
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Kristoffer Steinsland

Sensor fusion of phased array radio
bearing and inertial measurements
using factor-graph-based
optimization

Master’s thesis in Cybernetics and Robotics
Supervisor: Torleiv Håland Bryne
July 2023

Kristoffer Steinsland

Sensor fusion of phased array radio
bearing and inertial measurements
using factor-graph-based optimization

Master’s thesis in Cybernetics and Robotics
Supervisor: Torleiv Håland Bryne
July 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

This master’s thesis was written during the spring of 2023 as delivery for the 30 credit
course “TTK4900 - Engineering Cybernetics, Master’s Thesis” and is the final derivable
of the Master of Science (MSc) degree in the Robotics and Cybernetics at the Norwegian
University of Science and Technology (NTNU). The topic of concern is phased array radio
aided inertial navigation using factor graph based optimization. Relevant concepts and
background theory regarding this topic is explained. Hence, the prerequisites are limited
to basic statistics and linear algebra. The author would like to thank the supervisor of
this project associate professor Torleiv Håland Bryne who has given up a considerable
amount of his time to provide guidance, feedback, and words of encouragement during
the writing of this thesis.

The following is a list of the resources, tools, and help that were available for this
project or used as a basis for the work:

• Data from field experiments were provided by the NTNU UAV Lab.
• The supervisor provided a set of MATLAB tools for processing data from field ex-

periments.
• Course material from TTK4250 Sensor fusion inspired the development of the

error state Kalman filter used for benchmarking of the main contributions of this
work. A flight path from this course has also been used in simulations.

• Reqular supervision has been provided by the supervisor.
• A workstation computer has been provided by the Department of Engineering

Cybernetics.

v

Abstract

The global navigation satellite system (GNSS) is the primary sensor used in modern nav-
igation. However, some scenarios make GNSS unreliable or outright unavailable. Phased
array radio systems (PARS) give way to a different approach that remedies some of the
weaknesses present with GNSS. Phased array ground stations are able to acquire bearing
measurements that can be exploited to create a navigation system independent of GNSS.
However, PARS measurements are susceptible to errors like multipath, which requires
the measurements to be fused with inertial measurements from an inertial measurement
unit (IMU). In recent years factor graph optimization (FGO) has become popular in com-
puter vision and simultaneous localization and mapping (SLAM) research. In this work,
a FGO-based estimator is developed for the fusion of PARS and IMU measurements and
benchmarked with an error state Kalman filter (ESKF). Both estimators were tested in
simulation and on data gathered from field experiments. To deal with the multipath is-
sue present in the PARS measurements, two different approaches for outlier rejection
are tested for the Kalman filter and FGO estimators, respectively. The results indicate
that FGO gives more accurate estimates in the presence of outliers due to robust out-
lier rejection techniques. Additionally, a solution to the problem of calibrating the PARS
antenna mounting position and orientation online using FGO is proposed and tested.

vii

Sammendrag

Globalt navigasjonssatellittsystem (GNSS) er den primære sensoren som brukes i mod-
erne navigasjon. Imidlertid gjør noen scenarier GNSS upålitelig eller helt utilgjengelig.
Fase-arrangerte radiosystemer (PARS) muliggjør en annen tilnærming til navigasjon som
begrenser noen av svakhetene man finner i GNSS. Fase-arrangerte bakkestasjoner kan
samle retningsmålinger som kan bli benyttet til å lage et navigasjonssystem uavhengig av
GNSS. En utfordring med PARS-målinger er at de er utsatt for feil som flersti-problemet.
Dette krever fusjonering av PARS-målinger med treghetsmålinger fra en treghetsmålingsen-
het (IMU). De siste årene har faktorgrafoptimering (FGO) blitt en populær tilnærming
innenfor forskning i feltene datasyn og simultan lokalisering og kartlegging (SLAM). I
dette arbeidet utvikles en faktorgrafestimator for fusjonering av IMU og PARS målinger
og sammenlignes mot et feiltilstands-Kalmanfilter. Begge estimatorene ble testet på både
simuleringer og data samlet gjennom eksperimenter i felt. To forskjellige tilnærminger
med avvisning av avvikende målinger er testet for Kalmanfilter og FGO estimatorene for
å håndtere flersti-problemet til stede i PARS-målingene. Resultatene indikerer at FGO
gir mer nøyaktige resultater når avvikende målinger er til stede på grunn av robuste
avvisningsteknikk. Til slutt er en løsning til problemet med å kalibrere for posisjon og
orientering til PARS-antennene etter montering i sanntid ved bruk av FGO foreslått og
testet.

ix

NTNU Faculty of Information Technology
Norwegian University of and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

MASTER’S THESIS DESCRIPTION SHEET

Name: Kristoffer Steinsland
Department: Engineering Cybernetics
Thesis title (Norwegian): Sensor fusjon av treghetssensor- og retningsmålinger fra

fasesstyrt radio ved bruk av faktorgrafbasertoptimering.
Thesis title (English): Sensor fusion of phased array radio bearing and inertial

measurements using factor-graph-based optimization.

Thesis Description: Global navigation satellite systems (GNSS) is the primary outdoor positioning

sensor for robotic vehicles such as unmanned arial vehicles (UAVs), unmanned surface vehicles

(USVs) and unmanned ground vehicles (UGVs). However, GNSS is susceptible to interference,

natural and intentional, due to its low signal power. Alternative radio positioning sources have been

investigated. Phase array radio systems (PARS) is a promising technology. AoA using PARS,

however, suffer from multipath errors as GNSS. Filtering of such AoA measurements based on other

sensors such as inertial measurement units (IMUs) is an opportunity to handle these multipath errors.

One promising filtering/estimation strategy is to employ factor-graph-based optimization (FGO).

The following tasks should be considered:

1. Perform a short literature review on

a. previous filtering methods for integrating IMU and PARS measurements.

b. IMU and PARS sensor errors.

c. FGO filtering and estimation methods and solutions in context multisensory with

sensor fusion of IMU and miscellaneous navigation sensors.

2. Implement a simple simulator for generating unmanned arial vehicle (UAV) motion signals.

Include sensor simulation of IMU and AoA PARS sensor measurements. Add sensor errors

such as noise and bias. Use simulated GNSS as a reference.

3. Choose a suitable factor-graph library/framework and implement a GNSS- and a PARS-aided

INS filter using FGO. Justify your chosen factor graph framework.

4. Implement an error state Kalman filter for benchmarking purposes. Compare relevant results.

5. Test and verify your results using data from field experiments.

6. Investigate the filters’ properties w.r.t. to handling PARS AoA multipath errors using outlier

rejection in context used the data from the field experiments.

7. Present and discuss your results.

8. If time permits, add online mounting calibration estimation to your factor-graph-based

estimation framework.

9. Conclude your results and suggest further work.

Start date: 2023-02-06
Due date: 2023-07-03

Thesis performed at: Department of Engineering Cybernetics, NTNU

Supervisor: Associate professor Torleiv H. Bryne,
Dept. of Eng. Cybernetics, NTNU

Contents

Preface . v
Abstract . vii
Sammendrag . ix
Thesis description sheet . xi
Contents . xiii
List of Figures . xvii
List of Tables . xix
Code Listings . xxi
Acronyms . xxiii
1 Introduction . 1

1.1 Motivation . 1
1.2 Background . 2

1.2.1 Phased-array Radio . 2
1.2.2 Navigation . 3

1.3 Related work . 3
1.4 Problem description, research question and main contributions 4
1.5 Delimitations . 5
1.6 Structure of the thesis . 5

2 Theoretical Background . 7
2.1 Coordinate frames . 7
2.2 Basic Lie theory . 8

2.2.1 The exponential and logarithmic maps 9
2.2.2 Rotation matrices . 9
2.2.3 Rigid motion . 10
2.2.4 Unit quaternions . 11
2.2.5 Jacobians . 11

2.3 Inertial navigation . 12
2.3.1 IMU . 12
2.3.2 Inertial integration . 13
2.3.3 IMU errors . 13

2.4 PARS noise . 15
2.5 Bayesian filtering . 16

2.5.1 Kalman filter . 17
2.5.2 Error state Kalman filter . 18

xiii

xiv

2.6 Factor graphs . 20
2.6.1 A brief introduction to factor graphs 20
2.6.2 IMU factors . 23
2.6.3 GNSS factor . 24

3 Simulator Design . 25
3.1 IMU measurements . 25
3.2 IMU noise . 27
3.3 Sensor measurements . 27

4 Estimator Design . 29
4.1 PARS measurement model . 29
4.2 Error state Kalman filter implementation . 32
4.3 Factor graph filter implementation . 33

4.3.1 GTSAM . 33
4.3.2 PARS factor . 34
4.3.3 PARS factor initial testing on SE2 . 34
4.3.4 Factor graph . 37
4.3.5 Optimizer . 38

4.4 References and other resources used . 40
5 Simulation Results and Discussion . 43

5.1 GNSS-aided INS . 45
5.2 PARS-aided INS using one ground radio . 47
5.3 PARS-aided INS using three ground radios . 50

6 Experimental Setup and Calibration . 53
6.1 Hardware . 53
6.2 Flight . 56
6.3 Coordinate frames . 56
6.4 Offline calibration of PARS pose . 57
6.5 Outlier rejection . 60
6.6 Online calibration of PARS pose . 60

7 Experimental Results and Discussion . 63
7.1 GNSS-aided INS . 64
7.2 PARS-aided INS using two ground radios . 67
7.3 Runtime . 71
7.4 Online calibration . 72

8 Overall discussion of experimental results . 77
9 Concluding remarks . 79

9.1 Further work . 79
9.2 Conclusion . 79

References . 81
A Simulation Results . 87

A.1 GNSS-aided INS . 87
A.2 PARS-aided INS using one ground radio at origin 90
A.3 PARS-aided INS using three ground radios . 93

B Experimental Results . 97

Contents xv

B.1 GNSS-aided INS . 97
B.2 PARS-aided INS using two ground radios . 100

C Online calibration . 103

List of Figures

1.1 Phased-array. 2

2.1 Coordinate frames NED and ECEF . 8
2.2 Multipath illustration . 15
2.3 Multipath example . 16
2.4 Factor graph example . 21

4.1 PARS measurement frame . 29
4.2 Factor graph on SE(2) . 36
4.3 Factor graph. Here only the first factors are labeled. 38

5.1 Simulation flight path . 45
5.2 Simulation results GNSS. Errors . 46
5.3 Simulation flight path with one PARS . 48
5.4 Simulation results one PARS. Bias errors . 48
5.5 Simulation results one PARS ground radio. Errors 49
5.6 Simulation flight path with three PARS ground radios 50
5.7 Simulation results three PARS ground radios. Errors 51

6.1 Payload . 54
6.2 PARS base stations . 55
6.3 PARS, UAV and launcher . 55
6.4 Flight path from Raustein, Agdenes . 56
6.5 Compass calibration measurements . 59
6.6 Calibrated measurements . 59
6.7 Factor graph used for online calibration . 62

7.1 Experimental results GNSS. Errors . 65
7.2 Simulation results GNSS . 66
7.3 Experimental results PARS. Errors . 68
7.4 Simulation results PARS . 69
7.5 Experimental results PAR without outlier rejection. Position errors 71
7.6 Online calibration results PARS . 74
7.7 Online calibration error plot . 76

xvii

xviii

A.1 Simulation result with GNSS. Position. 87
A.2 Simulation result with GNSS. Attitude. 88
A.3 Simulation result with GNSS. Error position. 88
A.4 Simulation result with GNSS. Error velocity. 88
A.5 Simulation result with GNSS. Error attitude. 89
A.6 Simulation result with GNSS. Error accelerometer bias. 89
A.7 Simulation result with GNSS. Error gyroscope bias. 89
A.8 Simulation result with one PARS. Position. 90
A.9 Simulation result with one PARS. Attitude. 90
A.10 Simulation result with one PARS. Error position. 91
A.11 Simulation result with one PARS. Error velocity. 91
A.12 Simulation result with one PARS. Error attitude. 91
A.13 Simulation result with one PARS. Error accelerometer bias. 92
A.14 Simulation result with one PARS. Error gyroscope bias. 92
A.15 Simulation result with three PARS. Position. 93
A.16 Simulation result with three PARS. Attitude. 93
A.17 Simulation result with three PARS. Error position. 94
A.18 Simulation result with three PARS. Error velocity. 94
A.19 Simulation result with three PARS. Error attitude. 94
A.20 Simulation result with three PARS. Error accelerometer bias. 95
A.21 Simulation result with three PARS. Error gyroscope bias. 95

B.1 Experimental result with GNNS. Position. 97
B.2 Experimental result with GNNS. Velocity. 98
B.3 Experimental result with GNNS. Attitude. 98
B.4 Experimental result with GNNS. Accelerometer bias. 98
B.5 Experimental result with GNNS. Gyroscope bias. 99
B.6 Experimental result with GNNS. Position error. 99
B.7 Experimental result with GNNS. Attitude error. 99
B.8 Experimental result with PARS. Position. 100
B.9 Experimental result with PARS. Velocity. 100
B.10 Experimental result with PARS. Attitude. 101
B.11 Experimental result with PARS. Accelerometer bias. 101
B.12 Experimental result with PARS. Gyroscope bias. 101
B.13 Experimental result with PARS. Position error. 102
B.14 Experimental result with PARS. Attitude error. 102

C.1 Calibration with compass error plot . 103
C.2 Online calibration full run results . 104

List of Tables

3.1 IMU parameters . 28

5.1 Simulation tuning paramaters . 44
5.2 Simulation results . 44

6.1 Hardware used in test flight. 54
6.2 Calibration parameters . 58
6.3 Calibration RMSE comparisons . 58

7.1 Experimental estimator tuning . 64
7.2 RMSE experimental results . 64
7.3 Result with PARS GNSS position calibration 70
7.4 Experimental results PARS without outlier rejection. Errors 70
7.5 Runtime field data . 71
7.6 Online calibration tuning . 72
7.7 Online calibration pose initialization . 73
7.8 Online calibration results . 73
7.9 Online calibration RMSE . 75

xix

Code Listings

4.1 Function of SE(3) finite differences Jacobian. The output of h is expected
to be a vector. 31

4.2 An example of using the ESKF prediction and update function on simu-
lated data. 32

4.3 The custom factor function in the PARS sensor object. 33
4.4 Example usage of the factor graph class . 40

6.1 PARS factor that also includes the PARS pose. 61

xxi

Acronyms

AHRS Attitude and Heading Reference System.

AoA Angle of Arrival.

ARW Angular Random Walk.

ECEF Earth Centered Earth Fixed.

ECI Earth Centered Inertial.

ESKF Error State Kalman Filter.

FGO Factor Graph Optimization.

GNSS Global Navigation Satellite System.

GPS Global Positioning System.

IMU Inertial Measurement Unit.

INS Inertial Navigation System.

ISAM Incremental Smoothing and Mapping.

LiDAR Light Detection and Ranging.

MAP Maximum A Posteriori.

NED North East Down.

PARS Phased Array Radio System.

PSD Power Spectral Density.

RMSE Root Mean Square Error.

RTK Real Time Kinematic.

xxiii

xxiv

SFM Structure from Motion.

SLAM Simultaneous Localization and Mapping.

SLERP Spherical Linear Interpolation.

SVD Singular Value Decomposition.

UAV Unmanned Aerial Vehicle.

VRW Velocity Random Walk.

Chapter 1

Introduction

1.1 Motivation

Global navigation satellite systems is one of the main positioning sensors for manned
and unmanned vehicles. The system enables accurate navigation solutions for a vast set
of systems in industries such as maritime and aviation. However, due to its low signal
power, it is vulnerable to issues such as interference, jamming, and spoofing [1]. Inter-
ference and jamming can be intentional or not, but in any case, such electromagnetic
disturbances can result in decreased accuracy or make the navigation system cease to
function at all. In recent months, there has been a substantial increase in GNSS jamming
in northern Norway, with disruptions affecting critical infrastructure like air ambulance
[2, 3]. An even more severe threat, spoofing, is when a malicious third party transmits
fake GNSS signals to alter the functionality of the navigation system for the end user. It
has been shown experimentally that such techniques can be used to make an unmanned
aerial vehicle (UAV) follow an undesirable trajectory [4]. In the worst case, such inter-
ference could go undetected.

To combat these issues and other scenarios where GNSS is not available, such as
indoors, the area of GNSS-denied navigation has explored various approaches. Sensors
such as visual cameras or light detection and ranging (LiDAR) can be used to obtain
odometry or solve the simultaneous localization and mapping problem, and there has
been substantial progress within these domains in terms of accuracy and robustness
[5–7]. In indoor environments, there is usually an ample amount of features that can
be detected using such sensors. However, each of these modalities have distinct failure
modes: e.g. cameras can fail in textureless environments and LiDAR-based estimates
might degrade in self-similar environments. Multi-modal SLAM systems have been de-
veloped to combat this [8], however, the large amount of data needed to be processed
in real-time is a limiting factor. In the context of outdoor UAVs there might be little to no
features present in the environment making such approaches of little benefit. One exam-
ples is UAV operations over open waters. Phased-array Radio Systems offer a different
approach to GNSS-denied navigation which will be explored in this thesis.

1

2

1.2 Background

1.2.1 Phased-array Radio

Phased-array radio systems went from a theoretical idea to an application in the 1940s
when it was first developed in the context of RADAR aircraft detection [9]. Since then,
the technology has matured and is used in 5G cellular networks and satellite communi-
cation [10, 11]. Moreover, in 2019 with the release of the Bluetooth 5.1 specification,
cheap PARS technology has become widely available and at low cost. It has been demon-
strated that Bluetooth can be used to provide a UAV navigation solution up to 700 meters
from the base station [12].

A phased-array radio system consists of an array of antenna elements that operate
at a given phase shift that, in summation, allows for steering a beam in a particular
direction relative to the array [13]. In Figure 1.1 the fundamental building blocks of a
linear antenna array is displayed. N array elements are evenly placed with a distance d
from one element to the next. When each signal from one antenna to the next is delayed
by ∆t, the following equation holds for the transmission angle θ

θ = arcsin
�

∆tc
d

�

(1.1)

[14], where c is the speed of the signal. By controlling the phase shift through each
phase shifter φ, the transmission angle can be precisely controlled.

θ
TX φ3

d

φ5

φ4

φ2

φ1

Figure 1.1: Phased-array. Image inspired by: [15] [CC0 1.0] Creative Commons

The PARS system can also be used in reverse to measure the angle of arrival (AoA)
of a signal [14]. With a two-dimensional array, this gives a bearing measurement to
the transmitter; that is an azimuth angle ψ and an elevation angle α from the antenna
array receivers to a transmission source such as a UAV. It is possible to also get a range
measurement based on for instance signal strength or round-trip timing, but this will
not be a topic for this thesis; only bearing measurements are considered. Using this

Chapter 1: Introduction 3

type of system relieves some of the issues mentioned with standard GNSS navigation
such as jamming and other types of interference. The downside of such a positioning
system is the increased complexity and the need for ground equipment with limited
range. Further, the pose of the ground stations needs to be determined accurately, but
algorithms have been developed to handle this [16].

1.2.2 Navigation

The so-called “science of navigation” is to, determine the position, velocity, and atti-
tude of a vehicle with respect to a known coordinate system as accurately as possible
[17]. Positioning is the determination of the position only of an object without regard
for velocity or attitude. There are multiple ways to get position measurements but the
most prevailing one is the global navigation satellite systems (GNSS) which as of today
consists of the American Global Positioning System (GPS), Russian GLONASS, Chinese
BeiDou and European Galileo. GNSS can provide accurate position measurements, but
at low frequency typically 1− 10Hz. Furthermore, there can be significant errors in the
measurements like multipath errors where radio waves take multiple paths to the re-
ceiver resulting in obscured measurements. In contrast to GNSS which provides global
position measurements at a low frequency, dead reckoning is the technique of integrat-
ing velocity estimates over time to deduce the position of a vehicle [17]. This can for
example be done using a speedometer/odometer or by double integrating accelerometer
measurements. Likewise, a vehicle’s attitude can be determined by integrating its angu-
lar velocity which can be measured by e.g. a gyroscope. The upside of dead reckoning
is that it can be done at a high rate, however, the integration of relative measurements
will lead to drift, and absolute corrections from for instance GNSS or PARS are needed,
leading to an aided inertial navigation system (INS). The field of combining such mea-
surements in an optimal way is commonly known as sensor fusion where the Kalman
filter and its derivatives are the standard and most common techniques, [17, 18]. How-
ever, in recent years other approaches like factor graphs have entered the scene [19]
which provide a set of benefits that makes it a contender to classical methods.

1.3 Related work

There has been considerable effort to explore phased-array radio systems with respect
to UAV navigation at the NTNU UAV Lab. In [20], the authors showed that PARS-aided
inertial navigation was possible using a nonlinear observer. The PARS system used was a
Radionor CRE2 189, providing both bearing and range. Due to signal reflections causing
noise in the PARS measurements a barometer and a compass were used as well. They
achieved a root mean square error (RMSE) of 26.3m compared to real-time kinematic
(RTK) GNSS. In [21] this work is extended to provide a secure solution that can detect
GNSS-spoofing and switch to PARS measurements should it be deemed necessary.

In the doctoral thesis [14] a significant amount of research on PARS navigation for
UAVs was conducted. A multiplicative extended Kalman filter was developed to be able
to estimate heading without the use of a compass and to tackle the considerable outliers

4

present in PARS measurements. Safety mechanisms that can switch from PARS to GNSS
or opposite, were added to increase the robustness of the navigation solution. An RMSE
of 24.99m was achieved using PARS only on a beyond visual line of sight fixed wing
campaign. The author concludes that the main probable cause of the relatively large
errors is most likely because of the misalignment of the phased-array ground station
antenna.

In [16] a solution to the ground PARS mounting orientation problem was presented.
They developed an online calibration algorithm using a multiplicative extended Kalman
filter that can adjust the PARS alignment in real-time. The solution presented uses GNSS
measurements to do the calibration.

Aided inertial navigation using factor graphs has been explored in [19], where a fixed
lag smoother capable of incorporating delayed measurements was developed. In [22],
a bearing-only tracker was developed using factor graphs and the miniSAM framework,
[23]. The authors suggest switching to GTSAM because of consistency issues.

