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Abstract

The production of energy from solar and wind power is anticipated to increase by 35 % in the next
seven years. This growth will be facilitated by the incorporation of power electronics technology,
which enables the integration of these variable renewable energy sources (RES) into the electrical
power grid.

The master’s thesis considers the closed-loop stability of a linear DC/DC converter using Lya-
punov’s method. A port-Hamiltonian (pH) representation is applied for the system equations, and
the system controller is inspired by the widely-acknowledged passivity-based Proportional-Integral
controller (PI-PBC). However, instead of only using the conventional passive output; i.e., inductor
current error signal, the capacitor voltage error signal is also included. The controller was revised
building upon the recommendations given in the preliminary work [1]; that is, if the voltage error
signal is used as the only input to the PI controller, the system encounters significant stability
challenges. Therefore, we propose to utilize the current error signal control in the proportional
channel, and the voltage error signal appears in the integral channel of the PI controller.

The proposed PI controller rendered the system globally asymptotically stable (GAS) if a constant
leakage term is included in the integral channel next to the system’s output voltage error signal.
Simulations for this control proposal with a constant leakage were carried out to quantify how
much it affects the system’s ability to reach its control objectives. Unfortunately, the amount of
leakage required created voltage deviations that would not be considered acceptable in practice.
Thus, we proceeded to remove the leakage and search for an alternative Lyapunov function to
prove stability.

With the aim of proving GAS, a new Lyapunov function candidate (LFC) was proposed without
it depending on the presence of a leakage term. The process consisted of populating the Lyapunov
function candidate with a constant yet a priori unknown terms relating the physical and control
states between them, following the procedure described in [1]. However, it was not possible for us
to prove GAS by means of this LFC, as the required constant terms did not seem to exist for the
proposed controller.

Nonetheless, because the system and the controller have linear dynamics, the eigenvalues of the
closed-loop system could easily be calculated. For a given tuning, the system matrix could be
made Hurwitz, and using the Lyapunov equation, a valid Lyapunov function was obtained. With
this numerical Lyapunov function, the system was proven GAS. Interestingly, unlike the previous
LFC, the new numerical one was fully populated. Subsequent to the acquisition of the stability
certificate, simulations for the control proposal without the inclusion of the leakage term were
carried out.

The populated LFC was utilized to render the system with the inclusion of the leakage term
GAS, aiming to reduce the stabilizing leakage term and minimize the required voltage deviations.
We showed that increasing the conductance G enhanced the possibility of proving GAS with the
populated LFC. Determining the unknown term in the LFC and adjusting the value of G, a new
condition for the leakage term was established. Simulation results demonstrated a significant
decrease in voltage deviations, effectively eliminating them. However, it is worth noting that the
higher value of G resulted in spikes in the control signal and increased system losses.

In conclusion, the proposed PI controller gives closed-loop stability in the general, linear DC/DC
converter in voltage-control mode directly in the inner-loop. By use of Lyapunov’s method, Lya-
punov functions exist and render the system GAS.





Sammendrag

Energiproduksjonen fra sol- og vindkraft forventes å øke med 35% de neste syv årene. Ved bruk av
kraftelektronikkteknologi vil disse fornybare energikildene integreres i det elektriske strømnettet.

Denne masteroppgaven undersøker lukket-sløyfe stabiliteten til en lineær likespenningsomformer
ved bruk av Lyapunovs metode. Systemmodellen er representert ved bruk av port-Hamiltonian og
systemregulatoren er inspirert av kjente konsept: regulering av passive systemer og en Proporsjonal-
Integral (PI) regulator. Kontrollsignalet i en PI-regulator er, med utgangspunkt i regulering av
passive systemer, feilsignalet for den passive utgangen i et åpen-sløyfe system, som, i tilfellet for
denne omformeren, er spolestrømmen. Denne oppgaven hadde et ønske å bruke feilsignalet til
kondensatorspenningen som kontrollsingal i regulatoren, i stedet. I masteroppgavens forarbeid,
[1], ble det undersøkt om kondensatorstrømmen sitt feilsignal kunne brukes som eneste inngang til
PI-regulatoren. Dette resulterte i stabilitetsproblem. Og dermed ble det vurdert at PI-regulatoren
skal ha to forskjellige feilsignal som inngang; spolestrømmen i proporsjonal-kanalen og kondensat-
orspenningen i integral-kanalen.

Ved bruk av denne PI-regulatoren ble systemet globalt asymptotisk stabilt, gitt inkludering av en
konstant lekkasjeverdi i integral-kanalen, i tillegg til feilsignalet for kondensatorstrømmen. Sim-
uleringer for dette kontrollforslaget ble utført for å vurdere hvor mye lekkasjen p̊avirket systemets
evne til å n̊a sine kontrollm̊al. Dessverre skapte lekkasjen spenningsavvik som ikke ville bli ansett
som akseptable i praksis. Derfor valgte vi å fjerne lekkasjen og lete etter en alternativ Lyapunov-
funksjon for å bevise stabilitet.

En ny Lyapunov-funksjon-kandidat ble foresl̊att med m̊al om å bevise globalt asymptotisk stabilitet
for et system uten inkluderingen av lekkasjen. Lyapunov-funksjonen ble fylt med konstanter som
er relevante for de fysiske tilstandene til systemet og noen ukjente som skulle avgjøres i henhold til
metoden beskrevet i [1]. Imidlertid var det ikke mulig for oss å bevise global asymptotisk stabilitet
ved hjelp av denne Lyapunov-funksjon-kandidaten, da den nødvendige konstanten ikke var mulig
å definere.

Ettersom systemmodellen og regulatoren har lineær dynamikk, ble egenverdiene til systemet beregnet.
Og for en gitt innstilling av regulatorverdiene, ble egenverdiene negative og systemmatrisen Hur-
witz. Videre, ble Lyapunov-ligningen brukt for å beregne en gyldig Lyapunov-funksjon. For denne
numeriske Lyapunv-funksjonen ble systemet vist globalt asymptotisk stabilt. En interessant ob-
servasjon for denne numeriske Lyapunov-funksjonen, sammenlignet med den foresl̊atte, er at den
var fullstendig fullt opp av elementer. Etter å ha oppn̊add stabilitetsgaranti ble simuleringer utført
for dette systemet.

Den foresl̊atte Lyapunov-funksjon-kandidaten ble videre brukt for å vise global asymptotisk sta-
bilitet i systemet som inkluderte lekkasjen. Med m̊al om å redusere lekkasjen som var nødvendig
for et stabilt system og dermed redusere ogs̊a spenningsavvikene. Vi viste at økning i konduk-
tansen G økte muligheten for et stabilt system for den foresl̊atte Lyapunov-funksjon-kandidaten.
Ved å bestemme den ukjente konstanten i funksjonen og justere opp verdien av konduktansen,
ble det satt en ny betingelse for lekkasjekonstanten. Simuleringer viste en betydelig reduksjon i
spenningsavvikene. Det er imidlertid verdt å merke seg at den høyere verdien av G resulterte i
ekstremt høye verdier i kanalen for kontrollsignalet og økt effekttap i systemet.

Konklusjonen for denne masteroppgaven er at den foresl̊atte PI-regulatoren gir lukket-sløyfe sta-
bilitet i den lineære likespenningsomformer, i spenningskontrollmodus, direkte i den indre løkken.
Ved bruk av Lyapunovs metode eksisterer det Lyapunov-funksjoner og systemet er globalt asymp-
totisk stabilt.
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Chapter 1

Introduction

This introductory chapter presents the general framework for the master’s thesis. As a starting
point, the increasing need for RES in power production is explained and put into context why it is
expected to have continuous growth in the following years. The objective and the methodology of
the thesis are presented, and the necessary simplifications of the system are explained. Lastly, the
structure of the master’s thesis is presented in a chapter overview. and shows the chronological
work order.

1.1 General Introduction

According to the International Energy Agency (IEA), global electricity production from renewable
technologies was 28% in 2021, and this share is expected to increase in the coming years. The
projected growth says today’s production from RES is 32% [2].

The Paris Agreement, made on 12 December 2015 and executed since 4 November 2016, set a
goal to limit global warming to well below 2◦ and pursue efforts to limit the temperature increase
to 1.5◦ [3]. This agreement has been adopted by more than 190 Parties, including the European
Union (EU) and its member countries. The EU has set a goal of ”cutting net greenhouse gas house
emissions by at least 55% by 2030” and ”becoming a climate-neutral continent by 2050” [4] to
act by the Paris Agreement. The goal is broken down into targets for each decade, and the next
target is to reach 42.5% renewable energy production by 2030 [4]. The share of renewable energy
production was 22% in 2021 in the EU, and if they want to achieve the target for 2030, the share
has to be increased by 2.4% each year, triple the historical rate [5]. In 2021, the expansion of
wind and solar photovoltaic (PV) power generation made the most influential contribution to the
increase of RES in the EU. This growth resulted in RES accounting for 37.6% of all electricity
generated in the power sector [2].

Per the Paris Agreement, global electricity production from renewable technologies has to reach
90% by 2050 [6]. Reaching this goal means a substantial upscale in RES in the following decades,
most of which will occur in solar and wind power production. Today, these technologies have an
electrical production share of 7% globally, which has to increase to 42% in 2030 and then 63% in
2050, respectively [6]. These variable RES need a flexible power system that can operate under
changing conditions in terms of production and demand peaks due to fluctuating energy supply.

The integration of variable RES using power converter technology, e.g., wind and PV, has led to the
replacement of conventional power production, e.g., hydropower utilizing generators, in the power
system. Conventional power production has been the fundament for stability in power systems
providing inertia and meeting energy-supply demand. By exchanging this steady connection of
energy with a fluctuating connection of energy from multiple variable RES, stability problems,
such as reduced system strength, synchronous inertia, and black start capability, have risen [7],
[8]. These challenges can also arise from devices not related to power production, e.g., energy
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storage and charging of electric vehicles, which are connected to the grid through power converter
technology [9].

RES are connected to the main grid through power converters. An important role of power
converters, specifically DC/DC converters, is to manage the level of DC voltage. Typically by
coupling the voltage levels for a RES to a DC/AC inverter [9]. PI-PBC are popularly used in
power converter applications, such as DC/DC converters [10] [11].

1.2 Objectives and Methodology

The master’s thesis investigates the stability of a general, linear DC/DC converter in voltage-control
mode directly in the inner-loop, thus avoiding any traditional time-scale separation assumptions.
More precisely, we propose to utilize a PI controller which uses the inductor current error in the
proportional and the capacitor voltage error in the integral channels.

The inductor current turns out to be the passive output of the incremental model of linear DC/DC
converters, making it the conventional choice for the error signal using PI-PBC control - albeit
operating in current-control mode. By contrast, in [1], we showed that a PI around the capacitor
voltage error signal did not render the closed-loop system stable; or, more precisely, by using the
capacitor voltage error signal in both the proportional and integral channels of the PI controller.
This observation motivated us to reach a compromise between both cases: a) standard PI current
control with stability guarantees and b) a PI around the voltage error signal. Thus, a different
control scheme is proposed.

