0
n+1−i

dei

(
t

ω0

)
d t

ω0

d( t
ω0

)

dt
= ωi0

n−i
dei

(
t

ω0

)
d t

ω0

(13)

Then,
dei

(
t

ω0

)
d t

ω0

=
1

ω0n−i
dηi(t)

dt

Both (12) and (13) are substituted in (10) and the result is,

1
ω0

n−1
dη1(t)

dt = 1
ω0

n−1 η2(t)−ω0a1. 1
ω0

n η1(t)
1

ω0
n−2

dη2(t)
dt = 1

ω0
n−2 η3(t)−ω0

2a2. 1
ω0

n η1(t)
...

dηn(t)
dt = ηin+1(t)−ω0

nan. 1
ω0

n ηi(t)
1

ω0
−1

dηi,n+2(t)
dt = ∆−ω0

n+1an+1. 1
ω0

n η1(t)

The time-scaled estimation error dynamics are,

dη1(t)
dt = η2(t)− a1.η1(t)

dη2(t)
dt = ηi,3(t)− a2.η1(t)

...
dηn(t)

dt = ηin+1(t)− ai,n.ηi(t)
dηn+1(t)

dt = ∆
ω0
− an+1.η1(t)

(14)
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Using the solution of (14) as a guide, we can determine the derivative of V(η) with
respect to t,

.
V(η)

∣∣∣
along(14)

=
n+1
∑

i=1

∂V(η)
∂ηi

.
ηi(t)

=
n+1
∑

i=1

∂V(η)
ηi

(ηi+1(t)− ai.η1(t)) +
∂V(η)
∂ηn+1

(
∆

ω0
− an+1.η1(t)

)
Then,

.
V(η)

∣∣∣
along(14)

=
n+1

∑
i=1

∂V(η)

ηi
(ηi+1(t)− ai.η1(t)) +

∂V(η)

∂ηn+1

∆

ω0
− ∂V(η)

∂ηn+1
an+1.η1(t)

from (9) of assumption 4,

.
V(η)

∣∣∣
along(14)

≤ −W(η) +
∂V(η)

∂ηn+1

∆

ω0

Given Assumptions 3 and 4 assume the Lyapunov functions V, W : Rn+1 → R+ de-
fined by V(η) =< Pη, η >, where η ∈ Rρ+1 and P is a symmetric positive definite
matrix. Suppose (6) in Assumption 4 with λ1 = λmin(P) and λ2 = λmax(P). Thus,

when (η) ≤ λmax(P)‖η‖2 and
∣∣∣∣ ∂V

∂ηρ+1

∣∣∣∣ ≤ ∥∥∥ ∂V(η)
∂η

∥∥∥, then
∣∣∣∣ ∂V

∂ηρ+1

∣∣∣∣ ≤ 2λmax(P)‖η‖. More-

over, V(η) ≤ λmax(P)‖η‖2 = λmax(P)W(η). Thus, −W(η) ≤ − V(η)
λmaξ (P) . Finally, because

λmin(P)‖η‖2 ≤ V(η), this leads to ‖η‖ ≤
√

V(η)
λmin(P) . As a result,

.
Vi(ηi) ≤ −

V(η)

λmax(P)
+

M
ω0

2λmax(P)
√

Vi(η)√
λmin(P)

Since,
d
dt

√
V(η) =

1
2

1√
V(η)

.
V(η),

Then,

d
dt

√
V(η) ≤ 1

2
1√

V(η)
(− V(η)

λmax(P)
+

M
ω0

2λmax(P)
√

V(η)√
λmin(η)

)

d
dt

√
V(η) ≤ −

√
V(η)

2λmax(P)
+

M
ω0

λmax(P)√
λmin(P)

(15)

Solving the ordinary differential Equation (15) gives,√
V(η) ≤ 2Mλ2

max(P)
ω0
√

λmin(P)

(
1− e−

t
2λmax(P)

)
+
√

V(η(0))e−
t

2λmax(P)

Using ‖η‖ ≤
√

V(η)
λmin(P) one gets,

‖η(t)‖ ≤
√

1
λmin(P)

(
2Mλ2

max(P)
ω0
√

λmin(P)

(
1− e−

t
2λmax(P)

)
+
√

V(η(0))e−
t

2λmax(P)

)

‖η(t)‖ ≤ 2Mλ2
max(P)

ω0λmin(P)

(
1− e−

t
2λmax(P)

)
+

√
V(η(0))
λmin(P)

e−
t

2λmax(P) (16)
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Therefore, it follows from (16) that,

∣∣ξi(t)− ξ̂i(t)
∣∣ = 1

ωi0
n+1−i |ηi(ω0t)| ⇒

∣∣ξi(t)− ξ̂i(t)
∣∣ ≤ 1

ω0n+1−i ‖η(ω0t)‖

Then, Sub. (16) in the above equation gives,

∣∣ξi(t)− ξ̂i(t)
∣∣ ≤ 1

ω0n+1−i

(
2Mλ2

max(P)
ω0λmin(P)

(
1− e−

ω0t
2λmax(P)

)
+

√
V(η(0))
λmin(P)

e−
ω0t

2λmax(P)

)

Finally, lim
t→∞

∣∣ξi(t)− ξ̂i(t)
∣∣ = 1

ω0
n+2−i

2Mλ2
max(P)

λmin(P) = O
(

1
ω0

n+2−i

)
lim

t→ ∞
ω0 → ∞

∣∣ξi(t)− ξ̂i(t)
∣∣

�

3.2. Sliding Mode Higher Order Extended State Observer (SMHOESO)

Starting again from the nonlinear system (1) and by adding the extended states

ξn+1(t)
def
= f (t, .) + w(t), ξn+2(t)

def
=

.
f (t, .) +

.
w(t), it can be restated as,

.
ξ1(t) = ξ2(t).
ξ2(t) = ξ3(t)

...
.
ξn(t) = ξn+1(t) + u(t)
.
ξn+1(t) = ξn+2(t).
ξn+2(t) = ∆(t)

(17)

where ∆(t) =
..
f (t, ξ1(t), ξ2(t), . . . , ξn(t)) +

..
w(t). In order to prove the convergence of

SMHOESO, the following assumptions are needed.

Assumption 5. w(t),
.

w(t) and
..
w(t) are bounded and w(t) belongs to a known compact set

W ⊂ R.

Assumption 6. There exist constants λ1, and λ2, and positive definite, continuously differentiable
functions V, W : Rn+2 → R+ such that,

λ1‖y‖2 ≤ V(y) ≤ λ2‖y‖2, W(y) = ‖y‖2 (18)

∑n+1
i=1

∂V(y)
yi

(
yi+1(t)− aik

(
y1(t)
ω0n

)
.y1(t)

)
− ∂V(y)

∂yn+2
an+2k

(
y1(t)
ω0n

)
.y1(t) ≤ −W(y) (19)

The proposed nonlinear sliding mode higher-order extended state observer (SMHOESO) is
described as, 

.
ξ̂1(t) = ξ̂2(t) + β1g(y(t)− ξ̂1(t)),.
ξ̂2(t) = ξ̂3(t) + β2g(y(t)− ξ̂1(t)),

...
.
ξ̂n(t) = ξ̂n+1(t) + u(t) + βng

(
y(t)− ξ̂1(t)

)
,

.
ξ̂n+1(t) = ξ̂n+1(t) + βn+1g

(
y(t)− ξ̂1(t)

)
.

.
ξ̂n+2(t) = βn+2g

(
y(t)− ξ̂1(t)

)
.

(20)
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The mapping g : R→ R is selected as,

g(e) = Kα|e|αsign(e) + Kβ|e|βe (21)

where Kα, Kβ, α and β are nonzero design coefficients (see Figure 1). Let βi = aiω0
i, and rewrite

(21) as gproposed(e) =
(

Kα
|e|α

e sign(e) + Kβ|e|β
)

e. Then,

gi(e) =
{

0 e = 0
k(e).e e 6= 0

(22)

The mapping k : R→ R+ is an odd nonlinear gain mapping with,

k(e)= Kα|e|α−1 + Kβ|e|β

Machines 2023, 11, x FOR PEER REVIEW 9 of 35 
 

 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 𝜉̇𝜉1(𝑡𝑡) = 𝜉𝜉2(𝑡𝑡) + 𝛽𝛽1ℊ(𝑦𝑦(𝑡𝑡) − 𝜉𝜉1(𝑡𝑡)),

𝜉̇𝜉2(𝑡𝑡) = 𝜉𝜉3(𝑡𝑡) + 𝛽𝛽2ℊ(𝑦𝑦(𝑡𝑡) − 𝜉𝜉1(𝑡𝑡)),
⋮

                               

𝜉̇𝜉𝑛𝑛(𝑡𝑡) = 𝜉𝜉𝑛𝑛+1(𝑡𝑡) + 𝑢𝑢(𝑡𝑡) + 𝛽𝛽𝑛𝑛ℊ �𝑦𝑦(𝑡𝑡) − 𝜉𝜉1(𝑡𝑡)�,              

𝜉̇𝜉𝑛𝑛+1(𝑡𝑡) = 𝜉𝜉𝑛𝑛+1(𝑡𝑡) + 𝛽𝛽𝑛𝑛+1ℊ �𝑦𝑦(𝑡𝑡) − 𝜉𝜉1(𝑡𝑡)� .

