
Testbed-based Evaluation of QoS Differ-
entiation for Network Slicing in Multi-
Application Scenarios

Subedi, Raj Kumar

Submission date: July 2023
Main supervisor: Zinner, Thomas, NTNU
Co-supervisor: Lange, Stanislav, NTNU

Norwegian University of Science and Technology
Department of Information Security and Communication Technology

Title: Testbed-based Evaluation of QoS Differentiation for Network Slicing
in Multi-Application Scenarios

Student: Subedi, Raj Kumar

Problem description:

Today’s modern shared network infrastructures need to serve unpredictable hetero-
geneous services requiring distinct network resources such as bandwidth, computation,
storage, and so on. We also need to provide isolation of traffic of such services to
implement policies for security implementation and service level agreements. Espe-
cially at the data center and in the enterprise network, there are large aggregate
flows of various traffic that demand specific levels of network resources to function
satisfactorily. Thus, managing available network resources among the dynamic appli-
cations requesting services from the respective servers and proper isolation between
the application is a challenge to avoid the addition of physical infrastructure. At
the same point, optimizing the allocation of available network resources in such
multi-applications scenarios is imperative to guarantee a certain level of performance
for each service.

Without installing new instruments to integrate every time new services emerge,
Slicing is a potential enabler to perform differentiated traffic treatment and deal
with the outlined heterogeneity in an efficient way. Utilities such as the Intel Data
Plane Development Kit (DPDK) Quality of Service (QoS) framework are a potential
tool to implement or emulate the aspects of slicing, but uncertainty regarding the
applicability, feasibility, flexibility, and performance of the DPDK QoS framework
for the above task remain and are hence the subject of this thesis.

Approved on: 2023-01-20
Main supervisor: Zinner, Thomas, NTNU
Co-supervisor: Lange, Stanislav, NTNU

Abstract

In today’s heterogeneous network environments, different applications
have varying network resource requirements, such as throughput, latency,
and reliability. Traditional approaches to addressing this heterogeneity
involve adding additional infrastructure to provide separate resources for
each application, ensuring QoS but increasing installation and mainte-
nance costs. Moreover, scalability becomes a challenge as the number of
users and emerging applications grow, requiring constant reconfiguration
and infrastructure expansion. To tackle these issues and reduce costs
while accommodating heterogeneous services within a shared physical
network infrastructure, network slicing has emerged as a promising so-
lution. Network slicing allocates physical resources to specific services
or groups of services, ensuring guaranteed network resources even dur-
ing peak periods. However, implementing network slicing comes with
implementation complexities and trade-offs in terms of cost, deployment
complexity, and system performance.

This thesis aims to investigate a network slicing technique that shares
network resources among slices to provide QoS for each service. Various
methods for implementing network slicing exist, including client service
division into slices in software-defined network platforms and hierarchical
scheduling in hierarchical QoS (HQoS) approaches. We focus on utilizing
the DPDK QoS framework for network slicing. We employ a hierarchical
token bucket queue and define rules to identify and assign traffic to
specific slices. Our approach leverages the DPDK QoS framework in
a testbed where a Linux server hosts heterogeneous services in Docker
containers, accessed by numerous clients. We fine-tune the control knobs
of the DPDK QoS framework and monitor traffic patterns to evaluate its
characteristics and efficiency in utilizing shared physical network resources
in a heterogeneous applications environment. The contributions of this
thesis include the development of a physical testbed for multi-application
environments with traffic differentiation, facilitating reproducible and
extensible experiments. Additionally, a feasibility study is conducted to
assess the effectiveness of the DPDK QoS framework for achieving network
slicing and ensuring slice isolation. These contributions advance the
understanding and practical implementation of network slicing techniques,
aiding in resource allocation optimization, QoS assurance, and enhanced
efficiency of shared physical network infrastructure in heterogeneous
multi-application environments.

Contents

List of Figures v

List of Acronyms vii

1 Introduction 3
1.1 Objectives . 4
1.2 Thesis Contribution . 5
1.3 Thesis Structure . 5

2 Background and Literature Review 7
2.1 QoS-Based Traffic Handling and Network Slicing 7

2.1.1 Traffic Shaping in QoS . 8
2.1.2 Traffic Policing in QoS . 9
2.1.3 Hierarchical Token Bucket . 9
2.1.4 Random Early Detection (RED) 9

2.2 Different QoS Approaches . 10
2.2.1 Network Devices . 10
2.2.2 Server-based Approach and Data Plane Acceleration Survey . 11

2.3 Intel’s DPDK . 12
2.3.1 Poll Mode Library . 13
2.3.2 Message Buffers and Packet 13
2.3.3 Environment Abstraction Layer 14
2.3.4 DPDK QoS Scheduling App 14

2.4 Network Performance Metrics . 17
2.4.1 Throughput and Capacity . 17
2.4.2 Packet Delay . 17
2.4.3 Sensitivity and Performance Isolation 18

2.5 Network Automation . 19
2.5.1 Docker . 19
2.5.2 Ansible . 19

3 Methodology 23

iii

3.1 Thesis Design . 24
3.2 DPDK QoS Application . 26

3.2.1 Pipeline . 28
3.3 Control Knobs and Paramters . 29

3.3.1 QoS Application Parameters 29
3.3.2 Heterogeneous Services Parameters 32

3.4 Observed Metrics . 33
3.5 Traffic Patterns . 34
3.6 Experimental Design . 34

3.6.1 Delay Measurement . 34
3.6.2 Performance Isolation . 35
3.6.3 Throughput and Capacity . 36
3.6.4 Heterogeneous Services . 36

4 Evaluation 37
4.1 Tuning Parameters . 37

4.1.1 Average Delay with Burst Size and Queue Size 37
4.1.2 Capacity . 38

4.2 Packet Delay Using wrk2-nginx Application 39
4.3 Throughput and Capacity . 40
4.4 Performance Isolation under Cross/Competing Traffic 41
4.5 Heterogeneous Applications in Device-under-Test (DUT) 42
4.6 Discussion Regarding Performance of DPDK 44

5 Conclusion 47

References 49

Appendix

A Appendix 53
A.1 Default Sample DPDK QoS Configuration File 53

List of Figures

1.1 General Architecture for testbed . 5

2.1 Assignment of an Ethernet frame in a message buffers (mbufs) using
Hierarchical token bucket (HTB) method by QoS application of DPDK 15

2.2 DPDK QoS scheduler application architecture [23] 15
2.3 Double-tagged Etherframe for DPDK packet assigning 16
2.4 Internal data structures per port . 16
2.5 Packet switched delay . 18
2.6 Cloud computing architecture . 20
2.7 Docker architecture . 20
2.8 Ansible architecture [37] . 21

3.1 Experimental design with Ansible deployed heterogeneous applications
and clients where DUT provides QoS with application specifics and DUT
specific control knobs . 25

3.2 Scheduling hierarchy per Port [23] . 27
3.3 Hierarchical scheduling . 27
3.4 Prefetch pipeline for the hierarchical scheduler enqueue operation 29
3.5 Two Nginx at pipe 2 and pipe 3 . 35

4.1 Evaluation of average delay of wrk2 application accessing nginx web server
and achieved throughput for different request rates for various configured
queue size and burst size of DUT at 200 Mbps capacity pipe 38

4.2 Measurement of throughput of nginx at various request rates at 200 Mbps
and 1000 Mbps configured pipe capacity 39

4.3 Evaluation of packets percentile for delay(ms) of nginx application offered
round 7.5 Mbps throughput rate with various burst size, queue size, and
cross-applications for configured 200 Mbps capacity link 40

4.4 Measurement of actual throughput for different offered wrk2 request rate
for configured various burst size and queue size of DUT at 200 Mbps
capacity pipe . 41

v

4.5 Throughput of two nginx web servers accessed by wrk2 with 5000 request
rate at pipe 2 and pipe 3 where each instance runs 20 seconds and sleep
for 10 seconds periodically . 42

4.6 Average quality levels for dashjs clients for 200 Mbps capacity of configured
pipe . 43

4.7 Evaluation of throughputs for nginx server providing about 48.5 Mbps of
traffic rate and 50 clients accessing dashjs server at two separate pipes of
100 Mbps capacity each . 43

4.8 Evaluation of throughputs for nginx server providing about 48.5 Mbps of
traffic rate and 50 clients accessing dashjs server at the same pipe of 200
Mbps configured capacity . 44

List of Acronyms

API Application Programming Interface.

ASICs Application Specific Integrated Circuit.

Bpp Bytes per packet.

Bps Bytes per second.

bps bits per second.

CMDB Configuration Management Database.

COTS Commercial Off-The-Shelf.

CPU Central processing unit.

DASH Dynamic Adaptive Streaming over HTTP.

DMA Direct Memory Access.

DPDK Intel Data Plane Development Kit.

DPI Deep Packet Processing.

DUT Device-under-Test.

EAL Environment Abstraction Layer.

FPGAs Field Programmable Gate Array.

GbE gigabit Ethernet.

GBPS Gigabit per second.

HQoS Hiererchical Quality of Serivce.

vii

HTB Hierarchical token bucket.

HTTP Hypertext Transfer Protocol.

INT Integer.

IoT Internet of Things.

IP Internet Protocol.

KB Kilo byte.

MB Mega Byte.

Mbps Megabit per second.

mbufs message buffers.

Mpps Mega or million packet per second.

MTU Maximum transmission unit.

NFV Network Functions Virtualization.

NIC Network Interface Card.

NUMA Non Uniform Memeory Access.

P4 Programming Protocol-independent Packet Processors.

PDV Packet Delay Variation.

PMD Poll Mode Driver.

pps Packet per second.

PTE Page Table Entry.

QoE Quality of Experience.

QOS Quality of Service.

QoS Quality of Service.

RAM random-access memory.

RED Random Early Detection.

LIST OF FIGURES 1

RX Receiver.

SDN Software Defined Networking.

SDNPS Software Defined Networks with P4 switches.

SLAs service level agreements.

TB Tocken Bucket.

TC Traffic Class.

TCP Transmission Control Protocol.

TLB Translation Lookside Buffer.

TX Transmitter.

UDP User Datagram Protocol.

VALE Virtual Local Ethernet.

VLAN Virtual Local area Network.

VoD Video On Demand.

VoIP Voice over IP.

WRR Weighted Round Robin.

YAML Yet another markup language.

Chapter1Introduction

In a heterogeneous network, applications have different network resource require-
ments: capacity, processing time, storage, and so on which are measured by metrics
such as reliability, throughput, delay, jitter, availability, or a combination of these
metrics. For instance, Video On Demand (VoD) streaming services require larger
throughput, Voice over IP (VoIP) services require low latency, Internet of Things
(IoT), where many sensor nodes possibly hundreds of thousands are connected to a
network, need massive low bandwidth connections, secure shell for remote network
management require low bandwidth, high reliability, conference calls demand high
bandwidth, high reliability, and low latency, and so on.

To deal with the heterogeneity to provide optimum security and resource alloca-
tions to the services, we can add additional infrastructure to our existing network
infrastructure and provide separate resources to applications. This can solve the
interference of the traffic as the services have their own routes and no fighting for
the resources, meaning QoS is maintained for individual applications. However, it
increases the cost of installation and maintenance of additional devices, and the
dynamic nature of users causes the resources to be idle for inactive periods because
the resources are already allocated for the services whether the application is active or
inactive. The most important problem is scalability. We cannot predict the number
of users requesting a service at any interval of time and an emerging application
with distinct network resource requirements in modern technology, meaning growing
users and a new service requires the addition of network infrastructure and their
re-configuration, and adding policies for achieving satisfactory user experience.

Another promising technique for solving all those issues including the reduction
of costs and coping with heterogeneous services in a shared physical network infras-
tructure is network slicing. Network slicing is a technique that allows the allocation
of physical resources to a specific service or a group of services in a heterogeneous

3

4 1. INTRODUCTION

network so that a service is guaranteed to receive network resources once admitted
to the network even at the overloading period with a set of rules to identify traffic.
This technique comes with the complexity of implementation as various technologies
have been introduced; however, fine-tuning the implementation, and selecting one
that best suits a network certainly optimize the efficiency of resources allocation
and their usage and reduce the cost of expanding physical network infrastructure.
This work purpose a technique of network slicing where the network resources are
shared among the slice to provide QoS for each service. A user is concerned about
the network when the user does not receive a satisfactory experience from the service
which is latency in a voice call, throughput in VoD, and so on which can be solved
by using QoS. QoS is a mechanism that ensures the performance of an application
with limited resources in a shared network.

