
Citation: Costa, E.A.; Rebello, C.d.M.;

Fontana, M.; Schnitman, L.; Nogueira,

I.B.d.R. A Robust Learning

Methodology for Uncertainty-Aware

Scientific Machine Learning Models.

Mathematics 2023, 11, 74. https://

doi.org/10.3390/math11010074

Academic Editor: Debiao Meng

and Shui Yu

Received: 14 November 2022

Revised: 12 December 2022

Accepted: 21 December 2022

Published: 25 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Robust Learning Methodology for Uncertainty-Aware
Scientific Machine Learning Models
Erbet Almeida Costa 1,† , Carine de Menezes Rebello 2,† , Márcio Fontana 1,† , Leizer Schnitman 1,†

and Idelfonso Bessa dos Reis Nogueira 3,*,†

1 Programa de Pós-Graduação em Mecatrônica, Universidade Federal da Bahia, Rua Prof. Aristides Novis,
2, Federação, Salvador 40210-630, Brazil

2 Programa de Pós-Graduação em Engenharia Industrial, Universidade Federal da Bahia,
Rua Prof. Aristides Novis, 2, Federação, Salvador 40210-630, Brazil

3 Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU),
7491 Trondheim, Norway

* Correspondence: idelfonso.b.d.r.nogueira@ntnu.no
† These authors contributed equally to this work.

Abstract: Robust learning is an important issue in Scientific Machine Learning (SciML). There
are several works in the literature addressing this topic. However, there is an increasing demand
for methods that can simultaneously consider all the different uncertainty components involved in
SciML model identification. Hence, this work proposes a comprehensive methodology for uncertainty
evaluation of the SciML that also considers several possible sources of uncertainties involved in
the identification process. The uncertainties considered in the proposed method are the absence of
a theory, causal models, sensitivity to data corruption or imperfection, and computational effort.
Therefore, it is possible to provide an overall strategy for uncertainty-aware models in the SciML field.
The methodology is validated through a case study developing a soft sensor for a polymerization
reactor. The first step is to build the nonlinear model parameter probability distribution (PDF) by
Bayesian inference. The second step is to obtain the machine learning model uncertainty by Monte
Carlo simulations. In the first step, a PDF with 30,000 samples is built. In the second step, the
uncertainty of the machine learning model is evaluated by sampling 10,000 values through Monte
Carlo simulation. The results demonstrate that the identified soft sensors are robust to uncertainties,
corroborating the consistency of the proposed approach.

Keywords: scientific machine learning; robust learning; uncertainty; Markov Chain Monte Carlo

MSC: 68T01; 68T07; 65C05; 90B30

1. Introduction

Machine learning (ML) has been widespread in several application domains. Hence,
this has given birth to a new field of study: Scientific Machine Learning (SciML). This field
is concerned with the proper application of an ML model by taking into consideration
all peculiarities of a given domain. As ML becomes more popular, several concerns have
arisen [1–5]. It is possible to find recent work in the literature concerned with develop-
ing uncertainty-aware ML models [6,7]. These works seek to provide viable methods to
evaluate the prediction uncertainty of the models. However, the literature still lacks a
methodology for evaluating all the sources of uncertainty surrounding ML model identi-
fication and prediction. Uncertainty is an important topic, as developing robust models
is essential for applying an ML in a real-case scenario. Most application domains have
associated uncertainties caused by corrupted data, measurement noise, redundancies, and
instrument uncertainties. Hariri et al. [8] discuss how uncertainty can impact big data in
terms of analysis and the dataset. They show that if the learning algorithm uses corrupted

Mathematics 2023, 11, 74. https://doi.org/10.3390/math11010074 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11010074
https://doi.org/10.3390/math11010074
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1397-9628
https://orcid.org/0000-0002-0796-8116
https://orcid.org/0000-0001-9917-5887
https://orcid.org/0000-0002-0399-6689
https://orcid.org/0000-0002-0963-6449
https://doi.org/10.3390/math11010074
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11010074?type=check_update&version=2


Mathematics 2023, 11, 74 2 of 24

training data, it will likely produce inaccurate results. When these issues are not consid-
ered, the ML tools may perform poorly and become inadequate. This might create general
scepticism in the general scientific community towards ML tools. Hence, robust learning
plays an essential role in the SciML literature.

Despite its increasing interest, there are still a lack of algorithms that efficiently cope
with the epistemic and aleatory uncertainties in real case scenarios [6,9]. For instance, Gal
and Ghahramani [10] present a seminal work regarding this topic. The authors proposed
evaluating reinforcement learning models using a Bayesian approximation technique. The
referred article points toward issues that still needs to be addressed in this field. Some of
these issues are addressed in the present work.

Fully understanding the uncertainty of ML models is still a complex issue, as it means
evaluating the uncertainty of predictions. Similar approaches in different fields have been
proposed to address uncertainty analysis of model prediction [11,12]. For instance, Gneit-
ing, Tilmann; Balabdaoui, Fadoua; Raftery [13] propose an efficient method to calibrate
the distribution of a known random variable. This work addresses the issues related to
non-deterministic variables and their effect on model prediction. Abdar et al. [14] and
Siddique et al. [15] present comprehensive reviews of this topic and reinforce the increasing
necessity for further development. Costa et al. [16] propose a novel strategy for developing
uncertainty-aware soft sensors based on a deep learning architecture. The authors mention
the need for developing methods that simultaneously evaluate the different uncertainty
components involved in an ML model identification. Table 1 compares different methods
for evaluating uncertainty in neural networks based on the work of Abdar et al. [14].

Table 1. Comparison of methods for quantifying uncertainty.

Method Advantage Disadvantage

Bayesian Approaches

Handle small and large
datasets; Needs multiple samplings;

Easy to implement; Fails to find poor
convergence;

Low training complexity; Depends on the starting point
Posterior over the weights.

Ensemble Approaches
Robust prediction; More resource-consuming;

Robust uncertainty estimates; Time-consuming;
Emulating the analytic

posterior predictive.
Weak performance on smaller

problems.

While identifying an ML model, several perspectives must be considered. For instance,
Abdar et al. [14] proposed three primary uncertainties related to an ML application, the
absence of theory and causal models, the sensitivity to data corruption or imperfection,
and the computational effort. Levi et al. [17] proposed a simple recalibration method that
significantly improves real-world applications. However, they indicate that further work is
needed to test the method’s generalizability. Levi et al. [17] also assume that the prediction
is a known distribution. As mentioned, several methodologies in the literature address
one of these listed points. However, the literature lacks methods to address them in the
same framework. Additionally, Abdar et al. [14] present some methods for quantifying
uncertainty, i.e., bootstrapping and ensemble. On the other hand, in identifying soft sensors
for real-time applications, the computational cost associated with the calculations can make
their use infeasible.

Hence, this work proposes a comprehensive methodology for uncertainty evaluation
of an ML model for SciML. The proposed method considers the epistemic and aleatory
uncertainties related to both data used to train the models and the models themselves.
Therefore, it is possible to provide an overall strategy for uncertainty-aware models in
the SciML field. This work contributes to the robust learning literature as it allows for



Mathematics 2023, 11, 74 3 of 24

an approach that considers the several sources of uncertainty involved in SciML model
identification. The proposed methodology uses Bayesian inference to evaluate non-linear
models’ uncertainty propagation for ML models through Monte Carlo methods.

