
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Ørjan Carlsen

Merging Classical Control and Deep
Reinforcement Learning for Dynamic
Collision Avoidance for a Quadcopter

Master’s thesis in Cybernetics and Robotics
Supervisor: Adil Rasheed
Co-supervisor: Thomas Nakken Larsen
June 2023

Ørjan Carlsen

Merging Classical Control and Deep
Reinforcement Learning for Dynamic
Collision Avoidance for a Quadcopter

Master’s thesis in Cybernetics and Robotics
Supervisor: Adil Rasheed
Co-supervisor: Thomas Nakken Larsen
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Merging Classical Control and Deep Reinforcement
Learning for Dynamic Collision Avoidance for a

Quadcopter
Ørjan Carlsen

Master’s Thesis in Cybernetics and Robotics
Supervisor: Adil Rasheed

Co-Supervisor: Thomas Nakken Larsen
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering

Department of Engineering Cybernetics

Abstract

Autonomous Unmanned Aerial Vehicles (UAVs), such as quadcopters, can improve the
efficiency of deliveries, perform inspections of assets that are risky for humans, or even
perform surveillance during rescue operations. A minimum requirement for achieving
autonomy is the ability to follow an a priori known path while avoiding collision with
unforeseen obstacles. Thus, the current work aims to solve the dual objective of path
following and collision avoidance for a quadcopter by combining low-level and high-level
control.

This thesis proposes a path following controller for a quadcopter that integrates Rein-
forcement Learning (RL) for collision avoidance to effectively exploit the strengths of
classical and data-driven control design approaches. Using Deep Reinforcement Learn-
ing (DRL), an agent was trained to perform local navigation around obstacles using a
Convolutional Neural Network (CNN)-based perception of LiDAR measurements. A ge-
ometrical path following controller was derived and implemented as a control abstraction
for the DRL agent. The Proximal Policy Optimization (PPO) algorithm was applied to
train the DRL agent in synthetic and stochastically generated environments. Ultimately,
it was tested in scenarios of increasing complexity and in scenarios never encountered
before.

The results obtained through software simulations show great potential for using classical
control as an abstraction in complex control tasks. By rewarding the agent in the
separate, competing problem domains of path following and collision avoidance, the
trained agent has to a certain extent learned to follow the path in the absence of obstacles
and perform evasive maneuvers when required. The performance has also generalized to
previously unseen scenarios, where the agent acts intelligently to overcome the obstacles.
However, there is still potential for improvement in scenarios with a high density of
obstacles, and future research directions to improve the performance are suggested.

i

Sammendrag

Selvstyrte ubemannede luftfartøy (UAVs, engelsk: Unmanned Aerial Vehicles), som ek-
sempelvis kvadrokoptere, kan forbedre effektiviteten ved leveranser, utføre risikofylte
inspeksjoner av strukturelle eiendeler, eller til og med drive overv̊aking under rednings-
aksjoner. Et minimumskrav for å oppn̊a autonomi er evnen til å følge en a priori kjent
bane og samtidig unng̊a kollisjon med uforutsette hindringer. Denne studien har derfor
som m̊al å mestre banefølging og kollisjonsunng̊aelse for et kvadrokopter ved å kombinere
lavniv̊a- og høyniv̊akontroll.

Denne masteroppgaven presenterer en lavniv̊aregulator for et kvadrokopter som integre-
rer høy-niv̊a forsterkningslæring (RL, engelsk: Reinforcement Learning) for kollisjons-
unng̊aelse for å effektivt utnytte styrkene til klassisk og datadrevet kontrolldesign. Ved
bruk av dyp forsterkningslæring (DRL, engelsk: Deep Reinforcement Learning) ble en
agent trent til å navigere rundt hindringer ved hjelp av konvolusjonelt nevralt nettverk
(CNN, engelsk: Convolutional Neural Network)-basert sansing av LiDAR-m̊alinger. En
geometrisk banefølgingsregulator ble utledet og implementert som en kontrollabstrak-
sjon for DRL-agenten. Proximal Policy Optimization (PPO, engelsk: Proximal Policy
Optimization)-algoritmen ble brukt til å trene DRL-agenten i syntetiske og stokastisk
genererte miljøer. Til slutt ble den testet i scenarioer med økende vanskelighetsgrad og
i scenarioer som aldri hadde blitt møtt tidligere.

Resultatene, som ble oppn̊add gjennom simuleringer, viser stort potensial for bruk av
klassisk reguleringsteknikk som en abstraksjon i komplekse kontrolloppgaver. Ved å
belønne agenten i de separate, konkurrerende problemomr̊adene banefølging og kolli-
sjonsunng̊aelse, har den trente agenten til en viss grad lært seg å følge banen i fravær
av hindringer og utføre manøvrer for kollisjonsunng̊aelse n̊ar det er nødvendig. Presta-
sjonen har ogs̊a generalisert til tidligere usette scenarier, der agenten handler intelligent
for å overkomme hindringene. Det er imidlertid fortsatt potensiale for forbedring i sce-
narioer med mange hindringer, og fremtidige forskningsretninger for å forbedre agentens
prestasjoner er foresl̊att.

iii

Preface

This thesis concludes my Master’s degree in Cybernetics and Robotics at the Norwe-
gian University of Science and Technology (NTNU) and is written with Professor Adil
Rasheed as supervisor and Ph.D. Candidate Thomas Nakken Larsen as co-supervisor.

I want to express my gratitude towards Adil for his guidance, specifically the valuable
feedback he provided for my writing. I am particularly grateful to Thomas for his
immense help throughout the entire process. He aided me in selecting the thesis topic,
debugging the code, and brainstorming implementation ideas. This thesis would not
have been possible without the support from both of you.

The code implementations for this thesis build upon the DRL framework developed by
Sundøen in [71]. Even though my Master’s thesis is not a continuation of my special-
ization report [10], the theory related to reinforcement learning in Section 2.5 is built
directly on the theory in the specialization report. Where applicable, the connection to
the specialization project is cited. Otherwise, the thesis is mainly original work, and the
author created all figures and illustrations.

Trondheim, June 2023
Ørjan Carlsen

v

Contents

Abstract i

Sammendrag iii

Preface v

Table of Contents vii

List of Figures ix

List of Tables xi

List of Algorithms xiii

Nomenclature xv

1 Introduction 1
1.1 Motivation . 1

1.2 Background . 2

1.2.1 Path Following . 2

1.2.2 Collision Avoidance . 3

1.3 Contribution, Research Objectives and Research Questions 4

1.3.1 Contribution . 4

1.3.2 Research Objectives . 5

1.3.3 Research Questions . 5

1.4 Structure of the Thesis . 5

2 Theory 7
2.1 Quadcopter Model . 7

2.1.1 Reference Frames . 7

2.1.2 State Variables . 7

2.1.3 Kinematics . 8

2.1.4 Kinetics . 10

2.2 Feedback Control . 11

2.2.1 PID Controller . 12

2.2.2 Anti-Windup . 13

2.3 Path Generation . 13

vii

Contents

2.4 Convolutional Neural Networks . 15
2.5 Reinforcement Learning . 16

2.5.1 Preliminaries . 17
2.5.2 Policy Gradients . 18
2.5.3 Proximal Policy Optimization . 19

3 Methodology 21
3.1 Simulation Environment . 21
3.2 Control Law for Path Following . 22

3.2.1 Position Controller . 24
3.2.2 Attitude Controller . 26
3.2.3 Tuning of Control Gains . 27

3.3 Deep Reinforcement Learning for Collision Avoidance 27
3.3.1 Action Space . 28
3.3.2 Observation Space . 29
3.3.3 Policy Network . 30
3.3.4 Reward Function . 31

3.4 Training Process . 34
3.5 Evaluation . 35

4 Results and Discussions 39
4.1 Path Following Controller . 39

4.1.1 Quantitative Results . 39
4.1.2 Qualitative Results . 40

4.2 Deep Reinforcement Learning Agent . 41
4.2.1 Quantitative Results . 41
4.2.2 Qualitative Results . 42
4.2.3 Unseen Scenarios . 43

5 Conclusion and Further Work 47
5.1 Conclusion . 47
5.2 Further Work . 48

Bibliography 49

viii

List of Figures

2.1 Quadcopter model . 8
2.2 Feedback control . 12
2.3 Example of a convolution . 16
2.4 Markov decision process . 18

3.1 Example of training environment with stochastically placed obstacles . . . 22
3.2 Path following controller, consisting of nested control loops for position

and attitude . 23
3.3 Structure of the DRL agent . 28
3.4 Visualization of agent’s action space . 29
3.5 CNN feature extraction . 31
3.6 CNN processing LiDAR measurements . 32
3.7 Scaling of collision avoidance reward according to the LiDAR-data’s quadcopter-

relative direction . 34
3.8 Test scenarios with increasing complexity 37
3.9 Unseen test scenarios . 38

4.1 Sample tests of the path following controller 40
4.2 Successful runs of the DRL agent . 42
4.3 Failed runs of the DRL agent . 42
4.4 Results from unseen test scenarios . 45

ix

List of Tables

2.1 State variables for the quadcopter . 8

3.1 Parameters for the quadcopter model. 23
3.2 Values of control gains for the path following controller. 27
3.3 Hyperparameters for PPO2. 28
3.4 Parameters for the observation space of the DRL agent. 30
3.5 Hyperparameters for the convolutional layer in the policy network. 31
3.6 Parameters for reward function. 34

4.1 Performance of path following controller 40
4.2 Performance of DRL agent on test scenarios 41
4.3 Performance of DRL agent on the unseen test scenarios 43

xi

List of Algorithms

1 Proximal Policy Optimization . 20

xiii

Nomenclature

Abbreviations

A2C Advantage Actor-Critic

APE Absolute Path Error

CNN Convolutional Neural Network

DDPG Deep Deterministic Policy Gradient

DOF Degree Of Freedom

DRL Deep Reinforcement Learning

LQR Linear Quadratic Regulator

MPC Model Predictive Control

MDP Markov Decision Process

NED North-East-Down

PD Proportional-Derivative

PID Proportional–Integral–Derivative

PPO Proximal Policy Optimization

QPMI Quadratic Polynomial Interpolation

RL Reinforcement Learning

SB3 Stable Baselines3

SNAME Society of Naval Architects and Marine Engineers

TRPO Trust Region Policy Optimization

UAV Unmanned Aerial Vehicle

VTP Virtual Target Point

xv

Chapter 1
Introduction

Autonomous Unmanned Aerial Vehicles (UAVs), especially multi-rotors such as
quadcopters, have the potential to improve the efficiency of deliveries, perform in-
spections of assets that are dangerous for humans, or even surveillance during rescue
operations. Achieving this is a complex challenge, which requires the ability to follow
a predefined path and make adjustments to avoid unforeseen obstacles. By imple-
menting a path following controller and using Deep Reinforcement Learning (DRL)
for collision avoidance, the current work aims at contributing to safe and effective
quadcopter navigation.

This chapter provides a short motivation for the thesis before introducing an overview of
previous research on path following and collision avoidance for quadcopters. Then, the
research objectives for the study are defined, and the report outline is presented.

1.1 Motivation

Multi-rotors have numerous advantages over fixed-wing aircraft, with the ability for
vertical take-off and landing, eliminating the necessity for runways and launchers. They
can also hover over the ground, which is advantageous in urban or indoor environments
with several obstacles like buildings, people, and furniture, or tight, constrained corridors
where the vehicle must maneuver cautiously. Thus, home delivery in retail [27] or delivery
of medical supplies [19] could be suitable multi-rotor applications. They can also inspect
assets that prove difficult or dangerous for humans, like tanks, flair stacks, chimneys,
and wind turbines [16].

In the case of quadcopters, developing a path following controller is a critical task to
enable autonomous navigation in complex environments. However, ensuring safe oper-
ation is also a significant challenge due to the risk of collisions with obstacles or other
vehicles. Therefore, integrating a collision avoidance system is crucial for achieving safe
and reliable quadcopter navigation. Traditional approaches to collision avoidance rely
on predefined rules and heuristics, which may not be adaptable to dynamic and unpre-
dictable scenarios. In contrast, Reinforcement Learning (RL) is a promising approach
that allows the quadcopter to learn from experience and improve its performance over

1

1 Introduction

time. Thus, this thesis proposes a novel path following controller for a quadcopter that
integrates RL for collision avoidance and simulates a LiDAR for obstacle detection. The
results of this work can potentially contribute to the development of safe and effective
quadcopter navigation systems.

1.2 Background

This section provides a short overview of the research done within the fields of path
following and collision avoidance for quadcopters.

1.2.1 Path Following

Path following is the problem of following a predefined path without any time dependen-
cies, as opposed to trajectory tracking, where a timed reference position is tracked [62].
As quadcopter systems are unstable, underactuated, and nonlinear, path following can
be a challenging task [52]. There have been developed numeral algorithms to perform
path following for quadcopters, and a few of the most common are presented in this sec-
tion. A more comprehensive presentation of path following algorithms for quadcopters
is provided by the authors of [61].

Several geometric guidance laws are developed for quadcopters. The missile guidance
and control literature initially described these guidance laws, often steering the vehicle
toward a Virtual Target Point (VTP) on the path. Carrot-chasing [49] is an algorithm
that tries to steer the quadcopter to a VTP on the path, which is a fixed distance ahead
of the vehicle’s closest point of the path. Quite similarly, line-of-sight [2] seeks to steer
the vehicle directly towards the closest point on the path with a set lookahead distance
from the quadcopter. Both pure pursuit [3] and trajectory shaping [58] utilize a VTP
moving with a constant velocity along the path. Whereas pure pursuit only tries to
close down the VTP, the trajectory shaping algorithm takes the heading of the VTP
into account, giving better path following abilities than the pure pursuit algorithm [45].
All the algorithms mentioned above calculate a commanded acceleration to guide the
vehicle toward the VTP. In addition, the property of differential flatness [20, 46] can
be used to design control laws, computing feedforward control terms from a reference
path.

Optimal control theory can be used to minimize the error from the path and the control
effort used to achieve this. This has been done using a Linear Quadratic Regulator (LQR)
[39, 53, 74] and state feedback controller. The objective function to be minimized is on
the form

J =
1

2

∞∑
t=0

x⊤(t)Qx(t) + u⊤(t)Ru(t), (1.1)

where the feedback control law is given by

u(t) = −Kx(t). (1.2)

The optimal feedback matrix K can be computed by solving the Riccati equation. As
the LQR name suggests, the state space representation of the quadcopter dynamics
should be linearized. In addition to the LQR, there has been done research on the use
of the optimization algorithm nonlinear Model Predictive Control (MPC) [51] for path

2

1.2 Background

following. MPC does also minimize an objective function and allows to constrain the
states and inputs. For each time step, the optimal control sequence is calculated for a
fixed number of time steps forward in time, while only the first is applied. This typically
leads to a high computational cost, but the energy usage for the quadcopter can be
reduced as the control sequence is calculated for several time steps.

For nonlinear systems, backstepping [60] is a widely used control method, and in the
case of quadcopters, it is traditionally used for trajectory tracking. However, global
tracking cannot be assured because of the underactuated nature of quadcopters [57]. By
eliminating the time dependencies of the tracking problem, i.e., turning the task into
path following, it is possible to obtain a globally convergent backstepping controller [9].
In backstepping, the objective is to make predefined errors converge to zero. A Lyapunov
function is defined for each error, whereas the system is stable and the errors converge
to zero when their time derivatives are negative definite. Thus, the control input to the
system ensures that all the Lyapunov functions are negative definite.