𝜉̇𝜉𝑛𝑛+2(𝑡𝑡) = 𝛽𝛽𝑛𝑛+2ℊ �𝑦𝑦(𝑡𝑡) − 𝜉𝜉1(𝑡𝑡)�.                 
                        

 (20) 

The mapping ℊ:ℝ → ℝ is selected as, 

ℊ(𝑒𝑒) = 𝐾𝐾𝛼𝛼|𝑒𝑒|𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑒𝑒) + 𝐾𝐾𝛽𝛽|𝑒𝑒|𝛽𝛽𝑒𝑒 (21) 

where 𝐾𝐾𝛼𝛼 ,𝐾𝐾𝛽𝛽 ,𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 are nonzero design coefficients (see Figure 1). Let 𝛽𝛽𝑖𝑖 = 𝑎𝑎𝑖𝑖𝜔𝜔0
𝑖𝑖, and rewrite 

(21) as 𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑒𝑒) = �𝐾𝐾𝛼𝛼
|𝑒𝑒|𝛼𝛼

𝑒𝑒
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑒𝑒) + 𝐾𝐾𝛽𝛽|𝑒𝑒|𝛽𝛽� 𝑒𝑒. Then, 

𝑔𝑔𝑖𝑖(𝑒𝑒) = �0                         𝑒𝑒 = 0
𝑘𝑘(𝑒𝑒). 𝑒𝑒             𝑒𝑒 ≠ 0  (22) 

The mapping 𝑘𝑘:ℝ → ℝ+ is an odd nonlinear gain mapping with, 
𝑘𝑘(𝑒𝑒) = 𝐾𝐾𝛼𝛼|𝑒𝑒|𝛼𝛼−1 + 𝐾𝐾𝛽𝛽|𝑒𝑒|𝛽𝛽 

 
Figure 1. The function ℊ with 𝛽𝛽 = 0.334,𝛼𝛼 = 0.533, 𝑘𝑘𝛽𝛽 = 0.543,  𝑘𝑘𝛼𝛼 = 0.617. 

Lemma 1. Assume that we have Lyapunov functions 𝑉𝑉,𝑊𝑊:ℝ𝑛𝑛+2 → ℝ+  expressed as 𝑊𝑊(𝜂𝜂) =
𝑉𝑉(𝜂𝜂) =< 𝑃𝑃𝑃𝑃, 𝜂𝜂 >, where 𝜂𝜂 ∈ ℝ𝑛𝑛+2 and 𝑃𝑃 is a symmetric and positive definite matrix. Suppose 
assumption 6 Equation (18) with 𝜆𝜆1 = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃) and 𝜆𝜆2 = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃). Then, 

(i) � 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑛𝑛+2

� ≤ 2𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)‖𝜂𝜂‖ 

(ii) ‖𝜂𝜂‖ ≤ � 𝑉𝑉(𝜂𝜂)
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)

 

(iii) −𝑊𝑊(𝜂𝜂) ≤ −𝑉𝑉(𝜂𝜂)
𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)

 

Proof. (i) Since 𝑉𝑉(𝜂𝜂) ≤ 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)‖𝜂𝜂‖2 and � 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑛𝑛+2

� ≤ �𝜕𝜕𝜕𝜕(𝜂𝜂)
𝜕𝜕𝜕𝜕

�, then, � 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑛𝑛+2

� ≤ 2𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)‖𝜂𝜂‖. 

(ii) Since 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)‖𝜂𝜂‖2 ≤ 𝑉𝑉(𝜂𝜂) . This leads to ‖𝜂𝜂‖ ≤ � 𝑉𝑉(𝜂𝜂)
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)

 . Finally, (iii) Since 𝑉𝑉(𝜂𝜂) ≤

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)𝑊𝑊𝑖𝑖(𝜂𝜂), then 𝑉𝑉(𝜂𝜂) ≤ 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)𝑊𝑊𝑖𝑖(𝜂𝜂) and −𝑊𝑊(𝜂𝜂) ≤ −𝑉𝑉(𝜂𝜂)
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)

. □ 

Theorem 2. Assume that we have the plant of (2) and SMHOESO in (20). Then, 

lim
𝑡𝑡→∞

�𝜉𝜉𝑖𝑖(𝑡𝑡) − 𝜉𝜉𝑖𝑖(𝑡𝑡)� = 𝑂𝑂 �
1

𝜔𝜔0
𝑛𝑛+3−𝑖𝑖� 

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

g(
e)

e

Figure 1. The function g with β = 0.334, α = 0.533, kβ = 0.543, kα = 0.617.

Lemma 1. Assume that we have Lyapunov functions V, W : Rn+2 → R+ expressed as W(η) =
V(η) =< Pη, η >, where η ∈ Rn+2 and P is a symmetric and positive definite matrix. Suppose
Assumption 6 Equation (18) with λ1 = λmin(P) and λ2 = λmax(P). Then,

(i)
∣∣∣ ∂V

∂ηn+2

∣∣∣ ≤ 2λmax(P)‖η‖

(ii) ‖η‖ ≤
√

V(η)
λmin(P)

(iii) −W(η) ≤ −V(η)
max(P)

Proof. (i) Since V(η) ≤ λmaξ(P)‖η‖2 and
∣∣∣ ∂V

∂ηn+2

∣∣∣ ≤ ∥∥∥ ∂V(η)
∂η

∥∥∥, then,
∣∣∣ ∂V

∂ηn+2

∣∣∣ ≤ 2λmax(P)‖η‖.

(ii) Since λmin(P)‖η‖2 ≤ V(η). This leads to ‖η‖ ≤
√

V(η)
λmin(P) . Finally, (iii) Since V(η) ≤

λmax(P)Wi(η), then V(η) ≤ λmax(P)Wi(η) and −W(η) ≤ −V(η)
λmax(P) . �

Theorem 2. Assume that we have the plant of (2) and SMHOESO in (20). Then,

lim
t→∞

∣∣ξi(t)− ξ̂i(t)
∣∣ = O

(
1

ω0n+3−i

)
where ξi(t), and ξ̂i(t) signify the solution of (2) and (20) correspondingly,i ∈ {1, 2, . . . n + 2}.
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Proof. Set ei(t) = ξi(t)− ξ̂i(t), i ∈ {1, 2, . . . n + 2}. Then,

.
ξ1(t)−

.
ξ̂1(t) = ξ2(t)−

(
ξ̂2(t) + β1g(y(t)− ξ̂1(t))

)
.
ξ2(t)−

.
ξ̂2(t) = ξ3(t)−

(
ξ̂3(t) + β2g(y(t)− ξ̂1(t))

)
...

.
ξn(t)−

.
ξ̂n(t) = ξn+1(t) + u(t)−

(
ξ̂n+1(t) + u(t) + βng(y(t)− ξ̂1(t))

)
.
ξn+1(t)−

.
ξ̂n+1(t) = ξn+2(t)−

(
ξ̂n+2(t) + βn+1g(y(t)− ξ̂1(t))

)
.
ξn+2(t)−

.
ξ̂n+2(t) = ∆(t)− βn+1g(y(t)− ξ̂1(t))

A simple calculation demonstrates that the estimating error dynamics meet,

.
e1(t) = e2(t)− β1g(e1(t)).
e2(t) = e3(t)− β2g(e1(t))

...
.
en(t) = en+1(t)− βng(e1(t)).
en+1(t) = en+2(t)− βn+1g(e1(t)).
en+2(t) = ∆(t)− βn+2g(e1(t))

(23)

The final form of (23) is,

.
e1(t) = e2(t)− a1ω0k(e1(t)).e1(t).
e2(t) = e3(t)− a2ω0

2k(e1(t)).e1(t)
...

.
en(t) = en+1(t)− anω0

nk(e1(t)).e1(t).
en+1(t) = en+2(t)− an+1ω0

n+1k(e1(t)).e1(t).
en+2(t) = ∆(t)− an+2ω0

n+2k(e1(t)).e1(t)

(24)

Time scale (24) to get,

de1

(
t

ω0

)
d t

ω0

= e2

(
t

ω0

)
− a1ω0k

(
e1

(
t

ω0

))
.e1

(
t

ω0

)
de2

(
t

ω0

)
d t

ω0

= e3

(
t

ω0

)
− a2ω0

2k
(

e1

(
t

ω0

))
.e1

(
t

ω0

)
...

den

(
t

ω0

)
d t

ω0

= en+1(t)− anω0
nk
(

e1

(
t

ω0

))
.e1

(
t

ω0

)
den+1

(
t

ω0

)
d t

ω0

= en+2(t)− an+1ω0
n+1k

(
e1

(
t

ω0

))
.e1

(
t

ω0

)
den+2

(
t

ω0

)
d t

ω0

= ∆− an+2ω0
n+2k

(
e1

(
t

ω0

))
.e1

(
t

ω0

)

(25)

Let
ηi(t) = ω0

n+1−ieij(
t

ω0
), i ∈ {1, 2, . . . n + 2} (26)

ei

(
t

ω0

)
=

1
ωi0

n+1−i ηi(t) (27)

Taking the derivative (26) with respect to t yields,

dηi(t)
dt

= ω0
n+1−j

dei

(
t

ω0

)
d( t

ω0
)

d( t
ω0

)

dt
= ω0

n−i
dei

(
t

ω0

)
d( t

ω0
)
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then,
dei

(
t

ω0

)
d( t

ω0
)

= ω0
n−i dηi(t)

dt
(28)

Both (27) and (28) are substituted in (25) and the result is,

1
ω0

n−1
dη1(t)

dt = 1
ωi0

n−1 η2(t)−ω0a1k
(

η1(t)
ω0

n

)
. 1
ω0

n η1(t)
1

ω0
n−2

dη2(t)
dt = 1

ω0
n−2 η3(t)−ω0

2a2k
(

η1(t)
ω0

n

)
. 1
ω0

n η1(t)
...