1.4 Problem description, research question and main contri-
butions

The main problem tackled in this thesis is to fuse bearing measurements from PARS and
inertial measurements from an IMU using factor graph optimization. More formally this
can be stated as the following. Let Z = {α0,ψ0, . . . ,αnψn} be a set of noisy PARS eleva-
tion α and azimuth ψ measurements given in the radio frame that arrive incrementally.
And let Y = { f 0ω0, . . . , f mωm} be set of noisy angular velocity and specific force mea-
surements in the body frame, that arrives at a different frequency. The goal is to estimate
the position p, velocity v , and attitude q of the UAV in real-time by a factor graph based
algorithm with Z and Y as input parameters. In light of this, the main research question
of this thesis is formulated as such: Can a factor graph based approach to a PARS-aided
INS provide higher accuracy and more robustness to outliers than the Kalman filter? To
answer this question the following subgoals are defined:

• Review the theory behind IMU and PARS sensor models and errors, as well as
factors graphs and error state Kalman filter.

• Implement a simulator capable of generating IMU, GNSS and PARS measurements
with noise.

• Implement an error state Kalman filter for benchmarking.
• Implement a factor graph based estimator.
• Test and analyze estimators in simulation and on data from field experiments.
• Test and analyze the estimator’s ability to handle multipath errors using outlier

rejection.
• Implement online mounting calibration of PARS in the factor-graph-bases estima-

tor.

The main contributions of this thesis are:

• The implementation of a factor graph based PARS-aided INS.

Chapter 1: Introduction 5

• Analysis of FGO compared to the ESKF as PARS-aided INS.
• The implementation of FGO-based online calibration of PARS mounting pose.

1.5 Delimitations

This thesis will assume that PARS bearing measurements are given. That is, there will
not be any focus on the underlying functional aspects associated with PARS, such as the
algorithms that produce the measurements, electronics, antenna setup, etc. The excep-
tion to this is the PARS noise characteristics that will be explored.

1.6 Structure of the thesis

The rest of this thesis is divided up into six parts. In Chapter 2, a brief overview of the
relevant Lie theory needed for the factor graph framework will be given. Then a short
description of the error state Kalman filter is performed before factor graphs are pre-
sented. In Chapter 3 the simulator implementation is detailed. In Chapter 4 the design
of the error state Kalman filter is briefly detailed before a deeper dive into the factor
graph implementation is carried out. After this the estimators are tested in simulation
and the results for this are presented and discussed in Chapter 5. Then there is a transi-
tion from simulation to data from field experiments. Chapter 6 details the experimental
setup. To handle the intricacies of real PARS and flight data, outlier rejection is added
to both estimators and online calibration to the factor graph. Lastly, the results from
running the estimators on the field data are presented and discussed in Chapter 7.

Chapter 2

Theoretical Background

2.1 Coordinate frames

A coordinate frame can be interpreted in two ways. Firstly, a coordinate frame can be
seen as a reference for motion that provides an origin and three axes. Secondly it can
represent the six degrees of freedom pose of an object [17]. For describing position,
velocity, acceleration and angular velocity, the same notation as Groves [17] is used:
For a given quantity x γ

βα
, α is the object frame that that is moving with respect to the

reference frame β , and γ is the frame where this motion is described in; which is known
as the resolving frame. For a rotation there is no resolving frame, and here the notation
which used is Rα

β
, which acts on a point by rotating it from frame β to α. To refer to a

specific frame curly brackets are often used {·}. Bold symbols are used for vectors and
matrices, and matrices are capitalized.

Common coordinate frames include the earth centered inertial (ECI) {i}, the Earth-
centered Earth-fixed (ECEF) {e}, North East Down (NED) {n} frame and body {b} [17].
As the name implies ECI is an inertial frame, meaning that it does not experience any
accelerations; This simplifies expressions. ECI has its origin at the center of mass of the
Earth, the z-axis aligns with the Earth’s spin axis, and the x-axis is fixed using stars. ECEF
is similar to ECI, but ECEF rotates with the Earth; the x-axis points towards 0◦ longi-
tude. Also, its origin is defined to be in the center of a reference ellipsoid like WGS84
that models the Earth’s shape. NED is a local tangent navigation frame with the x-axis
pointing north, the y-axis east and the z-axis down to the center of the reference ellip-
soid. A comparison between ECEF and NED is shown in Figure 2.1. In this work NED
mostly will be used. The assumption that NED is inertial will also be used, i.e. Earth’s
rotation will not be corrected for in the navigation equations and the the NED frame is
stationary. The reasoning behind this is that the distances traveled, and time scales are
small, so the errors from this assumption will be reasonably small as well. Lastly, the
body frame is attached to the vehicle and has its x-axis forward, y-axis right and the
z-axis pointing down.

7

8

{n}

{e}
xe

ye

ze

xn

yn

zn

Figure 2.1: Coordinate frames NED {n} and ECEF {e}. In NED the x-axis is pointing
north, the y-axis east and the z-axis down to the center of the reference ellipsoid. For
ECEF the z-axis aligns with the Earth’s rotational axis, and the x-axis points towards 0◦

longitude.

2.2 Basic Lie theory

In state estimation and optimization, it is often desirable to take small steps along a cer-
tain direction of the state space. This is easy for positions and linear velocities as they
belong to a vector space. However, for orientations, one cannot assume that a rotation
plus a small increment will still be a valid rotation. Rotations and poses are unfortunately
not part of a vector space, making it necessary to utilize a bit more sophisticated ma-
chinery to do state estimation. The following section will be a short reiteration of some
of the relevant theory in found in ”A micro Lie theory [24]” by Sola, and ”A handbook in
visual SLAM [25]” by Håvardsholm.

Rotations and poses are so-called Lie Groups, which are groups as well as smooth
manifolds. A group is a set and a composition operation, denoted with ”◦”, that satisfies
the group axioms: closure property, associativity, identity element, and inverse element
[24]. That Lie Groups are smooth manifolds means that at every point along the man-
ifold, there is a well-defined tangent space. As done in [25], the tangent space of a
manifold M at a point X will be denoted T MX . The usefulness of Lie theory comes
from the fact that operations on the manifold can be carried out in the tangent vector
space meaning that standard linear algebra and calculus can be used [25]. That is, one
can define increments in the tangent space which map back to the manifold, making
optimization that includes orientations possible. Further, Lie groups have a group action
which acts on other sets. Actions are denoted with a dot “·”.

The Lie algebra m of a manifold M is the tangent vector space at identity T ME ,
where E denotes identity. Elements of a Lie algebra are denoted with a hat i.e. τ∧ ∈
m. The Lie algebra can be expressed as a linear combination of generators [24]. The

Chapter 2: Theoretical Background 9

coefficients of this expression make up a vector τ ∈ Rm with m being the degrees of
freedom of the manifold. The linear maps hat and vee enable transition between the Lie
algebra and the vector space [25]. That is (τ)∧ : Rm→ m and

�

τ∧
�∨

: m→ Rm

2.2.1 The exponential and logarithmic maps

The exponential map transforms elements in the Lie algebra to the manifold. And the
logarithmic map does the inverse transformation [25]

exp
�

τ∧
�

: m→M (2.1)

log (X) : M→ m (2.2)

To circumvent the vee and hat operations, the capitalized maps are defined as

Exp (τ) = exp
�

τ∧
�

: Rm→M (2.3)

Log (X) = (log (X))∨ : M→ Rm (2.4)

The exponential map can be approximated to first order as

Exp (τ)≈ E +τ∧ (2.5)

For instance, for rotation matrices, E is the identity matrix, and the hat operation gives
the skew-symmetric matrix, leading to the well-known approximation. Plus is defined
as increments in the tangent space mapped onto the manifold. While minus gives the
tangent space difference between two manifolds .

Y = X ⊕ Xτ = X ◦ Exp
�Eτ
�

∈M (2.6)
Xτ = Y 	X = Log

�

X−1 ◦Y
�

∈ T MX (2.7)

[25]. The composition does not commute; in the above equation, plus and minus are
defined on the right, which means that the perturbations are performed locally. The
operations can also be carried out globally on the left side. The adjoint AdX (τ∧) =
Xτ∧X−1 gives the relationship between these local and global tangent space vectors
[25]. For matrix Lie groups the adjoint matrix can be found and used to transform vectors
at the tangent space of the manifold at X to the origin E , that is Eτ = AdX

Xτ [24].

2.2.2 Rotation matrices

There are multiple ways to represent orientations, one of them is the rotation group
SO(3) consisting of matrices R ∈ R3×3 that have the following two properties

RR> = I , det (R) = 1 (2.8)

10

By time differentiating the orthogonality constraint, as in [24], it can be shown that the
Lie algebra is given by the skew-symmetric matrix. That is, the hat operation map the
vector of angular velocities to the corresponding skew-symmetric matrix, while the vee
operation does the opposite. The skew-symmetric matrix is denoted [ω]×, and is given
by

ω∧ = [ω]× =

0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (2.9)

In light of this, the differential equation that governs how the rotation matrix change
with time, is given by Ṙ = R[ω]×. Using the first-order approximation of exponential in
(2.5) gives that the solution for a small time increment Ts is

∆R ≈ I + [ωTs]× (2.10)

Rotations act on vectors by rotating them from one resolving frame to another. That
is, given a rotation matrix Rα

β
, then

xβ = Rβα · x
α = Rβαxα (2.11)

From the orthogonal property, it is clear that the inverse rotation is given by transposi-
tion. That is

�

Rβα
�−1
=
�

Rβα
�>
= Rαβ (2.12)

The composition of two rotations is carried out by matrix multiplication

Rβα = RβγRγα (2.13)

2.2.3 Rigid motion

The rigid motion group SE(3) consists of matrices T ∈ R4×4 that can be written as

T =

�

R t
0> 1

�

(2.14)

where R ∈ SO(3) and t ∈ R3. It can be shown that the hat operator gives

τ∧ =

�

[θ]× ρ

0> 0

�

∈ se(3) (2.15)

where τ =
�

ρ θ
�> ∈ R6 is the tangent vector with the translation associated part

ρ and rotation associated part θ [24]. The SE(3) group action on vectors rotates and
translates them, and is given by

pβ = Tβα · p
α = Rβαpα + tβ (2.16)

As rigid motions incorporate both rotation and translation they will sometimes be re-
ferred to as a pose.

Chapter 2: Theoretical Background 11

2.2.4 Unit quaternions

A more compact representation of rotation can be expressed using the unit quaternion.
Quaternions consist of a sum of one real part and three so called “hyper-imaginary”
parts. Following the notation in [26], the unit quaternion q is written as

q =

�

η

ε

�

(2.17)

and has the property that ‖q‖2 = 1 where ‖·‖2 represents the Euclidean norm. Composi-
tion of two rotations represented with unit quaternions is performed using multiplication
which is denoted with ⊗.

qβα = qβγ ⊗ qγα =

η
β
γη

γ
α −
�

ε
β
γ

�>
ε
γ
α

η
β
γε
γ
α +η

γ
αε
β
γ + ε

β
γ × ε

γ
α

 (2.18)

For unit quaternions the hat operation gives the pure quaternion ω∧ =
�

0 ω
2

�>
. The

differential equation is

q̇ = q ⊗ω∧ =
1
2

q ⊗
�

0
ω

�

Again using (2.5), for a small time increment Ts, the resulting relative rotation is given
by

∆q ≈
�

1
ωTs

2

�

(2.19)

where the identiy element is
�

1 0>
�>

. This is in turn an approximation of

∆q =

�

cos(Ts/2‖ω‖)
sin(Ts/2‖ω‖2)

ω
‖ω‖2

�

(2.20)

as given by [17, 27].

2.2.5 Jacobians

Having defined the right side plus and minus operations, it is now possible to define
Jacobians of Lie groups as

J f (X)
X = lim

τ→0

f (X ⊕τ)	 f (X)
τ

(2.21)

JX
Y = JX

Z JZ
Y (2.22)

By utilizing the chain rule and some common Jacobian blocks, we can compute
derivatives of functions with Lie groups as inputs. The following is a list of some Ja-
cobian blocks, compiled from [24] that will be used.

12

• Composition:

JX◦Y
X = Ad−1

Y (2.23)

JX◦Y
Y = I (2.24)

• Inversion
JX−1

X = −AdX (2.25)

• SO3 rotation action:

JR·x
R = −R[x]× (2.26)

JR·x
x = R (2.27)

• SE3 rigid motion action:

J T ·x
T =
�

R −R[x]×
�

(2.28)

J T ·x
x = R (2.29)

See [24] for derivation.

2.3 Inertial navigation

An inertial navigation system consists of an inertial measurement unit along with some
algorithm that calculates estimates of the position, velocity, and attitude based on the
IMU outputs in a dead reckoning fashion [17].

2.3.1 IMU

The IMU usually consists of three accelerometers and three gyroscopes mounted orthog-
onally to each other. The accelerometers measures the specific force that is acting on the
sensor. It does not measure the acceleration as one might expect, e.g., by laying the
IMU still on the ground the specific force output will be approximately 9.8 [ms−2] up-
wards away from the Earth’s center. The units reveal that this is in fact an acceleration
and not a force, which adds to the confusion. However, one can think of specific force
as the acceleration the sensor experiences minus gravity [17]. The gyroscopes measure
angular rates, which are used to calculate the vehicle’s attitude. The measurements are
thus also affected by the Earth’s rotation which often needs compensation. However, in
this work, the effect from the Earth’s rotation will be neglected. The accelerometer and
gyroscope outputs might be given as samples at a specific time instance or as integrated
increments; here, samples will be of concern. Combining the three accelerometers and
gyroscopes with a processor, controller, and a clock in a compact package and the result
is an IMU. Some IMUs also include three magnetometers to measure heading, a barom-
eter to get altitude, or both. Depending on the placement of the IMU in relation to the
body frame, adjustments need to be made. In the following section, it is assumed that the
IMU coincides with the body frame. The IMU measurements are affected by errors such
as scale factors, cross-coupling, and noise. To achieve the best possible performance,
these quantities need to be modeled and calibrated for.

Chapter 2: Theoretical Background 13

2.3.2 Inertial integration

To integrate the IMU measurements into estimates for position, velocity and attitude,
the strap-down navigation equations are used. Recall that in this work, NED is treated
as an inertial frame. The navigation equations are given by

ṗn
nb = vn

nb

v̇n
nb = Rn

b f b
nb + g n

b (2.30)

Ṙn
b = Rn

b Exp([ωb
nb]×)

Where pn
nb is the vehicle position, vn

nb velocity, and Rn
b is the attitude here represented

by a rotation matrix. For implementation the equations need to be discretized. With a
sampling interval of Ts the attitude update is given by

Rn
b,k = Rn

b,k−1 Exp([ωb
nb,k−1]×Ts) (2.31)

The exponential can be approximated to any order depending on what accuracy is
sought after. In this work, the exact exponential of a skew-symmetric matrix is used;
that is

Exp([ω]×) = I +
sin(||ω||2)
||ω||2

[ω]× +
1− cos(||ω||2)
||ω||22

[ω]2× (2.32)

which is taken from equation 5.63 in [17]. For the velocity update, the average rotation
R̄n

b,k between k−1 and k is needed, which can be approximated by simply averaging and
then renormalizing the rotation. However, in this work, spherical linear interpolation is
used. The average acceleration in the inertial frame is then given by

ān
nb = R̄n

b,k f b
nb,k−1 + g n

b (2.33)

The velocity update can then be calculated as

vn
nb,k = vn

nb,k−1 + ān
nbTs (2.34)

Finally the position can be integrated as

pn
nb,k = pn

nb,k−1 + vn
nb,kTs −

ān
nbT2

s

2
(2.35)

which concludes the derivation of the inertial equations based on [17].

2.3.3 IMU errors

There are different ways to model the stochastic errors affecting an IMU, and the most
suitable model is probably dependent on the IMU. In this work, the measurements are
assumed to be affected by a zero mean white noise term as well as a slowly varying bias

14

term. As done in [26], the IMU outputs of the measured specific force f b
nb,m and angular

rate ωb
nb,m can be modelled as

f b
nb,m = Rn

b

�

ab
nb − g
�

+ b f + w f (2.36)

ωb
nb,m =ω

b
nb + bω + wω (2.37)

where ab
nb and ωb

nb are the true acceleration and angular velocity. The biases are de-
noted with b, and w corresponds to the white noise affecting the measurements. Again
following the model in [26], the white noise processes are assumed Gaussian and their
power spectral densities (PSD) are constant and given by Q f and Qω. That is,

w f (t)∼N (0,Qvδ(t −τ)) (2.38)

wω(t)∼N (0,Qwδ(t −τ)) (2.39)

The values of Q f and Qω can be found in the datasheet by looking up the velocity random
walk (VRW) for the accelerometer and angular random walk (ARW) for the gyroscopes.
These are often given in units [ms−1 h−1/2] and [◦ h−1/2] correspondingly, and should
then be converted to SI-units. That is [ms−2 Hz−1/2] and [rad s−1 Hz1/2]. If these values
are not specified directly in the datasheet, they can be found by the typically provided
Allan Standard Deviation (ASD) plot [28].

Unlike the uncorrelated white noise, the bias for the accelerometer b f and the gyro-
scope bω describes the correlated noise. The biases are often the largest source of error.
They have a static component called the run-to-run bias which is constant and changes
when the IMU is powered on or off, as well as in-run bias stability –sometimes named
bias instability– which varies every time the IMU is powered [17] chapter 4.4.1. In the
design of navigation filters, different stochastic processes can be used to model the IMU
bias [18]. The simplest one is the constant bias, which in the scalar case is given by

ḃ = 0 (2.40)

This is not recommended as it causes the navigation filters’ state covariance to go to zero
as time tends towards infinity [18] p. 42. Another approach is the Wiener process

ḃ = wb wb ∼N (0,σ2
wb
δ(t −τ)) (2.41)

However, this approach leads to an infinite covariance as time tends towards infinity.
The last bias model that will be mentioned here is a first-order Gauss-Markov process,
which is given as

ḃ = −
1
T

b+wb , wb ∼N (0,σ2
wb
δ(t −τ)) (2.42)

where T is the time constant. In Navigation Filter Best Practices [18], the Gauss-Markov
process is recommended as it has a bounded covariance. To determine the value σ2

wb
for the Gauss-Markov process from the data sheet, one must look up the bias instability
bins, convert it to SI-units, and then use

σ2
wb
=

2
T

b2
ins (2.43)

Chapter 2: Theoretical Background 15

Other sources of errors in an IMU are scale factors errors and cross-coupling errors
[17] chapter 4.4.2. The scale factor error is when the output of the accelerometer or the
gyroscope is proportional to the true specific force or angular velocity. Cross-coupling
errors arise when there is a slight misalignment of the axes of IMU, which may cause
the measurements in one axis to be sensitive to motion about, or in the direction of, one
of the two orthogonal axes. In [29], Gade does a thorough analysis of scale factor and
cross-coupling errors and concludes that these errors are largely dominated by the bias
error. Therefore the sum of these errors can be modeled as an aggregate bias process
[29] encapsulating the aforementioned error sources.

2.4 PARS noise

As mentioned there has been various tests of PARS systems in the field [12, 30]. From
these works it is concluded that the main systematic source of error is multipath, which
predominantly affects elevation. Multipath is when the signal reflects off some other
surface before reaching the receiver causing a situation where the signal directly from
the transmitter is ambiguous [12]. Further, the elevation angle is mostly affected by this
error when the transmitter is at a low angle relative to the horizon; this may cause the
signal to be reflected off the surface below as depicted in Figure 2.2. Because of this
systematic source of error, it is not appropriate to consider the noise affecting the AoA
measurements white. Instead, the noise is a form of colored noise which is correlated
in time. An example of this is shown in Figure 2.3, which is an extract from the dataset
that will be used and is described in Chapter 6. The noise affecting the elevation mea-
surements is clearly correlated.

Figure 2.2: An example of multipath error. The signal from the black dot transmitter is
reflected off the surface causing an ambiguity in the measured elevation angle.

The fact that the AoA measurement noise is correlated is a problem because it breaks
with the assumption that the measurements are affected by white noise in the Kalman
filter. Groves [17] presents a couple of ways to deal with this problem. The first is to
add the the correlated noise to the state vector, as done with the biases. However, this
would require the noise to be observable and adds considerable additional complexity
to the estimation algorithms. Another way to deal with this problem, without explicitly

16

−5.0

−2.5

0.0

2.5

5.0
El

ev
at

io
n

[°
]

600 650 700 750 800

Time [s]

−100

0

100

A
zi

m
ut

h
[°

]

Ground truth
PARS measurements

Figure 2.3: Multipath is present in the measured AoA elevation angle.

modeling it, is to simply increase the white noise covariance used in the estimators
assuming that this will capture the effects of the correlated noise. This can either be
done by reducing the Kalman gain or by increasing the terms in the measurement noise
covariance matrix. As the latter approach is the simplest, this technique will be used in
the design of the estimators in this work.

2.5 Bayesian filtering

This section comprises of the relevant theory regarding Bayesian filtering techniques
which are common in inertial navigation problems. To keep the notation simpler, the
coordinate super- and subscripts are dropped in this section. The theory and notation
are based on “Fundamentals of Sensor Fusion” by Brekke [26].

The Bayesian filtering problem can be formulated as such: Given a state vector x
of a dynamical system and a measurement vector z that are affected by noise, the goal
is to combine the measurements with prior information about the system to create an
accurate estimate of x . The process model is written as p (x k | x k−1) and describes how
the state evolves in time. Here the Markov property is applied; given x k−1, x k is inde-
pendent of all previous states and measurements. Similarly, the measurement model is
p (zk | x k) where it also assumed that conditional on the newest state, the measurement
is independent of all previous states before that and the other measurements [26]. The
filtering approach is typically divided into an update step and a prediction step. The
prediction provides the density of x k conditional on all the measurements before k i.e.
z1:k−1. It is given by the total probability theorem

p (x k | z1:k−1) =

∫

p (x k | x k−1) p (x k−1 | z1:k−1) dx k−1 (2.44)

Where p (x k−1 | z1:k−1) is the previous posterior. The prediction step uses the process
model to propagate the state forward in time. The update step incorporates the newest

Chapter 2: Theoretical Background 17

measurements using Bayes rule to give the full posterior

p (x k | z1:k)∝ p (zk | x k) p (x k | z1:k−1) (2.45)

[26]. In some special cases these equations have a closed-form solution.