Feedback linearization [8] is a technique to linearize the system dynamics in a particular
region, enabling application of linear control theory. The method has been applied on
a path following problem, showing that the quadcopter converges to the path [60]. The
linearization makes the control structure simple, yielding an advantage compared to,
e.g., the optimization methods.

All the aforementioned methods are based on classical control theory, requiring knowl-
edge of the model dynamics. In recent years, significant improvements have been made
within the field of learning-based methods. The authors of [67] learned path following
and collision avoidance for a quadcopter by using MPC as a supervisor to train a neural
network. The drawback of this approach is that there is already a developed controller.
The authors of [78] developed an iterative learning controller that was trained on a path
following problem for a quadcopter at constant altitude. The policy was learned through
repetitive flights to learn from experience. RL has also been used for waypoint tracking
for a quadcopter [32]. This is a simplified problem compared to tracking a continuous
path. The results were quite good, but the method was conservative and more stable
than similar methods. In Sundøen’s Master’s thesis [71], RL was used to learn both path
following and collision avoidance for a quadcopter. The thrust inputs were learned to
follow a 3D path, with a success rate of 74%. The framework used by Sundøen is further
developed in this thesis.

1.2.2 Collision Avoidance

In this thesis, collision avoidance is defined as the problem of avoiding crashing into ob-
stacles while following a time-independent, predefined path. The obstacles are discovered
locally, meaning that collision avoidance can be considered local path planning around
the obstacles. In this section, some methods for collision avoidance are presented, while
an in-depth survey of collision avoidance methods for UAVs is created by the authors of
[76].

Geometric methods for collision avoidance try to keep a minimum distance between the
UAVs and the obstacles based on their geometric attributes and velocities. One typical
geometric method is called the collision cone approach, which is based on defining a
cone between the vehicle and obstacle, and guiding the vehicle away from the cone. The
authors of [12] presented this approach in a 2D case before they extended it to a 3D case

3

1 Introduction

for aircraft [24]. Another geometric method is the fast geometric avoidance algorithm
[26], where the probability of colliding with the obstacles’ safety boundaries is calculated
based on kinematics, and a tangential line for the UAV to follow is calculated.

Vector field methods [15, 34] generate a repulsive field around the obstacles. This could
be combined with a vector field around the path, solving both the path following and
collision avoidance problem. By letting the quadcopter follow the vectors, its position
should converge to the path and be repulsed by the obstacles. These methods require
known positions, velocities, and shapes of the obstacles. In the case of multiple collabo-
rating vehicles, a repulsive field could be generated around each vehicle, like the authors
of [70] did.

As with path following, optimization methods can be used for collision avoidance, cal-
culating an avoidance trajectory from geographical information. These algorithms often
have a high computational cost. Thus, there are developed a variety of methods, in-
cluding the use of ant colony optimization [55], Bayesian policy optimization [4] and
cooperative predictive control [7]. MPC has also been utilized for collision avoidance,
where a 2D bicycle model achieved excellent results in simulations [1].

Learning-based methods have been applied to achieve collision avoidance in recent years.
In this case, the controller must weigh the importance of following the path and reducing
the risk of hitting obstacles. The authors of [48] used Proximal Policy Optimization
(PPO) to achieve path following and collision avoidance for an autonomous surface
vehicle, showing that RL is an applicable method. This work was later extended to a 3D
case for an autonomous underwater vehicle by the authors of [28], achieving excellent
results both with regard to path following and collision avoidance. When this work was
extended to a quadcopter by Sundøen in [71], collision avoidance cannot be claimed to
have been solved completely.

1.3 Contribution, Research Objectives and Research Questions

1.3.1 Contribution

The present work’s main contribution is a framework for solving the dual objective of
path following and collision avoidance for a quadcopter in synthetic environments. The
proposed solution consists of a control law for path following and a DRL agent for
local navigation around obstacles, using a simulated LiDAR for obstacle detection and
a Convolutional Neural Network (CNN) for dimensionality reduction.

Although various solutions to solve the dual objective of path following and collision
avoidance for a quadcopter have been proposed in previous research, these have not
combined low-level classical control with high-level RL to the extent of the author’s
knowledge. This work aims to effectively exploit the strengths of low-level and high-
level control design approaches by establishing a suitable abstraction between them.
Classical control has proven to handle the path following problem effectively. By utilizing
the properties of RL to generalize to dynamic and unpredictable scenarios, this thesis
seeks to develop a navigation system with strong path following abilities that perform
in environments without relying on predefined rules and heuristics.

4

1.4 Structure of the Thesis

1.3.2 Research Objectives

In order to guide this study, a set of research objectives were established. Furthermore,
research questions that will help achieve these objectives have been articulated.

Primary Objective: Obtain a fitting abstraction between low-level classical control and
high-level RL to solve the dual objective of path following and collision avoidance for a
quadcopter.

Secondary Objectives:

• Implement a controller for following a time-independent, continuous, and stochas-
tically generated trajectory in three dimensions.

• Train a DRL agent to achieve intelligent decision-making regarding avoidance ma-
neuvering, simulating a LiDAR for obstacle detection.

1.3.3 Research Questions

The guiding questions governing the research can be stated as:

• Can the path following controller be used as a control abstraction for the DRL
agent and still achieve path following?

• Can the DRL agent learn to perform evasive maneuvers for collision avoidance
when using a CNN-based perception of LiDAR measurements?

• Has the DRL agent generalized into acting intelligently in previously unseen sce-
narios?

1.4 Structure of the Thesis

The thesis is divided into five chapters. The introduction in Chapter 1 briefly motivates
the thesis, summarizes the background research, and specifies the contributions of this
thesis. Chapter 2 introduces the relevant theory for understanding the thesis. The
quadcopter model is derived, and its associated assumptions are outlined. The theory
required to derive the path following controller and the DRL agent for collision avoidance
is also explained. Chapter 3 presents the research methodology and justifies design
choices such that the study is reproducible. The obtained results are presented and
discussed in Chapter 4. Finally, the thesis’ conclusion is presented in Chapter 5, which
also outlines possible directions for future work.

5

Chapter 2
Theory

This chapter provides the relevant theory for understanding the thesis. Firstly, the
quadcopter model is derived, and its associated assumptions are outlined. Then, the
basic concepts of feedback control are explained, which is essential for understanding
the path following controller. A method for generating G2-continuous paths is presented
before the fundamentals of CNNs are introduced. Finally, the theoretical foundation of
RL is described.

2.1 Quadcopter Model

In this section, the dynamics of the quadcopter model are derived. The resulting model
is illustrated in Figure 2.1. This model has some deviations from the model derived by
Sundøen in [71], in terms of a more detailed modeling of the quadcopter kinetics and
the chosen reference frames.

2.1.1 Reference Frames

The position of the quadcopter must always be given relative to a reference frame. This
thesis defines a world and a body frame with an orthonormal basis, both illustrated in
Figure 2.1. The world frame is denoted {w} = (xw,yw, zw), where xw and yw forms a
tangent plane relative to the earth’s reference ellipsoid, and zw points upwards normal to
the surface. A North-East-Down (NED) reference frame is often used for local navigation
[21] and could have been used in this thesis, but it was disregarded as the chosen world
frame appears to be the standard in most quadcopter models [20, 33, 35, 44, 75]. Other
reference frames should have been considered in the case of terrestrial navigation. The
body reference frame is fixed to the quadcopter and denoted {b} = (xb,yb, zb), where xb
is the transversal axis, yb is the longitudinal axis and zb is the upwards normal axis. The
origin of the body frame was chosen at the center of mass to simplify calculations.

2.1.2 State Variables

There are used 12 variables, presented in Table 2.1, to represent the quadcopter with
motion in six Degrees Of Freedom (DOFs). The generalized position vector is defined

7

2 Theory

Motion

Figure 2.1: The quadcopter is illustrated with both world and body-fixed coordinate
frames. Of the four rotors, two rotate clockwise, and the other two rotate
counter-clockwise, each producing a force. The gravitational force acts
through the center of mass in the −zw direction. The drag force acts in
the opposite direction of the quadcopter’s velocity.

as η = [pwwb,Θwb]
⊤, where pwwb = [xw, yw, zw]⊤ is the quadcopter’s position in the world

frame, while Θwb = [ϕ, θ, ψ]⊤ describes the rotation of the body frame relative to the
world frame. The velocity vector is defined as ν = [vbwb,ω

b
wb]

⊤, where vbwb = [u, v, w]⊤

are the linear velocities along the axes of the body frame, while ωbwb = [p, q, r]⊤ are the
angular rates of the body frame’s rotation relative to the world frame.

Table 2.1: State variables for the quadcopter following Society of Naval Architects and
Marine Engineers (SNAME) notation [66], except that the presented world
frame is used instead of NED.

Body World

DOF
Velocities and
Angular Rates

Position and
Euler Angles

1 surge - motion in xb-direction u xw

2 sway - motion in yb-direction v yw

3 heave - motion in zb-direction w zw

4 roll - rotation about the xb-axis p ϕ
5 pitch - rotation about the yb-axis q θ
6 yaw - rotation about the zb-axis r ψ

2.1.3 Kinematics

Kinematics describes the geometrical aspects of motion without considering the underly-
ing forces. In the context of a quadcopter, kinematics is understanding the relationship
between the generalized position of the quadcopter and its velocity vector. As the ve-
locity vector is given in body frame, it must be transformed into the world frame for
comparison with the generalized coordinates. The derivations in this section follow the

8

2.1 Quadcopter Model

same methodology as the authors of [21]. In the following equations, c(·), s(·) and t(·)
denote cos(·), sin(·) and tan(·), respectively.

In general, a rotation β about the ζ axis is given by

Rζ,β = I3 + s(β)S(ζ) + (1− c(β))S2(ζ), (2.1)

where S(ζ) denotes the skew-symmetric matrix of ζ. The three rotation matrices Rx,ϕ,
Ry,θ and Rz,ψ can then be obtained by substituting ζ with the three unit vectors and
β with ϕ, θ and ψ, respectively. Subsequently, the rotation from body frame to world
frame can be found as R(Θwb) = Rz,ψRy,θRx,ϕ, giving

R(Θwb) =

c(θ)c(ψ) s(ϕ)s(θ)c(ψ)− c(ϕ)s(ψ) c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ)
c(θ)s(ψ) s(ϕ)s(θ)s(ψ) + c(ϕ)c(ψ) c(ϕ)s(θ)s(ψ)− s(ϕ)c(ψ)
−s(θ) s(ϕ)c(θ) c(ϕ)c(θ)

 . (2.2)

Equation (2.2) can be used to express the relation between the quadcopter’s position
and its linear velocities, such that

ṗwwb = R(Θwb)v
b
wb. (2.3)

As rotation matrices satisfy R ∈ SO(3), the rotation from world frame to body frame is
found as

R(Θbw) = R(Θwb)
⊤. (2.4)

The angular velocities do also have to be transformed from body frame to world frame,
as ωbwb cannot be integrated directly to obtain Θwb. The inverse of the transformation
matrix can be derived like

ωbwb =

ϕ̇0
0

+R⊤
x,ϕ

0θ̇
0

+R⊤
x,ϕR

⊤
y,θ

00
ψ̇

 := T−1(Θwb)Θ̇wb, (2.5)

such that T (Θwb) is defined as

T (Θwb) =

1 s(ϕ)t(θ) c(ϕ)t(θ)
0 c(ϕ) −s(ϕ)
0 s(ϕ)/c(θ) c(ϕ)/c(θ)

 . (2.6)

This gives

Θ̇wb = T (Θwb)ω
b
wb, (2.7)

which transforms the angular velocities into world frame. Note that T (Θwb) contains
singularities at θ = ±π

2 . An operating quadcopter should never reach these orientations,
so this should not introduce problems. However, possible solutions could be switching
between two Euler angle representations with different singularities or using the unit
quaternion representation. Finally, the 6-DOF kinematic equations of the quadcopter
are expressed as

η̇ = JΘwb
(η)ν, (2.8)

where

JΘwb
(η) =

[
R(Θwb) 03×3

03×3 T (Θwb)

]
. (2.9)

9

2 Theory

2.1.4 Kinetics

Kinetics refers to the study of motion and the forces that cause it. For a quadcopter, the
relevant forces are the thrust from the rotors, the gravitational force, and the drag force.
Most of the model used in this thesis is derived by the authors of [35], while drag is
modeled by the authors of [44]. To simplify, the following assumptions are made:

• The quadcopter is axis-symmetrical, resulting in the system inertia being a diag-
onal matrix and Ix = Iy.

• The center of pressure coincides with the center of mass, meaning that the linear
terms of the drag force act through the center of mass.

• There are no external forces, implying that the quadcopter is flying indoors or in
calm weather.

• There exists a function to map the thrust of a propeller, Fi, to the required power
of the propeller, Wi.

• The thrust of a propeller is applied instantly, with no inertia or time delay.

The quadcopter model, with equations of motion about the center of gravity, can be
written as

Mν̇ +C(ν) + d(ν) + g(η) = Bu, (2.10)

where M is the mass matrix, C(ν) is the Coriolis-centripetal vector, d(ν) is the drag
force, g(η) is the gravitational force, and B is the input matrix mapping the control
inputs u to generalized forces, such that τ = Bu.

As the equations of motion are about the center of gravity and the quadcopter is axis-
symmetrical, the mass matrix becomes a diagonal matrix

M =



m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix 0 0
0 0 0 0 Iy 0
0 0 0 0 0 Iz

 . (2.11)

The Coriolis-centripetal forces are given as

C(ν) =
[
0 0 0 (Iz − Iy)qr (Ix − Iz)pr 0

]⊤
, (2.12)

and occur due to the rotation of the body-fixed frame relative to the world frame. Note
that the final term equals zero as Ix = Iy.

The drag force is an aerodynamic force caused by friction between the drone and sur-
rounding air. It opposes the motion of the quadcopter and is given as

d(ν) =
[
duu dvv dww dpp

2 dqq
2 drr

2
]⊤
, (2.13)

where du, dv and dw are the linear drag coefficients, while dp, dq and dr are the rotational
drag coefficients.

The gravitational force acts through the center of mass, thus not participating with
torques. As the force acts downwards in the world frame, its contribution to the linear

10

2.2 Feedback Control

dynamics can be written as gw = [0, 0,−mg]⊤, where g = 9.81 m/s2 is the gravitational
acceleration. However, as the equations of motion are written in body frame, the grav-
itational force must be rotated, such that gb = R(Θbw)g

w. Moving the term to the
left-hand side of the equation yields

g(η) =
[
−mgs(θ) mgc(θ)s(ϕ) mgc(θ)c(ϕ) 0 0 0

]⊤
. (2.14)

The input matrix is given as

B =



0 0 0 0
0 0 0 0
1 1 1 1
0 −l 0 l
−l 0 l 0
−ρ ρ −ρ ρ

 , (2.15)

and specifies how the propeller thrusts

u =
[
F1 F2 F3 F4

]⊤
, (2.16)

map into the state space. The third row of B is the thrust force, fz = F1+F2+F3+F4,
which always works in the same direction as zb. The roll torque in the fourth row,
τϕ = l(F4 − F2), is proportional to the difference between the thrust of the second and
fourth propeller, while the pitch torque in the fifth row, τθ = l(F3 −F1), is proportional
to the difference between the thrust of the first and third propeller. The yaw torque in
the sixth row, τψ = ρ(−F1 + F2 − F3 + F4), is proportional to the difference of thrust
force generated by all propellers.

2.2 Feedback Control

This section briefly introduces feedback control, a method within the field of control
systems, and the theory is based on the work of the authors of [5].