dηn(t)
dt = ηn+1(t)−ω0

nank
(

η1(t)
ω0

n

)
. 1
ω0

n η1(t)
1

ω0
−1

dηn+1(t)
dt = 1

ω0
−1 ηn+2(t)−ω0

n+1an+1k
(

η1(t)
ω0

n

)
. 1
ω0

n η1(t)
1

ω0
−2

dηn+2(t)
dt = ∆−ω0

n+2an+2k
(

η1(t)
ω0

n

)
. 1
ω0

n η1(t)

The time-scaled estimation error dynamics are,

dη1(t)
dt = η2(t)− a1k

(
η1(t)
ω0

n

)
.η1(t)

dη2(t)
dt = η3(t)− a2k

(
η1(t)
ω0

n

)
.η1(t)

...
dηn(t)

dt = ηi,n+1(t)− ank
(

η1(t)
ω0

n

)
.ηi,j(t)

dηn+1(t)
dt = ηn+2(t)− an+1k

(
η1(t)
ω0

n

)
.η1(t)

dηn+2(t)
dt = ∆

ω0
2 − an+2k

(
η1(t)
ω0

n

)
.η1(t)

(29)

Using the solution of Lemma 1 and finding the derivative of V(η) with respect to t (29),

.
V(η)

∣∣∣
along(29)

=
n+2

∑
i=1

∂V(η)

∂ηi

.
ηi(t) =

n+1

∑
i=1

∂V(η)

ηi

(
ηi+1(t)− aik

(
η1(t)
ω0n

)
.η1(t)

)
+

∂V(η)

∂ηn+2

(
∆

ω02 − an+2k
(

η1(t)
ω0n

)
.η1(t)

)
,

Then,

.
V(η)

∣∣∣
along(29)

=
n+1

∑
i=1

∂V(η)

ηi

(
ηi+1(t)− aik

(
η1(t)
ω0n

)
.η1(t)

)
− ∂V(η)

∂ηn+2
an+2k

(
η1(t)
ω0n

)
.η1(t) +

∂V(η)

∂ηn+2

∆

ω02

from (19) of Assumption 6,

.
V(η)

∣∣∣
along(29)

≤ −W(η) +
∂V(η)

∂ηn+2

∆

ω02

With the aid of Assumptions 2, 3 and 6 and the results of Lemma 1, it results in,

.
Vi(ηi) ≤ −

V(η)

λmax(P)
+

M
ω02 2λmax(P)

√
Vi(η)√

λmin(P)

Since,
d
dt

√
V(η) =

1
2

1√
V(η)

.
V(η)

Then,

d
dt

√
V(η) ≤ 1

2
1√

V(η)
(− V(η)

λmax(P)
+

M
ω02 2λmax(P)

√
V(η)√

λmin(η)
)
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d
dt

√
V(η) ≤ −

√
V(η)

2λmax(P)
+

M
ω02

λmax(P)√
λmin(P)

(30)

Solving the ordinary differential Equation (30) gives,√
V(η) ≤ 2Mλ2

max(P)
ω02

√
λmin(P)

(
1− e

− t
2λmaξ (P)

)
+
√

V(η(0))e−
t

2λmax(P)

‖η(t)‖ ≤
√

1
λmin(P)

(
2Mλ2

max(P)
ω02

√
λmin(P)

(
1− e−

t
2λmax(P)

)
+
√

V(η(0))e−
t

2λmax(P)

)

‖η(t)‖ ≤ 2Mλ2
max(P)

ω02λmin(P)

(
1− e−

t
2λmax(P)

)
+

√
V(η(0))
λmin(P)

e−
t

2λmax(P) (31)

Therefore, it follows from (27) that,

∣∣ξi(t)− ξ̂i(t)
∣∣ = 1

ωi0
n+1−i |ηi(ω0t)| ⇒

∣∣ξi(t)− ξ̂i(t)
∣∣ ≤ 1

ω0n+1−i ‖η(ω0t)‖

Then using (31) gives,

∣∣ξi(t)− ξ̂i(t)
∣∣ ≤ 1

ω0n+1−i

(
2Mλ2

max(P)
ω02λmin(P)

(
1− e−

ω0t
2λmax(P)

)
+

√
V(η(0))
λmin(P)

e−
ω0t

2λmax(P)

)

Finally,

lim
t→∞

∣∣ξi(t)− ξ̂i(t)
∣∣ = 1

ω0n+3−i
2Mλ2

max(P)
λmin(P)

= O
(

1
ω0n+3−i

)
In the special case when the bandwidth of the SMHOESO goes very large, then,

lim
t→ ∞

ω0 → ∞

∣∣ξi(t)− ξ̂i(t) = 0
∣∣

�

4. Observer Design for MIMO Systems

In this section, a class of MIMO systems with uncertainties and exogenous disturbances
are considered as follows,

ξ
(n)
1 (t) = f1

(
t, ξ1(t), . . . , ξ

(n−1)
1 (t), . . . , ξ

(n−1)
n (t)

)
+ w1(t) + ∑n

j=1 b1,juj(t)

ξ
(n)
2 (t) = f2(t, ξ1(t), . . . , ξ

(n−1)
1 (t), . . . , ξ

(n−1)
n (t)) + w2(t) + ∑n

j=1 b2,juj(t)
...

ξ
(n)
n (t) = fn(t, ξ1(t), . . . , ξ

(n−1)
1 (t), . . . , ξ

(n−1)
n (t)) + wn(t) + ∑n

j=1 bn,juj(t)
yi(t) = ξi(t) f ori = 1, 2, . . . , n

(32)

where u(t) = (u1(t), u2(t), . . . um(t))
T ∈ Rn is thecontrol input; y(t) = (y1(t), y2(t), . . . ym(t))

T

∈ Rn is the output measured output; fi ∈ C(R+ ×Rn×n,Rn) an unknown system function
for i ∈ {1, 2, . . . n}; wi(t) ∈ C(R,R) the uncertain exogenous disturbance for i ∈ {1, 2, . . . n};
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and ξ(t) = (ξ1(t), ξ2(t), . . . , ξn(t)) ∈ Rn is the state vector of the system. A convenient
way to represent the system (32) is,

ξ
(n)
1 (t)

ξ
(n)
2 (t)

...
ξ
(n)
n (t)

 =


f1(.)
f2(.)

...
fn(.)

+


w1(t)
w2(t)

...
wn(t)

+


b11 b12
b21 b22

. . . b1n

. . . b2n
...

...
bn1 bn2

. . .
...

. . . bnn




u1(t)
u2(t)

...
un(t)

 (33)

For every i, j ∈ {1, 2, . . . n} there exists a constant bi,j such that the matrix B with entry
bi,j is invertible with inverse matrix given by,

b∗11 · · · b∗1n
...

. . .
...

b∗n1 . . . b∗nn

 =

b11 · · · b1n
...

. . .
...

bn1 . . . bnn


−1

(34)

Let the control inputs be denoted by,
u1(t)
u2(t)

...
un(t)

 =


b∗11 b∗12
b∗21 b∗22

. . . b∗1n

. . . b∗2n
...

...
b∗n1 b∗n2

. . .
...

. . . b∗nn




u∗1(t)
u∗2(t)

...
u∗n(t)

 (35)

Substitution of the control law (35) into the system (33) yields,
ξ
(n)
1 (t)

ξ
(n)
2 (t)

...
ξ
(n)
n (t)

 =


f1(.)
f2(.)

...
fn(.)

+


w1(t)
w2(t)

...
wn(t)

+


b11 b12
b21 b22

. . . b1n

. . . b2n
...

...
bn1 bn2

. . .
...

. . . bnn




b∗11 b∗12
b∗21 b∗22

. . . b∗1n

. . . b∗2n
...

...
b∗n1 b∗n2

. . .
...

. . . b∗nn




u∗1(t)
u∗2(t)

...
u∗n(t)


This with (34) gives,

ξ
(n)
1 (t)

ξ
(n)
2 (t)

...
ξ
(n)
n (t)

 =


f1(.)
f2(.)

...
fn(.)

+


w1(t)
w2(t)

...
wn(t)

+


u∗1(t)
u∗2(t)

...
u∗n(t)

 (36)

Then, Equation (36) is transformed into a first-order system described by n number
of subsystems of the first-order differential equations, where ξi,j(t) = ξ

(j−1)
i (t) f or i, j ∈

{1, 2, . . . n} 

.
ξ i,1(t) = ξi,2(t).
ξ i,2(t) = ξi,3(t)

...
.
ξ i,n(t) = fi

(
t, ξ1,1(t), . . . , ξ1,n(t), . . . , ξn,n(t)

)
+ wi(t) + u∗i (t)

yi(t) = ξi,1(t) f ori = 1, 2, . . . , n

(37)
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By adding the extended states ξi,+1(t)
def
= fi(t, .) + wi(t), ξi,n+2(t)

def
=

.
f i(t, .) +

.
wi(t),

the system (37) can be written as,

.
ξ i,1(t) = ξi,2(t).
ξ i,2(t) = ξi,3(t)

...
.
ξ i,n(t) = ξi,n+1(t) + u∗i (t).
ξ i,n+1(t) = ξi,n+2(t).
ξ i,n+2(t) = ∆ i(t)
yi(t) = ξi,1(t) f ori = 1, 2, . . . , n

(38)

where ∆ i(t) =
..
f i(t, ξ1(t), ξ2(t), . . . , ξn(t)) +

..
wi(t). In order to prove the convergence of

NLESO, the following definitions and assumptions are needed.