This thesis aims to obtain a closed-loop stability certificate, specifically, a Lyapunov function, using
the new control scheme. A pH representation is used as a modeling starting point and is applied
to the circuit’s system, such that its capabilities in energy-storing, -preserving, and -dissipating
are highlighted. The model of the circuit’s system is shifted to an incremental form to ensure the
operating point of interest, a non-zero equilibrium point. Subsequently, Lyapunov’s method is used
to analyze the system’s stability, which can be applied to systems with both linear and non-linear
dynamics. Lastly, a simulation model of the system is developed in MATLAB Simulink.

1.3 Limitation of Scope

As mentioned previously, the converter circuit model is simplified to have linear dynamics instead
of more realistic non-linear ones. This simplification is a useful starting point to gain insight, which
could then be extended to the non-linear converter in future works. It is worth recalling that if
the system was considered non-linear, it would be more representative as the switching properties
of a power converter would be included. The control theory applied is valid for both linear and
non-linear cases, and it is possible to apply the results from the analysis to the non-linear case in
future works.

The DC/DC converter is represented by a general Resistor-Inductor-Capacitor (RLC) circuit. The
master’s thesis aims to give general results that apply to DC/DC converters without removing
specifications related to a particular converter. And the converter is considered a standalone, with
only its input-output characteristics and no interconnection with other components such as RES
or another converter. This simplification limits the stability certificate to a single unit, and in the
future work section, it is recommended to investigate its potential scalability features.

The main objective of this thesis is to obtain a stability certificate for the system. The focus
is on achieving a mathematical proof of stability, which is accomplished through the application
of Lyapunov’s method. It is important to note that the simulation results, which illustrate the
system’s dynamics, are not essential for obtaining the stability certificates. They are provided as
supplementary information, enhancing the understanding of the system’s behavior, but not as a
requirement for the stability certificates themselves.
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1.4 Thesis Structure

The outline of the master’s thesis is divided into seven chapters. The first three chapters, including
this introduction chapter, cover the introductory framework and knowledge for the thesis’ objective.
And the last four chapters explore solutions to the closed-loop stability problem for the proposed
PI controller and present the conclusion and the possibilities for future works.

Chapter 2, Theory, is a continuation of the theory section in the specializations project, obtained
from section 2 in [1]. Sections 2.6 and 2.7 were added to the master’s thesis work. Section 2.6
was absent from the project but necessary for some of the calculations, and section 2.7 was only
relevant for the work conducted in the master’s thesis.

Chapter 3, Preliminaries, summarizes the preliminary work associated with this master’s thesis
conducted during the fall semester of 2022 in the specialization project [1].

Chapter 4, Leakage in the Controller, contains the system’s parameters and simulations for the
system model with the inclusion of a leakage term.

Chapter 5, Populating the LFC, finishes the calculations for the populated LFC and introduces
the solution with a numerical Lyapunov function, and contains simulations for the system model
without the inclusion of a leakage term.

Chapter 6, Leakage in the Controller and the Populated LFC Combined, uses the populated LFC
to render the system, with inclusion for leakage, GAS. Following this, a new stabilizing condition
for the leakage term is obtained. In simulations, the voltage deviations required by the leakage
term are considered.

Chapter 7, Concusion and Future Works, summarizes the finding of this master’s thesis and
presents the possibilities for future work.

Lastly, the appendices to this master’s thesis include calculations and proofs from the specialization
project that were used as support for the calculations done in the thesis. In addition to the
supporting material, the concept of droop control is presented.
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Chapter 2

Theory

This theory chapter is obtained from section 2 in the specialization project [1] except for sections
2.6 and 2.7, which were included as a part of the work conducted in the master’s thesis.

2.1 Nonlinear Systems

A common form to represent a general time-invariant nonlinear system is given in equation (2.1.1).

ẋ = f(x) + g(x)u, y = h(x) (2.1.1)

Nonlinear systems are more complex than linear systems due to the possibility of multiple or no
equilibrium points. The stability properties of nonlinear systems can therefore be more challenging
to determine. Equilibrium points for a system are found through steady-state analysis by setting
the time derivative of the state variables equal to zero ẋ = 0. The real solutions to this equation
correspond to the equilibrium points of the system. If the system only has the origin as an
equilibrium point, it is possible to analyze the stability using Lyapunov’s direct method.

In (2.1.1), the variables u and y represent the input and output. The input u is a function of the
system’s state, and the closed-loop system is obtained when this feedback information, u = γ(x),
is provided to the system.

2.2 Lyapunov’s Method

Lyapunov’s method is used for the stability analysis of both linear and nonlinear systems. There
are two main approaches to applying Lyapunov’s method: the direct method and the indirect
method.

The indirect method is the approach when a nonlinear system has more than one equilibrium
point. However, this method is based on linearizing the nonlinear system and can only provide
local asymptotic stability at each equilibrium point. The direct method can be used to analyze
systems with a single equilibrium point and determine whether the equilibrium point is stable,
asymptotically stable, or globally asymptotically stable.

V(x) is a Lyapunov function for the origin if and only if three conditions hold in the domain D.
The following conditions for a Lyapunov function are given in Theorem 4.1 in Khalil’s Nonlinear
Systems [12].

i) V is C1
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ii) V(0) = 0
V(x) > 0 ∀x ̸= 0 ∈ D

iii) V̇(0) = 0
V̇(x) ≤ 0 ∀x ̸= 0 ∈ D

A function V(x) must satisfy three conditions to serve as a Lyapunov function. The first condition
is that V(x) must be continuously differentiable C1. The second condition is that V(x) must be
positive definite within the domain D and have a minimum value at the origin. The third condition
is that the time derivative of V(x), denoted V̇(x), must be negative semi-definite. Negative semi-
definite ensures stability within the domain. If, in addition, V̇(x) < 0, then V̇(x) is negative
definite, which indicates asymptotic stability as the trajectory of the system’s solutions, not only
approach the origin but converge to it. If V̇ is negative definite, then V(x) is a strict Lyapunov
function for x = 0.

V̇(x) is dependent on the system’s equations since it is the derivative along the trajectories of the
system, and V̇(x) will be different for different systems. All three conditions need to be satisfied
by the chosen function V (x) to prove the stability of the system.

To ensure global asymptotic stability, a fourth condition is included. This condition is stated in
Theorem 4.2 in Khalil’s Nonlinear Systems [12].

iv) ∥x∥ → ∞ ⇒ V(x) → ∞

The final condition for a Lyapunov function is that the norm of the states x must be radially
unbounded. If this condition is satisfied, the Lyapunov function will also be radially unbounded.
The origin will be GAS if the Lyapunov function satisfies all four conditions.

2.3 Passive Systems

A definition of passive systems is given by Loŕıa and Nijmeijer in [13];

”From an energetic viewpoint we can define a passive system as a system which cannot
store more energy than is supplied by some ’source’, with the difference between stored
energy and supplied energy, begin the dissipated energy.”

In an electrical system, the energy is the power inflow, and this can be expressed as the product
of the input voltage and the output current. The energy stored in a system is determined by a
storage function, with a common application being a Lyapunov function. A passive dynamical
system is mathematically represented in (2.3.1).

u⊤y ≥ V̇ (2.3.1)

Equation (2.3.1) represents an open-loop system with an undefined input u and the storage function
V(x). According to the definition above, the dissipated energy in the system will be V̇ − u⊤y.
Lemma 6.6 in Khalil’s Nonlinear systems [12] states that if the passivity in (2.3.1) holds and if
the input to the system u = 0, then the system is stable. If the dissipation energy of the system
is included as well, then (2.3.2) is stable.

V̇ ≤ dissipated energy (2.3.2)
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2.4 Port-Hamiltonian

A port-modeling of a system represents its input and output characteristics in terms of the flow
of energy through the system. pH modeling combines port modeling with a Hamiltonian function,
which describes the total energy stored in the system and is recognized as a natural starting point
for the control of nonlinear systems. Due in part to its ability to incorporate energy considerations
and to represent interconnections between systems.

Power electronics systems can be described by pH modeling. The general representation of a power
electronics converter in pH is given as in (2.4.1) [11].

ẋ =

(
Jo +

m∑
i=1

Jiui −R

)
∇H(x) +

(
Go +

m∑
i1

Giui

)
E (2.4.1)

As stated in the introduction, the switching properties of the converter are neglected. The relevant
representation for the power converter for this project is given in (2.4.2).

ẋ = (J0 −R)∇H(x) +

(
Go +

m∑
i1

Giui

)
E (2.4.2)

The state vector of the converter is given as x ∈ Rn, the interconnection matrix Jo is skew-
symmetric, the dissipation matrix R = R⊤ ≥ 0, and in the last term GoE, E is the external
sources vector.

The gradient of the Hamiltonian function, ∇H(x), describes the total energy stored in the system.
The Hamiltonian of the system is given by (2.4.3) [14].

H(x) :=
1

2
x⊤Qx ⇒ ∇H(x) = Qx, Q = Q⊤ > 0 (2.4.3)

the symmetric matrix Q contains information about the energy-storing components, e.g., inductors
and capacitors of the system.

2.5 Relevant Properties of Square Matrices

Given a trivial square matrix Mn×n and its transpose M⊤
n×n.

Any matrix M is the sum of a symmetric matrix and a skew-symmetric matrix; M = Msym +
Mskew [15]. The symmetric and the skew-symmetric parts of M are given in (2.5.1) and (2.5.2),
respectively.

Msym =
1

2
(M+M⊤) (2.5.1)

Mskew =
1

2
(M−M⊤) (2.5.2)

Positive definiteness is an important property when conducting Lyapunov’s direct method. If the
symmetric part of M, Msym, is positive definite, then M is positive definite [15].

M is a symmetric matrix if M = M⊤, and if M⊤ = −M then the matrix is skew-symmetric. If a
skew-symmetric matrix M is multiplied by a symmetric vector N on both sides, the final product
is zero.

N⊤MN =
1

2
N⊤MN− 1

2
NM⊤N⊤ =

1

2
N⊤MN− 1

2
N⊤MN = 0 (2.5.3)
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2.6 Schur Complement

Given a symmetric matrix M:

M =

[
A B
B⊤ C

]
(2.6.1)

To determine if matrix M is positive definite, the Schur complement can be calculated. In addition
to M being symmetric, A > 0 and has to be invertible. If the calculated Schur complement is
larger than zero, then the matrix is positive definite [16]. The Schur complement calculated for
matrix M is given as:

C −B⊤A−1B > 0 (2.6.2)

2.7 Lyapunov Equation

The system matrix A, of a system with linear dynamics is Hurwitz if all the eigenvalues are negative.
The Lyapunov equation can be applied, if A is Hurwitz, to find a positive definite symmetric matrix
P for any given positive definite symmetric matrix Q [12] :

PA+A⊤P = −Q (2.7.1)

The Lyapunov function V(x) is defined as the positive definite matrices P and Q:

V(x) = x⊤Px and V̇(x) = −x⊤Qx

2.8 PI-controller and PBC

2.8.1 PI-controller

A PI controller is a feedback control regulating a system’s output. The input of a PI controller is
the error between a signal and a reference signal, and the output is a correction term applied to
the system to reduce the error. The general form of a PI controller is given by equation (2.8.1),
where e(t) is the input error signal and u(t) is the output correction signal.

u(t) = KP eP (t) +KI

∫
eI(t)dt (2.8.1)

KP and KI are positive gain constants that are tuned according to the characteristics of the
system. Equation (2.8.1) can also be written in negative form, as shown in equation (2.8.2).

u(t) = −KP yP (t)−KI

∫
yI(t)dt (2.8.2)

The controller is designed by defining y(t) := e(t).

