
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

M
as

te
r’s

 th
es

is

Gina Dokke

Dynamic Simulation of a Motor Rig
Used for Educational Purposes

Master’s thesis in Mechanical Engineering
Supervisor: Bjørn Haugen
Co-supervisor: Terje Rølvåg
July 2023

Gina Dokke

Dynamic Simulation of a Motor Rig
Used for Educational Purposes

Master’s thesis in Mechanical Engineering
Supervisor: Bjørn Haugen
Co-supervisor: Terje Rølvåg
July 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Abstract

Rotor dynamics plays a crucial role in numerous applications, and Professor Terje Rølv̊ag at NTNU

is developing a course for students focusing on this subject. One particular aspect covered in the

course is oscillations and forces related to a test rig known as Bently Nevada RK0. This rig consists

of an electric motor driving a shaft connected by two bearings, with a flywheel placed at the center

of the shaft capable of generating an eccentric load.

The objective of this project is to simulate the system using two different software platforms and

compare the results with those obtained from the Bently Nevada RK0 test rig. The analysis involves

studying a shaft with an eccentric load using NX and Fedem software, along with an analytical

solution implemented in Python. The study examines the influence of bearing properties, such as

damping and stiffness, as well as the impact of the maximum time step size in NX simulations.

The results indicate that increasing the stiffness of the bearings leads to larger displacements.

However, the differences in eigenfrequency are minimal. Varying the damping properties affects

the results, resulting in increased displacement with higher damping values. The eigenfrequency of

modes 1 and 2 remain largely unchanged, while modes 3 and 4 exhibit lower values with increasing

damping. The variation in the maximum time step size affects both the maximum displacement

and eigenfrequency of the system. The analytical solution yields lower frequencies compared to the

software simulations. Nevertheless, the frequency responses and Campbell diagram demonstrate

similar trends. When comparing the results obtained from the different software platforms, there

are discrepancies in eigenfrequencies and displacements. Fedem software produces the highest

values for displacement and frequency, while the analytical solution yields the lowest frequency

results. Overall, it can be concluded that the NX solver is not yet fully developed or mature

enough to effectively solve the specific problem of rotor dynamics analyzed in this study.

i

ii

Sammendrag

Rotordynamikk spiller en viktig rolle i en rekke applikasjoner, og professor Terje Rølv̊ag ved NTNU

utvikler et emne for studenter med fokus p̊a dette emnet. Et spesielt aspekt som dekkes i kurset er

svingninger og krefter knyttet til en testrigg kalt Bently Nevada RK0. Denne riggen best̊ar av en

elektrisk motor som driver en aksling koblet til to lagre, med et svinghjul plassert midt p̊a akselen

med muligheter til å generere eksentrisk belastning.

Hovedmålet med dette prosjektet er å simulere systemet med bruk av forskjellige programvare

og sammenligne resultatet med resultatet fra Bently Nevada RK0 testrigg. Analysen involverer

analyse av en aksling med eksentrisk last ved bruk av programmene NX og Fedem, sammen med en

analytisk løsning implementert i Python. Studien undersøker p̊avirkning av lageregenskaper som

demping og stivhet, samt p̊avirkningen av maksimal steglengde i tidsplanet i NX simuleringen.

Resultatet indikerer at økning i stivhet i lagrene fører til større forskyvning. Imidlertid er for-

skjellen i egenfrekvensen minimal. Variasjon av dempningsegenskapene p̊avirker resultatet, som

resulterer i økt forskyvning med høyere dempningsverdier. Egenfrekvensen for svingeformene 1 og

2 forblir stort sett uendret, mens for svingeformene 3 og 4 viser lavere verdier ved økt demping.

Variasjonen i den maksimale steglengden p̊avirker den maksimale forskyvningen og egenfrekvensen

av systemet. den analytiske løsningen gir lavere frekvens sammenlignet med resultater fra NX og

Fedem. Likevel viser frekvensresponsen og Campbell diagrammet lignende tendenser. Ved sam-

menligning av resultatet fra de forskjellige programvareplattformene er det avvik i egenfrekvens og

forskyvninger. Programvaren Fedem produserer de høyeste verdiene for forskyvning og frekvens,

mens den analytiske gir den laveste frekvensen. Totalt sett kan det konkluderes med at NX Nastran

enn̊a ikke er fullt utviklet eller godt nok dokumentert til å effektivt løse rotordynamikk-problemet

analysert i denne studien.

iii

iv

Preface

This thesis is the final project within the study of mechanical engineering at NTNU Trondheim

during the spring of 2023.

The project has given a lot of knowledge about rotor dynamics. The work has been been demand-

ing and the thesis has required acquiring a lot of new knowledge. The introduction of artificial

intelligence (AI) on a large scale opened several opportunities during the work, especially with

rewriting sections and fixing grammar.

I would like to express gratitude to my supervisor, Bjørn Haugen and my co-supervisor Terje

Rølv̊ag, for their guidance, support and expertise through this research.

Good reading!

Trondheim, 13 July 2023

Gina Dokke

v

vi

Table of Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Problem Description . 2

1.3 Project Scope . 3

1.3.1 Thesis Structure . 4

2 Theory 5

2.1 Rotor Dynamics . 5

2.1.1 Coordinates and Degrees of Freedom . 5

2.1.2 Gyroscopic Couples . 6

2.1.3 Rigid Rotor . 7

2.1.4 Forward and Backward Whirl . 11

2.1.5 Damping . 13

2.1.6 Flexible Rotor with Rigid Bearings . 15

2.1.7 Frequency Response . 17

2.2 Finite Element Method . 24

2.2.1 Beam Element . 24

3 Method 27

vii

TABLE OF CONTENTS

3.1 Physical Rig . 27

3.2 NX Nastran . 28

3.2.1 1D BEAM Element . 28

3.2.2 Simulation of 1D Beam Element . 30

3.2.3 Transient Analysis of 1D Beam Element . 31

3.2.4 Complex Modal Analysis on 1D Beam . 32

3.3 Fedem . 33

3.3.1 Model Reduction in Fedem . 33

3.3.2 Model Setup . 33

3.3.3 Control System . 39

3.3.4 Analysis Setup . 39

3.4 Analytical . 40

3.4.1 Input Parameters . 40

3.4.2 Extra Parameters . 41

3.4.3 Make Matrix . 42

3.4.4 Solve Matrix . 42

3.4.5 Plot Campbell Diagram . 42

3.4.6 Plot Frequency Response and Operating Deflection 42

3.4.7 Plot Modeshape . 43

4 Result 45

4.1 Physical Bently Nevada RK0 Rig . 45

4.2 1D Beam Element in NX Nastran . 46

4.3 Simulation in Fedem . 51

4.3.1 Original Bearing Parameters . 51

4.3.2 NX Bearing Parameters . 52

4.4 Analytical Result . 55

viii

TABLE OF CONTENTS

5 Discussion 57

5.1 Bently Nevada RK0 . 57

5.1.1 Displacement . 57

5.1.2 Frequency . 57

5.2 NX . 57

5.2.1 Effect of the Bearing Stiffness and Damping 57

5.2.2 Boundary Condition . 59

5.2.3 Effect of DTMAX . 59

5.2.4 Learning Material . 60

5.3 Fedem . 60

5.3.1 Displacement . 60

5.3.2 Natural Frequency . 61

5.3.3 Different in Bearing Properties . 61

5.4 Analytical Solution Using Python . 61

5.4.1 Frequency Response and Natural Frequencies 61

5.4.2 Geometry and Model . 62

5.4.3 Gyroscopic Effect . 62

5.5 Comparison of the Results . 63

5.5.1 Element Size . 63

6 Conclusion 65

7 Further Work 67

References 69

Appendices 69

A Bernoulli and Timoshenko Matrices 71

A.1 Bernoulli . 72

ix

TABLE OF CONTENTS

A.2 Timoshenko . 73

B Modeshapes in NX 75

B.1 Mode 1 . 76

B.2 Mode 2 . 76

B.3 Mode 3 . 77

B.4 Mode 4 . 78

C Modeshape in Python 79

C.1 Mode 1 . 80

C.2 Mode 2 . 80

C.3 Mode 3 . 81

C.4 Mode 4 . 81

D FFT of DTMAX 83

E Damping Plot Using Transient Response 85

E.1 Damping at Node 3 . 85

E.2 FFT at Node 3 . 88

F Stiffness Plot Using Transient Response 95

F.1 Stiffness at Node 3 . 95

F.2 FFT at Node 3 . 102

G Damping Plot Using Complex Modal Analysis 109

H Stiffness Plot Using Complex Modal Analysis 119

I Python Code Used in the Analytical Solution 127

I.1 rotor.py . 127

I.2 SystemClass.py . 130

x

List of Figures

1.1 Bently Nevada RK0 . 2

2.1 Coordinate system . 6

2.2 Vector diagram with effect of a clockwise momentum about x 6

2.3 A rigid motor . 7

2.4 Bearing Force . 7

2.5 Free body diagram of a rotor with damping . 13

2.6 Flexible rotor on rigid bearing . 15

2.7 Instanteous position of bearing centerline S and rotor mass center G2 17

2.8 Models of out-of-balance causing a lateral force . 19

2.9 Unbalanced rotor . 20

2.10 Moment as a result of an unbalanced rotor . 20

2.11 Beam element . 24

2.12 Assembly of the global stiffness matrix . 25

2.13 Assembled stiffness matrix . 25

3.1 Physical rig . 28

3.2 NX Beam Element . 28

3.3 Meshed SupportEnd and SupportMotor . 34

3.4 Meshed SupportSlotted . 34

3.5 Meshed SupportSensor . 35

xi

LIST OF FIGURES

3.6 Meshed Flywheel . 35

3.7 Meshed Motor . 36

3.8 Meshed Table . 36

3.9 Joints in Fedem . 36

3.10 Joints defined in the Fedem model . 37

3.11 Reference speed of Fedem model. 39

4.1 Result from Bently Nevada RK0 Rig . 46

4.2 Campbell Diagram of 1D Beam Element . 47

4.3 Displacement at Node 3 and 5 in x and y direction 47

4.4 Result of1D Beam element . 48

4.5 Result of 1D Beam element with different DTMAX 48

4.6 Result of the natural frequencies in Fedem for the original bearing properties . . . 51

4.7 Result of Time versus Frequency for the original bearing properties 51

4.8 Result of displacement in Fedem for the original bearing properties 52

4.9 Result of the frequency as FFT diagram for the original bearing properties 52

4.10 Result of the natural frequencies in Fedem for the NX bearing properties 53

4.11 Result of Time versus Frequency for the NX bearing properties 53

4.12 Result of displacement in Fedem for the NX bearing properties 54

4.13 Result of displacement in Fedem for the NX bearing properties 54

4.14 Campbell diagram of the analytical solution . 55

4.15 Frequency response for analytical solution for node 3 55

4.16 Frequency response for analytical solution for node 5 56

4.17 Result operating deflection on the analytical solution 56

xii

List of Tables

3.1 Mesh parameters . 34

3.2 Ball joint . 37

3.3 Free Joint Orginal values . 38

3.4 Free Joint NX values . 38

3.5 Revolute joint . 38

3.6 Parameter of the reference speed . 39

4.1 Damping at transient analysis with using DTMAX = 0.001. 49

4.2 Stiffness at transient analysis with using DTMAX = 0.001. 50

xiii

LIST OF TABLES

xiv

Abbreviations

CMS Component Mode Synthesis

COG Center of Gravity

DOF Degree of Freedom

FEM Finite Element Method

FFT Fast Fourier Transform

RPM Rotation per Minute

xv

LIST OF TABLES

xvi

List of Symbols

a Distance between bearing1 and disk

b Distance between bearing2 and disk

β Angular displacement

cxi Damping in x at index i

cyi Damping in y at index i

δ Short distance/time/angle

E Elasticity module

ε Distance from COG and center of shaft

fxi Forces in x at index i

fyi Forces in y at index i

I Momentum of inertia

Id Momentum of inertia about x and y

Ip Polar momentum

kxi Stiffness in x at index i

kyi Stiffness in y at index i

λi Eigenvalue at index i

m Mass of flywheel

m0 Mass of the screw

Mx Moment about x

My Moment about y

Ω Angular velocity about z

ω Frequency

ωn Natural frequency

xvii

LIST OF TABLES

ϕ Degree about z

ϕ̇ Velocity about z

ϕ̈ Acceleration about z

ψ Degree about y

ψ̇ Velocity about y

ψ̈ Acceleration about y

ru Radial displacement in u-direction

rv Axial displacement in v-direction

η Relative phase angle between radial and axial displacements

θ Degree about x

θ̇ Velocity about x

θ̈ Acceleration about x

t Time

u Displacement in x direction

u̇ Velocity in x direction

ü Acceleration in x direction

v Displacement in y direction

v̇ Velocity in y direction

v̈ Acceleration in y direction

xviii

List of Matrices

A Combination of ΩG, C and M matrix

B Combination of K and M matrix

b0 A vector containing initial conditions for the system

C Damping matrix

G Gyroscope matrix

H The transfer matrix

K Stiffness matrix

M Mass matrix

q A vector containing generalized coordinates

Q A vector containing forces or torque acting on the rotor

T The transformation matrix

xix

LIST OF TABLES

xx

Chapter 1

Introduction

1.1 Background and Motivation

Rotor dynamics is an important application in many fields of industry. Rotating objects such as

jet engines, combustion engines, and water turbines are crucial objects in modern society, and

the understanding of rotor dynamics is hence important. Associated with rotating objects is the

“critical speed”, at which the rotating system experiences large displacements, oscillations, and

noise [2]. Just think of the noise and vibrations of the washing machine, which has an eccentric

load due to clothes gathering on one side. Many things may go wrong if rotor dynamics are not

taken into account. Rotor dynamic is about knowing, understanding, and analyzing the forces,

movements, and loads when a component is rotating. Neglecting rotor dynamics can have serious

consequences. It can result in high forces in bearings or axle deflection. This may damage machines,

reduce operational efficiency, and in the worst case be a danger to human safety.