The following sections of this work present the proposed methodology and a case
study with soft sensors for a polymerization reactor. Thus, Section 2 presents the method-
ology, Section 3 is the results and discussions, Section 4 presents the conclusions, and
supplementary information on the results is shown in Appendix A.

2. Methodology for Monte Carlo Uncertainty Training

This paper proposes a general methodology to build surrogate models based on
artificial intelligence (AI) with uncertainty assessment. The proposed methodology is
divided into five steps to obtain the validated machine learning models with uncertainty
assessment. Figure 1 presents the general scheme of the proposed method as follows.

MCMC

SDG

HPO

MCT

UPCV

Markov Chain 
Monte Carlo

Synthetic Data 
Generation

Hyperparameter 
Optimization

Monte Carlo 
Training

Uncertainty 
Propagation and 
Cross-Validation

Figure 1. General methodology scheme.

The first step is to use the Markov Chain Monte Carlo method to obtain the uncertainty
of the non-linear model parameters that represent the system. Following the methodology,
the validated model is used to generate synthetic data. These synthetic data are used to
build the neural networks in two steps. The first step is to define the type and the general
architecture of the neural network before optimising the hyperparameters. After finding the
best network architecture, the second step is to perform Monte Carlo simulation training
to propagate the uncertainty from the non-linear model (i.e., synthetic data) to the AI
model. The last step of the proposed methodology is to perform validation and uncertainty
assessment of the trained model. In that step, the AI model prediction and simulation are
collated with the non-linear model and experimental data when available. Further, uncer-
tainty assessment is performed with the appropriate hypothesis in that step. The following
subsections provide specific details about each stage of the proposed methodology.

2.1. Markov Chain Monte Carlo

Phenomenological and empirical models have common parameters that interfere with
their respective output behaviour. In these models, parameter estimation is a challenge
because their choice contributes to the prediction uncertainty of the model. Consider a
non-linear dynamic model written as:

ẏ = f(t, x, u, θ), (1)

where f is the relationship function between the time t, states x, the input vector u, pa-
rameters θ, and the output vector y. In this scenario, if θ = [θ1, θ2, . . . , θnp] is a set of np
parameters. If they have a low predictive probability, the model will not provide a good
forecast or adjustment to experimental data [18]. Thence, it is essential to know the model’s



Mathematics 2023, 11, 74 4 of 24

parameter probability density function (PDF) and, consequently, the model uncertainty to
ensure that the model and the parameters are good enough.

Several methods are available in the literature to solve the inference problem and to
estimate parameters and the associated uncertainty. Bard [19] presents several tools to
obtain the variance of models from the frequentist approach, including the Least Squares
and Maximum Likelihood methods. The main drawback of the Bard [19] methods is
the hypothesis imposed to obtain the variance of the parameters, including Gaussian
distribution. However, the Bayesian approach estimates the joint probability distribution
using all available information about the system without assumptions about the target
distribution [20].

The Bayesian approach to inference allows obtaining the posterior PDF of any set
of parameters (gθ(η | D, I)) using as information the inferred data (D) and any previous
information about the system (I). Therefore, using the Bayes Theorem, it is possible to
write the following relationship between the earlier variables [20]:

gθ(η | D, I) ∝ L(η | D)gθ(η | I), (2)

where η represents sampled values of θ, L is the likelihood function, and gθ(η | I) is the
prior distribution of θ that is a new observation of θ. Equation (2) allows updating the
actual knowledge of the system represented by the posterior gθ(η | D, I).

The likelihood L(η | D) is defined by Migon et al. [18] as a function that associates the
value of the probability gθ(η | I) with each η value. By defining the estimation process as a
least square problem, the objective is to minimize a loss function that can be represented by
a weighted least square estimator (WLSE). Thus, the likelihood function can be defined as:

L(η | D) ∝ −1
2

n

∑
i=1

(
yexp

i − ym
i

)⊤
Φ−1

(
yexp

i − ym
i

)
, (3)

where (yexp
i − ym

i ) is the residual between the experimental data (yexp
i ) and that obtained

with the prediction model (ym
i ). Further, the use of the WLSE estimator implies the use

of the variance of the residual between the yexp and ym for the ny outputs of the system,
represented in Equation (3) as Φ = diag[Φ1, Φ2, . . . , Φny].

The posterior PDF of each θi parameter of the vector θ, gθ(η | D, I) is obtained from
the marginal posterior density function g

(
θ1, θ2, . . . , θnp

)
and is defined by Gamerman and

Lopes [20] as:

gθ(η | D, I) ∝
∫

θ
(L(η | D)gθ)(η | I)dθn−j (4)

Chapter 5 by Gamerman and Lopes [20] presents several methods for solving the
inference problem of Equation (4). The Markov Chain Monte Carlo methods have some
interesting features among the numerical integration methods. Among these characteristics
is convergence, because when chains are adequately constructed, after a sufficiently high
number of iterations, the chains converge to an equilibrium distribution. Thus, Figure 2
shows a schematic diagram of the solution to the inference problem using the MCMC
method. The general idea is that the MCMC uses existing information, such as experimental
data and a likelihood function, to provide a mathematical model and the associated PDF of
the estimated parameters.

On the other hand, this paper proposes using the DRAM (Delayed Rejection Adaptive
Metropolis) MCMC algorithm Haario et al. [21] presented to solve the inference problem.
The DRAM algorithm combines the Adaptive Metropolis, which provides global adaptation,
and the Delayed Rejection, which offers local adaptation. Further, the main idea of the
DRAM algorithm is to collect information during the chain run and tune the target PDF by
using the learned information.



Mathematics 2023, 11, 74 5 of 24

Markov Chain Monte Carlo

PDF of 𝜽𝜽

Experimental 
data

Mathematical 
model

�̇�𝒚 = 𝒇𝒇(𝒕𝒕,𝒙𝒙,𝒖𝒖,𝜽𝜽)

Figure 2. MCMC method.

2.2. Synthetic Data Generation

In building AI models, data quality is crucial to obtain great adjusted models. This
paper proposes a methodology to build AI models using synthetic data from a non-linear
model. Further, the methodology is based on the uncertainty propagation law established
in BIPM et al. [22], Bipm et al. [23], BIPM et al. [24]. In this sense, the quantity and quality
of data used in training must be adequate, which means the inputs must be uncorrelated
and the amount of data needs to be enough to provide information to the training process.
Then, Sections 3.1 and 3.4.2 present results that illustrate this issue by providing numerical
information regarding the adequate amount of data and distribution and input features. It
is important to highlight that the inadequate use of data can lead to underestimation of
uncertainty. Such a situation can undermine the uncertainty assessment.

This paper proposes to build a training database by drawing a sample of the param-
eters of PDF and propagating it to the outputs of the non-linear model. In this way, the
data used for training the models need to be representative of the operating conditions of
the system and characterize the uncertainties of the non-linear model. Figure 3 presents a
generic Monte Carlo Method (MCM) simulation scheme for synthetic data generation. The
scheme in Figure 3 is inspired by the algorithm for implementing the Monte Carlo Method
presented in Supplements 1 and 2 and to the “Guide to the expression of uncertainty in
measurement” [22,24].