Definition 1. A function gi : R→ R is an odd nonlinear function with gi(0) = 0. The nonlinear
function gi(.) is selected as follows:

gi(e) = Ki,α|e|αi sign(e) + Ki,β|e|βi (e) (39)

where Ki,α, Ki,β, αi, and βiare the positive design parameters. Rewriting (39) as,

gi(e) =
(

Ki,α
|e|αi

e
sign(e) + Ki,β|e|βi

)
e

since sign(e) =e/|e|, for|e|6= 0 , then,

gi(e) =
{

0 e = 0
ki(e).e e 6= 0

(40)

where,
ki(e)= Ki,α|e|αi−1 + Ki,β|e|βi (41)

The function ki : R→ R+ is a nonlinear gain function.

Assumption 7. There exist continuous differentiable positive definite, functions Vi, Wi : Rn+2 → R+

and constants λi,1, and λi,2, such that:

λi,1‖y‖2 ≤ Vi(y) ≤ λi,2‖y‖2, Wi(y) = ‖y‖2 (42)

∑n+1
j=1

∂Vi
∂yi,j

(
yi,j+1 − ajk

(
yi,1(t)
ω0n

)
yi,1

)
− ∂Vi

∂yi,n+2
an+2k

(
yi,1(t)
ω0n

)
yi,1 ≤ −Wi(y) (43)

The following nonlinear higher-order extended state observer is proposed for the subsystem (37) with
i ∈ {1, 2, . . . n}. 

.
ξ̂ i,1(t) = ξ̂i,2(t) + βi,1gi(yi(t)− ξ̂i,1(t)).
ξ̂ i,2(t) = ξ̂i,3(t) + βi,2gi(yi(t)− ξ̂i,1(t))

...
.
ξ̂ i,n(t) = ξ̂i,n+1(t) + u∗i (t) + βi,ngi(yi(t)− ξ̂i,1(t)).
ξ̂ i,n+1(t) = ξ̂i,n+2(t) + βi,n+1gi

(
yi(t)− ξ̂i,1(t)

)
.
ξ̂ i,n+2(t) = βi,n+2gi

(
yi(t)− ξ̂i,1(t)

)
(44)
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Theorem 3. Consider the system with augmented states given in (38), and the proposed nonlinear
extended state observer (44). Then lim

t→∞

∣∣ξi,j(t)− ξ̂i,j(t)
∣∣ = 0, where ξi,j(t) and ξ̂i,j(t) represent the

solution of (38) and (44), respectively, i ∈ {1, 2, . . . n}, j ∈ {1, 2, . . . n + 2}.

Proof. Set ei,j(t) = ξi,j(t)− ξ̂i,j(t), for i ∈ {1, 2, . . . n}, j ∈ {1, 2, . . . n + 2}. Then,

.
ξ i,1(t)−

.
ξ̂ i,1(t) = ξi,2(t)−

(
ξ̂i,2(t) + βi,1gi(yi(t)− ξ̂i,1(t))

)
.
ξ i,2(t)−

.
ξ̂ i,2(t) = ξi,3(t)−

(
ξ̂i,3(t) + βi,2gi(yi(t)− ξ̂i,1(t))

)
...

.
ξ i,n(t)−

.
ξ̂ i,n(t) = ξi,n+1(t) + ui(t)−

(
ξ̂i,n+1(t) + ui(t) + βi,ngi(yi(t)− ξ̂i,1(t))

)
.
ξ i,n+1(t)−

.
ξ̂ i,n+1(t) = ξi,n+2(t)−

(
ξ̂i,n+2(t) + βi,n+1gi(yi(t)− ξ̂i,1(t))

)
.
ξ i,n+2(t)−

.
ξ̂ i,n+2(t) = ∆ i(t)− βi,n+1gi(yi(t)− ξ̂i,1(t))

A simple calculation demonstrates that the estimating error dynamics meet,

.
ei,1(t) = ei,2(t)− βi,1gi(ei,1(t)).
ei,2(t) = ei,3(t)− βi,2gi(ei,1(t))

...
.
ei,n(t) = ei,n+1(t)− βi,ngi(ei,1(t)).
ei,n+1(t) = ei,n+2(t)− βi,n+1gi(ei,1(t)).
ei,n+2(t) = ∆ i(t)− βi,n+2gi(ei,1(t))

(45)

Let βi,j = ai,jωi0
j, where ai,j, i ∈ {1, 2, . . . n}, j ∈ {1, 2, . . . n + 2} are design parameters,

and ω0 is the observer bandwidth. The estimation error dynamics (45) given that gi is
represented by (40) and the final form is,

.
ei,1(t) = ei,2(t)−ωi0ai,1ki(ei,1(t)).ei,1(t).
ei,2(t) = ei,3(t)−ωi0

2ai,2ki(ei,1(t)).ei,1(t)
...

.
ei,n(t) = ei,n+1(t)−ωi0

nai,nki(ei,1(t)).ei,1(t).
ei,n+1(t) = ei,n+2(t)−ωi0

n+1ai,n+1ki(ei,1(t)).ei,1(t).
ei,n+2(t) = ∆ i −ωi0

n+2ai,n+2ki(ei,1(t)).ei,1(t)

(46)

Time scale (46) to get,

dei,1

(
t

ωi0

)
d t

ωi0

= ei,2

(
t

ωi0

)
−ωi0ai,1ki

(
ei,1

(
t

ωi0

))
.ei,1

(
t

ωi0

)
dei,2

(
t

ωi0

)
d t

ωi0

= ei,3

(
t

ωi0

)
−ωi0

2ai,2ki

(
ei,1

(
t

ωi0

))
.ei,1

(
t

ωi0

)
...

dei,n

(
t

ωi0

)
d t

ωi0

= ei,n+1

(
t

ωi0

)
−ωi0

nai,nki

(
ei,1

(
t

ωi0

))
.ei,1

(
t

ωi0

)
dei,n+1(s)

ds = ei,n+2

(
t

ωi0

)
−ωi0

n+1ai,n+1ki

(
ei,1

(
t

ωi0

))
.ei,1

(
t

ωi0

)
dei,n+1

(
t

ωi0

)
d t

ωi0

= ∆ i −ωi0
n+2ai,n+2ki

(
ei,1

(
t

ωi0

))
.ei,1

(
t

ωi0

)

(47)

Let ηi,j(t) = ωi,0
n+1−jei,j(

t
ωi0

), i ∈ {1, 2, . . . n}, j ∈ {1, 2, . . . n + 2}, then,

ηi,j(t) = ωi0
n+1−jei,j

(
t

ωi0

)
⇒ ei,j

(
t

ωi0

)
=

1
ωi0

n+1−j ηi,j(t) (48)
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Taking the derivative (48) with respect to s yields,

dηi,j(t)

dt
= ωi0

n+1−j
dei,j

(
t

ωi0

)
d( t

ωi0
)

d( t
ωi0

)

dt
= ωi0

n−j
dei,j

(
t

ωi0

)
d( t

ωi0
)

dei,j

(
t

ωi0

)
d t

ωi0

=
1

ωi0
n−j

dηi,j(t)

dt
(49)

Both (48) and (49) are substituted in (47) and the result is,

1
ωi0

n−1
dηi,1(t)

dt = 1
ωi0

n−1 ηi,2(t)−ωi0ai,1ki(ei,1(s)). 1
ωi0

n ηi,1(t)
1

ωi,0
n−2

dηi,2(t)
dt = 1

ωi,0
n−2 ηi,3(t)−ωi0

2ai,2ki(ei,1(s)). 1
ωi0

n ηi,1(t)
...

dηi,n(t)
dt = ηi,n+1(t)−ωi0

nai,nki(ei,1(s)). 1
ωi0

n ηi,j(t)
1

ωi0
−1

dηi,n+1(t)
dt = 1

ωi0
−1 ηi,n+2(t)−ωi0

n+1ai,n+1ki(ei,1(s)). 1
ωi0

n ηi,1(t)
1

ωi0
−2

dηi,n+2(t)
dt = ∆ i −ωi0

n+2ai,n+2ki(ei,1(s)). 1
ωi0

n ηi,j1(t)

The estimation error of the time-scaled dynamics is given as,

.
ηi,1(t) = ηi,1(t)− ai,1ki

(
ηi,1(t)
ωi0

n

)
.ηi,1(t)

.
ηi,2(t) = ηi,2(t)− ai,2ki

(
ηi,1(t)
ωi0

n

)
.ηi,1(t)

...
.
ηi,n(t) = ηi,n+1(t)− ai,nki

(
ηi,1(t)
ωi0

n

)
.ηi,1(t)

.
ηi,n+1(t) = ηi,n+2(t)− ai,n+1ki

(
ηi,1(t)
ωi0

n

)
.ηi,1(t)

.
ηi,n+2(t) =

∆ i
ωi0

2 − ai,n+2ki

(
ηi,1(t)
ωi0

n

)
.ηi,1(t)

(50)

Obtaining the derivative of Vi(ηi) w.r.t. t along the solution ηi of (50),

.
Vi(ηi)

∣∣∣
along(50)

=
n+2
∑

j=1

∂Vi(ηi)
∂ηi,j

.
ηi,j(t)

=
n+1
∑

j=1

∂Vi(ηi)
ηi,j

(
ηi,j+1(t)− ai,jki

(
ηi,1(t)
ωi0

n

)
.ηi,1(t)

)
+ ∂Vi(ηi)

∂ηi,n+2

(
∆ i

ωi0
2 − ai,n+2ki

(
ηi,1(t)
ωi0

n

)
.ηi,1(t)

)
,

Then,

.
Vi(ηi)

∣∣∣
along(50)

=
n+1

∑
j=1

∂Vi(ηi)

ηi,j

(
ηi,j+1(t)− ai,jki

(
ηi,1(t)
ωi0

n

)
.ηi,1(t)

)
− ∂Vi(ηi)

∂ηi,n+2
ai,n+2ki

(
ηi,1(t)
ωi0

n

)
.ηi,1(t) +

∂Vi(ηi)

∂ηi,n+2

∆ i
ωi0

2

from Lemma 1(ii),
.