Equation (2.8.2) operates in current-control mode by setting e = i − iref for the integral channel,
or in voltage-control mode for e = v − vref.
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2.8.2 PBC

A passivity-based controller (PBC) is a control based on the passivity properties of open-loop
energy-storing systems, which aims to design a controller that ensures that the closed-loop system
is stable [13]. The stability property is proved using Lyapunov; therefore, the system has to be
stable at the origin. The method uses the storage function of a passive system as the Lyapunov
function and designs a controller which renders the system asymptotically stable [12] [14].
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Chapter 3

Preliminearies

This chapter summarizes the work conducted in the preliminary specialization project in the fall of
2022 [1] as this was not published. The chapter consists of system modeling, the stability analysis
when a leakage term was included in the controller, and the initial part of designing an LFC by
populating it with unknown terms. The material in this chapter is essential for the work conducted
in the master’s thesis. This chapter’s outline is the same as the project’s outline in [1], but the
material is rewritten and condensed. Some proofs are not included in the master’s thesis but are
referred to in the project or in the appendix.

3.1 System Modeling

A general RLC circuit is used to represent a DC/DC converter in figure 3.1.

𝑣𝑐

𝐿 𝑅

𝑢

𝐶 𝐺

𝑖𝑜

Figure 3.1: RLC circuit

3.1.1 Modeling of the System Equations

Differential equations of the system, the system equations, are derived using Kirchhoff’s current
(KCL) and voltage laws (KVL):

[
i̇L
v̇C

]
=

[−R
L

−1
C

1
L

−G
C

] [
iL
vC

]
+

[
1
L
0

]
u+

[
0
−1
C

]
io (3.1.1)

and the system’s output is given as the inductor current iL.

The inductor and the capacitor are the passive elements of the circuit, and make it possible to
consider the system as passive. Due to this and to observe the energy-conserving capabilities in the
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circuit, a pH representation was utilized. The states in the pH form are the flux in the inductor,
ΦL, and the charge of the capacitor, qC .

The pH representation is given in (3.1.2).

[
Φ̇L

q̇C

]
=

[
−R −1
1 −G

] [
iL
vC

]
+

[
1
0

]
u+

[
0
−1

]
io (3.1.2)

The output of the system is not changed by the new representation and remains the inductor
current iL. The specific matrix definitions for the system are given in appendix A.1.

The general representation of the circuit is given as:

ẋ = (Jo −R)∇H(x) + gu+ Eo (3.1.3)

The Incremental Model

If the operating point in a DC/DC converter is at the origin, the system’s setpoints are equal to
zero, and a converter is turned off. Conducting a stability analysis for a system, in that case, would
be redundant as it is apparent that a turned-off system is stable.

Instead, the system’s desired operating points are at non-zero equilibrium points, and, therefore,
the model of the system is shifted to an incremental model. The system was shifted for the wanted
operating points, x, and their respective equilibrium points, x̄ [17]. The incremental model is given
as x̃ := x− x̄.

The general system representation is given in the incremental form:

˙̃x = (J0 −R)︸ ︷︷ ︸
Fo

∇H(x̃) + gũ (3.1.4)

The system matrix, Fo, and the controller matrix, g, remain the same. Whereas the term Eo was
eliminated. The final system representation is given in (3.1.5).

[
˙̃ΦL

˙̃qC

]
=

[
−R −1
1 −G

] [
ĩL
ṽC

]
+ gũ (3.1.5)

The dynamics of the model and the incremental model are equivalent. The proof of this is given
in appendix A.2.

3.1.2 Modeling of the Controller

The passive output of the incremental model of this system is given in (3.2.2) and is the inductor
current. The passive output of the incremental system is the same as the passive output of the
original system because the systems are equivalent, i.e., the system model has inductor current as
passive output.

In the specialization project [1], the system was considered to operate in voltage-control mode
by using the capacitor voltage error as input to the proportional and integral channels in the PI
controller. This type of control had no guarantees of stability as it was not designed from the
system’s passive output. After a stability analysis was conducted, the eigenvalues of this system
had an indeterminate sign, as seen in appendix B, and, therefore, the control was not considered
advantageous for stability.

The proposed PI controller has the inductor current error as input to the proportional channel
and the capacitor voltage error as input to the integrator channel. The system model operates in
voltage-control mode as well as considering the passive output for stability purposes.
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The controller is given as in (3.1.6).

u = −KP y +KIxc (3.1.6)

with y = iL − i∗L. The use of i∗L instead of irefL is explained in appendix C.2.

The integral channel has the capacitor voltage as input. Therefore, the controller state ẋc is defined
as the negative signal for capacitor voltage error:

ẋc = −y2 (3.1.7)

with y2 = vC − vrefC .

The controller in incremental form is given in (3.1.8). The incremental model of the controller is
derived in appendix A.2.

ũ = −KP ỹ +KI x̃c (3.1.8)

3.2 Stability Analysis

The system is passive, and its passive output is the inductor current. This was verified by the use
of Lyapunov’s method in the project [1].

3.2.1 Open-Loop Stability

The Hamiltonian H(x̃) is used as a Lyapunov function for the system:

V1(x̃) = H(x̃) =
1

2
x̃⊤Qx̃ (3.2.1)

The time derivative V̇1 is calculated. By use of skew-symmetric and positive definite properties,
the expression is simplified.

V̇1(x̃) = ∇⊤H(x̃)Jo∇H(x̃)︸ ︷︷ ︸
0

−∇⊤H(x̃)R∇H(x̃)︸ ︷︷ ︸
≥0

+∇⊤H(x̃)gũ

≤ ∇⊤H(x̃)g = x̃⊤Qgũ = ỹ⊤ũ

The incremental model has a passive output ỹ:

V̇1(x̃) ≤ ỹ⊤ũ (3.2.2)

which is identified as the inductor current.

The system model and the incremental model are equivalent; therefore, the system model’s passive
output is also the inductor current.

3.2.2 Closed-Loop Stability

To analyze the stability of the closed-loop system, the controller (3.1.8) is given as input to system
(3.1.5). Additionally, the state space is extended to include the controller state, ˙̃xc.

The proposed LFC for the whole state space system:

V2(x̃, x̃c) =
1

2
x̃⊤Qx̃+

1

2
x̃⊤
c KI x̃c (3.2.3)
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Lyapunov’s method was applied for the system using (3.2.3) in [1]. However, it was not possible
to prove V̇2 negative definite using (3.1.8) as the controller.

In an attempt to obtain a closed-loop stability certificate, i.e., a Lyapunov function, two different
methods were considered. The first method was introducing a leakage term in the controller. And
the second method was populating the LFC with unknown terms, which will be determined to
ensure the stability of the system.

Leakage in the Controller

For the case of leakage in the controller, a constant leakage D is included. The new state space
system is given in (3.2.4).

{
˙̃x = (Jo −R)Qx̃+ gũ
˙̃xc = −ĝ⊤Qx̃−DKI x̃c

(3.2.4)

This system uses the same LFC (3.2.3), V2. But with a new system due to the controller including
leakage, the time derivative V̇2 will be different.

V̇2 = ∇V⊤
2 (x̃) · ˙̃x+∇V⊤

2 (x̃c) · ˙̃xc

= x̃⊤Q(Jo −R)Qx̃+ x̃⊤Qg(−KP ỹ +KI x̃c)− x̃⊤
c KI ĝ

⊤Qx̃− x̃⊤
c KIDKI x̃c

= −x̃⊤QRQx̃− x̃⊤QgKP g
⊤Qx̃+ x̃⊤QgKI x̃c − x̃⊤

c KI ĝ
⊤Qx̃− x̃⊤

c KIDKI x̃c

= −x̃⊤QRQx̃− x̃⊤QK̄PQx̃+
1

2
(x̃⊤QgKI x̃c + x̃⊤

c KIg
⊤Qx̃)− 1

2
(x̃⊤

c KI ĝ
⊤Qx̃− x̃⊤QĝKI x̃c)

− x̃⊤
c KIDKI x̃c

= −
[
x̃⊤Q x̃⊤

c KI

] [ R+ K̄P
1
2 (ĝ − g)

1
2 (ĝ − g)⊤ D

] [
Qx̃
KI x̃c

]

To condense the expression for V̇2, K̄P := gKPC
⊤ is used.

Further, to determine stability, the Schur complement of V̇2 was calculated. R+ K̄P is invertible
as it is a diagonal matrix with positive constants, and the matrix of V̇2 is symmetric. The Schur
complement was calculated directly.

D − 1

4
(ĝ − g)⊤(R+ K̄P )

−1(ĝ − g) > 0

From the calculated Schur complement, a condition for V̇2 was obtained. If D > 1
4

(
1

R+KP
+ 1

G

)
,

then V̇2 is negative definite.

V2 is positive definite, and its time derivative, with this system model, is negative definite. There-
fore, V2 is a Lyapunov function for this system model as it renders the system GAS. And a
stability certificate was obtained for the system using V2 and a leakage condition for the system,

D > 1
4

(
1

R+KP
+ 1

G

)
.

The amount of required leakage in the output voltage is calculated from D > 1
4

(
1

R+KP
+ 1

G

)
.

The value of D results in a deviation between the system’s voltage output and its reference.
Without knowing the parameters for the system and a simulation model, the exact value of D and
the required voltage deviations will subsequently be calculated during the work conducted in the
master’s thesis. However, in [1] it was assumed that this leakage was substantial enough that it
would not be accepted in practice.
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Due to the magnitude of the deviations in the output value with the inclusion of a leakage term, it
was decided to remove the leakage term from the system’s controller. Therefore, it was necessary
to find another LFC to prove GAS for the system with the inclusion of leakage.

Populating the LFC

Instead of introducing a leakage term in the controller’s integral channel, a new LFC was required.
A possible way to obtain stability is by populating the terms of the LFC with unknown values,
then obtaining the time-derivative and choosing the unknowns such that the resulting expression
is negative definite.

A typical way to design LFCs is by using quadratic functions to ensure they are positive definite
and C1. And the LFC has to depend on the whole state space of the system model.

V3(x̃, x̃c) =
[
x̃⊤ x̃⊤

c

]
C2×2

[
x̃
x̃c

]
The unknown factor is a matrix, which is set as C2×2, and the elements of the matrix have to be
populated. To fulfill the first Lyapunov condition, C2×2 = C⊤

2×2 > 0, and for the time-derivative
of V3 to maintain the passivity property, it is necessary to include the elements Q and KI in C2×2.
Further, to populate the matrix, new elements are introduced: a small scalar ε > 0 and a vector
H2×1.

V3(x̃, x̃c) :=
1

2

[
x̃⊤ x̃⊤

c

] [ Q −εH
−εH⊤ KI

]
︸ ︷︷ ︸

C2×2

[
x̃
x̃c

]
(3.2.5)

V3 is quadratic, symmetric, and positive definite. The LFC is given in equation form to find the
time derivative:

V3(x̃, x̃c) =
1

2
x̃⊤Qx̃+

1

2
x̃⊤
c KI x̃c − εx̃⊤Hx̃c (3.2.6)

Both Q and KI are essential in the off-diagonal terms. Therefore, H := QgKI . V3 is then:

V3(x̃, x̃c) =
1

2
x̃⊤Qx̃+

1

2
x̃⊤
c KI x̃c − εx̃⊤QgKI x̃c (3.2.7)

The next step is to calculate the time derivative of V3.