The first step of the algorithm is to determine the number m of trials to be performed.
In general, the MCM produces better responses with a greater number of shots, and the
recommendation is to use a value m = 106 [18]. However, smaller values can be used when
evaluating complex models requiring high computational costs for numerical solutions.
This reduction in the number of tests may not allow the correct characterization of the PDF
of the output values and may produce less reliable results [22].



Mathematics 2023, 11, 74 6 of 24

Validation 
dataset

Train 
dataset

Test 
dataset

PDF of ܽ
Mathematical 

model

Қ = ҇ (ѡ , ҙ, Җ , ܽ)

PRBS Inputs

MC simulation

Figure 3. Monte Carlo simulation method for data generation.

After defining the number of tests to be performed, a matrix Θ containing m vectors
of PDF samples of gθ(η | D, I) is built:

Θ =

θ1,1 . . . θ1,np
...

. . .
...

θm,1 . . . θm,np

. (5)

Thus, m distinct sets of model parameters are obtained such that it is possible to write

ẏ1,...,m = f(t, f, u, Θ), (6)

in this way, it is possible to integrate the model so that the m dynamic responses are
obtained for the output variables y.

As it is a dynamic model, it is necessary to obtain representative data from the entire
operating region. An independent Pseudo-Random Binary Sequence (PRBS) signal for each
of the inputs is generated through a Latin Hypercube Sampler (LHS). The PRBS signals are
then combined with the non-linear mathematical model of the system. A dynamic response
is received for each parameter combination obtained from the PDF of the parameters.
Additionally, the system’s dynamic response is represented by a set of curves obtained from
this MC simulation. In this scenario of propagation of uncertainties by MCM in dynamical
systems, the true value must be calculated for each sampling instant in which the equations
are solved. In this way, it is considered that for each sampling instant, a PDF sample is
obtained for each system output response y(t).

From Figure 3, it is also possible to observe that the data generated through the MC
simulation will be divided into three sets: training, testing, and validation. This division
follows the common literature guidelines for training AI models [25]. The first two sets are
used during supervised training of the models, since the algorithms need two data sets for
training and validation. The third set, the test dataset, is used for final cross-validation as
these data are “unknown” to the AI model. Thus, the ability to predict and extrapolate to
new data is evaluated. Additionally, dividing the data into three sets must consider that



Mathematics 2023, 11, 74 7 of 24

the training process has consistent information. In this sense, sets are typically divided into:
Train—70%, Validate—15%, and Test—15%.

2.3. Data Curation

A database to train a dynamic data-driven model should be systematically organized to
represent the system dynamics. Hence, the identified model can approximate the observed
dynamic phenomena. There are several ways to manage a data set to incorporate the
system’s time dependence. The most common is non-linear autoregressive with exogenous
inputs (NARX) predictors. The general NARX structure is composed of a prediction of the
actual output as:

yk = f (xk, x(k−1), x(k−2), . . . , x(k−n), y(k−1), y(k−2), . . . , y(k−p), γ) + ϵ (7)

where x(k−1), x(k−2), . . . , x(k−n) is the input delay, and y(k−1), y(k−2), . . . , y(k−p) are the p of
past values for the output and input, respectively. The noise, ϵ, is additive: for the NARX,
the error information is assumed to be filtered through the system’s dynamic. In its turn,
γ is a parameter that represents the model parameters’ uncertainty. As observed from
Equation (7), the NARX predictor has two hyperparameters: n and p. These parameters
should be defined correctly to improve the dynamic representativeness of the data. For
this purpose, He and Asada [26] proposed the Lipschitz coefficient analysis. A Lipschitz
coefficient is then calculated for each pair of measurements. For further information about
the Lipschitz coefficient calculations, see He and Asada [26].

2.4. Building the AI Model

Figure 4 shows a methodology step responsible for finding the hyperparameters of the
network. That step defines the appropriate architecture and network format that one wants
to get before starting the training. The type of network is the first aspect to be evaluated
when building an AI model. In this way, expert knowledge must be considered to define
whether a network is to be used, e.g., recurrent, convolutional, or dense. Choosing the
network format depends on the characteristic of the system being modelled and the main
application of the model.

Validation 
dataset

Train 
dataset

Hyperspace 
parameters

Hyperband 
tuner

Best 
hyperparameters

Figure 4. Optimization procedure to find the hyperparameters of the neural network.



Mathematics 2023, 11, 74 8 of 24

Once the general format of the type of network is defined, the next step is to define its
architecture. There are some powerful algorithms available in the literature for this means.
The optimal number of layers determines the architecture of a neural network, the number
of neurons per layer, and activation functions, among other parameters [27]. Determining
these parameters is one source of uncertainty during the modelling process that needs to
be considered.

2.5. Monte Carlo Training

The fourth step of the methodology proposed in this work is the uncertainty training
of networks through Monte Carlo simulations. The stages of generating data, obtaining
the architecture of the neural network, and the hyperparameters provide the necessary
information for the uncertainty training of the networks. In this way, it is sought to
characterize the prediction region of the identified non-linear system, obtained in Section 2.1,
through a set of networks capable of representing each of the probable outputs of the model.

Figure 5 presents a simplified schematic diagram of this step in the methodology.
It is possible to observe that the MC training stage boils down to massive training on
top of the generated data. The result is a set of equally probable trained AI models that
comprehensively account for the uncertainty sources.

Validation 
dataset

Train dataset Best
hyperparameters

Trained network set

...
...

MC Training

Figure 5. Monte Carlo training method.

This training step follows the concepts of Monte Carlo simulations. It is the step that
has the most significant computational effort. The simulation is built to train an AI model
with pre-defined optimal architecture for each element in the training, validation, and test
datasets. In addition to the computational effort required to perform this step, the volume
of data generated is also significant. However, the amount of data generated has a less
relevant impact.

On the other hand, nowadays, SciML model training has become increasingly effi-
cient. The literature has presented algorithms that extract maximum performance from the
available hardware. Additionally, manufacturers have built hardware with specific charac-
teristics for application training and execution of artificial intelligence. In this scenario, the
available technology makes it feasible to run a Monte Carlo simulation for training neural
networks. The proposed method obtains the network uncertainty by a set of identically
retrained networks. Therefore, the predicted most likely value is obtained through the



Mathematics 2023, 11, 74 9 of 24

expectation of all networks set at each instant. Then, the Monte Carlo training step allows
for obtaining the necessary network parameters to perform the prediction.

2.6. Propagation and Cross-Validation

The methodology proposed in this article includes a supplementary validation stage
of the built AI model. In this step, the data used for cross-validation are labelled “Test
data” in Figure 3 (Note that the set called “validation” is used during training). In a
complementary way, validation in the context of dynamic models with uncertainty needs
to be evaluated to compare the coverage regions. In this context, a model is considered
validated when the coverage of regions of models is overlapping, implying that the values
are statistically equal.