Vi(ηi)
∣∣∣
along(50)

≤ −Wi(ηi) +
∂Vi(ηi)

∂ηi,n+2

∆ i
ωi0

2

With Assumptions 5–7 and the results of Lemma 1, that gives,

.
Vi(ηi) ≤ −

Vi(ηi)

λmax(Pi)
+

Mi
ωi0

2 2λmax(Pi)

√
Vi(ηi)√

λmin(Pi)

Since d
dt

√
Vi(ηi) =

1
2

1√
Vi(ηi)

.
Vi(ηi), then,

d
dt

√
Vi(ηi) ≤ 1

2
1√

Vi(ηi)
(− Vi(ηi)

λmax(Pi)
+ Mi

ωi0
2 2λmax(Pi)

√
Vi(ηi)√

λmin(Pi)
)

d
dt

√
Vi(ηi) ≤ −

√
Vi(ηi)

2λmax(Pi)
+ Mi

ωi0
2

λmax(Pi)√
λmin(Pi)

(51)
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Solving the ordinary differential Equation (51) gives,

√
Vi(ηi) ≤

2Miλ
2

max(Pi)

ωi0
2
√

λmin(Pi)

(
1− e

− t
2λmax(Pi)

)
+
√

Vi(ηi(0))e
− t

2λmax(Pi)

‖ηi(t)‖ ≤
√

1
λmin(Pi)

( 2Miλ
2

max(Pi)

ωi0
2
√

λmin(Pi)

(
1− e

− t
2λmaξ (Pi)

)
+
√

Vi(ηi(0))e
− t

2λmax(Pi) )

‖ηi(t)‖ ≤
2Miλ

2
max(Pi)

ωi0
2λmin(Pi)

(
1− e

− t
2λmax(Pi)

)
+

√
Vi(ηi(0))
λmin(Pi)

e
− t

2λmax(Pi)

(52)

Therefore using (48), one gets,

∣∣ξi,j(t)− ξ̂i,j(t)
∣∣ = 1

ωi0
n+1−i |ηi(ω0t)| ⇒

∣∣ξi,j(t)− ξ̂i,j(t)
∣∣ ≤ 1

ω0n+1−i ‖ηi(ω0t)‖

Then using (52) gives,

∣∣ξi,j(t)− ξ̂i,j(t)
∣∣ ≤ 1

ω0n+1−i
2Miλ

2
max(Pi)

ωi0
2λmin(Pi)

(
1− e

− ω0t
2λmax(Pi)

)
+

√
Vi(ηi(0))
λmin(Pi)

e
− ω0t

2λmax(Pi)

Finally, lim
t→∞

∣∣ξi,j(t)− ξ̂i,j(t)
∣∣ = 1

ωi0
n+3−i

2Miλ
2

max(Pi)
λmin(Pi)

,

as ωi0 → ∞ , then lim
t→∞

∣∣ξi,j(t)− ξ̂i,j(t)
∣∣ = 0.

�

5. Numerical Simulations

Three numerical simulations are considered in this work and are described below.
Case Study 1: Industrial MIMO system
Consider the following MIMO system,

.
ξ1,1 = ξ1,1,

.
ξ1,2 = f1(ξ, ζ, ω1) + a11u1 + a12u2

.
ξ2,1 = ξ2,2,

.
ξ

2
2 = f2(ξ, ζ, ω2) + a21u1 + a22u2.

ζ = ξ1,2 + ξ2,1 + sin(ζ) + sin(t)
y1 = ξ1,1, y2 = ξ2,2

(53)

where y1, y2 are the outputs, u1,u2 are inputs and
f1(ξ1,1, ξ1,2, ξ2,1, ξ2,2, ζ, ω1) = ξ1,1 + ξ2,1 + ζ + sin(ξ1,2 + ξ2,2)ω1
f2(ξ1,1, ξ1,2, ξ2,1, ξ2,2, ζ, ω2) = ξ1,2 + ξ2,2 + ζ + sin(ξ1,1 + ξ2,1)ω2

a11 = 1 + 1
10 sin(t), a12 = 1 + 1

10 cos(t), a21 = 1 + 1
10 2−t, a22 = −1

(54)

where f1, f2, f3, and f4 are unknown functions. Suppose that external disturbances ω1, ω2
and the reference signals r1, r2 are as follows: ω1 = 1 + sin(t), ω2 = 2−tcos(t), r1 =
sin(t), r2 = cos(t). The proposed feedback control law is formulated as,{

u1 = Sat( u∗1
2 +

u∗2
2 , δ1)

u2 = Sat
(

u∗1
2 −

u∗2
2 , δ2

) (55)

where
u*

1 = k1,1 f al(e1,1, α1,1, δ1,1) + k1,2 f al(e1,2, α1,2, δ1,2)− ξ̂1,3,
u*

2 = k2,1 f al(e2,1, α2,1, δ2,1) + k2,2 f al(e2,2, α2,2, δ2,2)− ξ̂2,3,
and

Sat(u, δ) =


δ u ≥ δ,

u −δ < u < δ
−δ u ≤ −δ.
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The tracking error vector is given as,(
e1

1, e1
2, e2

1, e2
2

)T
= (r1,1, r1,2, r2,1, r2,2)

T −
(
ξ̂1,1, ξ̂1,2, ξ̂2,1, ξ̂2,2

)T

The desired transient profile vector (r1,1, r1,2, r2,1, r2,2)
T is generated by the following

tracking differentiators,
.
ri,1 = ri,2,
.
ri,2 = −Risign

(
ri,1 − ri +

ri,2|ri,2|
2Ri

)
, i ∈ {1, 2} (56)

where Ri, i ∈ {1, 2} is a design parameter is an application-dependent parameter and it is
set accordingly to speed up or slow down the transient profile. The sample data for the
ADRC units are given in Table 1. The virtual control signals u∗i , i ∈ {1, 2} in (55) are derived
from the fal-based control law given below

u = f al(e1, α1, δ1) + f al(e2, α2, δ2)− ξ̂3 (57)

Table 1. The parameters of the ADRC units.

Unit
First Channel Parameters Second Channel Parameters

Parameter Value Parameter Value

TD R1 92.2713 R2 88.4424

LESO ω10 68.3308 ω20 53.1690

fal-based Control law

δ1,1 0.0010 δ2,1 0.14456

δ1,2 0.2834 δ2,2 0.73456

α1,1 0.1629 α2,1 0.02730

α1,2 0.7946 α2,2 0.93745

k1,1 12.8015 k2,1 18.3095

k1,2 11.2999 k2,2 19.52670

δ1 40 δ2 40

SMHOESO

ω10 135.6086 ω20 22.8802

a1,1 2.31423 a2,1 3.3264

a1,2 4.5361 a2,2 4.66885

a1,3 2.0465 a2,3 1.48218

a1,4 0.1658 a2,4 0.04076

K1,α 0.9000 K2,α 0.9000

α1 0.9000 α2 0.9000

K1,β 0.1000 K2,β 0.1000

β1 0.0100 β2 0.0100

The tracking error e driving the control signal is given by: (e1, e2)
T = (r1, r2)

T −(
ξ̂1, ξ̂2

)T
. The desired transient trajectories (r1,1, r1,2)

T , and (r2,1, r2,2)
T are generated from

the reference signals r1, r2 via the tracking differentiators described by (56). For the two
LESO- and SMHOESO-based ADRC schemes, the output responses of the numerical
simulations for the two LESO- and SMHOESO-based ADRC schemes are shown in Figures 2
and 3, respectively. Figure 4 shows the estimated states for the proposed SMHOESO as
compared to that of the conventional LESO. It can be seen that the peaking phenomenon is
obvious in the LESO while the proposed SMHOESO damps well fluctuates in the estimated
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states and produces chattering-free estimated states. The performance indices for the two

cases are listed in Table 2, where ITAE =
∫ t f

0 t|y− r|dt is the integration of the time absolute

error for the output signal, ISU =
∫ t f

0 v2dt is the integration of the square of the control
signal v, and t f is the final simulation time.
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Figure 2. The output response of the hypothetical MIMO system controlled by ADRC based on LESO
(a) output curve, y1, (b) output curve, y2, and (c) control signals, u1 and u2.
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Figure 3. The output response of the hypothetical MIMO system controlled by ADRC based on
SMHOESO (a) output curve, y1, (b) output curve, y2, and (c) control signals, u1 and u2.
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Figure 4. The estimated states response of the hypothetical MIMO system controlled by ADRC based
on LESO and SMHOESO (a) state estimate ξ̂1,2 using LESO, (b) state estimate ξ̂2,1 using LESO, (c)
state estimate ξ̂1,2 using SMHOESO, and (d) state estimate ξ̂2,1 using SMHOESO.

Table 2. The numerical results of case study 2.

Performance
Index LESO SMHOESO %Reduction

ISU1 314.1064 308.4248 1.8%

ISU2 296.8865 225.7019 24%

ITAE1 0.1628 0.1210 25.7%

ITAE2 0.3536 0.0937 73.5%

As shown in Table 2, the proposed configuration resulted in a significant reduction
in the ITAE and ISU of the two channels. This is reflected in the control efforts u1 and
u2 depicted in Figures 2c and 3c, where u1 and u2 for the SMHOESO-based ADRC wit-
nessed less activity than the LESO-based ADRC. The SMHOESO-based ADRC has a better
tracking output response than the LESO-based ADRC, particularly during the transient
period, where both configurations have completely attenuated the effect of the exogenous
disturbances w1 and w2, the state couplings for each subsystem, and the time-varying input
gains b1,1, b1,2, b2,1, and b2,2 on the output response of the two channels.