The purpose of control systems is to regulate the behavior of systems. There are two
primary methods: forward connection and feedback connection. With a forward connec-
tion, a disturbance is measured before it affects the process, and the controller considers
this disturbance to minimize the effects. This approach is model-based, as the change
in control input must be calculated from the disturbance. Feedback connection does,
on the other hand, not require a realistic model of the system. The system states are
measured and compared to reference values in a feedback controller. The states can be
driven toward the reference values by designing a control input from the deviations from
the desired states. A simple feedback controller of a mono-variable system is illustrated
in Figure 2.2. A mono-variable system has only one reference signal and one mea-
sured state, while a multi-variable system control has several reference signals, several
measured states, or both. This section only considers mono-variable systems for sim-
plicity of notation, but the presented principles can easily be applied to multi-variable
systems.

11

2 Theory

Control System Process

Figure 2.2: Illustration of feedback control for a process. The measurement of the state
to be controlled is denoted y and has a reference value, r. The difference,
e = r−y, between the measured and desired values is passed to the control
system, which calculates the control input, u.

2.2.1 PID Controller

The Proportional-Integral-Derivative (PID) controller is perhaps the most common feed-
back controller and over 90% of industrial controllers use PID principles [42]. As the
name suggests, the controller has incorporated three different effects, each serving a
different purpose. The complete controller is given by

u = Kpe+Ki

∫ t

0
e(τ)dτ +Kdė, (2.17)

where Kp, Ki, and Kd are the proportional-, integral-, and derivative gains. The transfer
function can then be written on parallel form as

U(s) = Kp +Ki
1

s
+Kds, (2.18)

or on ideal form given by

U(s) = Kp

(
1 +

1

Tis
+ Tds

)
, (2.19)

where s is the Laplace variable, and Ti and Td are the integral- and derivative time
constants.

The proportional gain of the controller generates the overall control action, which is
proportional to the reference error. By increasing Kp, the system’s time constant is
reduced, meaning a more aggressive controller is achieved. Likewise, Kp can be reduced
to get a slower response. By setting the gain too high, there might be fluctuations from
the reference value, or in the worst case; the closed-loop system could become unstable.
Thus, there is a trade-off between high stability and short transient.

The second functionality of the PID controller is the integral effect. With only a pro-
portional gain, there will be a stationary deviation from the reference value when the
system converges to a steady-state. By taking the integral of the error, this steady-state
error will disappear. There is an intuitive explanation for why the steady-state error
arises with only the proportional gain without diving too deep into the math. Imagine
a proportional controller is trying to keep a car’s cruise control at 60 km/h. If the car’s
speed reaches 60 km/h, then e = 0. This again yields u = Kpe = 0, meaning that the
controller no longer provides any thrust to the motor. Subsequently, the car’s speed will
decrease due to drag forces. Thus, the proportional controller will only be able to keep
a speed slightly lower than 60 km/h, with the size of the steady-state error dependent

12

2.3 Path Generation

on the value of Kp. However, introducing the integral effect will give a control action
̸= 0 even though e = 0, allowing the cruise control to stay steady at 60 km/h. In ad-
dition to eliminating steady-state errors, the integral effect counteracts disturbances in
the system. This could, e.g., be unmodeled wind gusts. Thus, the integral effect could
be particularly important in a real-world application, where not all dynamics necessarily
are modeled correctly.

The final functionality of the PID controller is the derivative effect, which contributes
to the control input by a scalar multiplied by the change in error. The derivative term
will improve the transient response by damping. When the state value approaches the
reference value, the derivative of the error is negative, meaning that the term contributes
with a negative control input. The reduced control input will dampen the transient and
counteract possible fluctuations from the reference value. The derivative term can also
cause an unstable system to become stable. These effects will improve if Kd increases
and worsen if Kd decreases. Note that the transient response will be slower with the
derivative term.

2.2.2 Anti-Windup

Often, the actuators of a system have an effective range limit for the actions. In a
quadcopter’s case, a maximum thrust force can be applied to the rotors. If the control
input reaches the range limit, the integrator will saturate. That is, the error will continue
being integrated up, even though no larger control input can be applied to the system.
This can cause large overshoots and settling times for the system, and instability in the
worst case. Anti-windup is a measure to prevent these effects.

Several techniques exist to perform anti-windup, whereas some are presented by the au-
thors of [6]. In this thesis, anti-windup is performed as conditional integration, meaning
that integration is stopped depending on a specific condition. The condition could, e.g.,
be that the integrator is saturated. With limited integration, the integrator value is
limited to a linear range, and this will effectively prevent the value from becoming too
high. A method called tracking anti-windup takes the difference between the saturated
and unsaturated control input and generates a feedback signal to act upon the integra-
tor input. The methods studied by the authors of [6] all reduced overshoot and thus
proved to work as wanted. However, the use of limited integration showed to be the
least desirable method.

2.3 Path Generation

This section presents an algorithm to generate a continuous path for the quadcopter.
The Quadratic Polynomial Interpolation (QPMI) path-smoothing method was first in-
troduced by the authors of [31] and [13] for 2D paths before it was extended to 3D
paths [14]. When generating a path for a quadcopter to follow, it must be continuous
in velocity and acceleration [14]. A G2-continuous path shares a center of curvature
and has the same second-order derivatives, meaning it is continuous in velocity and
acceleration.

First, all the nw waypoints the path should go through are defined. Each path will start

13

2 Theory

in w1 = [0, 0, 0]⊤, while the subsequent waypoints are generated randomly as

xm = xm−1 + d cos(χm) cos(νm), (2.20a)

ym = ym−1 + d sin(χm) cos(νm), (2.20b)

zm = zm−1 + d sin(νm), (2.20c)

where m = 2, ..., nw is the mth waypoint, d is the linear distance between each way-
point, and χm and νm are randomly generated variables to define the curvature of the
path.

The parametric path can be expressed as

P (u) : (x(u), y(u), z(u)), (2.21)

where

xm(u) = axmu
2 + bxmu+ cxm , (2.22a)

ym(u) = aymu
2 + bymu+ cym , (2.22b)

zm(u) = azmu
2 + bzmu+ czm , (2.22c)

with m = 2, ..., nw − 1, and u is the linear distance. Equations (2.22a) to (2.22c) can be
inverted to obtain the parameters of the pathaxmbxm

cxm

 =

u
2
m−1 um−1 1

u2m um 1

u2m+1 um+1 1


−1 x(um−1)

x(um)

x(um+1)

 , (2.23a)

aymbym
cym

 =

u
2
m−1 um−1 1

u2m um 1

u2m+1 um+1 1


−1 y(um−1)

y(um)

y(um+1)

 , (2.23b)

azmbzm
czm

 =

u
2
m−1 um−1 1

u2m um 1

u2m+1 um+1 1


−1 z(um−1)

z(um)

z(um+1)

 . (2.23c)

To generate a path of nw waypoints, 3(nw − 2) polynomials are required, as groups of
polynomials connect three and three waypoints. The final path can then be denoted
as

P (u) : (X(u), Y (u), Z(u)), (2.24)

where

X(u) =


x2(u), u1 ≤u ≤ u2
µr,m(u)xm+1 + µf,m(u)xm(u), u2 ≤u ≤ unw−1

xnw−1(u), unw−1 ≤u ≤ unw

 , (2.25a)

Y (u) =


y2(u), u1 ≤u ≤ u2
µr,m(u)ym+1 + µf,m(u)ym(u), u2 ≤u ≤ unw−1

ynw−1(u), unw−1 ≤u ≤ unw

 , (2.25b)

Z(u) =


z2(u), u1 ≤u ≤ u2
µr,m(u)zm+1 + µf,m(u)zm(u), u2 ≤u ≤ unw−1

znw−1(u), unw−1 ≤u ≤ unw

 . (2.25c)

14

2.4 Convolutional Neural Networks

µr,m and µf,m are increasing and decreasing membership functions, respectively, with
value spans between zero and one. They represent the transition from one polynomial
to another and are defined as

µr,m =
u− um

um+1 − um
, (2.26a)

µf,m =
um+1 − u
um+1 − um

, (2.26b)

where m = 2, ..., nw − 1. It is worth noticing that µr,1 = 1 and µf,1 = 0 for the first
polynomial and that µr,nw−1 = 0 and µf,nw−1 = 1 for the final polynomial.

The path is G1-continuous if the first-order derivatives match at each waypoint and
G2-continuous if the second-order derivatives match at each waypoint. The first-order
derivatives of the path, dX(u)

du , dY (u)
du and dZ(u)

du , can be calculated by inserting

dxm(u)

du
= 2axmu+ bxm , (2.27a)

dym(u)

du
= 2aymu+ bym , (2.27b)

dzm(u)

du
= 2azmu+ bzm , (2.27c)

into Equations (2.25a) to (2.25c). Finally, the second-order derivatives of the path,
d2X(u)
du2

, d2Y (u)
du2

and d2Z(u)
du2

, can be calculated by inserting

d2xm(u)

du2
= 2axm , (2.28a)

d2ym(u)

du2
= 2aym , (2.28b)

d2zm(u)

du2
= 2azm , (2.28c)

into Equations (2.25a) to (2.25c).

2.4 Convolutional Neural Networks

This section gives an introduction to CNNs, as this is used for the perception of the quad-
copter. A more thorough description of CNNs is presented by the authors of [23].

CNNs are a type of neural network that is commonly used for image classification [68],
object detection [69] and segmentation [77]. CNNs do typically consist of several different
layers: convolutional layers, pooling layers, and fully connected layers. The input to the
CNN is often an image, possibly with several channels, where each pixel has a value.
The image is passed through the CNN, which finally provides an output depending on
the use case.

The convolutional layer convolves the input with a learnable kernel, illustrated in Fig-
ure 2.3. This outputs a feature map, representing the features of the input. Thus,
different kernels will detect different features of the input. Adjusting the kernel allows
emphasis on different aspects of the input. A larger kernel size enhances the detection
of larger features while potentially disregarding some finer details. Stride is the kernel’s

15

2 Theory

horizontal or vertical step size during convolution. Increasing the stride leads to a lower-
dimensional feature map output. Padding can also be employed at the image edges to
give greater significance to border size information. As with normal neural networks,
activation functions can be applied to the output. The size of the outputted feature map
can be read from the formula

WO =
WI −K + 2P

S
+ 1, (2.29)

where WO is the output volume, WI is the input volume, K is the kernel size, P is the
padding and S is the stride. Thus, an image of size 55 × 35 convolved when K = 5,
P = 2 and S = 2, will output an image of size 28× 18.

-1
0

-10
2

0-1
0

-1

1
2

12
3

21
2

1

2

Figure 2.3: An example of an input of size 6× 6 convolved with a kernel of size 3× 3
and stride of one, resulting in a feature map of size 4× 4.

Pooling layers can be used for dimensionality reduction of the feature maps by shrinking
them to lower-sized feature maps. There are several different pooling operations, such
as max pooling, min pooling, and average pooling. The operation is performed within a
particular area and with a specified stride, e.g., max pooling could be used to divide the
feature map into a grid with cells of size 2 × 2 and only keep the highest value in each
cell. Pooling can allow only preserving the most dominant feature within each part of
the image and ignore details such as variations in the position of the feature.

Fully connected layers are standard neural network layers, which are fed flattened feature
maps. These layers allow the detection of relationships between the high-level features
before they provide the output of the CNN.

2.5 Reinforcement Learning

This section is heavily based on the theory section of the specialization report [10]. There
are made some slight changes to the explanations and Figure 2.4 is added, otherwise,
the derived formulas are the same.

In this section, the basics of RL are briefly introduced, specifically the PPO [65] al-
gorithm. A more exhaustive explanation of RL is given by the authors of [72]. PPO

16

2.5 Reinforcement Learning

is the only algorithm used in this thesis, as several studies conclude it surpasses other
RL algorithms. The authors of [37] found that PPO outperforms Trust Region Policy
Optimization (TRPO) [63] and Deep Deterministic Policy Gradient (DDPG) [43] in an
attitude controller for a quadcopter. PPO has also been shown to perform better than
Advantage Actor-Critic (A2C) [50] when stabilizing a quadcopter and moving to a tar-
get [30]. Further, the authors of [41] conclude that PPO is superior with respect to
generalization, robustness to complexity changes, and changes in the reward function
for path following and collision avoidance for an autonomous surface vessel.

RL is one of three primary learning paradigms in machine learning, alongside supervised
learning and unsupervised learning [54]. Supervised learning is learning from a set of
labeled data to detect relationships between input and output data, enabling it to yield
correct labels on unseen data. On the other hand, unsupervised learning aims to detect
hidden structures in unlabeled data. Sutton and Barto define RL as learning what to do
- how to map situations to actions - to maximize a numerical reward signal [72].

The idea of RL is to let a learning agent interact with an environment over time to
achieve a goal. By observing the state of the environment and taking actions to interact
with the environment, the agent can affect the state. The actions taken by the agent
will affect the reward received, both the immediate reward and the subsequent rewards.
Thus, the agent must try to learn which actions will yield the highest cumulative reward.
However, if the agent only makes actions it has already experienced to give the highest
reward, it will never know if there are other, more effective actions. This introduces the
exploration-exploitation dilemma. The agent must exploit previous experience to obtain
a reward and explore other actions to take better actions in the future.

2.5.1 Preliminaries

In RL, the interaction between the agent and the environment can be modeled as a
Markov Decision Process (MDP), illustrated in Figure 2.4, meaning that the next state
depends only on the current state and action [54]. Formally, this is defined by the
5-tuple, (S,A, p, r, γ), where:

• S is the continuous state space, with the initial state denoted s0,

• A is the continuous action space,

• p : S × S ×A → [0, 1] is the conditional transition probability distribution for the
next state, s′, such that p(s′|s, a) = P (St+1 = s′|St = s,At = a), with the initial
state distribution denoted p0 : S → [0, 1],

• r : S ×A → R is the reward received after action a transitions state s to state s′,

• γ ∈ [0, 1] is the discount factor for future rewards.

In this section, the state, action, and neural network parameters can be represented
using vector notation. However, for the sake of simplicity, non-bold notation will be
used instead. It is also worth noting that the observations are not necessarily equal to
the state, but both observations and state will be denoted s in this section.

17

2 Theory

Figure 2.4: MDP showing how each state only is dependent on the previous state and
action. The action is taken based on an observation of the current state,
and the reward is received after an action transitions the state.

The policy function, π, defines how an action, a, at state, s, should be chosen. π specifies
a conditional probability distribution to choose a possible action for each state, given by
πθ(a|s) : S × A → [0, 1] = P (At = a|St = s), where θ are the parameters of the neural
network producing the output. As the policy always depends on θ, the policy is only
denoted π from now on. By, at each time step t, observe the state st, draw an action at
from the policy π, and observe the next state st+1 ∼ p(st+1|st, at) and reward rt, there
will be developed a trace in the environment

τt = {st, at, rt, ...}. (2.30)

Further, the authors of [54] define the state-value function, V π(st), as the expected
reward when standing in state, s, at time, t, and following policy, π, while the action-
value function, Qπ(st, at), is defined as the expected return when taking action, a, in
state, s, at time t, and following policy, π. This is formalized by

V π(st) = Eτt∼π

[∞∑
i=0

γiR(st+i, at+i)

∣∣∣∣st
]
, (2.31)

Qπ(st, at) = Eτt∼π

[∞∑
i=0

γiR(st+i, at+i)

∣∣∣∣st, at
]
, (2.32)

where R(st, at) is the reward at time t, and τt ∼ π is the trace obtained from time, t, by
following the policy, π.

2.5.2 Policy Gradients

Both policy-based and value-based methods within RL aim to maximize the expected
discounted reward. Policy-based methods find the explicit policy function. This differs
from value-based methods that try to find the value function and use this to decide on
the best possible action. However, in the case of continuous or large discrete action
spaces, value-based methods can fail as it would be impractical to find the greedy policy
[25].