There are various methods for implementing network slicing in different technolo-
gies. Hiererchical Quality of Serivce (HQoS) uses hierarchical scheduling, dividing
services among different slices in the hierarchy. The set of rules to identify traffic and
implementation of network slice comes with its corresponding trade-offs regarding
cost, the complexity of deployments, and the performance of the overall system. The
simulation studies [1] shows promising results regarding the use of HQoS for Quality
of Experience (QoE)-aware resource allocation where common properties of services
are divided among slices, and services in a slice have resource sharing based on
pre-defined rules, while perfect isolation of network resources between each slice. To
maximize the benefits of such slicing mechanisms, several issues need to be addressed:
the relationship between allocated resources and the resulting user-perceived service
quality, the degree of resource isolation between slices, and the fairness in terms of
service quality under limited resource availability.

In this work, we use DPDK QoS framework [2] for the specific aspect of link
capacity slicing, which uses a hierarchical token bucket queue. We define a set
of rules to identify traffic and sort them onto slices. In the testbed Fig 1.1, the
Linux server is running QoS framework provided by DPDK for QoS implementation
for heterogeneous services hosted in docker containers which are being accessed by
numerous clients. We tune the control knobs of QoS framework provided by DPDK
and the service-specific parameters and monitor the traffic patterns and evaluate the
characteristic of DPDK QoS for the efficiency of shared physical network resources
in a heterogeneous applications environment.

1.1 Objectives

The main objectives of this thesis work are as follows:

1.2. THESIS CONTRIBUTION 5

Server running QoS

application provided

by DPDK framework

Server 1

Servern

App 1

App n

Containerized

Servers

Containerized

Applications

Figure 1.1: General Architecture for testbed

1. Physical testbed for multi-application environments with traffic differentiation,
reproducible and extensible experiments.

2. Feasibility study regarding the use of the DPDK QoS framework to achieve
network slicing and slice isolation.

3. Guidelines for appropriately configuring the DPDK QoS framework to achieve
QoS for heterogeneous applications in a shared network infrastructure.

1.2 Thesis Contribution

The details of the achieved contribution are demonstrated in the later chapters of this
thesis report. The main contribution can be summarized as follows: We evaluate the
performance of QoS framework provided by DPDK in reproducible heterogeneous
services that share a network infrastructure. There are various parameters from
service levels to the framework to tune for which the system behaves differently.
From the documentation of the framework, we measure, evaluate, and validate
the traffic pattern by tuning such control knobs and finally conclude the usability
of the framework to provide QoS for different applications in a shared network
infrastructure.

1.3 Thesis Structure

This project contains a total of 5 chapters including this current introductory first
chapter. A brief description of further chapters in this report is as follows:

6 1. INTRODUCTION

1. Chapter 2: Background and Literature Review
This Chapter gives an overview of the background and describes various termi-
nologies used in this project.

2. Chapter 3: Methodology
This chapter provides design goals, components, parameters, and metrics for
the physical setup for the experiments.

3. Chapter 4: Evaluation
This chapter contains evaluations of the data resulting from tuning various
parameters in the experiments.

4. Chapter 5: Conclusion
This chapter summarizes the complete project thesis along with the challenges
and limitations that occur in the process.

Chapter2Background and Literature Review

This chapter provides a brief introduction to the previous work that enlightens
the idea behind this thesis. This chapter also covers a general introduction for
understanding the terms and technologies used to achieve the goals.

2.1 QoS-Based Traffic Handling and Network Slicing

Ensuring QoS is crucial in a shared network infrastructure composed of heterogeneous
applications for several reasons. Firstly, QoS directly impacts user satisfaction by
delivering a consistent and high-quality experience, regardless of network condi-
tions or concurrent users. Secondly, different applications have unique performance
requirements, and QoS ensures that they can operate optimally by meeting their
specific needs, whether it’s low latency for real-time communication or high through-
put for data-intensive tasks. Additionally, QoS is necessary to fulfill service level
agreements (SLAs) and avoid penalties or contract terminations. It also plays a
vital role in resource management, ensuring fair allocation and preventing resource
monopolization [3]. Lastly, QoS mechanisms can contribute to maintaining security
and isolation, protecting sensitive data, and preventing unauthorized access. Overall,
QoS is essential to optimize performance, satisfy users, meet contractual obligations,
manage resources efficiently, and enhance security in shared network infrastructure
with heterogeneous applications [4].

Network Slicing We need to adapt our existing shared network infrastructure
that supports many different subscriber types with diverse and sometimes contradic-
tory requirements, and varying application usage. Rather than applying a monolithic
network serving multiple purposes, virtualization and Software Defined Networking
(SDN) allow us to define a logical network on top of underlays network infrastructure,
called network slices. Network slicing is a technique that overlays multiple unique
logical and virtualized networks [5] over a shared network domain that consists of
a set of shared network and computing resources. Traditionally, a virtual private

7

8 2. BACKGROUND AND LITERATURE REVIEW

network in an Ethernet network implements slicing which provides only logical
connectivity-oriented slicing, but nowadays we use various technologies namely SDN
[6], Network Functions Virtualization (NFV), orchestration, and automation to
generate network slices that provide QoS and other resources for their own logical
topology, security rules, and performance characteristics impose by the limit of shared
network infrastructure. Various slices can be implemented for different purposes, such
as ensuring specific applications have high-priority access to capacity and latency,
best-effort delivery, isolating traffic for specific users or services, and so on. The
idea behind the network slice is to create virtual networks on top of shared physical
infrastructure isolating distinct traffic flows.

Some properties of network slices are isolation, scalability, and usability. First,
there is the isolation of connectivity and isolation of performance between sets of
users/services/applications [7]. In the isolation of connectivity, connectivity within
a slice is managed within it but between slices needs external intervention outside
the slices. Performance is an end-to-end issue from application to server, hence
managing the impact of resource sharing needs to be addressed appropriately, even
when it crosses the management domain. Secondly, there must be methods for
the assurance of isolation without which it can not be trusted. It depends on the
regulatory framework and level of trust requirement; ranging from medical services
to watching video-on-demand entertainment content which obviously has different
requirements for trust. Thirdly, for scalability, isolation deployment needs to be with
minimal effort, otherwise, the costs outweigh the benefits. Heterogenous services
have distinct requirements of network services that are expressed at a high level, with
lower-level configurations automatically generated to deliver the isolation requested.
Fourthly, good slicing should cover the full range of use cases. The goal should be
delivering a set of capabilities that applications can reuse rather than re-inventing.
For instance, an operator of the domain-specific slice (e.g. banking applications) can
add value by aggregating network slice capabilities across multiple providers and
enforcing policies that are appropriate to that domain.

There are different components of QoS internal function. Some of them are briefly
discussed below.

2.1.1 Traffic Shaping in QoS

Traffic shaping [8] in QoS is a technique used in QoS to control the flow of ingress
network traffic. It regulates the rate at which packets are processed for the scheduling
stage of QoS to prevent congestion and optimize resource utilization. By enforcing
specific traffic profiles, traffic shaping smoothes outbursts of traffic and ensures a
consistent flow, improving overall network performance and ensuring fair allocation
of resources.

2.1. Quality of Service (QOS)-BASED TRAFFIC HANDLING AND NETWORK
SLICING 9

2.1.2 Traffic Policing in QoS

Traffic policing [9] is another mechanism employed in QoS to enforce compliance with
defined traffic policies and limits. It monitors incoming traffic and takes action when
it exceeds specified thresholds. Policing can involve dropping or marking packets
to prioritize traffic, control bandwidth usage, and prevent congestion. By enforcing
traffic policies, traffic policing helps maintain network performance and ensure that
traffic conforms to desired parameters.

2.1.3 Hierarchical Token Bucket

HTB is a traffic-shaping algorithm used in computer networks to control and manage
the flow of packets. It is a mechanism that allows network administrators to prioritize
and allocate capacity to different classes or categories of traffic. HTB implements
the concept of a token bucket along with a class-based hierarchical system and filters
to supervise complex and granular control over packet flows [10]. A token bucket
is a conceptual bucket that holds a certain number of tokens. Tokens are "units of
permission" that determine whether a packet can be transmitted or not. HTB allows
users to customize the tokens and buckets and allows the user to nest the buckets in
an arbitrary fashion with rate and ceil where rate defines the assured data rate, while
ceil defines the peak data rate allowed for the flow. In HTB, classes are configured as
a tree according to the relationship of traffic aggregation and only leaf classes have
a queue to buffer packets belonging to the class. Children’s classes borrow tokens
from their parents when their packet flow exceeds their rate. A child continues to
attempt to borrow until it reaches ceil, at which point it begins to queue packets for
transmission [11].

HTB can emulate link slicing which is a subset of slicing that we focus on for
the thesis. We use Linux based HTB where each token bucket is indicated as a
scheduler where the policies are defined, and depending on the rules, packets are
forwarded onto the upper bucket/scheduler as shown in Fig 3.3. Each token bucket
in the hierarchy defined a network slice. Token buckets are created only if the traffic
of a related set of rules exists. For defining rules for the QoS purpose, source and
destination IP addresses, port numbers, and protocol (Transmission Control Protocol
(TCP)/User Datagram Protocol (UDP)) are considered for the parameters.

2.1.4 RED

RED [12] is a method used in a QoS in computer networks. It helps prevent network
congestion and ensures fair allocation of network resources. RED works by monitoring
the length of a queue that holds incoming packets. When the queue reaches a certain
threshold, random packets are dropped to signal congestion to the sender. By
proactively dropping packets before severe congestion occurs, RED aims to maintain

10 2. BACKGROUND AND LITERATURE REVIEW

network performance and avoid complete buffer overflow. The dropping probability
is determined based on the queue length and configured thresholds, allowing for a
fair and efficient congestion control mechanism.

2.2 Different QoS Approaches

Network devices play a critical role in implementing QoS mechanisms to ensure
optimal performance and user satisfaction. However, the capabilities and limitations
of network devices vary, leading to different approaches for implementing QoS.
This section explores two key approaches: utilizing network devices and employing
server-based solutions.

2.2.1 Network Devices

1. Pros: Network devices, such as routers and switches, offer fast data path
processing, enabling efficient packet forwarding and reduced latency. They are
designed with specialized hardware to handle high-speed data transmission,
ensuring quick delivery of packets.

2. Cons: Network devices often have limited computation resources. While
they excel at data forwarding, complex QoS computations and control may
strain their processing capabilities. Additionally, network devices are typically
vendor-specific, with proprietary architectures and programming interfaces.

Vendor Specific Network Devices

Vendor-specific network devices implement QoS mechanisms to prioritize and control
network traffic flow based on specific criteria. Traffic classification, priority queuing,
traffic marking, traffic shaping, bandwidth reservation, and congestion avoidance
are some techniques implemented by the devices which have their specific method
and rules to apply with the constraint of commands, while the exact implementation
may vary across different vendors. Due to the hardware-based nature, they have
limitations compared with the server based-approach such as scalability, granularity,
less flexibility and customization, lack of rapid adaption and upgrades, and so on.
Therefore, it is recommended to refer to the vendor’s documentation and configuration
guides for detailed information on how a particular vendor’s device implements QoS.

Programming Protocol-independent Packet Processors (P4) [13]

P4 is a high-level domain-specific language for programming the switch for packet
processing. It is independent of any vendor-specific hardware meaning suitable for
expressing the behavior of various switch types (e.g. fixed-function Application

2.2. DIFFERENT QOS APPROACHES 11

Specific Integrated Circuit (ASICs), software switches, Field Programmable Gate
Array (FPGAs). The language abstracts packet parsing and processing. P4 code
is logically organized into data declaration, parser logic, and match plus action
tables and control flow sections [13]. The policies of the QoS for traffic in the P4
switch uses the P4 code that schedules and transfers the packets according to the
network resources allocated for the packets in the code[14] using the algorithm for
communication mechanism in the hierarchical control plane.

2.2.2 Server-based Approach and Data Plane Acceleration Survey

A brief introduction of DPDK with a comparison with other similar technology.

1. DPDK (Data Plane Development Kit) [2]: DPDK is a widely used
solution for fast packet processing on servers. It provides libraries and tools
that leverage modern server hardware capabilities, such as multi-core processors
and hardware offloading, to achieve high-performance packet processing. DPDK
uses its own driver to have direct access to network interfaces, bypassing the
kernel network stack and reducing processing overhead. This approach offers
greater flexibility and control over QoS mechanisms, making it suitable for
advanced and customized QoS requirements.

2. Netmap [15] Netmap is a framework for high-speed packet input and output
implemented with Virtual Local Ethernet (VALE) [16], a switched ethernet
for virtual machines, the software switches a single kernel module available for
various operating systems such as Linux, FreeBSD. VALE is a very fast Virtual
Local Ethernet using the Netmap API feature of Netmap module that deploys
multiple virtual switches for interconnecting Netmap clients, including traffic
sources and destinations, packet forwarded, userspace firewalls, and so on[17].