The background of this project is that Terje Rølv̊ag is currently developing a course for students

that include rotor dynamics at NTNU. An important asset of the course is a rig called “Bently

Nevada RK0”. It consists of a shaft powered by an electrical motor. A flywheel is attached at the

center of the shaft, as seen in Figure 1.1. This rig is supposed to be demonstrated in a lecture, and

the students will then simulate the increasing RPM using finite element model (FEM) software to

find the critical speed numerically. The aim of the course is that the students should gain a deeper

understanding of the rotating system, enabling them to observe shaft deflection and recognize the

effects of an unbalanced mass and provide a solid comparison between theory and practice.

1

1.2. PROBLEM DESCRIPTION

Figure 1.1: Bently Nevada RK0

1.2 Problem Description

The problem in this thesis is that an eccentric load located on the flywheel causes shaft deflections

and vibrations. The eccentric load is a screw, placed out of the center that gives an eccentric load

in this case. This can result in irregular loading and vibrations in the shaft. This may reduce

the lifetime of the shaft and components which are in contact with the shaft and also damage the

bearing itself.

When performing analyses of this problem, it is important to use the correct properties of the

Bently Nevada rig such as bearing properties, motor properties, and material properties.

The bearing is made of bronze and is a journal bearing. The stiffness and damping properties

of this bearing are not known but are estimated. Stiffness and damping affect the shaft. The

stiffness is an important property because it makes the bearing resist deformation and vibration.

The damping is the property of the bearing that reduces and guides the vibration of the shaft.

Bearing properties will hence affect the response of the shaft.

The material of the components in the Bently Nevada rig is steel with Young’s modulus of 206GPa,

a Poisson’s ratio of 0.3, and a density of 7850kg/m3. The shaft has a diameter of 9.56mm and the

length is 353.6mm.

The motor is an electric motor with an adjustable speed ranging from 0 to 10000 RPM.

The shaft on the Bently Nevada rig has a flywheel attached to it. The flywheel has a diameter of

75.6mm and has 16 holes of 4mm placed at a distance of 31 mm from the rotational axis. A steel

screw with a mass of 3g is fitted into one of these holes.

2

1.3. PROJECT SCOPE

1.3 Project Scope

The scope of this project encompasses a numerical simulation of the Bently Nevada rig using the

software NX Nastran and Fedem. Furthermore, an analytical solution to the same problem is

implemented by using Python. The aim is to compare results from the simulation in NX and

Fedem with the analytical model and the physical Bently Nevada RK0 rig.

The main objectives to be studied are as follows:

• To create a model of the Bently Nevada rig in NX Nastran and run rotor analysis

• To create a dynamic model of the rotor assembly in Fedem.

• To create an analytical solution of the rotor assembly in Python.

• To compare the results obtained by the methods above with the physical rig and with each

other.

The main focus throughout this project has been NX Nastran, and the work concerning this solver

is hence covered more in detail than the other methods used.

This project was started in the spring of 2023 without a preliminary project relative to the subject

rotor dynamics. The initial part of this project was a literature review concerning rotor dynamics

theory. Next, a model of the rotor assembly was made in NX using beam elements. The bearing

properties of the Bently Nevada RK0 rig were not given and it was therefore interesting to perform

a parameter study of the bearing properties to match the response of the physical rig. In addition,

a transient analysis was performed in NX which resulted in the eigenfrequencies of the system.

In the Fedem software, a transient analysis was conducted to determine the eigenfrequency of the

shaft. Additionally, an analytical solution was employed to obtain the eigenfrequencies and to

solve the frequency response with the eccentric load.

3

1.3. PROJECT SCOPE

1.3.1 Thesis Structure

Chapter 1 : Introduction presents the thesis and provides the background.

Chapter 2: Theory covers the relevant theory necessary to understand rotor dynamics.

Chapter 3: Method describes the methodologies employed to obtain the result from the Bently

Nevada RK0 rig, including the simulation and analytical solution implemented using Python.

Chapter 4: Result presents the outcomes derived from the Bently Nevada RK0 rig, NX Nastran,

Fedem, and the analytical solution.

Chapter 5: Discussion is discussing the results presented in Chapter 4.

Chapter 6: Conclusion offers a summary of the results and the enclosing conclusion.

Chapter 7: Further work suggests potential future endeavors based on the findings of this

project.

4

Chapter 2

Theory

2.1 Rotor Dynamics

Rotordynamics is a specialized branch of applied mechanics that deals with the dynamic behavior

of a rotating body. In this chapter, the focus is the theory of a rotating system and the equations

used to solve this system. Most of the theory described in this chapter is based on chapters 3, 5,

and 6 in the book “Dynamics of Rotating Machines” by M.I Friswell (2010). [1].

2.1.1 Coordinates and Degrees of Freedom

A coordinate system is needed in order to define the equations of motion. The coordinate system is

either stationary or fixed to the rotor. For a simple and axisymmetric rotor, a stationary coordinate

system is the easiest to use.

The stationary coordinate system is a Cartesian coordinate system where the origin is placed at

the center of gravity. The z-axis is always placed in the axis direction and is coincident with the

center line of the rotor.

Figure 2.1 shows the coordinate system of a rotating system where the z-axis is along the shaft

direction. The rotor can translate in x, y and z directions noted as u, v, and w. There are also

small rotations around the x- and y-axis, represented by θ and ψ respectively. The angular velocity

around the z-axis is denoted as Ω [1].

5

2.1. ROTOR DYNAMICS

Figure 2.1: Coordinate system of a rotor [1].

2.1.2 Gyroscopic Couples

The effect of the gyroscopic couples arises as a consequence of the angular momentum. The angular

momentum of inertia is a product of the polar momentum and the velocity of a given axis. The

angular momentum is given as IpΩ. Rotation about the x-axis is IpΩ where Ip is the rotor’s polar

angular moment of inertia. Figure 2.2 shows the effect when rotating about the y-axis and if this

rotated with an angle ψ and a velocity ψ̇ over a period δt.

Mxδt = IpΩδψ or Mx = IpΩψ̇ (2.1)

Figure 2.2: Vector diagram with effect of a clockwise momentum about x [1].

6

2.1. ROTOR DYNAMICS

2.1.3 Rigid Rotor

Figure 2.3 illustrates a rigid rotor. This rigid rotor is supported by two bearings with no angular

stiffness and this is called a short bearing.

Mass of the rotor: m

Bearing stiffness in x and y direction: kx and ky

Moment of inertia about x and y axis: Id

Polar moment of the inertia: Ip

Figure 2.3: A rigid motor on flexible supports.

The equation of motion is represented by using Newton’s second law or using an energy method

(e.g., Lagrange’s equations). A free body diagram is shown in Figure 2.4 where the force on the

bearings and also the rotations θ and ψ are presented.

Figure 2.4: Free body diagram with force on the bearing.

The rotor has four degrees of freedom; travel in the x- and y direction is noted as u and v, and

rotation about the x- and y axis is noted as θ and ψ respectively.

7

2.1. ROTOR DYNAMICS

By using Newton’s second law of motion gives the equations:

Force in x direction: −fx1 − fx2 = mü

Force in y direction: −fy1 + fy2 = mv̈

Moment in θ direction: afy1 − bfy2 = Idθ̈ − IpΩψ̇

Moment in ψ direction: −afx1 − bfx2 = Idψ̈ + IpΩθ̇

(2.2)

Assume that the displacement of the rotor is small and then can replace sinψ by ψ. Also, assume

that the springs are linear and Hooke’s law can be used. There are no couplings between the x-

and y direction and then the following relations can be defined:

fx1 = kx1δ = kx1(u− a sinψ) ≈ kx1(u− aψ) (2.3)

By using the relationship in Equation 2.3 we get:

fx1 = kx1(u− aψ)

fx2 = kx2(u+ bψ)

fy1 = ky1(v + aθ)

fy2 = ky2(v − bθ)

(2.4)

Adding forces from equation 2.4 into equation 2.2 yields:

mü+ (kx1 + kx2)u+ (−akx1 + bkx2)ψ = 0

mv̈ + (ky1 + ky2)v + (aky1 − bky2)θ = 0

Idθ̈ + IpΩψ̇ + (aky1 − bky2)v + (a2ky1 + b2ky2)θ = 0

Idψ̈ − IpΩθ̇ + (−akx1 + bkx2)u+ (a2kx1 + b2kx2)ψ = 0

(2.5)

8

2.1. ROTOR DYNAMICS

When using the subscripts T, C, and R that indicate translation, coupling between displacement

and rotation gives the following stiffness coefficient:

kxT = kx1 + kx2 kyT = ky1 + ky2

kxC = −akx1 + bkx2 kyC = −aky1 + bky2

kxR = a2kx1 + b2kx2 kyR = a2ky1 + b2ky2

(2.6)

When introduce the coefficient in equation 2.6 into the equation 2.5 give:

mü+ kxTu+ kxCψ = 0

mv̈ + kyT v − kyCθ = 0

Idθ̈ + IpΩψ̇ − kyCv + kyRθ = 0

Idψ̈ − IpΩθ̇ + kxCv + kxRψ = 0

(2.7)

It is more helpful to write the Equation 2.7 is matrix form and this give equation

Mq̈+ΩGq̇+Kq = 0 (2.8)

Where

M =

m 0 0 0

0 m 0 0

0 0 Id 0

0 0 0 Id

, G =

0 0 0 0

0 0 0 0

0 0 0 Ip

0 0 −Ip 0

, K =

kxT 0 0 kxC

0 kyT −kyC 0

0 −kyC kyR 0

kxC 0 0 kxR

(2.9)

and

q =
[
u v θ ψ

]⊤

9

2.1. ROTOR DYNAMICS

The matrix of mass and stiffness are symmetric definite matrices and the gyroscopic matrix is

skew-symmetric. This equation can be written in the form:

ΩG M

M 0

 d

dt

q
q̇

+

K 0

0 −M

q
q̇

 =

0
0

 (2.10)

The equation 2.10 can be written as:

Aẋ+Bx = 0 (2.11)

Where:

x =

q
q̇

 , ẋ = d
dt

q
q̇

 , A =

ΩG M

M 0

, B =

K 0

0 −M

Look for a solution in the form x(t) = x0e

st and then ẋ = λx0e
st and then the Equation 2.11 can

be written as

λAx0 = −Bx0 (2.12)

This is a 2n x 2n eigenvalue problem, which needs to be solved numerically.

10

2.1. ROTOR DYNAMICS

2.1.4 Forward and Backward Whirl

When a rotating system enters the “critical speed range”, i.e. the rotating speed at which it

matches the natural frequency, it will start to resonate causing vibrations. The vibrations start

to do a transverse movement. This movement together with the rotation of the axis results in an

orbit. The orbit has a rotation direction denoted as a forward- or backward whirl. Eigenvector

and eigenvalue are in general complex. The eigenvalue is λ = jωi where ωi is the natural frequency

and the natural frequency is real and positive.

The damping affects only the amplitude and not the shape of the orbit or the direction. The

free-response in the mode can be written as:

x(t) = R(x(i)ejωit) (2.13)

where x(i) is the eigenvector

The direction of the rotation of the mode may be found considering displacement or rotation at a

single node. The response can be written as:

u(t)
v(t)

 = R

ruejηu
rve

jηv

 ejωit

 =

ru cos(ηu + ωit)

rv cos(ηv + ωit)

 = T

cosωit
sinωit

 (2.14)

T is the collected terms of the eigenvector.

T =

ru cos ηu −ru sin ηu
rv cos ηv −rv sin ηv

 (2.15)

From Equation 2.14 and modifying the equation yields:

cosωit
sinωit

 = T−1

u(t)
v(t)

 (2.16)

The orbit (u, v) forms an ellipse, as demonstrated by the fact that the response u and v together

constitute an orbit.

u(t)
v(t)

⊤

T−⊤T−1

u(t)
v(t)

 = cos2 ωit+ sin2 ωit = 1 (2.17)

The length of the major and minor axes is found by solving the eigenvalue of the matrix TT⊤

and this is denoted as H, where the matrix is symmetric and positively defined. The eigenvalues

11

2.1. ROTOR DYNAMICS

have real components λ1 and λ2, where λ1 ≥ λ2. The length of the semiminor and semimajor axis

are represented by
√
λ1 and

√
λ2. To define the direction of the orbit can be found by evaluating

Equation 2.14. If the time is shifted so that t→ (t− ηu/ωi), then:

u(t)
v(t)

 =

 ru cos(ωit)

rv cos(ηv − ηu + ωit)

 (2.18)

The direction of rotation depends on the phase difference between the response u and v. The

response is given by ηv − ηu. The response is a straight line if ηv = ηu or ηv = ηu + π and then

a point on the rotor’s centerline is vibration in one direction. A backward rotation mode exists if

0 < ηv − ηu < π and if −π < ηv − ηu < 0 a forward rotation exists. If ηv − ηu is not between −π

and −π, then multiplies of 2π are added. The properties of the orbit can be collected by a single

parameter κ defined as:

κ = ±
√
λ2/λ1 (2.19)

Where κ is positive for forward rotation and negative for backward rotation. In cases where κ = ±1,

the orbit is circular.