18

2.5 Reinforcement Learning

The optimal policy can be derived by defining the objective function

J(θ) = V π(s0), (2.33a)

= Eτ0∼π

[∞∑
i=0

γiR(si, ai)

∣∣∣∣s0
]
, (2.33b)

as this describes the long-term reward obtained from the start state s0. The authors of
[73] prove the policy gradient theorem, showing that the gradients can be found as

∇θJ(θ) =
∑
s

dπ(s)
∑
a

∇θπ(a|s)Qπ(s, a), (2.34)

where dπ(s) = lim
t→∞

P (St = s|s0), which is the stationary distribution of states under π.

As explained by the authors of [22], the likelihood ratio trick

∇θπ(a|s) = π(a|s)∇θπ(a|s)
π(a|s)

, (2.35a)

= π(a|s)∇θ log π(a|s), (2.35b)

can be used to derive that

∇θJ(θ) = Eπ [∇θ log πθ(a|s)Qπ(s, a)] . (2.36)

To reduce the variance of the policy gradients, it is common to replace Qπ(s, a) with the
advantage function Aπ(s, a) = Qπ(s, a)−V π(s, a). This will tell whether or not the action
outperforms the policy’s default behavior. However, the advantage function is unknown
and must be estimated, which can be done using the Generalized Advantage Estimation
(GAE), proposed by the authors of [64]. This finally yields the policy gradient estimator
at time step t

∇̂θJ(θ) = Êt
[
∇θ log π(At|St)Âπt

]
, (2.37)

allowing to update the parameters with θ ← θ+α∇̂θJ(θ). Êt[...] is the empirical average
over a finite batch of samples by alternating between sampling and optimization [65].
The estimator can then be obtained by differentiating the objective

JPG(θ) = Êt
[
log π(At|St)Âπt

]
. (2.38)

2.5.3 Proximal Policy Optimization

PPO, first suggested by the authors of [65], optimizes a modification of the objective

function in Equation (2.38). Defining the probability ratio rt(θ) =
πθ(at|st)
πθold (at|st)

, the authors

suggest the modified surrogate objective function

JCLIP (θ) = Êt
[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
, (2.39)

where the hyperparameter ϵ is used to configure the size of the trust region. This
objective function will guarantee policy improvements within a certain range, restricted
by the term clip(rt(θ), 1−ϵ, 1+ϵ)Ât. Clipping the probability ratio removes the incentive
for moving rt outside the trust region [1− ϵ, 1 + ϵ].

19

2 Theory

The pseudocode for the PPO algorithm is given in Algorithm 1. For each iteration, the
N parallel actors collect T time steps of data. The surrogate loss for these NT time steps
of data is calculated and optimized with either minibatch stochastic gradient descent or
Adam [36] for K epochs.

Algorithm 1: Proximal Policy Optimization

for iteration=1,2,... do
for actor=1,2,...,N do

Run policy πθold in environment for T time steps
Compute advantage estimates Â1, ..., ÂT

Optimize surrogate L wrt. θ, with K epochs and minibatch size M ≤ NT
θold ← θ

20

Chapter 3
Methodology

This chapter covers the implementation of the path following controller and DRL agent.
The simulation environment with the quadcopter, path, and obstacles is presented in
Section 3.1. The path following controller, detailed in Section 3.2, calculates the con-
trol inputs to realize a desired acceleration. The DRL agent, presented in Section 3.3,
learns local path planning around the obstacles by creating the next waypoint in an al-
ternative path for the quadcopter to follow. The action space, observation space, policy
network, and reward function to realize this are outlined. Details about the training
and evaluation process are provided in Section 3.4 and Section 3.5, respectively. Further
implementations for this thesis can be found in the gym-quad framework [11].

3.1 Simulation Environment

The training environment consists of three components: the quadcopter, a path, and
obstacles. Training in simulated real-world environments could be computationally ex-
pensive because of the resolution of surroundings data. Also, it would not be appro-
priate to begin training with a real quadcopter, as this would lead to material damage
and extremely long training times. Thus, simpler, synthetic environments are created
for training, with a predefined path and spherical obstacles. Path and obstacle genera-
tion are done stochastically to ensure variety in the training environments and achieve
generalization abilities for the agent. An example of these generated environments is
provided in Figure 3.1.

All paths are generated by creating waypoints with a linear distance of d = 50 m be-
tween each other. The direction of the next waypoint is decided stochastically, with
a uniform distribution for both the azimuth angle χm ∼ U(−π

4 ,
π
4) and the elevation

angle νm ∼ U(−π
4 ,

π
4). Each path starts in w1 = [0, 0, 0]⊤, while the positions of the

subsequent waypoints are decided by

xm = xm−1 + d cos(χm) cos(νm), (3.1a)

ym = ym−1 + d sin(χm) cos(νm), (3.1b)

zm = zm−1 + d sin(νm), (3.1c)

where m = 2, ..., nw is the mth waypoint. The paths are generated with nw = 7 way-
points, meaning the linear distance between the waypoints is 300 m in total. Then, a

21

3 Methodology

xw [m]

25 0 25 50 75 100125150175

yw [m]
15012510075502502550

z
w [m

]

0

25

50

75

100

125

150

175

200

Path
Waypoints

Figure 3.1: Example of training environment with a G2-continuous path and six
stochastically placed obstacles, whereas at least one obstacle is guaran-
teed to obstruct the path.

G2-continuous path between the waypoints is generated, according to Section 2.3.

There are placed six spherical obstacles in the training environment. The obstacles’
position and radius are decided randomly to ensure generalization. All obstacle radii are
drawn from a uniform distribution between four and ten meters. The intention is that
the training environments contain obstacles both on and off the path. If all obstacles
are placed directly on the path, the quadcopter can learn to always keep a safe distance
from the path and thus never correctly learn path following. Similarly, the quadcopter
can risk not learning collision avoidance properly if very few obstacles are placed on
the path. Therefore, one obstacle is placed halfway through the path, guaranteed to
obstruct the path. In addition, there are placed five obstacles between 1

6 and 5
6 of the

length of the path with a random position, meaning they can be placed both on and
off the path. There are no obstacles at the beginning or end of the path to allow the
quadcopter to converge to the path in the beginning and make it possible to reach the
final waypoint.

The model parameters must be defined to realize the model dynamics of the quadcopter,
which were derived in Section 2.1. The model parameters are taken from [44] and
summarized in Table 3.1.

3.2 Control Law for Path Following

For this thesis, a path following controller for the quadcopter is derived and imple-
mented, which is inspired by the approach for deriving the small angle control law
presented by the authors of [47]. The control law is designed to provide the inputs,
u = [F1, F2, F3, F4]

⊤, such that the quadcopter can track a time-independent trajectory
in three dimensions. It is assumed that the attitude of the quadcopter is close to hover

22

3.2 Control Law for Path Following

Table 3.1: Parameters for the quadcopter model.

Parameter Description Value

g Gravitational acceleration 9.81 m/s2

h Step size of simulation 0.01 s
m Mass 0.5 kg
l Arm length 0.5 m
ρ Inflow ratio 0.08
Fmin Minimum rotor thrust -6 N
Fmax Maximum rotor thrust 6 N
Ix Moment of inertia about the xb-axis 0.005 kgm2

Iy Moment of inertia about the yb-axis 0.005 kgm2

Iz Moment of inertia about the zb-axis 0.01 kgm2

du Linear drag coefficient along the xb-axis 0.3729
dv Linear drag coefficient along the yb-axis 0.3729
dw Linear drag coefficient along the zb-axis 0.3729
dp Rotational drag coefficient about the xb-axis 5.56 · 10−4

dq Rotational drag coefficient about the yb-axis 5.56 · 10−4

dr Rotational drag coefficient about the zb-axis 5.56 · 10−4

state, which is reasonable for non-aggressive trajectories. An overview of the controller
is presented in Figure 3.2.

Position

Control

Motor

Dynamics

Quadcopter

Dynamics
Attitude

Control

Figure 3.2: Illustration of the path following controller, consisting of nested control
loops for position and attitude. The position controller calculates the
desired thrust force, while the attitude controller calculates the desired
torques. The input, u, can then be calculated through the motor dynam-
ics to track a three-dimensional trajectory.

The controller utilizes a nested control loop for position and attitude to calculate the
input vector. The position controller calculates the desired thrust force, fdesz = F1+F2+
F3+F4, while the attitude controller calculates the desired roll torque, τdesϕ = l(F4−F2),

desired pitch torque, τdesθ = l(F3 − F1), and desired yaw torque, τdesψ = ρ(−F1 + F2 −
F3 + F4). The thrust inputs to the quadcopter can then be calculated by inverting the
last four rows of the input matrix, B, as follows


F1

F2

F3

F4

 =


1 1 1 1

0 −l 0 l

−l 0 l 0

−ρ ρ −ρ ρ


−1 

fdesz

τdesϕ

τdesθ

τdesψ

 . (3.2)

23

3 Methodology

3.2.1 Position Controller

The position controller calculates the desired acceleration, ades = [ẍdes, ÿdes, z̈des]⊤ re-
quired to follow the path. To realize this acceleration, the desired thrust force, fdesz , is
calculated and the desired attitude, Θdes

wb = [ϕdes, θdes, ψdes]⊤, is passed to the attitude
controller for calculation of the desired torques. All this is derived from position errors,
a velocity term, and a feedforward term of the trajectory acceleration.

The quadcopter’s distance from the path is controlled through a PID feedback con-
troller, taking the position error, accumulated position error, and change of position
error into account. This finally yields a positional contribution, adespos, to the desired
acceleration. The position error is defined as the difference between the position of the
closest point on the trajectory, pwT = [xwT , y

w
T , z

w
T]

⊤, and the position of the quadcopter,
pwwb = [xw, yw, zw]⊤, given by

ewp = pwT − pwwb. (3.3)

The controller’s integral term contributes to the desired acceleration dependent on the
accumulated position errors of the relevant episode. The integral term is implemented
to eliminate stationary position errors from the reference trajectory, as these were signif-
icant in the absence of the integral term. The integral term will also make the controller
more prone to wind gusts and other unexpected disturbances [59]. As the controller
is implemented in discrete time, the integral of the error is calculated as a sum of all
position errors in the relevant episode multiplied by the step size h, as

ewp,acc =

t∑
τ=0

ewp (τ)h, (3.4)

where ewp (τ) is the position error at time τ . However, simply implementing this integral
term leads to large accelerations when the quadcopter’s position is far from the desired
path. Therefore, anti-windup is implemented, meaning that ewp,acc is only updated if ades

at the previous time step was smaller than a chosen threshold. This threshold is chosen
to be 0.5 m/s2 through trial and error. A derivative term is added to the controller
to avoid fluctuations from the path and reduce the risk of instability. This contributes
to the desired acceleration by considering how the position error has changed since the
previous time step

ėwp =
ewp (t)− ewp (t− 1)

h
. (3.5)

The positional contribution to the desired acceleration is then calculated as

adespos = Kp,ae
w
p +Ki,ae

w
p,acc +Kd,aė

w
p , (3.6)

where Kp,a, Ki,a and Kd,a are diagonal matrices representing the proportional, integral,
and derivative gains for the position. The values of the gains influence how much the
acceleration should change to minimize the error, meaning that a higher value indicates
a higher priority to minimize the error. In the implementation, adespos is scaled down to
a vector of length 1.5 in the case where the Euclidean norm is larger than 1.5. This is
done as the quadcopter being far from the path does not necessarily mean the desired
acceleration should be extremely large.

To make the quadcopter move along the path and not only move to its closest point and
stay there, a velocity term is added to the position controller. A reference velocity is
not directly provided through the trajectory, as it only consists of positions. However,

24

3.2 Control Law for Path Following

a velocity reference is created by considering the tangent of the trajectory at pwT and
scaling it to a desired velocity, as follows

vwT = vdes
twT
∥twT ∥

, (3.7)

where twT denotes the tangent and vdes = 2.5m/s. twT is calculated by inserting Equa-
tion (2.27) into Equation (2.25). Then, the velocity error is given as

ewv = vwT − ṗwwb, (3.8)

where ṗwwb = [ẋw, ẏw, żw]⊤ is the quadcopter’s velocity in world frame. Similarly, as with
the positional contribution to the desired acceleration, the velocity error contributes to
the desired acceleration with the term

adesvel = Kve
w
v , (3.9)

where Kv is a diagonal matrix representing gains for the velocity term. adesvel is scaled
down to a vector of length one in the case where the Euclidean norm is larger than
one.

Finally, a feedforward term for the trajectory acceleration, nwT , is added to the desired
acceleration. In practice, this is the normal vector of the path, which is calculated by
inserting Equation (2.28) into Equation (2.25). The purpose of this term is to make the
controller resistant to sharp turns in the trajectory. This term is, however, probably not
necessary as the trajectories in this thesis are not very aggressive. The resulting desired
acceleration is then given by

ades = adespos + adesvel + nwT . (3.10)

When the desired acceleration is calculated, the desired thrust force and attitude can be
derived.

The desired thrust force is found by considering the acceleration in the zw-direction.
Rewriting Equation (2.8) and Equation (2.10), the desired acceleration can be formulated
as

mz̈des + dwwc(ϕ)c(θ) +mg = fdesz c(ϕ)c(θ). (3.11)

Close to hover state, ϕ and θ are small, giving the approximations c(ϕ) ≈ 1 and c(θ) ≈ 1.
Then, the thrust force can be expressed as

fdesz = m(z̈des + g) + dww. (3.12)

The desired attitude, Θdes
wb = [ϕdes, θdes, ψdes]⊤, must be derived, as it is passed to the

attitude controller. ψdes can simply be calculated by considering the yaw angle of the
tangent at pwT , like

ψdes = arctan

(
twT,y
twT,x

)
, (3.13)

where twT,x is the component of the tangent in xw-direction and twT,y is the component of
the tangent in yw-direction. This will drive the heading of the quadcopter to follow the
heading of the path. Similarly as with the calculation of fdesz , the desired rotations ϕdes

and θdes can be calculated by using the small-angle approximation on the expressions

25

3 Methodology

for acceleration in the xw-direction and yw-direction. The equation of motion in xw-
direction is

mẍ+ duu(c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ)) = fz(c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ)), (3.14)

which can be simplified into

mẍdes = (fdesz − duu)(θdesc(ψdes) + ϕdess(ψdes)), (3.15)

by assuming c(ϕ) ≈ 1, c(θ) ≈ 1, s(ϕ) ≈ ϕ and s(θ) ≈ θ. Further, fdesz can be inserted to
find the expression

ẍdes =

(
z̈des + g +

dww − duu
m

)(
θdesc(ψdes) + ϕdess(ψdes)

)
. (3.16)

The same procedure can be repeated for the acceleration in yw-direction, resulting
in

ÿdes =

(
z̈des + g +

dww − dvv
m

)(
θdess(ψdes)− ϕdesc(ψdes)

)
. (3.17)

Finally, Equation (3.16) and Equation (3.17) are rewritten to find the desired rota-
tions

ϕdes =
ẍdes

z̈des + g + dww−duu
m

s(ψdes)− ÿdes

z̈des + g + dww−dvv
m

c(ψdes), (3.18)

θdes =
ẍdes

z̈des + g + dww−duu
m

c(ψdes) +
ÿdes

z̈des + g + dww−dvv
m

s(ψdes). (3.19)

3.2.2 Attitude Controller

The attitude controller uses the desired attitude to calculate the desired roll torque,
τdesϕ , desired pitch torque, τdesθ , and desired yaw torque, τdesψ , from the errors in attitude
and angular velocity. The attitude error is defined as the difference between the desired
attitude and the attitude of the quadcopter, such that

ebΘ = Θdes
wb −Θwb. (3.20)

For simplicity, it is chosen that the desired angular velocities are zero, independently of
the path. This means that the quadcopter should have small changes in attitude when
moving along the path. Thus, the error in angular velocities is defined as

ebω = −ωbwb, (3.21)

where ωbwb = [p, q, r]⊤. The desired torque, τ des = [τdesϕ , τdesθ , τdesψ]⊤, is calculated using a
Proportional-Derivative (PD) feedback controller, giving the following control law

τ des = Kp,τe
b
Θ +Kd,τe

b
ω, (3.22)

where Kp,τ and Kd,τ are diagonal matrices representing the proportional and derivative
gains, respectively.