Netmap is designed as a general-purpose framework for fast packet I/O. It provides
a simple Application Programming Interface (API) for user applications to access
network interfaces directly, bypassing the traditional networking stack. Netmap
focuses on efficient packet capture and injection, making it suitable for network
monitoring, traffic analysis, and virtualization use cases. DPDK, on the other hand,
is specifically developed for building high-performance data plane applications, such
as NFV and SDN. It offers a comprehensive set of libraries, drivers, and APIs
optimized for packet processing, enabling applications to achieve wire-speed packet
forwarding and processing on commodity hardware. Netmap operates at a lower
level of abstraction, providing direct access to network interfaces. It exposes network
devices to user space, allowing applications to directly read from and write to the
network device’s buffers.DPDK operates at a higher level of abstraction compared

12 2. BACKGROUND AND LITERATURE REVIEW

to Netmap. It provides a higher-level API and a rich set of libraries for packet
processing, including memory management, packet classification, and flow control.

Netmap is designed to be a lightweight and straightforward framework. Its API
is relatively simple, providing direct access to network interfaces and buffers. While
DPDK, compared to Netmap, offers a more comprehensive and feature-rich framework
for building high-performance packet processing applications which introduces more
complexity.

Overall, DPDK’s comprehensive feature set, broad community support, hard-
ware compatibility, and track record of high performance make it an approach for
implementing QoS in server-based solutions. However, the choice of approach should
ultimately consider the specific requirements and constraints of the network infras-
tructure, ensuring the optimal balance between performance, flexibility, and ease of
deployment.

2.3 Intel’s DPDK

This section explains the essential part of DPDK use in the thesis.

Intel’s DPDK was originally designed to support on Intel chips and hardware
which is developed over the years to support any hardware commodity. DPDK
contains built-in libraries to boost packet processing in data plane applications which
can be implemented in various CPU architectures. This is an open-source software
framework with a wide variety of development contributors. DPDK has a set of
libraries that can be implemented to develop data plane applications. DPDK makes
communication between Network Interface Card (NIC) and application in user space
possible without kernel involvement resulting in faster processing of networking
applications. At the same time, it comes with several dependencies of the DUT from
hardware processing power, NIC, storage, and the design of application using DPDK
libraries. These constraints impose complexity on the design and implementation
of packet processing by the DUT. Thus, a study for the feasibility of DPDK is
necessary and the thesis performs the evaluation of QoS application provided by
DPDK framework.

Generally, Linux kernel provides the functionalities for network-related tasks
demanded by user-space applications where a packet destined for the application
is copied from Receiver (RX) NIC port to kernel space to user space, executes the
networking instructions and copied to kernel space for transmitting to Transmitter
(TX) NIC port. For multiple applications running at a time, the kernel attempts
to balance resources in the running processes. However; packet processing applica-
tions require highly tuned and specific network resource requirements thus kernel

2.3. INTEL’S Intel R Data Plane Development Kit (DPDK) 13

functionality does not support the requirements and features like scheduling and
associated context switches introduce additional overhead.DPDK access the Ethernet
controller directly skipping kernel. Meaning DPDK uses its own driver to handle
NIC meaning takes full control of NIC from the hosting operating system, such as
Linux, and FreeBSD, and copies the incoming packets directly from NIC to userspace
bypassing network stack and kernel space. The available libraries in DPDK for driver
function and forwarding mechanism bypass kernel space hence eradicating Kernel
User Overhead[18]. It may seem that we can develop the entire application in kernel
space where the application has complete access to hardware, but with this approach,
the development becomes more difficult. In addition to that, we can depend on more
tools in user space, and more techniques are known in user space than in kernel space.
For the background, we summarize the aspects of the given set of libraries in DPDK
which is used throughout the thesis. However, optimization is required for meeting
the requirements of heterogeneous applications even with the supplied libraries.

2.3.1 Poll Mode Library

One of the most essential features of DPDK is the poll mode library that uses
Poll Mode Driver (PMD). The DPDK’s driver in User Space is PMD which peri-
odically checks the input/output interfaces. Since PMD does not need a System
call mechanism, it eradicates the Interrupt Context Switch Overhead [19]. Thus,
the user application directly polls the received buffers bypassing the kernel. The
API provided handles groups of packets for transmitting and receiving called bulks.
This technique reduces overhead as well. In this technique, the Ethernet controller
uses Direct Memory Access (DMA) for transferring packets from and to defined
memory locations. Packets arrivals and transmissions are signaled to the user space
application when head and tail pointers of TX and RX rings are updated.

2.3.2 Message Buffers and Packet

Programs generally depend on the socket API for accessing the network for which
the Linux kernel provides a set of features for the ease of programmers. A pointer
to a mbufs is implemented for the representation of a packet in DPDK whereas the
buffer holds the entire packet. The packets are transferred from one core to another
simply by conveying the pointer instead of copying the complete packet hence the
packet progress through a pipeline without a single copy. With this approach DPDK
outweighs the standard Linux kernel. The mbufs also retain metadata such as packet
length, memory pool of the mbufs, and so on that provides headroom [20]. The
headroom is a memory allocated before the start of the packet data which is used
during packet encapsulation without requiring to move the entire packet including
the payload in memory for facilitating extra space requirement.

14 2. BACKGROUND AND LITERATURE REVIEW

2.3.3 Environment Abstraction Layer

The Environment Abstraction Layer (EAL) is responsible for obtaining access to
low-level resources, for example, hardware and memory resources, and provide a
generic interface that hides the environment specifics from the applications and
libraries. It initializes routine to decide how to allocate these resources which are
memory space, devices, timers, console, and so on. It provides mechanisms for
assigning execution units to specific cores and creating execution instances, facilitates
reservation of various memory zones, interrupts handling, alarm functions, and so on.
Hence, programmers can assign each thread to a specific core for applications to run
and can achieve highly tuned workloads [21].

2.3.4 DPDK QoS Scheduling App

As shown in Fig 2.2, the RX thread receives packets from the RX port, classifies
them, and sends them to the ring queue, where traffic is distinguished into a slice,
and schedule to send packets to TX port. We can have multiple cores for the traffic
management and scheduling for QoS and transmission to TX port or a single core.
In multicores case, as shown in Fig 2.2, separate cores perform scheduling and
transmission of a packet to NIC TX denoted by the lower picture. On the opposite,
single core perform scheduling and the transmission of a packet to NIC TX denoted
by the upper picture as shown in Fig 2.2. As shown in Fig 2.1 Outer Virtual Local
area Network (VLAN) number assigns one of eight subport (one token bucket per
subport) that provides an upper limit per Traffic Class (TC). At the same time, the
inner VLAN number assigns one of the pipes defined by the double-tagged Etherframe
as illustrated in Fig 2.3. The QoS application parse the received Etherframe for
extracting outer VLAN id, inner VLAN id, and destination address for mapping
to a queue of a specific pipe. Fig 2.3 depicts three different kinds of Etherframe,
regular Etherframe, single, and double VLAN tagged Etherframe and the specific
byte number to look for outer VLAN, inner VLAN, and destination Internet Protocol
(IP) address of received Etherframe. A grinder (a short list of active pipes currently
under processing that contains temporary data during pipe processing) with 1 bit is
associated with each pipe. A grinder indicates a filled queue in a pipe that reduces
overhead for searching every 4096 pipes of each support as shown in Fig:2.4 [22] for a
queue with a packet. In this way DUT should not waste the CPU cycle for searching
pipes with a packet as only pipes with packets are processed for the scheduling
process and empty pipes are omitted.

Each pipe has 13 TC. Each support, pipe, and the respective TCs are assigned
a capacity during the runtime of the QoS application of DPDK. All high priority
TC (TC0-TC11) of a pipe has one queue while the lowest priority TC which is TC12
has 4 queues served in a weighted round-robin scheduling [23]. Incoming traffic
is allocated in a pipe according to the last octet of the destination address in the

2.3. INTEL’S DPDK 15

VLAN_O

VLAN_I

Dst_IP

Interface

Pipe

Subport

Class/Queue

Fig 3.2

… … Dst_IP

VLAN_IVLAN_O…

… ……

Ethernet Frame Header

Figure 2.1: Assignment of an Ethernet frame in a mbufs using HTB method by
QoS application of DPDK

Sched

Enq

Pkt

Rx
Classif

NIC

RX
Sched

Deq

NIC

TX
Sched

Enq

Pkt

Tx

Pkt

Rx
Classif

NIC

RX

NIC

TX

Pkt

Tx

CPU Core (RX)

CPU Core (RX)

CPU Core (Traffic Mgmt +TX)

CPU Core (Traffic Mgmt)

Sched

Deq

CPU Core (TX)

Figure 2.2: DPDK QoS scheduler application architecture [23]

respective 16 queues with modulo 16 such that an increasing number of traffic flows
are assigned at one of the 16 traffic queues of a pipe. The packets at lower priority
TCs of a pipe are able to reuse capacity currently unused by higher priority. The
traffic class priority is in decreasing order with the TC0 being the highest priority.
The packets at one pipe can not use the unused capacity of another, resulting in
strict network resources between any pipes.

16 2. BACKGROUND AND LITERATURE REVIEW

Figure 2.3: Double-tagged Etherframe for DPDK packet assigning

Subport 0

……

Subport Sx

……

Subport Sy

……

Subport Sn

Pipe 0

……

Pipe Px

……

Pipe Py

……

Pipe Pn

Queue

Table

Pipe

Table

Pipe Grinder 0

……

Pipe Grinder x

……

Pipe Grinder y

……

Pipe Grinder Gn

Queue 0

……

Queue Qx

……

Queue Qy

……

Queue Qn

Queue 0

……

Queue Qx

……

Queue Qy

……

Queue Qn

Subport

Table

Pipe Grinder

Table

Queue

Storage Area

Active Queues

Bitmap

Figure 2.4: Internal data structures per port

2.4. NETWORK PERFORMANCE METRICS 17

2.4 Network Performance Metrics

Specific parameters are considered for the evaluation of system performance also
referred to as metrics. These metrics assist in the comparison between the imple-
mentation of the system with similar functionality. They can be useful for the
optimization of the system using the evaluated metrics results.

2.4.1 Throughput and Capacity

Throughput is one of the key metrics essential for analyzing network device perfor-
mance. Throughput measures the number of packets that arrive at their destination
successfully. The data rate is one of the most important things required to monitor
network performance, and throughput as well as capacity is used for measuring it.
How fast packets are delivered from source to recipient or vice versa determines the
amount of information or data that can be sent in a given timeframe. Whereas, net-
work capacity is defined as the maximum transfer throughput capacity of a network.
In this thesis, we calculate throughput on a 10-gigabit Ethernet (GbE) link and can
be computed for any links with a different capacity[24]. Since we test heterogeneous
applications in this thesis, meaning different applications have distinct packet sizes,
with a double-tagged frame overhead of 24 bytes. We measure throughput in bytes
per second.

The throughput, denoted by T , can be measured in bytes per second and is
limited by the capacity of the link. It can be expressed as:

T = Capacity × Efficiency (2.1)

where the capacity is the maximum achievable throughput of the link and the
efficiency represents the utilization of the link.

2.4.2 Packet Delay

Packet delay is defined as the time difference between a packet received by the
destination host and the packet sent from the source host[25]. It is a fundamental
metric, also refers as latency, for performance analysis of a network device which can
be measured by applying timestamps on a packet. Packet delay is introduced by
transmission delay (time for a packet to travel in link), queueing delay (time a packet
is stored in input and output queue before processing and transmitting), processing
delay (time taken by sending, network, and destination node to process) [26] as
shown in Fig 2.5. This has indicated one of the crucial metrics for 5G network [27]
with less than a millisecond for mission-critical applications such as remote surgery.
The source host put A timestamp to a packet and upon reception by the destination

18 2. BACKGROUND AND LITERATURE REVIEW

Processing Delay

Queuing Delay

Transmission Delay

Propagation Delay

Figure 2.5: Packet switched delay

host, subtracts its clock from the timestamp. Clock synchronization across the hosts
is essential for the accurate measurement of packet delay.

The one-way packet delay can be calculated using the equation:

Packet delay = Time of packet received − Time of packet sent (2.2)

In the one-way packet delay, the time that elapses by a packet from a source
node to the destination node is calculated. But round trip delay refers to the time
taken for a packet of data to travel from a source to a destination and back again. It
represents the total time elapsed for a round trip between two network devices.