Using small displacements and rotation yield:

u1 = u− aψ, v1 = v + aθ

u2 = u+ bψ, v2 = v − bθ
(2.20)

Where u is the displacement in the x direction and v is the displacement in the y direction. The

subscript 1 and 2 indicate the displacement at bearing 1 or bearing 2.

12

2.1. ROTOR DYNAMICS

2.1.5 Damping

The rotor is assumed to only have damping in each bearing. The damping is modeled parallel to

the spring at each bearing location. The free-body diagram of a rotor with damping and spring

forces can be seen in Figure 2.5.

Figure 2.5: Free body diagram of a rotor with damping.

The new equations of the force equilibrium at the bearings from Equation 2.4 become:

fx1 = kx1(u− aψ) + cx1(u̇− aψ̇)

fx2 = kx2(u+ bψ) + cx2(u̇+ bψ̇)

fy1 = ky1(v + aθ) + cy1(v̇ + aθ̇)

fy2 = ky2(v − bθ) + cy2(v̇ − bθ̇)

(2.21)

Where c is the viscous-damping coefficient and is defined as:

cxT = cx1 + cx2 cyT = cy1 + cy2

cxC = −acx1 + bcx2 cyC = −acy1 + bcy2

cxR = a2cx1 + b2cx2 cyR = a2cy1 + b2cy2

(2.22)

13

2.1. ROTOR DYNAMICS

When using the definition in Equation 2.22 and then substituting Equation 2.21 into Equation 2.2,

the complete equation of motion for a damped system are given as:

mü+ cxT u̇+ cxC ψ̇ + kxTu+ kxCψ = 0

mv̈ + cyT v̇ − cyC θ̇ + kyT v − kyCθ = 0

Idθ̈ + IpΩψ̇ − cyC v̇ + cyRθ̇ − kyCv + kyRθ = 0

Idψ̈ − IpΩθ̇ + cxC u̇+ cxRψ̇ + kxCu+ kxRψ = 0

(2.23)

Equation 2.23 can be written in matrix form as:

Mq̈+Cq̇+ΩGq̇+Kq = 0 (2.24)

Where the matrices M, G and K is defined in Equation 2.9 and C is defined as:

C =

cxT 0 0 cxC

0 cyT −cyC 0

0 −cyC cyR 0

cxC 0 0 cxR

When making Equation 2.24, symmetry gives the following system of equations:

ΩG+C M

M 0

 d

dt

q
q̇

+

K 0

0 −M

q
q̇

 =

0
0

 (2.25)

14

2.1. ROTOR DYNAMICS

2.1.6 Flexible Rotor with Rigid Bearings

In the previous section, the rotor is rigid on flexible supports. This means that the rotor shaft is

rigid compared to the bearing stiffness. A lot of rotors can not be modeled as a rigid body since

they are flexible because of its small diameter compared to the length. A flexible rotor can vibrate,

even if the shaft is supported by rigid bearings on rigid supports. Figure 2.6 is show a rotor with

a small diameter compared to the length and is a flexible shaft with rigid bearing support.

Figure 2.6: Flexible rotor on rigid bearing.

For small displacement and rotation, there is a linear relationship between the force and moment

applied to the shaft direction in the x- or y direction. The moment is applied to the shaft in the

y- or x direction. This is a result of the respective displacement and rotation of the shaft. For a

specific point on the rotor, the force and moments are:

fx = kuuu+ kuψψ

My = kψψψ + kψuu
(2.26)

In Equation 2.26 is fx applied to the force in the x direction and My is a moment about the y

axis. The parameters u and ψ are defined in Figure 2.1, and the coefficients kuu, kψu and kuψ is

the stiffness coefficient of the shaft. For a conservative system is kψu = kuψ

Using Newton’s second law of motion yields:

Force on disk in x direction: −fx = mü

Force on disc in y direction: −fy = mv̈

Moment acting on the disk in θ direction: −Mx = Idθ̈ + IpΩψ̇

Moment acting on the disk in ψ direction: −My = Idψ̈ − IpΩθ̇

(2.27)

15

2.1. ROTOR DYNAMICS

Applying Equation 2.27 on Equation 2.26 give the motion of the flexible rotor as:

mü+ kuuu+ kuψψ = 0

mv̈ + kvvv + kuθθ = 0

Idθ̈ + IpΩψ̇ + kθvv + kθθθ = 0

Idψ̈ − IpΩθ̇ + kψuu+ kψψψ = 0

(2.28)

For a circular shaft, the properties are identical in each direction, so the equation in Equation 2.28

can be simplified by using kuu = kvv = kT , kθθ = kψψ = kR and kuθ = −kvθ = kC . The last sign

is because of the convention from Figure 2.1. This is reduced to:

mü+ kTu+ kCψ = 0

mv̈ + kT v − kCθ = 0

Idθ̈ + IpΩψ̇ − kCv + kRθ = 0

Idψ̈ − IpΩθ̇ + kCu+ kRψ = 0

(2.29)

These equations are identical to Equation 2.7. The stiffness coefficient for a shaft with length L,

with a pinned support and short bearing with a disk that is located a distance a from bearing 1

and b from bearing 2, is given as:

kT = kuu = kvv =
3EI(a3 + b3)

a3b3

kC = kuψ = −kvθ =
3EI(a2 − b2)

a2b2

kR = kψψ = kθθ =
3EI(a+ b)

ab

(2.30)

16

2.1. ROTOR DYNAMICS

2.1.7 Frequency Response

Frequency response account cause lateral forces. In the previous section, the equation of motion

was solved as a free response. This means there were no loads applied to the rotor.

Figure 2.7 explores the synchronous response of a rotor to out-of-balance forces and moments.

While the analysis initially focuses on a rigid rotor, it can be extended to flexible rotors. The

investigation aims to understand the impact of out-of-balance mass on a circular rotor.

Figure 2.7: Instanteous position of bearing centerline S and rotor mass center G.

In the figure, the equilibrium position (O) is identified, along with the instantaneous position of

the disturbed rotor centerline (S) and the position of the mass center of the rotor (G). The distance

|SG| represents the initial displacement (ε) of the rotor’s center of mass from the shaft centerline

at equilibrium.

The angle between the line SG, which represents a line on the rotor, and the Ox axis is denoted

as ψ. Additionally, the angle between the line OS and the Ox axis is ψ − α. The distance |OS|,

known as the amplitude of whirl, is calculated during the analysis.

17

2.1. ROTOR DYNAMICS

The center of mass has a movement uG and vG in the x- and y direction. The centerline of the

rotor deflects u and v in corresponding directions at the flexible bearing.

From Figure 2.7, the displacement of the center of mass is found as:

uG = u+ ε cos θ

vG = v + ε sin θ
(2.31)

If ε is constant and the equations are differentiated with respect to time, the following can be

derived:

üG = ü+ ε(−θ̇2 cos θ − ϕ̈ sin θ)

v̈G = v̈ + ε(−θ̇2 sin θ + ϕ̈ cos θ) (2.32)

If the rotating speed is constant, then ψ̇ = Ω and ψ̈ = 0. This gives:

üG = ü− εΩ2 cosΩt

v̈G = v̈ − εΩ2 sinΩt (2.33)

For a system where the center of mass is at an offset from the shaft at a small distance ε, the

displacement of the mass is given by uG and vG. ü and v̈ is replaced by üG and v̈G, which give

the equation:

müG + cxT u̇+ cxC ψ̇ + kxTu+ kxCψ = 0

mv̈G + cyT v̇ − cyC θ̇ + kyT v − kyCθ = 0

Idθ̈ + IpΩψ̇ − cyC v̇ + cyRθ̇ − kyCv + kyRθ = 0

Idψ̈ − IpΩθ̇ + cxC u̇+ cxRψ̇ + kyCv + kyRψ = 0

(2.34)

18

2.1. ROTOR DYNAMICS

By substituting for üG and v̈G from Equation 2.34:

mü+ cxT u̇+ cxC ψ̇ + kxTu+ kxCψ = mεΩ2 cosΩt

mv̈ + cyT v̇ − cyC θ̇ + kyT v − kyCθ = mεΩ2 cosΩt

Idθ̈ + IpΩψ̇ − cyC v̇ + cyRθ̇ − kyCv + kyRθ = 0

Idψ̈ − IpΩθ̇ + cxC u̇+ cxRψ̇ + kyCv + kyRψ = 0

(2.35)

Figure 2.8 shows the effect of an unbalanced load. The figure shows that the center of gravity is

moving.

Figure 2.8: Models of out-of-balance causing a lateral force.

The out-of-balance force for the right-hand diagram in Figure 2.8 is given by:

F = mεΩ2 (2.36)

The force of the left-hand diagram in Figure 2.8 gives a lateral acceleration of mass m0 aΩ
2 and

the resulting force is given as:

F = m0hΩ
2 (2.37)

Equation 2.36 and 2.37 is identical if:

mε = m0h (2.38)

19

2.1. ROTOR DYNAMICS

Figure 2.9 depicts a shaft with a disk where the center of gravity for the disk is displaced at a

distance ε.

Figure 2.9: Unbalanced rotor. The COG is moved a distance ε from the initial position.

Figure 2.10: Rigid rotor with skewed principal axis of inertia.

Figure 2.10 shows how the angular displacement provides a torque. The torque due to the angular

offset is given by:

M = ±(Id − Ip)βΩ
2 (2.39)

The sign in Equation 2.39 is dependent upon the direction of the angle.

20

2.1. ROTOR DYNAMICS

By rotating, θ and ψ give the angular position of the rotor as:

θA = θ − β sinΩt

ψA = ψ + β cosΩt
(2.40)

This gives an angular velocity of:

θ̇A = θ̇ − βΩcosΩt

ψ̇A = ψ̇ − βΩsinΩt
(2.41)

And the angular acceleration becomes:

θ̈A = θ̈ + βΩ2 sinΩt

ψ̈A = ψ̈ − βΩ2 cosΩt
(2.42)

Equation 2.23 is used to define the angular displacement of the rotor. The angular acceleration θ̈

and ψ̈ is replaced by θ̈A and ψ̈A. The angular velocity θ̇ and ψ̇ is replaced by θ̇A and ψ̇A. This

gives the following equation:

mü+ cxT u̇+ cxC ψ̇ + kxTu+ kxCψ = 0

mv̈ + cyT v̇ − cyC θ̇ + kyT v − kyCθ = 0

Idθ̈A + IpΩψ̇A − cyC v̇ + cyRθ̇ − kyCv + kyRθ = 0

Idψ̈A − IpΩθ̇A + cxC u̇+ cxRψ̇ + kyCv + kyRψ = 0

(2.43)

21

2.1. ROTOR DYNAMICS

By substituting θ̇A, ψ̇A, ψ̇A and ψ̈A, Equation 2.41 and 2.42 give:

mü+ cxT u̇+ cxC ψ̇ + kxTu+ kxCψ = 0

mv̈ + cyT v̇ − cyC θ̇ + kyT v − kyCθ = 0

Idθ̈ + IpΩψ̇ − cyC v̇ + cyRθ̇ − kyCv + kyRθ = −(Id − Ip)βΩ
2 sinΩt

Idψ̈ − IpΩθ̇ + cxC u̇+ cxRψ̇ + kyCv + kyRψ = (Id − Ip)βΩ
2 cosΩt

(2.44)

When combining Equation 2.35 and 2.44, the result is a rotor with out-of-balance forces and

moments. The combined equation is:

mü+ cxT u̇+ cxC ψ̇ + kxTu+ kxCψ = mεΩ2 cos(Ωt+ δ)

mv̈ + cyT v̇ − cyC θ̇ + kyT v − kyCθ = mεΩ2 sin(Ωt+ δ)

Idθ̈ + IpΩψ̇ − cyC v̇ + cyRθ̇ − kyCv + kyRθ = −(Id − Ip)βΩ
2 sin(Ωt+ γ)

Idψ̈ − IpΩθ̇ + cxC u̇+ cxRψ̇ + kyCv + kyRψ = (Id − Ip)βΩ
2 cos(Ωt+ γ)

(2.45)

Using matrix notation, Equation 2.45 can be written as:

Mq̈+ (ΩG+C)q̇+Kq = Q (2.46)

With the Q vector written as:

Q =

mεΩ2 cos(Ωt+ δ)

mεΩ2 sin(Ωt+ δ)

−(Id − Ip)βΩ
2 sin(Ωt+ γ)

(Id − Ip)βΩ
2 cos(Ωt+ γ)

 = ℜ

mεejδ

−jmεejδ

j(Id − Ip)βe
jγ

(Id − Ip)βe
jγ

Ω2ejΩt (2.47)

22

2.1. ROTOR DYNAMICS

Assume a response on the form q(t) = ℜ(q0e
jΩt) give that q = q0e

jΩt, q̇ = q0Ωe
jΩt and q̈ =

−q0Ω
2ejΩt. The equation can be written as:

(−Ω2M+ jΩ(ΩG+ C) +K)q0e
jΩt = Ω2b0e

jΩt (2.48)

Where:

b0 =

mεejδ

−jmεejδ

j(Id − Ip)βe
jγ

(Id − Ip)βe
jγ

Solving for q0:

q0 = [−Ω2M+ jΩ(ΩG+C+K]−1Ω2b0 (2.49)

This equation is used to find the displacement of the rotor.