2.5.1 Kalman filter

Under the assumptions that mentioned densities are Gaussian and linear, the equations
above simplify to what is known as the Kalman filter [26]. That is, the states and mea-
surements are on the form

x k = F x k−1 + w x ,k

zk = Hx k + w z,k
(2.46)

where F gives the state transition and H the measurement prediction. The noise w x ,k
and w z,k are zero-mean Gaussian with covariance Q and R. Also, it assumed that x 0 ∼
N (x̂ 0, P0) Under these assumptions, it can be shown that, (2.44) and (2.45) reduces to

p (x k | z1:k−1) =N
�

x̂−k , P−k
�

p (x k | z1:k) =N
�

x̂+k , P+k
� (2.47)

where the predicted distribution has mean and covariance

x̂−k = F x̂ k−1

P−k = HPk−1H> +Q
(2.48)

Similarly, the update step gives the posterior mean and covariance

x̂+k = x̂−k + K k

�

zk −Hx̂−k
�

P+k = (I − K kH)P−k
(2.49)

where K k is the so-called Kalman gain and is given by

K k = P−k H>
�

HP−k H> +R
�−1

(2.50)

which gives the basic Kalman filter equations [26].
In the case where we have a nonlinear process model x k = f (x k−1) or measurement

model zk = h(xk), the nonlinear function can be linearized using the Jacobians

F k =
∂ f (x k−1)
∂ x k−1

�

�

�

�

x k−1=x̂+k−1

H k =
∂ h(x k)
∂ x k

�

�

�

�

x k=x̂−k

(2.51)

The only change from the standard Kalman filter is to calculate these Jacobians A and
H and to predict states and measurements using the nonlinear functions. This is called
the extended Kalman filter (EKF) as it is extended to also work on nonlinear models.

18

2.5.2 Error state Kalman filter

The following will be a short summarization of the error state Kalman filter as pre-
sented by Brekke [26] and Sola [27]. In inertial navigation, an estimate of position,
velocity, and attitude is sought after. As seen, singularity-free representations of attitude
include unit quaternions and rotation matrices. However, the problem with these types
of representations is that they are overparameterized; an orientation has three degrees
of freedom while these representations have four and nine dimensions. This would in
turn give a 4x4 or 9x9 covariance matrix, which is troublesome [26]. Because of this, a
three-dimensional attitude error is used instead. The error state is always small meaning
that the singularities won’t be an issue [27].

The Error State Kalman Filter keeps track of a nominal state x and an error state
δx [27]. The true state is given as x t = x + δx . The covariance of the error state and
the mean of the nominal state is propagated for each new IMU measurement; they are
treated as control input. When a new sensor measurement arrives the nominal state is
updated using the error state covariance and injected into the true state and then reset.
In this work, the same formulation as in [26] is used. That is, the state vector is defined
as 16-dimensional consisting of position p, velocity v , attitude q – represented by a unit
quaternion –, accelerometer bias b f and gyroscope bias bω:

x =

p
v
q
b f
bω

(2.52)

Modifying (2.30) to include the IMU biases modeled as Gauss-Markov processes, adding
noise terms, and approximating the attitude exponential to first order gives the following
equations for the true state kinematics

ẋ t =

v t

R(q t)
�

f − b f ,t − w f

�

+ g

q t ⊗
�

ω− bω,t − wω

�∧

−
1
T f

b f ,t + w b f

−
1

Tω
bω,t + w bω

(2.53)

The coordinate frames have been removed for simplicity. The presence of the quaternion
product is the reason why this filter is sometimes called the multiplicative Kalman filter

Chapter 2: Theoretical Background 19

(MKF). The nominal state is the same but without the noise terms.

ẋ =

v

R(q)
�

f − b f

�

+ g

q ⊗ (ω− bω)
∧

−
1
T f

b f

−
1

Tω
bω

(2.54)

The error state δx is the difference between the true state and the nominal state. Ap-
proximations based on neglecting small values and first order expansion of the attitude
increment as in [27] and [26] can be performed to arrive at linear error kinematics

δẋ =

δv

−R(q)
�

f − b f

�

×δθ −R(q)δb f −R(q)w f

− [ω− bω]δθ −δbω − wω

−
1
T f
δb f + w b f

−
1

Tω
δbω + w bω

(2.55)

It’s important to note that δx is 15-dimensional because the full quaternion q is replaced
by the 3-dimensional error rotation vector δθ . The prediction phase of the ESKF consists
of propagating the nominal state and the error state covariance.

The update step assumes that the sensor used has a measurement model on the form

z= h (x t) +w w∼N (0,R) (2.56)

The corrected estimates for the error state mean and covariance are given by

K k = P−k H>
�

HP−k H> +R
�−1

(2.57)

δx̂ k = K k (zk − h(x̂ k)) (2.58)

P+k = (I − KH)P−k (2.59)

The H is the Jacobian of h with respect to the error state evaluated at the nominal state.
Recall that x t is the summation of the nominal state with the error state which contains
a quaternion multiplication. From the chain rule

H =
∂ h
∂ x t

�

�

�

�

x

∂ x t

∂ δx

�

�

�

�

x
(2.60)

Where H x is the same Jacobian as calculated in the EKF, and it is shown in [27] that

∂ x t

∂ δx

�

�

�

�

x
=

I 0 0
0 Qδθ 0
0 0 I

 (2.61)

20

with

Qδθ =
1
2

−ε1 −ε2 −ε3
η −ε3 ε2
ε3 η −ε1
−ε2 ε1 η

(2.62)

When the error state is estimated it needs to be injected into the nominal state. Which, as
mentioned, is just an addition for all the vectors and multiplication for the quaternion.
Lastly, the error state mean estimate is reset to zero, and the covariance need to be
updated like this

P+k = GP+k G> (2.63)

where

G =

I 0 0
0 I −
�1

2δθ̂
�

× 0
0 0 I

 (2.64)

which completes the short recap of the ESKF as presented by Sola [27] and Brekke [26].

2.6 Factor graphs

The following is a brief reiteration of some theory on MAP inference and factor graphs
as presented in Factor graphs for robot perception [31] by Dellaert. As a supplemen-
tary source [25] has also been used. The factor graph framework that will be explained
shortly provide an intuitive way of modelling sensor fusion problems and has associated
with it a set of algorithms that provide a general way to exploit the sparsity typically
found in these problems. In the context of SLAM, factor graphs have become a standard
tool with the development of frameworks such as GTSAM [32], miniSAM [23], Symforce
[33] and WOLF [34].

2.6.1 A brief introduction to factor graphs

Instead of computing the entire posterior distribution, it is possible to find only the state
that maximizes the full posterior, this is called maximum a posteriori (MAP) estimation
[35]. In other words, with a set of states X and measurement Z , one can calculate the
maximum of the posterior density p(X | Z). The MAP estimator is given by

X̂ = argmax
X

p(X | Z) (2.65)

One way to encode the factorization of the posterior is to use a factor graph. A factor
graph is a graph which consists of two types of nodes: factors and variables [31]. A simple
factor graph example with only one measurement is shown in Figure 2.4. The factors
that represent the dependencies between variables are denoted withφ, and the variables
are X = {x 1, x 2, x 3, p1}. A factor graph can encode the factorization the conditional

Chapter 2: Theoretical Background 21

density in a way that makes it clear which variables are independent. In Figure 2.4 the
factorization

p(X | Z)∝ p(x 1)p(x 2 | x 1)p(x 3 | x 2)p(p1)l(x 1, p1; z) (2.66)

can be represented by the factor graph factorization

φ(x 1, x 2, x 3, p1) = φ1(x 1)φ2(x 1, x 2)φ3(x 2, x 3)φ4(p1)φ5(x 2, p1) (2.67)

Here the l(x 1, p1; z) refers to the likelihood of x 1 and p1 given z, which is in general not
a Gaussain density. The ability of the factor graph to utilize these likelihoods is one of
their main benefits compared to other graphical models like the Bayes net. In fact, factor
graphs can be used to represent any factored function, not just probability densities [31].

φ1 φ2 φ3

φ4

φ5

X1

P1

X2 X3

Figure 2.4: Factor graph representation of an estimation problem with three vehicles
poses x 1, x 2, x 3 and one PARS with pose p1. The factors are corresponds to the black
circles denoted with φ.

To show how one can obtain the MAP estimate let us consider a scenario with only
measurements. Under the assumption that the state x k ∈ X is related to the measure-
ment zk ∈ Z in the following way

zk = h(x k) + w k (2.68)

where w k is Gaussian white noise with covariance Σ, it can be shown that the MAP
problem reduces to finding the minimum of the sum of residuals

x̂ = argmin
x

n
∑

k=1

||h(x k)− zk||2Σ (2.69)

where the notation || · ||2Σ denotes the Mahalanobis distance squared, which is

||h(x k)− zk||2Σ = (h(x k)− zk)
>Σ−1(h(x k)− zk)

=
�

Σ−
1
2 (h(x k)− zk)
�> �
Σ−

1
2 (h(x k)− zk)
�

= ||Σ−
1
2 (h(x k)− zk)||22

(2.70)

[25, 31]. By linearizing the measurement function h as

h(x̄ k +∆x)≈ h(x̄ k) +H k∆x (2.71)

22

where H k is the Jacobian of h evaluated at x̄ k, the problem can be recast as a linear
least squares problem

∆x ∗ = argmin
∆

n
∑

k=1

||Σ−
1
2

i (h(x̄ k) +H k∆− zk) ||22

= argmin
∆x

n
∑

k=1

||Ak∆x − bk||22

(2.72)

where
Ak = Σ

− 1
2 H k (2.73)

and
bk = Σ

− 1
2 (zk − h(x̄ k)) (2.74)

[25, 31]. This also works with any Lie group not just vectors, but the linearization is
given as

h(X̄k ⊕τk)≈ h(X̄k) + Jh
X̄k
τk (2.75)

where the Jacobian Jh
X̄k

and the tangent space vector τk are defined as in Section 2.2.5.
Once the problem is linearized, the least squares solution is found by solving the normal
equations

�

A>k Ak

�

τk = A>k bk (2.76)

This can in turn be solved using for instance Cholesky or QR factorization [31]. After the
step τk is taken, the measurement function is relinearized and the process is repeated
until convergence. This is called the Gauss-Newton method. A problem with this method
is that
�

A>k Ak

�

might not be positive definite, resulting in the possibility of the cost
actually increasing for some steps [25]. A solution to this is to add a small constant λ to
this term such that the normal equation becomes

�

A>k Ak +λI
�

τk = A>k bk (2.77)

This modification leads to the Levenberg-Marquardt algorithm where every step is guar-
anteed not to increase the cost. It is also possible to combine the different Ak and bk
into one block matrix A and a vector b. The block structure of A is closely related to the
factor graph representation.

Another way to perform inference on a factor graph, which exploits the graph struc-
ture, is to use the elimination algorithm. This algorithm turns the posterior into a form
that makes it easy to compute the MAP solution. It provides a way to factorize the A
matrix into a triangular form, and QR and Cholesky can be considered specific cases.
Once the system is in this form, it can easily be solved for each variable using back-
substitution [31]. Importantly, the elimination algorithm is a way to convert the factor
graph into a Bayes net, but to keep this section concise, the reader is referred to [31],
which makes this connection clear.

This far, only batch estimation has been discussed, while typically in navigation prob-
lems, the measurements arrive incrementally, and it would be beneficial to reuse previ-
ous computations as well as bounding the growth of the problem. These are the problems

Chapter 2: Theoretical Background 23

addressed by the incremental smoothing and mapping (ISAM) algorithm [36] and its suc-
cessor ISAM2 [37]. As opposed to filtering which marginalizes out the variables on each
iteration, a fixed lag smoother sustain the densities of a subset of historical historical
states and marginalizes out those variables not in the subset [31].

The original ISAM algorithm works by incrementally updating the factorization of
the linear system (A, b) using QR-updating [31] when a new measurement arrives. In
this way, previous calculations are utilized. However, one problem with this approach is
that it requires the relinerization to be done on the full graph, and since this as an expen-
sive operation the relinerization step is only performed periodically. ISAM 2 deals with
this shortcoming by introducing a Bayes tree data structure which makes it possible to
selectively relinearize factors in the graph whose estimate deviate from the linearization
point more than a selected threshold [31].

2.6.2 IMU factors

In inertial navigation IMU measurements arrive at a high rate, typically 100 Hz or higher.
Creating a factor for each of these measurements would probably be infeasible in the
long run, due to to computational constraints. This problem is tackled by the so-called in-
ertial preintegration [38, 39]. This technique allows for integrating IMU measurements
into relative motion constraints. In this way, all IMU measurements are summarized
into one factor between the navigation states. This approach was first proposed by [38]
and extended by Forster in [39] where the integration is performed on the SO(3) man-
ifold. Another consideration that needs to be addressed is that by just integrating the
IMU measurements, the integration has to be repeated whenever the linearization point
changes [39]. Therefore, in the method of Forster, the relative pose and velocity incre-
ments are computed independently of a specific linearization point, meaning that the
motion constraints do not have to be recomputed during the optimization. All the deriva-
tions presented by Forster are too comprehensive to be repeated in detail here. However,
it can be said that Forster starts by defining the following relative motion increments

∆Ri j =
j−1
∏

k=i

Exp((ωk − bω,k − wω)Ts) (2.78)

∆v i j =
j−1
∑

k=i

∆Rik((f k − b f ,k − w f)Ts) (2.79)

∆p i j =
j−1
∑

k=i

�

∆v i j Ts +
1
2
∆Rik(f k − b f ,k − w f)T

2
s

�

(2.80)

where Ts is the sampling interval. That is, the relative rotation from time i to j is equal
to the product of the individual rotations yielded by the rotation prediction function
defined on the angular velocities in (2.31). The same is true for velocity and position, but
here the integration is done with the sum over the rotated specific force measurements
as in (2.34) and (2.35). Forster then shows how to isolate the noise terms by doing a
first-order approximation, and assuming the bias is constant between time i and j, which

24

then yields the final preintegrated measurement model on the form

∆R̃i j = R>i R j Exp(δφi j) (2.81)

∆ṽ i j = R>i
�

v j − v i − g Ti j

�

+δvi j (2.82)

∆p̃ i j = R>i

�

p j − p i − v i Ti j −
1
2

g Ti j

�

+δpi j (2.83)

where the quantities δφi j , δvi j and δpi j are noise terms. Further, the noise affecting the
rotation δφi j , is defined in the tangent space of the SO(3) manifold. For derivations on
noise propagation, bias update, and Jacobians the reader is referred to [39].

2.6.3 GNSS factor

Compared to the IMU factor, the GNSS factor is substantially more simple. However,
if it is assumed that the vehicle state is T n

b, the derivation is a little less intuitive than
expected. The measurement function is then

h(T n
b) = pn

nb (2.84)

where pn
nb is the translation part of the rigid transformation. One way to find the Jaco-

bian, is by using the definition

J
h(T n

b)
T n

b
= lim
τ→0

h(T n
b ⊕τ)	 h(T n

b)

τ

= lim
τ→0

h(T n
b Exp(τ))− h(T n

b)

τ

= lim
τ→0

h(T n
b(I +τ

∧)− h(T n
b)

τ

= lim
τ→0

h

��

Rn
b(I + [θ]×) Rn

bρ + pn
nb

0 1

��

− h(T n
b)

τ

= lim
τ→0

Rn
bρ + pn

nb − pn
nb

τ

= lim
τ→0

�

Rn
b 0>
�

τ

τ

=
�

Rn
b 0>
�

(2.85)

where ρ and θ are the translation and rotation associated components of the tangent

space vector, that is τ =
�

ρ θ
�>

. This Jacobian might seem strange as one would
perhaps expect the Jacobian to be identity. However, recall that the Jacobian was defined
using perturbation on the right side, where τ is in local coordinates.

Chapter 3

Simulator Design

To aid the development of the filters, a simulator was created capable of generating IMU
accelerometer and gyroscope measurements as well as measurements for any sensor
model.

3.1 IMU measurements

To generate the IMU measurements the technique described in Appendix J of Groves
[17] was used. The IMU simulator takes in a motion profile consisting of position vn

nb
and attitude Rn

b motions as well as IMU parameters such as noise and sampling interval
TIMU and generates velocity vn

nb, specific force f b
nb and angular velocityωb

nb. The velocity
is first calculated in the inertial frame as

vn
nb,k+1 = 2

pn
nb,k+1 − pn

nb,k

Tmp
− vn

nb,k (3.1)

where Tmp is the step length in the provided motion profile. The initial velocity v0 must
also be provided. Then the position, velocity, and attitude are resampled at TIMU using
a linear interpolator. Proper rotational interpolations like spherical linear interpolation
(SLERP), [27] should be used for attitude, but good enough results were achieved by
doing the linear interpolation and renormalizing the rotation. Attempts were made to
interpolate prior to the velocity calculation, but this resulted in the accumulation of large
errors. After this, the average acceleration is calculated by

ān
nb =

vn
nb,k+1 − vn

nb,k

TIMU
(3.2)

which is made into a specific force by

f n
nb,k = ān

nb − g (3.3)

Proper calculation of gravity at a specific latitude and height was done based on deriva-
tions in [17]. The script was given the latitude of Raudstein at Agdenes in Trøndelag,

25

26

Norway and the gravity vector was set to

g =

−2.8710430× 10−7
0

9.8217694

 (3.4)

This is the gravity vector that is used throughout this whole project. The acceleration
must be converter to the body frame so the average rotation R̄n

b is needed. For this the
SLERP implementation in GTSAM was used

R̄n
b = slerp
�

Rn
b,k, Rn

b,k+1, 0.5
�

(3.5)

Finally, the specific force in the body frame can be recovered as

f b
nb,k = R̄n

b f n
nb,k (3.6)

To generate gyroscope angular velocity measurements, the rotational difference be-
tween the two steps is first found

∆R = (Rn
b,k+1)

>Rn
b,k (3.7)

And the attitude increment is calculated using [17, Eq. (5.64)]

∆θ =
θ

2

∆R[2,1]−∆R[1,2]
∆R[0,2]−∆R[2,0]
∆R[1,0]−∆R[0,1]

 (3.8)

where

θ =
µ

sin(µ)
µ= cos−1
�

tr(∆R)− 1
2

�

(3.9)

If µ < ε then θ ← 1. Here, ε was set to 2× 10−5 as in [17]. The notation tr(·) is used
for the matrix trace. This gives the attitude increment, and the angular velocity can be
recovered by simply dividing by the sample time, i.e.,

ωn
nb,k =

∆θ

TIMU
(3.10)

To test the simulator, specific force and angular velocity measurements were generated
for a 15-minute flight, and the strapdown equations were used to recover the flight path.
The result showed an error in the millimeter range for position. The flight path used in
the simulations is taken from a dataset [40] used as part of the course TTK4250 Sensor
Fusion.

Chapter 3: Simulator Design 27

3.2 IMU noise

The IMU noise model detailed in Subsection 2.3.3 was used. Noise is added by specifying
an IMU by covariances of the noise that directly affect the accelerometer and gyroscope
measurements: Q f and Qω. The noise is assumed uncorrelated and equal for each axis
in both sensors, so

Q f = σ
2
f I , Qω = σ

2
ωI (3.11)

is used. For axis a ∈ {x , y, z} the accelerometer and gyroscope noise was created as

w fa ,k ∼N

�

0,
σ2

f

TIMU

�

wωa ,k ∼N
�

0,
σ2
ω

TIMU

�

(3.12)

The drifting bias of the IMU was simulated using a Gauss-Markov process. Like be-
fore, the bias noise covariances are written as

Q fb
= σ2

fb
I , Qωb

= σ2
ωb

I (3.13)

The time constants T f and Tω must also be specified. Another technique from Appendix
J in Groves [17] was used to simulate the Gauss-Markov process. The accelerometer
biases are calculated as

b fa ,k = exp

�

−TIMU

T f

�

b fa ,k−1 +w fa ,k (3.14)

with

w fa ,k ∼N
�

0,σ2
fb

�

1− exp

�

−2TIMU

T f

���

(3.15)

The same thing is done for the gyroscope biases bωa ,k. Finally, the noise and biases are
added to get the noisy measurements

f̃ k = f k + w f ,k + b f ,k

ω̃k =ωk + wω,k + bω,k
(3.16)

To make the simulation realistic, there was a need for some real-world IMU noise
statistics, so the IMU simulated in the experiments was chosen to be the tactical grade
STIM300 by sensonor as this is used with the PARS dataset. The noise values were ac-
quired from the datasheet, and corresponding SI-units conversion are displayed in Ta-
ble 3.1.

3.3 Sensor measurements

There was a need to generate measurements from other sensors such as GNSS and PARS.
To do this a sensor time interval Tsens is specified as well as a measurement model on
the form

z = h (x) + w z w z ∼N (0,Rz) (3.17)

28

Table 3.1: IMU parameters used in the simulation. The relation between bias noise
variance, the time constant, and the bias instability is σ2

b = 2b2
ins/T . Further, The units

[mg] refer to milli-standard-gravity i.e 9.80665 · 10−3.

Data sheet SI-Units

Accelerometer
Velocity Random Walk σ f 0.07 [ms−1 h−1/2] 1.2× 10−3 [ms−2 Hz−1/2]
Bias Instability bins f

0.05 [mg] 4.9× 10−4 [ms−2]
Time constant T f — 3.6× 102 [s]
Bias noise std. σb f

— 1.2× 10−5 [ms−2 Hz1/2]
Gyroscope
Angular Random Walk σω 0.15 [◦ h−1/2] 4.4× 10−5 [rad s−1 Hz−1/2]
Bias Instability binsω 0.50 [◦ h−1] 2.4× 10−6 [rad s−1]
Time constant Tω — 3.6× 102 [s]
Bias noise std. σbω — 5.7× 10−8 [rad s−1 Hz1/2]

where Rz is the measurement covariance. To generate such measurements, the full state
vector x is again interpolated and resampled at Tsens, then the function h is applied to the
every step in the whole resampeled trajectory before noise is applied. For the simulation
experiments, PARS and GNSS were generated at 5Hz. The noise added to the GNSS
measurements had a standard deviation of 1m in all axes. For PARS measurements the
noise on elevation and azimuth had a standard deviation of 0.5◦.