In this case, for the system equations, the controller state does not include a leakage term. The
system state equations are given in (3.2.8).

{
˙̃x = (Jo −R)Qx̃+ gũ
˙̃xc = −ĝ⊤Qx̃

(3.2.8)

And the controller is given in (3.1.8).

The time derivative is calculated:

V̇3(x̃, x̃c) = ⟨∇V3(x̃), f(x̃)⟩+ ⟨∇V3(x̃c), f(x̃c)⟩
= ∇V⊤

3 (x̃) · ˙̃x+∇V⊤
3 (x̃c) · ˙̃xc

To find the expression of V̇3, ∇V3 is needed.

∇V3 =

[
∂V (x̃,x̃c)

∂x̃
∂V (x̃,x̃c)

∂x̃c

]
(3.2.9)
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The partial-derivative values are calculated respectively.

∇V3(x̃) =
∂

∂x̃
V3 = Qx̃− εQgKI x̃c

∇V3(x̃c) =
∂

∂x̃c
V3 = KI x̃c − εx̃⊤QgKI

With the gradient of V3 identified, it is possible to obtain the expression for V̇3:

V̇3(x̃, x̃c) = ∇V⊤
3 (x̃) · ˙̃x+∇V⊤

3 (x̃c) · ˙̃xc

= (x̃⊤Q− εx̃⊤
c KIg

⊤Q)((Jo −R)Qx̃+ gũ) + (x̃⊤
c KI − εKIg

⊤Qx̃)(−ĝ⊤Qx̃)

= −x̃⊤QRQx̃− x̃⊤QgKP g
⊤Qx̃+ x̃⊤QgKI x̃c − εx̃⊤

c KIg
⊤QFoQx̃

+ εx̃⊤
c KIg

⊤QgKP g
⊤Qx̃− εx̃⊤

c KIg
⊤QgKI x̃c − x̃⊤

c KI ĝ
⊤Qx̃+ εx̃⊤QgKI ĝ

⊤Qx̃

Note that εKIg
⊤Qx̃ = εx̃⊤QgKI , as it is a scalar.

And using K̄I := gKI ĝ
⊤ =

[
0 KI

0 0

]
and Q̄ := g⊤Qg to condense the expression for V̇3:

V̇3 = −x̃⊤Q(R+ K̄P − εK̄I)Qx̃+ x̃⊤Q(g)KI x̃c − x̃⊤
c (εg

⊤Q(Fo − K̄P ) + ĝ⊤)Qx̃− x̃⊤Q(εQ̄)KI x̃c

(3.2.10)

3.3 Concluding Remarks on Preliminearies

This chapter summarizes the work conducted in [1]. The system model is presented in this chapter.
It is transformed to a pH representation and then shifted to an incremental form such that the
system is considered for desired operating point. In addition to the system modeling, the proposed
controller is presented and given in incremental form. The second part of this chapter considers
the stability analyses of the proposed controller by Lyapunov’s method. First, the system was
proven GAS by the inclusion of a leakage term. An attempt was made to find an LFC such that
the system, without the inclusion of leakage, was rendered GAS. The calculations for this LFC
were not finished, as is continued in the work conducted in the master’s thesis.
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Chapter 4

Leakage in the Controller

This chapter continues with the result from section 3.2.2 in the preliminary project [1]; a stability
certificate for the system model with a PI controller, using current error as input for the propor-
tional channel and voltage error as input for the integral channel, was obtained with a condition of
a constant leakage in the output. In this chapter, the system parameters are presented. Following
this, the leakage term is calculated, and a simulation model is created in MATLAB Simulink to
verify the mathematical proof. In addition, the deviation in the voltage output required by the
constant leakage is observed.

4.1 The Leakage Term

The condition for GAS is given by the leakage term D:

D >
1

4

(
1

R+KP
+

1

G

)
(4.1.1)

The value of D depends on the constant values R and G, which are the rated values for resistance
and conductance in the circuit, and the proportional gain KP , which is a scalar value that is
decided through tuning for performance. D is included as a negative term in the controller state
ẋc.

4.2 System and Load Flow Analysis

The parameters for the circuit in figure 3.1 are given in table 4.1. These parameters are based on
the power converters from [18], as they show a stable and realistic system. The values are used as
parameters for the simulation model.

u 20V
L 2.3mL
C 190µC
R 2.134Ω
G 0.0227S

Table 4.1: Converter parameters

The initial value of the input signal u is included in table 4.1, as it was considered the open circuit
voltage of the circuits [18]. For this circuit, u is considered the input signal, and io is used as open
circuit current instead.
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4.2.1 Load Flow Analysis

A load flow analysis is conducted to obtain reference values utilized in the simulations. The
reference values were considered as the equilibrium points, denoted (̄·), during the calculations in
section 3.2.2. The equilibrium points are calculated by use of the state space model. Each vector
field is set equal to zero to find the values when there is no energy flowing in the system, i.e., the
equilibrium points.

0 = −R

L
īL − 1

C
v̄C +

1

L
ū (4.2.1)

0 = − 1

C
īL − G

C
v̄C − 1

C
īo (4.2.2)

However, a load flow analysis is not the objective of the master’s thesis, and neither is designing a
converter. Therefore, the reference values for both voltage and current are obtained by continuing
to use the data from [18]. The values are given as vrefC = 15V and iL

ref = 2.5A. The value of
the open-loop current is not given. Therefore, it has to be calculated from the reference values.
Eqaution (4.2.2) is used, and the equilibirum values are set as v̄c = vrefc and īL = irefL . The equation
for io is given in (4.2.3):

io = irefL − vrefC ·G (4.2.3)

4.3 Simulation Results and Interpretation

The setup in Simulink consists of three parts: the load flow, the controller, and the system model.

4.3.1 Inital Values and Setup in Simulink

The capacitor voltage reference and open-loop current are initial values, vrefC = 15V and io = 2.16A.
These values are inputs to the load flow, where uref and irefL are calculated.

The system’s controller is given as u in (3.1.6). For the simulations, the inputs for the controller
channels are the error between the signals’ response and their respective reference value.

u = −KP (iL − irefL ) +KIxc (4.3.1)

uref is used as a reference value for the controller signal, supposed there is no deviation for the
output signal for iL. In Simulink, uref is calculated in the load flow, and the expression is obtained
from (4.2.1). The signal for uref has the reference values for current and voltage as variables:
uref = irefl ·R+ vrefc .

The controller state ẋc is defined as the negative deviation for vC and a leakage term for the state
xc:

ẋc = −(vC − vrefC )−DKI(xc − xref
c )

The system equations are given as in (3.1.1) with u as input. And the system’s outputs are the
regulated responses for vC and iL.

4.3.2 Simulation Results

The objective of the master’s thesis is to demonstrate the stability of the closed-loop system.
Consequently, the simulations are conducted for a specific set of controller gains obtained through
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tuning initially. KP and KI are both set to 15. Once KP is determined, the value of D is calculated
using equation (4.1.1), and a minimum stability threshold of D = 11.02 is established.

The simulation time is T = 2 seconds. The reference for capacitor voltage, vrefC , changes three
times to examine the impact on the system’s stability. The initial value of 15V , then after 0.5
seconds, the first step with an increase of 10V , another second, a further increase of 15V , and
lastly, a voltage drop of 5V after 0.2 seconds.
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Figure 4.1: The system without deviation in io

In figure 4.1, the system’s signal responses demonstrate no deviation from the reference values.
The signal responses for vC and u track their references without exhibiting oscillations and with
a rapid settling time. Figure 4.1b illustrates the response of iL, which exhibits a slight overshoot
upon each step occurrence before quickly settling to its reference value. However, the magnitude of
this overshoot is minimal, and the settling time is sufficiently short, resulting in a minimal impact
on the system’s stability.

These response behavior align with the expected initial behavior for a converter. However, as
the device continues to regulate the responses, it is anticipated that the load flow will gradually
lag behind the PI control, leading to deviations between the reference values from the load flow
and from the controller into the system model. The system’s leakage term would then appear as
deviations in the voltage output.
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Deviaion Between the Reference Values into the Load Flow and into the System Model

To show this in simulations, the open-circuit current io is considered, as this is used as input to
both the load flow and the system model. The value for io into the system model is set to have a
step after 0.9 seconds, while the value for io used in the load flow calculations remains the same.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [seconds]

0

10

20

30

40
V

o
lt
a
g
e
 [
V

]

Voltage Signals

v
c

v
c

ref

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [seconds]

14

14.5

15

15.5

C
u
rr

e
n
t 
[A

]

Current Signals

i
l

i
l

ref

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [seconds]

10

20

30

40

50

60

70

V
o
lt
a
g
e
 [
V

]

Controller Signals

u

u
ref

(c)

Figure 4.2: The system with some deviation in the open-circuit current io

In figure 4.2, a change in the reference value io is introduced. For the initial 0.9 seconds in the
simulation, the value for io remains the same in the load flow and in the system. At t = 0.9
seconds, the input value for io into the system is changed to io = io + 0.1A, while the value for io
into the load flow remains constant. As the signal responses for vC and iL from the system are fed
back to the PI controller, a leakage will appear in the regulated responses.

The leakage term is introduced as a negative term in the voltage control. In figure 4.2a, the
response for vC has a reduced value after t = 0.9 seconds. This is considered as a constant leakage
for the output value, which remains for the rest of the simulation. The response for vC is not
regulated such that it settles back into its reference value.

The response for iL shows a simultaneous increase in value in figure 4.2b. The difference between
the responses for vC and iL and their respective reference value are approximately 1V and 74mA.
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Figure 4.3: The system with deviation in the open-circuit current io

In figure 4.3, the deviation between the io-values is increased. At t = 0.9 seconds, the value for
io into the system is set to io = io + 1A instead while the load flow’s value remains. The leakage
observed in the signal responses is significantly increased, as can be seen in figures 4.3a and 4.3b.
The deviation in io is only 1A, but the effect on the output responses is consequential. The differ-
ence between the responses for vC and iL and their respective reference value are approximately
10V and 1A.
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4.4 Concluding Remarks on Leakage in the Controller

The closed-loop system in this chapter has a controller with a leakage term included. A simulation
model was created using MATLAB Simulink, the model’s parameters was obtained from [18], and
the necessary reference and input values were calculated such that the simulation results show a
stable system with and without voltage deviations. The deviations only appeared when there was
a deviation between io used as input to the load flow and to the system existed.

The output value for vC is the most affected by this leakage, especially when the deviation between
io for the system and the controller increases. This is due to the system being in voltage-control
mode. In figure 4.3, it was observed that the required voltage deviations for the stabilizing term
D are not acceptable for practice, as the difference was 10V .
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Chapter 5

Populating the LFC

The process of populating the LFC began in [1] and is documented in section 3.2.2. Building
upon the previous work conducted in [1], this chapter extends the calculations for the LFC. The
objective remains unchanged: to determine suitable values for ε, as well as the tuning gains KP and
KI , such that V̇3 < 0. The first part of this chapter focuses on completing the LFC calculations.
Subsequently, efforts are made to ensure that the final inequality is greater than zero and that a
Lyapunov function is obtained. Following these analyses, simulations are conducted for the system
model.