23

2.2. FINITE ELEMENT METHOD

2.2 Finite Element Method

2.2.1 Beam Element

In this model is beam element used to simulate. The models with beam elements produce very

good results and are solved fast. To define the beam element, two different definitions are used,

namely the “Bernoulli” and “Timoskenko” beam elements.

The beam element has two nodes, which connect the element to other elements. The degrees of

freedom for an element are described by the q vector as q =
[
u1 v1 θ1 ψ1 u2 v2 θ2 ψ2

]⊤
.

The mass, damping, gyroscopic, and stiffness matrix is represented as an 8x8 form. The local

coordinates used for a beam element are defined in Figure 2.11.

Figure 2.11: Coordinates of a Single Beam Element.

The matrices of shaft elements represent the stiffness, damping, mass, and gyroscopic effect. The

gyroscopic effect also arises in the shaft, although this effect is small without a large shaft dia-

meter. For a Bernoulli element is the stiffness matrix defined in Equation 2.50. The matrix

for a Timoshenko and Bernoulli element with stiffness, gyroscope, and mass matrix is defined in

Appendix A. The Timoshenko formulation has extra terms that account for the shear deformation.

KB =
EeIe
le

12 0 0 6le −12 0 0 6le

0 12 −6le 0 0 −12 −6le 0

0 −6le 4l2e 0 0 6le 2l2e 0

6le 0 0 4l2e −6le 0 0 2l2e

−12 0 0 −6le 12 0 0 −6le

0 −12 6le 0 0 12 6le 0

0 −6le 2l2e 0 0 6le 4l2e 0

6le 0 0 2l2e −6le 0 0 4l2e

(2.50)

24

2.2. FINITE ELEMENT METHOD

When a system has more than 1 element, the mass matrix must be assembled. Figure 2.12 shows

the placement of the local stiffness matrices relative to the global one. The unoccupied spaces in

the stiffness matrix are zero.

Figure 2.12: Assembly of the global stiffness matrix.

The global stiffness matrix with 3 beam elements is shown in more detail in Figure 2.13, where

the stiffness for each degree of freedom is assembled.

Figure 2.13: Assembled stiffness matrix.

The bearing- and disc matrix are modeled as a lumped matrix parameter. The bearing stiffness

is defined in Equation 2.51. These properties are added to the nodes that have the properties of

stiffness, gyroscopic effect, or damping.

KBearing =

kui 0 0 0

0 kvi 0 0

0 0 kθi 0

0 0 0 kψi

 (2.51)

25

2.2. FINITE ELEMENT METHOD

26

Chapter 3

Method

In this chapter, the methods for conducting the analysis in Fedem and NX are presented. Also,

the analytical method is described as well as the physical rig.

3.1 Physical Rig

To obtain results from the physical rig, it is crucial to connect the screw to the flywheel prior to

initiating rotation. The computer must be connected to the sensors, which are positioned on a

sensor support attached to the rig. The rig is equipped with a rotating switch that controls the

shaft’s speed. By manipulating the switch, the desired velocity of the shaft is achieved.

Once the shaft reaches a velocity corresponding to its natural frequency, it begins to produce sound

and vibrations. These displacements are recorded by the sensors, which transmit the data to the

computer, enabling the generation of plots depicting displacement over time.

Figure 3.1 displays the Bently Nevada RK0 rig used in the analysis. The figure also highlights

the key components employed in the simulation and provides guidance on obtaining the desired

results.

27

3.2. NX NASTRAN

Figure 3.1: Overview of the different components in the physical rig.

3.2 NX Nastran

The simulation in NX aims to obtain results in terms of displacement versus time and the Camp-

bell diagram, which illustrates the relationship between natural frequency and velocity (RPM) to

determine critical speed.

3.2.1 1D BEAM Element

To define a 1D element in NX, it is advantageous to consider a rotating axis. As the solver rotates

around the z-axis, the simplest approach is to utilize the rotating axis along the z-axis. Figure 3.2

illustrates the model of the element presented in this chapter

Figure 3.2: Definition of beam element in NX. The node N2 and N202, as well as node N6 and
N206 are positioned at same location

28

3.2. NX NASTRAN

Define Nodes

Nodes were manually created in the analysis by specifying their coordinates relative to the start and

end points of the shaft. In this case, seven nodes were placed along the shaft axis and connected

by beam elements. The specific node shown in Figure 3.2 corresponds to the location where the

bearings, mass element, and displacement sensors are positioned. An additional node was necessary

at the bearing location to establish the connection between the node from the beam element and

the bearing element.

Define CBEAM Element and PBEAML Properties

The CBEAM element is manually created between the specified nodes, such as between N2 and

N202, and between N5 and N205 as shown in Figure 3.2. It serves to connect two nodes using a

CBEAM element.

In addition to creating the CBEAM element, it is necessary to define its properties. This can be

done by accessing the Physical Properties and selecting PBEAML as the type of property. By

doing so, the properties of the CBEAM element can be created. It is important to define the

geometry of the section, which can be achieved by either using a 1D element section to define the

section or by accessing the Show Section Manager to create a section and define the cross-section

properties. Since it is a 1D element, there is no previously defined geometry, and the material

property has not been defined yet. The material properties also need to be specified by selecting

the appropriate material in the PBEAM properties section.

For each collector, the BEAM property needs to be defined, ensuring that it matches the properties

defined in PBEAML. In this collector, all elements will have the same properties as defined. If

different properties are required, a new collector must be created to accommodate those specific

properties.

Define CBEAR Element and PBEAR Properties

The CBEAR element is defined between two nodes that are positioned at the same location. The

first node, known as the source node, represents the fixed boundary condition node, while the

second node, known as the target node, is connected to the CBEAM element.

To define the properties and collector for the CBEAR element, you need to select a new collector

and then create the physical properties. This allows you to define the stiffness, damping, and mass

matrix for the CBEAR element. The properties of the first bearing can be defined within the same

collector as the second bearing since they will have the same properties, considering they are part

of the same collector.

29

3.2. NX NASTRAN

Define 0D Element

The 0D element must be defined manually since the 0D element on the home page will make a

new node that is not connected to the node on the beam. A 0D element is created by going to

Nodes and Element and then selecting Choose Element. The element family is 0D and the element

properties are CONM2. To define the properties of this mesh, the command edit mesh associated

data is first used, and then the mass of the flywheel and the moment of Inertia (Ixx, Iyy, and

Izz) are defined. For this simulation the following parameters were used for the flywheel; Ixx of

244.1036kg ∗mm2, Iyy of 244.1036kg ∗mm2 and Izz of 450.3561kg ∗mm2 Ixx and Iyy must be

exactly the same because otherwise, the simulation does not run. The flywheel mass is defined at

the same node with a value of 0.628944kg.

3.2.2 Simulation of 1D Beam Element

Define Solution and Solution Option

To start the simulation, it is necessary to create a solution in NX Nastran. In this particular

problem, a Transient Response Analysis (SOL414,129) and Complex Modal Analysis (SOL414,

110) are used. Additionally, some data must be defined to solve the problem effectively.

Firstly, in the Case Control section, the Bulk Data Echo Request and Output Request must be

specified. These settings determine which data will be echoed and what output will be generated

during the simulation.

Since this is a rotating problem, the Rotor Dynamics Solution Parameters need to be defined.

These parameters are specified in the bulk data section. It is possible to create new parameters

or select existing ones if they have been defined before. The key parameters to be defined are the

Starting Speed, Step Size, and Number of Steps. The starting speed is 0 rev/min, the step size is

60rev/min and the number of steps is 168 this gives the final velocity over 10000RPM. Additionally,

the reference system can be set as either a fixed or a rotating coordinate system. In this problem,

a fixed coordinate system is used.

Define Boundary Condition

In order to properly simulate the problem, it is necessary to define the boundary conditions. In

this case, the bearing point where the shaft is connected needs to be fixed to the ground. This

means that the point or node connected to the CBEAR element should have fixed constraints.

At the motor point, it is not possible for the shaft to translate in the x, y, and z directions.

Therefore, this point is fixed for all translations and can only rotate about the z-axis.

30

3.2. NX NASTRAN

For the nodes on the beam, the constraints are set to fix the displacement in the z-direction (DOF3)

and rotation around the z-axis (DOF6). This means that the nodes are prevented from moving or

rotating in these specific directions [3].

Define Rotor Region and Modeling Assembly

The rotor region is defined by selecting the nodes that are rotating. It is important to exclude the

fixed node on the bearing since it does not rotate. In this particular problem, a global coordinate

system is chosen as the beam element is defined along the z-axis.

To solve this problem, a Rotor Modeling Assembly needs to be defined. The selected rotor region,

as previously defined, is included in this assembly.

3.2.3 Transient Analysis of 1D Beam Element

Define Unbalance Mass

The unbalanced mass needs to be defined in order for the solver to run successfully. This is achieved

by applying a load with an unbalanced mass. The node where the mass is defined corresponds to

the same node where the flywheel is located. The rotor region, as previously defined, is associated

with this unbalance mass. The specific mass used is 3g or 0.003kg, with an eccentricity of 31mm.

Define Output Data

To obtain the displacement at nodes 3 and 5, it is important to define a REPORT for these nodes.

This can be done by selecting “REPORT” under the Simulation Object Type and then choosing

the desired nodes. Since displacement in two directions is of interest, the report should be defined

twice, once for each direction. This allows for capturing the displacement data accurately and

separately for each specified node.

Subcase - Nonlinear Dynamics

To solve this problem using the Nonlinear Dynamics approach, it is necessary to define certain

control parameters. Specifically, the maximum time step (DTMAX) needs to be determined.

Equation 3.1 provides guidance for selecting an appropriate value for DTMAX. In the Nonlinear

Control Parameters section, under Automatic Time Stepping, DTMAX should be set to a value

higher than what is being solved for [3]. In addition to DTMAX, other parameters related to the

simulation were set to default values provided by NX.

31

3.2. NX NASTRAN

∆tmax =
1

20× Ωmax
(3.1)

In addition, the duration of the simulation known as the “Time Step Definition” should be set to 50

seconds. This will also specify the duration of each time step. The Number of Increments should

be set to 1, indicating that the analysis is performed in a single increment. These parameters

ensure that the nonlinear dynamics analysis is conducted accurately and efficiently.

Solve

To successfully solve the problem, it is crucial to ensure that all the sections described are active

and properly defined. A warning message will appear if any of these sections are not defined in the

active solution, and the solution will not run until they are addressed. If any required materials or

parameters are missing, they can be easily added by dragging them down to the active solution,

provided that they have been defined beforehand. This ensures that all necessary components are

included and that the solution can proceed without any issues.

Plotting

To plot the graph of the transient analysis, you need to select the displacement data that was

previously defined in the Report section. By selecting this data, you can generate a graph that

represents the displacement of the shaft at a specific node over time. Additionally, by applying

the Fast Fourier Transform (FFT) to the displacement data, you can obtain a frequency function

that shows the dominant frequencies present in the system. This allows for a more comprehensive

analysis of the system’s dynamic behavior.

3.2.4 Complex Modal Analysis on 1D Beam

To generate a Campbell diagram, the Complex Modal Analysis solver is used. The process for

conducting a complex modal analysis is similar to that of a transient analysis. The Bulk Data

parameters and Solution Options need to be defined in the same way as in the transient analysis.

Regarding the boundary conditions, they should be applied to the active solution. This can be

done by dragging the boundary conditions to the active step in the simulation process.

32

3.3. FEDEM

Outputs Parameters

Complex Modal Analysis is a parameter that needs to be defined in the subcase “Modal Complex”

and edited accordingly. Two specific parameters that need to be defined are the Real and Complex

Eigenvalue methods. Additionally, the number of Desired Modes should be set to 4 for both

methods.

Plotting

To plot the results, select the eigenvalues of interest to obtain the eigenvalue at different speeds

and observe the change in speed.

3.3 Fedem

Fedem, which stands for Finite Element Dynamics in Elastic Mechanisms, is a finite element

method utilized for analyzing the dynamic behavior and structural simulation of elastic structures

and mechanisms. Fedem employs a nonlinear formulation, making it suitable for handling both

displacement and rotation. One of the notable features of Fedem is its control system, which allows

for the inclusion of sensors and controllers in the analysis [4].

3.3.1 Model Reduction in Fedem

Fedem utilizes Component Mode Synthesis (CMS) to reduce computational time by replacing the

internal nodal degrees of freedom (DOF) with a set of static and component modes [4]. This

technique allows for the reduction of finite element models into superelements, which consist of

external nodes positioned at the interfaces connecting different parts of the mechanism [4]. The

model reduction process involves creating superelement mass and stiffness matrices, which are then

connected to the overall system’s mass and stiffness matrices during the simulation [4].