26

3.3 Deep Reinforcement Learning for Collision Avoidance

3.2.3 Tuning of Control Gains

The authors of [47] suggest relying on the dynamic model to tune the control law. It
is chosen to do this for the attitude controller, but as the position controller is signifi-
cantly more complicated than the controller in [47], it is more effective to tune the gains
manually. All control gains are summarized in Table 3.2.

Deciding the values of Kp,τ = diag(Kp,ϕ,Kp,θ,Kp,ψ) and Kd,τ = diag(Kd,ϕ,Kd,θ,Kd,ψ)
is done by deriving the equations of motion for rotation about the xw-, yw- and zw-axes.
The equation of motion for rotation about xw is given as

Ixṗ+ (Iz − Iy)qr + dpp
2 = τϕ, (3.23a)

Ixṗ+ (Iz − Iy)qr + dpp
2 = Kp,ϕ(ϕ

des − ϕ) +Kd,ϕ(p
des − p). (3.23b)

By assuming p ≈ ϕ̇ near hover state and that the terms qr and p2 are small, the equation
of motion for rotation can be written as

Ixϕ̈ = −Kp,ϕϕ−Kd,ϕϕ̇, (3.24a)

Ixϕ̈+Kd,ϕϕ̇+Kp,ϕϕ = 0, (3.24b)

when the desired attitude is at hover. As this is a second-order system, it can be written
on the form

ϕ̈+ 2ξωnϕ̇+ ω2
nϕ = 0, (3.25)

giving Kp,ϕ = Ixω
2
n and Kd,ϕ = 2Ixξωn, where ξ is the relative damping ratio and ωn is

the natural frequency. The exact same approach is used to find the expressions for the
remaining control gains. The control gains are given by Kp,θ = Iyω

2
n, Kd,θ = 2Iyξωn,

Kp,ψ = Izω
2
n and Kd,ψ = 2Izξωn. It is chosen to set ξ = 1 for the system to be critically

damped and ωn = 9 rad
s as this was suggested as a starting point for tuning by the

authors of [47].

Table 3.2: Values of control gains for the path following controller.

Parameter Description Value

Kp,a Proportional gains for the position controller diag(3, 3, 6)
Ki,a Integral gains for the position controller diag(0.01, 0.01, 0.01)
Kd,a Derivative gains for the position controller diag(1, 1, 1)
Kv Velocity gains for the position controller diag(0.5, 0.5, 0.5)
Kp,τ Proportional gains for the attitude controller diag(0.405, 0.405, 0.81)
Kd,τ Derivative gains for the attitude controller diag(0.09, 0.09, 0.18)

3.3 Deep Reinforcement Learning for Collision Avoidance

As the low-level control for path following is defined, the high-level control for collision
avoidance must be derived. This is done by training an agent with DRL, using Stable
Baselines3 (SB3) [29], a Python library with RL algorithms based on OpenAI Baselines
[17]. The agent aims to learn local path planning around obstacles obstructing the
path. As detailed in Section 2.5, the PPO algorithm has been shown to surpass other
RL algorithms in control problems. Thus, PPO2 from SB3 is used in this thesis. The
hyperparameters for the PPO2 algorithm are summarized in Table 3.3.

27

3 Methodology

Table 3.3: Hyperparameters for PPO2.

Parameter Description Value

µ Learning rate 2.5 · 10−4

γ Discount factor 0.99
ϵ Clipping parameter 0.2
cvf Value function coefficient for the loss calculation 0.5
cent Entropy coefficient for the loss calculation 0.001
λPPO Factor for trade-off of bias vs variance 0.95
T Number of steps during training for each environment 1,024
Ttot Number of total steps during training 65,000,000
tmax Maximum amount of steps before episode ends 60,000
NMB Number of training minibatches per update 4
NA Number of parallel actors 8

The structure of the agent is summarized in Figure 3.3. The purpose of the policy
network is to generate an action that maximizes the reward function based on the ob-
servations. All implementation details are explained further in this section.

Navigational

LiDAR

MultiInput-

Policy
CNN

Waypoint

Planner

Observations Policy Network Action

1x13

15x15 1x64

1x2

Figure 3.3: Structure of the DRL agent. The observation vector is divided in two, with
both navigational observations and observations from a 360-degree LiDAR
sensor. The policy network processes the observations, which outputs an
action to plan the next waypoint.

3.3.1 Action Space

The action vector is the DRL agent’s output, defining the quadcopter’s next waypoint.
The next waypoint is determined to be placed on a plane perpendicular to the original
path at a certain lookahead distance, ∆, down the path. Placing the next waypoint a
distance ∆ down the path ensures that the quadcopter moves in the correct direction
along the path. The agent takes an action every tenth time step of the quadcopter,
meaning that the quadcopter is simulated for 0.1 s for each new path. A new path is not
generated at each time step, as this is computationally heavy. Recalculating the path at
even lower rates could also be problematic, as this gives infrequent updates to the policy
network.

At each point on the path, there are defined three perpendicular vectors: the unit
tangent vector, t̂wT , the unit normal vector, n̂wT , and the unit binormal vector, b̂wT . The
unit tangent vector is the vector of the gradient at the point, scaled to size one. It
is calculated by inserting Equation (2.27) into Equation (2.25) and dividing by the
norm. Likewise, the unit normal vector is the vector defined as the scaled second-order
derivative of the path, calculated by inserting Equation (2.28) into Equation (2.25) and
dividing by the norm. Finally, the unit binormal vector is defined as the cross product
between the tangent vector and normal vector, like b̂wT = t̂wT × n̂wT .

28

3.3 Deep Reinforcement Learning for Collision Avoidance

pwT,∆ denotes the point on the path a distance ∆ further down the path from the closest
point on the path from the quadcopter. The action vector

a =
[
cn cb

]
, (3.26)

defines where on the plane, spanned by n̂wT,∆ and b̂wT,∆, the next waypoint should be

placed. n̂wT,∆ and b̂wT,∆ are defined to be the normal and binormal vectors, respectively,
at point pwT,∆ on the path. Then, the next waypoint in the alternative path for the
quadcopter to follow is given by

w = pwT,∆ + cnn̂
w
T,∆ + cbb̂

w
T,∆. (3.27)

By letting the DRL agent learn cn and cb, it should be able to avoid crashing into
obstacles. In the absence of obstacles, cn and cb should be small to place the next
waypoint of the alternative path on the original path. In the presence of obstacles, the
agent should assign values to cn and cb such that the alternative path followed by the
path following controller avoids the obstacle. The plane where the quadcopter can place
the next waypoint within is illustrated in Figure 3.4.

xw [m]

0
10

20

30

40

50 yw [m]
10

20
30

40
50

60

z w
 [m

]

50

40

30

20

10

0Path
Tangent Vector
Normal Vector
Binormal Vector
Initial Position
Quadcopter Position

Figure 3.4: Visualization of how the agent places the next waypoint. In the figure, the
tangent vector, tT,∆, normal vector, nT,∆, and binormal vector, bT,∆ of the
path at the lookahead point pT,∆ are illustrated. Note that the vectors are
scaled for visibility. The agent can place the next waypoint on the plane
spanned by the normal vector and binormal vector, illustrated in the figure.
The waypoint’s exact position on the plane is determined by adjusting the
size of cn and cb.

3.3.2 Observation Space

The observation space of the DRL agent consists of the navigational observations, on,
and the LiDAR observations, ol. The complete observation space is then given as

o =
[
on ol

]
, (3.28)

and all related parameters are summarized in Table 3.4.

29

3 Methodology

The navigational features for the DRL agent are all given in body frame. As the actions
of the agent are directly related to the normal and binormal vectors at the point pwT,∆,

these vectors are observed as n̂bT,∆ = R(Θbw)n̂
w
T,∆ and b̂bT,∆ = R(Θbw)b̂

w
T,∆. In addition,

the vector from the quadcopter’s position to the lookahead point is observed, given
by pb∆ = R(Θbw)(p

w
T,∆ − pwwb). These enteties can be observed in Figure 3.4, where

n̂bT,∆ is the normal vector, b̂bT,∆ is the binormal vector, and pb∆ is the vector from

the quadcopter’s position to the base of n̂bT,∆ and b̂bT,∆. This yields the navigational
observation space as

on =
[
Θwb n̂bT,∆ b̂bT,∆ pb∆

]
, (3.29)

where Θwb is the quadcopters rotation relative to world frame. The orientation of the
quadcopter is included in the observations as the action are scalars of vectors in world
frame, while all observations are in body frame.

The LiDAR observations are a 15 × 15 grid of rangefinder sensors simulating LiDAR
measurements. The rangefinder sensors are employed with a 360-degree field of view with
equal spacing, assuming there are no blind spots. Obstacles are found with a line search
along each sensor, with a maximum range of dmax. Each measurement is converted to a
closeness-quantity, as

c(di,j) = clip

(
1− di,j

dmax
, 0, 1

)
, (3.30)

where di,j is the i’th and j’th rangefinder measurement and dmax is the LiDAR range.

Table 3.4: Parameters for the observation space of the DRL agent.

Parameter Description Value

∆ Lookahead distance 5 m
dmax LiDAR range 25 m
- Sensor suite 15× 15

3.3.3 Policy Network

The policy network should maximize the expected reward by finding the best actions
from observations. By training the agent, the parameters of the policy network are
changed to find the optimal policy πθ(at|ot). As seen in Figure 3.3, the policy network
is divided into two parts: a CNN and MultiInputPolicy.

CNNs are designed to extract spatial information from location-based data. As the Li-
DAR measurements have this attribute, a CNN extracts features from the data. The
complete CNN is illustrated in Figure 3.5. The network does only contain one convolu-
tional layer before the resulting grid is flattened out. Sundøen, the writer of [71], used
three convolutional layers with ReLUs for activation in-between. Initial tests showed
better performance with a sparser network, which led to the decision to reduce the com-
plexity of the CNN. Typically, a deeper CNN detects smaller features in the observed
data. As keeping information related to the position and orientation of the data is im-
portant, a shallow network can be more effective. Training time is also reduced when
the network contains fewer parameters. These results are also supported by [40], where
CNNs with depth one, three, and four convolutional layers were tested for path following
and collision avoidance for an autonomous marine surface vessel. The results showed
that the CNN with one convolutional layer performed best.

30

3.3 Deep Reinforcement Learning for Collision Avoidance

LiDAR CNN

Conv2d Flatten
15x15 1x64

Figure 3.5: Illustration of the CNN feature extraction. The network does only consist
of one convolutional layer and a flatten function.

The hyperparameters of the convolutional layer are presented in Table 3.5. Since only
one convolutional layer is used, the input and output are limited to just one channel. A
kernel size of five and both padding and stride equal to two give an outputted feature
map of size 8 × 8. This can be calculated with Equation (2.29). Circular padding is
used to encapsulate the sphere shape of the LiDAR measurements. In the horizontal
axis, the left side is padded with the rightmost part of the measurements, and vice versa.
Likewise, the upper left part of the image is padded with the upper right part of the
image, and vice versa. This resolves the problem of discontinuity of the measurements
along the edges. How the kernel processes the LiDAR measurements is visualized in
Figure 3.6.

Table 3.5: Hyperparameters for the convolutional layer in the policy network.

Parameter Value

in channels 1
out channels 1
kernel size 5
stride 2
padding 2
padding mode circular

The navigational observations and the preprocessed LiDAR features are fed to Mul-
tiInputPolicy, a deep neural network. By using a “MultiInput”-policy, SB3 uses the
CombinedExtractor feature extractor to convert the inputs into a single vector. This
vector is then used as input to a fully-connected network that maps the features to ac-
tions and a value. Thus, the input vector is of size 1× 77, and the output size is of size
1×2. The policy defines an actor-network and a value-network; in this thesis, both have
a structure of three hidden layers of 128, 64, and 32 neurons, respectively. This is the
same structure as Sundøen used in [71]. It is worth noticing that an extra linear layer is
added on top of the specified layers to have the correct output dimensions and activation
functions. Each layer uses hyperbolic tangent, tanh(·), as activation functions.

3.3.4 Reward Function

The objective of the RL algorithm is to find a policy to maximize future rewards. Thus,
the reward function is used to define what priorities the agent should make. To solve the
dual objective of path following, there is given a reward for staying close to the path,
rpft , while closeness to obstacles, rcat , and collisions, rct , are penalized. The rewards are
calculated at each time step, but the reward is only provided to the policy network every

31

3 Methodology

Stride = 2

Kernel = 5x5

Figure 3.6: Visualization of how the convolutional filter processes the LiDAR measure-
ments. The kernel strides across 8× 8 = 64 feature activations. Circular
padding ensures continuous overlap.

32

3.3 Deep Reinforcement Learning for Collision Avoidance

tenth time step when a new action is applied, and the new alternative path is calculated.
Thus, the reward at time step t is given as

rt = λrpft + (1− λ)rcat + rct , (3.31)

and the reward given to the policy network is

r =
t∑

τ=t−9

rτ , (3.32)

for the past ten time steps. The weighting coefficient λ ∈ [0, 1] is introduced to regu-
late the trade-off between the competing objectives path following and collision avoid-
ance.

The path following reward is given by

rpft =
min (−ln (∥pwT − pwwb∥) ,−ln (dpf))

−ln (dpf)
, (3.33)

where ∥pwT − pwwb∥ is the distance from the quadcopter to its closest point on the path,
and dpf is the distance from the path yielding the highest possible path following reward.
The natural logarithm ensures that if the quadcopter is already far from the path, there
is no need to apply a higher penalization if the quadcopter moves slightly further away.
By taking the minimum of this value and −ln (dpf), the maximum reward is upper-
bounded when the quadcopter is within 10 cm away from the path. A maximum reward
is provided as a 10 cm deviation from the path is considered insignificant.

The term for penalizing obstacle closeness is inspired by the authors of [28] and is given
by

rcat = −2 ln

(
1− γca

∑
i∈I
∑

j∈J βca(θj , ψi)(γcmax((1− c(di,j))2, ϵc))−1∑
i∈I
∑

j∈J βca(θj , ψi)

)
, (3.34)

where i and j specify the sensor sector, ϵc is a constant to avoid singularities when
obstacle closeness is one, and γc and γca are scaling parameters. The obstacle closeness,
c(di,j), defined in Equation (3.30), is used to increase the penalization as the distance to
the obstacle decreases. The penalization term is written as a weighted average to allow
for different sensor configurations. The vehicle-relative scaling factor is defined as

βca(θj , ψi) = (1− 2|θi|/γv)(1− 2|ψj |/γh) + ϵca, (3.35)

where ϵca is used to penalize obstacles at the edge of the configuration. This orientation
factor aims to scale the reward according to the vehicle-relative orientation. Obstacle
closeness likely to result in a collision should result in a lower reward than obstacles
not on a collision course. Figure 3.7 illustrates how the 2D LiDAR image is weighted
according to sector importance, given by βca. Obstacles right in front of the quadcopter
will yield the largest penalties.