Chapter 4

Estimator Design

This chapter detail the design of the two estimators. Firstly a PARS sensor model is de-
rived with accompanying Jacobians then the ESKF implementation is briefly introduced.
Finally, more detail will be given in regard to the design of the FGO approach as well as
some initial testing.

4.1 PARS measurement model

In both the ESKF and factor graph implementation a measurement model that predicts
the measurements z from the system state x , as well as its Jacobian, is needed. The
phased-array radio systems that are considered in this thesis provide elevation α and
azimuth ψ angle measurements of a vehicle with position pn

nb as shown in Figure 4.1.
Assuming the radio frame is aligned with NED, the measurement model is simply the

D

E

N

pn
nb

ψ

α

Figure 4.1: PARS measurements are given in spherical coordinates where α denote the
elevation angle and ψ is the azimuth.

cartesian to spherical coordinate transform denoted with a bold α

29

30

�

αn

ψn

�

= α
�

pn
nb

�

=

atan2
�

pn
nb,z ,
q

(pn
nb,x)

2 + (pn
nb,y)

2
�

atan2
�

pn
nb,y , pn

nb,x

�

 (4.1)

The Jacobian of (4.1) with respect to the position is

J
α(pn

nb)
pn

nb
=

−pn
nb,x pn

nb,y

r2
q

(pn
nb,x)

2+(pn
nb,y)

2

−pn
nb,y pn

nb,z

r2
q

(pn
nb,x)

2+(pn
nb,y)

2

q

(pn
nb,x)

2+(pn
nb,y)

2

r2

−pn
nb,y

(pn
nb,x)

2+(pn
nb,y)

2

pn
nb,x

(pn
nb,x)

2+(pn
nb,y)

2 0

(4.2)

where r =
q

(pn
nb,x)

2 + (pn
nb,y)

2 + (pn
nb,z)

2 is the range. The measurements are in the
radio frame {r}. However, it cannot be assumed that the PARS frame is aligned with
NED in general so the measurement function and its Jacobian has to be corrected for
this. That is, the measurements need to be converted from radio frame {r} to the local
navigation frame {n} before they can be used in the filters. Assuming that the PARS pose
T r

n is known, the measurement model is then
�

αr

ψr

�

= h(pn
nb) = α
�

T r
n · p

n
nb

�

= α
�

p r
r b

�

(4.3)

The measurement model Jacobian is

H(pn
nb) = J

α
�

T r
n·p

n
nb

�

pn
nb

Rr
n (4.4)

This is the Jacobian used in the ESKF implementation.
To create a custom factor in GTSAM the measurement Jacobian is needed. The intuitive

approach might be to try to use the Jacobian in (4.4), however this does not work as the
Jacobian with respect to the whole manifold T n

b is needed when using GTSAM. To do this
it is first noted that the position vector can be extracted from the matrix representation
in the same way as done in (2.84). This operation will be denoted as a function s(·)

p r
r b = s(T r

b) (4.5)

which has the Jacobian as in (2.85). The Jacobian of rigid action with respect to the left
term, as well as the Jacobian of the composition with respect to the right term is found
in Subsection 2.2.5. The latter is just identity. The Jacobian of (4.5) with respect to the
vehicle pose T b

n is then found using the chain rule

Jh
T n

b
= J

α(p r
r b)

T n
b

= J
α
�

s
�

T r
nT n

b

��

s
�

T r
nT n

b

� J
s
�

T r
nT n

b

�

T r
nT n

b
J

T r
nT n

b
T n

b

= J
α(p r

r b)
p r

r b

�

Rr
b 0
�

(4.6)

This is the same on SE(2) and on SE(3) only the dimensions change. Of course, for SE(2)
the function α has to be modified to only give azimuth.

Chapter 4: Estimator Design 31

In the case that the PARS pose T n
r is not known accurately it could be beneficial to

include it as a variable in the factor graph. To do this the following Jacobian is needed

Jh
T n

r
= J

α(p r
r b)

T n
r

= J
α(T r

n·p
n
nb)

T r
n·p

n
nb

J
T r

n·p
n
nb

T r
n

J
(T n

r)
−1

T n
r

= J
α
�

p r
r b

�

p r
r b

�

Rr
n −Rr

n

�

pn
nb

�

×

�

�

−AdT n
r

�

= J
α
�

p r
r b

�

p r
r b

�

Rr
n −Rr

n

�

pn
nb

�

×

�

�

−Rn
r −
�

pn
nr

�

×Rn
r

0> −Rn
r

�

= J
α
�

p r
r b

�

p r
r b

�

−I Rr
n

�

pn
nb − pn

nr

�

×Rr
n

�

= J
α
�

p r
r b

�

p r
r b

�

−I
�

Rr
npn

r b

�

×

�

= J
α
�

p r
r b

�

p r
r b

�

−I
�

p r
r b

�

×

�

(4.7)

where the identity

R [p]×R> = [Rp]× (4.8)

was used. Also, the Jacobian of the action with respect to the pose, as well as the Jaco-
bian with respect to the inverse was used. With these Jacobians, it enables the creation of
a custom PARS factor in GTSAM. The Jacobian calculations are error-prone and so check-
ing them numerically was deemed necessary. To do this, a snippet similar to the one
found in Code listing 4.1 was used. The main difference between this and standard fi-
nite differences is that the exponential map has to be used, instead of ordinary addition,
when perturbing the function argument.

Code listing 4.1: Function of SE(3) finite differences Jacobian. The output of h is ex-
pected to be a vector.

import numpy as np
import gtsam
from typing import Callable

def se3_finite_differences(X: gtsam.Pose3,
h: Callable,
z_dim: int):

x_dim = 6
d = 1e-7
J = np.zeros((z_dim, x_dim))
for i in range(x_dim):

t = np.zeros(x_dim)
t[i] = 1e-7
J[:,i] = (h(X*X.Expmap(t)) - h(X)) / d

return J

32

4.2 Error state Kalman filter implementation

The goal of this thesis is mainly to explore factor graph based approaches for navigation
using PARS, so this section will be brief. To establish a baseline in performance, an er-
ror state Kalman filter was developed. The ESKF implementation is inspired by previous
work [41], and provided materials from the sensor fusion course TTK4250 [42]. The
relevant theoretical background regarding the ESKF is found in Subsection 2.5.2. The
main point to note, that is not mentioned in the theory section is that the system matri-
ces need to be discretized. This is done using Van Loan’s formula as described in [26].
This is then used to propagate the error state covariance. The prediction of the nominal
state is done using strapdown equations in (2.30). Other than that, the equations in
Subsection 2.5.2 are implemented more or less directly as stated. The prediction func-
tion takes in an IMU object which contains the noise standard deviations discussed in
Subsection 2.3.3. The update function takes in a Sensor object that needs to contain the
measurement prediction function h(x) as well as its Jacobian H(x). Given a list of IMU
measurements z_acc and z_gyr, sensor measurements z_sens from e.g. the simulator
and some other basic parameters, the ESKF can be run as in Code listing 4.2.

Code listing 4.2: An example of using the ESKF prediction and update function on
simulated data.

import numpy as np
from parnav.eskf import predict, update

def run_eskf(N, x0, cov0, imu, z_acc, z_gyr, imu_time, imu_dt,
sensor, z_sensor, sensor_time, gravity):

x = np.zeros((16,N))
x[:,0] = x0

P_err = np.zeros((15,15, N))
P_err[:,:,0] = cov0

last_update_indx_sens = 0
for k in range(N-1):

predict with IMU
dt = imu_dt if k == 0 else imu_time[k] - imu_time[k-1]
x[:, k+1], P_err[:,:,k+1] = predict(

x[:,k], P_err[:,:,k], z_acc[:,k], z_gyr[:,k], dt, gravity, imu
)

update with sensor
if last_update_indx_sens < len(sensor_time):

if imu_time[k+1] >= sensor_time[last_update_indx_sens]:
x[:, k+1], P_err[:,:,k+1] = update(

x[:,k+1], P_err[:,:,k+1],
z_sensor[:, last_update_indx_sens], sensor)

last_update_indx_sens += 1

return x, P_err

Chapter 4: Estimator Design 33

4.3 Factor graph filter implementation

4.3.1 GTSAM

There are multiple open source factor graph framework freely available for use, like
Symforce [33], WOLF [34], g2o [43] and GTSAM [32]. These have different advantages
and disadvantages. In the end, GTSAM was chosen for this project because of its large
community and wide use over time which has made it well-tested and robust Futher,
as well as its large collection of factors including the IMU factor discussed in Subsec-
tion 2.6.2. GTSAM is an abbreviation for Georgia Tech Smoothing and Mapping and is a
framework written in C++ that allows for factor graph optimization [44]. It has mainly
been used to solve SLAM and structure from motion (SFM) problems, but it can also
be used in navigation problems by using for instance the GPS-factor. Another great at-
tribute of GTSAM is that the developers have created Python and MATLAB wrappers for
much of the functionally contained within the library. In this work, the Python wrappers
have been used.

Code listing 4.3: The custom factor function in the PARS sensor object.

...
custom factor error function inside PARS sensor class
def J_h_X_man(self, X: gtsam.Pose3):

R_rn = self.P.rotation().matrix().T
R_nb = X.rotation().matrix()
p_rb_r = self.P.transformTo(X.translation())
J = np.zeros((2,6))
J[:,3:] = self.J_alpha_p_rb_r(p_rb_r)@(R_rn@R_nb)
return J

def cf_error_par(self,
z: np.ndarray,
this: gtsam.CustomFactor,
values: gtsam.Values,
jacobs: Optional[List[np.ndarray]]):

X = values.atPose3(this.keys()[0]) #T_nb
p_nb_n = X.translation()
error = np.array([ssa(self.h(p_nb_n)[0] - z[0]),

ssa(self.h(p_nb_n)[1] - z[1])])
if jacobs is not None:

jacobs[0] = self.J_h_X_man(X)
return error

...

...
useage inside factor graph creation
pars_factor = gtsam.CustomFactor(pars_noise_model,

[X(i)],
partial(pars.cf_error_pars, z_pars[:,z_idx]))

factor_graph.push_back(pars_factor)
...

34

4.3.2 PARS factor

To create a custom factor in GTSAM one needs to define an error function and the measure-
ment prediction Jacobian. The error function is usually just z−h(x) if z, but for bearing
measurements it is slightly different, as the difference needs to be wrapped around a
shortest signed distance (SSA) function such that the difference in angles close to ±180◦

is handled properly. Sensor object that have defined a measurement model can then cre-
ate a custom factor error function such as the PARS one displayed in Code listing 4.3.
This was created following the guide and examples in Python folder of [32]. The custom
factor in Code listing 4.3 is only on the SE(3) pose variable and the Jacobian J_h_X_man
is the one defined in (4.6). The measurement model h is a bit different from the one
defined in (4.5) as it takes in the position of the vehicle in NED, and rotates it to the
radio frame using the pose stored internally in the PARS sensor object. In later sections,
the online calibration of the PARS pose is also added by simply extending the jacobian
list with (4.7) as well as adding the PARS pose to the values list.

4.3.3 PARS factor initial testing on SE2

Once the PARS factor was created, some initial testing was done by using a small factor
graph with only three variables x 1, x 2, x 3 ∈ SE(2). Firstly three factors were placed on
the variables. A BetweenFactorPose2 was added on x 1 and x 2 as well as one on x 2 and
x 3 with an odometry vector τ and noise model στ as

τ =
�

4 0 0
�>

στ =

0.2 0 0
0 0.2 0
0 0 0.01

where the first two terms correspond to translation and the last to the rotation. Addi-
tionally, a PriorFactorPose2 was added on x 1 with zero translation and zero rotation.
The noise model on the prior was

σx 1
=

0.5 0 0
0 0.5 0
0 0 0.5

The initial value for the variables was given as ground truth plus a small perturbation.
Then the factor graph was solved using the LevenbergMarquardtOptimizer. See e.g.
[31] for details. The marginals of the translation part of the x 1, x 2, x 3 are shown in
Figure 4.2a. The “banana” shape comes from the fact that the covariance is defined
Gaussian in tangent space; when this is projected onto SE(2), the following shapes of
the covariance are observed.

After testing with only prior and odomtery between factors, a PARS factor was added
on each variable. The three factors were created with the ground truth angles as mea-
surements. The noise model used on each PARS factor was

σz = 0.02

Chapter 4: Estimator Design 35

Then the factor graph was again solved for the marginals using LevenbergMarquardt,
which gave the result in Figure 4.2b. When adding the PARS factors, the covariance is
smaller and is skewed towards the PARS position, which is as expected; as there are no
range measurements, the factor constrains the position along a straight line from the
PARS position to the vehicle.

36

−2 0 2 4 6 8 10

x position [m]

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

y
po

si
ti

on
[m

]

(a)

0 2 4 6 8

x position [m]

−4

−3

−2

−1

0

1

y
po

si
ti

on
[m

]

(b)

Figure 4.2: Factor graph on SE(2). Top figure: Marginal variables after optimization
without PARS factor. Bottom figure: Marginal variables after graph optimization with
added PARS factor on the poses. The blue ’×’ at(4,-4) is the position of the PARS. For
references on how these figures were made see Section 4.4.

Chapter 4: Estimator Design 37

4.3.4 Factor graph

Similar to the ESKF implementation, a factor graph optimization class was implemented
that can operate on IMU measurements as well as sensors with a corresponding er-
ror function and Jacobian. The factor graphs consists of three types of variables: pose
T n

b,i ∈ SE(3), velocity vn
nb,i ∈ R

3 and biases bi ∈ R6. Notice that the bias for the ac-
celerometer and gyroscope is now combined in one vector. The first factors added to the
graph are the prior factors PriorFactorPose3 on T n

b,0, PriorFactorVector on vn
nb,0 and

PriorFactorConstantBias on b0. Other factors that are added to the graph are IMU-
factors, bias factors and measurement factors such as GPS-factors or PARS-factors as
detailed in Subsection 4.3.2. These are added simultaneously on a new measurement’s
arrival.

Preintegrated IMU measurements

To handle the IMU measurements the PreintegratedImuMeasurements (PIM) class in
GTSAM based on the IMU on manifold pre-integration theory mentioned in Subsection 2.6.2
was used. The PIM object is initialized with the continuous-time IMU noise covariance
σ2

f I and σ2
ωI using the functions setGyroscopeCovariance and setAccelerometerCo-

variance. The IMU covariances were based on the Table 3.1, but were subject to some
tuning, which will be detailed later. There is also a parameter to the PIM object called
the integrationCovariance, which is supposed to model approximation errors in the
integration of the IMU measurements. Some experimentation showed that if this was
set lower than 10e-10, ill-posed errors appeared. When a new measurement from the
sensor arrived, the PIM object is used to create an IMUFactor on T n

b,i−1, vn
nb,i−1, bi−1

and T n
b,i , vn

nb,i , which is inserted into the graph along with the corresponding PARS
factor on T n

b,i , and then the integration is reset. Prior to this, the optimizer needs an
initial estimate of each variable added to the graph, and to get this for the pose and
velocity variables the predict function in PIM is used. This predicts those states from
the previous states and the integrated IMU measurements. This is done for each new
IMU measurement, such that the predicted state is available between updates. This is
done inside the predict function of the FGO class, which is essentially just a wrapper
around PIM predict. A final thing to note is that GTSAM comes by default with a new
version preintegration called tangent preintegration. For reasons that are unclear, after
some testing with this, it was found to be unreliable, yielding large errors that were not
present using the strapdown equations. Therefore the tangen preintegration was turned
off, and GTSAM was rebuilt with the original preintegration. This yielded performance
commensurate with the strap-down equations.

Bias factor

The PIM object used here does not handle the biases. There exists a similar class called
the PreintegratedCombinedMeasurements that takes care of the biases. However, there
seems to be an issue in the Python wrappers of this functionality, or some unknown-
to-the-author configuration is needed. In any case, experiments with the Preintegrat-

38

edCombinedMeasurements was not successful, and so the biases were modeled using
the BetweenFactorConstantBias factor on bi instead. For PIM to take the estimated
bias into account the function bias inside the object is set when the integration is set.
The difficult part of getting this right is that in contrast to the PIM object that takes
the continuous time IMU noise sigmas, the bias noise in the between factor needs to
be appropriately scaled when a new factor is inserted. In this implementation, a bias
factor is inserted into the graph only when a new sensor measurement arrives, so the
discrete-time bias noise standard deviation is given as

σb,d =
Æ

Ti jσb (4.9)

where Ti j is the time difference between bias factor i and j. Every time an IMU mea-
surement is added to PIM the time increment is also stored. In this sense, PIM can easily
be used to keep track of the time since the last update and is therefore used to fetch
Ti j on a new insert. The initial biases in the optimization are just set to be equal to the
previous biases. To summarize: prior factors are placed on the first variables. Each time
a new PARS measurement arrives, bias, IMU and PARS factors are added, and the graph
is optimized. The structure of the factor graph is illustrated in Figure 4.3. Example usage
with one sensor is shown in Code listing 4.4.

.
vn

nb,0

T n
b,0

b0

vn
nb,1

T n
b,1

b1

φIMU

φPARS

φBias

vn
nb,i−1

T n
b,i−1

bi−1

vn
nb,i

bi

T n
b,i

φT n
b, 0

φvn
nb,0

φb0

Figure 4.3: Factor graph. Here only the first factors are labeled.

4.3.5 Optimizer

The initial plan was to use the ISAM2 optimizer, however the runtime with this became
infeasible for datasets longer than 10 - 15 minutes. Even with experimentation with pa-
rameters such as relinearizeThreshold and relinearizeSkip, which makes ISAM2
skip relinearization for a given number of updates, the graph became too large for suffi-
cient performance. Instead, the IncrementalFixedLagSmoother from was used. As the
name implies, this is a fixed lag smoother that only considers the variables within the
fixed lag when performing the optimization which leads to constant computational com-
plexity, regardless of the graph size. The variables that fall out of the lag are marginal-

Chapter 4: Estimator Design 39

ized out. In the end, the relinearization threshold was set to 0.001 and relinearize skip
to 1, such that variables are likely relinearized on every update. Additionally, two extra
update calls are performed, to increase the likelihood of convergence. The lag interval
was subject to a lot of experimentation; a discussion regarding this parameter will be of
concern later.

40

Code listing 4.4: Example usage of the factor graph class

from functools import partial
import numpy as np
import gtsam
from gtsam.symbol_shorthand import X
from parnav.fgo import FgoFixedLag, x_to_pvb, pvb_to_x

def run_fgo(N, x0, cov0, imu, z_acc, z_gyr, imu_time, imu_dt,
sensor, z_sensor, sensor_time, sensor_dt):

x = np.zeros((16, N))
x[:10,0] = x0[:10]
pose0, vel0, bias0 = x_to_pvb(x0)

fgo = FgoFixedLag(x0, cov0, imu, sensor_dt, lag=30)
sens_noise = gtsam.noiseModel.Diagonal.Sigmas(sensor.std)

last_nav = gtsam.NavState(pose0, vel0)
last_bias = bias0
last_update_indx_pars = 0
for k in range(N-1):

predict with IMU
dt = imu_dt if k == 0 else imu_time[k] - imu_time[k-1]
pose, vel, bias = fgo.predict(

z_acc[:,k], z_gyr[:,k], dt, last_nav, last_bias)
x[:,k+1] = pvb_to_x(pose, vel, bias)

Update with sensor
factors = []
if last_update_indx_pars < len(sensor_time):

if imu_time[k+1] >= sensor_time[last_update_indx_pars]:
factors.append(gtsam.CustomFactor(sens_noise,

[X(fgo.update_indx+1)],
partial(sensor.cf_error_par, z_sensor[:,last_update_indx_pars])))

z_time = sensor_time[last_update_indx_pars-1]
last_update_indx_pars += 1

if factors:
pose, vel, bias = fgo.update(factors, pose, vel, bias, z_time)
last_nav = gtsam.NavState(pose, vel)
last_bias = bias
x[:,k+1] = pvb_to_x(pose, vel, bias)

return x

4.4 References and other resources used

Other than GTSAM [32], this work uses multiple Python [45] packages, including Numpy
[46] and Scipy [47] for calculations and basic functionality. For coordinate frame trans-
formations like ECEF to NED the package PyMap3d [48] was used. Matplotlib [49] is
used to generate the plots. The SSA function is inspired by the MATLAB implementation
in [50]. Furthermore, the example in Subsection 4.3.3 is inspired by [51]. To create
the visualization in Figure 4.2, plot_utils.py in [51] was used. This also uses the li-
brary Visgeom [52]. To calculate the Jacobians in Section 4.1 material from the course

Chapter 4: Estimator Design 41

TTK21 Introduction to Visual Simultaneous Localization and Mapping - VSLAM was used,
particularly the exercise sheet [53]. It would have been difficult to create the factor
graph implementation without the inspiration and knowledge that was gathered from
the various examples in the Python folder of [32]. The references used to make the
custom factors were mainly the guide CustomFactors.md and the examples in Custom-
FactorExample.py in GTSAM [32]. Finally, the finite differences method was inspired by
the implementation in [54].

Chapter 5

Simulation Results and Discussion

Three simulation experiments were run to verify the filters before testing on data from
flight test. Firstly they were run using GNSS measurements to establish a baseline in
performance. Two PARS simulation experiments are also showed here; firstly a run using
only one PARS ground system positioned at the origin, and then a run with three PARS
ground systems distributed evenly along the flight path. The experiment utilizing just
one PARS was done to see if it is possible to navigate while getting measurements that
constrain the vehicle to a line. The three PARS experiments contain enough information
to constrain the vehicle’s position to a point in space and should be more accurate.
The flight path used in the simulations is taken from a dataset [40] used in TTK4250
Sensor Fusion, and contains strong dynamics that should benefit the estimators. The
subsequent subsections will describe and discuss all three experiments in more detail.
However, some assumptions made in all experiments should be mentioned. They are:

• The PARS poses are assumed to be known with perfect accuracy.
• The measurements contain no outliers.
• The measurements are affected by white noise.