3.3.2 Model Setup

Mesh

To create a Fedem mesh, the meshing process is performed in NX, and then the mesh is imported

into Fedem. The parts excluding the shaft are imported as a Nastran bulk file from NX, while the

shaft itself is modeled using beam elements within Fedem.

33

3.3. FEDEM

In Table 3.1, the element size and properties are defined.

Table 3.1: Mesh parameters

Part: Mesh type: mesh size

Table Swept mesh (CQuad4) 8mm
Motor Swept mesh (CQuad4) 8mm

SupportMotor and SupportEnd CTETRA(10) 8mm
SupportSlotted Free mesh CTETRA(10) 8mm
SupportSensor Free mesh CTETRA(10) 8mm

Flywheel Free mesh CTETRA(10) 8mm

The SupportEnd and SupportMotor are defined as the same part. Figure 3.3 shows the mesh of

this part, including a spider in the hole that defines the bearing connection to the shaft. At the

bottom, there is also a spider defined, which is connected to the table support.

(a) Original SupportEnd and SupportMotor (b) Mesh with spider

Figure 3.3: Meshed SupportEnd and SupportMotor

The SupportSlotted is shown in Figure 3.4, which displays the mesh of this part. It includes a

spider used to connect the part to the table and a spider at the shaft location.

(a) Original SupportSlotted (b) Mesh with spider

Figure 3.4: Meshed SupportSlotted

34

3.3. FEDEM

The SupportSensor is meshed with a spider at a surface where the sensor is placed. Figure 3.5 illus-

trates the meshing of this part. Additionally, there is a spider at the bottom of the SupportSensor,

which serves to connect it to the table.

(a) Original SupportSensor (b) Mesh with spider

Figure 3.5: Meshed SupportSensor

The Flywheel part is meshed with a spider in the shaft hole and in four of the small holes around it.

Figure 3.6 displays the defined model, both as a part and the corresponding meshed representation.

In one of the spiders located in the upper small hole, a concentrated mass of 3g (0.003kg) is defined.

(a) Original Flywheel (b) Mesh with spider

Figure 3.6: Meshed Flywheel

The motor part is freely meshed and can be seen in Figure 3.7. A spider is defined within the

circular area that connects the motor shaft to the motor.

35

3.3. FEDEM

(a) Orginal Motor
(b) Mesh with spider

Figure 3.7: Meshed Motor

The table is defined as a swept mesh and includes spiders at the positions where the supports are

connected. This can be seen in Figure 3.8.

(a) Orginal Table
(b) Table mesh with spider

Figure 3.8: Meshed Table

Joints in Fedem

Joints are used in Fedem to connect components together. There are seven different types of joints

available in Fedem, numbered from zero to six, depending on the desired joint behavior [4]. These

joints are connected using triads.

Figure 3.9 shows the joints used in the Fedem model of Bently Nevada RK0.

Figure 3.9: Four different joints used in the Bently Nevada rig model in Fedem - retaken from [4].

Revolute Joint in Fedem has one degree of freedom (DOF). This allows one part to rotate about

a specified axis relative to another common axis.

36

3.3. FEDEM

Ball Joint in Fedem has three degrees of freedom (DOF). This allows one part to rotate about

three specified axes relative to another part.

Rigid Joint in Fedem is used to restrict all displacements between parts, creating a stiff connec-

tion. This joint eliminates any relative motion between the connected parts, resulting in a rigid

connection.

Free Joint in Fedem is used to allow for various types of mechanism motion. This joint has six

degrees of freedom, enabling movement in all directions and rotations around all axes. It provides

flexibility in defining complex motions and kinematic behavior within the model.

Mechanical Assembly

The Fedem model for the Bently Nevada RK0 rig is assembled using the joints as described in

the previous section. Figure 3.10 illustrates the placement of the different joints within the model.

Additionally, a sensor is defined within the model to measure and register the displacement at a

specific node.

Figure 3.10: The placement of the different joints in the Fedem model.

The ball joint is defined between the motor shaft and the main shaft in the Fedem model. The

degrees of freedom (DOFs) of the ball joint at this connection point are described in Table 3.2.

Table 3.2: Ball joint

Joint DOF Constrain Spring Damper
Rx Free - -
Ry Free - -
Rz Spr/dmp 100e3 0

37

3.3. FEDEM

The Free joint is placed at the bearing locations in the Fedem model, and these free joints are

associated with bearing properties such as springs and dampers. The degrees of freedom (DOFs)

of the free joints in the model are described in Table 3.3 for the first simulation.

Table 3.3: Free Joint Orginal values

Joints DOF Bearing 1 Bearing 2
Constrain Spring Damper Constrain Spring Damper

[N/m] [Ns/m] [N/m] [Ns/m]
Tx Spr/Dmp 10e6 10e3. Spr/Dmp 10e6 0
Ty Spr/Dmp 10e6 10e3 Spr/Dmp 10e6 0
Tz Spr/Dmp 1e6 1000 Spr/Dmp 1e6 10000
Rx Fixed - - Fixed - -
Ry Fixed - - Fixed - -
Rz Free - - Free - -

In Table 3.4, the values of the bearing properties used in NX and the analytical solution are

provided. This ensures that the properties of the bearings are consistent and equal in both ap-

proaches.

Table 3.4: Free Joint NX values

Joints DOF Bearing 1 Bearing 2
Constrain Spring Damper Constrain Spring Damper

[N/m] [Ns/m] [N/m] [Ns/m]
Tx Spr/Dmp 10e6 10e3. Spr/Dmp 10e6 10e3
Ty Spr/Dmp 10e6 10e3 Spr/Dmp 10e6 10e3
Tz Spr/Dmp 1e6 - Spr/Dmp 1e6 -
Rx Fixed - - Fixed - -
Ry Fixed - - Fixed - -
Rz Free - - Free - -

In Table 3.5, the degrees of freedom (DOF) and the velocity functions associated with the Rz DOF

of the revolute joint are provided. The specific functions used for the velocity are described in

more detail in the subsequent section.

Table 3.5: Revolute joint

Joint DOF Velocity
Rz Reference speed (Function)

The rigid joints are placed between different components and at the corners of the table in the

Fedem model.

38

3.3. FEDEM

3.3.3 Control System

The velocity of the shaft is defined to increase linearly over time. This is achieved by setting a

slope parameter that determines the rate of increase per second. The details of this parameter can

be found in Table 3.6.

Table 3.6: Parameter of the reference speed

Start displacement 0
Slope [rad/s] 104.7

Start of ramp [s] 0.0
End of Ramp [s] 15.0

The linear increase of the shaft velocity occurs during the first 15 seconds of the simulation. The

specific velocity profile can be observed in Figure 3.11.

Figure 3.11: Reference speed of Fedem model.

A sensor is placed between two triads to measure the displacement at that specific position.

3.3.4 Analysis Setup

The analyses are conducted using time increments of 0.0002s, starting from time 0s and ending

after 12s. For this simulation, the first four eigenmodes were requested. The rest of the parameters

were set as default values.

39

3.4. ANALYTICAL

3.4 Analytical

When performing an analytical solution, Python is used for the calculations. The Python script

in this thesis is based on code developed by Lars Helge Verde [5], incorporating the theoretical

concepts discussed in Chapter 2. The code used in this project is found in Appendix I and includes

a setup file for the analysis as well as a system-class file.

3.4.1 Input Parameters

The code requires certain input parameters to be defined in order to obtain accurate results. These

parameters provide the necessary information for the calculations and analysis.

Material Parameters:

• E: Young’s Modulus

• rho: Density

• v: Poisson’s Ratio

Disk

• D: External disk diameters

• d: Internal disk diameter

• th: Disk thickness

• pos: Position of disc

• esp: Initial disc-offset

Shaft

• External diameter

Bearing Stiffness

• kx: [Kx1, Kx2,...]

• ky: [Ky1, Ky2,...]

• kTheta: [KTheta1, KTheta2,...]

• kPsi: [KPsi1, KPsi2,...]

40

3.4. ANALYTICAL

Bearing Damping

• cx: [Cx1, Cx2,...]

• cy: [Cy1, Cy2,...]

• cTheta: [CTheta1, CTheta2,...]

• cPsi: [CPsi1, CPsi2,...]

3.4.2 Extra Parameters

Beam type

• 0 = Bernoulli

• 1 = Thimoshenko

Include Disc

• True (default)

• False

Use Damping

• True (default)

• False

BC Type

• 0 = position at end

• 1 = exactly position

• 2 = closest position

Bearing Position

• Bearing position 1

• Bearing position 2

If the BC type is set to 0, it means that bearings are placed at both ends of the shaft. Although

the bearing positions need to be defined for the code to run, they are not directly used in the

calculations or analysis.

41

3.4. ANALYTICAL

3.4.3 Make Matrix

The matrices M, K, and G are constructed based on Bernoulli and Timoshenko beam theory for

the shaft. The inclusion of the flywheel introduces the gyroscopic effect, which is accounted for in

the G matrix. In addition, the stiffness and damping matrices (K and C) are computed for the

bearings. These matrices are then added to the global matrix at the nodes where the bearings are

located, incorporating their effects into the overall system.

3.4.4 Solve Matrix

After constructing the matrices A and B, the eigenvalue problem is solved to obtain the eigenvalues

of the system. Since the eigenvalues are complex, they consist of a real part and an imaginary

part. To create the Campbell diagram, the eigenvalues are sorted based on their absolute value,

denoted as ωn. If multiple eigenvalues have the same absolute value, the sorting is done based on

the imaginary part. The imaginary part is stored separately for positive and negative values, as

the imaginary parts can be positive or negative for the same absolute value. This sorting process

allows for a clear representation of the system’s eigenfrequencies and critical speeds in the Campbell

diagram.

3.4.5 Plot Campbell Diagram

The Campbell diagram is plotted by representing the natural frequencies as a function of the

velocity Ω, which is measured in RPM (revolutions per minute). The velocity Ω is defined as a linear

function of the parameter n and the natural frequency ω, such that Ω = nω. This representation

allows for clear visualization of the relationship between the system’s natural frequencies and the

varying velocity, providing valuable insights into the system’s dynamic behavior and critical speeds.

3.4.6 Plot Frequency Response and Operating Deflection

To plot the various graphs, the displacement values for both u and v are solved and obtained

by considering the q vector, which represents the displacement and lateral load case b. These

displacement values are then used to calculate the amplitude for frequency response analysis and

to determine the rotational displacement of the shaft for other plots.

42

3.4. ANALYTICAL

3.4.7 Plot Modeshape

To plot the modeshape, the eigenvalue problem is solved for the specific velocity of interest. This

involves determining the eigenvalues and eigenvectors of the system. Once the eigenvalues are

obtained, the corresponding eigenvectors represent the modeshapes of the system at that particular

velocity. The displacement values for both u and v are then solved using these eigenvectors, and

these displacements are plotted to visualize the modeshape of the system at the given velocity.

43

3.4. ANALYTICAL

44

Chapter 4

Result

This chapter presents the results obtained from the Bently Nevada RK0 rig, as well as the results

obtained from the simulations conducted in NX Nastran and Fedem. The NX simulation includes

also results from a parameter study. Ultimately, the analytical solution is presented.

4.1 Physical Bently Nevada RK0 Rig

Results from the Bently Nevada RK0 rig are shown in Figure 4.1. It provides data regarding

the displacement at various points and the system’s response as the velocity increases. The first

peak corresponds to the response during an increasing velocity, while the second peak represents

the response during a decreasing velocity. The results indicate that the maximum displacement

observed is approximately 0.5mm.

Based on the results from the Bently Nevada RK0, an estimated frequency of 75Hz was obtained

from the velocity of the shaft.

45

4.2. 1D BEAM ELEMENT IN NX NASTRAN

Figure 4.1: Result from Bently Nevada RK0 Rig.

4.2 1D Beam Element in NX Nastran

The results obtained from the analysis conducted using NX Nastran are presented through plots

and tables, providing valuable insights into the behavior of the system.

The Campbell diagram in Figure 4.2 illustrates the relationship between the eigenfrequencies and

the velocity (RPM). This diagram enables us to observe the critical speed, which occurs at approx-

imately 120 Hz when the velocity intersects the first natural frequency. The eigenvalues obtained

from the simulation correspond to the fixed rotation speed

46

4.2. 1D BEAM ELEMENT IN NX NASTRAN

Figure 4.2: Campbell Diagram of 1D Beam Element.

The displacement plot in Figure 4.3 shows the time at which the largest displacements occur.

At approximately 36 seconds after the start of acceleration, the maximum displacement is ob-

served, reaching a value of 0.0011 m. Notably, the node closest to the flywheel exhibits the largest

displacement in both the x- and y directions.

Figure 4.3: Displacement at Node 3 and 5 in x and y direction.

47

4.2. 1D BEAM ELEMENT IN NX NASTRAN

To further analyze the frequency components, a Fast Fourier Transform (FFT) diagram is presented

in Figure 4.4. This diagram displays the frequencies and corresponding displacements, revealing a

peak displacement at a frequency of 121 Hz.

Figure 4.4: FFT diagram

The choice of DTMAX (maximum time step) significantly affects the solution results. Figure

4.5 demonstrates the impact of different DTMAX values on the displacement and vibration levels.