The main issue involved is the method used to assess the uncertainty of the model.
For both the non-linear phenomenological model and the AI model, this article proposes to
use the Monte Carlo method. Thus, the uncertainty of the evaluated model can be obtained
assuming the same hypotheses proposed by Haario et al. [21,28]; that is: the variance is
approximated by an inverse Gamma distribution. Then:

V[y] ≈ Γ−1(x, α, β) (8)

where the distribution is supported in x > 0 and represented by Γ−1, and the α and β
parameters are the shape and scale of the distribution, respectively.

In turn, to obtain the parameters α and β, Gelman et al. [29] suggest using:

α(j) =
Nprior(j) + Ndata(j)

2
, (9)

β(j) =
2

Nprior(j) · V2
0 + SSE(j)

, (10)

where j = 1, 2, . . . , ny is the number of outputs of the model. On the other hand, V2
0 is the

variance of the prior, and SSE(j) is the sum of the squared errors between the prediction
and the experimental data.

Using the hypothesis of a non-informative prior, the variance of the prior and the
number of points are unknown. In this way, the previous equations can be approximated
by:

α(j) =
Ndata(j)

2
, (11)

β(j) =
2

SSE(j)
. (12)

The methodology of this article implies obtaining two sets of model parameters that
each have their associated uncertainty. Thus, the proposal is that the variance calculation
is performed using the SSE obtained through the estimation data when the MCMC is
performed. The SSE is obtained with the training data for the training of networks. Then,
the uncertainty of a prediction will be based on the variance of the model that will follow
the inverse gamma distribution. This methodology allows for characterizing the epistemic
uncertainty of the model.

3. Results and Discussion

This section presents the results of applying the proposed methodology in a case
study. A polymerization reactor with synthetic data is used as a case study. The detailed
polymerization model is presented in Section 3.1. Following the proposed methodology,
Section 3.2 explains network construction using the Monte Carlo method, uncertainty
propagation, and final cross-validation.



Mathematics 2023, 11, 74 10 of 24

3.1. Case Study: Polymerization Reactor

The reactor model is presented in detail by Hidalgo and Brosilow [30], Alvarez and
Odloak [31]. It is composed of a system of algebraic differential equations (DAE) with
thirteen equations as follows:

d[I]
dt

=
Qi[i f ]− Qt[I]

V
− kd[I], (13)

d[M]

dt
=

Qm[M f ]− Qt[M]

V
− kp[M][P], (14)

dT
dt

=
Qi[Tf − T]

V
+

−∆Hr

ρCp
kp[M][P]− hA

ρCpV
(T − Tc), (15)

dTc

dt
=

Qc(Tc f − Tc)

Vc
+

hA
ρCpV

(T − Tc), (16)

dD0

dt
= 0.5kt[P]2 −

QtD0

V
, (17)

dD1

dt
= Mmkp[M][P]− QtD1

V
, (18)

dD2

dt
= 5Mmkp[M][P] + Mm

k2
p

kt
[M]2 − QtD2

V
, (19)

[P] =
[

2 fikd[I]
kt

]0.5

, (20)

Qt = Qi + Qs + Qm, (21)

M̄w = Mm
D2

D1
, (22)

PD = Mm
D2D0

D2
1

, (23)

η = 0.0012(M̄w)
0.71. (24)

In the above DAE system, Equations (13)–(16) represent the mass and energy balance
of the monomer and the initiator. Equations (17)–(19) are the moment equations of the
dead polymer, in which D0, D1, and D2 represent the moments of the dead polymer.
Algebraic equations are used to describe the relationship between supplementary variables.
Equation (22) represents the weight-average molecular weight, and Equation (24) represents
the viscosity. Tables 2–4 show the model parameters general definitions, the initial condition
values of inputs, and the steady-state output system variables.

Alvarez and Odloak [31] developed this model based on seven hypotheses: the lifetime
of the radical polymer is shorter than that of other species; Long Chain Assumption (LCA)
is related to monomer consumption; the chain transfer reaction to monomer and solvent can
be neglected; operation below 373 K because greater temperatures cause monomer thermal
initiation; termination by disproportionation is not considered; the rate of termination is
dominant; and only the heat of polymerization is considered.

Alvarez and Odloak [31] discuss the polymerization reactor from the control and
optimization point of view. However, other relevant aspects are pointed out. One of these,
Alvarez and Odloak [31], uses Equation (23) as a virtual analyser for the viscosity because
this is a difficult variable to measure in the studied reactor. The authors use the temperature
and the viscosity as controlled variables, manipulating the initiator flow rate and the rate of
the cooling jacket. Therefore, this case study is used to validate the proposed methodology
for the uncertainty assessment of neural networks. Further, using an AI model reduces the
computational efforts of the control and optimization loops.



Mathematics 2023, 11, 74 11 of 24

Table 2. Parameters and initial conditions.

Nominal Process Parameters Value

Frequency factor for initiator decomposition, Ad (h−1) 2.142 × 1017

Activation energy for initiator decomposition, Ed (K) 14,897
Frequency factor for propagation reaction, Ap (L · mol−1 · h−1) 3.81 × 1010

Activation temperature for propagation reaction, Ep (K) 3557
Frequency factor for termination reaction, At (Lmol−1h−1) 4.50 × 1012

Activation temperature for termination reaction, Et (K) 843
Initiator efficiency, fi 0.6

Heat of polymerization, −∆Hr (J · mol−1) 6.99 × 104

Overall heat transfer coefficient, hA (J · K−1 · L−1) 1.05 × 106

Mean heat capacity of reactor fluid, ρCp (JK−1L−1) 1506
Heat capacity of cooling jacket fluid, ρcCpc (JK−1L−1) 4043

Molecular weight of the monomer, Mm (g · mol−1) 104.14

Initial conditions Value

Reactor volume, V (L) 3000
Volume of cooling jacket fluid, Vc (L) 3312.4

Concentration of initiator in feed, I f (mol · L−1) 0.5888
Concentration of monomer in feed, M f (mol · L−1) 8.6981

Temperature of reactor feed, Tf (K) 330
Inlet temperature of cooling jacket fluid, Tc f (K) 295

As no experimental data are available regarding this system, this paper proposes using
random white noise to simulate the interferences that usually occur in an experimental
setup. The system is simulated with the initial and steady-state conditions in Tables 2 and 3,
respectively.

Table 3. Steady-state input conditions and LHS region.

Variable Steady-State Minimum Maximum

Flow rate of initiator, Qi (L · h−1) 108 91.8 124.2
Flow rate of solvent, Qs (L · h−1) 3312.4 2815.5 3809.26

Flow rate of monomer, Qm (L · h−1) 0.5888 0.5005 0.6771
Flow rate of cooling jacket fluid, Qc (L · h−1) 8.6981 7.3934 10.0028

Table 4. Output variables at steady-state.

Variable Value

Concentration of initiator in the reactor, I (mol · L−1) 330
Concentration of monomer in the reactor, I (mol · L−1) 295

Temperature of the reactor, T (K) 323.56
Temperature of cooling jacket fluid, T (K) 305.17

Molar concentration of dead polymer chains, D0 (mol · L−1) 2.7547 × 10−4

Mass concentration of dead polymer chains, D1 (g · L−1) 16.110

Figure 6 shows the LHS generated with ±15% of the steady-state input value and
used as input in the simulation. A total of 30 steps, with 150 h of simulation each, were
developed to compose the synthetic data.