Firstly, the assumption that all the PARS ground poses are assumed to be known with
perfect accuracy is quite strong. In reality, this would be difficult to achieve without some
initial surveying and calibration. It could be possible to survey the position with GNSS
and the orientation calibration using a compass and a level. However, as will be a topic
in later sections, this is hard to get right and calibration is a problem that needs to be
addressed. Secondly, the PARS and GNSS measurements contain to outliers; this might
be realistic for a UAV using GNSS in some cases, but as seen, the PARS measurements
contain a considerable amount of outliers caused by multipath, especially in the eleva-
tion angle. As a result of this assumption, the estimators in these experiments are run
without outlier rejection active. Outlier rejection as well will be a topic later. Lastly, the
assumption that the noise affecting the PARS and GNSS measurements is assumed white
might be remedied by increasing the noise to a point at which it can capture other effects
as discussed in Section 2.4.

The parameters used to simulate the measurements and tune the estimators are
found in Table 5.1. For the estimators, the IMU measurement noise and bias noise stan-

43

44

Table 5.1: Simulator and estimator tuning paramaters

Type Value Unit Type Value Unit

GNSS sim std. 1 [m] GNSS std. 2 [m]
PARS sim elev std. 0.5 [◦] PARS Elev std. 1 [◦]
PARS sim azi std. 0.5 [◦] PARS Azi std. 1 [◦]
IMU sim Table 3.1 Acc. / Acc. b scaling 10 / 50 —
IMU frequency 200 [Hz] Gyr. / Gyr. b scaling 10 / 10 —
GNSS frequency 5 [Hz] pn

nb,0 std. 5 [m]
PARS frequency 5 [Hz] vn

nb,0 std. 2 [ms−1]
pn

nb,0 perturbation ±2 [m] qn
b,0 std. 10 [◦]

qn
b,0 perturbation ±5 [◦] b f ,0 std. 0.1 [ms−2]

Smoother fixed lag 15 [s] bω,0 std. 0.002 [rad s−1]

Table 5.2: Simulation results RMSE relative the ground truth. Comparing errors from
ESKF and FGO on three experiments.

GNSS 1 PARS radio 3 PARS radios

ESFK FGO ESFK FGO ESKF FGO Unit

Position 0.28 0.29 34.2 35.1 3.18 2.89 [m]
Velocity 0.086 0.089 0.73 0.70 0.36 0.21 [ms−1]
Attitude 0.35 0.35 0.81 0.35 0.79 0.33 [◦]
Gyro. Bias 0.012 0.012 0.043 0.015 0.039 0.13 [◦ s−1]
Accel. Bias 0.011 0.011 0.035 0.0087 0.034 0.0086 [ms−2]

dard deviations are the ones used in the simulation but scaled by a factor as shown
in the table. It is important to note that the tuning and initial values are the same for
the two estimators. The IMU tuning was determined by trial and error; a higher scaling
was needed in the accelerometer bias noise to make it track the ground truth bias as it
drifts. The FGO window length was set to 15s. The lag was determined by trial and er-
ror; interestingly, a higher fixed lag resulted in worse performance, and so did a shorter
lag. A final thing to note regarding the parameters of these experiments is that the ini-
tial position and orientation were perturbed from ground truth, to test the estimators’
convergence properties.

The RMSE between all states and ground truth is found in Table 5.2. More in-depth
results from the three simulations now follow consecutively in Sections 5.1 to 5.3. Plots
of all states with ground truth as well as error plots are found in Appendix A.

Chapter 5: Simulation Results and Discussion 45

0 1000 2000 3000 4000

East [m]

−600

−400

−200

0

200

400

600

800

1000

N
or

th
[m

]

Flight Path Simulation.

Start
End

Figure 5.1: Simulation flight path

5.1 GNSS-aided INS

The first experiment carried out was with GNSS, this was done to establish a baseline to
compare the performance of the PARS measurements. The flight path taken is pictured
in Figure 5.1. The flight path contains quite strong accelerations which helps the biases
converge. Error plots for position, attitude, and biases are displayed in Figure 5.2, the
rest can be found in Appendix A. From Figure 5.2 it is clear that the position error
is commensurate with the GNSS noise of 1m standard deviation, with RMSE of about
0.3m it seems like both estimators work as expected. Further, the estimators are able
to quickly recover from the initialization errors in position and attitude. Interestingly,
both estimators exhibit very similar error plots, which is a bit unexpected as the methods
differ in such a large fashion. One might expect that the FGO smoother would indeed
smooth out the errors more than what is the case. For the FGO estimator, different fixed
lag intervals was experimented with, but a higher fixed lag did not decrease the RMSE or
smooth out peak errors; for longer than 15s no additional performance gain was noted.

Another thing to note is that both estimators are able to converge on the correct
yaw, even though no compass is used. Both the ESKF and FGO couple the error dynam-
ics between the position and attitude and the estimation error via the cross covariances.
Hence, this is as expected given the non-stationary flight path of Figure 5.1. See Ap-
pendix A, Figures A.1 to A.2 for details of the UAV motion.

46

−2

0

N
or

th
[m

]

Position

0

2

Ea
st

[m
]

0 200 400 600 800

Time [s]

0

2

D
ow

n
[m

]

Error ESKF
Error FGO

0

5

10

R
ol

l[
°]

Roll, Pitch, Yaw

−5

0

5

Pi
ch

[°
]

0 200 400 600 800

Time [s]

0

5

Ya
w

[°
]

Error ESKF
Error FGO

0.0

0.1

x
[m

s−
2
]

Accelerometer Bias

0.00

0.05

0.10

y
[m

s−
2
]

0 200 400 600 800

Time [s]

−0.1

0.0

z
[m

s−
2
]

Error ESKF
Error FGO

0.00

0.05

0.10

x
[°

s−
1
]

Gyroscope Bias

0.00

0.05

0.10

y
[°

s−
1
]

0 200 400 600 800

Time [s]

0.0

0.1

z
[°

s−
1
]

Error ESKF
Error FGO

Figure 5.2: Simulation results with GNSS sensor. Error from ground truth. Top to bot-
tom: position, attitude, accelerometer bias, gyroscope bias.

Chapter 5: Simulation Results and Discussion 47

5.2 PARS-aided INS using one ground radio

The simulation was repeated but now instead of GNSS the PARS system was simulated.
In this experiment, only one ground radio was used, and it was centered at the origin as
shown in Figure 5.3. The noise added to the simulated elevation and azimuth measure-
ments had a standard deviation of 0.5◦. In Figure 5.5 the position, attitude, and biases
converge appropriately as the vehicle is close to the radio. However, as the vehicle moves
further away from the PARS, the position error starts to increase rapidly. When the ve-
hicle is at a distance of about 3000m east of the radio the east position error reaches
a maximum of over 200m for both the ESKF and FGO filters. This is expected as the
measured angle differences become very small at such distances and even though the
added noise of just 0.5◦, it is enough to disrupt the position estimates. At 3000m a small
change in position will result in a very small change in elevation and azimuth. How-
ever, the fact that the estimators are able to perform at all with just one PARS ground
radio is unexpected; with one PARS the position of the vehicle is constrained to just a
line extending from the PARS though the vehicle. One would need at least two PARS to
constrain the position to a point. This becomes evident at 300s marked by an orange
“×” in Figure 5.3, where the UAV is moving along the line extending through the PARS,
which leads to a spike in the North position error as seen in Figure 5.5. Despite this,
the performance of one ground PARS is considerably worse than for GNSS and with
three ground PARS as seen in Table 5.2. The fact that it works at all is probably due to
the high degree of dynamic excitation present in this motion profile which causes the
biases to converge early such that the IMU integration is accurate. Had there been more
stationary dynamics, the errors would probably be higher.

The ESKF have a slightly lower RMSE of 34.2m compared to FGO with 35.1m this is
probably because of the erratic behavior experienced at the end when the vehicle is too
far away from the PARS for accurate estimation, driving the RMSE up high. Calculating
the position RMSE of the first 500s the ESKF RMSE is 6.52m and the FGO is 5.44m.

Another interesting thing to note is that the convergence of the states for the ESKF
exhibits a longer transient time than for the FGO as seen in Figure 5.5. This seems to
be because of the initial perturbation from ground truth in position. In Figure 5.4, the
same run is performed only, but the initial position is set to ground truth. As seen, the
biases for the two estimators have the same transient behavior in this case. The other
states in Figure 5.5 also move more robustly towards their steady state, indicating that
FGO is more robust to poor initial conditions.

48

0 1000 2000 3000 4000

East [m]

−600

−400

−200

0

200

400

600

800

1000

N
or

th
[m

]

Flight Path Simulation. One PARS

Start
End
PARS
300 s

Figure 5.3: Simulation flight path with the PARS at the origin. At 300s, the UAV is
moving straight toward the PARS, resulting in an error spike.

0.00

0.05

x
[m

s−
2
]

Accelerometer Bias

0.00

0.05

y
[m

s−
2
]

0 200 400 600 800

Time [s]

−0.05

0.00

z
[m

s−
2
]

Error ESKF
Error FGO

0.00

0.05

x
[°

s−
1
]

Gyroscope Bias

0.00

0.05

y
[°

s−
1
]

0 200 400 600 800

Time [s]

0.00

0.05

z
[°

s−
1
]

Error ESKF
Error FGO

Figure 5.4: Simulation results one PARS. Bias errors with initial position set to ground
truth. In this case the two estimators produce the same transient behavior, which is not
the case when the initial position is perturbed.

Chapter 5: Simulation Results and Discussion 49

−25

0

25

N
or

th
[m

]

Position

0

200

Ea
st

[m
]

0 200 400 600 800

Time [s]

0

10

D
ow

n
[m

]

Error ESKF
Error FGO

0

10

R
ol

l[
°]

Roll, Pitch, Yaw

−5

0

Pi
ch

[°
]

0 200 400 600 800

Time [s]

−10

0

Ya
w

[°
]

Error ESKF
Error FGO

−0.2

0.0

x
[m

s−
2
]

Accelerometer Bias

0.00

0.05

y
[m

s−
2
]

0 200 400 600 800

Time [s]

−0.1

0.0

z
[m

s−
2
]

Error ESKF
Error FGO

0.0

0.1

0.2

x
[°

s−
1
]

Gyroscope Bias

0.0

0.1

y
[°

s−
1
]

0 200 400 600 800

Time [s]

−0.05

0.00

0.05

z
[°

s−
1
]

Error ESKF
Error FGO

Figure 5.5: Simulation results with one PARS ground radio sensor. Error from ground
truth. Top to bottom: position, attitude, accelerometer bias, gyroscope bias.

50

5.3 PARS-aided INS using three ground radios

The estimators were also tested with three PARS ground radios deployed around the
flight path. This setup is depicted in Figure 5.6. The radios are placed at

pn
nr1
=
�

0 0 0
�>

pn
nr2
=
�

−500 1500 0
�>

pn
nr3
=
�

0 4500 50
�>

and the orientation is perfectly aligned with NED. The filters seem to handle multiple
measurements quite well, achieving better performance than with a single radio as ex-
pected. That is, an RMSE of 3.18m for the ESFK and 2.89m for the FGO was achieved.
From Figure 5.7 the position error for both estimators reaches a maximum at about 20m
in the east direction when the vehicle is the furthest away from one of the radios. It is
worth mentioning that the noise added to the PARS measurements has a standard devi-
ation of 0.5◦ which translates to large differences in position when the UAV is far from
the PARS ground station. The attitude error is also substantially smaller for the FGO
estimator than for the ESKF with errors of 0.33◦ and 0.79◦ respectively. The probable
cause of this error difference is because the ESKF biases take longer to converge; namely
about 150s while the FGO biases converge much faster. This again results in inaccurate
integration of the IMU measurements hence the discrepancy is observed. As was the case
with one PARS ground radio, FGO seems to be more robust to the initialization errors
that were added.

0 1000 2000 3000 4000

East [m]

−600

−400

−200

0

200

400

600

800

1000

N
or

th
[m

]

Flight Path Simulation. Three PARS

Start
End
PARS

Figure 5.6: Simulation flight path with the three PARS ground radios. Flight path
marked in blue. The start and end points are marked with an array and box, respec-
tivly. The PARS ground systems are marked with ×-es.

Chapter 5: Simulation Results and Discussion 51

−10

0

N
or

th
[m

]

Position

−20

0

20

Ea
st

[m
]

0 200 400 600 800

Time [s]

0

5

D
ow

n
[m

]

Error ESKF
Error FGO

0

10

R
ol

l[
°]

Roll, Pitch, Yaw

−5

0

Pi
ch

[°
]

0 200 400 600 800

Time [s]

−10

0

Ya
w

[°
]

Error ESKF
Error FGO

−0.2

0.0

x
[m

s−
2
]

Accelerometer Bias

0.00

0.05

y
[m

s−
2
]

0 200 400 600 800

Time [s]

−0.10

−0.05

0.00

z
[m

s−
2
]

Error ESKF
Error FGO

0.0

0.1

0.2

x
[°

s−
1
]

Gyroscope Bias

0.0

0.1

y
[°

s−
1
]

0 200 400 600 800

Time [s]

−0.05

0.00

0.05

z
[°

s−
1
]

Error ESKF
Error FGO

Figure 5.7: Simulation results with three PARS ground radios sensor. Error from ground
truth. Top to bottom: position, attitude, accelerometer bias, gyroscope bias.

Chapter 6

Experimental Setup and Calibration

After initial development and experimentation in simulation, the filters were tested on
experimental data to assure that the implementation would work in a real-world sce-
nario. The data set used [55] was collected by researchers at NTNU UAV Lab in the
fall of 2020 and has been used in [14, 16]. The data set has not been published but
was made available for this project by the UAV Lab. 1 Three UAV flights were launched
from Raustein and carried out over Trondheimsfjorden. Data from IMU, an AHRS, RTK-
assisted GNSS as well as two PARS ground systems deployed at different locations were
gathered. In this work the data from flight three is used. Moreover, some explanation
about the hardware and software systems involved follows.

6.1 Hardware

The hardware used in the test flight is listed in Table 6.1. The UAV used is a Skywalker
X8 fixed wing with a payload depicted in Figure 6.1. The payload consists of a Pixhawk,
which runs the ArduPlane autopilot software. The Pixhawk has an internal IMU and a
compass that is used by the autopilot software to form an attitude and heading reference
system (AHRS) that was used to benchmark the attitude calculated by the estimators.
A Sensonor STIM300 IMU is also part of the payload, which provides the IMU mea-
surements that were used to test the algorithms. Some post-processing was done on
these IMU measurements to downsample them to 200Hz. Additionally, the UAV carries
a Ublox F9P-ZED receiver, capable of handling RTK GNSS measurements, and a CRE2-
144-LW PARS by Radionor, used for communications. Two CRE2-189 PARS by Radionor
were deployed on the ground and are pictured in Figure 6.2. In Figure 6.3, PARS 1 is
depicted along with the ground computer, the UAV, and the launcher used to propel the
aircraft initially. The detail of this hardware and software stack is taken from [16] and
[14], which the reader is encouraged to read if further details are warranted.

1It is important to stress that the work done to gather this data set was not carried out as part of this
project. The UAV Lab provided the dataset, for which this author is grateful.

53

54

Table 6.1: Hardware used in test flight.

Type Name

UAV Skywalker X8 fixed wing
Autopilot Holybro Pixhawk 4
IMU Sensonor STIM 300
GNSS Receiver Ublox F9P-ZED
On-board PARS CRE2-144-LW
Ground station PARS Radionor CRE2-189

Figure 6.1: Payload. The STIM300 IMU is mounted as shown in relation to the body
frame. Photo source: NTNU UAV Lab [55].

Chapter 6: Experimental Setup and Calibration 55

Figure 6.2: PARS 1 and 2 as well as RTK base stations mounted on top. Photo source:
NTNU UAV Lab [55].

Figure 6.3: PARS, UAV and launcher. Photo source: NTNU UAV Lab [55]

56

6.2 Flight

Of the three flights carried out during the field experiment, flight three was selected to
test the navigation algorithms. PARS 1 is the radio closest to the takeoff and landing
spot and PARS 2 is the radio a couple of kilometers down the road as seen in Figure 6.4.

Figure 6.4: Flight path from Raustein, Agdenes over Trondheimsfjorden. The blue “×-es”
correspond to the PARS locations. PARS 1 is located where the UAV starts and stops. PARS
2 is at the lower left side. Map data from OpenStreetMap. ©OpenStreetMap contributors
[ODbL]

6.3 Coordinate frames

The local NED navigation frame {n} is defined at the center of the GNSS measured
position of PARS 1 which is at {63.61552◦, 9.59161◦, 44.6m}. The PARS frames, where
the elevation and azimuth measurements are defined, are denoted {r1} and {r2}. The
position of PARS 2 in {n} is approximately

pn
nr2
=
�

−1525.4 −2082.9 −37.9
�>

m

Further, it is necessary to obtain the rotations Rn
r1

and Rn
r2

that aligns the measurements
in unit vector form to NED.

Chapter 6: Experimental Setup and Calibration 57

6.4 Offline calibration of PARS pose

Little post-processing was done to the data set, including no filtering or any form of
outlier removal, as its necessary to gauge how the algorithms can handle these. However,
even though there were made some measurements of the radio poses during the test with
a compass and GNSS, these were not of sufficient accuracy to achieve accurate estimates
using the two PARS systems deployed in the flight, see Figure 6.5. Therefore, the radio
poses needed to be calibrated, and the measurements transformed before running the
estimation algorithms. The problem of estimating PARS angles on this data set online
using a multiplicative extended Kalman filter was tackled in [16]. However, the angles
for flight three were not published, and the radios might have been moved between
flights. Here an offline approach is taken before the filters are run, which also finds the
translation in the case that the radios were moved.

Even though this work only uses bearing measurements, the PARS system used dur-
ing the test flight actually also produces range measurements. These are of course not
used in the estimation algorithms in this work. However, they were used to calibrate
the PARS poses before testing the algorithms. To do this offline calibration, the point
cloud alignment technique based on the Singular Value Decomposition (SVD) described
in [56] was used. Two sets of points of GNSS measurements transformed to NED and
PARS measurements in {r1} frame were interpolated and sampled at the same time in-
stance. These are denoted pn

nb,i and p r1
r1 b for point i ∈ {1,2, . . . , N}. The rotation Rn

r1

and position of the radio pn
nr1

that minimizes the distances between these correspond-
ing point pairs was then found. As described in [56], this was done by first moving all
points to the center by subtracting the mean of each set

′pn
nb,i = pn

nb,i − p̄n
nb

′p r1
r1 b,i = p r1

r1 b,i − p̄ r1
r1 b

(6.1)

with

p̄n
nb =

1
N

N
∑

i=1

pn
nb,i

p̄ r1
r1 b =

1
N

N
∑

i=1

p r1
r1 b,i

(6.2)

Then the so-called “cross covariance matrix” was computed as

W =
N
∑

i=1

′pn
nb,i

�

′p r1
r1 b,i

�>
(6.3)

Finally by taking the SVD of W , that is U , D, V> = svd (W) the rotation and translation
was recovered as

Rn
r1
= UV>

pn
nr1
= p̄n

nb −Rn
r1

p̄ r1
r1 b

(6.4)

which gives the rigid transformation sought after.

58

Table 6.2: The calibration parameters found using compass and ground GNSS, and using
point cloud alignment.

Compass calibration Offline calibration
PARS 1 PARS 2 PARS 1 PARS 2

North [m] 0.0 -1525.4 5.1 -1526.7
East [m] 0.0 -2082.9 0.3 -2086.3
Down [m] 0.0 -37.9 -0.9 -13.9
Roll [◦] 0.0 0.0 1.9 2.6
Pitch [◦] 0.0 0.0 2.1 0.3
Yaw [◦] -65.5 26.7 -75.0 16.4

Table 6.3: RMSE between GNSS and PARS data with manual compass calibration and
offline calibration.

Compass calibration Offline calibration
PARS 1 PARS 2 PARS 1 PARS 2

North [m] 245 199 66.0 13.0
East [m] 111 353 17.7 26.0
Down [m] 84.3 67.8 62.2 42.1

This was also done for the second PARS to recover a better estimate of the pose. The
resulting pose parameters are found in Table 6.2, which also displays the parameters
found using only a compass and GNSS. The result of applying the rigid transformation
from compass measurements to the PARS points are found in Figure 6.5. Likewise, the
result of applying the rigid transformation from point alignment is found in Figure 6.6.
The RMSE between the range added PARS measurements and GNSS is shown in Ta-
ble 6.3. Note that the presence of outliers drives the RMSE up quite high, but still, the
RMSE is up to an order of magnitude lower for the aligned parameters. A thing to note
is the difference in position for the aligned parameters; there are some differences here
and between the GNSS-measured position of the radios which are probably more cor-
rect. However, a test was run using the angle parameters from the alignment as well
as the measured position using GNSS and this resulted in poorer performance. The dis-
crepancy could be explained by that the ground radios were moved slightly before flight
three or that the alignment procedure is distorted by outliers.

Chapter 6: Experimental Setup and Calibration 59

0

2000

N
or

th
[m

]

−2000

0

Ea
st

[m
]

500 1000 1500 2000 2500 3000

−2000

0

2000

D
ow

n
[m

]

GNSS
PARS 1
PARS 2

Figure 6.5: Compass calibration. PARS measurements multiplied by range along with
GNSS data. Here the measurements are transformed to NED using manual compass
measurements of −65.5◦ for PARS 1, and 26.7◦ for PARS 2.

0

2000

N
or

th
[m

]

−2000

0

Ea
st

[m
]

500 1000 1500 2000 2500 3000

−2000

0

2000

D
ow

n
[m

]

GNSS
PARS 1
PARS 2

Figure 6.6: Offline calibration. PARS measurements multiplied by range along with
GNSS data. Here the measurements are transformed to NED using a point cloud align-
ment technique.