2.4.3 Sensitivity and Performance Isolation

Sensitivity is another metric essential for the performance analysis of a system
implementing network isolation. Changing the data distribution function and the
impact of changes in the parameters of the system can be a sensitivity analysis. In
this thesis, variation of throughput of an application by the introduction of another
application in the same or different pipe is considered as sensitivity and performance
isolation metric of DUT. In perfect network isolation, there should not be a variation
in the throughput of an application in one network from ideal to heavy traffic in
another network. Even, the throughput of an application in one network is expected
to have flat constant throughput [28].

2.5. NETWORK AUTOMATION 19

2.5 Network Automation

Network automation is the process of using software to automate network and
security provisioning and management for continuously maximizing network efficiency
and functionality [29]. Network automation increases the efficiency and speed of
application deployment through complete application lifecycles and across the data
center and cloud environment. This approach is less error-prone than manual
provisioning and management, hence network engineers can focus on the optimization
of network infrastructure than the configuration. It implements software with API
[30] for the most efficient way to map, configure, provision, and manage a network.
Hence, replacing manual, vendor’s specific command-line instructions to configure
each networking device which can be invoked directly or go through a programming
language, for example, Java, Python, or Go. There are several tools for network
automation sometimes refers as DevOps [31] tools such as Docker, ansible, and
Kubernetes.

2.5.1 Docker

Docker is a set of platform-as-a-service as shown in Fig 2.6 products in cloud
architecture enabling OS-level virtualization to deliver software in packages called
containers. The cloud refers to servers accessed over the Internet which provide
on-demand availability of computer resources from data storage to computing power
without direct management by the user [26]. It provides all the packages and
dependencies for an application in a virtual container that runs on top of any
operating system (Windows, Linux, macOS) as shown in Fig 2.7. This can be run at
any location extending from on-premises [32] to public or private cloud [33]. The
most important point about Docker is that it is a containerization platform and
runtime.

2.5.2 Ansible

Ansible is an open-source software tool for simplifying network automation [34].
It provides simple but powerful automation for cross-platform computers used to
automate infrastructure, applications, networks, containers, security, and the cloud
[35]. It is easy to understand and does not use any other third-party tool. As
illustrated in Fig 2.8, it applies a Yet another markup language (YAML) [36] file
called ansible-playbook in Ansible for end-to-end automation of components which
is written in a simple human-readable language. As all configuration files are mostly
written in YAML, they can be easily understood for machine-level automation or
code for debugging.

In this thesis, we are implementing Ansible with a Docker container for automat-
ing heterogeneous applications requesting resources from servers. Since Ansible

20 2. BACKGROUND AND LITERATURE REVIEW

Platform Layer

(Social Framework)

Application Layer

(Business Application, Web

Services, Multimedia)

Infrastructure Layer

(Storage, Virtual Machine)

Data Layer

(CPU, Bandwidth, Disk,

Memory)

SaaS

PaaS

IaaS
System

Admin

Software

Developer

User Gmail, Facebook

Amazon simple, Google App

Engine

Amazon Web Service,

Flexiscale

Data Centers

Figure 2.6: Cloud computing architecture

Nginx

Registry

docker build

docker pull

docker run

Docker Host

Containers
Images

Client

Docker daemon

Figure 2.7: Docker architecture

2.5. NETWORK AUTOMATION 21

Figure 2.8: Ansible architecture [37]

is agentless and does not use third-party vendors or agents’ software, it is easier
to deploy than Kubernetes[38]. Unlike Kubernetes, Ansible is easy to understand
deployment. As with Kubernetes capable of handling complex structures and contin-
uous monitoring of Pods, our work is simple and does not need such computational
overhead. Making Ansible an easy choice.

Chapter3Methodology

23

24 3. METHODOLOGY

We are interested in providing limited capacity, delay, jitter, and throughput
for heterogeneous applications in a shared infrastructure adhering to service-level
agreements for the users. We choose DPDK framework for providing QoS to various
applications and isolation of the traffic. Initially, we need to create double-tagged
VLANs, first create outer VLAN to an interface connected towards DUT that forwards
the packets to a destination node, and then create inner VLAN to the logical outer
VLAN interface, in both servers and clients machines so that a packet is encapsulated
in a double-tagged Ethernet Frame as shown in Fig 3.1. Each container is attached
to the inner VLAN network that must be the same in both servers and associated
clients requesting the service as shown in Fig 3.1. We need to add an entry in a
routing table of machines hosting servers and clients so that the traffic is forwarded
towardsDUT interface that provides QoS and forwards to the destination to the
hosted heterogeneous services or clients. As for the deployments, we use Ansible
which deploys the servers and clients in the associated VLAN networks. For the
performance analysis of DPDK for QoS for heterogeneous applications requesting
access to their respective servers, this thesis has completed experiments in a physical
testbed. As shown in Fig 3.1, we have implemented three server hardware connecting
through 10 GbE in a series connection. One end server hosts various servers with
different network resource requirements in docker containers, and the other end host
clients in docker containers that request service to the respective server. The middle
server running DPDK QoS application is responsible for forwarding traffic between
respective applications requesting service to the server after applying the assigned
quality shaping parameters to the service. Afterward, we deploy different numbers
of services with different network resource allocations and evaluate the performance
parameters, delay, throughput, adaptive bit rate, and sensitivity.

3.1 Thesis Design

The thesis work is reproducible with extensive parameters with the help of network
automation cleanly and easily. We are implementing the following applications:

NGINX and Wrk2 NGINX is open-source software for web serving, reverse
proxying, caching, load balancing, media streaming, and more. In this thesis, we
use it for a default nginx web page hosting and evaluate the delay introduced by
DUT by accessing it through wrk2. wrk2 is a modern Hypertext Transfer Protocol
(HTTP) benchmarking tool capable of generating significant load when run on a
single multi-core CPU which provides a details latency report that we use to plot
packet percentile against delays [39].

Dashjs Dashjs is an open-source JavaScript library used for implementing Dy-
namic Adaptive Streaming over HTTP (Dynamic Adaptive Streaming over HTTP
(DASH)) in web browsers. It simplifies the integration of DASH into web applications,

3.1. THESIS DESIGN 25

nginx

vlan1

Dashjs

vlanx

1---nx1---n1

Docker Containers

Servers

Burst size

Burst size

Throughput for an app

wrk2

vlan1

dashjs

vlanx

1---nx1---n1
Docker Containers

Clients

pcap

Total throughput

Section 3.3.1

Ansible

• Threads

• Requests

• Channels

• Duration

• Clients

Device under test – Linux based server running QoS application based on DPDK

• Burst Size

• Capacity

• Queue size

• Priority

• Cores

• Pipes

Section 3.3.2

VLAN_O

VLAN_I

Dst_IP

Interface

Pipe

Subport

Class/Queue

Fig 3.2

… … Dst_IP

VLAN

_I

VLAN

_O
…

… ……

Ethernet Frame Header
D

ep
lo

y
 c

o
n

ta
in

er
s,

 r
es

et
 e

n
v

ir
o

n
m

en
t

Figure 3.1: Experimental design with Ansible deployed heterogeneous applications
and clients where DUT provides QoS with application specifics and DUT specific
control knobs

providing adaptive bitrate streaming, support for various multimedia formats, and
advanced features like trick play and time shifting [40]. Dash.js is a valuable tool
for enhancing video streaming capabilities in web applications. The quality level for
clients in our dashjs application is measured in the following way which is stored at
the server in different representations and served to clients.

1. 0 = 480 pixels with 214876 bits per second (bps)

2. 1 = 720 pixels 406802 with bps

3. 2 = 1080 pixels with 797965 bps

4. 3 = 1080 pixels with 1610009 bps

5. 4 = 1080 pixels with 3393083 bps

Iperf3 IPerf3 is an open-source network testing tool used to measure network
performance and diagnose issues. It measures parameters such as throughput, and
packet loss and supports TCP and UDP traffic streams. It requires a client and server
setup and is used for capacity planning, troubleshooting, and optimizing network
performance.

The system consists of heterogeneous servers, nginx, iperf3, and dahsjs in our
cases in separate VLANs. All the servers are containerized in docker containers
using Ansible for deployment. Likewise, the number of clients are deployed in docker

26 3. METHODOLOGY

containers using Ansible by allocating in their respective VLANs as in the servers.
For instance, server nginx is in VLAN1 and the clients accessing the server launch
the wrk2 application in VLAN1 by setting the parameters of wrk2, which are the
number of threads, requests, channels, and duration for measuring round trip delay
introduced by DUT that is Linux-based server running QoS application as shown in
Fig 3.1.

The DUT is a Linux-based server running QoS application which is configured
with EAL parameters, runtime, and supplied configuration file. Each incoming
double-tagged Etherframe is mapped to the respective pipe’s queue by parsing its
outer VLAN, inner VLAN, and destination address. Control knobs at DUT are
the capacity of the link, queue size, number of cores, number of pipes, priority of
traffic, ring size, mbufs size, queue threshold parameters, and so on explained in 3.2.
The DPDK has batch processing meaning the assigned burst size at the runtime of
QoS application determines how frequently the system hops between the prefetch
stage and scheduling process which is explained in 3.2.1. Defining separate cores
for different flows allows parallel processing of traffic flows that boost the faster
processing of the system and reduce latency introduced by DUT.

Each application has its own control knobs. For nginx, clients can assign numbers
of threads, constant rate traffic, number of open channels, and duration of the overall
requests which are explained in 3.3.2. For dashjs, the control knobs would be a
number of clients, videos, and available resolutions.

For various configurations of control knobs at application levels and DUT, we
capture a pcap file at the client-facing interface as shown in Fig 3.1 using tcpdump.
We analyze the throughput, delay of individual applications for a client, and sensitivity
introduced by DUT for deducing how the DUT behave in various environments of
the setup by tuning control knobs.

3.2 DPDK QoS Application

The QoS framework provided by DPDK implements HTB based queuing discipline
for enforcing QoS policy for aggregate flows. Traffic class nodes are configured in a
hierarchical structure with three levels (root, sub-root of aggregated traffic, and a
leaf). In a similar manner, each physical interface/port (root) has multiple subport
(sub-root) defined with a token bucket which consists of 4096 pipes assigned a token
bucket to each in a hierarchical manner. Each pipe has 16 nodes representing traffic
classes with a queue and priority assigned for enforcing QoS as shown in Fig 3.2.

The user space memory of the computer running DPDK is divided into different
memory pools with a token bucket with a set of rules. The packets are then accounted

3.2. DPDK QOS APPLICATION 27

Port/Interface

Subport

Pipe

Traffic

Class

Queue

Figure 3.2: Scheduling hierarchy per Port [23]

Scheduler

Scheduler Scheduler

Queue QueueQueue Queue

Figure 3.3: Hierarchical scheduling

for against the respective token bucket. In a token bucket, further policies are applied
to provide priority to the packets so that the packet with the highest priority within
a bucket is processed and forwarded first for QoS purposes. As shown in Fig 3.3, each
token bucket is indicated as Scheduler where the policies are defined, and depending
on the rules, packets are forwarded onto the upper bucket/scheduler. Each token
bucket in the hierarchy defined a network slice. Token buckets are created only if the
traffic of a related set of rules exists. For defining rules for the QoS purpose, outer
VLAN id, inner VLAN id, and destination IP address of received Etherframe are
considered for the parameters.

28 3. METHODOLOGY

For the purpose of providing QoS using QoS application from DPDK, compila-
tion and running the dpdkqos_sched application (available in the DPDK software)
with DPDK defined configuration file along with EAL parameters and application
parameters are executed as shown below. Each section is described below 1.

./<build_dir>/examples/dpdk-qos_sched [EAL options] – <APP PARAMS>

Here – seperate EAL parameters with application parameters

3.2.1 Pipeline

There are enqueue pipelines and dequeue pipelines in QoS application of DPDK.

1. Enqueue Pipeline : The details sequence of steps per packet is available in
[43]:

There is a need for a prefetch mechanism to prevent data cache misses due to
strong dependency between the three steps in which the required data structure
is prefetch in advance which comes with an execution latency. During the
execution latency, the processor should not attempt to access the data structure
currently under prefetch. This duration should be utilized for the execution of
other work, which is to execute various stages of enqueue sequence of operation
on other input packets resulting in a pipelined implementation for the enqueue
operation as shown in Fig 3.4.

2. Dequeue Pipeline: The details sequence of steps to schedule the next packet
from the current pipe is available in [43]:

To avoid cache misses, the data structures (a pipe, queue, queue array, mbufs
are prefetched in advance of being accessed. The strategy for hiding the latency
of the prefetch operations is to switch from the current pipe (in grinder A)
to another pipe (in grinder B) immediately after a prefetch is issued for the
current pipe. This gives enough time for the prefetch operation to complete
before the execution switches back to this pipe (in grinder A) [43].