Lower DTMAX values result in reduced displacements and increased vibration at various locations.

Figure 4.5: Result of 1D Beam element with different DTMAX.

The parameter study of the bearing stiffness and damping provides insights into the time at

which the largest displacement occurs. The FFT analysis is used to represent the frequency and

displacement in the FFT Diagram.

48

4.2. 1D BEAM ELEMENT IN NX NASTRAN

Table 4.1 presents the results of the damping effects, showcasing the impact on the system’s

behavior.

Table 4.1: Damping at transient analysis with using DTMAX = 0.001.

Name K11 and K33 C11 and Time Displacement Frequency

K22 [N/m] [N/m] C22 [Ns/m] [s] [m] [Hz]

Original [max] 10e6 1e6 10e3 35.909 0.002674 119.78
Original [min] 10e6 1e6 10e3 35.855 -0.002683 120.1
Damp20 [max] 10e6 1e6 20e3 36.238998 0.002771 121.2
Damp20 [min] 10e6 1e6 20e3 36.202 -0.002768 121.02
Damp30 [max] 10e6 1e6 30e3 36.403 0.00393 121.34
Damp30 [min] 10e6 1e6 30e3 36.407001 -0.003393 121.52
Damp40 [max] 10e6 1e6 40e3 36.500999 0.004099 121.7
Damp40 [min] 10e6 1e6 40e3 36.497002 -0.004098 121.74
Damp50 [max] 10e6 1e6 50e3 36.549999 0.004797 121.92
Damp50 [min] 10e6 1e6 50e3 36.554001 -0.004789 121.96

Damp60 10e6 1e6 60e3 - - -

Table 4.2 displays the results of the stiffness effects on the bearing. It provides values for the

maximum and minimum displacements observed in the system, illustrating the influence of varying

stiffness on the behavior of the system.

49

4.2. 1D BEAM ELEMENT IN NX NASTRAN

Table 4.2: Stiffness at transient analysis with using DTMAX = 0.001.

Name K11 and K33 C11 and Time Displacement Frequency

K22 C22 [s] [m] [Hz]

Stiff1 [max] 1e6 1e6 10e3 36.279999 0.001035 120.84
Stiff1 [min] 1e6 1e6 10e3 36.243 -0.001035 120.52
Stiff2 [max] 2e6 1e6 10e3 36.132 0.001097 120.84
Stiff2 [min] 2e6 1e6 10e3 36.202 -0.001095 120.52
Stiff3 [max] 3e6 1e6 10e3 36.000 0.00119 120.7
Stiff3 [min] 3e6 1e6 10e3 35.971001 -0.001191 120.38
Stiff4 [max] 4e6 1e6 10e3 35.883999 0.001316 120.7
Stiff4 [min] 4e6 1e6 10e3 35.912998 -0.001315 120.24
Stiff5 [max] 5e6 1e6 10e3 35.883999 0.001469 119.02
Stiff5 [min] 5e6 1e6 10e3 35.885 0.001472 119.54
Stiff6 [max] 6e6 1e6 10e3 35.800999 0.001658 119.02
Stiff6 [min] 6e6 1e6 10e3 35.855 -0.001657 119.54
Stiff7 [max] 7e6 1e6 10e3 35.800999 0.001875 119.02
Stiff7 [min] 7e6 1e6 10e3 35.855 -0.00187 119.54
Stiff8 [max] 8e6 1e6 10e3 35.800999 0.002118 119.78
Stiff8 [min] 8e6 1e6 10e3 35.855 -0.002114 119.54
Stiff9 [max] 9e6 1e6 10e3 35.826 0.002384 119.78
Stiff9 [min] 9e6 1e6 10e3 35.855 -0.002387 119.96

Original [max] 10e6 1e6 10e3 35.909 0.002674 119.78
Original [min] 10e6 1e6 10e3 35.855 -0.002683 120.1
Stiff11 [max] 11e6 1e6 10e3 35.909 0.002998 119.78
Stiff11 [min] 11e6 1e6 10e3 35.880001 -0.002989 120.1
Stiff12 [max] 12e6 1e6 10e3 35.909 0.003325 119.92
Stiff12 [min] 12e6 1e6 10e3 35.938 -0.003332 120.1
Stiff13 [max] 13e6 1e6 10e3 35.966999 0.003682 119.92
Stiff13 [min] 13e6 1e6 10e3 35.995998 -0.003672 120.24
Stiff14 [max] 14e6 1e6 10e3 35.909 0.002674 120.06
Stiff14 [min] 14e6 1e6 10e3 35.855 -0.002683 120.24
Stiff15 [max] 15e6 1e6 10e3 35.909 0.002998 120.06
Stiff15 [min] 15e6 1e6 10e3 35.880001 -0.002989 120.38
Stiff16 [max] 16e6 1e6 10e3 35.909 0.003325 120.2
Stiff16 [min] 16e6 1e6 10e3 35.938 -0.003332 120.38
Stiff17 [max] 17e6 1e6 10e3 35.966999 0.003682 120.2
Stiff17 [min] 17e6 1e6 10e3 35.995998 -0.003672 120.38

50

4.3. SIMULATION IN FEDEM

4.3 Simulation in Fedem

The results from the Fedem simulation are presented in this section through several plots.

4.3.1 Original Bearing Parameters

Figure 4.6 illustrates the natural frequencies obtained from the simulation. The frequencies are

observed at approximately 136.6Hz, two around 186.5Hz, and the last one at 329.3Hz.

Figure 4.6: Result of the natural frequencies in Fedem for the original bearing properties.

Figure 4.7 depicts the velocity of the rotor as a linear line. The natural frequencies are represented

by the horizontal line. This allows us to determine the time when the shaft reaches the same

frequencies as the natural frequencies.

Figure 4.7: Result of Time versus Frequency for the original bearing properties.

In Figure 4.8, the displacement from the Fedem simulation is shown. Comparing this result with

Figure 4.7, it can be observed that the displacement occurs at a frequency of 186 Hz.

51

4.3. SIMULATION IN FEDEM

Figure 4.8: Result of displacement in Fedem for the original bearing properties.

In Figure 4.9, the FFT diagram of the displacement shown in Figure 4.8 is presented with respect

to frequency. This result indicates a prominent frequency peak around 186Hz.

Figure 4.9: Result of the frequency as FFT diagram for the original bearing properties.

4.3.2 NX Bearing Parameters

In Figure 4.10, the natural frequencies from the Fedem simulation are shown. These frequencies

are observed at approximately 136.6 Hz, two around 186.5 Hz, and the last one at 329.3 Hz, which

are consistent with the original bearing parameters.

52

4.3. SIMULATION IN FEDEM

Figure 4.10: Result of the natural frequencies in Fedem for the NX bearing properties.

In Figure 4.11, the velocity of the rotor is represented by a linear line, while the natural frequencies

are indicated by horizontal lines. This plot shows the time instances when the shaft reaches the

same frequency as the natural frequencies.

Figure 4.11: Result of Time versus Frequency for the NX bearing properties.

In Figure 4.12, the displacement of the Fedem simulation is represented. Comparing this result

with Figure 4.11, it can be observed that the displacement occurs at a frequency of 186.5Hz, which

is consistent with the original bearing properties.

53

4.3. SIMULATION IN FEDEM

Figure 4.12: Result of displacement in Fedem for the NX bearing properties.

In Figure 4.13, the FFT diagram of the displacement shown in Figure 4.12 is presented with respect

to frequency. This result indicates a prominent frequency peak around 186Hz, which aligns with

the original bearing parameters.

Figure 4.13: Result of displacement in Fedem for the NX bearing properties.

54

4.4. ANALYTICAL RESULT

4.4 Analytical Result

In this section, the results of the analytical solution, which was solved using Python, are presented.

In Figure 4.14, the Campbell diagram from the analytical solution is presented. The figure shows

that the natural frequencies are observed at approximately 94.0Hz, 160.3Hz, and 161.9Hz.

Figure 4.14: Campbell diagram of the analytical solution.

Figure 4.15 and 4.16 present the response at node 3 and 5, respectively, in the system. The

results show that these nodes exhibit a maximum amplitude response at approximately 5640RPM,

corresponding to the first natural frequency at 94Hz.

Figure 4.15: Frequency response for analytical solution for node 3.

55

4.4. ANALYTICAL RESULT

Figure 4.16: Frequency response for analytical solution for node 5.

In Figure 4.17, the deflection of the rotor at a velocity of 5640RPM, representing the critical speed,

is displayed.

Figure 4.17: Result operating deflection on the analytical solution.

56

Chapter 5

Discussion

5.1 Bently Nevada RK0

5.1.1 Displacement

The displacement, as measured by the sensors, reached a maximum value of approximately 1.1

mm. This displacement is visually noticeable and not too small to be observed.

5.1.2 Frequency

The frequency is determined by analyzing the displacement and velocity of the shaft. This allows

for the identification of bending modes. It is important to note that the accuracy of the frequency

measurement can be affected if the sensors are not properly calibrated. Calibration plays a crucial

role in obtaining accurate and reliable results.

5.2 NX

5.2.1 Effect of the Bearing Stiffness and Damping

The bearing stiffness and damping properties play a significant role in the behavior of a rotating

system. In this section, the effects of these properties on the system’s dynamics are discussed,

particularly focusing on the rotation aspect.

57

5.2. NX

Bearing Stiffness

The analysis of bearing stiffness produces two types of results: transient response and a Campbell

diagram. These results provide valuable insights into the system’s behavior and characteristics.

During the transient analysis, the impact of bearing stiffness on the rotor system was investigated.

It was observed that increasing the stiffness led to larger displacements. However, it was also

noted that excessively high stiffness values, exceeding 17e6N/m, caused the simulation to terminate

prematurely before reaching the peak displacement. This limitation occurs due to the challenges

in accurately simulating the system with extremely high stiffness values.

Furthermore, it was observed that as the bearing stiffness increased, the frequency initially de-

creased before eventually increasing again. However, the magnitude of this frequency variation

was less than 1Hz, making it challenging to draw definitive conclusions from these slight changes.

The results from the Campbell diagram for different stiffness values indicate that lower stiffness

(below 1e6N/m) leads to noticeable changes in the eigenfrequencies of the system. This observation

is expected, as lower stiffness allows for more flexibility and leads to lower natural frequencies.

However, higher stiffness values did not have a significant effect on the eigenfrequencies, as shown

in the Campbell diagram in Appendix H.

The small change can be a result of the shaft stiffness being the most dominant compared to the

stiffness of the bearings. The deflection of the shaft is hence governed by the stiffness of the shaft.

Bearing Damping

When the bearing damping is altered, changes are observed in both the Campbell diagram and

the transient response.

In the analysis of the transient response, it has been observed that there is a difference in the mag-

nitude of displacement between node 3 and node 5. The FFT diagram shows the same frequencies

for both nodes, which is expected since the largest displacement occurs at the same time for both

nodes. The difference in displacement magnitude between these two points can be attributed to

the fact that node 5 is closer to bearing 2 and has a longer distance from the flywheel compared to

node 3. Additionally, the displacement from bearing 1 to node 3 is longer than the displacement

from bearing 1 to node 5, resulting in a larger displacement at node 3 compared to node 5.

When the damping is increased, a larger displacement is observed in the transient response. How-

ever, this increase in displacement does not result in a significant change in the frequencies as

shown in the FFT diagram. The frequencies remain around 120-122Hz. There could be several

reasons for this minimal change in frequencies. One possibility is that the value of DTMAX does

not coincide with the point of maximum displacement or it occurs during a later oscillation. Ad-

58

5.2. NX

ditionally, it should be noted that the simulation may crash when the damping value becomes too

high. The last successful simulation was performed using a damping value of 50e3Ns/m.

When examining the Campbell diagrams, it can be observed that increasing the damping does not

significantly alter the eigenfrequencies of Mode 1 and Mode 2. However, it does have an impact on

Mode 3 and Mode 4, causing a decrease in frequency. The results from Modes 1 and 2 indicate that

there is no substantial change in frequencies in the transient analysis. It is worth noting that the

Campbell diagram shows slightly higher frequencies around 124 Hz compared to the frequencies

obtained from the transient response analyses, which are around 120-122 Hz. One possible reason

for the higher frequencies in the Campbell diagram is that the complex modal analysis does not

account for the eccentric load.

5.2.2 Boundary Condition

The decision to fix DOF3 and DOF6 in the analysis is based on the boundary conditions given

in Tutorial 6 and relevant models related to the theme [3]. By fixing these degrees of freedom, it

ensures that the system remains in a constrained state and prevents free-body motion. Additionally,

without fixing these DOFs, the result may yield a frequency of zero in the Campbell diagram. One

possible explanation for this is that the DOFs have a prescribed velocity that affects the stiffness

of the shaft, and fixing them helps maintain the stability and consistency of the analysis. It is also

worth noting that in this analysis, the motor is considered a fixed reference system while rotating.

5.2.3 Effect of DTMAX

The parameter DTMAX represents the maximum time step size that can be used in the simulation.

The value of DTMAX is crucial in determining the accuracy and behavior of the system in the

transient response simulation.

A high value of DTMAX can potentially result in missing important details, as the time step may

be too large to capture rapid changes in the system. On the other hand, a low value of DTMAX

can lead to longer computation times, as more time steps are required to simulate the desired time

period.