Mathematics 2023, 11, 74 12 of 24

0 0.42 0.83 1.25
Time/h

80

90

100

110

120

130

Q
i/L

.h
-1

0 0.42 0.83 1.25
Time/h

350

400

450

500

550

600

Q
s/

L.
h

-1

0 0.42 0.83 1.25
Time/h

350

400

450

500

550

Q
m

/L
.h

-1

0 0.42 0.83 1.25
Time/h

80

90

100

110

120

130

Q
c/

L.
h

-1

Figure 6. LHS inputs.

Figure 7 presents the correlation heat map for the variables set by the LHS. The main
diagonal presents high correlations as it pairs the variables with themselves. In contrast, the
pairing between the other entries produces a value that allows verifying if the generated
values are uncorrelated. The lower these values, the less correlated they are. As shown
in Figure 7, the correlations are close to null, demonstrating that the LHS can efficiently
generate uncorrelated samples.

Figure 7. Input correlation map.

The synthetic output dataset is shown in Figure 8. As mentioned, random noise with
−20 dB and 10% of the output range is included in the signal to emulate the field conditions.
All these variables are used in the likelihood function presented in Equation (3). A total of
70% of these data are used for the SciML model identification, and the rest are used for the
methodology cross-validation step, as discussed in the subsequent sections.



Mathematics 2023, 11, 74 13 of 24

Figure 8. Synthetic output data with white noise.

3.2. MCMC

The generated synthetic data allows the uncertainty assessment of the Alvarez and
Odloak [31] model, done through the MCMC methodology. Therefore, 12 model parameters
and 6 initial conditions were used as decision variables for the MCMC algorithm. The
DRAM algorithm proposed by Haario et al. [21] allows limiting the parameter search
region. Therefore, in this paper, the search region was limited to ±5% of the nominal value
of the parameter. Further, all parameters were normalized to the nominal value to facilitate
the algorithm’s convergence.

Other algorithm aspects must be set. The first is the number of samples sorted to build
the joint PDF. At this point, the algorithm was configured to build a set with 30,000 samples
of the targeted joint PDF. The algorithm was also configured to use a non-informative prior.
Therefore, to estimate the variance of the parameter, the algorithm chooses 5000 samples to
update the prior and discards the chain. After the burn step, the MCMC algorithm restarts
building the chains and evaluates the parameters in the search region.

Table 5 shows the resulting normalized parameters obtained from the Markov Chains.
The MCMC algorithm does not make any assumptions about the target distribution. The
mean and median in normal distributions converge to the same number. However, it is
more conservative to assume that the distribution is not Gaussian and to use the median as
a value for the most probable value. In Table 5, it is possible to see the difference between
the parameter’s mean and median. Table 5 also shows the standard deviation (std) and the
Geweke diagnostic parameter [32]. For some parameters, the std value is relatively high.
However, the Geweke parameter indicates that the chain converges [32]. Figures A1–A11 in
the Supplementary Material (Appendix A) show the confidence region and the full Markov
Chain. Those figures compare Gaussian and unshaped regions proposed by Possolo [33].

The MCMC algorithm has the particularity of being unable to be parallelised. This
comes from the need to carry out the random walk sequentially. In this way, this pro-
cedure implies the use of few computational resources but for a long time. Then, the
algorithm sampled 72,672 sets to obtain the 30,000 samples for the posterior PDF. It used a
computational time of about 76.10 h of processing on a computer with two AMD EPYC
7252 processors and 32 Gb of memory.



Mathematics 2023, 11, 74 14 of 24

Table 5. Normalized parameters obtained by DRAM algorithm.

Parameter Mean Median STD Geweke

Ad 1.00 × 100 1.01 × 100 1.96 × 10−2 9.95 × 10−1

Ed 1.00 × 100 1.00 × 100 6.97 × 10−4 9.99 × 10−1

Ap 9.99 × 10−1 9.98 × 10−1 1.99 × 10−2 9.96 × 10−1

Ep 9.98 × 10−1 9.98 × 10−1 3.17 × 10−3 9.99 × 10−1

At 1.00 × 100 1.00 × 100 2.06 × 10−2 9.83 × 10−1

Et 9.91 × 10−1 9.88 × 10−1 2.42 × 10−2 9.91 × 10−1

fi 1.00 × 100 1.01 × 100 2.33 × 10−2 9.94 × 10−1

−∆Hr 9.99 × 10−1 1.00 × 100 7.93 × 10−3 9.96 × 10−1

hA 1.00 × 100 1.00 × 100 8.11 × 10−3 9.96 × 10−1

ρCp 9.97 × 10−1 9.98 × 10−1 9.80 × 10−3 9.96 × 10−1

ρcCpc 1.01 × 100 1.01 × 100 9.63 × 10−3 9.97 × 10−1

Mm 9.99 × 10−1 9.99 × 10−1 6.41 × 10−4 9.99 × 10−1

V 9.98 × 10−1 9.99 × 10−1 3.71 × 10−3 9.99 × 10−1

Vc 1.00 × 100 1.00 × 100 1.34 × 10−2 9.99 × 10−1

I f 1.00 × 100 1.00 × 100 3.15 × 10−4 9.99 × 10−1

M f 9.99 × 10−1 9.99 × 10−1 2.79 × 10−4 9.99 × 10−1

T f 9.99 × 10−1 9.99 × 10−1 1.83 × 10−4 9.99 × 10−1

Tc f 1.00 × 100 1.00 × 100 4.32 × 10−4 9.99 × 10−1

3.3. Synthetic Data Generation for Training

The results of the MCMC allow the construction of the parameter PDF of the phe-
nomenological model capable of representing the uncertainty of the non-linear system.
Thus, it is possible to build a set of non-linear responses by randomly selecting a set of
parameters. This work randomly selected a sample of 10,000 distinct non-linear parameters.
Subsequently, all resulting models were excited with the same LHS signal as in Figure 6,
and the result was 10,000 different dynamic responses.

With these dynamic trajectories, it was possible to establish the number of embedded
dimensions of the NARX model. The Lipschitz method is presented in Section 2.3 and was
used to define the NARX parameters. Figure 9a,b show these results. In Figure 9a,b, the
decisive factor is the slope of the surface, because when there is high variation between
two delays, the increase is considered important. However, if the slope variation is low, it
can be considered that this inclusion is not necessary. Then, it is possible to observe that a
delay of four sampling instants for the inputs and one for the variables is reasonable for
good representation, as after these values, the slope starts to be constant.

(a) (b)
Figure 9. (a) Lipschitz surface for reactor temperature; (b) Lipschitz surface for polymer viscosity.

3.4. Monte Carlo Training

The proposed methodology includes a step called ’Monte Carlo training’, which is
composed of smaller steps. It starts with the identification of the hyperparameters. It is



Mathematics 2023, 11, 74 15 of 24

followed by defining the data needed for training. Then, finally, the final Monte Carlo
training is done.