Because of the prefetch mechanism, the performance of DPDK QoS application
suffers the performance in lower packet processing, as the processor remains
idle during the prefetch period. In other words, the port scheduler performance
is optimized for a large number of queues or packets. If the number of queues
or packets is small, then the performance of the port scheduler for the same

1We implemented the dpdk-stable-2.11.1 version from [41] for our experiment. It is required to
set a minimum of 4 gigabytes of huge pages for each of the used sockets [42], our hardware system
has 2 sockets, 128 cores, 10Gigabit per second (GBPS) NIC,256 Gigabyte random-access memory
(RAM)

3.3. CONTROL KNOBS AND PARAMTERS 29

Stage 0

(Prefetch

mbuf)

Stage 1

(Prefetch

queue)

Stage 2

(Prefetch

location)

Stage 3

(Enqueue)

pkt 10pkt 00

pkt 01 pkt 11

pkt 20

pkt 21

pkt 30

pkt 31

Figure 3.4: Prefetch pipeline for the hierarchical scheduler enqueue operation

level of active traffic is expected to be worse than the performance of a small
set of message-passing queues [43].

3.3 Control Knobs and Paramters

There are two sections of control knobs. First is the parameters of QoS application
of DPDK and the heterogeneous services which are being served by the DPDK.

3.3.1 QoS Application Parameters

There are considered optional application parameters which include interactive mode,
main and worker cores index, ring size, buffer size, burst size, mbufs size, configuration
file, and so on. We can choose the default value or assign it at runtime 2.

We need to supply the configuration file called profile configuration file as an
application parameter of QoS application of DPDK. It is the file that contains the
resource allocation for each service using the DPDK QoS application and isolation
between each service residing in a different pipe (each pipe represents a VLAN
out of 4096). Listing A.1 is a sample configuration file that needs to be modified
according to the requirements for serving QoS purpose to each application in the
system. The traffic shaping for subport and pipe is implemented using a token bucket
per subport/per pipe. Each token bucket is implemented using one counter that
keeps track of the number of available credits. As the greatest common divisor for all
packet lengths is one byte, the unit of credit is selected as one byte. The number of
credits required for the transmission of a packet of n bytes is equal to (n+h), where

2For the complete details of the parameters please visit [42]

30 3. METHODOLOGY

h is equal to the number of framing overhead bytes per packet. As a result of packet
scheduling, the necessary number of credits is removed from the bucket. The bucket
is set to a predefined value, e.g. zero or half of the bucket size. Credits are added to
the bucket on top of existing ones, either periodically or on-demand, based on the
bucket rate. Credits cannot exceed the upper limit defined by the bucket size, so any
credits to be added to the bucket while the bucket is full are dropped. The packet
can only be sent if enough credits are in the bucket to send the full packet (packet
bytes and framing overhead for the packet) [22] 3.

The essential function of DPDK QoS application to reduce searching overhead
during the scheduling stage for a pipe with packets is that active queues bitmap
is used. The bitmap maintains one status bit per queue: queue not active (the
queue is empty) or queue active (the queue is not empty). The queue bit is set by
the scheduler to enqueue and cleared by the scheduler to dequeue when the queue
becomes empty. Bitmap scan operation returns the next non-empty pipe and its
status (16-bit mask of the active queue in the pipe). The grinder contains temporary
data during pipe processing. Once the current pipe exhausts packets or credits, it is
replaced with another active pipe from the bitmap [22].

These are the mandatory application parameters and must be defined at the
beginning of the running program. They are listed as:

1. –pfc “RX PORT, TX PORT, RX LCORE, WT LCORE, TX CORE”: Packet
flow configuration. Multiple pfc entities can be configured in the command
line, having 4 or 5 items (if TX core is defined or not) [42].

The parameters we can tune from the QoS framework provided by DPDK are:

1. Queue Size: DPDK has batch processing.The runtime queue size defines
the execution time delay and the number of packets processed at a time. We
can define queue size in the power of 2 (64 being the default) that stores the
arriving packets in mbufs during enqueue and transmit to the TX interface for
the traffic after applying QoS policy defined in runtime.
The DPDK processed a fixed number of requests at a time that is defined
by the queue size because of the prefetch stage in enqueue process. The core
shifts from the prefetch stage to a hierarchical scheduling process and dequeue
process for transmitting packets to the server interface after the queue is filled
with threshold and the working core is available for the scheduling process.
For a small queue size, DUT can process a small number of packets at a time
which reduces throughput and delay for packet processing. For instance, a

3The complete description of each component of configuration file parameters is available in [43]

3.3. CONTROL KNOBS AND PARAMTERS 31

packet waits a long time in a larger queue compared to a small queue causing
a higher delay for the larger queue. On the other hand, a larger queue can
hold large amounts of packets at the prefetch stage and schedule the packets,
making the throughput of the DUT higher.
Because the constant request packets are transmitted from the client side per
second, and the remaining retransmission of requests from the previous instance
of request, the delay is significant at low traffic. At the same time, as the
higher queue size wait for the queue to be filled beyond the threshold level, a
significantly larger queue size results in a longer prefetch delay. The tradeoff
between prefetch delay and processing delay has a noticeable impact on the
delay introduced by the DPDK.

2. Burst Size: This values defined the batch processing of the QoS framework
of DPDK. The default value is 64 meaning the QoS application processes the
packets once there are 64 packets in a queue. Thus, large delays are introduced
at low traffic because of the waiting time in the prefetch stage as well as the
scheduling stages. The minimum value for the application to run is 8 meaning
the batch processing is performed for every 8 packets from reading packets
from NIC RX at the prefetch stage till writing to NIC TX. In more detail, the
main core reads 8 packets from the NIC RX, writes to output software rings,
and the worker core reads from input software rings followed by QoS dequeue
size of 8. Finally, write to NIC TX by worker core at 8 packets of burst size.

3. Capacity: We can change the capacity of a pipe that provides the upper limit
of throughput for traffic at the pipe. The lower capacity of a pipe results in
lower throughput while a larger capacity provides larger throughput.

4. Pipe: Assigning traffics in different pipe leads to the isolation of traffic that
causes checks active bit maps of each pipe of 1 bit (1 for traffic in the pipe and
goes for processing in scheduling). This approach facilitates the assignment of
the capacity for the different applications at different VLANs. Each subport can
have a maximum of 4096 pipes where pipe 0 must be assigned with minimum
Tocken Bucket (TB) rate of 250 bytes per second and TCs with 1 byte per
second without which the QoS application fails to run which is an issue with
the development because pipe 0 does not hold any packets as pipe number
represents inner VLAN id that starts from 1. We can define individual TB
rates for each queue in a pipe. The overall allocation of TB rate at pipes
for a subport should not exceed the TB rate of the subport otherwise there
will be oversubscription. Oversubscription for subport traffic class X is a
configuration-time event that occurs when more capacity is allocated for traffic
class X at the level of subport member pipes than allocated for the same traffic
class at the parent subport level. The existence of the oversubscription for a
specific subport and traffic class is solely the result of pipe and subport-level

32 3. METHODOLOGY

configuration as opposed to being created due to the dynamic evolution of the
traffic load at run-time (as congestion is) [44].

and the batch processing in multiple pipes has better scheduling than the same
pipe.

3.3.2 Heterogeneous Services Parameters

We use nginx, dashjs, and iperf3 applications for the measurement of the experiments.
Especially nginx is deployed for evaluating delays introduced by the DUT.

The parameters we can tune for the nginx application which is been requested by
the clients running wrk2, which is used for achieving the least delay, (application-
specific parameters that change based on the choice of application) are:

1. Channels: This indicates the number of HTTP connections that define how
many packets can be sent from the application level to the interface at an
instance of time. Larger values with fewer requests/response rates cause a
larger sleep time after reset of HTTP connections from the wrk2 application.

2. Request: The request parameter defines the constant number of requests
sent from wrk2 at every second. If DPDK QoS can not process accumulated
requests, the wrk2 resends the requests over time causing a larger overall delay.

3. Threads: The number of threads defined by the parallel processing of generated
request/response rates from the application.

We implement iperf3 as the cross-application for our thesis. The parameters we
can tune for the iperf3 application, which is used as cross-application for the least
delay requiring application (nginx in our case) are:

1. Socket Buffer Size: The default socket buffer size in Linux is 16 Kilo byte
(KB) [45]. Increasing the value at the server can increase the number of iperf3
packets transmitted through DUT to the iperf3 client. We changed to 32 Mega
Byte (MB).

2. Maximum transmission unit (MTU) Size: This parameter specifies the
iperf3 packet size. We can generate a large number of packets for a given
capacity of a link if we use the least size of packets in iperf3. The iperf3 is
used as a cross-application for an application (nginx for our thesis) with low
traffic requiring the least delay. A minimum packet size supported by iperf3 is
88 bytes which is used in the experiments.

3.4. OBSERVED METRICS 33

3.4 Observed Metrics

In this thesis, we perform experiments with a variety of parameters from application
levels and DUT and measure throughput, delay, and performance isolation agnostic
applications as shown in Fig 3.1 with available network resources. For this, the pcap
file is captured at the client interface connecting to DUT, filtered the appropriate
packets, and measure our metrics of interest.

1. Delay: We use the nginx application with a capture response at the client
interface. At the client side, wrk2 is used with various requests, threads, and
channel numbers which output the delay measured from the first byte of the
request to the complete byte of the response. The server introduced at most 1
millisecond of processing delay to generate a response to each request.

2. Throughput: By assigning a specific level of capacity to each pipe and running
multiple numbers of clients accessing service from the server, we observe the
throughput which is in terms of expected throughput to observed throughput.
We observe the pcap file capture at the client interface and filter specific clients’
packets from the total input packets at the interface.

3. Performance Isolation: We capture pcap file at the physical client interface
and parse individual clients packets. By observing the variation of throughputs
of individual clients and the total throughput, we measure how DUT reacts in
terms of the throughputs for the initialization of an application, introduction
of another application, parallel processing of different clients or applications,
and destruction of another application. For the purpose, of two different nginx
at distinct pipes with different capacities, we observe how the DUT responds
to the two traffics at two different pipes. The setup enforces 20 seconds of each
nginx running periodically. We set up the experiment in such a way that both
nginx instances are active for 10 seconds of each round, and the other nginx
instance is deactivated for the remaining 10 seconds of each instance.

4. Heterogeneous Applications: By running two different applications in the
same pipe and different pipe and plotting the throughput for the applications
for both scenarios from capture pcap file at clients’ interface as shown in Fig
3.3, we observe the behavior of DUT for providing QoS for heterogeneous
applications. We use the nginx application which requires low delay and a
dashjs application for adaptive bitrate VoD applications that require higher
throughput for optimum users’ QoE. First, we measure the nginx’s request
rate for 100 Megabit per second (Mbps) capacity link with the least delay
performance by DUT. A different setup to observe the mean quality level of an
increasing number of clients at 100 Mbps capacity link of dashjs application
which is deployed as shown in Fig 3.3. Using the optimum request rate for

34 3. METHODOLOGY

nginx and the number of clients for dashjs, we measure the throughput of both
applications running at same network (pipe) of 200 Mbps link over time and
two separate pipes of 100 Mbps capacity each.

3.5 Traffic Patterns

It is the response of the DUT for the various applications with tuned parameters of
both service and QoS application. Traffic pattern helps to understand the behavior
of DUT under control knobs configuration. We measure traffic patterns of low delay
and low throughput under the least burst size (8) by plotting throughput against the
average delay from the pcap file capture at the client’s interface. Under the same
setup, increasing burst size results in increasing average delay and throughput for the
same amount of traffic. The delay becomes higher and throughput remains saturated
after the load exceeds the capacity of the link because of the congestion control for
high traffic before the packets are stored at mbufs.

In like cases, network isolation, throughput, and sensitivity have a pattern in the
environment with tuned control knobs that are measured. Throughput increases for
increasing link capacity.

3.6 Experimental Design

This section covers the experimental design for performance measurement of DUT.

3.6.1 Delay Measurement

For delay, there are numerous ways of tuning the delay where we use the nginx
application and wrk2 as the client requesting the service. We observe the behavior
of DUT by the experiments below to achieve low delay for the nginx application
because, for each parameter, the DUT behave in a specific way.

1. We use various capacity links and measure the average delay for nginx applica-
tion at different requests per second that measure utilization of link and the
delay response.

2. We change the number of channels, fixed threads (1), and the offered traffic
and measure the average delay.

3. We measure the actual loads by supplying various offered loads from using the
wrk2 client.

4. We provide constant offered traffic (1000 requests) at various queue sizes of
QoS framework of DPDK from 64 to 1024 and measure average delay response.