33

3 Methodology

180 120 60 0 60 120 180
Horizontal sensor angle [deg]

90

60

30

0

30

60

90

Ve
rti

ca
l s

en
so

r a
ng

le
 [d

eg
]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 3.7: Scaling of collision avoidance reward according to where the LiDAR mea-
surements are made, relative to the quadcopter’s heading. Obstacle de-
tection right in front of the quadcopter yields higher penalization than
detections on the side or behind. Note that the grid illustrated is much
finer than the 15× 15 sensor suite used during the simulation.

Finally, there is provided a constant, negative reward for collisions, given by

rct = rcollision. (3.36)

Table 3.6: Parameters for reward function.

Parameter Description Value

λ Weighting between path following and collision avoidance 0.5

dpf
Maximum distance from path to yield highest possible
path following reward

0.1 m

ϵc Minimum obstacle penalty closeness 0.05
ϵca Minimum vehicle-relative scaling 0.05
γc Obstacle closeness penalty scaling 12.5
γca Collision avoidance penalty scaling -20
γv LiDAR span vertical apex angle 180
γh LiDAR span horizontal apex angle 360
rcollision Negative reward for collision -1,000
rmin Minimum reward in an episode -20,000

3.4 Training Process

The training is done with an Intel® CoreTM i7-10700 CPU @ 2.90 GHz in eight parallel
environments. The agent is trained for 65,000,000 time steps, making it possible to

34

3.5 Evaluation

achieve desired performance levels. Note that this means the quadcopter is simulated
for 65,000,000 time steps, and the policy network is updated 6,500,000 times, as updates
are made every tenth time step.

For each episode, there are formulated four termination criteria:

(a) reaches the final waypoint,

(b) collides with an obstacle,

(c) r < rmin,

(d) t > tmax.

Reaching the final waypoint of the path counts as a success. An acceptance distance is
defined, daccept = 1 m, around the final waypoint. If the quadcopter reaches this area,
the episode is terminated. Collision with an obstacle will also lead to termination of the
episode. In addition, rmin = −20, 000 is chosen as a minimum reward for an episode,
and tmax = 60, 000 is the maximum number of time steps. If either of these two criteria
is met, it means that the quadcopter is probably behaving very disadvantageously, and
it is not worthwhile to continue the learning process.

3.5 Evaluation

To evaluate the performance, both the path following controller and DRL agent are
assessed. It is possible to assess the path following controller independently from the
DRL agent by creating a path without obstacles, while the DRL agent is assessed in
environments both with and without obstacles. Note that the performance of the DRL
agent is directly impacted by the performance of the path following controller. To
conclude if combining classical and data-driven control can improve the results, the
performance of the DRL agent is compared with the performance obtained by Sundøen
in [71], using an end-to-end trained agent in the same gym-quad framework.

Testing scenarios ranging from beginner to expert complexity are constructed to evaluate
performance in different complexities. In the beginner scenario, there is only a path
and no obstacles. The intermediate level has an obstacle at the path’s halfway mark.
Proficient is the second-highest complexity level and has two additional obstacles placed
stochastically around and possibly on the path. In the final expert level, one obstacle
is guaranteed to be placed on the path, and a total of five obstacles are on or around
the path. Example environments from each test level are shown in Figure 3.8. The
path following controller is only tested on the beginner level, as it is not able to handle
obstacles. The DRL agent is tested in all four complexity levels. Both are simulated
for 100 episodes in each scenario to get enough test data to draw conclusions from the
performance.

The DRL agent is also tested in four unseen environments to evaluate the ability to
generalize and adapt to other situations. In the helix scenario, a spherical obstacle with
a radius of 100 m is centered in origin, and the path is designed as a helix with two
revolutions with a radius of 110 m around the obstacle. The dead-end test has the
obstacles configured as a half-sphere with a radius of 15 m. Finally, the vertical and
horizontal scenarios are designed with obstacles stacked vertically and horizontally. The
agent was simulated for 100 episodes in each environment with a random initial position

35

3 Methodology

to get statistically significant results. These unseen test environments are presented in
Figure 3.9.

The distance from the quadcopter to the path is considered to evaluate the path following
performance. The Average Path Error (APE) of an episode is defined as the average
distance from the quadcopter to the closest point on the path over each time step until
the episode is terminated. APE is calculated as

APE =
∑
t

√
e2t + h2t , (3.37)

where et and ht are the cross-track and vertical-track errors at time t. A low APE
implies that the quadcopter stays close to the path.

In the presence of obstacles, APE is not enough to evaluate the performance, as the
obstacles might drive the quadcopter away from the path to avoid colliding. Thus, both
failure and collision rates are used to evaluate the performance. The failure rate is
defined as the number of times an episode terminated without the quadcopter reaching
the final waypoint, as

FR =
of failed episodes

N
, (3.38)

where N is the number of episodes. This happens if the quadcopter collides, the episode
reward is below the minimum reward, or the quadcopter has used more than the maxi-
mum number of time steps. Likewise, the success rate is defined as

SR =
of succeeded episodes

N
, (3.39)

and is the rate at which the quadcopter reaches the final waypoint. To differentiate
between the quadcopter colliding and simply failing because it uses too much time,
there is defined a collision rate as

CR =
of collisions

N
. (3.40)

Finally, it is interesting to consider the progression of the quadcopter along the path. The
progression is defined as how far along the path the quadcopter had reached when the
episode ended. This helps differentiate if the quadcopter crashes into the first obstacle
on the path or if it is able to avoid collisions for a while.

36

3.5 Evaluation

xw [m]
50 25 0 25 50 75 100 125 yw [m]

25 0 25 50 75 100 125 150

z w
 [m

]

0

25

50

75

100

125

150

175

200Path
Waypoints

(a) Beginner

xw [m]
80 60 40 20 0 20 40 60 yw [m]

180 160 140 120 100 80 60 40 20

z w
 [m

]

20

40

60

80

100

120

140

160
Path
Waypoints

(b) Intermediate

xw [m]
125100 75 50 25 0 25 50 75 yw [m]

100 75 50 25 0 25 50 75 100

z w
 [m

]

25

50

75

100

125

150

175

200

225
Path
Waypoints

(c) Proficient

xw [m]
25 0 25 50 75 100 125 yw [m]

25 0 25 50 75 100 125 150

z w
 [m

]

0

25

50

75

100

125

150

175
Path
Waypoints

(d) Expert

Figure 3.8: Example of test scenarios with increasing complexity, ranging from no ob-
stacles to six obstacles.

37

3 Methodology

xw [m]100 50 0 50 100

y
w [m

]

100

50

0

50

100
z w

 [m
]

100
50
0
50
100Path

Waypoints

(a) Helix

xw [m]
0 20 40 60 80 100

yw
 [m

]

40
20

0
20

40

z w
 [m

]

40

20

0

20

40

60
Path
Waypoints

(b) Dead-end

xw [m]

0 20 40 60 80 100

yw [m
]

40
20

0
20

40

z w
 [m

]

40

20

0

20

40

60Path
Waypoints

(c) Vertical

xw [m]

0
20

40
60

80
100

yw [m
]

40
20

0
20

40

z w
 [m

]
40

20

0

20

40

60Path
Waypoints

(d) Horizontal

Figure 3.9: Unseen test scenarios to evaluate the DRL agent’s ability to generalize to
new environments.

38

Chapter 4
Results and Discussions

This section covers the performance of both the path following controller and DRL agent
for collision avoidance. The path following controller was only tested in the beginner
scenario, as it does not consider obstacles, and the results are presented in Section 4.1.
The DRL agent for collision avoidance was tested in all four test scenarios, similar to
what is encountered during training, and in the four unseen test scenarios to evaluate
generalization abilities. The results are investigated in Section 4.2.

4.1 Path Following Controller

The path following controller, derived in Section 3.2, was tested in the beginner scenario,
which is an environment without obstacles. The controller must be able to make the
quadcopter follow the desired path and redirect to the path in case of deviations. Thus,
there were conducted tests where the quadcopter started on the path and where the
quadcopter’s initial positions had random deviations from the path’s starting position.
When starting off the path, the initial position was given by

xw0 ∼ U(−10, 10), (4.1a)

yw0 ∼ U(−10, 10), (4.1b)

zw0 ∼ U(−10, 10), (4.1c)

where ∼ U(−10, 10) represents the uniform distribution between −10 m and 10 m. The
quadcopter was simulated for 100 episodes in both scenarios.

4.1.1 Quantitative Results

The quantitative results are summarized in Table 4.1.

The quadcopter was able to reach the target, both when starting on and off the path.
The APE, defined as the Euclidean distance from the quadcopter to the closest point on
the path, was naturally slightly higher when the quadcopter started away from the path,
and this is because it will take some time to redirect to the path. However, an average
APE of 5 cm when starting on the path must be considered a good performance.

39

4 Results and Discussions

Tuning the controller gains was a trade-off between reducing the APE, reducing the time
spent traversing the path, and avoiding instability. E.g., increasing Kp,a or Ki,a would
improve performance concerning APE. However, the quadcopter would take longer to
traverse the path and potentially become unstable. Likewise, Kd,a could have been
increased to reduce the risk of instability, but the APE would increase. Thus, the exact
performance metrics of the path following controller are not the most interesting results.
The most important result is that the quadcopter stays stable in various scenarios and
always stays relatively close to the path.

Table 4.1: Performance of path following controller from Section 3.2, tested over 100
episodes in the beginner level. In the first scenario, the quadcopter’s initial
position was located at the initial waypoint of the path. In the second
scenario, the quadcopter started off the path to evaluate the controller’s
ability to handle deviations from the path.

Scenario
Success
Rate [%]

Avg.
Progression [%]

Avg.
APE [m]

Beginner - on path 100 100 0.05
Beginner - off path 100 100 0.18

4.1.2 Qualitative Results

A visual inspection of the performance is shown in Figure 4.1, where a run in the same
environment is shown with the quadcopter starting both on and off the path. When
starting on the path, the quadcopter was always able to stay close and never experienced
any fluctuations from the path. When the initial position of the quadcopter was not on
the path, it was still able to move towards the path in the same direction as the path
is heading. When coming close enough to the path, the quadcopter followed it without
any problems.

xw [m]

100 80 60 40 20 0 20 40 60
yw [m]

60 40 20 0 20 40 60 80 100

z w
 [m

]

40

60

80

100

120

140

160

180

200
Path
Quadcopter Path
Waypoints
Initial Position

(a) Quadcopter started on the path.

xw [m]

10080 60 40 20 0 20 40 60
yw [m]

60 40 20 0 20 40 60 80 100

z w
 [m

]

40

60

80

100

120

140

160

180

200
Path
Quadcopter Path
Waypoints
Initial Position

(b) Quadcopter started off the path.

Figure 4.1: Sample tests of the path following controller in the beginner scenario, star-
ing both on and off the path.

40

4.2 Deep Reinforcement Learning Agent

4.2 Deep Reinforcement Learning Agent

To evaluate the performance concerning collision avoidance, the DRL agent was tested
over 100 episodes in each of the four testing scenarios described in Section 3.5: beginner,
intermediate, proficient and expert. The agent was also simulated 100 times in each
unseen test scenario to evaluate generalization abilities.

4.2.1 Quantitative Results

The quantitative results are summarized in Table 4.2.

It can be seen that the APE in the beginner scenario was significantly higher than when
only the path following controller was used. A bit higher APE is expected, as the agent
calculates an alternative path based on a lookahead point 5 m ahead. This means that
the new path may not perfectly align with the original path between the current position
of the quadcopter and the lookahead point. However, as the actual path does not contain
many aggressive turns, an increase of 3 m is too high for this to be the only explanation.
Thus, the DRL agent has not thoroughly learned that the action vector in such a case
should be close to a = [0, 0] to stay near the path. There could be several reasons for
this, e.g., that the agent is never trained in an environment entirely without obstacles.
Thus, it might be that it was not exposed to enough training without obstacles to learn
perfect behavior. Another reason might come from the path following reward, as it is
a dead zone 10 cm away from the path, where no larger reward is given. However, this
dead zone of 10 cm should not lead to an APE of 3.05 m. The reasons for this high APE
will be further investigated in the qualitative analysis.

In each scenario, the success rate and collision rate explain about 90% of the episodes.
This means that around 10% of the episodes were ended by the quadcopter deviating
from the path and using too much time. Thus, it seems this is happening independently
of the obstacles and is a weakness of the path following abilities of the controller. This
supports the hypothesis that the DRL agent has a potential for improvement with respect
to path following in the absence of obstacles.

The collision rate increased as the complexity level of the scenarios increased, as ex-
pected. The quadcopter performed quite well with a collision rate of only 18% in the
intermediate level. These results show the potential of combining classical control with
data-driven control and are significantly better than the performance of the end-to-end
trained agent, developed by the authors of [71], using the same gym-quad framework.
However, as the obstacles came closer, it had more difficulties avoiding collisions. The
collision rate increased to 44% and 57% for the proficient level and expert level, respec-
tively. Thus, it does imply that basic collision avoidance was learned, but the agent
experienced difficulties when encountering several obstacles.

Table 4.2: Performance of DRL agent on test scenarios, each simulated for 100 episodes.

Scenario
Success
Rate [%]

Collision
Rate [%]

Avg.
Progression [%]

Avg.
APE [m]

Beginner 91 N/A 94 3.05
Intermediate 72 18 83 3.57
Proficient 44 44 66 3.03
Expert 31 57 59 3.70

41

4 Results and Discussions

4.2.2 Qualitative Results

To get a deeper insight into the performance of the DRL agent, this section presents
plots illustrating its behavior in various scenarios.

xw [m]

1007550250 25 50 75 yw [m]100 75 50 25 0 25 50 75
z w

 [m
]

225

200

175

150

125

100

75

50

25Path
Waypoints
Initial Position
Quadcopter Path

(a) Successful example from proficient scenario.

xw [m]

40
20

0
20

40
60

80
100

120

yw [
m]

240
220

200
180

160
140

120
100

80

z w
 [m

]

120
100
80
60
40
20
0
20
40

Path
Waypoints
Initial Position
Quadcopter Path

(b) Successful example from expert scenario.

Figure 4.2: Successful runs of the DRL agent in the proficient scenario and expert
scenario.

xw [m]

40
60

80
100

120
140

160

yw [m]

40
20

0
20

40
60

80

z w
 [m

]

20

40

60

80

100

120

140

Path
Waypoints
Initial Position
Quadcopter Path

(a) Failed example from intermediate sce-
nario.

xw [m]
150

100
50

0
50

yw [m]
200

150
100

50
0

z
w [m

]

200

150

100

50

0

Path
Waypoints
Initial Position
Quadcopter Path

(b) Failed example from expert scenario.

Figure 4.3: Failed runs of the DRL agent in the intermediate scenario and expert sce-
nario.

Figure 4.2 depicts two arbitrary runs where the agent reached the final waypoint. In
the proficient scenario, two obstacles were placed off the path and one on the path. The
quadcopter stayed close to the path in the absence of obstacles and when passing the two
obstacles next to the path. When encountering the obstacle on the path, it performed
an evasive maneuver to avoid colliding. This scenario showcases a desired behavior.
The quadcopter was also able to navigate the expert scenario well, avoiding the three
obstacles that are obstructing the path. After passing the obstacles, the quadcopter’s
trajectory converges to the path.