5.1 Completing the Calculations for the LFC

In section 3.2.2 under Populating the LFC, the initial populating of a new LFC, denoted V3, was
started. The proposed PI controller for this system model did not include the leakage term D.
In [1], it was considered that the amount of leakage required would create voltage deviations that
would not be considered acceptable in practice. Following, in chapter 4, simulations were conducted
for this system and confirmed the assumption made in [1], as the voltage deviations were proven
too great. Therefore, a new LFC is proposed to render the system without the inclusion of the
leakage GAS. The calculations done in this chapter use the results from section 3.2.2 from [1] as a
starting point.

A new LFC was designed, V3, and is given in (3.2.7). Its time-derivative V̇3 (3.2.10) was calculated:

V3 =
1

2
x̃⊤Qx̃+

1

2
x̃⊤
c KI x̃c − εx̃⊤QgKI x̃c

V̇3 = −x̃⊤Q(R+ K̄P − εK̄I)Qx̃+ x̃⊤Q(g)KI x̃c − x̃⊤
c (εg

⊤Q(Fo − K̄P ) + ĝ⊤)Qx̃− x̃⊤Q(εQ̄)KI x̃c

ε is defined as a positive constant. Its exact value is unknown, but it is assumed to be small.

For V3 to be a Lyapunov function, then V3 > 0 and V̇3 < 0. By calculating the Schur complement
of both V3 and V̇3, and show positive and negative definiteness, respectively, for a value of ε, a
Lyapunov function is found. In section 3.2.2, V3 was populated such that it is a symmetric, positive
definite matrix, given that ε is a positive constant. Therefore, it is only necessary to calculate the
Schur complement of V̇3.

A condition for the Schur complement is that the matrix has to be symmetric. The symmetric
part of V̇3 is used for the calculations and obtained by use of (2.5.1).
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The symmetric part of V̇3 is calculated:

1

2

([
R+ K̄P − εK̄I −g

εg⊤Q(Fo − K̄P ) + ĝ⊤ εQ̄

]
+

[
(R+ K̄P − εK̄I)

⊤ ε(Fo − K̄P )Qg + ĝ
−g⊤ εQ̄

])
=

[
R+ K̄P − ε

2K
∗
I

1
2 (ε(Fo − K̄p)Qg + ĝ − g)

1
2 (ε(Fo − K̄p)Qg + ĝ − g)⊤ εQ̄

]

K̄I ̸= K̄⊤
I and is not a symmetric matrix, likeR and K̄P . Therefore, a new matrixK∗

I =

[
0 KI

KI 0

]
is introduced to condense the expression. The whole expression with the symmetric part of V̇3 is
given (5.1.1).

V̇3 = −
[
x̃⊤Q x̃⊤

c KI

] [ R+ K̄P − ε
2K

∗
I

1
2 (ε(Fo − K̄p)Qg + ĝ − g)

1
2 (ε(Fo − K̄p)Qg + ĝ − g)⊤ εQ̄

] [
Qx̃
KI x̃c

]
(5.1.1)

The Schur complement for V̇3 in (5.1.1) will be calculated with respect to εQ̄, and therefore,
R+ K̄P − ε

2K
∗
I has to be larger than zero and invertible. Due to the assumed low value of ε, the

matrix is invertible (its determinant is larger than zero). All the conditions hold, and the Schur
complement is calculated:

εQ̄− 1

4
(ĝ − g + ε(Fo − K̄p)Qg)⊤(R+ K̄P − ε

2
K∗

I )
−1(ĝ − g + ε(Fo − K̄p)Qg) > 0 (5.1.2)

If (5.1.2) holds for a valid ε, then V̇3 is negative definite, and asymptotical stability is proved by
V3. This is, however, not possible to determine immediately by observing the inequality as is. The
unknown elements: ε, KP , and KI , give the problem. The issue presented with these values is to
find an exact value for ε that gives a positive Schur complement and find valid tuning gains for
the controller.

It is proved difficult to find a valid ε for the inequality in (5.1.2). Therefore, different adjustments
are therefore considered to make the inequality true.

5.2 Investigating Solutions

To satisfy (5.1.2), εQ̄ must be greater than the product of the off-diagonal terms of the matrix
and the inverse of the first element of the matrix. One possible approach is to set the gain of the
proportional controller, KP , to a very high value, as it appears in the inverse term. In this case,
the product of the off-diagonal terms would be divided by a large value, resulting in a smaller
magnitude compared to εQ̄. This possibility was considered and evaluated. However, due to the
specific structure of K̄P , this approach does not yield the desired outcome. The high-valued KP

is only present in the first element of the inverse matrix, as shown in (5.2.1).

R+ K̄P − ε

2
K∗

I =

[
R 0
0 G

]
+

[
KP 0
0 0

]
−
[

0 ε
2KI

ε
2KI 0

]
=

[
R+KP − ε

2KI

− ε
2KI G

]
(5.2.1)

The structure of (5.2.1) results in one of the terms in (5.1.2) not being divided by the high value
of KP . This is problematic because εQ̄, already a small value due to the small magnitude of ε,
needs to be larger than the combined subtracting terms. Consequently, it becomes impossible to
satisfy the inequality in (5.1.2).

5.2.1 Introducing v in the Controller ũ

To adjust for this, a possibility is to remove the issue by mathematically adjusting the system to
make the off-diagonal terms’ contribution very small. And then implement this adjustment in the
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system through the controller.

An attempt was made by multiplying the vectors ĝ − g in (5.1.2) with a small factor v. This
mathematical adjustment is given in (5.2.2).

εQ̄− 1

4
(v · (ĝ− g) + ε(Fo − K̄p)Qg)⊤(R+ K̄P − ε

2
K∗

I )
−1(v · (ĝ− g) + ε(Fo − K̄p)Qg) > 0 (5.2.2)
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Figure 5.1: Area where both ε and the inequality in (5.2.2) as a function of ε are positive

For v = 0.001, KP = 103 and KI = 10−3 in (5.2.2), it was possible to obtain a positive value for
a region of ε-values, as shown in figure 5.1. However, this plot does not show proof of stability for
the system because it is simply a mathematical adjustment. To make the inequality valid, v has
to be implemented in the system. As the goal is for v to mainly affect the controller vectors, the
controller and the controller state were adjusted. The controller ũ is multiplied by v, giving a new
controller w̃ (5.2.3).

w̃ = v · ũ = v · (−KP ỹ +KI x̃c) (5.2.3)

The change in the system equations is given in (5.2.4). The controller is changed to w̃, and v is
included in the controller state ˙̃xc.

{
˙̃x = (Jo −R)Qx̃+ gw̃
˙̃xc = −vĝ⊤Qx̃

(5.2.4)

It is necessary to calculate the time derivative of the LFC again to include all system changes. V3

is the same as in (3.2.7).

V̇3 = (x̃⊤Q− εx̃⊤
c KIg

⊤Q)((Jo −R)Qx̃+ gw̃) + (x̃⊤
c KI − εKIg

⊤Qx̃)(−vĝ⊤Qx̃)

= −x̃⊤QRQx̃− x̃⊤QgvKP g
⊤Qx̃+ x̃⊤QgvKI x̃c − εx̃⊤

c KIg
⊤Q(Jo −R)Qx̃

+ εx̃⊤
c KIg

⊤QgvKP g
⊤Qx̃− εx̃⊤

c KIg
⊤QgvKI x̃c − x̃⊤

c KIvĝ
⊤Qx̃+ εx̃⊤QgKIvĝ

⊤Qx̃

= −x̃⊤Q
(
R+ vK̄P − εvK̄I

)
Qx̃+ x̃⊤Q(vg)KI x̃c − x̃⊤

c KI

(
εg⊤Q(Fo − vK̄P ) + vĝ⊤

)
Qx̃

− x̃⊤
c KI(v · εQ̄)KI x̃c
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The symmetric part main matrix V̇3 is calculated for this case, as well:

V̇3 = −
[
x̃⊤Q
x̃⊤
c KI

]⊤ [ R+ vK̄P − v · ε
2K

∗
I

1
2 (ε(Fo − vK̄P )Qg) + v(ĝ − g))

1
2 (ε(Fo − vK̄P )Qg + v(ĝ − g))⊤ v · εQ̄

] [
Qx̃
KI x̃c

]
(5.2.5)

As seen in (5.2.5), v appears in front of the vectors ĝ − g, which was the goal. However, v also
appears with the gain matrices, K̄P and K∗

I , and εQ̄. Using a small value for v would mean the
effect of the controller is barely there and will only lead to the need for very high tuning gains
to have any effect from the controller. Also, the Schur complement is even more difficult to make
valid as the term of the far left, v · εQ̄, has to be the largest positive value for the inequality to
hold, is even smaller than originally. The new Schur complement is given as in (5.2.6).

v ·εQ̄− 1

4
(v ·(ĝ−g)+ε(Fo−vK̄p)Qg)⊤(R+vK̄P −v

ε

2
K∗

I )
−1(v ·(ĝ−g)+ε(Fo−vK̄p)Qg) > 0 (5.2.6)

It was tried to obtain a positive result for (5.2.6), such as in figure 5.1. The new Schur complement
was plotted with respect to ε, but it was only possible to obtain values for Schur that were close
to zero or zero but never positive.

5.2.2 Increasing G

An alternative approach explored involves increasing the dissipation in the capacitor by raising the
conductance value G beyond its rated value. The remaining term in (5.1.2) will then be divided
by a large value, and the resulting value will be small. If a small value is subtracted from εQ, the
inequality in (5.1.2) could be valid.

It should be noted that an increase in conductance, G, does not imply a modification in the device’s
actual rating. The additional conductance would be incorporated as a load in parallel to the
capacitor. Although an augmented value ofG would result in increased losses within the component
and diminish the overall impact of the converter, it is important to mention that this aspect falls
outside the scope of this master’s thesis. Consequently, the effects of this implementation are
not explored further. The primary focus, however, centers around investigating whether this
adjustment can provide evidence of asymptotic stability in the system.

The rated conductance value is G = 0.0227S. A higher G is at some point expected to give a
positive Schur complement even though the parameter is unrealistic high. Therefore, this value is
increased substantially, and the respective Schur complements are calculated.
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(b) G = 1
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· 103S = 22.72S
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Figure 5.2: The value of the conductance G is increased in an attempt to obtain a positive Schur
complement

G is set to four different values: 0.0227S, 22.72S, 2.27kS, and 2.27 ·107S, while the other paramet-
ers, KP , and KI , remain the same: KP = 103 and KI = 10−3. The respective Schur complements
are calculated and plotted for each value G and shown in subfigures (a)-(d) in figure 5.2.

Figure 5.2a shows the inequality for the rated value of G. It is far from positive, even though
the value of ε is small. Therefore, changing G to a higher value could potentially give a positive
value to the function. Continuing in figure 5.2b, an increase in G gives an observable effect on the
function. It has become less negative and is closing in on the line, indicating zero. The next figure,
5.2c, shows a function that almost touches the zero line. And lastly, with an unrealistic high value
of G, the function touches the zero line but does not become a positive value. It was also checked
for an even higher G, but the function did not obtain any higher value than zero.