60

6.5 Outlier rejection

As is clear from Figure 6.6, the PARS measurements contain a substantial amount of
outliers. This is primarily dominant in the elevation measurements which are consid-
erably affected by multipath. To mitigate this, it was deemed necessary to implement
outlier rejection in both the error state Kalman filter and the factor graph smoother. The
approaches used are completely different; in the ESKF the innovation covariance is uti-
lized, while in the FGO smoother a robust error model was used. For ESKF an elevation
and azimuth measurement pair is accepted if

(z − h(x))
�

HP−H> +Rz

�−1
(z − h(x))> < γ2(r) (6.5)

as given in in e.g. [57, Ch. 7.6], where γ2(r) denotes the χ2 percent point function which
is the inverse of the cdf with two degrees of freedom in this case. The parameter to this
function is such that 0≤ r ≤ 1. If a measurement is rejected the update step is cancelled.
A potential problem with this approach is that both measurements are rejected when it
might be the case that only one measurement is an outlier and need to be discarded.

For the FGO smoother, measurements are not rejected, but down-weighted inside
the optimization, using the Huber robust error model. The idea being that instead of
just squaring the error as in (2.72) one can use different function ρ of the error e that
reduces the effects of outliers [58, 59]. For the Huber estimator, the ρ function is

ρ(e) =

� 1
2 e2 if |e|< k
k(|e| − 1

2 k) else
(6.6)

which it can be shown that leads to a weight function w(e)

w(e) =

�

1 if |e|< k
k
|e| else

(6.7)

that can be multiplied with the error in (2.72). In GTSAM this is implemented in the mEs-
timator noise model class [32], and utilizing it is as simple as replacing the noise model
used this far with this robust version. Then the measurement errors are automatically
reweighed and no other code needs to be written to do outlier rejection. The choice of
the parameters r and k was done by simple trial and error; the tuning used is found in
Table 7.1.

6.6 Online calibration of PARS pose

For accurate navigation using PARS it is crucial the poses of the radios are known ac-
curately. Although the PARS pose calibration point cloud alignment technique used in
Section 6.4 seem to work, it has the major limitation that it cannot be used online when
the UAV is flying, as well as the fact that the range measurements were used which is
not supposed to be within the scope of this project. To remedy this, an online calibration
algorithm was developed for the factor graph optimization smoother. The PARS factor

Chapter 6: Experimental Setup and Calibration 61

was modified to take in a PARS ground pose variable T n
r as well as the vehicle pose T n

b.
The Jacobian in (4.7) is also needed. The modified PARS factor is displayed in Code
listing 6.1

Code listing 6.1: PARS factor that also includes the PARS pose.

...
custom factor error function inside PARS sensor class
def J_h_P_man(self, X, P):

p_nb_n = X.translation()
p_rb_r = P.transformTo(p_nb_n)
J = self.J_alpha_p_rb_r(p_rb_r)@np.block([skew(p_rb_r), -np.eye(3)])
return J

def J_h_X_man(self, X: gtsam.Pose3):
R_rn = self.P.rotation().matrix().T
R_nb = X.rotation().matrix()
p_rb_r = self.P.transformTo(X.translation())
J = np.zeros((2,6))
J[:,3:] = self.J_alpha_p_rb_r(p_rb_r)@(R_rn@R_nb)
return J

def cf_error_pars_calib(self,
z: np.ndarray,
this: gtsam.CustomFactor,
values: gtsam.Values,
jacobs: Optional[List[np.ndarray]]):

X = values.atPose3(this.keys()[0]) #T_nb
P = values.atPose3(this.keys()[1]) #T_nr
p_nb_n = X.translation()
error = np.array([ssa(self.h(p_nb_n)[0] - z[0]),

ssa(self.h(p_nb_n)[1] - z[1])])
if jacobs is not None:

jacobs[0] = self.J_h_X_man(X)
jacobs[1] = self.J_h_P_man(X, P)

return error
...

In contrast to the vehicle pose variables that are created on each new measurement,
there is only one variable for each PARS pose as illustrated in Figure 6.7. There might be
one or more measurement factors on each T n

b variable. In addition, for this setup GNSS
factors are also placed on the pose variables. Because of this, the online calibration has
its own result section and was not used to generate the results in Section 7.2. The PARS
pose priors were set as the manual calibration values in Table 6.2.

62

φPARS

φT n
r1, 0

.

φT n
b, 0

vn
nb,0

T n
b,0

b0

vn
nb,1

T n
b,1

b1

φvn
nb,0

φb0

φIMU

φGNSS

φBias

vn
nb,i−1

T n
b,i−1

bi−1

vn
nb,i

bi

T n
b,i

T n
r1

T n
r2

φT n
r2, 0

Figure 6.7: Factor graph used for online calibration

Chapter 7

Experimental Results and
Discussion

Two sets of experiments were performed on the Raustein data set: firstly a GNSS-only
run to establish a baseline in expected performance and then a run using the two PARS.
The flight path as well as the PARS positions are displayed in Figure 6.4. The hardware
used and the experimental setup is described in Chapter 6. As mentioned there, the
PARS poses need accurate calibration. In the two experiments the offline calibration
from Section 6.4 is used. The last section in this chapter will detail the online calibration
results from applying the factor graph in Section 6.6

A summary of the results are found in Table 7.2 which displays the RMSE between
RTK GNSS and position estimates, as well as between the onboard AHRS and the attitude
estimates for both runs with the ESKF and FGO filters. It is important to note that there
are errors in both the GNSS measurements and the AHRS system, so this can not be
considered ground truth. Further, the RTK GNSS measurements are used on the GNSS
run as well as to calculate the RMSE on position which is problematic for a performance
baseline. However, due to the lack of any better reference signals, there is no other way
to compare performance. Nevertheless, the information available is sufficient to show
that the fusion of PARS with IMU works.

The tuning parameters used in both experiments are displayed in Table 7.1. The
PARS pose calibration used was the one from the offline method shown in Table 6.2.
The starting point for tuning the elevation and azimuth measurements was done as a
result of the outcome in Table 6.3 where PARS 2 has a higher RMSE on the measurements
compared to PARS 2, so the standard deviation was set higher for this radio.

63

64

Table 7.1: Tuning parameters used for the estimators. Acc. / Acc. b scaling refers to how
the noise is scaled in relation to the values in Table 3.1.

Type Value Unit Type Value Unit

GNSS std. 2 [m] pn
nb,0 11.0, 8.0, 0.9 [m]

PARS 1 Elev std. 15 [◦] vn
nb,0 0 [ms−1]

PARS 1 Azi std. 10 [◦] qn
b,0 -1.5, 11.7, -54,6 [◦]

PARS 2 Elev std. 10 [◦] b f ,0 0 [ms−2]
PARS 2 Azi std. 5 [◦] bω,0 0 [rad s−1]
Acc. / Acc. b scaling 22 / 1 — pn

nb,0 std. 5 [m]
Gyr. / Gyr. b scaling 22 / 1 — vn

nb,0 std. 2 [ms−1]
Smoother fixed lag 1, 30 [s] qn

b,0 std. 10 [◦]
ESKF χ2 ppf, r 0.95 — b f ,0 std. 0.0686 [ms−2]
Huber cost param. k 0.15 — bω,0 std. 0.0017 [rad s−1]

Table 7.2: RMSE experimental results comparison between position and attitude esti-
mates with RTK GNSS and AHRS. The FGO estimator is run with a fixed lag of 1s, and
30s.

GNSS PARS

Type Unit ESKF FGO 1[s] FGO 30[s] ESKF FGO 1[s] FGO 30[s]
North [m] 0.056 0.056 0.056 9.9 10.1 10.2
East [m] 0.055 0.054 0.054 14.1 14.2 14.0
Down [m] 0.033 0.033 0.033 13.0 11.2 11.1
Roll [◦] 2.4 2.4 2.4 2.3 2.3 2.3
Pitch [◦] 2.9 2.9 2.9 2.9 2.9 2.9
Yaw [◦] 18.1 18.1 18.1 18.1 18.2 18.2

7.1 GNSS-aided INS

A RTK GNSS only run was carried out to establish a baseline in expected performance
before using PARS measurements. Error plots are found in Figure 7.1 and position, at-
titude, and biases are shown in Figure 7.2. The position estimate errors are in the cen-
timeter range and the roll and pitch closely agree with the AHRS having errors of about
2− 3◦. Yaw has a higher error, but this is expected due to the lack of a compass, so the
heading has to be estimated through the coupling of the dynamics. This is also true for
the UAV autopilot’s AHRS since the magnetometer can be disabled to avoid magnetic-
field disturbances of the yaw estimate. The fact that the heading angle is difficult for
the AHRS on the autopilot to estimate, makes it hard to conclude with certainty that
the heading estimate is accurate. Further, there is uncertainty connected to the relative
mounting of the STIM300 and the autopilot. However, the fact that the ESKF and FGO
yield similar results makes it likely that the heading is as accurate as possible without

Chapter 7: Experimental Results and Discussion 65

compensating for more errors like the IMU mounting angle.

0 500 1000 1500 2000 2500

−10

0

10

R
ol

l[
°]

AHRS and attitude-estimate residual

0 500 1000 1500 2000 2500

0

10

Pi
ch

[°
]

0 500 1000 1500 2000 2500

Time [s]

−100

0

100

Ya
w

[°
]

ESKF with GNSS
FGO with GNSS

0 500 1000 1500 2000 2500

0.0

0.5

N
or

th
[m

]

RTK GNSS and position-estimate residual

0 500 1000 1500 2000 2500

0

1

Ea
st

[m
]

0 500 1000 1500 2000 2500

Time [s]

−0.5

0.0

D
ow

n
[m

]

ESKF with GNSS
FGO with GNSS

Figure 7.1: Experimental results with GNSS sensor. Error from onboard AHRS and
GNSS. Comparing the position estimates from the filters that are run with GNSS mea-
surements with the corresponding GNSS measurements is not very insightful. However,
it shows that the filters work.

66

0

1000
N

or
th

[m
]

Position

−2000

0

Ea
st

[m
]

0 500 1000 1500 2000 2500

Time [s]

−100

0

D
ow

n
[m

]

ESKF with GNSS
FGO with GNSS

−50

0

50

R
ol

l[
°]

Roll, Pitch, Yaw

0

20

Pi
ch

[°
]

0 500 1000 1500 2000 2500

Time [s]

−100

0

100

Ya
w

[°
]

ESKF with GNSS
FGO with GNSS

−0.02

0.00

x
[m

s−
2
]

Accelerometer Bias

0.00

0.02

0.04

y
[m

s−
2
]

0 500 1000 1500 2000 2500

Time [s]

−0.02

0.00

z
[m

s−
2
]

ESKF with GNSS
FGO with GNSS

0.00

0.02

x
[°

s−
1
]

Gyroscope Bias

−0.02

0.00

y
[°

s−
1
]

0 500 1000 1500 2000 2500

Time [s]

0.00

0.01

z
[°

s−
1
]

ESKF with GNSS
FGO with GNSS

Figure 7.2: Experimental results with GNSS. Top to bottom: position, attitude, ac-
celerometer bias, gyroscope bias.

Chapter 7: Experimental Results and Discussion 67

7.2 PARS-aided INS using two ground radios

This run uses both PARS located as displayed in Figure 6.4. As the UAV comes back to
land the radios drop out, and therefore the last minute and a half is cut off from the plots
and not used in the RMSE calculations. Figure 7.3 shows the error between the position
and attitude estimates and GNSS and AHRS. Note that the position errors at times get
quite high – up to 50m for ESKF – probably due to the high number of outliers caused
by multipath. As Table 7.2 shows, most states do not have considerable performance
differences between the ESKF and FGO estimators. However, the FGO smoother gives a
lower RMSE in the down position direction. As seen in Figure 7.3 there is a considerable
peak in the ESKF down-position estimate that is not seen in the FGO errors.

As mentioned earlier, the elevation angle measurements are those that are the most
affected by multipath, and therefore the down component might be seen as the hard-
est to estimate. The fact that the factor graph approach gives a lower RMSE in down,
could be an effect caused by the FGO smoothing or from the different outlier rejection
schemes, or a combination. Seeing as increasing the window length from 1s to 30s does
not give a performance increase alludes to the possibility that the outlier rejection is
more prominent. However, as we shall see in Section 7.2, removing the outlier scheme
on both estimators makes the FGO perform better in all position components. In any
case, for this experiment, the factor graph approach seems to be more robust towards
outliers.

The attitude errors are approximately equal to those using GNSS. Even the heading
angle is commensurate to the run using GNSS only, which is promising. The biases still
converge to approximately the same values as in the GNSS run except for the accelerom-
eter x-axis which converges to a value slightly higher than with GNSS. This could be
explained by the fact that the same initial covariance is used on GNSS and FGO runs;
it is clear that with PARS, the biases need more time to settle, so increasing the initial
covariance may lead to the same bias for the accelerometer x-axis with ESKF.

68

0 500 1000 1500 2000

−10

0

10

R
ol

l[
°]

AHRS and attitude-estimate residual

0 500 1000 1500 2000

0

10

Pi
ch

[°
]

0 500 1000 1500 2000

Time [s]

−100

0

100

Ya
w

[°
]

ESKF with PARS
FGO with PARS

0 500 1000 1500 2000

−25

0

N
or

th
[m

]

RTK GNSS and position-estimate residual

0 500 1000 1500 2000

−25

0

25

Ea
st

[m
]

0 500 1000 1500 2000

Time [s]

0

50

D
ow

n
[m

] ESKF with PARS
FGO with PARS

Figure 7.3: Experimental results with PARS. Error from onboard AHRS and RTK GNSS.

Chapter 7: Experimental Results and Discussion 69

0

1000
N

or
th

[m
]

Position

−2000

−1000

0

Ea
st

[m
]

0 500 1000 1500 2000

Time [s]

−100

0

D
ow

n
[m

]

ESKF with PARS
FGO with PARS

−50

0

50

R
ol

l[
°]

Roll, Pitch, Yaw

0

20

Pi
ch

[°
]

0 500 1000 1500 2000

Time [s]

−100

0

100

Ya
w

[°
]

ESKF with PARS
FGO with PARS

0.00

0.05

x
[m

s−
2
]

Accelerometer Bias

0.000

0.025

0.050

y
[m

s−
2
]

0 500 1000 1500 2000

Time [s]

−0.025

0.000

0.025

z
[m

s−
2
]

ESKF with PARS
FGO with PARS

−0.05

0.00

x
[°

s−
1
]

Gyroscope Bias

−0.05

0.00

y
[°

s−
1
]

0 500 1000 1500 2000

Time [s]

−0.02

0.00

0.02

z
[°

s−
1
]

ESKF with PARS
FGO with PARS

Figure 7.4: Experimental results with PARS. Top to bottom: position, attitude, ac-
celerometer bias, gyroscope bias.

70

The effect of translation calibration

The PARS pose calibration used was the one from the offline method, as in Table 6.2. One
issue with these parameters is that there was as mentioned some discrepancy between
the position of the PARS measured position with RTK GNSS and the one found using
the offline calibration technique. As the RTK GNSS measurements of the PARS position
is assumed to be very accurate, an experiment similar to the one described in this sec-
tion was performed, with the only difference being that the RTK GNSS measurements
of the PARS positions were used instead of the position achieved through alignment
calibration. The orientation was kept the same as in the alignment calibration. The re-
sult of this is showed in table Table 7.3, as seen using the accurate RTK GNSS positions
gives a higher RMSE in position. As discussed earlier, this might be because the PARS
were moved and the positions that accompany the dataset is not accurate, or that the
alignment adjusts for some other effect.

Table 7.3: Result with PARS RTK GNSS position calibration and alignment rotation.
Both estimators give a higher RMSE in position when using the GNSS calibrated PARS
positions. Here a fixed lag of 1s on the FGO smoother was used as above.

Type Unit ESKF FGO Type Unit ESKF FGO

North [m] 12.6 12.6 Roll [◦] 2.3 2.3
East [m] 16.0 16.6 Pitch [◦] 2.9 2.9
Down [m] 16.6 15.7 Yaw [◦] 18.1 18.3

The effect of outlier rejection

To test whether the outlier rejection schemes were effective, a similar run was performed
on the PARS measurements except for this time outlier rejection was turned off for both
estimators. Here the FGO was run with a lag of 1s. The position error is plotted in
Figure 7.5 where it is clear that both estimators are very sucpectible to the outliers, see
for instance, the peak in down-position at approximately 450s. The RMSE displayed in
Table 7.4 is considerably higher in all position estimates. Interestingly, the FGO gives a
lower RMSE in position, from Figure 7.5 this seems to be predominantly from the ESKF
struggling during the takeoff phase.

Table 7.4: RMSE of position and attitude for without outlier rejection on PARS measure-
ments.

Type Unit ESKF FGO Type Unit ESKF FGO

North [m] 14.3 12.5 Roll [◦] 2.4 2.4
East [m] 17.9 15.3 Pitch [◦] 2.9 2.9
Down [m] 15.0 13.5 Yaw [◦] 17.8 18.4

Chapter 7: Experimental Results and Discussion 71

0 500 1000 1500 2000

−50

0

N
or

th
[m

]
RTK GNSS and position-estimate residual

0 500 1000 1500 2000
−100

0

Ea
st

[m
]

0 500 1000 1500 2000

Time [s]

−50

0

50

D
ow

n
[m

] ESKF with PARS
FGO with PARS

Figure 7.5: Experimental results with PARS with no outlier rejection on. Error from
onboard AHRS and RTK GNSS. Turning off the outlier rejection makes the two estimators
exhibit very similar behavior. Here a 1s lag is used on the FGO. The RMSE is found in
Table 7.4

7.3 Runtime

With regards to runtime, an accurate comparison is difficult as the FGO estimator is run
using the C++ GTSAM wrappers while the ESKF is implemented in pure Python. While
GTSAM is built for high performance, the ESKF implementation has not been created
with this in mind and runs significantly slower. Regardless, the runtime of each of the
estimators was recorded and is displayed in Table 7.5. The part of the dataset that was
used has a length of 40min 36s, and the ratio between the runtime and the dataset
length is also displayed. An interesting thing to note is how nonlinearly the runtime of
the incrementally fixed lag smoother scales with the fixed lag interval when using the
PARS factor.

Table 7.5: Runtime on field data. The length of the dataset is 40min 36s. The relative
row refers to the ratio of runtime to actual time.

GNSS PARS

ESKF FGO 1[s] FGO 30[s] ESKF FGO 1[s] FGO 30[s]
runtime 17 min 34s 3 min 31s 3 min 40s 18 min 03s 5 min 11s 4 h 09min
relative 40.1% 8.6% 9.0% 44.5% 12.8% 613%

72

7.4 Online calibration

To test the factor graph online calibration algorithm outlined in Section 6.6 the same
PARS experiment as above was run with some changes. Firstly the new PARS factor
was of course used, with two new variables, namely the pose of PARS 1 and PARS 2.
In addition, GNSS factors were placed on the variables when they were available. The
changes in tuning made from the last section is found in Table 7.6. The PARS poses were
initialized with the GNSS and compass measurements found in Table 7.7

The resulting PARS pose estimation up to approximately 85s is found in Figure 7.6,
and the full length is displayed in Figure C.2 in the appendix. The full length is slightly
before the UAV returns to start because the PARS lose coverage. For both radios the
estimated poses converge rapidly. However, as seen PARS 1 takes a bit longer to converge
than PARS 2. When PARS 2 gets its first measurements, yaw converges almost instantly.
The fact that PARS 1 converges slower, could be because there are more outliers in the
measurements from this radio which are down weighed resulting in slower convergence.
The difference in the number of outliers is clearly seen in Figure 7.7, which will be
introduced later.

The PARS mounting translation and orientation after the full run is displayed in
Table 7.8, which also shows the result from offline calibration and the angles achieved
in [16] on flight 2. Although the orientations found match quite well, there is some
discrepancy, especially in the translation.

Like the offline method, the online calibration method also seems to give a position
shift. In Figure 7.6, this is clear for PARS 1, and in the full run in Figure C.2, the mounting
position for PARS2 also changes by a few meters. This may be the effect of outliers or
that the initialization is inaccurate. The fact that the position movement differs so much
between the offline and online calibration does not corroborate the theory that the radio
was moved and the GNSS-measured position is inaccurate. It seems more likely that
GNSS measured position is correct. In any case, one could add a stronger prior on the
PARS position if one is absolutely certain that the GNSS-measured position is accurate.
To simply not optimize the translation at all seems like a better approach as it is relatively
easy to measure the position of the radio accurately.

Table 7.6: The tuning variables that have been changes since Section 7.2, the rest is
the same as in table Table 7.1.The poses were initialized using the manual calibration
parameters found in Table 6.2.

Type Value Unit Type Value Unit

GNNS all axes std. 1 [m] PARS North prior std. 1 [m]
PARS 1 Elevation std. 0.1 [◦] PARS East prior std. 1 [m]
PARS 1 Azimuth std. 0.1 [◦] PARS Down prior std. 1 [m]
PARS 2 Elevation std. 0.1 [◦] PARS Roll prior std. 1 [◦]
PARS 2 Azimuth std. 0.1 [◦] PARS Pitch prior std. 1 [◦]
Fixed Lag 10 [s] PARS Yaw prior std. 15 [◦]

Chapter 7: Experimental Results and Discussion 73

Table 7.7: Online calibration pose initialization. Recall that NED origin is defined cen-
tered at the GNSS measured position of PARS 1.

North [m] East [m] Down [m] Roll [◦] Pitch [◦] Yaw [◦]

Init. 0 0 0 0 0 -65.5
-1525.4 -2082.9 -37.9 0 0 26.7

Table 7.8: Online calibration results. The last two rows are the results from flight 2 in
the extended Okuhara paper [16] table 1 and table 2.

North [m] East [m] Down [m] Roll [◦] Pitch [◦] Yaw [◦]

Online 7.6 4.9 2.5 2.1 1.7 -75.9
-1537.7 -2087.1 -27.2 2.1 -1.4 16.7

Offline 5.1 0.3 -0.1 1.9 2.1 -75.0
-1526.7 -2086.3 -13.9 2.6 0.3 16.4

[16] — — — 0.0040 -0.0014 -74.7
— — — -0.00016 -0.00044 16.2

Secondly, as seen in Table 7.8, the roll and pitch angles for the offline and online
calibration are in the order of 2◦ while these angles are about three orders of magnitude
smaller in [16]. This is probably because of the relatively high prior of 1◦ put on these
angles. This is considered reasonable as manually leveling the antenna to an accuracy of
less than 1◦ seems improbable. Most importantly, the yaw angles for the online method
converge to approximately the same as with the offline method and in [16]. This is
encouraging as this is the hardest to calibrate as described in [16].