42

4.2 Deep Reinforcement Learning Agent

In Figure 4.3, there are displayed failed runs in the intermediate and expert scenarios.
Figure 4.3a shows how the quadcopter passed the obstacle before it failed around the
6th waypoint. The agent appears to become unstable, causing the quadcopter to move
uncontrollably until the time limit was met. This illustrates what is happening in about
10% of the episodes, regardless of the presence of obstacles. It is unclear why the DRL
agent suddenly gets problems following the path. One reason might be that training
on path following was not comprehensive enough and that training scenarios without
obstacles should have been included. The collision in Figure 4.3b shows the agent’s
challenge when the density of obstacles increases. Trying to avoid one obstacle, it crashed
into another in the middle of the maneuver. This indicates that the agent struggles with
handling LiDAR inputs from several obstacles in the CNN.

In all these scenarios, it is observed that, even in the absence of obstacles, the quadcopter
could not follow the path perfectly. The trajectory usually had some slight deviations
from the path, even though it was pretty close. This was also reflected through the
quantitative results, where the APE was 3.05 m in the beginner scenario. A possible
solution could be to reduce the lookahead distance from 5 m, to allow the generated path
to coincide better with the original path. Another solution could have been to have a
steeper decrease in reward when the quadcopter deviates from the path. Such a change
would also influence the tuning of the collision avoidance reward.

4.2.3 Unseen Scenarios

The DRL agent was also tested for 100 episodes in each of the four unseen scenarios
to evaluate if the agent could generalize to new scenarios. To generate statistically
significant results, the quadcopter’s initial positions had random deviations from the
path’s starting position. The deviations from the path’s initial position were given by

x ∼ U(−5, 5), (4.2a)

y ∼ U(−5, 5), (4.2b)

z ∼ U(−5, 5), (4.2c)

where ∼ U(−5, 5) represents the uniform distribution between −5 m and 5 m. It is
important to stress that these scenarios deviate significantly from those encountered
during training. In the helix scenario, the obstacle was larger than the agent had seen
before. In the dead-end, vertical, and horizontal scenarios, the obstacles were placed more
closely than ever in training and with new structures. The quantitative results from the
simulations are summarized in Table 4.3 and plots illustrating a typical behavior in each
environment are given in Figure 4.4.

Table 4.3: Performance of DRL agent on the unseen test scenarios, each simulated for
100 episodes.

Scenario
Success
Rate [%]

Collision
Rate [%]

Avg.
Progression [%]

Avg.
APE [m]

Helix 100 0 100 6.81
Dead-end 20 80 55 4.30
Vertical 88 0 88 4.82
Horizontal 100 0 100 4.40

43

4 Results and Discussions

In the helix scenario, the quadcopter reached the final waypoint in every simulation.
The sample test in Figure 4.4a shows that the quadcopter followed the path quite easily
and never got too close to the obstacle. The waypoints are placed approximately 10 m
from the obstacle, meaning the LiDAR with a range of 25 m continuously detects the
obstacle to its left side. This illustrates that the agent is able to differentiate between
where the obstacle is located relative to its heading. This is consistent with the colli-
sion avoidance reward, which penalizes obstacle detection based on the LiDAR-data’s
quadcopter-relative direction.

Being trapped in local minima is a problem often seen in reactive algorithms, which are
methods processing real-time sensor data to make decisions [18]. In practice, this means
being trapped in a dead-end. The purpose of the dead-end scenario was to investigate if
the agent had acquired the intelligence to solve such a challenge. This scenario proved the
most difficult for the agent, only succeeding in 20% of the episodes. Seen in Figure 4.4b,
the quadcopter did initially stay close to the path, and when approaching the obstacles,
it started the evasive maneuver. However, in 80% of the episodes it crashed into one of
the obstacles. It did clearly detect the obstacles, but the unseen structure might have
been why it could not succeed. Another reason why it crashed so often, could be that
all obstacles encountered during training had a maximum radius of 10 m, meaning the
quadcopter should rarely be further away from the path than 10 m. As the half-sphere
has a radius of 15 m, it might have been too difficult for the agent to avoid collision as
it was not trained to stay so far away from the path. It is, however, worth noticing that
the quadcopter did not get trapped in most episodes, and tried to perform an evasive
maneuver.

Testing in the vertical and horizontal scenarios evaluated the agent’s ability to choose
a suitable way around the obstacles based on their pose. The extreme cases have all
the obstacles placed horizontally or vertically, and the agent should not try to take the
long way around either. The agent performed well, never colliding in either scenario,
meaning that the agent was able to generalize. In both Figure 4.4c and Figure 4.4d, the
quadcopter passed the obstacles on the lateral side of the stacking direction, which is
how an intelligent controller should behave. After passing the obstacles, the quadcopter
converged to the path in both scenarios. It is worth noticing that the agent used too
long time in 12% of the episodes in the vertical scenario, which is consistent with the
behavior in the other test scenarios.

In general, it does appear that the agent has been able to generalize to unseen environ-
ments. Although the quadcopter did often crash in the dead-end scenario, it was not
trapped as a reactive algorithm easily could have been. The other three scenarios were
all navigated intelligently. As with the other test scenarios, it can be observed that the
quadcopter has potential for improvement concerning path following in the absence of
obstacles since the APE always was of significance.

44

4.2 Deep Reinforcement Learning Agent

xw [m]150 100 50 0 50 100

y w
 [m

]

100

50

0

50

100

150

200

zw
 [m

]

15010050050100150

Path
Waypoints
Initial Position
Quadcopter Path

(a) Helix

xw [m]
0 20 40 60 80 100

yw
 [m

]

40
20

0
20

40

z w
 [m

]

40

20

0

20

40

60
Path
Waypoints
Initial Position
Quadcopter Path

(b) Dead-end

xw [m]

0 20 40 60 80 100

yw [m
]

40
20

0
20

40

z w
 [m

]

40

20

0

20

40

60

Path
Waypoints
Initial Position
Quadcopter Path

(c) Vertical

xw [m]

0 20
40

60
80

100

yw [m
]

40
20

0
20

40

z w
 [m

]

40

20

0

20

40

60

Path
Waypoints
Initial Position
Quadcopter Path

(d) Horizontal

Figure 4.4: Typical behavior of the quadcopter in the unseen test scenarios. The agent
successfully navigated the helix, vertical, and horizontal scenarios in most
of the episodes, but did often collide in the dead-end scenario.

45

Chapter 5
Conclusion and Further Work

This chapter provides a conclusion on the research in terms of how the research questions
are answered, hence realizing the research objectives. In addition, suggestions for further
work are provided.

5.1 Conclusion

The primary research objective of this thesis was to obtain a fitting abstraction between
low-level classical control and high-level Reinforcement Learning (RL) to solve the dual
objective of path following and collision avoidance for a quadcopter. To achieve this, a
geometrical path following controller was derived and implemented. Using Deep Rein-
forcement Learning (DRL), an agent was trained to intelligently perform local navigation
around obstacles discovered with a simulated LiDAR. A Convolutional Neural Network
(CNN) with a spherical suite was used for dimensionality reduction of the LiDAR mea-
surements. To encourage the correct behavior of the quadcopter, a reward function was
developed to penalize obstacle closeness and collisions while rewarding path closeness.
The DRL agent was trained in synthetic and stochastically generated environments us-
ing the Proximal Policy Optimization (PPO) algorithm, before it was ultimately tested
in scenarios of increasing complexity and in scenarios never encountered before.

The main conclusions of the thesis are:

• The path following controller performs excellently standalone and has proven to
function as a control abstraction for the DRL agent. By abstracting away the path
following problem and having the DRL agent only decide the next waypoint, the
quadcopter stays relatively close to the desired path and is able to follow the path
in 91% of the episodes in the beginner scenario. These results show the potential
of combining classical control with data-driven control and are significantly better
than the performance of the end-to-end trained agent, developed by the authors
of [71], using the same gym-quad framework.

• By succeeding in 72% of episodes in the intermediate scenario, the DRL agent
showed it has learned to perform evasive maneuvers for collision avoidance. This
is supported by plots, such as in Figure 4.2. The quadcopter stays close to the

47

5 Conclusion and Further Work

path until it approaches an obstacle, where it sacrifices path adherence to avoid
collision before converging to the path again.

• The agent proves generalization abilities by performing well in unseen test scenarios
with a considerable domain gap to the training scenarios, both in terms of path
shape and obstacle configuration. Intelligently avoiding collision in three of the
scenarios, the agent does not rely on predefined rules and heuristics. The dead-end
scenario proved the most difficult, probably due to a lack of training scenarios
requiring the quadcopter to move far away from the path.

5.2 Further Work

The DRL agent relies on a CNN-based perception, assuming the LiDAR measurements
are a 2D grid. This is probably an unrealistic assumption, as the detected points in
reality are 3D points. By considering the measurements as a point cloud, deep net
architectures designed for 3D geometric data could be utilized and possibly improve
collision avoidance performance. An example of such a network is the PointNet [56],
which has shown excellent performance within segmentation and classification of point
clouds.

The action space of the DRL agent restricts it to always place the next waypoint a
certain lookahead distance down the path. This implies that the quadcopter cannot
turn back and fly in the opposite direction of the path or hover still over the ground.
Such behavior could be desirable in urban environments. It might be necessary to turn
around if the quadcopter tries to navigate through a corridor that turns out to be blocked
or hovering over the ground as the quadcopter waits for another vehicle to pass. To solve
this problem, the action space could be modified to use sphere coordinates to determine
the next waypoint. The dimensionality of the action space would have been increased to
three, as two angles and the radial distance are required. Note that this would demand
a change in reward function to stimulate the quadcopter to move along the path and
not only to the path’s closest point. Such reward functions have already been designed
in similar control problems [28, 48, 71].

Although the DRL approach has shown notable benefits, a disadvantage is that the
agents act as black-box models offering little insight into the learned mappings. Safety
guarantees will probably become a prerequisite if DRL-based controllers for quadcopters
are to be used in urban environments. Thus, measures should be taken to understand
the underlying reasoning better. One approach could be using symbolic regression to
find value-functions based on state transitions, as the authors of [38] did.

Even if great results were obtained from training in simulation, there would have been
required training directly in the real world. This is called transfer learning and is used
to apply the learned behavior in a related task, such as operations in the physical world.
As RL is used for high-level model-free control, the need for transfer learning is probably
reduced compared to an end-to-end trained agent. This is because the low-level controller
can account for physical effects such as wind gusts. However, other effects, such as noisy
LiDAR measurements, could still cause problems for the agent. Thus, some transfer
learning should be applied. This could cause some challenges, for example, the possibility
of collisions and breaking the quadcopter. The training process will also be slow if
only one quadcopter is used. Therefore, performing most of the training in synthetic
environments is desirable.

48

Bibliography

[1] Alrifaee, B., Kostyszyn, K., and Abel, D. Model predictive control for colli-
sion avoidance of networked vehicles using lagrangian relaxation. 14th IFAC Sym-
posium on Control in Transportation SystemsCTS 2016 49, 3 (Aug 2016), 430–435.
https://www.sciencedirect.com/science/article/pii/S2405896316302683.

[2] Ambrosino, G., Ariola, M., Ciniglio, U., Corraro, F., De Lellis, E., and
Pironti, A. Path generation and tracking in 3-d for uavs. IEEE Transactions on
Control Systems Technology 17, 4 (May 2009), 980–988. https://ieeexplore.

ieee.org/document/4908914.

[3] Amidi, O., and Thorpe, C. E. Integrated mobile robot control. In Mobile
Robots V (Mar 1991), W. H. Chun and W. J. Wolfe, Eds., vol. 1388 of Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp. 504–523.
https://ui.adsabs.harvard.edu/abs/1991SPIE.1388..504A.

[4] Andersson, O., Wzorek, M., Rudol, P., and Doherty, P. Model-predictive
control with stochastic collision avoidance using bayesian policy optimization. In
2016 IEEE International Conference on Robotics and Automation (ICRA) (May
2016), pp. 4597–4604. https://ieeexplore.ieee.org/document/7487661.

[5] Balchen, J. G., Andresen, T., and Foss, B. A. Reguleringsteknikk, sixth ed.
Institutt for teknisk kybernetikk, NTNU, Trondheim, Norway, 2016. https://

folk.ntnu.no/tronda/regtek-kurs/bok-reguleringsteknikk.pdf.

[6] Bohn, C., and Atherton, D. An analysis package comparing pid anti-windup
strategies. IEEE Control Systems Magazine 15, 2 (Apr 1995), 34–40. https:

//ieeexplore.ieee.org/document/375281.

[7] Boivin, E., Desbiens, A., and Gagnon, E. Uav collision avoidance using coop-
erative predictive control. In 2008 16th Mediterranean Conference on Control and
Automation (Jun 2008), pp. 682–688. https://ieeexplore.ieee.org/document/
4602109.

[8] Byrnes, C., and Isidori, A. Asymptotic stabilization of minimum phase non-
linear systems. IEEE Transactions on Automatic Control 36, 10 (Oct 1991), 1122–
1137. https://ieeexplore.ieee.org/document/90226.

[9] Cabecinhas, D., Cunha, R., and Silvestre, C. A globally stabilizing path fol-
lowing controller for rotorcraft with wind disturbance rejection. IEEE Transactions

49

Bibliography

on Control Systems Technology 23, 2 (Jun 2015), 708–714. https://ieeexplore.
ieee.org/document/6837464.

[10] Carlsen, Ø. Introducing tracking vessel obstacles when training autonomous
surface vehicles. Unpublished, 2022.

[11] Carlsen, Ø. Path following controller and drl-based collision avoidance for quad-
copter. https://github.com/orjanic/gym_quad, 2023.

[12] Chakravarthy, A., and Ghose, D. Obstacle avoidance in a dynamic envi-
ronment: a collision cone approach. IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans 28, 5 (Sep 1998), 562–574. https:

//ieeexplore.ieee.org/document/709600.

[13] Chang, S.-R., and Huh, U.-Y. A collision-free g2 continuous path-smoothing
algorithm using quadratic polynomial interpolation. International Journal of Ad-
vanced Robotic Systems 11, 12 (Dec 2014), 194. https://doi.org/10.5772/59463.

[14] Chang, S.-R., and Huh, U.-Y. Curvature-continuous 3d path-planning using
qpmi method. International Journal of Advanced Robotic Systems 12, 6 (Jan 2015),
76. https://doi.org/10.5772/60718.

[15] Choi, D., Lee, K., and Kim, D. Enhanced potential field-based collision avoid-
ance for unmanned aerial vehicles in a dynamic environment. AIAA Scitech 2020
Forum (Jan 2020). https://arc.aiaa.org/doi/10.2514/6.2020-0487.

[16] Clark, R. A., Punzo, G., MacLeod, C. N., Dobie, G., Summan, R.,
Bolton, G., Pierce, S. G., and Macdonald, M. Autonomous and scal-
able control for remote inspection with multiple aerial vehicles. Robotics and Au-
tonomous Systems 87 (Jan 2017), 258–268. https://www.sciencedirect.com/

science/article/pii/S0921889016301579.

[17] Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford,
A., Schulman, J., Sidor, S., Wu, Y., and Zhokhov, P. Openai baselines.
https://github.com/openai/baselines, 2017.

[18] Eriksen, B.-O. H., Breivik, M., Pettersen, K. Y., and Wiig, M. S. A
modified dynamic window algorithm for horizontal collision avoidance for auvs. In
2016 IEEE Conference on Control Applications (CCA) (Sep 2016), pp. 499–506.

[19] Euchi, J. Do drones have a realistic place in a pandemic fight for delivering
medical supplies in healthcare systems problems? Chinese Journal of Aeronautics
34, 2 (Feb 2021), 182–190. https://www.sciencedirect.com/science/article/
pii/S100093612030279X.