3.6. EXPERIMENTAL DESIGN 35

Time(s)20 s 10 s

O
n

/O
ff

Nginx 1

Nginx 2

Figure 3.5: Two Nginx at pipe 2 and pipe 3

5. We supply constant link capacity (200 Mbps), offered traffic (1000 requests),
channels (4000), threads (4), and an increasing number of iperf3 instances
(with 32M socket buffer size and 88 bytes of the least packet size for generating
a large number of possible packets as cross-application) in a separate pipe and
measure the average delay.

6. We use various burst sizes to observe average delays at fixed offered traffic using
the nginx application. Followed by the best burst sizes and various offered
traffic and observe the average delay distribution.

7. We supply constant link capacity (200 Mbps), offered traffic (1000 requests),
channels (4000), threads (4), and an increasing number of iperf3 instances
(with 32M socket buffer size and 88 bytes of the least packet size for generating
a large number of possible packets as cross-application) in different pipes (iperf3
instances is equally distributed among various pipes) and measure the average
delay.

3.6.2 Performance Isolation

We use 2 nginx instances in separate pipes as shown in Fig 3.5 with 100 Mbps and 50
Mbps of link capacity of pipes. Here, the 2 instances run for 20 seconds periodically
with 10 seconds of overlapping activation period and measure the sensitivity of DUT
response with the initiation of different applications and overlapping activation period
of applications.

36 3. METHODOLOGY

3.6.3 Throughput and Capacity

We monitor the throughput by providing different link capacities. The pcap file is
captured at the client interface for running the nginx server accessed by a client
with various request rates The packet dropping occurs before the prefetch process by
means of the congestion control mechanism of DPDK that helps congestion control
and processing overload minimization of DUT.

3.6.4 Heterogeneous Services

As shown in Fig 3.3, first nginx run at a pipe of 100 Mbps capacity for various request
rates to discover the request rate for minimum delay performance by DUT. Second,
dashjs run at a pipe of 100 Mbps capacity for increasing the number of clients for
finding the highest number of clients for the highest bit rate for each client from
the setup. Afterward, We set up two pipes of 100 Mbps capacity each and recorded
throughput for each nginx and dashjs by capturing pcap at the client interface as
shown in Fig 3.3. For the second part, both applications run at the same pipe of 200
Mbps capacity, and we record the throughput for each of them.

Chapter4Evaluation

We have conducted various experiments by tuning the parameters of DPDK QoS
application, probing applications, and cross-applications with the setup described in
the methodology Section 3.1. We capture pcap file at the client interface and plot
the graphs for evaluation. This section will evaluate the performance analysis of
DPDK for heterogeneous applications shared environment.

4.1 Tuning Parameters

We have changed the queue size and burst size of DUT and observed the average
delay measured by the nginx server which is accessed by a client running the wrk2
application. We observe from various experiments that a large amount of HTTP
channels for a low request rate results in a reset of HTTP connections and longer
sleeping time until the channels are established again. Likewise, there is at most
1 millisecond of processing time by the nginx server to produce a response for a
request. We choose 200 Mbps of link capacity for an experiment. For the client
side, we choose 4 threads, 4000 channels, and various numbers of request rates and
observe the increasing throughput against average latency resulting from the wrk2
application.

4.1.1 Average Delay with Burst Size and Queue Size

As shown in Fig 4.1 by tuning parameters explained in Section 3.3.1 where we start
the experiment with request rates as 100, 1000, 2000, 5000, 10000, 20000, 24000, and
30000, where 1 request rate generates a packet of 933 bytes, for all four different
queue size and burst sizes represented by 4 lines in the given figure, it is observed
that for a lower burst size, the average delay is drastically reduced compared with the
same queue size. In our case, either the green vs red lines which represent 64 queue
size with burst sizes 64 and 8 respectively, or blue and yellow lines which represent
128 queue size with burst sizes 64 and 8 respectively for DUT. On the contrary,
reducing burst size results in decreased throughput of the DUT. As the throughput

37

38 4. EVALUATION

0 20 40 60 80 100 120 140 160 180
Actual Throughput(Mbps)

101

102

103

104

Av
g.

 D
el

ay
(m

s)
Queue 64 Burst size 64
Queue 64 Burst size 8
Queue 128 Burst size 64
Queue 128 Burst size 8

Figure 4.1: Evaluation of average delay of wrk2 application accessing nginx web
server and achieved throughput for different request rates for various configured
queue size and burst size of DUT at 200 Mbps capacity pipe

increases the delay increases faster for low burst size. Again, a large queue size also
increases the throughput which is depicted by blue and green lines that represent
128 and 64 queue sizes with 64 burst sizes respectively. Another important aspect is
that there is a high average delay for low traffic (100 request rate in our case) that
reduces for an increasing number of packets, maintains a window of lower average
delay, and skyrockets. The reason for the higher delay at low traffic is the hopping
between the prefetch stage and the scheduling stage explained in 3.2.1 where a lower
traffic rate requires longer prefetch time before the scheduling process by DUT. For
larger delay on the right side of Fig 4.1 is that as the traffic rate approaches the
available capacity of the link (200 Mbps in this case) the DUT drops the packets
before the prefetch stage by RED implementation of the DUT. In summary, lower
burst size results in lower throughput and low average delay compared with higher
burst size, and a larger queue can hold more packets during the prefetch stage which
results in larger throughput for the same link capacity.

4.1.2 Capacity

As illustrated in Fig 4.2 by tuning parameters explained in Section 3.3.1, setting
higher link capacity results in larger throughput. We implement 2 setups where the
link capacity of DUT is set at 200 Mbps and 1000 Mbps given by green and red
lines respectively. We use the nginx server accessed by a client running the wrk2
application that request rates an increasing number of request rates starting from 100
request rates. We use 4 threads and 4000 channels as the wrk2 parameters explained
in Section 3.3.2 with an increasing number of request rates. Capturing the pcap
file at the client interface and measuring response as actual perceived throughput

4.2. PACKET DELAY USING WRK2-NGINX APPLICATION 39

0 100 200 300 400 500 600 700 800 900 1000 1100
Offered Throughput (Mbps)

0

100

200

300

400

500

600

700

800

Ac
tu

al
 T

hr
ou

gh
pu

t (
M

bp
s)

200 Mbps Capacity
1000 Mbps Capacity

Figure 4.2: Measurement of throughput of nginx at various request rates at 200
Mbps and 1000 Mbps configured pipe capacity

for offered throughput suggests that larger link capacity provides larger throughput
compared with lower capacity.

4.2 Packet Delay Using wrk2-nginx Application

This experiment involves the parameters explained in Section 3.3.1 and Section
3.3.2. We are using the detailed latency percentile information reported by the wrk2
application for accessing an nginx server [39]. The link is set up at 200 Mbps and
offered nginx traffic is 1000 request rates which result in around 7.5 Mbps of offered
throughput, 4000 channels, and 4 threads. The line with high denotes additional 2
iperf3 instances with windows size 32 and packet size 88 bytes, and 6 dashjs instances
in distinct pipes for generating large packets as cross-application to lower delay
performance for nginx application by DUT as shown in Fig 4.3. We can evaluate
that the reduction of burst size as is in experiment 4.1.1 drastically reduced the delay
performance of DUT indicated by the red line with low burst size 8 compared with
the green line which has equal queue size 64 and burst size 64. Another method for
reducing QoS delay metric is the introduction of additional packets which is given
by sky blue line for an equal queue size(64 in this case) and equal burst size (8 in
this case) instead of reducing burst size because reducing burst size also reduces the
throughput of DUT evaluated in 4.1.1. If we combine low burst size with additional
traffic, the delay is also significantly reduced indicated by the sandy-beach-color line
(64 queue size and 8 burst size) compared with a low-traffic green line but only a few
milliseconds of reduced delay compared with the same additional high traffic and high
queue size. Similarly, increasing queue size also reduces burst size in all experiments
as compared with lower queue size with other similar DUT and application-specific
control knobs.

40 4. EVALUATION

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
Delay(ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ck

et
s P

er
ce

nt
ile

No cross traffic with big burstNo cross traffic with small burst
With cross traffic

Queue 64 Burst 64
Queue 64 Burst 64 High
Queue 64 Burst 8
Queue 64 Burst 8 High
Queue 128 Burst 64
Queue 128 Burst 64 High
Queue 128 Burst 8
Queue 128 Burst 8 High

Figure 4.3: Evaluation of packets percentile for delay(ms) of nginx application
offered round 7.5 Mbps throughput rate with various burst size, queue size, and
cross-applications for configured 200 Mbps capacity link

4.3 Throughput and Capacity

As illustrated in Fig 4.4 by tuning parameters explained in Section 3.3.1 with a fixed
capacity of the link set at 200 Mbps, we observe that larger queue size and burst
size represented by blue line results in higher throughput for a given link capacity
compared with low burst size and low queue size. The setup is similar to 4.1.2 for a
fixed capacity link. The grey dotted line represents the ideal case where the DUT
provide equal throughput for the traffic being processed. More downward a line is
from the grey line, worsens the performance for throughput delivery by the DUT.

Because of the congestion control implementation, the throughput never reaches
the capacity of the link and sudden. There is a sweet spot between low traffic and
high traffic that is defined by the capacity of the link assigned by QoS application for
the interface. Lower assigned capacity introduces a small window for the low delay
because the capacity is exceeded by the introduced load. On the contrary, higher
assigned capacity provides a larger window for a low delay because the link is not
exhausted with the increasing amount of traffic as compared to the lower capacity.
The effect arrives from the utilization of the link regardless of the link capacity. As
the utilization of the link increased, the delay decreased and remains a marginal
difference for a window of utilization and again increased drastically for increased
utilization.

4.4. PERFORMANCE ISOLATION UNDER CROSS/COMPETING TRAFFIC 41

0 20 40 60 80 100 120 140 160 180 200 220
Offered Throughput(Mbps)

0
20
40
60
80

100
120
140
160
180
200
220

Ac
tu

al
 T

hr
ou

gh
pu

t(M
bp

s)

Queue 64 Burst size 64
Queue 64 Burst size 8
Queue 128 Burst size 64
Queue 128 Burst size 8

Figure 4.4: Measurement of actual throughput for different offered wrk2 request
rate for configured various burst size and queue size of DUT at 200 Mbps capacity
pipe

4.4 Performance Isolation under Cross/Competing Traffic

As illustrated in Fig 4.5 by tuning parameters explained in Section 3.3.1 with two
capacity links set at 100 Mbps and 50 Mbps, we deploy two nginx instances in such
a way that 2 instances at different pipes 100 Mbps and 50 Mbps capacity each run
for 20 seconds periodically with 10 seconds of overlapping activation period and
measure the sensitivity of DUT response with the initiation of different applications
and overlapping activation period of applications as explained in 3.6.2. Here, each
nginx runs with a 1000 request rates, 4000 channels, and 4 threads as elaborate
in 3.3.2. The pcap file capture at the client’s interface and plotting the graph for
throughput under the experimental design suggest that DUT provide a high degree
of performance isolation applications at the distinct networks (pipe in our case). As
can be observed in 4.5, the rise of the second nginx application (blue line) at 50
Mbps capacity network does not impact the packet scheduling performance of DUT
for an nginx application (green line) at 100 Mbps and vice versa. Instead, the overall
throughput increases for two applications at different networks which reduces as the
second application halt. However, packets for the application at the low-capacity
link (blue line) are processed in a tiny amount even after the application is stopped.

42 4. EVALUATION

0 50 100 150 200 250
Time(s)

0

1

2

3

4

5

6

7

8

Th
ro

ug
hp

ut
(B

yt
e/

s)

1e6
Total
nginx 100mbps
nginx 50mbps

Figure 4.5: Throughput of two nginx web servers accessed by wrk2 with 5000
request rate at pipe 2 and pipe 3 where each instance runs 20 seconds and sleep for
10 seconds periodically

4.5 Heterogeneous Applications in DUT

Similar experiment as 4.1.1, we find out that the 6500 request rate for 100 Mbps
provides the least delay for queue size 64 and burst size 64 by tuning parameters
explained in Section 3.3.1. For the number of clients, as shown in Fig 4.6, the DUT
provides the best quality rate for 50 clients at 200 Mbps capacity link.

First, we have the experiment for running nginx with a 6500 request rate about
48.5 Mbps of offered throughput rate and dashjs with 50 clients at pipe 2 and pipe
3 of 100 Mbps capacity each respectively, and measuring the throughput for each
of them as shown in Fig 4.7. Second, we perform the experiment for running nginx
with a 6500 request rate of about 48.5 Mbps of offered throughput rate and dashjs
with 50 clients at same pipe 200 Mbps capacity as shown in Fig 4.8

The DUT provides QoS for heterogeneous applications running at different pipes
in such a way that the average delay for nginx is measured at 14 milliseconds at
separate pipes while 151 milliseconds at the same pipe and the average quality level
of 50 clients for dashjs application are 3.2 for different pipe deployment while 3.8 for
same pipe case. Quality 4 is the best as explained in 3.1.