Case Study 2: DDMR System
The mathematical model of the mobile robot is an approximation of the physical

mobile robot shown in Figure 5; which, is comprised of permanent magnet DC motors
(PMDC), wheels dynamic model, DDMR dynamic model, DDMR Kinematic model, and
the Tractive forces equation. In this model, it is assumed that the lateral slip and forces
arising from dynamic effects are neglected. Lateral slip is zero for straight-line motions and
it can be neglected when the vehicle turns “on the spot” or at low velocities [43–47].
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PMDC motors and the wheels dynamic model is given as [48–50],

.
ξ1 = ξ2
.
ξ2 = − RaBeq+KtKb

La Jeq
ξ1 −

(LaBeq+Ra Jeq)
La Jeq

ξ2 +
1
n

Kt
La Jeq

(var −
La
Kt

.
TLr − Ra

Kt
TLr)

.
ξ3 = ξ4
.
ξ4 = − RaBeq+KtKb

La Jeq
ξ3 −

(LaBeq+Ra Jeq)
La Jeq

ξ4 +
1
n

Kt
La Jeq

(val −
La
Kt

.
TLl − Ra

Kt
TLl)

TLr =
rw
n Ftr(λr) +

1
n τeξtr

TLl =
rw
n Ftl(λl) +

1
n τeξtl

where the state vector (ξ1, ξ2, ξ3, ξ4)
T =

(
ωwr,

.
ωwr, ωwl ,

.
ωwl

)T represents the right
wheel angular velocity, the right wheel angular acceleration, the left wheel angular velocity,
and the left wheel angular acceleration, respectively; Jeq is the total equivalent inertia, kt is
the torque constant, Ra is the electric resistance, Beq is the total equivalent damping, var and
val are the input voltages applied to the right and left motors, respectively; n is the gearbox
ratio, kb is the voltage constant, La is the electric self-inductance constant, and τeξtr, τeξtl are
the external torque disturbances applied at the right and left wheel sides, respectively. The
DDMR dynamic model is given as [51–53]:{

M
.
ξ5 = Ftr + Ftl

J
.
ξ6 = (Ftr − Ftl)

Dw
2

The state vector (ξ5, ξ6)
T = (Vm, ωm)

T represents the longitudinal velocity of the
center of mass, and the angular velocity of the DDMR. Where Dw is the distance between
the right and left wheels of the DDMR, M is the effective mass of the DDMR with the
driving wheels and the motors, J is the moment of inertia of the DDMR with the driving
wheels and the motors taken at the center of mass about the vertical axis, and Ftr and Ftl
are the tractive forces. The DDMR Kinematic model s given as,

.
ξ7 = ξ5cos(ξ9).
ξ8 = ξ5sin(ξ9).
ξ9 = ξ6

The state vector (ξ7, ξ8, ξ9)
T =

(
ξ ′, y′, θ

)T represents the Cartesian position in the
coordinate system for the DDMR reference frame, and the orientation angle of the DDMR,
respectively. The tractive forces equation [51,54–57],

ξs
1 = 1

rw
ξ5 +

Dw
2rw

ξ6

ξs
3 = 1

rw
ξ5 − Dw

2rw
ξ6

λr =
ξ1−ξs

1
max(ξ1,ξ ′1)

λl =
ξ3−ξs

3
max(ξ3,ξ ′3)

µ(λr) = Dsin(Ctan−1(Bλr − E
(

Bλr − tan−1(Bλr))
))

µ(λl) = Dsin(Ctan−1(Bλl − E
(

Bλl − tan−1(Bλl))
))

Ftr(λr) = µ(λr)N
Ftl(λl) = µ(λl)N

where ξs
1, ξs

3 are relative to the ground linear velocities of the left and right wheels of the
WMR in the presence of wheel slipping, respectively, rw is the nominal radius of the tire, µ
represents the adhesive coefficient, which is highly dependent on tire characteristics and
the terrain conditions (such as dry, gravel, and ice), and N is the vertical load. The Magic
Formula is characterized by four dimensionless coefficients (B, C, D, E), i.e., stiffness, shape,
peak, and curvature. The sample data are given in Tables 3 and 4.
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Table 3. Parameters of the ADRC units.

Unit Parameter Value

LESO
ω0 4.7400

b 14.8378

TD R 19.1324

fal-based
control law

α1 0.5000

δ1 0.0100

α2 0.2500

δ2 0.0100

SMHOESO

ω0 3.9816

a1 4

a2 5.4

a3 2.88

a4 0.82

α 0.99

β 0.9

kα 2.1

kβ 0.04

Table 4. The parameters of the robot chassis.

Parameter
Name

Parameter
Symbol Value Unit

Mass M 8.4 kg

The distance between
wheels Dw 0.28 m

Wheel radius r 0.075 m

Depth a 0.31 m

Width b 0.29 m

Inertia J 0.1261 kg·m2

Figure 6 shows the applied aperiodic disturbance while Figure 7 shows how the LESO-
based ADRC scheme responds to the right and left wheels’ respective angular velocities of
ωwr (RPM) and ωwl (RPM). Additionally, Figure 8 clearly depicts how the SMHOESO-based
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ADRC outperforms the LESO-based ADRC. Figure 8e shows the control signals u1 and u2
generated by the proposed SMHOESO-based ADRC control scheme. It is evidently that the
proposed SMHOESO totally removes the chattering in the control signal as compared to the
LESO (See Figure 7e). Figures 7 and 8 showed that utilizing the LESO-based ADRC scheme,
the rising time of the wheels’ angular velocities, ωwr (RPM) and ωwl (RPM), was longer
than when using the SMHOESO-based ADRC scheme as can be seen from the close-up
figures (Figures 7b and 8b). Therefore, it is evident that the SMHOESO-based ADRC system
yields a quicker response. Additionally, as shown in Figure 8a,c, the final point that can be
reached in the actual trajectory of the DDMR for the SMHOESO-based ADRC scheme was
closer to the final point of the reference trajectory.
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Figure 8. Output results for SMHOESO, (a) the right wheel angular velocity, (b) close-up of (a), (c)
the left wheel angular velocity, (d) the orientation error of the DDMR, and (e) the control signal.

The kinematic index (see Table 5) for the ADRC based on SMHOESO significantly
improved as compared to the traditional ADRC, with an OPIθ reduction of 99.3447%. The
simulations (see Table 6) demonstrate that, in contrast to a discernible improvement in
the transient response, the ISU, which indicates the energy given to the PMDC motor,
has unintentionally increased. In addition, the suggested observer almost eliminates the
chattering in the control signal brought on by Han’s traditional ADRC.

Table 5. The DDMR kinematics index.

Performance Index
Observer Type

LESO SMHOESO

OPIθ 0.0000057838 0.0000000379

Table 6. Performance measures of both wheels.

Wheel Performance Measure
Observer Type

LESO SMHOESO

Right ITAE 10.537531 1.045611

ISU 1349.853127 1376.019003

Left ITAE 5.126353 0.720233

ISU 1323.280874 1333.229224

As a final comparison between the proposed SMHOESO and the conventional LESO,
a step change in the torque disturbance of 3 N.M applied at 25 s; the result (Figure 9) shows
that the proposed SMHOESO outperforms the conventional LESO where the undershoot
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and the overshoot are apparently removed. While the LESO exhibits chattering, the
proposed SMHOESO totally removes the chattering from the output response and settles
at faster settling time of 26 s, while the output response in the LESO settles at 34 s.
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where ITAE is the Integral Time-weighted Absolute Error (ITAE) and is defined as ITAE =∫ t f
0 t|e|dt, ISU is the Integration of the square of the controller energy and is defined as ISU

=
∫ t f

0 u2(t)dt, and finally OPIθ = 1
N ∑
(

θre f − θactual

)2
.

6. Conclusions

This paper demonstrated a methodology based on an innovative high-gain observer
class of ESO. If the initial estimation error is large, such high gains may result in the peak
phenomenon, rendering the linear ESO impractical or even dangerous to use. This work
includes two significant enhancements. First, a nonlinear error function with smoothness,
a high gain near the origin, and a small gain for large error values is used. Second, these
improvements are required due to the higher-order extended observer; which, allows for an
accurate estimation of high-order total disturbance. These enhancements resulted in both a
smooth control signal provided by the suggested observer and a minimum overshoot in
the output response. It can be concluded that the proposed observers successfully achieved
the desired response for the DDMR and produced less chattering control signals and better
time-domain performance in terms of steady-state error and transient responses. The
current work will be followed by a fractional order control to design the three parts of the
ADRC to produce a fractional-order ADRC. Furthermore, a practical implementation of this
technique on a well-known application will highlight the method’s distinguishing feature.
Another piece of future work is to conduct the H/W implementation of the proposed
SMHOESO on the DDMR platform, and testing and validating the obtained results.