3.4.1. Monte Carlo Training

The network’s optimal structure is found by a search in a hyperspace formed by the
structural parameters that constitute the networks. Table 6 shows the initial configuration
included in the hyperband algorithm [27].

Table 6. Hyperband hyperspace search.

Parameter Search Space

Type of layer Dense
Number of layers 2–6

Output layer 1
Activation function Relu or Tanh

Number of neurons per layer [30, 50, 70, 90, 100, 120, 130, 160]
Learning rate 0.0001, 0.001, and 0.1

Metrics MAE—Mean Absolute Error
Loss MSE—Mean Square Error

The results obtained from the hyperparameter search are presented in Table 7. It
is possible to observe that a relatively simpler network was necessary to represent the
temperature than the viscosity. This simpler architecture implies a big difference in the
computational cost. The viscosity network required 6.4 times longer to be trained than the
network for the temperature. On the other hand, the networks have the same activation
functions in the layers and the same learning rate. Table 7 also shows the MAE and MSE
values resulting from the hyperband search. The hyperband algorithm uses the training
and validation datasets during training. Then, the test dataset is used after the training to
test the final model parameters. It is noteworthy, however, that this methodology assumes
that the network’s architecture does not change to a variable. In this way, it is considered
that it is only necessary to execute the hyperparameter search process once. With the
network structure identified, it is trained for all trajectories obtained from each non-linear
model. Hence, a set of networks is identified, as described in Section 2.5.

Table 7. Resulting network hyperparameters.

Hyperparameters T η

Number of layers 3 7
Number of neurons in the dense layers [100, 90, 1] [150, 90, 150, 90, 150, 90, 1]

Activation function [tanh, tanh] [tanh, tanh, tanh, tanh, tanh, tanh]
Initial learning rate 1 × 10−3 1 × 10−3

Total number of trainable parameters 11,081 71,011
MSE Test 2.37 × 10−5 5.84 × 10−4

MAE Test 4.30 × 10−3 2.03 × 10−2

3.4.2. Data Size

An important aspect to be analysed in neural network training is the guarantee of
adequate training. In this sense, assessing whether the amount of information added in
training the model is sufficient for the training algorithm to obtain a suitable model is
necessary. Figure 10 shows this analysis for the polymer viscosity and reactor temperature.
This evaluation was based on a set of independent training sets in which each one was
repeated 25 times. The first 25 training sets were carried out with 100 experiments. The
average values for MAE and the final MSE were calculated. For the next 25, 100 experiments
were added, and so on. In Figure 10, it is possible to observe that for viscosity, after about
1750 experiments, there is no significant change in the MSE; however, for MAE, this value



Mathematics 2023, 11, 74 16 of 24

is about 1500. On the other hand, when the reactor temperature is evaluated, this value
is higher, and more than 2500 experiments were needed for convergence. Thus, to ensure
convergence, 3100 were used for both networks.

Figure 10. Training performance as a function of experiments.

3.4.3. Training

The adaptive moment estimation algorithm (ADAM) proposed by [34] was used to
train the chosen structure. ADAM is an optimization method based on the descending
gradient technique, making the ADAM algorithm efficient for problems involving extensive
data and parameters. It also requires less memory than other training algorithms because
the data are sliced into several packages and treated.

Building the networks involves an exhaustive training process called ’Monte Carlo
training’. The proposed methodology is based on the Monte Carlo method for PDF propa-
gation. Thus, the assumed hypothesis is that the different trajectories generated through the
non-linear model can represent the model’s uncertainty. Therefore, training networks capa-
ble of representing these distinct trajectories imply obtaining a PDF of trained parameters
of an AI model that also represents the uncertainty of the model.

Convergence analysis of training networks via MC training can be performed by
analysing MAE and MSE values similar to conventional training. However, given the
number of trained networks, it is more convenient to evaluate in histogram format, as in
Figure 11. In the first analysis, Figure 11 shows the histograms of the MAE and MSE indica-
tors, both for the test and validation data. It is possible to observe that the histograms do
not follow a Gaussian distribution. Thus, the mean may not be a good reference in statistical
terms. Thus, Table 8 shows the minimum, maximum, median, and standard deviation of the
MAE and MSE. Generally, it is possible to affirm that the networks converged sufficiently.



Mathematics 2023, 11, 74 17 of 24

Figure 11. Monte Carlo Training convergence evaluation.

Table 8. Training network performance.

MAE Test MAE Valid MSE Test MSE Valid

T

Min 1.49 × 10−3 7.91 × 10−4 5.64 × 10−6 2.73 × 10−6

Max 2.26 × 10−3 6.30 × 10−2 1.05 × 10−3 4.82 × 10−3

Median 3.57 × 10−3 5.77 × 10−3 2.37 × 10−5 4.98 × 10−5

STD 1.82 × 10−3 3.72 × 10−3 4.37 × 10−5 1.24 × 10−4

η

Min 2.35 × 10−3 2.06 × 10−3 1.20 × 10−5 1.06 × 10−5

Max 7.35 × 10−2 2.01 × 10−1 1.82 × 10−2 5.27 × 10−2

Median 5.55 × 10−3 6.79 × 10−3 5.87 × 10−5 7.22 × 10−5

STD 3.38 × 10−3 6.23 × 10−3 4.55 × 10−4 9.25 × 10−4

In the Monte Carlo Training process, an early stopping option in MC training was used
to reduce the computational cost. Thus, training was aborted if there ewas no decrease in the
LOSS value for 100 epochs. Figure 12 shows the histograms of the number of epochs trained
during MC training for the two modelled variables. In the graph of Figure 12, the minimum
number of epochs was 50, and the maximum number was 300. Lognormal distributions
with lower or upper bounds should be the best representation for this data type. Figure 12
also shows that the data do not fit a lognormal distribution. Hence, no assumptions
were made about the type of distribution of variables. Additionally, Figure 12 shows the
distribution of each network’s time consumption during the Monte Carlo training process.
With the early stopping option, the number of epochs trained is variable, and the time
consumption during the training differs for each Monte Carlo trail. The training calculation
through CM was performed using a computer with a dedicated Tesla T4 16 Gb GPU, two
AMD EPYC 7252 processors, and 32 Gb of memory. The MC method can be parallelised
when GPU processing is not used. Then, the training was carried out sequentially and
totalled 155 h of training, which is the sum of all values presented in Figure 12.



Mathematics 2023, 11, 74 18 of 24

Figure 12. Trained epochs and training time of Monte Carlo training.

3.5. Uncertainty Propagation and Validation

The last step of the proposed methodology is the propagation of uncertainty and
methodology cross-validation. The proposal is based on constructing the uncertainty
regions of the neural network’s prediction and comparison with the uncertainty regions
of the non-linear phenomenological model. With the prediction values, it is possible to
calculate the variance of the networks using the same assumptions used to calculate the
uncertainty of the phenomenological model Equations (13)–(24). Figures 13 and 14 show
the comparisons between the predictions for the two modelled variables: T and η.