5.3 A New Lyapunov Function Candidate

In section 5.2, several attempts were made to design an LFC by populating the unknown terms of
V3, with the goal of obtaining V̇3 negative definite. Neither a small adjustment in the controller
nor increasing G worked, and, therefore, the system was considered from an alternative standpoint.
Since the system has linear dynamics, it is possible to consider the system’s state matrix and the
Lyapunov equation to find a Lyapunov function that gives a stable system.

5.3.1 Using the Lyapunov Equation to Show Stability

To use the Lyapunov equations given in (2.7.1) and find a Lyapunov function, the state matrix
Apop for (3.2.8) has to be calculated. Using the controller (3.1.8), the system’s closed-loop states
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are then given as:

˙̃x =

[
˙̃ΦL

˙̃qC

]
=

[
−R

L − 1
C

1
L −G

C

] [
ĩL
ṽC

]
+

[
−KP

ĩL
L +KI x̃c

0

]
=

[
−RΦ̃L − 1

C q̃C − KP

L Φ̃L +KI x̃c
1
L Φ̃L − G

C q̃C

]
˙̃xc = − 1

C
q̃C

By use of the system’s differential equations and of the system’s states, Φ̃L, q̃C , and x̃c, Apop is
given in (5.3.1).

Apop =

−R+KP

L − 1
C KI

1
L −G

C 0
0 − 1

C 0

 (5.3.1)

Using a high value of the proportional gain, KP = 103. The eigenvalues of Apop are calculated and
given in table 5.1.

λi Eigenvalue
λ1 −4.3571 · 105
λ2 −124.871
λ3 −0.4206 · 10−5

Table 5.1: Eigenvalues of Apop

Apop is Hurwitz since all the eigenvalues in table 5.1 are negative, and Q is set equal to the identity
matrix, Q = I3, which makes it positive definite. The conditions for using (2.7.1) hold, and the
matrix P is calculated:

P =

 1.7318 · 10−6 −4.8354 · 10−4 0.0485
−4.8354 · 10−4 0.004 9.5 · 10−5

0.0485 9.5 · 10−5 2.1132 · 107

 (5.3.2)

Since P also is positive definite, it is a valid Lyapunov function for (3.2.8) and proves that the
system is asymptotically stable.

Using x̃⊤ =
[
Φ̃L q̃c

]
, the numerical Lyapunov function is given as in (5.3.3).

V4(x̃) =
[
x̃⊤ x̃⊤

c

]  1.7318 · 10−6 −4.8354 · 10−4 0.0485
−4.8354 · 10−4 0.004 9.5 · 10−5

0.0485 9.5 · 10−5 2.1132 · 107

[ x̃
x̃c

]
(5.3.3)

And the time-derivative of V4:

V̇4(x̃) = −
[
x̃⊤ x̃⊤

c

] 1 0 0
0 1 0
0 0 1

[ x̃
x̃c

]
(5.3.4)

5.3.2 Compared to the Previous LFC

The LFC V3 (3.2.7) proposed in sections 3.2.2 and 5.2 did not show asymptotic stability. By
observation of (5.3.2), it is possible to obtain some insight into how V3 could be revised to give
asymptotic stability. V3 is given in matrix form in (5.3.5).
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V3 =
[
Φ̃⊤

L q̃⊤C x̃⊤
c

]  1
L 0 − ε

LKI

0 1
C 0

− ε
LKI 0 KI


︸ ︷︷ ︸

M

Φ̃L

q̃C
x̃c

 (5.3.5)

The elements of M which haven’t already been altered are M(1,2) and M(2,1). In the case of
stability, P, these values are non-zero and small. An adjustment of V3 is done by setting the zero
values to a, a small positive constant.

M∗ =

 1
L a − ε

LKI

a 1
C 0

− ε
LKI 0 KI


However, due to time limitations, further efforts to determine a value for a have not been pursued.

5.4 Simulation Results and Interpretation

The closed-loop system without the inclusion of leakage term was rendered GAS by a Lyapunov
function obtained by use of the Lyapunov equation. Because proof of stability is obtained, simu-
lations of the system are conducted to show the dynamics of the system.

5.4.1 Initial Values and Setup in Simulink

The setup for the simulation is the same as in section 4.3, with three parts: open-loop load flow,
controller, and system equations. The open loop load flow and the controller remain the same. vrefC

and io are inputs, and irefL and uref are the outputs in the load flow, and the controller is given
in (4.3.1). The system in this chapter is not considered for leakage, the leakage term is therefore
neglected, and the virtual controller state ẋc is only given as the negative error signal for vC .

ẋc = −(vC − vrefC ) (5.4.1)

The system equations are given in (3.1.1) with u as input, and the system’s outputs are the
responses for vC and iL.

5.4.2 Simulation Results

The gains are tuned briefly for the new system and then set to constant values, KP = 50 and
KI = 15. The system with these gains follows the reference but has a longer settling time, so
in case of quick changes, the response does not manage to settle into its reference value. Also,
it was important that the controller signal remained within reasonable values whenever a step
in the reference value was introduced. However, the system is considered stable as there are no
oscillations or overshoots, and the responses follow their references.
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Figure 5.3: The system without any altering

Figure 5.3 shows plots of the vC , iL, and u responses compared to the respective reference signal.
As expected, due to the limited tuning, the responses are slow but follow the reference signals.
The system has no oscillations before the response settles into the reference. The only noteworthy
disturbance is given in figure 5.3c; when a step occurs, the controller signal u has a small value
spike before it drops and then starts to settle into the reference value. In the case of stability, the
spikes are very low, but if they become extremely high, this means instability. The controller’s
signal is a voltage signal, and a converter is not dimensioned for this value to rise to extremely
high values. For the response of u, there is also a high rise in value immediately when the device
is turned on, this is ignored since this is only a simulation, and for the real case, filters or other
measures are in place for the start-up to avoid this high rise in value.

5.4.3 Increasing G

Considering (5.1.2), it was assumed that an increased value G would make the inequality hold at
some point. However, the function of the inequality in (5.1.2) seemed only to approach zero and
not become a positive value, no matter how great the value of G.

In the case for simulations, three different values forG are considered: the rated value 1
44 = 0.2273S,
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G = 22.73S, and G = 2.273kS. From the simulations, only plots of the vC responses with their
reference signals are included. The PI controller is in voltage-control mode. Therefore, it is relevant
to see how increased values for G affect the control of vC . Additionally, the values for iL and u will
only show extremely high values and instability as the conductance value is raised to unrealistically
high values.
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Figure 5.4: Comparing responses of vC with different values of the conductance G

When the value of G is increased, the responses for vC are improved without the need for tuning,
as observed in 5.4. Even though the regulation of vC is improved by higher G, the system is
not improved as a whole because of the problems for iL and especially u. These simulations are
included as a supplement to the calculations section 5.2.2.

5.4.4 System Dynamics Considered for Deviation in the Open-Circuit
Current io

In this section, the conductance G is set to its rated value. In section 4.3, the system’s response
was checked when the input values in the system deviated from the input in the load flow. In the
case of this system, the controller is expected to regulate the responses back to the reference values
and not have a constant deviation in the output.
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Figure 5.5: The system with some deviation in the open-circuit current io

Figure 6.4 shows the system’s responses when io into the system is different from the value into
the load flow. At t = 0.9 seconds, the input value in the system is increased to io = io + 0.1A.
The response for vC and u drops at t = 0.9 seconds but quickly settle into their reference value
again. However, the response for iL does not settle into its reference after t = 0.9 seconds, as seen
in figure 5.5b. It deviates with approximately 0.1A. The lack of regulation in the response for
iL is due to the PI controller operating in voltage-control mode, and there is no integral effect to
regulate the response for iL.
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Figure 5.6: The system with deviation in the open-circuit current io

In figure 5.6, the input of io into the system is increased to io = io + 1A. This change makes for
a drop in value for the responses of vC and u. This change is quickly regulated, and the response
settles into its reference value after 0.2 seconds for u and after 0.4 seconds for vC . The response
of iL does not manage to settle into its reference. The response is approximately 2A higher than
the reference. Again, due to no integral effect for the error in the response of iL.
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5.5 Concluding Remarks on Populating the LFC

The proposed way of populating an LFC and then determining the unknown values such that the
conditions for the Lyapunov method are upheld was not possible. However, the system is GAS,
and a numerical Lyapunov function was found. The numerical Lyapunov function helped identify
issues in the populated LFC, which contributed to modifications of the proposed LFC.

As the system was proven GAS by the numerical Lyapunov function, simulations were conducted
to observe the system dynamics. By increasing G, the inequality in (5.1.2) obtained a higher
value, but never a high enough value to become positive. Simulations with different high values
of G affected the response for vC positively, but if the responses for u and iL were considered, the
system was unstable.

For the system dynamics, when the open-circuit io deviated in the load flow and the system
equations, the voltage responses, vC , and u, were regulated to the reference values. In contrast,
the response for iL did not correct itself, which is due to the PI controller operating in voltage-
control mode and no integral effect removing the error in the current response.
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Chapter 6

Leakage in the Controller and the
Populated LFC Combined

This chapter investigates the proposed PI controller from section 3.2.2 and chapter 4, which includes
a leakage term within the controller, as well as the populated LFC discussed in section 3.2.2 and
chapter 5. More precisely, the system equations in (3.2.4), the controller in (3.1.8), and the LFC
V3 in (3.2.7) to prove GAS. The chapter begins with the motivation behind the proposed system,
followed by the calculation of the time derivative of the Lyapunov function to demonstrate GAS.
Additionally, a new stabilizing condition is determined for the leakage term to minimize voltage
deviations in the system’s output.

6.1 Motivation for the Proposed System

In section 3.2.2 and chapter 4, a GAS system required the inclusion of a leakage term in the con-
troller, which necessitated voltage deviations for the system’s output. Additionally, the proposed
LFC presented in chapters 3 and 5 did not demonstrate asymptotical stability for the system
without including leakage, as the necessary constants for the function appeared not to exist. As a
compromise between the applied methods, the LFC (3.2.7) is utilized in this chapter to establish
asymptotical stability for the system, including a leakage term, while obtaining acceptable levels
of voltage deviations by increasing the value of the conductance G.

In section 5.2.2, the conductance G was raised to values beyond its rated capacity in an attempt
to establish asymptotic stability. Regrettably, even with unrealistically high values, the system
remained unstable. However, based on the functions plotted in figure 5.2, an increased value of G
exhibited an observable effect to render the Schur complement of V̇3 positive (or negative definite
if a negative sign is applied).

The approach pursued in this chapter involves utilizing the leakage term D derived from chapter
4 to compute a positive Schur complement for the time derivative of the LFC. This computation
aids in determining a suitable value for ε for an increased conductance value G. Furthermore,
by incorporating the values of ε and G, a new stabilizing condition for the leakage term is estab-
lished. Subsequently, the modified leakage term D and the increased value of G are utilized in the
simulation model to reduce the required voltage deviations for the system to be asymptotically
stable.
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6.2 Calculations for the Proposed System and Increasing
the Conductance G

The initial calculations in this chapter are expected to prove asymptotically stable because the
system, including a leakage, was proven GAS in [1], as seen in section 3.2.2 and the LFC V3 was
inspired by the results from this stability analysis.