Author Contributions: Conceptualization, A.T.A. and I.K.I.; Methodology, A.T.A., A.M.A., F.A.A.-M.,
I.A.H., A.J.M.J., W.R.A.-A., I.K.I. and N.A.K.; Software, A.M.A., F.A.A.-M., I.A.H., A.J.M.J., W.R.A.-A.
and N.A.K.; Validation, A.T.A., I.A.H., A.J.M.J. and W.R.A.-A.; Formal analysis, A.T.A., A.M.A.,
F.A.A.-M., I.A.H., A.J.M.J., W.R.A.-A., I.K.I. and N.A.K.; Investigation, A.M.A., I.A.H., W.R.A.-A.,
I.K.I. and N.A.K.; Resources, A.M.A., F.A.A.-M., I.A.H., A.J.M.J., W.R.A.-A. and N.A.K.; Data curation,
A.M.A., F.A.A.-M. and A.J.M.J.; Writing—original draft, A.T.A., F.A.A.-M. and I.K.I.; Writing—review



Machines 2023, 11, 470 32 of 34

& editing, A.T.A., A.M.A., F.A.A.-M., I.A.H., A.J.M.J., W.R.A.-A., I.K.I. and N.A.K.; Visualization,
A.T.A. and N.A.K.; Supervision, I.K.I. All authors have read and agreed to the published version of
the manuscript.

Funding: This research is funded by the Norwegian University of Science and Technology, Norway.

Data Availability Statement: Data sharing is not applicable to this article as no datasets were
generated in this research.

Acknowledgments: The authors would like to acknowledge the support of the Norwegian University
of Science and Technology for paying the Article Processing Charges (APC) of this publication. The
authors would like to thank Prince Sultan University, Riyadh, Saudi Arabia for their support. Special
acknowledgement to Automated Systems & Soft Computing Lab (ASSCL), Prince Sultan University,
Riyadh, Saudi Arabia. In addition, the authors wish to acknowledge the editor and anonymous
reviewers for their insightful comments, which have improved the quality of this publication.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pu, Z.; Yuan, R.; Yi, J.; Tan, X. A Class of Adaptive Extended State Observers for Nonlinear Disturbed Systems. IEEE Trans. Ind.

Electron. 2015, 62, 5858–5869. [CrossRef]
2. Gaol, L.Q. On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics.

In Proceedings of the 2007 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 12–14 December 2007;
pp. 3501–3506.

3. Pu, Z.; Yuan, R.; Yi, J.; Tan, X. Design and Analysis of Time-varying Extended State Observer. In Proceedings of the 2015 34th
Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015; pp. 753–758.

4. Yoo, D.; Yau, T.; Gao, Z.; Yooy, D.; Gaoz, Z. Optimal fast tracking observer bandwidth of the linear extended state observer. Int. J.
Control 2007, 80, 102–111. [CrossRef]

5. Krishna Srinivasan, M.; Daya John Lionel, F.; Subramaniam, U.; Blaabjerg, F.; Madurai Elavarasan, R.; Shafiullah, G.M.; Khan, I.;
Padmanaban, S. Real-Time Processor-in-Loop Investigation of a Modified Non-Linear State Observer Using Sliding Modes for
Speed Sensorless Induction Motor Drive in Electric Vehicles. Energies 2020, 13, 4212. [CrossRef]

6. Sakthivel, N.; Mounika Devi, M.; Alzabut, J. H∞ observer-based consensus for nonlinear multiagent systems with actuator
saturation and input delays. Int. J. Control 2022. [CrossRef]

7. Jayaramu, M.L.; Suresh, H.N.; Bhaskar, M.S.; Almakhles, D.; Padmanaban, S.; Subramaniam, U. Real-Time Implementation of
Extended Kalman Filter Observer With Improved Speed Estimation for Sensorless Control. IEEE Access 2021, 9, 50452–50465.
[CrossRef]

8. Guo, B.Z.; Zhao, Z.L. On the convergence of an extended state observer for nonlinear systems with uncertainty. Syst. Control Lett.
2011, 60, 420–430. [CrossRef]

9. Zhao, Z.-L.; Guo, B.-Z. On convergence of non-linear extended state observer for multi-input multi-output systems with
uncertainty. IET Control Theory Appl. 2012, 6, 2375–2386.

10. KINETIS MOTOR SUITE: Sensorless PMSM Field-Oriented Control on Kinetis KV and KE. Available online: https://www.nxp.
com/doc/AN5237 (accessed on 1 May 2022).

11. Ibraheem, I.K.; Abdul-Adheem, W.R. An Improved Active Disturbance Rejection Control for a Differential Drive Mobile Robot
with Mismatched Disturbances and Uncertainties. In Proceedings of the Third International Conference on Electrical and
Electronic Engineering, Telecommunication Engineering and Mechatronics (EEETEM2017), Beirut, Lebanon, 26–28 April 2017;
pp. 7–12.

12. Achieve Improved Motion and Efficiency for Advanced Motor Control Designs In Minutes with TI’s New InstaSPINTM-MOTION
Technology. Texas Instruments. Available online: http://www.prnewswire.com/news-releases/achieve-improved-motion-and-
efficiency-for-advanced-motor-control-designs-in-minutes-with-tis-new-instaspin-motion-technology-203572121.html (accessed
on 1 May 2022).

13. Huang, Y.; Xue, W.; Zhiqiang, G.; Sira-Ramirez, H.; Wu, D.; Sun, M. Active disturbance rejection control: Methodology, practice
and analysis. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014; pp. 1–5. [CrossRef]

14. Wang, W.; Gao, Z. A comparison study of advanced state observer design techniques. In Proceedings of the 2003 American
Control Conference, 2003, Denver, CO, USA, 4–6 June 2003; Volume 6, pp. 4754–4759. [CrossRef]

15. Gao, Z. Scaling and bandwidth-parameterization based controller tuning. In Proceedings of the American Control Conference
2003, Denver, CO, USA, 4–6 June 2003; Volume 6, pp. 4989–4996.

16. Sun, L.; Li, D.; Hu, K.; Lee, K.Y.; Pan, F. On Tuning and Practical Implementation of Active Disturbance Rejection Controller: A
Case Study from a Regenerative Heater in a 1000 MW Power Plant. Ind. Eng. Chem. Res. 2016, 55, 6686–6695. [CrossRef]

17. Bao, D.; Tang, W. Adaptive sliding mode control of ball screw drive system with extended state observer. In Proceedings of
the 2016 2nd International Conference on Control, Automation and Robotics (ICCAR), Hong Kong, China, 28–30 April 2016;
pp. 133–138.

https://doi.org/10.1109/TIE.2015.2448060
https://doi.org/10.1080/00207170600936555
https://doi.org/10.3390/en13164212
https://doi.org/10.1080/00207179.2022.2150320
https://doi.org/10.1109/ACCESS.2021.3069676
https://doi.org/10.1016/j.sysconle.2011.03.008
https://www.nxp.com/doc/AN5237
https://www.nxp.com/doc/AN5237
http://www.prnewswire.com/news-releases/achieve-improved-motion-and-efficiency-for-advanced-motor-control-designs-in-minutes-with-tis-new-instaspin-motion-technology-203572121.html
http://www.prnewswire.com/news-releases/achieve-improved-motion-and-efficiency-for-advanced-motor-control-designs-in-minutes-with-tis-new-instaspin-motion-technology-203572121.html
https://doi.org/10.1109/ChiCC.2014.6896585
https://doi.org/10.1109/ACC.2003.1242474
https://doi.org/10.1021/acs.iecr.6b01249


Machines 2023, 11, 470 33 of 34

18. Godbole, A.A.; Kolhe, J.P.; Talole, S.E. Performance analysis of generalized extended state observer in tackling sinusoidal
disturbances. IEEE Trans. Control Syst. Technol. 2013, 21, 2212–2223. [CrossRef]

19. Pan, H.; Sun, W.; Gao, H.; Hayat, T.; Alsaadi, F. Nonlinear tracking control based on extended state observer for vehicle active
suspensions with performance constraints. Mechatronics 2015, 30, 363–370. [CrossRef]

20. Yang, L.; Liu, L.; Zhang, J. A bi-bandwidth extended state observer for a system with measurement noise and its application to
aircraft with abrupt structural damage. Aerosp. Sci. Technol. 2021, 114, 106742. [CrossRef]

21. Li, Y.; Yang, B.; Zheng, T.; Li, Y.; Cui, M.; Peeta, S. Extended-State-Observer-Based Double-Loop Integral Sliding-Mode Control of
Electronic Throttle Valve. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2501–2510. [CrossRef]

22. Goel, A.; Swarup, A. Performance Analysis of Active Disturbance Rejection Controlled Robotic Manipulator based on Evolution-
ary Algorithm. Int. J. Hybrid Inf. Technol. 2016, 9, 65–80. [CrossRef]

23. Ma, Q.; Xu, D.; Lv, P.; Shi, Y. Application of NSGA-II in Parameter Optimization of Extended State Observer. In Challenges of Power
Engineering and Environment; Cen, K., Chi, Y., Wang, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 587–592. [CrossRef]

24. Zheng, M.; Chen, X.; Tomizuka, M. Extended state observer with phase compensation to estimate and suppress high-frequency
disturbances. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 3521–3526.
[CrossRef]

25. Lee, S.; Kim, Y. Design of nonlinear observer for strap-down missile guidance law via sliding mode differentiator and extended
state observer. In Proceedings of the 2016 International Conference on Advanced Mechatronic Systems (ICAMechS), Melbourne,
Australia, 30 November–3 December 2016; pp. 143–147.

26. Liu, B.; Jin, Y.; Chen, C.; Yang, H. Speed Control Based on ESO for the Pitching Axis of Satellite Cameras. Math. Probl. Eng. 2016,
2016, 2138190. [CrossRef]

27. Li, J.; Qi, X.; Xia, Y.; Pu, F.; Chang, K. Frequency domain stability analysis of nonlinear active disturbance rejection control system.
ISA Trans. 2014, 56, 188–195. [CrossRef]

28. Mao, J.; Gu, L.; Wu, A.; Wu, G.; Zhang, X.; Chen, D. Back-stepping control for vertical axis wind power generation system
maximum power point tracking based on extended state observer. In Proceedings of the 2016 35th Chinese Control Conference
(CCC), Chengdu, China, 27–29 July 2016; pp. 8649–8653. [CrossRef]

29. Yang, H.; Yu, Y.; Yuan, Y.; Fan, X. Back-stepping control of two-link flexible manipulator based on an extended state observer.
Adv. Sp. Res. 2015, 56, 2312–2322. [CrossRef]

30. Xia, Y.; Yang, H.; You, X.; Li, H. Adaptive control for attitude synchronisation of spacecraft formation via extended state observer.
IET Control Theory Appl. 2014, 8, 2171–2185.