74

0

2

R
ol

l[
°]

PARS 1, Orientation

0

2

Pi
tc

h
[°

]

0 20 40 60 80

Time [s]

−100

0

Ya
w

[°
]

0

5

10

N
or

th
[m

]

PARS 1, Position

0

5

Ea
st

[m
]

0 20 40 60 80

Time [s]

0

1

D
ow

n
[m

]

0

1

2

R
ol

l[
°]

PARS 2, Orientation

−2

−1

0

Pi
tc

h
[°

]

0 20 40 60 80

Time [s]

20

25

Ya
w

[°
]

−1525.40

−1525.38

−1525.36

N
or

th
[m

]

PARS 2, Position

−2082.88

−2082.86

Ea
st

[m
]

0 20 40 60 80

Time [s]

−37.875

−37.850

−37.825

D
ow

n
[m

]

Figure 7.6: Online calibration results. PARS position and orientation. This figure shows
approximately the first 85s, the full run is found in Figure C.2 in the appendix.

Chapter 7: Experimental Results and Discussion 75

To verify the achieved PARS poses, the RTK GNSS measurements of the vehicle was
utilized. The GNSS measurements were transformed to the {r}-frames and projected to
elevation and azimuth angles using the obtained poses. The error between this and the
PARS measurements was then calculated and plotted in Figure 7.7. As seen, the error
hovers around 0◦ indicating that the calibration is accurate. A similar figure is made
using the compass and RTK GNSS measured PARS pose and is found in Figure C.1 in the
appendix. Here, the azimuth error is clearly biased and hovers around 10◦ indicating
inaccurate calibration.

In Table 7.9, the RMSE from this type of experiment is shown for the compass and
GNSS, online and offline calibration procedures as well as using the values from [16].
To try to avoid the RMSE being too affected by the outliers, all errors larger than 15◦

were removed from the RMSE calculation. It is important to note that the values from
Okuhara are from a different flight, so this is not a fair comparison, as multiple factors
could have changed between flights. In any case, all calibration procedures give an error
at least an order of magnitude lower than using manual calibration, except for PARS 1
elevation. This performance increase might not seem that great, but over large distances,
small differences in measured angles will result in big discrepancies. The fact that little
performance increase is seen in PARS 1 elevation is probably because the measurements
here are heavily affected by multipath as seen in Figure 7.7, and the roll-pitch leveling
was accurately done.

Further, the offline calibration seems to give the best results. This is probably because
this procedure had access to the range measurements, and by using this extra piece
of information higher accuracy is achieved. The online calibration algorithm seems to
work, yielding PARS mounting orientation estimates that are commensurate with the
offline procedure and in the Okuhara paper.

Table 7.9: Online calibration elevation and azimuth RMSE from projected RTK GNSS.

Unit Compass Online Offline [16]

Pars 1. Elev. [◦] 2.68 2.02 2.10 2.68
Pars 1. Azi. [◦] 8.90 0.96 0.84 1.34
Pars 2. Elev. [◦] 1.46 0.95 0.88 1.46
Pars 2. Azi. [◦] 10.32 0.64 0.53 0.58

76

−20

−10

0

10

20

El
ev

at
io

n
[°

]

Error PARS 1 measurements and projected GNSS

0 500 1000 1500 2000

Time [s]

−20

−10

0

10

20

A
zi

m
ut

h
[°

]

−20

−10

0

10

20

El
ev

at
io

n
[°

]

Error PARS 2 measurements and projected GNSS

0 500 1000 1500 2000

Time [s]

−20

−10

0

10

20

A
zi

m
ut

h
[°

]

Figure 7.7: Error between PARS measured angles and GNSS measurements projected
to elevation and azimuth using calibrated pose in Table 7.8.

Chapter 8

Overall discussion of experimental
results

Overall, FGO seems to give better performance than the ESKF in terms of RMSE error be-
tween ground truth. Still, the performance increase is not as large as what was hoped. In
the simulation scenarios, this might be expected as the measurements used here do not
contain outliers. However, the data from the field experiments do contain a significant
amount of outliers, and the expectation was that a fixed interval smoothing approach
would mitigate these to a larger degree. As mentioned in Section 7.2, increasing the
lag from 1s to 30s did not yield a smoother trajectory in the presence of outliers on
its own. The reason that increasing the lag does not improve performance is unclear. It
could be a tuning problem where the IMU factors have too much uncertainty associated
with them, thus making them unable to constrain the motion of the vehicle when PARS
outliers arrive. On the other hand, the factor graph approach seems to be more robust
towards poor initial estimates, where smoothing seems to make a difference. This be-
came especially clear when outlier rejection was turned off in Section 7.2, where FGO
performed better in the takeoff phase.

The introduction of the Huber robust error model did have a considerable positive
effect in terms of tolerating outliers. Additionally, this approach required very little ef-
fort or tuning to implement, in contrast to the ESKF, which requires the estimator to be
highly consistent for the outlier rejection approach to be effective. This might be the
main reason better outlier rejection was achieved using the FGO approach. Due to time
constraints, not much time was spent tuning the estimators, and for an accurate compar-
ison, the same tuning needed to be used for both estimators requiring a tradeoff. In light
of this, the fact that the outlier rejection scheme in GTSAM was simple to setup without
as much testing or extensive tuning is promising with regard to practical usability. Filter
tuning is a time-consuming task, and one can assume that faster development and field
deployment can be achieved using said method.

Perhaps the main benefit of the factor graph framework, experienced throughout
this project, is how modifiable it is when it comes to adding additional states or mea-
surements. Because of this, there was enough time to add the radio mounting poses in
the optimization and experiment with online calibration.

77

Chapter 9

Concluding remarks

9.1 Further work

Concerning further work, several aspects could be improved. When it comes to outlier
rejection using the Kalman filter, it could be beneficial to implement a sequential ESKF
that does not reject both measurements in case only one is an outlier. The next step in
online calibration is to calibrate the PARS pose online without GNSS measurements. The
problem with this is that PARS gives two measurements while the pose has six degrees of
freedom. However, if one were to use the range measurement as well, and only calibrate
rotation, there would be the same constraints as unknowns. Another approach could be
to let the measurements accumulate for a while before one starts the optimization of
the pose. In addition, the code for both estimators should be ported to C++ to increase
performance and maintainability. Using

9.2 Conclusion

In this work, a factor graph based incremental fixed lag smoother has been implemented
using the GTSAM framework to fuse PARS and IMU measurements. The FGO approach has
been compared with an error state Kalman filter on data from simulation and field ex-
periments. The simulation results indicate that the performance of the two approaches is
similar, but FGO may yield better performance in the presence of poor initial conditions.
To handle the multipath issue present in the PARS measurements from the field data,
two different approaches for outlier rejection are tested for the filter and FGO estima-
tors. The results from field experiments gave RMSE in NED position of 9.9, 14.1, 13.0m
for the ESKF and 10.2, 14.0, 11.1m for FGO with a lag of 30s. The factor graph yields
better results in the down position, which is most affected by multipath. The robust
cost outlier rejection was observed to be the main source of performance improvement
and requires much less tuning than the χ2 threshold rejection method. Prior to these
experiments, the PARS mounting pose was calibrated using an offline method, which
cannot be used in real-time. Therefore a solution to the problem of calibrating the PARS
antenna mounting position and orientation online using FGO was proposed and tested.

79

80

The results from the online calibration method were promising, yielding pose estimates
that were commensurate with the offline method.

References

[1] J. Zidan, E. I. Adegoke, E. Kampert, S. A. Birrell, C. R. Ford, and M. D. Hig-
gins, “GNSS Vulnerabilities and Existing Solutions: A Review of the Literature,”
IEEE Access, vol. 9, pp. 153 960–153 976, 2021, ISSN: 2169-3536. DOI: 10.1109/
ACCESS.2020.2973759. (visited on 06/11/2023).

[2] S. Strøm, “Kraftig økning av GPS-jamming over Finnmark,” NRK, Feb. 24, 2023.
[Online]. Available: https://www.nrk.no/tromsogfinnmark/kraftig-okning-
av-gps-jamming-over-finnmark-1.16309499 (visited on 06/11/2023).

[3] T. F. Kristensen, “Luftambulansen utsatt for massiv GPS-jamming: - Tyder på at
det stammer fra Russland,” NRK, Dec. 23, 2022. [Online]. Available: https://
www.nrk.no/tromsogfinnmark/luftambulansen-i-finnmark-trolig-utsatt-
for-russisk-gps-jamming-1.16231204 (visited on 06/11/2023).

[4] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys, “Unmanned Aircraft
Capture and Control Via GPS Spoofing: Unmanned Aircraft Capture and Control,”
Journal of Field Robotics, vol. 31, no. 4, pp. 617–636, Jul. 2014, ISSN: 15564959.
DOI: 10.1002/rob.21513. [Online]. Available: https://onlinelibrary.wiley.
com/doi/10.1002/rob.21513 (visited on 06/11/2023).

[5] J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in Real-time,”
in Robotics: Science and Systems X, Robotics: Science and Systems Foundation,
Jul. 12, 2014, ISBN: 978-0-9923747-0-9. DOI: 10.15607/RSS.2014.X.007. [On-
line]. Available: http://www.roboticsproceedings.org/rss10/p07.pdf (vis-
ited on 06/11/2023).

[6] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, “Iterated extended
Kalman filter based visual-inertial odometry using direct photometric feedback,”
The International Journal of Robotics Research, vol. 36, no. 10, pp. 1053–1072,
Sep. 2017, ISSN: 0278-3649, 1741-3176. DOI: 10.1177/0278364917728574. [On-
line]. Available: http://journals.sagepub.com/doi/10.1177/0278364917728574
(visited on 06/11/2023).

[7] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel, and J. D. Tardós, “ORB-
SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-
Map SLAM,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1874–1890, Dec.
2021, ISSN: 1552-3098, 1941-0468. DOI: 10.1109/TRO.2021.3075644. arXiv:
2007.11898 [cs]. [Online]. Available: http://arxiv.org/abs/2007.11898
(visited on 06/11/2023).

81

https://doi.org/10.1109/ACCESS.2020.2973759
https://doi.org/10.1109/ACCESS.2020.2973759
https://www.nrk.no/tromsogfinnmark/kraftig-okning-av-gps-jamming-over-finnmark-1.16309499
https://www.nrk.no/tromsogfinnmark/kraftig-okning-av-gps-jamming-over-finnmark-1.16309499
https://www.nrk.no/tromsogfinnmark/luftambulansen-i-finnmark-trolig-utsatt-for-russisk-gps-jamming-1.16231204
https://www.nrk.no/tromsogfinnmark/luftambulansen-i-finnmark-trolig-utsatt-for-russisk-gps-jamming-1.16231204
https://www.nrk.no/tromsogfinnmark/luftambulansen-i-finnmark-trolig-utsatt-for-russisk-gps-jamming-1.16231204
https://doi.org/10.1002/rob.21513
https://onlinelibrary.wiley.com/doi/10.1002/rob.21513
https://onlinelibrary.wiley.com/doi/10.1002/rob.21513
https://doi.org/10.15607/RSS.2014.X.007
http://www.roboticsproceedings.org/rss10/p07.pdf
https://doi.org/10.1177/0278364917728574
http://journals.sagepub.com/doi/10.1177/0278364917728574
https://doi.org/10.1109/TRO.2021.3075644
https://arxiv.org/abs/2007.11898
http://arxiv.org/abs/2007.11898

82

[8] N. Khedekar, M. Kulkarni, and K. Alexis, “MIMOSA: A Multi-Modal SLAM Frame-
work for Resilient Autonomy against Sensor Degradation,” in 2022 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan:
IEEE, Oct. 23, 2022, pp. 7153–7159, ISBN: 978-1-66547-927-1. DOI: 10.1109/
IROS47612.2022.9981108. (visited on 06/11/2023).

[9] Y. Wei, “Review of the Evolution of Phased-Array Radar,” SHS Web of Confer-
ences, vol. 144, A. Luqman, Q. Zhang, and W. Liu, Eds., p. 02 008, 2022, ISSN:
2261-2424. DOI: 10.1051/shsconf/202214402008. [Online]. Available: https:
//www.shs-conferences.org/10.1051/shsconf/202214402008 (visited on
06/12/2023).

[10] N. Ojaroudiparchin, M. Shen, and G. F. Pedersen, “A 28 GHz FR-4 compatible
phased array antenna for 5G mobile phone applications,”

[11] R. Wallis and Sheng Cheng, “Phased-array antenna system for the MESSENGER
deep space mission,” in 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542),
vol. 1, Big Sky, MT, USA: IEEE, 2001, pp. 1/41–1/49, ISBN: 978-0-7803-6599-5.
DOI: 10.1109/AERO.2001.931694. (visited on 06/12/2023).

[12] M. L. Sollie, K. Gryte, T. H. Bryne, and T. A. Johansen, “Outdoor Navigation Us-
ing Bluetooth Angle-of-Arrival Measurements,” IEEE Access, vol. 10, pp. 88 012–
88 033, 2022, ISSN: 2169-3536. DOI: 10.1109/ACCESS.2022.3199772. (visited
on 05/10/2023).

[13] C. Fulton, M. Yeary, D. Thompson, J. Lake, and A. Mitchell, “Digital Phased Ar-
rays: Challenges and Opportunities,” Proceedings of the IEEE, vol. 104, no. 3,
pp. 487–503, Mar. 2016, ISSN: 0018-9219, 1558-2256. DOI: 10.1109/JPROC.
2015.2501804. (visited on 05/18/2023).

[14] K. Gryte, “Precision control of fixed-wing UAV and robust navigation in GNSS-
denied environments,” NTNU, Trondheim, Jun. 2020.

[15] Chetvorno, File:Phased array antenna system.svg, Dec. 2, 2016. [Online]. Avail-
able: https://commons.wikimedia.org/wiki/File:Phased_array_antenna_
system.svg.

[16] M. Okuhara, T. H. Bryne, K. Gryte, and T. A. Johansen, “Phased Array Radio
Navigation System on UAVs: GNSS-based Calibration in the Field,” in 2021 In-
ternational Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece:
IEEE, Jun. 15, 2021, pp. 210–218, ISBN: 978-1-66541-535-4. DOI: 10.1109/
ICUAS51884.2021.9476807. (visited on 05/18/2023).

[17] P. D. Groves, Principles of GNSS, Inertial, and Multisensor Integrated Navigation
Systems, 2nd. Artech House, 2013, ISBN: 978-1-60807-005-3.

[18] J. R. Carpenter and C. N. D’Souza, “Navigation filter best practices,” NASA, Tech-
nical Publication (TP) NASA/TP–2018–219822, 2018. [Online]. Available: https:
//ntrs.nasa.gov/api/citations/20180003657/downloads/20180003657.pdf.

https://doi.org/10.1109/IROS47612.2022.9981108
https://doi.org/10.1109/IROS47612.2022.9981108
https://doi.org/10.1051/shsconf/202214402008
https://www.shs-conferences.org/10.1051/shsconf/202214402008
https://www.shs-conferences.org/10.1051/shsconf/202214402008
https://doi.org/10.1109/AERO.2001.931694
https://doi.org/10.1109/ACCESS.2022.3199772
https://doi.org/10.1109/JPROC.2015.2501804
https://doi.org/10.1109/JPROC.2015.2501804
https://commons.wikimedia.org/wiki/File:Phased_array_antenna_system.svg
https://commons.wikimedia.org/wiki/File:Phased_array_antenna_system.svg
https://doi.org/10.1109/ICUAS51884.2021.9476807
https://doi.org/10.1109/ICUAS51884.2021.9476807
https://ntrs.nasa.gov/api/citations/20180003657/downloads/20180003657.pdf
https://ntrs.nasa.gov/api/citations/20180003657/downloads/20180003657.pdf

References 83

[19] V. Indelman, S. Williams, M. Kaess, and F. Dellaert, “Factor graph based incremen-
tal smoothing in inertial navigation systems,” in 15th International Conference
on Information Fusion, Singapore, pp. 2154–2161. [Online]. Available: https:
//ieeexplore.ieee.org/document/6290565.

[20] S. M. Albrektsen, T. H. Bryne, and T. A. Johansen, “Phased array radio system
aided inertial navigation for unmanned aerial vehicles,” in 2018 IEEE Aerospace
Conference, Big Sky, MT: IEEE, Mar. 2018, pp. 1–11, ISBN: 978-1-5386-2014-4.
DOI: 10.1109/AERO.2018.8396433. (visited on 06/11/2023).

[21] S. M. Albrektsen, T. H. Bryne, and T. A. Johansen, “Robust and Secure UAV Nav-
igation Using GNSS, Phased-Array Radio System and Inertial Sensor Fusion,” in
2018 IEEE Conference on Control Technology and Applications (CCTA), Copen-
hagen: IEEE, Aug. 2018, pp. 1338–1345, ISBN: 978-1-5386-7698-1. DOI: 10.
1109/CCTA.2018.8511354. (visited on 06/17/2023).

[22] Ø. K. Helgesen and E. F. Brekke, “Bearings-only tracking using factor graphs,”
[Online]. Available: https://folk.ntnu.no/edmundfo/fusion2022preprints/
HelgesenBrekkeBearingFactor.pdf.

[23] J. Dong and Z. Lv, “MiniSAM: A flexible factor graph non-linear least squares
optimization framework,” CoRR, vol. abs/1909.00903, 2019. [Online]. Available:
http://arxiv.org/abs/1909.00903.

[24] J. Solà, J. Deray, and D. Atchuthan. “A micro Lie theory for state estimation in
robotics.” arXiv: 1812.01537 [cs]. (Dec. 8, 2021), [Online]. Available: http:
//arxiv.org/abs/1812.01537 (visited on 04/07/2023), preprint.

[25] T. V. Haavardsholm, “A handbook in Visual SLAM,” en, p. 95, 2021. [Online].
Available: https://github.com/tussedrotten/vslam-handbook.

[26] E. Brekke, Fundamentals of Sensor Fusion. Unpublished, 2022.

[27] J. Solà. “Quaternion kinematics for the error-state Kalman filter.” arXiv: 1711.
02508 [cs]. (Nov. 3, 2017), [Online]. Available: http://arxiv.org/abs/1711.
02508 (visited on 02/09/2023), preprint.

[28] J. A. Farrell, F. O. Silva, F. Rahman, and J. Wendel, “Inertial Measurement Unit
Error Modeling Tutorial: Inertial Navigation System State Estimation with Real-
Time Sensor Calibration,” IEEE Control Systems, vol. 42, no. 6, pp. 40–66, Dec.
2022, ISSN: 1066-033X, 1941-000X. DOI: 10.1109/MCS.2022.3209059. (visited
on 06/27/2023).

[29] K. Gade, “Integrering av treghetsnavigasjon i en autonom undervannsfarkost,”
Norwegian Defence Research Establishment (FFI), Tech. Rep. FFI/RAPPORT-97/03179,
1997. [Online]. Available: https://www.navlab.net/Publications/.

[30] M. L. Sollie, T. H. Bryne, K. Gryte, and T. A. Johansen, “Reducing Ground Reflec-
tion Multipath Errors for Bluetooth Angle-of-Arrival Estimation by Combining
Independent Antenna Arrays,” IEEE Antennas and Wireless Propagation Letters,
pp. 1–5, 2023, ISSN: 1536-1225, 1548-5757. DOI: 10.1109/LAWP.2023.3243166.
(visited on 05/10/2023).

https://ieeexplore.ieee.org/document/6290565
https://ieeexplore.ieee.org/document/6290565
https://doi.org/10.1109/AERO.2018.8396433
https://doi.org/10.1109/CCTA.2018.8511354
https://doi.org/10.1109/CCTA.2018.8511354
https://folk.ntnu.no/edmundfo/fusion2022preprints/HelgesenBrekkeBearingFactor.pdf
https://folk.ntnu.no/edmundfo/fusion2022preprints/HelgesenBrekkeBearingFactor.pdf
http://arxiv.org/abs/1909.00903
https://arxiv.org/abs/1812.01537
http://arxiv.org/abs/1812.01537
http://arxiv.org/abs/1812.01537
https://github.com/tussedrotten/vslam-handbook
https://arxiv.org/abs/1711.02508
https://arxiv.org/abs/1711.02508
http://arxiv.org/abs/1711.02508
http://arxiv.org/abs/1711.02508
https://doi.org/10.1109/MCS.2022.3209059
https://www.navlab.net/Publications/
https://doi.org/10.1109/LAWP.2023.3243166

84

[31] F. Dellaert and M. Kaess, “Factor Graphs for Robot Perception,” Foundations and
Trends in Robotics, vol. 6, no. 1-2, pp. 1–139, 2017, ISSN: 1935-8253, 1935-8261.
DOI: 10.1561/2300000043. [Online]. Available: http://www.nowpublishers.
com/article/Details/ROB-043 (visited on 01/23/2023).

[32] F. Dellaert and GTSAM Contributors, Borglab/gtsam, version 4.2a8, Georgia Tech
Borg Lab, May 2022. DOI: 10.5281/zenodo.5794541. [Online]. Available: https:
//github.com/borglab/gtsam).

[33] H. Martiros, A. Miller, N. Bucki, B. Solliday, R. Kennedy, J. Zhu, T. Dang, D. Patti-
son, H. Zheng, T. Tomic, P. Henry, G. Cross, J. VanderMey, A. Sun, S. Wang, and
K. Holtz, “SymForce: Symbolic Computation and Code Generation for Robotics,”
in Robotics: Science and Systems XVIII, Jun. 27, 2022. DOI: 10.15607/RSS.2022.
XVIII.041. arXiv: 2204.07889 [cs]. [Online]. Available: http://arxiv.org/
abs/2204.07889 (visited on 06/27/2023).

[34] J. Sola, J. Vallve, J. Casals, J. Deray, M. Fourmy, D. Atchuthan, A. Corominas-
Murtra, and J. Andrade-Cetto. “WOLF: A modular estimation framework for robotics
based on factor graphs.” arXiv: 2110.12919 [cs]. (Feb. 16, 2022), [Online]. Avail-
able: http://arxiv.org/abs/2110.12919 (visited on 02/06/2023), preprint.