The system equations are given in (3.2.4) and the controller in (3.1.8). The proposed Lyapunov
function is V3, (3.2.7). The time-derivative of V3 is calculated:

V̇3 = (x̃⊤Q− εx̃⊤
c KIg

⊤Q)((Jo −R)Qx̃+ gũ) + (x̃⊤
c KI − εx̃⊤Qg⊤Qx̃)(−ĝ⊤Qx̃−DKI x̃c)

= −x̃⊤Q(R+ K̄P − εK̄I)Qx̃− x̃⊤Q(−g − εĝKID)KI x̃c − x̃⊤
c KI(εg

⊤Q(Fo − K̄P ) + ĝ⊤)Qx̃

− x̃⊤
c KI(εQ̄+D)KI x̃c

Written as the symmetric part of the matrix:

V̇3 =

[
x̃⊤Q
x̃⊤
c KI

]⊤ [ R+ K̄P − εK̄I
1
2

(
ε(Fo − K̄P )

⊤Qg + ĝ − g − εKIDĝ
)

1
2

(
εg⊤Q(Fo − K̄P ) + ĝ⊤ − g⊤ − εKIDĝ⊤

)
εQ̄+D

] [
x̃⊤Q
x̃⊤
c KI

]
(6.2.1)

V̇3 expressed as a symmetric matrix, and R + K̄P − εK̄I is invertible, the Schur complement for
V̇3 is calculated directly as in (2.6.2):

εQ̄+D−1

4
(εg⊤Q(Fo−K̄P )+(ĝ−g)⊤−εKIDĝ⊤)(R+K̄P−εK̄I)

−1(ε(Fo−K̄P )
⊤Qg+ĝ−g−εKIDĝ) > 0

(6.2.2)

To calculate the Schur complement in (6.2.2) and find a value for ε, the system parameters are given
in table 4.1. In addition to this table, table 6.1 is created. This table includes the proportional
controller gain KP and the leakage term D, as well as the undecided value ε and the conductance
G. The values in table 6.1 will be updated in this chapter as the adjustment and calculations are
made.

G 0.0227S
KP 15
D 11.02
ε -

Table 6.1: Initial parameters

The Schur complement is calculated twice; first for the normal value of G, as given in tables 4.1 and
6.1, and second for an increased value of G = 22.72S while the other parameters remain constant.
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Figure 6.1: The Schur complement as a function of ε is calculated twice: for G = 0.0227S in (a)
and for G = 22.73S in (b)

Both plots in figure 6.1 show a positive value of the Schur complement, and this means GAS
systems for both values of G. The values of ε give positive function values in a wide range, and a
common value for both plots is chosen: ε = 2 · 10−4. In other words, this value of ε can be used in
the same LFC and render both systems stable.

With a decided value of ε, the Schur complement is considered as a function of the leakage term D
instead. And in hopes of finding a new, lower stabilizing condition for the leakage term, the new
Schur complement is calculated. The parameters used in this calculation are given in table 6.2.

G 22.73S
KP 15
D -
ε 2 · 10−4

Table 6.2: Updated parameters
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Figure 6.2: The Schur complement as a function of D

Based on the resulting function in figure 6.2, the Schur complement is definitely positive when
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the leakage term is more than D > 0.013. By setting D = 0.014, the system is guaranteed GAS.
Compared to the previous leakage term of 11.02 from chapter 4, the voltage deviations required
for stability for this system are considerably lower. If the actual deviations are considered suitable
for practice will be given by simulation results.

With the new value for conductance, the leakage term of D can be calculated using the stabilizing
condition found in section 3.2.2, for the previous LFC used for the leakage system, V2. Equation
(4.1.1) is used and gives the stabilizing condition for D > 0.026. Because the condition for GAS
obtained by use of V3 is lower, this will probably reduce the voltage deviations the most and is
considered for further analysis.

G 22.73S
KP 15
D 0.014
ε 2 · 10−4

Table 6.3: The final update of parameters to be used in the simulation model and the Lyapunov
function

6.3 Simulation Results and Interpretation

The findings presented in section 6.2 demonstrate a GAS system that incorporates a leakage term,
requiring reduced voltage deviations, compared to chapter 4, for the stability condition to be met.
However, this achievement comes at the expense of a high dissipation, precisely the conductance
value G. In this system, the rated value of G provided in table 4.1 is multiplied by a factor of 103. It
is important to note that increasing this value results in amplified output losses. Nonetheless, since
the scope of this master’s thesis does not encompass considerations beyond theoretical analysis,
the practical feasibility of such an approach is not explored.

6.3.1 Initial Values and Setup in Simulink

The simulations model developed in section 4.3 is considered for the simulations conducted in this
section as well, as the system equations and controller are the exact same. However, the value for
G and D is updated according to the values in table 6.3. The controller gains KP and KI remain
the same as in section 4.3, i.e., KP = KI = 15.

6.3.2 Simulations results

System without change in io

A normal simulation of the system model is conducted. The reference values into the load flow and
into the system model match, and the leakage is not expected to be observed in terms of voltage
deviation for this case.
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Figure 6.3: The system without any altering

With an increased conductance value, it is clear that the system is no longer tuned for performance
for KP = KI = 15. However, the signal responses follow their respective references with some
deviation that remains constant for all three responses: vC , iL, and u. A higher value of the tuning
gain KP will remove this issue.

As mentioned previously, a higher dissipation is expected to amplify the system’s losses, and with
the high values of iL, as seen in figure 6.3b, this assumption is confirmed. However, another
issue with the increased value of G occurs for the controller signal u; for each step in vrefC , high
spikes occur. This issue was also mentioned in section 5.4.3 but neglected as the simulations were
considered for vC . As this is a voltage signal, it is an issue to dimension a converter to sustain
such high values. The use of a high conductance value gives stability issues, which is expected.

System with change in io

For the leakage to be expressed, a mismatch of the reference values for load flow and the system
model is introduced. The input for io to the load flow remains, while the value for io into the
system equations is io = io + 1A. The mismatch is initiated at t = 0.9 seconds.
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Figure 6.4: The system with deviation in the open-circuit current io

The voltage deviation due to the leakage term affects the whole system, but as the system works in
voltage-control mode, the response for vC is of interest. Figure 6.4a shows the plot of vC , the change
for io is initiated at t = 0.9 seconds. However, in this plot, no apparent changes are observable.
By comparing figure 6.3a and figure 6.4a, the responses for vC are the same. A zoomed-in plot of
the response for vC is given in figure 6.4b. At exactly t = 0.9 seconds, a small change appears in
the response for vC , but this change is minimal and does not affect the output value. It, however,
seems like the regulator tries to improve the signal for vC until the next step in reference happens.

By using the increased value of G and the new stabilizing condition for the leakage term, it was
possible to minimize the voltage deviations in the output, however, at the expense of increased
losses in the system and higher spikes in the control signal response. However, the chosen approach
successfully reduces the necessary voltage deviations within this particular context and is therefore
included, even though the response for u is not acceptable.

6.4 Concluding Remarks on Leakage in the Controller and
the Populated LFC Combined

The proposed system and Lyapunov function in this chapter was considered to reduce the voltage
deviations required by the leakage term by an increased value of G. G was increased to 22.73S,
instead of 0.0227S, and the Lyapunov function rendered the system GAS. A valid value for ε =
2 ·104 in V3 was considered, and then a new stabilizing condition for the leakage term was obtained.
It was set to D = 0.014, instead of 11.02, and simulations were conudcted to observe if the voltage
deviations were reduced. Subsequently, the simulations showed minimal deviations in the response
for vC .
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Chapter 7

Conclusion and Future Works

This chapter presents the general conclusions and suggests future work that can be explored based
on the findings and limitations of the master’s thesis.

7.1 Conclusion

In this master’s thesis, the application of a PI controller has been investigated for a linear DC/DC
converter. The controller utilized the inductor current error as input to the proportional channel
and the capacitor voltage error as input to the integral channel. The primary objective has been
to achieve a closed-loop GAS system by employing Lyapunov’s method. As a motivation for this
thesis’ objective, the increasing need for RES was highlighted as an introduction.

Global electricity production from renewable technologies is expected to increase, with the EU
aiming to reach 42.5% renewable energy production by 2030 [4]. The integration of variable RES
using power converter technology poses challenges to power system stability. Power converters,
particularly DC/DC converters, are crucial in managing DC voltage levels in power converter
applications. Therefore, the objective of this thesis is the stability analysis of a linear DC/DC
converter.

The system’s model of the linear DC/DC converter was initially transformed into a pH repres-
entation to consider the circuit’s energy-conserving capabilities. Subsequently, it was shifted to
an incremental form to enable the desired operating point at a non-zero equilibrium. Stability
analyses were conducted for both open- and closed-loop systems.

The open-loop analysis revealed that the inductor current was the passive output of the incremental
model and, thereby, the normal model. While a conventional choice for the input to the channels
of a PI controller, considering PI-PBC, is the error signal of the system’s passive output, this
thesis aimed to consider a linear DC/DC converter operating in voltage-control mode directly in
the inner-loop. Based on this proposal, the stability of the closed-loop system using a PI control
around the capacitor voltage was analyzed. However, the system could not be rendered stable by
employing a PI control solely with the capacitor voltage, indicated in appendix B. Therefore, a
PI controller with the inductor current error signal in the proportional channel and the capacitor
voltage error signal in the integral channel was proposed instead.

Following this, the closed-loop stability of the proposed PI controller was analyzed by Lyapunov’s
method. Given a stabilizing condition as a leakage term, requiring voltage deviations in the
system’s output, the system was rendered GAS. However, the requirements of the stabilizing term
were found to be unacceptable through model simulations conducted with parameters obtained
from [18]. The leakage term was eliminated to address the voltage deviations, and a new LFC was
sought to render the system GAS.
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Subsequently, it was proposed to populate an LFC with unknown values, calculate the function’s
time derivative, and then select the unknown terms to ensure the resulting expression was negative
definite. Unfortunately, finding the unknown values in the LFC for this proposed controller was
not possible. However, as the system and controller are linear, the Lyapunov equation was used
to calculate a numerical Lyapunov function. This numerical function was fully populated without
any zero elements, as opposed to the previous LFC.

Finally, the populated LFC was considered to render the system GAS with the inclusion of the
leakage term. The aim was to reduce the stabilizing leakage term and minimize the voltage de-
viations in the system’s output. Increasing the conductance G, as demonstrated in section 5.2.2,
raised the dissipation value of the system and improved the possibility of proving GAS using the
populated LFC. With the new value of G, the unknown value in the LFC was calculated, and
together these values were utilized to find a new stabilizing condition for the leakage term. Sim-
ulation results for this system demonstrated a notable decrease in voltage deviations, effectively
eliminating them. However, the increased value of G resulted in high spikes for the control signal
and increased losses in the system.

7.2 Future Works

Based on the discoveries made in this master’s thesis, several avenues for future work become
apparent. Additionally, the limitations outlined in section 1.3 present opportunities for further
investigation and exploration.

The process of populating the LFC in chapter 5 did not obtain a stability certificate. However, the
system was rendered GAS by another numerical Lyapunov function, calculated by the Lyapunov
equation. The result from this calculation highlighted the differences between a valid Lyapunov
function and the proposed LFC for the system. An interesting result was that the proposed LFC
had some zero elements, whereas the numerical Lyapunov function was fully populated. This
observation gave room for improvement of the proposed LFC, as seen in section 5.3.2. Continuing
the work with this section as a starting point and finding existing values for the constants ε and a
would make the stability certificate more general and, thereby, robust.