31. Lin, Y.P.; Lin, C.L.; Suebsaiprom, P.; Hsieh, S.L. Estimating evasive acceleration for ballistic targets using an extended state
observer. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 337–349. [CrossRef]

32. Wu, S.; Dong, B.; Ding, G.; Wang, G.; Liu, G.; Li, Y. Backstepping sliding mode force/position control for constrained reconfig-
urable manipulator based on extended state observer. In Proceedings of the 2016 12th World Congress on Intelligent Control and
Automation (WCICA), Guilin, China, 12–15 June 2016; pp. 477–482. [CrossRef]

33. Duan, H.; Tian, Y.; Wang, G. Trajectory tracking control of ball and plate system based on auto-disturbance rejection controller. In
Proceedings of the 2009 7th Asian Control Conference, Hong Kong, China, 27–29 August 2009; pp. 471–476.

34. Benxian, X.; Ping, W.; Xueping, D.; Xingpeng, Z.; Haibin, Y. Study on nonlinear friction compensation for bi-axis servo system
based-on ADRC. In Proceedings of the International Conference on Information Science and Technology, Nanjing, China, 26–28
March 2011; pp. 788–793. [CrossRef]

35. Liu, D.; Che, C.; Zhou, Z. Permanent magnet synchronous motor control system based on auto disturbances rejection controller.
In Proceedings of the 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), Jilin,
China, 19–22 August 2011; pp. 8–11. [CrossRef]

36. Abdul-adheem, W.R.; Ibraheem, I.K. From PID to Nonlinear State Error Feedback Controller. IJACSA 2017, 8, 312–322.
37. Kang, Y.L.; Shrestha, G.B.; Lie, T.T. Application of an NLPID controller on a UPFC to improve transient stability of a power

system. IEE Proc.—Gener. Transm. Distrib. 2001, 148, 523–529. [CrossRef]
38. Ma, L.; Lin, F.; You, X.; Zheng, T.Q. Nonlinear PID control of three-phase pulse width modulation rectifier. In Proceedings of the

2008 7th World Congress on Intelligent Control and Automation, Chongqing, China, 25–27 June 2008; pp. 3417–3422. [CrossRef]
39. Ajeil, F.; Ibraheem, I.K.; Azar, A.T.; Humaidi, A.J. Autonomous Navigation and Obstacle Avoidance of an Omnidirectional Mobile

Robot Using Swarm Optimization and Sensors Deployment. Int. J. Adv. Robot. Syst. 2020, 17, 1–15. [CrossRef]
40. Najm, A.A.; Ibraheem, I.K.; Azar, A.T.; Humaidi, A.J. Genetic Optimization-Based Consensus Control of Multi-Agent 6-DoF UAV

System. Sensors 2020, 20, 3576. [CrossRef] [PubMed]
41. Lenain, R.; Thuilot, B.; Cariou, C.; Martinet, P. Adaptive and Predictive Path Tracking Control for Off-road Mobile Robots. Eur. J.

Control 2007, 13, 419–439. [CrossRef]
42. Le, A.T. Modelling and Control of Tracked Vehicles; The University of Sydney: Camperdown, Australia, 1999.
43. Kitano, M.; Kuma, M. An analysis of horizontal plane motion of tracked vehicles. J. Terramechanics 1977, 14, 211–225. [CrossRef]
44. Ibraheem, G.A.R.; Azar, A.T.; Ibraheem, I.K.; Humaidi, A.J. A Novel Design of a Neural Network-based Fractional PID Controller

for Mobile Robots Using Hybridized Fruit Fly and Particle Swarm Optimization. Complexity 2020, 2020, 3067024. [CrossRef]
45. Ajeil, F.H.; Ibraheem, I.K.; Azar, A.T.; Humaidi, A.J. Grid-Based Mobile Robot Path Planning Using Aging-Based Ant Colony

Optimization Algorithm in Static and Dynamic Environments. Sensors 2020, 20, 1880. [CrossRef] [PubMed]

https://doi.org/10.1109/TCST.2012.2231512
https://doi.org/10.1016/j.mechatronics.2014.07.006
https://doi.org/10.1016/j.ast.2021.106742
https://doi.org/10.1109/TITS.2015.2410282
https://doi.org/10.14257/ijhit.2016.9.1.07
https://doi.org/10.1007/978-3-540-76694-0_109
https://doi.org/10.1109/ACC.2016.7525459
https://doi.org/10.1155/2016/2138190
https://doi.org/10.1016/j.isatra.2014.11.009
https://doi.org/10.1109/ChiCC.2016.7554737
https://doi.org/10.1016/j.asr.2015.07.036
https://doi.org/10.1109/TAES.2015.130598
https://doi.org/10.1109/WCICA.2016.7578343
https://doi.org/10.1109/ICIST.2011.5765100
https://doi.org/10.1109/MEC.2011.6025388
https://doi.org/10.1049/ip-gtd:20010526
https://doi.org/10.1109/WCICA.2008.4593469
https://doi.org/10.1177/1729881420929498
https://doi.org/10.3390/s20123576
https://www.ncbi.nlm.nih.gov/pubmed/32599862
https://doi.org/10.3166/ejc.13.419-439
https://doi.org/10.1016/0022-4898(77)90035-0
https://doi.org/10.1155/2020/3067024
https://doi.org/10.3390/s20071880
https://www.ncbi.nlm.nih.gov/pubmed/32231091


Machines 2023, 11, 470 34 of 34

46. Abdul-adheem, W.R.; Ibraheem, I.K. Improved Sliding Mode Nonlinear Extended State Observer based Active Disturbance
Rejection Control for Uncertain Systems with Unknown Total Disturbance. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 80–93.

47. Partovibakhsh, M. Adaptive Unscented Kalman Filter-Based Online Slip Ratio Control of Wheeled-Mobile Robot. In Proceedings
of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014; pp. 6161–6166.

48. Subudhi, B.; Ge, S. Sliding-mode-observer-based adaptive slip ratio control for electric and hybrid vehicles. IEEE Trans. Intell.
Transp. Syst. 2012, 13, 1617–1626. [CrossRef]

49. Tian, Y.; Sarkar, N. Control of a mobile robot subject to wheel slip. J. Intell. Robot. Syst. Theory Appl. 2014, 74, 915–929. [CrossRef]
50. Balakrishna, R.; Ghosal, A. Modeling of Slip For Wheeled Mobile Robots. IEEE Trans. Robot. Autom. 1995, 11, 126–132. [CrossRef]
51. Liaw, D.-C.; Chung, W.-C. Control Design for Vehicle’s Lateral Dynamics. In Proceedings of the 2006 IEEE International

Conference on Systems, Man and Cybernetics, Taipei, Taiwan, 8–11 October 2006; pp. 2081–2086. [CrossRef]
52. Ming, Q. Sliding Mode Controller Design for ABS System. Master’s Thesis, Faculty of the Virginia Polytechnic Institute and State

University, Blacksburg, VA, USA, 1997. Available online: http://hdl.handle.net/10919/30598 (accessed on 1 May 2022).
53. Li, J.; Song, Z.; Shuai, Z.; Xu, L.; Ouyang, M. Wheel Slip Control Using Sliding-Mode Technique and Maximum Transmissible

Torque Estimation. J. Dyn. Syst. Meas. Control 2015, 137, 111010. [CrossRef]
54. Ahmed, S.; Azar, A.T.; Tounsi, M. Adaptive Fault Tolerant Non-Singular Sliding Mode Control for Robotic Manipulators Based

on Fixed-Time Control Law. Actuators. 2022, 11, 353. [CrossRef]
55. Sidek, S.N. Dynamic Modeling and Control of Nonholonomic Wheeled Mobile Robot Subjected to Wheel Slip; The Faculty of the Graduate

School of Vanderbilt University: Nashville, TN, USA, 2008.
56. Ma, Y.-K.; Raja, M.M.; Nisar, K.S.; Shukla, A.; Vijayakumar, V. Results on controllability for Sobolev type fractional differential

equations of order 1 < r < 2 with finite delay. AIMS Math. 2022, 7, 10215–10233. [CrossRef]
57. Raja, M.M.; Vijayakumar, V.; Shukla, A.; Nisar, K.S.; Baskonus, H.M. On the approximate controllability results for fractional

integrodifferential systems of order 1 < r < 2 with sectorial operators. J. Comput. Appl. Math. 2022, 415, 114492. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TITS.2012.2196796
https://doi.org/10.1007/s10846-013-9871-1
https://doi.org/10.1109/70.345944
https://doi.org/10.1109/ICSMC.2006.385167
http://hdl.handle.net/10919/30598
https://doi.org/10.1115/1.4031056
https://doi.org/10.3390/act11120353
https://doi.org/10.3934/math.2022568
https://doi.org/10.1016/j.cam.2022.114492

	Introduction 
	Related Works 
	Observer Design for SISO Systems 
	Linear Extended State Observer (LESO) 
	Sliding Mode Higher Order Extended State Observer (SMHOESO) 

	Observer Design for MIMO Systems 
	Numerical Simulations 
	Conclusions 
	References