When we have applications in the same pipe, the delay performance application
suffers for approximately the same throughput represented by a red line in both
figures 4.8, and 4.7. While the average quality for the clients increases for the dashjs
which is represented by a blue line in both figures 4.8, and 4.7 because there is more
capacity available in the same pipe configuration (200 Mbps) than in the different
pipe (100 Mbps). The resources are shared in the same pipe between applications

4.5. HETEROGENEOUS APPLICATIONS IN Device-under-Test (DUT) 43

0 10 20 30 40 50 60 70 80 90 100 110
Clients

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

Qu
al

ity
 le

ve
l

Y-axis parameters
0=480 pixels with 214876(bps)
1= 720 pixels with 406802(bps)
2=1080 pixels with 797965(bps)
3=1080 pixels with 1610009(bps)
4=1080 pixels with 3393083(bps)

Figure 4.6: Average quality levels for dashjs clients for 200 Mbps capacity of
configured pipe

0 1 2 3 4 5 6
Time (s)

20

40

60

80

100

Th
ro

ug
hp

ut
(M

bi
t)

2 Pipes with Each 100 Mbps Capacity

Nginx offered 48.5 Mbps
Dash 50 Clients

Figure 4.7: Evaluation of throughputs for nginx server providing about 48.5 Mbps
of traffic rate and 50 clients accessing dashjs server at two separate pipes of 100
Mbps capacity each

which causes the nginx application to share the scheduling process with the dashjs
clients for each iteration among the TCs making a higher delay perceived by the client
using the nginx application. On the other hand, the DUT have network isolation
causing faster scheduling for the nginx application running in a different network/pipe
than the dashjs application providing lesser delay compared to the same pipe case.

44 4. EVALUATION

0 1 2 3 4 5 6
Time (s)

20

40

60

80

100

120

140
Th

ro
ug

hp
ut

(M
bi

t)

200 Mbps Capacity Pipe

Nginx offered 48.5 Mbps
Dash 50 Clients

Figure 4.8: Evaluation of throughputs for nginx server providing about 48.5 Mbps
of traffic rate and 50 clients accessing dashjs server at the same pipe of 200 Mbps
configured capacity

4.6 Discussion Regarding Performance of DPDK

There is a noticeable impact on the performance of DUT by parameters of DUT,
DPDK QoS application parameters, and the heterogeneous applications parameters
which are sharing the network resources of DUT. Increasing the capacity of a pipe
increases the throughput. Lower assigned capacity introduces a small window for the
low delay because the capacity is exceeded by the introduced load. On the contrary,
higher assigned capacity provides a larger window for a low delay because the link
is not exhausted with the increasing amount of traffic as compared to the lower
capacity. The effect arrives from the utilization of the link regardless of the link
capacity. As the utilization of the link increased, the delay decreased and remains a
marginal difference for a window of utilization and again increased drastically for
increased utilization. Higher burst size results in higher capacity utilization resulting
in large throughput with high delay while low burst size results in low delay and low
throughput. Lower traffic at a pipe experience higher delay even though the capacity
is significantly higher in the pipe for which cross-application is needed to generate
additional packets for DUT which is a wastage of capacity of the DUT. However,
higher traffic up to 70-80 % of capacity experience a lower delay. DUT provides
better delay performance when different applications are implemented at different
pipes compared with running at the pipe. Capacity is shared among applications
running at the same pipe whereas the strict isolation of capacity between pipes.
Meaning there is performance isolation in terms of capacity utilization between pipes.

Hence, the DPDK performance is better when heterogeneous applications are
set in a different pipe with their own capacity compared with adjusting in the same
pipe. The queue size and burst size is runtime parameters that provide QoS for all

4.6. DISCUSSION REGARDING PERFORMANCE OF DPDK 45

application by DUT which must be taken care of. This is because lower burst and
queue size provides low latency but lower throughput for a configured capacity of
a pipe. There is this trade-off between latency and throughput bu DPDK which
must be taken into account depending on the requirement for the heterogeneous
applications sharing the shared network infrastructure.

Chapter5Conclusion

Modern internet infrastructure consists of heterogeneous applications that have
their own network resource requirement served in a shared network infrastructure.
The best-effort approach for delivery packets in the shared infrastructure creates
contention of packets at high traffic making unsatisfactory QoE of users. A QoS
mechanism can solve the problem and there are numerous methods to apply QoS
in a shared network infrastructure from network device based to server-based QoS
mechanism. We use QoS framework provided by DPDK which is a server-based
approach that has fast packet forwarding capability and implements network slicing
concepts for QoS.

A DPDK is a feasible solution for providing QoS for heterogeneous applications in
a shared network infrastructure where we use DUT running QoS application provided
by DPDK. We use Ansible for deployments of heterogeneous applications and clients
accessing the services. All the traffic from clients to the servers and vice versa are
forwarded by DUT by providing QoS to the application by changing control knobs
of DUT as well as application-specific parameters and resulting QoS is evaluated.
We capture pcap file at a client interface, plot the traffic pattern, and evaluate the
changing in the metrics to conclude the performance of DPDK.

A DPDK is a complex system whose performance changes by varying its control
knobs as well as the parameters that come with the applications. For instance,
reducing burst size reduces the delay metric of DUT but also reduces the throughput,
changing the capacity of a link increases throughput, and increasing the number
of clients in different networks/pipes reduces the delay of applications. We can
isolate available network resources in different network slices and schedule the QoS
for applications based on using HTB that can be configured during each runtime
utilizing the configuration file. Since DPDK can be run in Linux, and FreeBSD
operating systems, a hardware-independent, server-based open-source program that
can be modified according to need, it has a potential for implementing QoS in shared
network infrastructure in production which save cost compared with traditional

47

48 5. CONCLUSION

network devices.

One disadvantage of DPDK for QoS framework is that the performance of the
DUT reduces for low traffic because of the prefetch stage that includes execution
delay before scheduling stages. We need to generate additional packets by means of
cross-application to achieve low delay for the application with low traffic in a separate
pipe which is clearly a waste of capacity. Another is the modification of the QoS
application of QoS that needs to comply with dynamic heterogeneous applications.
Also, there is a strict isolation of capacity between pipes that causes idle resources
even if an application in a pipe is overloading but free in another pipe.

In summary, QoS framework provided by DPDK can be a solution to the need of
providing QoS for heterogeneous applications in shared infrastructure. For future
expansion, we can also study the feasibility where DUT changes its configuration of
network slicing, resource allocation among network/pipes, and also allocating unused
capacity from one network to another network according to dynamic admitted clients
of the heterogeneous applications in the system.

References

[1] M. Bosk, M. Gajić, et al., «Using 5g qos mechanisms to achieve qoe-aware resource al-
location», in 2021 17th International Conference on Network and Service Management
(CNSM), 2021, pp. 283–291.

[2] I. Cerrato, M. Annarumma, and F. Risso, «Supporting fine-grained network functions
through intel dpdk», in 2014 Third European Workshop on Software Defined Networks,
2014, pp. 1–6.

[3] B. F. Koch, «A qos architecture with adaptive resource control: The aquila approach»,
in Proceedings of the IEEE International Conference on Communications (ICC),
Siemens, ICN WN CC EK A 19, Jun. 2000, pp. 1522–1527.

[4] R. Bless, «Towards scalable management of qos-based end-to-end services», in
2004 IEEE/IFIP Network Operations and Management Symposium (IEEE Cat.
No.04CH37507), vol. 1, 2004, 293–306 Vol.1.

[5] R. P. Esteves, L. Z. Granville, and R. Boutaba, «On the management of virtual
networks», IEEE Communications Magazine, vol. 51, no. 7, pp. 80–88, 2013.

[6] M. Casado, T. Koponen, et al., «The Road to SDN: An Intellectual History of Pro-
grammable Networks», ACM SIGCOMM Computer Communication Review, vol. 44,
no. 2, pp. 87–98, 2014.

[7] N. Alliance, «Description of network slicing concept», NGMN 5G P, vol. 1, no. 1,
pp. 1–11, 2016.

[8] L. Georgiadis, R. Guérin, et al., «Efficient network qos provisioning based on per node
traffic shaping», IEEE/ACM transactions on networking, vol. 4, no. 4, pp. 482–501,
1996.

[9] W. M. H. Azamuddin, R. Hassan, et al., «Quality of service (qos) management for local
area network (lan) using traffic policy technique to secure congestion», Computers,
vol. 9, no. 2, p. 39, 2020.

[10] D. G. Balan and D. A. Potorac, «Linux htb queuing discipline implementations»,
in 2009 First International Conference on Networked Digital Technologies, 2009,
pp. 122–126.

[11] C.-H. Lee and Y.-T. Kim, «Qos-aware hierarchical token bucket (qhtb) queuing disci-
plines for qos-guaranteed diffserv provisioning with optimized bandwidth utilization
and priority-based preemption», in The International Conference on Information
Networking 2013 (ICOIN), 2013, pp. 351–358.

49

50 REFERENCES

[12] B. Siregar, M. Manik, et al., «Implementation of network monitoring and packets
capturing using random early detection (red) method», in 2017 IEEE International
Conference on Communication, Networks and Satellite (Comnetsat), 2017, pp. 42–47.

[13] P. Bosshart, D. Daly, et al., «P4: Programming protocol-independent packet proces-
sors», ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 87–95,
2014.

[14] H. Jiang, Y. Wang, et al., «Self-supervised learning for 3d object detection in point
clouds», IEEE Transactions on Signal Processing, vol. 70, pp. 461–474, 2022. [Online].
Available: https://cdn.techscience.cn/ueditor/files/TSP-CMC-67-1/TSP_CMC_145
76/TSP_CMC_14576.pdf.

[15] L. Rizzo, «Netmap: A novel framework for fast packet i/o», in 21st USENIX Security
Symposium (USENIX Security 12), 2012, pp. 101–112.

[16] L. Rizzo, R. Sombrutzki, and A. Kirk, «VALE: A Switched Ethernet for Virtual
Machines», in Proceedings of the USENIX Annual Technical Conference (ATC), 2012,
pp. 1–6. [Online]. Available: https://www.usenix.org/conference/atc12/technical-sess
ions/presentation/rizzo.

[17] FreeBSD, Vale, Ubuntu Manpage Repository, Apr. 2021. [Online]. Available: https:
//manpages.ubuntu.com/manpages/bionic/man4/vale.4freebsd.html.

[18] Scott McCarty (2018) Architecting Containers Part 1: Why Understanding User Space
vs. Kernel Space Matters [Online]. Available: [Online]. Available: https://www.redhat
.com/en/blog/architecting-containers-part-1-why-understanding-user-space-vs-ker
nel-space-matters (last visited: Jan. 16, 2023).

[19] Virtualization Consultant (2018) Virtual Networking: Poll Mode vs Interrupt [Online].
Available: [Online]. Available: https://nielshagoort.com/2017/10/13/virtual-networki
ng-poll-mode-vs-interrupt/ (last visited: Jan. 16, 2023).

[20] Memory Headroom . Available: [Online]. Available: https://www.atarimagazines.com
/compute/issue127/90_HeadRoom_20.php (last visited: Jan. 16, 2023).

[21] Environment Abstraction Layer . Available: [Online]. Available: https://doc.dpdk.org
/guides/prog_guide/env_abstraction_layer.html?highlight=what%5C%20eal (last
visited: Jan. 16, 2023).

[22] Internal data structures per port . Available: [Online]. Available: https://doc.dpdk.or
g/guides/prog_guide/qos_framework.html?highlight=grinder.

[23] QoS Scheduler Sampling Application. Available: (last visited: Jan. 16, 2023).

[24] Throughput calculation in Bits per second and Packets per second. Available: [Online].
Available: https://community.arubanetworks.com/community-home/digestviewer/vi
ewthread?MID=30778.