Further, the limitations presented initially in this master’s thesis have affected the findings. The
system has been considered with linear dynamics, which is a simplification of the system as it
is more typical for power converters to be considered with non-linear dynamics due to switching
characteristics, etc. If the system is considered non-linear instead, control strategies have to be de-
veloped to handle these dynamics. However, the findings presented in this thesis are a contribution
that gives insight into how the system is affected.

Further, the interconnection between multiple DC/DC converters forms a complex power system.
This will address challenges associated with system coupling. Instead, or in addition, integrating
RES in a grid-connected or energy storage system with a DC/DC converter. Future research on
stability in systems where the DC/DC converter is not standalone.

And lastly, to verify the stability certificate and the results from this thesis, which relied on
mathematical and simulation models, work related to experimental validation can be conducted.
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Appendix A

Preliminaries

This chapter contains relevant matrice definitions obtained in [1], and the proof showing that the
system and incremental models are equivalent.

A.1 Matrix Defintions

The necessary matrix definitions for the system are given in this section.

Firstly, the state vector of the pH system:

x =

[
ΦL

qC

]

The controller vectors are given as g, current control, and ĝ, voltage control:

g =

[
1
0

]
and ĝ =

[
0
1

]

The transformation matrix Q, which is symmetric and positive definite:

Q :=

[
1
L 0
0 1

C

]

The system’s open-loop passive output:

y = g⊤Qx = iL

Voltage control is introduced in the integral channel of the PI controller:

y2 = ĝ⊤Qx = vC

The skew-symmetric matrix Jo for the pH form.

Jo :=

[
0 −1
1 0

]

The skew-symmetric property means that Jo = −J⊤
o :

−J⊤
o = −

([
0 −1
1 0

])⊤

= −
[
0 1
−1 0

]
=

[
0 −1
1 0

]
= Jo
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The dissipation matrix R is positive definite and symmetric.

R :=

[
R 0
0 G

]

The system matrix is given as Fo := Jo −R.

Fo =

[
−R −1
1 −G

]
The Hamiltonian of the system, H:

H :=
1

2
x⊤Qx =

1

2

(
Φ2

L

L
+

q2C
C

)
and its gradient, ∇H:

∇H =
∂

∂x
H =

∂

∂x

(
1

2
x⊤Qx

)
=

1

2
· 2Qx = Qx =

[
iL
vC

]
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A.2 Proof Incremental Model

The mathematical proof that the system and the incremental models are equivalent, in addition
to the calculations conducted to obtain the incremental modes.

The definition of the incremental model: (̃·) = (·) − (̄·). This is used to shows that the dynamics
of the incremental model and of the original model of the system are equivalent:

˙̃x =
d

dt
x̃ =

d

dt
(x− x̄) = ẋ− ˙̄x = ẋ

˙̄x is the dynamics for the system in steady-state, which are zero. Since ˙̃x = ẋ, it is evident that
the representations are equivalent.

The Hamiltonian H

H(x̃) = H(x)−H(x̄) =
1

2
x⊤Qx− 1

2
x̄⊤Qx̄ =

1

2
(x− x̄)⊤Q(x− x̄) =

1

2
x̃⊤Qx̃

∇H(x̃) =
∂

∂x̃
(H(x̃)) =

∂

∂x̃

(
1

2
x̃⊤Qx̃

)
= Qx̃

The State Space Model

˙̃x = ẋ− ˙̄x = [J0 −R]∇H(x) + gu+ Eo − ([J0 −R]∇H(x̄) + gū+ Eo)

= [J0 −R]∇H(x̃) + gũ

The system’s output:
ỹ = y − ȳ = gQ(x− x̄) = gQx̃

and when the output is changed to voltage:

ỹ2 = ĝQ(x− x̄) = ĝQx̃

The Controller State xc and the Controller u

When the controller state is brought to equilibrium, i.e., ˙̄xc = 0 since its steady state, there is no
change.

˙̃xc =
d

dt
(xc − x̄c) = (ẋc − ˙̄xc) = ẋc

The incremental form of the controller is easily obtained by subtracting the equilibrium points:

ũ = u− ū = −KP (y − ȳ) +KI(xc − x̄c) = −KP ỹ +KI x̃c
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Appendix B

PI control around the capacitor
voltage

This appendix considers a PI controller using the capacitor voltage error as input to the propor-
tional and integral channels. By use of LFC V2, it was not possible to prove a stable system, and
based on an eigenvalue analysis conducted for the system, this PI controller is not advantageous
for stability.

Some of the material in this appendix’s chapter is obtained from section 4.2.2 in [1].

The system’s state equations given in incremental form:{
˙̃x = (Jo −R)Qx̃+ gũ
˙̃xc = −ĝ⊤Qx̃−DKI x̃c

And the controller in incremental from:

ũ2 = −Kpỹ2 +KI x̃c = −ĝ⊤Qx̃+KI x̃c

The LFC V2 is used, the same as in section 3.2.2.

V2(x̃, x̃c) =
1

2
x̃⊤Qx̃+

1

2
x̃⊤
c KI x̃c

The time-derivative of V2 is calculated.

V̇2 = −x̃⊤QRQx̃− x̃⊤QgKP ĝ
⊤Qx̃+ x̃⊤QgKI x̃c − x̃cKIg

⊤Qx̃− x̃⊤
c KIDKI x̃c

=
[
x̃⊤Q x̃⊤

c KI

]⊤ [ R+ K̂P
1
2 (ĝ − g)

1
2 (ĝ − g)⊤ D

] [
Qx̃
KI x̃c

]

Using K̂P := gKP ĝ
⊤.

To determine if V̇2 is negative definite, the matrix’s Schur complement must be calculated. A
condition for this is that is that R+ K̂P > 0 and invertible.

R > 0 because it is a diagonal matrix with positive eigenvalues. The positive definiteness of K̂P

needs to be checked as well. The symmetric part of K̂P is obtained using (2.5.1).
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K̂P,sym =
1

2

(
gKP ĝ

⊤ + ĝKP g
⊤)

=
1

2

([
KP

0

] [
0 1

]
+

[
0

KP

] [
1 0

])
=

1

2

[
0 KP

KP 0

]
=

KP

2

[
0 1
1 0

]

K̂P,sym is a off-diagonal matrix with positive values. The eigenvalues of K̂P,sym are found through

eigenvalue analysis: det(λI − K̂P,sym) = 0.

det(λI − K̂P,sym) = det

([
λ 0
0 λ

]
−
[
0 KP

2
Kp

2 0

])
= det

([
λ −KP

2

−Kp

2 λ

])
= λ2 − K2

P

4

λ2 − K2
P

4
= 0 ⇒ λ1,2 = ±KP

2

The eigenvalues of KP,sym are positive and negative. Therefore, the sign of the eigenvalues is

indeterminant. In R+ K̂P , where R usually is chosen to be positive but small to minimize losses.
So in the case of a negative eigenvalue, R won’t be able to compensate, and R + K̂P < 0. The
analysis shows clearly that complete voltage control is not advantageous for stability. And it is
not possible to calculate the Schur complement of the matrix.
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Appendix C

Droop Control

In this chapter, the concept of droop control is introduced. This control is more suitable to apply
when more than one power converter is considered. However, the scope of the master’s thesis is
limited to considering one converter. Therefore, calculations are only done for a single converter
without considering other components, and this chapter is included as a part of the appendix.

C.1 The Concept of Droop

A system is considered stable if the output signal follows the reference quickly without too many
oscillations. A PI controller is used with a feedback mechanism such that the error between the
measured output signal and a desired setpoint is removed. As stated in the theory chapter, the
integral part of the controller integrates the deviation between the signal to reduce it. Due to this,
and the fact that it is easy to understand and implement, the PI controller is very popular and
common.

In a power system with RES, in addition to conventional power production, converters using PI
controllers are connected together. An issue with a network of converters using PI controllers is
stability. The technology of a PI controller only works as intended for a network if the desired
setpoints (references) of the units are identical. In a power system, the different converters will
have different desired setpoints depending on the RES and calculations for the load flows, which
will make the value similar but not identical.

Because of the integral effect in the PI controller, each controller has a strict goal of eliminating
the deviation between response and reference. When the different units have different references,
the controllers will work against each other to make each error zero. As a consequence, the system
would be unregulated, which would also lead to instability.

Instead of just using the conventional PI controller, a scheme using both the PI controller and
droop control could be implemented. Droop control is commonly used when regulating conventional
power production. For instance, in hydropower production, to regulate the stability of the turbines’
speed according to the frequency value, i.e., with droop for power and frequency. For converter
technology, the controller is not implemented in the same way, but the concept remains the same,
with droop for a V-I graph. Droop control is not as strict in regulating the error as it accepts a
small error to exist. The droop characteristic lets the converters share the voltage reference.
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C.2 Calcuations for Droop

The combination of PI controller and droop control is considered for system (3.1.4) and the normal
PI controller (3.1.6). The controller state ẋc is set to voltage regulation, such that the controller
regulates both current and voltage.

The system’s setup includes a load flow, and one of the reference values for iL is calculated in this,
while the reference value for vC is used directly in the controller. Due to this, the equilibrium
point value for current īL ̸= irefL is instead given as īL = i∗L. i∗L is the output from the load flow

and is used as input to the controller. While the voltage, on the other hand, remains v̄C = vrefC .
This is also considered in section 3.2.2.

The droop setting is considered for the linear relationship between voltage and current, which is
derived from the state equation of the controller state, ẋc:

ẋc = −ĝ⊤Q(x− xref ) = −y2 (C.2.1)

The controller has both current and voltage control and is therefore given as:

u = −KP g
⊤Q(x− x∗) +KIxc (C.2.2)

The steady-state equations of the controls consider equilibrium points x̄ instead of normal state
x. Since the time derivative of an equilibrium point represents the change in the system during a
steady state, it is zero, as seen in (C.2.4).

ū = −KP g
⊤Q(x̄− x∗) +KI x̄c (C.2.3)

0 = −ĝ⊤Q(x̄− xref ) (C.2.4)

As explained previously, for voltage control x̄ = xref and for current control x̄ = x∗. When
obtaining the incremental model of the controller u, these have to be considered differently:

ũ = u− ū

= −KP g
⊤Q(x− x∗) +KIxc −

(
−KP g

⊤Q(x̄− x∗) +KI x̄c

)
= −KP g

⊤Q(x− x̄) +KI(xc − x̄c)

= −KP g
⊤Qx̃+KI x̃c

When the controller is shifted to the incremental form, x∗ is eliminated from the equations. And the
incremental form for the controller is the same as used previously in (3.1.8). In the controller state,
voltage control is considered, and there is no need to consider x∗, which makes the calculations to
incremental form the same as in the appendix A.2.

˙̃xc = −ĝ⊤Qx̃ (C.2.5)

The incremental equations for the controller ũ and ˙̃xc obtained in this chapter is the same as were
considered in section 3.2.1. It is unnecessary to conduct the stability analysis once more, and
the same result from section 3.2.1 can be applied in this case. The stability was proved, given a
constant leakage in the voltage output. Equation (C.2.5) has to include a constant leakage term.

In chapter 4, simulations were conducted to verify the proof of the system where the leakage is
included.
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