Figure 4.5 illustrates that a higher DTMAX value leads to an earlier response, possibly because

the response occurs at an earlier time and is then rounded to fit within the defined RPM steps. In

the FFT diagram, a lower DTMAX value is associated with lower frequencies.

In cases where the velocity is high, it is advisable to reduce the value of DTMAX to obtain more

result points and ensure a more accurate representation of the system’s behavior.

59

5.3. FEDEM

5.2.4 Learning Material

During the simulation process, it was encountered that there was a lack of material available

specifically for the NX solver. The user material that was found seemed to be designed for an older

solver version, and may not have been compatible with SOL 414, which was used in this thesis.

While the theory described in the guide may still be relevant, there was a need for specific learning

material tailored to the SOL 414 solver.

Obtaining learning material and support for performing simulations in NX has proven to be chal-

lenging. Efforts have been made to reach out to Siemens and connect with individuals experienced

in using NX. Acquiring relevant models related to the thesis problem has been beneficial in verify-

ing the correctness of the undertaken steps. However, certain aspects, such as defining BERGSET

as mentioned in the “old” user guide, have posed difficulties in understanding. Additionally, com-

prehending the appropriate boundary conditions has also presented challenges in the process.

When attempting to solve the transient response, the accurate determination of DTMAX proved

to be challenging. As described in Section 3.2, DTMAX was defined using a formula. However, due

to the lack of relevant simulations, it was difficult to fully understand the impact and significance

of this parameter, as previously discussed.

It was also challenging to determine the velocity of the shaft in the transient analysis. As a result,

it was difficult to ascertain the velocity of the system’s response accurately. Unfortunately, no

graphs or plots were available to visualize the velocity at specific points in time.

Towards the end of this thesis, a video on Xalrator Academy was found, despite difficulties accessing

it. Although it is believed that the video could have been beneficial in terms of improving the results

and gaining a better understanding, its late discovery limited its impact on the overall thesis.

5.3 Fedem

In this section, the results and findings from the analysis conducted using Fedem are presented and

discussed. The focus is on the displacement patterns and the frequencies observed in the system.

5.3.1 Displacement

The observed higher displacement in the Fedem simulation compared to the results from the

physical rig and NX analysis could be attributed to various factors.

One possible reason for the difference in displacement between the Fedem simulation and the

physical rig or NX analysis could be the time integration in the simulation. The choice of interaction

method in Fedem can have an impact on the results, potentially leading to higher displacements.

60

5.4. ANALYTICAL SOLUTION USING PYTHON

It is worth mentioning that the Fedem simulation utilized the HHT-alpha method with an alpha

value of 0.1 for the numerical integration. This choice of numerical integration scheme can have

an impact on the simulation results, including the calculated displacement values.

5.3.2 Natural Frequency

The frequency analysis conducted in Fedem yielded higher values for the bending mode compared

to the results obtained from NX, as observed in both the Campbell diagram and the transient

response analysis. While the first mode in Fedem is relatively close to the results from NX, it is

important to note that this mode represents a different mode shape and exhibits higher frequencies.

5.3.3 Different in Bearing Properties

The difference in bearing properties, whether using given values or the values used in Fedem, does

not have a significant impact on the frequency response, as observed in Figures 4.8 and 4.12. The

results obtained using the original bearing values in Fedem show minimal damping in bearing 2,

resulting in a small response at higher speeds, occurring after surpassing the critical speed.

5.4 Analytical Solution Using Python

5.4.1 Frequency Response and Natural Frequencies

The frequency response analysis shows a prominent response at a velocity of approximately 5640

RPM, with an amplitude exceeding 10 mm. The Campbell diagram from the analytical solution

indicates a lower frequency compared to the results obtained from Fedem and NX. This discrepancy

in frequencies between the analytical solution and the estimated value in the physical Bently Nevada

RK0 suggests that the analytical solution may provide higher frequency values in this particular

case.

The two first modes in the analytical solution are observed to be positioned between 90 Hz and

100 Hz, which is lower than the frequencies obtained from the simulation. When comparing the

frequency response and the Campbell diagram, it can be seen that the response occurs at the

same velocity where the rotor speed crosses the eigenfrequencies. However, it is worth noting that

there may be errors in the code used for solving the eigenvalues and eigenvectors of the A and B

matrices, particularly in cases where the shaft is present between the bearings.

61

5.4. ANALYTICAL SOLUTION USING PYTHON

5.4.2 Geometry and Model

The model used in this analysis assumed a solid disk or flywheel without any holes. However, it

should be noted that the presence of 16 holes in the actual physical system was not considered in

the Python code. Although the holes are relatively small compared to the size of the flywheel, their

presence could potentially have some effect on the behavior of the shaft. Therefore, it is possible

that not accounting for these holes in the model could result in some discrepancies between the

predicted results and the actual system response.

The script was designed to set the displacement values in the v and u directions to zero for node 1,

indicating that this node was fixed in the analysis. However, it seems that the fixation of the node

was not implemented correctly in the modal analysis. This means that the modeshape analysis

might not accurately represent the fixed boundary condition at node 1.

The solution of the shaft between two bearings did not yield the desired result because the eigen-

values were not successfully computed from the A and B matrices. This issue likely prevented the

accurate determination of the natural frequencies and mode shapes of the system.

5.4.3 Gyroscopic Effect

The gyroscopic effect on the shaft is considered in the analytical solution of this project. However,

the value of the gyroscopic effect is found to be near zero, indicating that its contribution to the

system dynamics is negligible. This is likely due to the small cross-section of the shaft, which does

not generate a significant gyroscopic effect.

It is important to note that neglecting the gyroscopic effect in the analytical solution is valid for

this specific case. In situations where the shaft has a larger diameter cross-section, the gyroscopic

effect may become more significant and should be included in the analysis. Careful consideration

of the shaft’s geometry and its influence on the gyroscopic effect is crucial to accurately model the

system dynamics.

The reason for neglecting the gyroscopic effect in this analysis can be explained based on the theory

presented in Section 2.1.2. The gyroscopic effect is proportional to the angular momentum, which

in turn depends on the polar moment of inertia. For small cross-sections, the polar moment of

inertia is small, resulting in a small angular momentum and consequently a negligible gyroscopic

effect. Therefore, for the specific case of small cross-sections in this project, the gyroscopic effect

can be safely neglected.

62

5.5. COMPARISON OF THE RESULTS

5.5 Comparison of the Results

When comparing the results from different simulations and analytical solutions, it is important

to consider certain factors that can introduce errors or discrepancies. One such factor is the

estimation of bearing properties, which may not be known exactly and can result in variations in

the simulation results. Additionally, the accuracy of the sensors used to measure displacement can

also introduce errors in the results.

In comparing the results from NX, Fedem, and the analytical solution, it is expected that they

should exhibit similar properties and be compatible with each other. However, as discussed earlier

in this chapter, there are differences in frequencies and displacement between the simulations.

These differences could be attributed to various factors such as modeling assumptions, numerical

methods, and simulation parameters used in each software.

5.5.1 Element Size

The element size used in the simulation can indeed impact the results, and it is important to ensure

consistency in element size when comparing results between different software or analysis methods.

In the case of NX and Python, using the same element size allows for a more direct comparison of

the results and increases their comparability.

Regarding the analytical solution, the way the plots are generated and presented can affect the

interpretation of the results. If the plot is based on node data rather than position, it may result

in a less smooth and less intuitive representation of the results. This can make it more challenging

to analyze and interpret the results accurately.

Furthermore, the difference in element size between Fedem and NX can also contribute to vari-

ations in the results. Different element sizes can lead to different levels of discretization and

approximation, potentially affecting the accuracy and behavior of the system being analyzed.

63

5.5. COMPARISON OF THE RESULTS

64

Chapter 6

Conclusion

Based on the results obtained from the Bently Nevada RK0 rig, the estimated frequency response

cannot be directly compared to the results of other simulations. Additionally, the exact bearing

properties used in the rig are unknown, which further adds to the difficulty of making direct

comparisons.

Based on the obtained results, there were certain limitations and challenges encountered when

using the NX solver SOL414. Some of these issues included difficulties in obtaining all the relevant

results in a convenient format, such as the absence of velocity plots. These limitations indicate

that the solver may require further development and improvements to enhance its usability and

user-friendliness.

The results from the analyses indicate that when the bearing stiffness becomes too high, it is easier

to obtain a solution by applying fixed boundary conditions in the x and y directions. This approach

helps stabilize the system and enables the simulation to proceed successfully.

The increase in bearing damping does not have a significant effect on the frequencies of the bend-

ing mode. However, it does impact the displacement, with higher damping resulting in higher

displacement values. The Campbell diagram, on the other hand, shows more noticeable changes

in frequencies, particularly for modes 3 and 4. This suggests that bearing damping can influence

the dynamic behavior of the system, particularly for higher-order modes.

Furthermore, it is important to consider the appropriate boundary conditions, such as fixing the

translation in the x and y directions and fixing the rotation about the z-axis.

Choosing an appropriate value for DTMAX is crucial as it can significantly impact the simulation

results. A high value of DTMAX may cause important details to be missed, while a low value can

result in longer computation times. Finding the right balance is essential to ensure accurate and

efficient simulations.

65

The analysis in Fedem results in high displacement and frequency values, which can possibly be

attributed to the damping properties.

In the analytical solution, there is no need to include a gyroscopic effect for the shaft, especially

when the shaft has a thin cross-section. The gyroscopic effect is minimal for such cases and can

be safely neglected in the analysis.

The simulation in NX and the analytical solution should be comparable since they both use the

same properties, such as bearing stiffness and beam element size. However, it is important to

note that there may be some differences or discrepancies between the two methods due to various

factors, such as numerical approximations, assumptions, or simplifications made in the analytical

solution. Therefore, while the results can provide valuable insights and trends, it is necessary to

interpret them with caution and consider the limitations and assumptions of each method.

66

Chapter 7

Further Work

Since there were a lot of issues in NX, there is a lot of possible further work.

Firstly, an analysis performed in an alternative solver such as Abaqus and Ansys would give

valuable insight into the problem, as the is a lot of literature on these solvers. This can be used

to compare the different results in Fedem and from the physical Bently Nevada RK0 rig with the

chosen solver.

Additionally, it is possible to go back to the analysis in NX once the documentation is better. This

includes doing the simulation with beam elements and solid elements.

Another thing to do is obtain more precise bearing properties. This should help when comparing

the result with the physical Bently Nevada RK0 rig.

Furthermore, the Fedem model should be improved by looking at the integration properties used

in the model.

Lastly, focusing on enhancing the Python script would be valuable, so that results can be more

easily read. This can be done by changing element size and improving plotting.

67

68

References

[1] M.I Friswell. Dynamics of rotating machines. eng. Vol. 28. Cambridge aerospace series. Cam-

bridge: Cambridge University Press, 2010. isbn: 9780521850162.

[2] Mohammad Hadi Jalali et al. ‘Dynamic analysis of a high speed rotor-bearing system’. In:

Measurement 53 (2014), pp. 1–9.

[3] Transient response of a 1D model at run-up under Unbalance. English. SIEMENS. 2023. 14 pp.

[4] User’s Guide. English. Version Release 2211. SAP. 2022. 392 pp.

[5] L.H. Veldre. ‘Mechanical Design of Electric Demonstrator Motor for E-Fan X Hybrid Aero-

plane and a Study of Dynamics of Rotating Bodies’. MA thesis. NTNU, Norwegian University

of Science, Technology Faculty of Engineering Department of Mechanical and Industrial En-

gineering, 2020.