Figures 13 and 14 present the entire output dataset used for training, testing, and
validation. A zoom is given to verify the variables’ behaviour in each region. It is pointed
out, however, that the training and validation data sets are used during the training of the
networks. In this way, the networks’ only unknown is the test data set, which is used to
certify their performance.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time/h

320.0

321.4

322.8

324.2

325.6

327.0

T
/K

 A  
 B  

 C  

 Train   Test   Valid 

1600 1700 1800
325.2

325.9

326.5
A

3200 3300 3400
325.0

325.5

326.0
B

3800 3900 4000
322.0

322.4

322.8
C

Figure 13. Training and validation data of T.



Mathematics 2023, 11, 74 19 of 24

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time/h

3.0

3.3

3.7

4.0

4.4

4.7

 A  
 B  

 C  

 Train   Test   Valid 

1450 1550 1650
3.65

3.70

3.75

3.80

3.85
A

3200 3300 3400
3.80

3.82

3.84

3.85

3.87
B

3800 3900 4000
3.35

3.45

3.54

3.64

3.73
C

Figure 14. Training and validation data of η.

From a statistical point of view, when two measurements have overlapping coverage
regions, they are impossible to differentiate, and they are considered equal. Therefore, vali-
dation of the AI model against the non-linear phenomenological model is achieved when
the dynamic range regions are superimposed. In this sense, the graphs of Figures 13 and 14
allow us to conclude that both models statistically produce the same dynamic response.

4. Conclusions

This work presented a novel methodology for evaluating the uncertainty of Scientific
Machine Learning Models. A comprehensive approach was proposed that considered
several uncertainties associated with the SciML model structure, the data used, and the
original data source. The proposed strategy was composed of five steps: Markov Chain
Monte Carlo method to obtain the uncertainty of the non-linear model parameters; gener-
ation of synthetic data; neural network structure identification; Monte Carlo simulation
training; and methodology validation and uncertainty assessment of the trained mode.

The proposed method considers epistemic and aleatory uncertainties. These uncer-
tainties are considered in the context of the data used to train the models and the model
itself. Therefore, it is possible to provide an overall strategy for the uncertainty-aware
models in the SciML field. The proposed approach can be applied to different ML models
for numerical data prediction. On the other hand, it is not applied to categorical or image
classification ML. This limitation exists, as it requires methods that allow quantifying the
uncertainty of categorical variables and classification. Another limitation of this method is
the computing effort required by it. This issue limits its application in online learning, as
the computational effort can make the application unfeasible. This last limitation should be
a topic of further development of the proposed methodology.

A case study demonstrated the method’s consistency. Hence, two soft sensors were
identified to provide information about the temperature and viscosity of a polymerization
reactor. The results indicated that the soft sensor predictions are statistically equal to the
validation data in both dynamic and stationary regimes. Therefore, a practical implication
of the proposed method is that, for the prediction and evaluation of uncertainty in real-
time applications, the computational cost is not high since the process of prediction and
evaluation of uncertainty is performed only by consulting and calculating the most probable
value of the prediction. This allows the use of soft sensors in real-time predictions with
uncertainty evaluation.

The proposed methodology was validated using a publicly available data set: the poly-
merization process dataset. The proposed methodology can be experimentally validated as
long as experimental data and their associated uncertainties exist. However, identifying



Mathematics 2023, 11, 74 20 of 24

the experimental uncertainties needs to be carried out in detail, which is out of the scope of
the present work. As the results of this work demonstrate the efficiency of the proposed
approach, a further natural development of this work is the application of the proposed
methodology in an experimental case.

Author Contributions: Conceptualization, E.A.C.; Methodology, E.A.C., C.d.M.R., L.S. and I.B.d.R.N.;
Software, E.A.C.; Formal analysis, M.F., L.S. and I.B.d.R.N.; Resources, M.F.; Data curation, C.d.M.R.;
Writing—original draft, C.d.M.R.; Writing—review & editing, M.F., L.S. and I.B.d.R.N.; Supervision,
L.S.; Project administration, L.S.; Funding acquisition, L.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. Coverage regions of parameters 01: (—) Gaussian region; (—) Possolo [33] region.

Figure A2. Coverage regions of parameters 02: (—) Gaussian region; (—) Possolo [33] region.



Mathematics 2023, 11, 74 21 of 24

Figure A3. Coverage regions of parameters 03: (—) Gaussian region; (—) Possolo [33] region.

Figure A4. Coverage regions of parameters 04: (—) Gaussian region; (—) Possolo [33] region.

Figure A5. Coverage regions of parameters 05: (—) Gaussian region; (—) Possolo [33] region.

Figure A6. Coverage regions of parameters 06: (—) Gaussian region; (—) Possolo [33] region.



Mathematics 2023, 11, 74 22 of 24

Figure A7. Coverage regions of parameters 07: (—) Gaussian region; (—) Possolo [33] region.

Figure A8. Coverage regions of parameters 08: (—) Gaussian region; (—) Possolo [33] region.

Figure A9. Coverage regions of parameters 09: (—) Gaussian region; (—) Possolo [33] region.

Figure A10. Coverage regions of parameters 10: (—) Gaussian region; (—) Possolo [33] region.



Mathematics 2023, 11, 74 23 of 24

Figure A11. Parameters random walk.

References
1. Rackauckas, C.; Ma, Y.; Martensen, J.; Warner, C.; Zubov, K.; Supekar, R.; Skinner, D.; Ramadhan, A.; Edelman, A. Universal

Differential Equations for Scientific Machine Learning. arXiv 2020, arXiv:2001.04385. [CrossRef]
2. Chuang, K.V.; Keiser, M.J. Adversarial Controls for Scientific Machine Learning. ACS Chem. Biol. 2018, 13, 2819–2821. [CrossRef]

[PubMed]
3. Gaikwad, A.; Giera, B.; Guss, G.M.; Forien, J.B.; Matthews, M.J.; Rao, P. Heterogeneous sensing and scientific machine learning

for quality assurance in laser powder bed fusion—A single-track study. Addit. Manuf. 2020, 36, 101659. [CrossRef]
4. Nogueira, I.B.R.; Santana, V.V.; Ribeiro, A.M.; Rodrigues, A.E. Using scientific machine learning to develop universal differential

equation for multicomponent adsorption separation systems. Can. J. Chem. Eng. 2022, 100, 2279–2290. [CrossRef]
5. Meng, X.; Yang, L.; Mao, Z.; del Águila Ferrandis, J.; Karniadakis, G.E. Learning functional priors and posteriors from data and

physics. J. Comput. Phys. 2022, 457, 111073. [CrossRef]
6. Das, W.; Khanna, S. A Robust Machine Learning Based Framework for the Automated Detection of ADHD Using Pupillometric

Biomarkers and Time Series Analysis. Sci. Rep. 2021, 11, 16370. [CrossRef]
7. Psaros, A.F.; Meng, X.; Zou, Z.; Guo, L.; Karniadakis, G.E. Uncertainty Quantification in Scientific Machine Learning: Methods,

Metrics, and Comparisons. arXiv 2022, arXiv:2201.07766. [CrossRef]
8. Hariri, R.H.; Fredericks, E.M.; Bowers, K.M. Uncertainty in big data analytics: Survey, opportunities, and challenges. J. Big Data