[20] Faessler, M., Franchi, A., and Scaramuzza, D. Differential flatness of
quadrotor dynamics subject to rotor drag for accurate tracking of high-speed
trajectories. IEEE Robotics and Automation Letters 3, 2 (Apr 2018), 620–626.
https://doi.org/10.1109%2Flra.2017.2776353.

[21] Fossen, T. I. Handbook of Marine Craft Hydrodynamics and Motion
Control, second ed. John Wiley & Sons, Trondheim, Norway, 2021.
https://www.wiley.com/en-us/Handbook+of+Marine+Craft+Hydrodynamics+

and+Motion+Control%2C+2nd+Edition-p-9781119575054.

50

Bibliography

[22] François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., and
Pineau, J. An Introduction to Deep Reinforcement Learning, vol. 11. Now Pub-
lishers, 2018. https://doi.org/10.1561%2F2200000071.

[23] Ghosh, A., Sufian, A., Sultana, F., Chakrabarti, A., and De, D. Funda-
mental Concepts of Convolutional Neural Network. Springer International Publish-
ing, Cham, 2020, pp. 519–567. https://doi.org/10.1007/978-3-030-32644-9_

36.

[24] Goss, J., Rajvanshi, R., and Subbarao, K. Aircraft conflict detection and
resolution using mixed geometric and collision cone approaches. AIAA Guidance,
Navigation, and Control Conference and Exhibit (Aug 2004). https://arc.aiaa.
org/doi/10.2514/6.2004-4879.

[25] Guan, Y., Li, S. E., Duan, J., Li, J., Ren, Y. Sun, Q., and Cheng, B.
Direct and indirect reinforcement learning. https://doi.org/10.48550/arXiv.

1912.10600, 2021.

[26] Ha, L. N. N. T., Bui, D. H. P., and Hong, S. K. Nonlinear control for au-
tonomous trajectory tracking while considering collision avoidance of uavs based
on geometric relations. Energies 12, 8 (Apr 2019). https://www.mdpi.com/

1996-1073/12/8/1551.

[27] Haque, M., Muhammad, M., Swarnaker, D., and Arifuzzaman, M. Au-
tonomous quadcopter for product home delivery. In 2014 International Con-
ference on Electrical Engineering and Information & Communication Technology
(Apr 2014), IEEE, pp. 1–5. https://ieeexplore.ieee.org/abstract/document/
6919154.

[28] Havenstrøm, S. T., Rasheed, A., and San, O. Deep reinforcement learning
controller for 3d path following and collision avoidance by autonomous underwater
vehicles. Frontiers in Robotics and AI 7 (Jan 2021). https://www.frontiersin.
org/articles/10.3389/frobt.2020.566037.

[29] Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A., Traore,
R., Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M.,
Radford, A., Schulman, J., Sidor, S., and Wu, Y. Stable baselines.
https://github.com/hill-a/stable-baselines, 2018.

[30] Hsiao, F.-I., Chiang, C.-M., and Hou, A. Continuous control with deep rein-
forcement learning. https://aa228.stanford.edu/old-projects/, 2019.

[31] Huh, U.-Y., and Chang, S.-R. A g2 continuous path-smoothing algorithm using
modified quadratic polynomial interpolation. International Journal of Advanced
Robotic Systems 11, 2 (Jan 2014), 25. https://doi.org/10.5772/57340.

[32] Hwangbo, J., Sa, I., Siegwart, R., and Hutter, M. Control of a quadrotor
with reinforcement learning. CoRR abs/1707.05110 (Jul 2017). http://arxiv.

org/abs/1707.05110.

[33] Kaufmann, E., Bauersfeld, L., and Scaramuzza, D. A benchmark compar-
ison of learned control policies for agile quadrotor flight, 2022. https://arxiv.

org/abs/2202.10796.

51

Bibliography

[34] Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots.
In Proceedings. 1985 IEEE International Conference on Robotics and Automa-
tion (Mar 1985), vol. 2, pp. 500–505. https://ieeexplore.ieee.org/document/
1087247.

[35] Kim, J., Kang, M.-S., and Park, S. Accurate Modeling and Robust Hovering
Control for a Quad-rotor VTOL Aircraft. Springer Netherlands, Dordrecht, 2010,
pp. 9–26. https://doi.org/10.1007/978-90-481-8764-5_2.

[36] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization. In-
ternational Conference on Learning Representations (Dec 2014). https://arxiv.
org/abs/1412.6980.

[37] Koch, W., Mancuso, R., West, R., and Bestavros, A. Reinforcement learn-
ing for uav attitude control. https://arxiv.org/abs/1804.04154, 2018.

[38] Kubaĺık, J., Zegklitz, J., Derner, E., and Babuska, R. Symbolic regression
methods for reinforcement learning. CoRR abs/1903.09688 (Mar 2019). https:

//arxiv.org/abs/1903.09688.

[39] Kukreti, S., Kumar, M., and Cohen, K. Genetically tuned lqr based path
following for uavs under wind disturbance. 2016 International Conference on Un-
manned Aircraft Systems (ICUAS) (Jun 2016), 267–274. https://ieeexplore.

ieee.org/document/7502620.

[40] Larsen, T. N., Hansen, H., and Rasheed, A. Risk-based convolutional per-
ception models for collision avoidance in autonomous marine surface vessels using
deep reinforcement learning. Unpublished, 2023.

[41] Larsen, T. N., Teigen, H. Ø., Laache, T., Varagnolo, D., and Rasheed,
A. Comparing deep reinforcement learning algorithms’ ability to safely navigate
challenging waters. Frontiers in Robotics and AI 8 (Sep 2021). https://www.

frontiersin.org/articles/10.3389/frobt.2021.738113.

[42] Levine, W. S. The Control Handbook, second ed. CRC
Press, Boca Raton, USA, 1996. https://www.routledge.com/

The-Control-Handbook-Control-System-Applications-Second-Edition/

Levine/p/book/9781420073607.

[43] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa,
Y., Silver, D., and Wierstra, D. Continuous control with deep reinforcement
learning. CoRR (Sep 2015). https://arxiv.org/abs/1509.02971.

[44] Mamo, M. Trajectory control of quadcopter by designing second order smc con-
troller. Journal of Electrical Engineering 7 (Jan 2021), 10. https://jeeeccs.net/
index.php/journal/article/view/175/156.

[45] Manjunath, A., Mehrok, P., Sharma, R., and Ratnoo, A. Application
of virtual target based guidance laws to path following of a quadrotor uav. In
2016 International Conference on Unmanned Aircraft Systems (ICUAS) (Jun 2016),
IEEE, pp. 252–260. https://ieeexplore.ieee.org/document/7502565.

[46] Mellinger, D., and Kumar, V. Minimum snap trajectory generation and control
for quadrotors. In 2011 IEEE International Conference on Robotics and Automation
(May 2011), pp. 2520–2525. https://ieeexplore.ieee.org/document/5980409.

52

Bibliography

[47] Mellinger, D. W. Trajectory generation and control for quadrotors. Pub-
licly Accessible Penn Dissertations (Jan 2012). https://repository.upenn.edu/
edissertations/547/.

[48] Meyer, E., Robinson, H., Rasheed, A., and O., S. Taming an autonomous
surface vehicle for path following and collision avoidance using deep reinforcement
learning. IEEE Access 8 (Feb 2020), 41466–41481. https://ieeexplore.ieee.

org/document/9016254.

[49] Micaelli, A., and Samson, C. Trajectory tracking for two-steering-wheels mo-
bile robots. IFAC Proceedings Volumes 27, 14 (Sep 1994), 249–256. Fourth IFAC
Symposium on Robot Control, Capri, Italy, https://www.sciencedirect.com/

science/article/pii/S1474667017473228.

[50] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley,
T., Silver, D., and Kavukcuoglu, K. Asynchronous methods for deep rein-
forcement learning. CoRR abs/1602.01783 (Jun 2016). https://arxiv.org/abs/
1602.01783.

[51] Niermeyer, P., Akkinapalli, V. S., Pak, M., Holzapfel, F., and Lohmann,
B. Geometric path following control for multirotor vehicles using nonlinear model
predictive control and 3d spline paths. In 2016 International Conference on Un-
manned Aircraft Systems (ICUAS) (Jun 2016), pp. 126–134. https://ieeexplore.
ieee.org/document/7502541.

[52] Nugraha, A., and Agustinah, T. Quadcopter path following control de-
sign using output feedback with command generator tracker los based at square
path. Journal of Physics: Conference Series 947 (Jan 2018), 012074. https:

//iopscience.iop.org/article/10.1088/1742-6596/947/1/012074/pdf.

[53] Panomrattanarug, B., Higuchi, K., and Mora-Camino, F. Attitude con-
trol of a quadrotor aircraft using lqr state feedback controller with full order
state observer. In The SICE Annual Conference 2013 (Sep 2013), pp. 2041–2046.
https://ieeexplore.ieee.org/document/6736320.

[54] Plaat, A. Deep Reinforcement Learning, first ed. Springer Nature Singapore, Lei-
den, The Netherlands, 2022. https://doi.org/10.1007%2F978-981-19-0638-1.

[55] Pérez-Carabaza, S., Scherer, J., Rinner, B., López-Orozco, J. A., and
Besada-Portas, E. Uav trajectory optimization for minimum time search with
communication constraints and collision avoidance. Engineering Applications of
Artificial Intelligence 85 (Oct 2019), 357–371. https://www.sciencedirect.com/
science/article/pii/S0952197619301411.

[56] Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep learning on point
sets for 3d classification and segmentation. CoRR abs/1612.00593 (Dec 2016).
https://arxiv.org/abs/1612.00593.

[57] Raffo, G. V., Ortega, M. G., and Rubio, F. R. Backstepping/nonlinear h∞
control for path tracking of a quadrotor unmanned aerial vehicle. In 2008 American
Control Conference (Jun 2008), pp. 3356–3361. https://ieeexplore.ieee.org/

document/4587010.

53

Bibliography

[58] Ratnoo, A., Hayoun, S., Granot, A., and Shima, T. Path following using
trajectory shaping guidance. Journal of Guidance, Control, and Dynamics 38 (Aug
2013). https://arc.aiaa.org/doi/full/10.2514/1.G000300.

[59] Richards, C., and Turner, M. Combined static and dynamic anti-windup
compensation for quadcopters experiencing large disturbances. Journal of Guidance,
Control, and Dynamics 43 (Feb 2020), 1–12. https://arc.aiaa.org/doi/10.

2514/1.G004575.

[60] Roza, A., and Maggiore, M. Path following controller for a quadrotor helicopter.
In 2012 American Control Conference (ACC) (Jun 2012), pp. 4655–4660. https:

//ieeexplore.ieee.org/document/6315061.

[61] Rub́ı, B., Pérez, R., and Morcego, B. A survey of path following control
strategies for uavs focused on quadrotors. Journal of Intelligent & Robotic Systems
98 (May 2020), 241–265. https://doi.org/10.1007/s10846-019-01085-z.

[62] Sanchez, I., D’Jorge, A., Ferramosca, A., Raffo, G., and Gonzlez,
A. H. Path following and trajectory tracking model predictive control using
artificial variables for constrained vehicles. In 2019 XVIII Workshop on Infor-
mation Processing and Control (RPIC) (Sep 2019), IEEE, pp. 198–203. https:

//ieeexplore.ieee.org/document/8882189.

[63] Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and Abbeel, P. Trust
region policy optimization. CoRR abs/1502.05477 (Feb 2015). https://arxiv.

org/abs/1502.05477.

[64] Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and Abbeel, P.
High-dimensional continuous control using generalized advantage estimation. In
4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings (Jun 2016), Y. Bengio
and Y. LeCun, Eds. https://arxiv.org/abs/1506.02438.

[65] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O.
Proximal policy optimization algorithms. CoRR abs/1707.06347 (Jul 2017). https:
//arxiv.org/abs/1707.06347.

[66] Society of Naval Architects and Marine Engineers (U.S.). Technical
and Research Committee. Hydrodynamics Subcommittee. Nomenclature
for Treating the Motion of a Submerged Body Through a Fluid: Report of the Amer-
ican Towing Tank Conference. Technical and research bulletin. Society of Naval
Architects and Marine Engineers, 1950. https://books.google.no/books?id=

VqNFGwAACAAJ.

[67] Stevšić, S., Nägeli, T., Alonso-Mora, J., and Hilliges, O. Sample efficient
learning of path following and obstacle avoidance behavior for quadrotors. IEEE
Robotics and Automation Letters 3, 4 (Jul 2018), 3852–3859. https://ieeexplore.
ieee.org/document/8412596.

[68] Sultana, F., Sufian, A., and Dutta, P. Advancements in image classification
using convolutional neural network. In 2018 Fourth International Conference on
Research in Computational Intelligence and Communication Networks (ICRCICN)
(Nov 2018), IEEE. https://doi.org/10.1109%2Ficrcicn.2018.8718718.

54

Bibliography

[69] Sultana, F., Sufian, A., and Dutta, P. A review of object detection mod-
els based on convolutional neural network. In Advances in Intelligent Systems
and Computing. Springer Singapore, 2020, pp. 1–16. https://doi.org/10.1007%

2F978-981-15-4288-6_1.

[70] Sun, J., Tang, J., and Lao, S. Collision avoidance for cooperative uavs with
optimized artificial potential field algorithm. IEEE Access 5 (Aug 2017), 18382–
18390. https://ieeexplore.ieee.org/abstract/document/8022685.

[71] Sundøen, L. L. Path following and collision avoidance for quadcopters using deep
reinforcement learning. https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/
3022408, 2022.

[72] Sutton, R. S., and Barto, A. G. Reinforcement Learning: An Introduction,
second ed. The MIT Press, London, England, 2018. https://mitpress.mit.edu/
9780262039246/reinforcement-learning/.

[73] Sutton, R. S., Mcallester, D., Singh, S., and Mansour, Y. Policy gra-
dient methods for reinforcement learning with function approximation. In Ad-
vances in Neural Information Processing Systems 12 (Feb 2000), vol. 12, MIT
Press, pp. 1057–1063. https://proceedings.neurips.cc/paper/1999/file/

464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

[74] Van Loock, W., Pipeleers, G., Diehl, M., De Schutter, J., and Swevers,
J. Optimal path following for differentially flat robotic systems through a geometric
problem formulation. IEEE Transactions on Robotics 30, 4 (Mar 2014), 980–985.
https://ieeexplore.ieee.org/document/6757008.

[75] Xiang, X., Wang, Z., Mo, Z., Chen, G., Pham, K., and Blasch, E. Wind
field estimation through autonomous quadcopter avionics. In 2016 IEEE/AIAA
35th Digital Avionics Systems Conference (DASC) (Sep 2016), pp. 1–6. https:

//ieeexplore.ieee.org/document/7778071.

[76] Yasin, J. N., Mohamed, S. A. S., Haghbayan, M.-H., Heikkonen, J.,
Tenhunen, H., and Plosila, J. Unmanned aerial vehicles (uavs): Collision
avoidance systems and approaches. IEEE Access 8 (Jun 2020), 105139–105155.
https://ieeexplore.ieee.org/document/9108245.

[77] Zaitoun, N. M., and Aqel, M. J. Survey on image segmentation tech-
niques. In International Conference on Communications, management, and In-
formation technology (ICCMIT’2015) (Oct 2015), vol. 65, pp. 797–806. https:

//www.sciencedirect.com/science/article/pii/S1877050915028574.

[78] Zhaowei, M., Tianjiang, H., Lincheng, S., Weiwei, K., Boxin, Z., and
Kaidi, Y. An iterative learning controller for quadrotor uav path following at a
constant altitude. In 2015 34th Chinese Control Conference (CCC) (Jul 2015),
IEEE, pp. 4406–4411. https://ieeexplore.ieee.org/document/7260322.

55