[25] K. Lai and M. Baker, «Measuring link bandwidths using a deterministic model
of packet delay», in Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, ser. SIGCOMM ’00,
Stockholm, Sweden: Association for Computing Machinery, 2000, pp. 283–294. [Online].
Available: https://doi.org/10.1145/347059.347557.

https://cdn.techscience.cn/ueditor/files/TSP-CMC-67-1/TSP_CMC_14576/TSP_CMC_14576.pdf
https://cdn.techscience.cn/ueditor/files/TSP-CMC-67-1/TSP_CMC_14576/TSP_CMC_14576.pdf
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://manpages.ubuntu.com/manpages/bionic/man4/vale.4freebsd.html
https://manpages.ubuntu.com/manpages/bionic/man4/vale.4freebsd.html
https://www.redhat.com/en/blog/architecting-containers-part-1-why-understanding-user-space-vs-kernel-space-matters
https://www.redhat.com/en/blog/architecting-containers-part-1-why-understanding-user-space-vs-kernel-space-matters
https://www.redhat.com/en/blog/architecting-containers-part-1-why-understanding-user-space-vs-kernel-space-matters
https://nielshagoort.com/2017/10/13/virtual-networking-poll-mode-vs-interrupt/
https://nielshagoort.com/2017/10/13/virtual-networking-poll-mode-vs-interrupt/
https://www.atarimagazines.com/compute/issue127/90_HeadRoom_20.php
https://www.atarimagazines.com/compute/issue127/90_HeadRoom_20.php
https://doc.dpdk.org/guides/prog_guide/env_abstraction_layer.html?highlight=what%5C%20eal
https://doc.dpdk.org/guides/prog_guide/env_abstraction_layer.html?highlight=what%5C%20eal
https://doc.dpdk.org/guides/prog_guide/qos_framework.html?highlight=grinder
https://doc.dpdk.org/guides/prog_guide/qos_framework.html?highlight=grinder
https://community.arubanetworks.com/community-home/digestviewer/viewthread?MID=30778
https://community.arubanetworks.com/community-home/digestviewer/viewthread?MID=30778
https://doi.org/10.1145/347059.347557

REFERENCES 51

[26] Definition of Cloud . Available: [Online]. Available: https://www.cloudflare.com/lear
ning/cloud/what-is-the-cloud/ (last visited: Mar. 19, 2023).

[27] M. Chen, Y. Qian, et al., «Data-driven computing and caching in 5g networks:
Architecture and delay analysis», IEEE Wireless Communications, vol. 25, no. 1,
pp. 70–75, 2018.

[28] R. d. S. M. Júnior, A. P. Guimaraes, et al., «Sensitivity analysis of availability of
redundancy in computer networks», CTRQ 2011, p. 122, 2011.

[29] Packet switched Network delay. Available: [Online]. Available: https://www.vmware.c
om/topics/glossary/content/network-automation.html#:~:text=Network%5C%20a
utomation%5C%20is%5C%20the%5C%20process,in%5C%20conjunction%5C%20wi
th%5C%20network%5C%20virtualization. (last visited: Mar. 19, 2023).

[30] M. P. Robillard, E. Bodden, et al., «Automated api property inference techniques»,
IEEE Transactions on Software Engineering, vol. 39, no. 5, pp. 613–637, 2013.

[31] C. Ebert, G. Gallardo, et al., «Devops», IEEE Software, vol. 33, no. 3, pp. 94–100,
2016.

[32] A. Leff and J. T. Rayfield, «Integrator: An architecture for an integrated cloud/on-
premise data-service», in 2015 IEEE International Conference on Web Services, 2015,
pp. 98–104.

[33] G. Suciu, E. G. Ularu, and R. Craciunescu, «Public versus private cloud adoption —
a case study based on open source cloud platforms», in 2012 20th Telecommunications
Forum (TELFOR), 2012, pp. 494–497.

[34] Ansible . Available: [Online]. Available: https://www.ansible.com (last visited: Mar. 19,
2023).

[35] N. K. Singh, S. Thakur, et al., «Automated provisioning of application in iaas cloud
using ansible configuration management», in 2015 1st International Conference on
Next Generation Computing Technologies (NGCT), 2015, pp. 81–85.

[36] V. Sinha, F. Doucet, et al., «Yaml: A tool for hardware design visualization and
capture», in Proceedings 13th International Symposium on System Synthesis, IEEE,
2000, pp. 9–14.

[37] Ansible Architecture. Available: [Online]. Available: https://www.educba.com/ansible
-architecture/ (last visited: Mar. 19, 2023).

[38] Kubernetes . Available: [Online]. Available: https ://kubernetes . io/ (last visited:
Mar. 19, 2023).

[39] Delay measurement for HTTP request and response. Available: [Online]. Available:
https://github.com/giltene/wrk2.

[40] DASH streaming service. Available: [Online]. Available: https://github.com/fg-inet
/DASH-streaming-setup (last visited: Mar. 19, 2023).

[41] Download DPDK . Available: [Online]. Available: https://fast.dpdk.org/rel/dpdk-22
.11.1.tar.xz (last visited: Mar. 19, 2023).

https://www.cloudflare.com/learning/cloud/what-is-the-cloud/
https://www.cloudflare.com/learning/cloud/what-is-the-cloud/
https://www.vmware.com/topics/glossary/content/network-automation.html#:~:text=Network%5C%20automation%5C%20is%5C%20the%5C%20process,in%5C%20conjunction%5C%20with%5C%20network%5C%20virtualization.
https://www.vmware.com/topics/glossary/content/network-automation.html#:~:text=Network%5C%20automation%5C%20is%5C%20the%5C%20process,in%5C%20conjunction%5C%20with%5C%20network%5C%20virtualization.
https://www.vmware.com/topics/glossary/content/network-automation.html#:~:text=Network%5C%20automation%5C%20is%5C%20the%5C%20process,in%5C%20conjunction%5C%20with%5C%20network%5C%20virtualization.
https://www.vmware.com/topics/glossary/content/network-automation.html#:~:text=Network%5C%20automation%5C%20is%5C%20the%5C%20process,in%5C%20conjunction%5C%20with%5C%20network%5C%20virtualization.
https://www.ansible.com
https://www.educba.com/ansible-architecture/
https://www.educba.com/ansible-architecture/
https://kubernetes.io/
https://github.com/giltene/wrk2
https://github.com/fg-inet/DASH-streaming-setup
https://github.com/fg-inet/DASH-streaming-setup
https://fast.dpdk.org/rel/dpdk-22.11.1.tar.xz
https://fast.dpdk.org/rel/dpdk-22.11.1.tar.xz

52 REFERENCES

[42] DPDK quality of Service application. Available: [Online]. Available: https://doc.dpdk
.org/guides/sample_app_ug/qos_scheduler.html?highlight=qos_sched (last visited:
Mar. 19, 2023).

[43] Prefetch Pipeline for the Hierarchical Scheduler Enqueue Operation. Available: [Online].
Available: https://doc.dpdk.org/guides/prog_guide/qos_framework.html?highlight
=dequeue.

[44] Subport Traffic class overscription. Available: [Online]. Available: https://doc.dpdk.or
g/guides/prog_guide/qos_framework.html?highlight=qos%20scheduler (last visited:
Apr. 16, 2023).

[45] Socket buffer size in Linux operating system . Available: [Online]. Available: https:
//man7.org/linux/man-pages/man7/tcp.7.html#:~:text=The%5C%20default%5
C%20value%5C%20is%5C%2016,used%5C%20by%5C%20each%5C%20TCP%5
C%20socket. (last visited: Mar. 19, 2023).

https://doc.dpdk.org/guides/sample_app_ug/qos_scheduler.html?highlight=qos_sched
https://doc.dpdk.org/guides/sample_app_ug/qos_scheduler.html?highlight=qos_sched
https://doc.dpdk.org/guides/prog_guide/qos_framework.html?highlight=dequeue
https://doc.dpdk.org/guides/prog_guide/qos_framework.html?highlight=dequeue
https://doc.dpdk.org/guides/prog_guide/qos_framework.html?highlight=qos%20scheduler
https://doc.dpdk.org/guides/prog_guide/qos_framework.html?highlight=qos%20scheduler
https://man7.org/linux/man-pages/man7/tcp.7.html#:~:text=The%5C%20default%5C%20value%5C%20is%5C%2016,used%5C%20by%5C%20each%5C%20TCP%5C%20socket.
https://man7.org/linux/man-pages/man7/tcp.7.html#:~:text=The%5C%20default%5C%20value%5C%20is%5C%2016,used%5C%20by%5C%20each%5C%20TCP%5C%20socket.
https://man7.org/linux/man-pages/man7/tcp.7.html#:~:text=The%5C%20default%5C%20value%5C%20is%5C%2016,used%5C%20by%5C%20each%5C%20TCP%5C%20socket.
https://man7.org/linux/man-pages/man7/tcp.7.html#:~:text=The%5C%20default%5C%20value%5C%20is%5C%2016,used%5C%20by%5C%20each%5C%20TCP%5C%20socket.

AppendixAAppendix

This section presents the configuration file of DPDK QoS application used for
implementing the experiments.

A.1 Default Sample DPDK QoS Configuration File

This is a sample DPDK QoS configuration file provided in the 43.

Listing A.1: Sample configuration file43

; Port c o n f i g u r a t i o n
[port]
frame overhead = 24
number o f subports per port = 1

; Subport c o n f i g u r a t i o n
[subport 0]
number o f p ipe s per subport = 4096
queue s i z e s = 64 64 64 64 64 64 64 64 64 64 64 64 64

pipe 0−4095 = 0 ; These p ipe s are con f i gu r ed with pipe p r o f i l e 0

[subport p r o f i l e 0]
tb ra t e = 1250000000 ; Bytes per second
tb s i z e = 1000000 ; Bytes

tc 0 ra t e = 1250000000 ; Bytes per second
tc 1 ra t e = 1250000000 ; Bytes per second
tc 2 ra t e = 1250000000 ; Bytes per second
tc 3 ra t e = 1250000000 ; Bytes per second
tc 4 ra t e = 1250000000 ; Bytes per second

53

54 A. APPENDIX

tc 5 ra t e = 1250000000 ; Bytes per second
tc 6 ra t e = 1250000000 ; Bytes per second
tc 7 ra t e = 1250000000 ; Bytes per second
tc 8 ra t e = 1250000000 ; Bytes per second
tc 9 ra t e = 1250000000 ; Bytes per second
tc 10 ra t e = 1250000000 ; Bytes per second
tc 11 ra t e = 1250000000 ; Bytes per second
tc 12 ra t e = 1250000000 ; Bytes per second

tc per iod = 10 ; M i l l i s e c o n d s

; Pipe c o n f i g u r a t i o n
[p ipe p r o f i l e 0]
tb ra t e = 305175 ; Bytes per second
tb s i z e = 1000000 ; Bytes

tc 0 ra t e = 305175 ; Bytes per second
tc 1 ra t e = 305175 ; Bytes per second
tc 2 ra t e = 305175 ; Bytes per second
tc 3 ra t e = 305175 ; Bytes per second
tc 4 ra t e = 305175 ; Bytes per second
tc 5 ra t e = 305175 ; Bytes per second
tc 6 ra t e = 305175 ; Bytes per second
tc 7 ra t e = 305175 ; Bytes per second
tc 8 ra t e = 305175 ; Bytes per second
tc 9 ra t e = 305175 ; Bytes per second
tc 10 ra t e = 305175 ; Bytes per second
tc 11 ra t e = 305175 ; Bytes per second
tc 12 ra t e = 305175 ; Bytes per second

tc per iod = 40 ; M i l l i s e c o n d s

tc 12 o v e r s u b s c r i p t i o n weight = 1

tc 12 wrr weights = 1 1 1 1

	List of Figures
	List of Acronyms
	Introduction
	Objectives
	Thesis Contribution
	Thesis Structure

	Background and Literature Review
	qos-Based Traffic Handling and Network Slicing
	Traffic Shaping in qos
	Traffic Policing in qos
	Hierarchical Token Bucket
	red

	Different qos Approaches
	Network Devices
	Server-based Approach and Data Plane Acceleration Survey

	Intel's dpdk
	Poll Mode Library
	Message Buffers and Packet
	Environment Abstraction Layer
	dpdk qos Scheduling App

	Network Performance Metrics
	Throughput and Capacity
	Packet Delay
	Sensitivity and Performance Isolation

	Network Automation
	Docker
	Ansible

	Methodology
	Thesis Design
	dpdk qos Application
	Pipeline

	Control Knobs and Paramters
	qos Application Parameters
	Heterogeneous Services Parameters

	Observed Metrics
	Traffic Patterns
	Experimental Design
	Delay Measurement
	Performance Isolation
	Throughput and Capacity
	Heterogeneous Services

	Evaluation
	Tuning Parameters
	Average Delay with Burst Size and Queue Size
	Capacity

	Packet Delay Using wrk2-nginx Application
	Throughput and Capacity
	Performance Isolation under Cross/Competing Traffic
	Heterogeneous Applications in dut
	Discussion Regarding Performance of DPDK

	Conclusion
	References
	Appendix
	Default Sample dpdk qos Configuration File