2019, 6, 44. [CrossRef]
9. Li, J.Z. Principled Approaches to Robust Machine Learning and Beyond. Ph.D. Thesis, Massachusetts Institute of Technology,

Cambridge, MA, USA, 2018.
10. Gal, Y.; Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In Proceedings

of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016.
11. Yu, D.; Wu, J.; Wang, W.; Gu, B. Optimal performance of hybrid energy system in the presence of electrical and heat storage

systems under uncertainties using stochastic p-robust optimization technique. Sustain. Cities Soc. 2022, 83, 103935. [CrossRef]
12. Nogueira, I.B.; Faria, R.P.; Requião, R.; Koivisto, H.; Martins, M.A.; Rodrigues, A.E.; Loureiro, J.M.; Ribeiro, A.M. Chromatographic

studies of n-Propyl Propionate: Adsorption equilibrium, modelling and uncertainties determination. Comput. Chem. Eng. 2018,
119, 371–382. [CrossRef]

13. Gneiting, T.; Balabdaoui, F.; Raftery, A. Probabilistic and sharpness forecasts , calibration. Jrssb 2013, 69, 243–268. [CrossRef]
14. Abdar, M.; Pourpanah, F.; Hussain, S.; Rezazadegan, D.; Liu, L.; Ghavamzadeh, M.; Fieguth, P.; Cao, X.; Khosravi, A.; Acharya,

U.R.; et al. A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Inf. Fusion 2021,
76, 243–297. [CrossRef]

15. Siddique, T.; Mahmud, M.; Keesee, A.; Ngwira, C.; Connor, H. A Survey of Uncertainty Quantification in Machine Learning for
Space Weather Prediction. Geosciences 2022, 12, 27. [CrossRef]

16. Costa, E.; Rebello, C.; Santana, V.; Rodrigues, A.; Ribeiro, A.; Schnitman, L.; Nogueira, I. Mapping Uncertainties of Soft-Sensors
Based on Deep Feedforward Neural Networks through a Novel Monte Carlo Uncertainties Training Process. Processes 2022,
10, 409. [CrossRef]

17. Levi, D.; Gispan, L.; Giladi, N.; Fetaya, E. Evaluating and Calibrating Uncertainty Prediction in Regression Tasks. Sensors 2022,
22, 5540. [CrossRef] [PubMed]

18. Migon, S.H.; Gamerman, D.; Louzada, F. Statistical Inference: An Integrated Approach, 2nd ed.; CRC Press: Boca Raton, FL, USA,
2014; p. 385.

19. Bard, Y. Nonlinear Parameter Estimation; Academic Press: Cambridge, MA, USA, 1974; p. 341.
20. Gamerman, D.; Lopes, H.F. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, 2nd ed.; Chapman and Hall/CRC:

London, UK, 2006; p. 343.
21. Haario, H.; Laine, M.; Mira, A.; Saksman, E. DRAM: Efficient adaptive MCMC. Stat. Comput. 2006, 16, 339–354. [CrossRef]

https://doi.org/10.48550/ARXIV.2001.04385
http://doi.org/10.1021/acschembio.8b00881
http://www.ncbi.nlm.nih.gov/pubmed/30336670
http://dx.doi.org/10.1016/j.addma.2020.101659
http://dx.doi.org/10.1002/cjce.24495
http://dx.doi.org/10.1016/j.jcp.2022.111073
http://dx.doi.org/10.1038/s41598-021-95673-5
https://doi.org/10.48550/ARXIV.2201.07766
http://dx.doi.org/10.1186/s40537-019-0206-3
http://dx.doi.org/10.1016/j.scs.2022.103935
http://dx.doi.org/10.1016/j.compchemeng.2018.09.020
http://dx.doi.org/10.1111/j.1467-9868.2007.00587.x
http://dx.doi.org/10.1016/j.inffus.2021.05.008
http://dx.doi.org/10.3390/geosciences12010027
http://dx.doi.org/10.3390/pr10020409
http://dx.doi.org/10.3390/s22155540
http://www.ncbi.nlm.nih.gov/pubmed/35898047
http://dx.doi.org/10.1007/s11222-006-9438-0


Mathematics 2023, 11, 74 24 of 24

22. BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in
Measurement; BIPM: Sèvres, France, 2008.

23. BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of Measurement Data—Supplement 1 to the “Guide to the Expression
of Uncertainty in Measurement”—Propagation of Distributions Using a Monte Carlo Method; BIPM: Sèvres, France, 2008.

24. BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of Measurement Data—Supplement 2 to the "Guide to the Expression
of Uncertainty in Measurement"—Models with Any Number of Output Quantities; BIPM: Sèvres, France, 2011.

25. Haykin, S. Neural Networks and Learning Machines, 2nd ed.; Pearson Prentice Hall: Hoboken, NJ, USA, 1999; Volume 1–3. p. 938.
26. He, X.; Asada, H. New method for identifying orders of input-output models for nonlinear dynamic systems. In Proceedings of

the 1993 American Control Conference, San Francisco, CA, USA, 2–4 June 1993. [CrossRef]
27. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A Novel Bandit-Based Approach to Hyperparame-

ter Optimization. J. Mach. Learn. Res. 2016, 18, 1–52.
28. Haario, H.; Saksman, E.; Tamminen, J. An Adaptive Metropolis Algorithm. Bernoulli 2001, 7, 223. [CrossRef]
29. Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis Third Edition (with Errors Fixed as

of 13 February 2020); Routledge: London, UK, 2013.
30. Hidalgo, P.M.; Brosilow, C.B. Nonlinear model predictive control of styrene polymerization at unstable operating points. Comput.

Chem. Eng. 1990, 14, 481–494. [CrossRef]
31. Alvarez, L.A.; Odloak, D. Optimization and control of a continuous polymerization reactor. Braz. J. Chem. Eng. 2012, 29, 807–820.

[CrossRef]
32. Brooks, S.; Roberts, G. Assessing Convergence of Markov Chain Monte Carlo Algorithms. Stat. Comput. 1998, 8, 319–335.

[CrossRef]
33. Possolo, A. Copulas for uncertainty analysis. Metrologia 2010, 47, 262–271. [CrossRef]
34. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.23919/acc.1993.4793346
http://dx.doi.org/10.2307/3318737
http://dx.doi.org/10.1016/0098-1354(90)87022-H
http://dx.doi.org/10.1590/S0104-66322012000400012
http://dx.doi.org/10.1023/A:1008820505350
http://dx.doi.org/10.1088/0026-1394/47/3/017
https://doi.org/10.48550/ARXIV.1412.6980

	Introduction
	Methodology for Monte Carlo Uncertainty Training
	Markov Chain Monte Carlo
	Synthetic Data Generation
	Data Curation
	Building the AI Model
	Monte Carlo Training
	Propagation and Cross-Validation

	Results and Discussion
	Case Study: Polymerization Reactor
	MCMC
	Synthetic Data Generation for Training
	Monte Carlo Training
	Monte Carlo Training
	Data Size
	Training

	Uncertainty Propagation and Validation

	Conclusions
	Appendix A
	References