[35] T. D. Barfoot, State Estimation for Robotics, 1st. Cambridge University Press, Jul. 31,
2017, ISBN: 978-1-316-67152-8. DOI: 10.1017/9781316671528. (visited on 04/11/2023).

[36] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental Smoothing and
Mapping,” IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1365–1378, Dec.
2008, ISSN: 1552-3098, 1941-0468. DOI: 10.1109/TRO.2008.2006706. (visited
on 01/20/2023).

[37] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert, “iSAM2:
Incremental smoothing and mapping using the Bayes tree,” The International
Journal of Robotics Research, vol. 31, no. 2, pp. 216–235, Feb. 2012, ISSN: 0278-
3649, 1741-3176. DOI: 10.1177/0278364911430419. (visited on 01/20/2023).

[38] T. Lupton and S. Sukkarieh, “Visual-Inertial-Aided Navigation for High-Dynamic
Motion in Built Environments Without Initial Conditions,” IEEE Transactions on
Robotics, vol. 28, no. 1, pp. 61–76, Feb. 2012, ISSN: 1552-3098, 1941-0468. DOI:
10.1109/TRO.2011.2170332. (visited on 06/25/2023).

[39] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-Manifold Preinte-
gration for Real-Time Visual–Inertial Odometry,” IEEE Transactions on Robotics,
vol. 33, no. 1, pp. 1–21, Feb. 2017, ISSN: 1552-3098, 1941-0468. DOI: 10.1109/
TRO.2016.2597321. (visited on 02/06/2023).

[40] L.-C. N. Tokle and E. Martens, Dataset from TTK4250, unpublished.

[41] E. Hjermstad, K. Steinsland, and E. S. Lie, “TTK4250 - Sensor Fusion. Graded
Assignment 1,” unpublished, Nov. 2, 2022.

[42] E. Martens, L.-C. N. Tokle, and E. Brekke, Graded Assignment 1, Assignment 5,
TTK4250 Sensor Fusion, unpublished, Nov. 2022.

https://doi.org/10.1561/2300000043
http://www.nowpublishers.com/article/Details/ROB-043
http://www.nowpublishers.com/article/Details/ROB-043
https://doi.org/10.5281/zenodo.5794541
https://github.com/borglab/gtsam)
https://github.com/borglab/gtsam)
https://doi.org/10.15607/RSS.2022.XVIII.041
https://doi.org/10.15607/RSS.2022.XVIII.041
https://arxiv.org/abs/2204.07889
http://arxiv.org/abs/2204.07889
http://arxiv.org/abs/2204.07889
https://arxiv.org/abs/2110.12919
http://arxiv.org/abs/2110.12919
https://doi.org/10.1017/9781316671528
https://doi.org/10.1109/TRO.2008.2006706
https://doi.org/10.1177/0278364911430419
https://doi.org/10.1109/TRO.2011.2170332
https://doi.org/10.1109/TRO.2016.2597321
https://doi.org/10.1109/TRO.2016.2597321

References 85

[43] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “G2o: A
general framework for graph optimization,” in 2011 IEEE International Confer-
ence on Robotics and Automation, Shanghai, China: IEEE, May 2011, pp. 3607–
3613, ISBN: 978-1-61284-386-5. DOI: 10.1109/ICRA.2011.5979949. (visited on
06/14/2023).

[44] F. Dellaert. “Factor Graphs and GTSAM.” (2019), [Online]. Available: https://
gtsam.org/tutorials/intro.html (visited on 06/14/2023).

[45] G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum voor Wiskunde
en Informatica Amsterdam, 1995.

[46] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. Fernández del Río, M. Wiebe, P. Pe-
terson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C.
Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585,
pp. 357–362, 2020. DOI: 10.1038/s41586-020-2649-2.

[47] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J.
Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. J. Carey, . Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature Methods,
vol. 17, pp. 261–272, 2020. DOI: 10.1038/s41592-019-0686-2.

[48] M. Hirsch, F. G. Nievinski, and M. Kleder, Pymap3d. [Online]. Available: https:
//github.com/geospace-code/pymap3d (visited on 07/01/2022).

[49] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in science &
engineering, vol. 9, no. 3, pp. 90–95, 2007.

[50] T. I. Fossen and T. Perez, Marine systems simulator (MSS), 2004. [Online]. Avail-
able: https://github.com/cybergalactic/MSS.

[51] T. V. Haavardsholm, Simple-factorgraph-example. [Online]. Available: https://
github.com/tussedrotten/simple-factorgraph-example/tree/main (visited
on 07/01/2022).

[52] T. V. Haavardsholm, Visgeom. [Online]. Available: https://github.com/tussedrotten/
visgeom (visited on 07/01/2022).

[53] T. V. Haavardsholm, TTK21 lecture 3 exercises, unpublished, 2021.

[54] K. Liu. “Finite Difference.” (Aug. 5, 2020), [Online]. Available: https://rh8liuqy.
github.io/Finite_Difference.html (visited on 07/03/2023).

[55] K. Gryte, M. Okuhara, O. K. Hasler, and P. Kvaløy, Raudstein X8 003 Radionor Two
Antenna Position Data, unpublished, Oct. 8, 2020.

https://doi.org/10.1109/ICRA.2011.5979949
https://gtsam.org/tutorials/intro.html
https://gtsam.org/tutorials/intro.html
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://github.com/geospace-code/pymap3d
https://github.com/geospace-code/pymap3d
https://github.com/cybergalactic/MSS
https://github.com/tussedrotten/simple-factorgraph-example/tree/main
https://github.com/tussedrotten/simple-factorgraph-example/tree/main
https://github.com/tussedrotten/visgeom
https://github.com/tussedrotten/visgeom
https://rh8liuqy.github.io/Finite_Difference.html
https://rh8liuqy.github.io/Finite_Difference.html

86

[56] C. Stachniss, “Iterative Closest Point: Point Cloud Alignment,” 2020. [Online].
Available: https://www.ipb.uni-bonn.de/html/teaching/msr2-2020/sse2-
03-icp.pdf.

[57] F. Gustafsson, Statistical Sensor Fusion, 2nd. Studentlitteratur, 2012.

[58] V. Agrawal. “Look Ma, No RANSAC.” (Sep. 20, 2019), [Online]. Available: https:
//gtsam.org/2019/09/20/robust-noise-model.html (visited on 06/22/2022).

[59] Z. Zhang, “Parameter estimation techniques: A tutorial with application to conic
fitting,” Image and Vision Computing, vol. 15, no. 1, pp. 59–76, Jan. 1997, ISSN:
02628856. DOI: 10.1016/S0262-8856(96)01112-2. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S0262885696011122 (visited on
06/22/2023).

https://www.ipb.uni-bonn.de/html/teaching/msr2-2020/sse2-03-icp.pdf
https://www.ipb.uni-bonn.de/html/teaching/msr2-2020/sse2-03-icp.pdf
https://gtsam.org/2019/09/20/robust-noise-model.html
https://gtsam.org/2019/09/20/robust-noise-model.html
https://doi.org/10.1016/S0262-8856(96)01112-2
https://linkinghub.elsevier.com/retrieve/pii/S0262885696011122
https://linkinghub.elsevier.com/retrieve/pii/S0262885696011122

Appendix A

Simulation Results

A.1 GNSS-aided INS

0

1000

N
or

th
[m

]

Position

0

2000

4000

Ea
st

[m
]

0 200 400 600 800

Time [s]

−50

0

D
ow

n
[m

]

ESKF PARS
FGO PARS
Ground truth

Figure A.1: Simulation result with GNSS. Position.

87

88

−100

0

R
ol

l[
°]

Roll, Pitch, Yaw

−50

0

50

Pi
ch

[°
]

0 200 400 600 800

Time [s]

−100

0

100

Ya
w

[°
] ESKF PARS

FGO PARS
Ground truth

Figure A.2: Simulation result with GNSS. Attitude.

−2

0

N
or

th
[m

]

Position

0

2

Ea
st

[m
]

0 200 400 600 800

Time [s]

0

2

D
ow

n
[m

]

Error ESKF
Error FGO

Figure A.3: Simulation result with GNSS. Error position.

0

2

N
or

th
[m

s−
1
]

Velocity

−1

0

1

Ea
st

[m
s−

1
]

0 200 400 600 800

Time [s]

−1

0

1

D
ow

n
[m

s−
1
]

Error ESKF
Error FGO

Figure A.4: Simulation result with GNSS. Error velocity.

Chapter A: Simulation Results 89

0

5

10
R

ol
l[

°]
Roll, Pitch, Yaw

−5

0

5

Pi
ch

[°
]

0 200 400 600 800

Time [s]

0

5

Ya
w

[°
]

Error ESKF
Error FGO

Figure A.5: Simulation result with GNSS. Error attitude.

0.0

0.1

x
[m

s−
2
]

Accelerometer Bias

0.00

0.05

0.10

y
[m

s−
2
]

0 200 400 600 800

Time [s]

−0.1

0.0

z
[m

s−
2
]

Error ESKF
Error FGO

Figure A.6: Simulation result with GNSS. Error accelerometer bias.

0.00

0.05

0.10

x
[°

s−
1
]

Gyroscope Bias

0.00

0.05

0.10

y
[°

s−
1
]

0 200 400 600 800

Time [s]

0.0

0.1

z
[°

s−
1
]

Error ESKF
Error FGO

Figure A.7: Simulation result with GNSS. Error gyroscope bias.

90

A.2 PARS-aided INS using one ground radio at origin

0

1000

N
or

th
[m

]

Position

0

2000

4000

Ea
st

[m
]

0 200 400 600 800

Time [s]

−50

0

D
ow

n
[m

]

ESKF PARS
FGO PARS
Ground truth

Figure A.8: Simulation result with one PARS. Position.

−100

0

R
ol

l[
°]

Roll, Pitch, Yaw

−50

0

50

Pi
ch

[°
]

0 200 400 600 800

Time [s]

−100

0

100

Ya
w

[°
] ESKF PARS

FGO PARS
Ground truth

Figure A.9: Simulation result with one PARS. Attitude.

Chapter A: Simulation Results 91

−25

0

25

N
or

th
[m

]
Position

0

200

Ea
st

[m
]

0 200 400 600 800

Time [s]

0

10

D
ow

n
[m

]

Error ESKF
Error FGO

Figure A.10: Simulation result with one PARS. Error position.

−2

0

2

N
or

th
[m

s−
1
]

Velocity

0

5

Ea
st

[m
s−

1
]

0 200 400 600 800

Time [s]

−2

0

D
ow

n
[m

s−
1
]

Error ESKF
Error FGO

Figure A.11: Simulation result with one PARS. Error velocity.

0

10

R
ol

l[
°]

Roll, Pitch, Yaw

−5

0

Pi
ch

[°
]

0 200 400 600 800

Time [s]

−10

0

Ya
w

[°
]

Error ESKF
Error FGO

Figure A.12: Simulation result with one PARS. Error attitude.

92

−0.2

0.0

x
[m

s−
2
]

Accelerometer Bias

0.00

0.05

y
[m

s−
2
]

0 200 400 600 800

Time [s]

−0.1

0.0

z
[m

s−
2
]

Error ESKF
Error FGO

Figure A.13: Simulation result with one PARS. Error accelerometer bias.

0.0

0.1

0.2

x
[°

s−
1
]

Gyroscope Bias

0.0

0.1

y
[°

s−
1
]

0 200 400 600 800

Time [s]

−0.05

0.00

0.05

z
[°

s−
1
]

Error ESKF
Error FGO

Figure A.14: Simulation result with one PARS. Error gyroscope bias.

Chapter A: Simulation Results 93

A.3 PARS-aided INS using three ground radios

0

1000

N
or

th
[m

]

Position

0

2000

4000

Ea
st

[m
]

0 200 400 600 800

Time [s]

−50

0

D
ow

n
[m

]

ESKF PARS
FGO PARS
Ground truth

Figure A.15: Simulation result with three PARS. Position.

−100

0

R
ol

l[
°]

Roll, Pitch, Yaw

−50

0

50

Pi
ch

[°
]

0 200 400 600 800

Time [s]

−100

0

100

Ya
w

[°
] ESKF PARS

FGO PARS
Ground truth

Figure A.16: Simulation result with three PARS. Attitude.

94

−10

0

N
or

th
[m

]
Position

−20

0

20

Ea
st

[m
]

0 200 400 600 800

Time [s]

0

5

D
ow

n
[m

]

Error ESKF
Error FGO

Figure A.17: Simulation result with three PARS. Error position.

−2.5

0.0

2.5

N
or

th
[m

s−
1
]

Velocity

−2.5

0.0

2.5

Ea
st

[m
s−

1
]

0 200 400 600 800

Time [s]

−2

0

D
ow

n
[m

s−
1
]

Error ESKF
Error FGO

Figure A.18: Simulation result with three PARS. Error velocity.

0

10

R
ol

l[
°]

Roll, Pitch, Yaw

−5

0

Pi
ch

[°
]

0 200 400 600 800

Time [s]

−10

0

Ya
w

[°
]

Error ESKF
Error FGO

Figure A.19: Simulation result with three PARS. Error attitude.

Chapter A: Simulation Results 95

−0.2

0.0

x
[m

s−
2
]

Accelerometer Bias

0.00

0.05

y
[m

s−
2
]

0 200 400 600 800

Time [s]

−0.10

−0.05

0.00

z
[m

s−
2
]

Error ESKF
Error FGO

Figure A.20: Simulation result with three PARS. Error accelerometer bias.

0.0

0.1

0.2

x
[°

s−
1
]

Gyroscope Bias

0.0

0.1

y
[°

s−
1
]

0 200 400 600 800

Time [s]

−0.05

0.00

0.05

z
[°

s−
1
]

Error ESKF
Error FGO

Figure A.21: Simulation result with three PARS. Error gyroscope bias.

Appendix B

Experimental Results

B.1 GNSS-aided INS

0

1000

N
or

th
[m

]

Position

−2000

0

Ea
st

[m
]

0 500 1000 1500 2000 2500

Time [s]

−100

0

D
ow

n
[m

]

ESKF with GNSS
FGO with GNSS

Figure B.1: Experimental result with GNNS. Position.

97

98

−20

0

20

N
or

th
[m

s−
1
]

Velocity

−20

0

20

Ea
st

[m
s−

1
]

0 500 1000 1500 2000 2500

Time [s]

−5

0

5

D
ow

n
[m

s−
1
]

ESKF with GNSS
FGO with GNSS

Figure B.2: Experimental result with GNNS. Velocity.

−50

0

50

R
ol

l[
°]

Roll, Pitch, Yaw

0

20

Pi
ch

[°
]

0 500 1000 1500 2000 2500

Time [s]

−100

0

100

Ya
w

[°
]

ESKF with GNSS
FGO with GNSS

Figure B.3: Experimental result with GNNS. Attitude.

−0.02

0.00

x
[m

s−
2
]

Accelerometer Bias

0.00

0.02

0.04

y
[m

s−
2
]

0 500 1000 1500 2000 2500

Time [s]

−0.02

0.00

z
[m

s−
2
]

ESKF with GNSS
FGO with GNSS

Figure B.4: Experimental result with GNNS. Accelerometer bias.

Chapter B: Experimental Results 99

0.00

0.02

x
[°

s−
1
]

Gyroscope Bias

−0.02

0.00

y
[°

s−
1
]

0 500 1000 1500 2000 2500

Time [s]

0.00

0.01

z
[°

s−
1
]

ESKF with GNSS
FGO with GNSS

Figure B.5: Experimental result with GNNS. Gyroscope bias.

0 500 1000 1500 2000 2500

0.0

0.5

N
or

th
[m

]

RTK GNSS and position-estimate residual

0 500 1000 1500 2000 2500

0

1

Ea
st

[m
]

0 500 1000 1500 2000 2500

Time [s]

−0.5

0.0

D
ow

n
[m

]

ESKF with GNSS
FGO with GNSS

Figure B.6: Experimental result with GNNS. Position error.

0 500 1000 1500 2000 2500

−10

0

10

R
ol

l[
°]

AHRS and attitude-estimate residual

0 500 1000 1500 2000 2500

0

10

Pi
ch

[°
]

0 500 1000 1500 2000 2500

Time [s]

−100

0

100

Ya
w

[°
]

ESKF with GNSS
FGO with GNSS

Figure B.7: Experimental result with GNNS. Attitude error.

100

B.2 PARS-aided INS using two ground radios

0

1000

N
or

th
[m

]

Position

−2000

−1000

0

Ea
st

[m
]

0 500 1000 1500 2000

Time [s]

−100

0

D
ow

n
[m

]

ESKF with PARS
FGO with PARS

Figure B.8: Experimental result with PARS. Position.

−20

0

20

N
or

th
[m

s−
1
]

Velocity

−20

0

20

Ea
st

[m
s−

1
]

0 500 1000 1500 2000

Time [s]

−10

0

D
ow

n
[m

s−
1
]

ESKF with PARS
FGO with PARS

Figure B.9: Experimental result with PARS. Velocity.

Chapter B: Experimental Results 101

−50

0

50

R
ol

l[
°]

Roll, Pitch, Yaw

0

20

Pi
ch

[°
]

0 500 1000 1500 2000

Time [s]

−100

0

100

Ya
w

[°
]

ESKF with PARS
FGO with PARS

Figure B.10: Experimental result with PARS. Attitude.

0.00

0.05

x
[m

s−
2
]

Accelerometer Bias

0.000

0.025

0.050

y
[m

s−
2
]

0 500 1000 1500 2000

Time [s]

−0.025

0.000

0.025

z
[m

s−
2
]

ESKF with PARS
FGO with PARS

Figure B.11: Experimental result with PARS. Accelerometer bias.

−0.05

0.00

x
[°

s−
1
]

Gyroscope Bias

−0.05

0.00

y
[°

s−
1
]

0 500 1000 1500 2000

Time [s]

−0.02

0.00

0.02

z
[°

s−
1
]

ESKF with PARS
FGO with PARS

Figure B.12: Experimental result with PARS. Gyroscope bias.

102

0 500 1000 1500 2000

−25

0

N
or

th
[m

]

RTK GNSS and position-estimate residual

0 500 1000 1500 2000

−25

0

25

Ea
st

[m
]

0 500 1000 1500 2000

Time [s]

0

50

D
ow

n
[m

] ESKF with PARS
FGO with PARS

Figure B.13: Experimental result with PARS. Position error.

0 500 1000 1500 2000

−10

0

10

R
ol

l[
°]

AHRS and attitude-estimate residual

0 500 1000 1500 2000

0

10

Pi
ch

[°
]

0 500 1000 1500 2000

Time [s]

−100

0

100

Ya
w

[°
]

ESKF with PARS
FGO with PARS

Figure B.14: Experimental result with PARS. Attitude error.

Appendix C

Online calibration

−20

−10

0

10

20

El
ev

at
io

n
[°

]

Error PARS 1 measurements and projected GNSS

0 500 1000 1500 2000

Time [s]

−20

−10

0

10

20

A
zi

m
ut

h
[°

]

−20

−10

0

10

20

El
ev

at
io

n
[°

]

Error PARS 2 measurements and projected GNSS

0 500 1000 1500 2000

Time [s]

−20

−10

0

10

20

A
zi

m
ut

h
[°

]

Figure C.1: Error between PARS measured angels and GNSS measurements projected
to elevation and azimuth using compass and GNSS measured pose in. Clearly there is a
significant calibration error.

103

104

0

2

R
ol

l[
°]

PARS 1, Orientation

0

2

Pi
tc

h
[°

]

0 500 1000 1500 2000

Time [s]

−100

0

Ya
w

[°
]

0

5

10

N
or

th
[m

]

PARS 1, Position

0

5

Ea
st

[m
]

0 500 1000 1500 2000

Time [s]

0

2

D
ow

n
[m

]

0

2

R
ol

l[
°]

PARS 2, Orientation

−2

−1

0

Pi
tc

h
[°

]

0 500 1000 1500 2000

Time [s]

20

25

Ya
w

[°
]

−1535

−1530

−1525

N
or

th
[m

]

PARS 2, Position

−2087.5

−2085.0

Ea
st

[m
]

0 500 1000 1500 2000

Time [s]

−40

−35

−30

D
ow

n
[m

]

Figure C.2: Online calibration full run results. PARS position and orientation. Here th

	Preface
	Abstract
	Sammendrag
	Thesis description sheet
	Contents
	List of Figures
	List of Tables
	Code Listings
	Acronyms
	Introduction
	Motivation
	Background
	Phased-array Radio
	Navigation

	Related work
	Problem description, research question and main contributions
	Delimitations
	Structure of the thesis

	Theoretical Background
	Coordinate frames
	Basic Lie theory
	The exponential and logarithmic maps
	Rotation matrices
	Rigid motion
	Unit quaternions
	Jacobians

	Inertial navigation
	IMU
	Inertial integration
	IMU errors

	PARS noise
	Bayesian filtering
	Kalman filter
	Error state Kalman filter

	Factor graphs
	A brief introduction to factor graphs
	IMU factors
	GNSS factor

	Simulator Design
	IMU measurements
	IMU noise
	Sensor measurements

	Estimator Design
	PARS measurement model
	Error state Kalman filter implementation
	Factor graph filter implementation
	GTSAM
	PARS factor
	PARS factor initial testing on SE2
	Factor graph
	Optimizer

	References and other resources used

	Simulation Results and Discussion
	GNSS-aided INS
	PARS-aided INS using one ground radio
	PARS-aided INS using three ground radios

	Experimental Setup and Calibration
	Hardware
	Flight
	Coordinate frames
	Offline calibration of PARS pose
	Outlier rejection
	Online calibration of PARS pose

	Experimental Results and Discussion
	GNSS-aided INS
	PARS-aided INS using two ground radios
	Runtime
	Online calibration

	Overall discussion of experimental results
	Concluding remarks
	Further work
	Conclusion

	References
	Simulation Results
	GNSS-aided INS
	PARS-aided INS using one ground radio at origin
	PARS-aided INS using three ground radios

	Experimental Results
	GNSS-aided INS
	PARS-aided INS using two ground radios

	Online calibration