69

REFERENCES

70

Appendix A

Bernoulli and Timoshenko

Matrices

71

A.1. BERNOULLI

A.1 Bernoulli

KB =
EeIe
le

12 0 0 6le −12 0 0 6le

0 12 −6le 0 0 −12 −6le 0

0 −6le 4l2e 0 0 6le 2l2e 0

6le 0 0 4l2e −6le 0 0 2l2e

−12 0 0 −6le 12 0 0 −6le

0 −12 6le 0 0 12 6le 0

0 −6le 2l2e 0 0 6le 4l2e 0

6le 0 0 2l2e −6le 0 0 4l2e

(A.1)

MB =
ρeAele
420

156 0 0 22le 54 0 0 −13le

0 156 −22le 0 0 54 13le 0

0 −22le 4l2e 0 0 −13le −3l2e 0

22le 0 0 4l2e 13le 0 0 −3l2e

54 0 0 13le 156 0 0 −22le

0 54 −13le 0 0 156 22le 0

0 13le −3l2e 0 0 22le 4l2e 0

−13le 0 0 −3l2e −22le 0 0 4l2e

(A.2)

GB =
ρeIe
15le

0 36 −3le 0 0 −36 −3le 0

−36 0 0 −3le 36 0 0 −3le

3le 0 0 4l2e −3le 0 0 −l2e
0 3le −4l2e 0 0 −3le l2e 0

0 −36 3le 0 0 36 3le 0

36 0 0 3le −36 0 0 3le

3le 0 0 −l2e −3le 0 0 4l2e

0 3le l2e 0 0 −3le −4l2e 0

(A.3)

72

A.2. TIMOSHENKO

A.2 Timoshenko

BT =
Eele

(1 + Φe)l3e

12 0 0 6le −12 0 0 6le

0 12 −6le 0 0 −12 −6le 0

0 −6le l2e(4 + Φe) 0 0 6le l2e(2− Φe) 0

6le 0 0 l2e(4 + Φe) −6le 0 0 l2e(2− Φe)

−12 0 0 −6le 12 0 0 −6le

0 −12 6le 0 0 12 6le 0

0 −6le l2e(2− Φe) 0 0 6le l2e(4 + Φe) 0

6le 0 0 l2e(2− Φe) −6le 0 0 l2e(4 + Φe)

(A.4)

MT =
ρeAele

840(1 + Φe)2

m1 0 0 m2 m3 0 0 m4

0 m1 −m2 0 0 m3 −m4 0

0 −m2 m5 0 0 m4 m6 0

m2 0 0 m5 −m4 0 0 m6

m3 0 0 −m4 m1 0 0 −m2

0 m3 m4 0 0 m1 m2 0

0 −m4 m6 0 0 −m2 m5 0

m4 0 0 m6 −m2 0 0 m5

+
ρeIe

30(1 + Φe)2

m7 0 0 m8 −m7 0 0 m8

0 m7 −m8 0 0 −m7 −m8 0

0 −m8 m9 0 0 m8 m10 0

m8 0 0 m9 −m8 0 0 m10

−m7 0 0 −m8 m7 0 0 −m8

0 −m7 m8 0 0 m7 m8 0

0 −m8 m10 0 0 m8 m9 0

m8 0 0 m10 −m8 0 0 m9

(A.5)

m1 = 312 + 588Φe + 280Φ2
e, m6 = −(6 + 14Φe + 7Φ2

e)l
2
e ,

m2 = (44 + 77Φe + 35Φ2
e)le, m7 = 36,

m3 = 108 + 252Φe + 140Φ2
e, m8 = (3− 15Φe)le,

m4 = −(26 + 63Φe + 35Φ2
e), m9 = (4 + 5Φe + 10Φ2

e)l
2
e ,

m5 = (8 + 14Φe + 7Φ2
e), m10 = (−1− 5Φe + 5Φ2

e)l
2
e

73

A.2. TIMOSHENKO

GT =
ρeIe

15(1 + Φe)2le

0 g1 −g2 0 0 −g1 −g2 0

−g1 0 0 −g2 g1 0 0 −g2
g2 0 0 g3 −g2 0 0 g4

0 g2 −g3 0 0 −g2 −g4 0

0 −g1 g2 0 0 g1 g2 0

g1 0 0 g2 −g1 0 0 g2

g2 0 0 g4 −g2 0 0 g3

0 g2 −g4 0 0 −g2 −g3 0

(A.6)

g1 = 36, g3 = (4 + 5Φe + 10Φ2
e)l

2
e

g2 = (3− 15Φe)le, g4 = (−1− 5Ψe + 5Φ2
e)l

2
e

74

Appendix B

Modeshapes in NX

75

B.1. MODE 1

B.1 Mode 1

Figure B.1: Mode 1

B.2 Mode 2

Figure B.2: Mode 2

76

B.3. MODE 3

B.3 Mode 3

Figure B.3: Mode 3 xz

Figure B.4: Mode 3 yz

77

B.4. MODE 4

B.4 Mode 4

Figure B.5: Mode 4 xz

Figure B.6: Mode 4 yz

78

Appendix C

Modeshape in Python

79

C.1. MODE 1

C.1 Mode 1

Figure C.1: Mode 1

C.2 Mode 2

Figure C.2: Mode 2

80

C.3. MODE 3

C.3 Mode 3

Figure C.3: Mode 3

C.4 Mode 4

Figure C.4: Mode 4

81

C.4. MODE 4

82

Appendix D

FFT of DTMAX

83

Figure D.1: DTMAX = 0.001s

Figure D.2: DTMAX = 0.002s

84

Appendix E

Damping Plot Using Transient

Response

In this plot, only the damping coefficient, c, is varied. The stiffness properties are set as follows:

the radial translation stiffness (K11 = K22) is set to 10e6 N/m, and the axial translation stiffness

(K33) is set to 1e6 N/m. The purpose is to observe the effect of changing the damping coefficient

on the system’s behavior.

E.1 Damping at Node 3

Figure E.1: c = 10e3Ns/m

85

E.1. DAMPING AT NODE 3

Figure E.2: c = 20e3Ns/m

Figure E.3: c = 30e3Ns/m

86

E.1. DAMPING AT NODE 3

Figure E.4: c = 40e3Ns/m

Figure E.5: c = 50e3Ns/m

87

E.2. FFT AT NODE 3

Figure E.6: c = 60e3Ns/m

E.2 FFT at Node 3

Figure E.7: c = 10e3Ns/m

88

E.2. FFT AT NODE 3

Figure E.8: c = 20e3Ns/m

Figure E.9: c = 30e3Ns/m

89

E.2. FFT AT NODE 3

Figure E.10: c = 40e3Ns/m

Figure E.11: c = 50e3Ns/m

90

E.2. FFT AT NODE 3

Figure E.12: c = 10e3Ns/m

Figure E.13: c = 20e3Ns/m

91

E.2. FFT AT NODE 3

Figure E.14: c = 30e3Ns/m

Figure E.15: c = 40e3Ns/m

92

E.2. FFT AT NODE 3

Figure E.16: c = 50e3Ns/m

Figure E.17: c = 60e3Ns/m

93

E.2. FFT AT NODE 3

94

Appendix F

Stiffness Plot Using Transient

Response

In these plots, the transient response of the system is presented. The damping coefficient (C11

= C22) is kept constant at 10e3Ns/m, and the axial stiffness (K33) is set to 1e6N/m. The radial

stiffness, k, is varied to observe its effect on the system’s transient behavior.

F.1 Stiffness at Node 3

Figure F.1: K = 1e6N/m

95

F.1. STIFFNESS AT NODE 3

Figure F.2: K = 2e6N/m

Figure F.3: K = 3e6N/m

Figure F.4: K = 4e6N/m

96

F.1. STIFFNESS AT NODE 3

Figure F.5: K = 5e6N/m

Figure F.6: K = 6e6N/m

Figure F.7: K = 7e6N/m

97

F.1. STIFFNESS AT NODE 3

Figure F.8: K = 8e6N/m

Figure F.9: K = 9e6N/m

98

F.1. STIFFNESS AT NODE 3

Figure F.10: K = 10e6N/m

Figure F.11: K = 11e6N/m

99

F.1. STIFFNESS AT NODE 3

Figure F.12: K = 12e6N/m

Figure F.13: K = 13e6N/m

Figure F.14: K = 14e6N/m

100

F.1. STIFFNESS AT NODE 3

Figure F.15: K = 15e6N/m

Figure F.16: K = 16e6N/m

Figure F.17: K = 17e6N/m

101

F.2. FFT AT NODE 3

F.2 FFT at Node 3

Figure F.18: K = 1e6N/m

Figure F.19: K = 2e6N/m

102

F.2. FFT AT NODE 3

Figure F.20: K = 3e6N/m

Figure F.21: K = 4e6N/m

Figure F.22: K = 5e6N/m

103

F.2. FFT AT NODE 3

Figure F.23: K = 6e6N/m

Figure F.24: K = 7e6N/m

Figure F.25: K = 8e6N/m

104

F.2. FFT AT NODE 3

Figure F.26: K = 9e6N/m

Figure F.27: K = 10e6N/m

Figure F.28: K = 11e6N/m

105

F.2. FFT AT NODE 3

Figure F.29: K = 12e6N/m

Figure F.30: K = 13e6N/m

Figure F.31: K = 14e6N/m

106

F.2. FFT AT NODE 3

Figure F.32: K = 15e6N/m

Figure F.33: K = 16e6N/m

Figure F.34: K = 17e6N/m

107

F.2. FFT AT NODE 3

108

Appendix G

Damping Plot Using Complex

Modal Analysis

This appendix presents the results of the complex modal analysis in the form of a Campbell

diagram. In these plots, the radial stiffness translation is held constant at 10e6N/m, while the

axial translation is maintained at a constant value of 1e6N/m. The damping coefficient C11 and

C22 are varied using a common coefficient, denoted as c. The Campbell diagram illustrates the

relationship between the rotor speed (expressed in RPM) and the natural frequencies of the system

for different damping coefficients.

Figure G.1: c = = 1e3Ns/m

109

Figure G.2: c = 20e3

Figure G.3: c = 30e3Ns/m

110

Figure G.4: c = 40e3Ns/m

Figure G.5: c = 50e3Ns/m

111

Figure G.6: c = 60e3Ns/m

Figure G.7: c = 70e3Ns/m

112

Figure G.8: c = 80e3Ns/m

Figure G.9: c = 90e3Ns/m

113

Figure G.10: c = 100e3Ns/m

Figure G.11: c = 1Ns/m

114

Figure G.12: c = 1e1Ns/m

Figure G.13: c = 1e2Ns/m

115

Figure G.14: c = 1e3Ns/m

Figure G.15: c = 1e5

116

Figure G.16: c = 1e6Ns/m

Figure G.17: c = 1e7Ns/m

117

118

Appendix H

Stiffness Plot Using Complex

Modal Analysis

In this appendix, the complex modal analysis results are presented as a Campbell diagram. The

damping coefficient (C11 = C22) is kept constant at 10e3Ns/m, while the axial stiffness (K33)

is set to 1e6N/m. The radial stiffness, k, is varied to observe its effect on the system’s natural

frequencies.

Figure H.1: k = 1e6N/m

119

Figure H.2: k = 20e6N/m

Figure H.3: k = 30e6N/m

120

Figure H.4: k = 40e6N/m

Figure H.5: k = 50e6N/m

121

Figure H.6: k = 60e6N/m

Figure H.7: k = 70e6N/m

122

Figure H.8: k = 80e6N/m

Figure H.9: k = 90e6N/m

123

Figure H.10: k = 100e6N/m

Figure H.11: k = 1e8N/m

124

Figure H.12: k = 1e9N/m

Figure H.13: k = 1e10N/m

125

126

Appendix I

Python Code Used in the

Analytical Solution

Below is the code used to obtain the analytical solution:

I.1 rotor.py

import SystemClass as SC

import numpy as np

import matplotlib.pyplot as plt

import matplotlib as mpl

mpl.rcParams['lines.linewidth'] = 3.5

mpl.rcParams['legend.labelspacing'] =1

mpl.rcParams["legend.handlelength"] = 6

mpl.rcParams["legend.fontsize"] = 14

mpl.rcParams['xtick.labelsize'] = 16

mpl.rcParams['ytick.labelsize'] = 16

mpl.rcParams['axes.titlesize'] = 18

mpl.rcParams['axes.labelsize'] = 18

Dis = 0 #Change the position of bearing

127

I.1. ROTOR.PY

#Rotor Parameters

shaft_param = np.array([9.56]) #Shaft External Diameter, Shaft Internal diameter

material = {'E':206000,'ro' : 7.850e-9,'ve':0.3}

disk = {'D':[75],'d':[9.56],'th':[19],'pos':[197.1-Dis],'eps':[0.14548]}

{'D' : [Diamter 1, Diameter..], 'th':[thicknes..],

'pos': [position from bearing 1],

'eps': displacement at disk

bearing1_position = 74.5-Dis

bearing2_position = 325.5-Dis

sensor1_position = 150.5-Dis

sensor2_position = 301.0-Dis

disk_position = disk['pos']

axes_length = 353.6

z_coords = [0.0,]

#Add all parameters to a x coordinates of the rotor:

z_coords.append(bearing1_position)

z_coords.append(bearing2_position)

z_coords.append(sensor1_position)

z_coords.append(sensor2_position)

z_coords.append(axes_length)

z_coords.extend(disk_position)

z_coords.sort()

#Define bering position is needed to define. If BC_Type =0 it will not be used,

but will not run without.↪→

Bearing_position = [bearing1_position, bearing2_position]

#Rotor Coordinates

#z_coords = np.arange(0,353.,1)

y=[1]*len(z_coords)

128

I.1. ROTOR.PY

print(z_coords)

#Bearing Properties in N and mm

kx1 = 10e3

kx2 = 10e3

ky1 = 10e3

ky2 = 10e3

cx1 = 10.0e0

cx2 = 10.0e0

cy1 = 10.0e0

cy2 = 10.0e0

Kb ={'kx':[kx1,kx2],'ky':[ky1,ky2],'kTheta':[0,0],'kPsi':[0,0]}

Cb ={'cx':[cx1,cx2],'cy':[cy1,cy2],'cTheta':[0,0],'cPsi':[0,0]}

#Rotor instance

param = [material,shaft_param, disk,Kb,Cb]

coords = [z_coords,y]

rotor = SC.RotorSystem(coords, param, Bearing_position ,beam_type=0

,include_disk= True, damping=True,BC_Type=1, fixed=False)↪→

#Rotational intervals

O = [o for o in np.arange(0,10000,1)]

O_campell = [o for o in np.arange(0,10000,10)]

#Plot

fig1,ax1 =

rotor.plot_CampBell_Diagram(O_campell,n_frequencies=4,n_multiple_omega=1,

wD=False,wN=True,plot_dampratio=False,include_mode=False)

↪→

↪→

ax1.set_yticks(np.arange(0,700,100))

ax1.set_xlim(0,10000)

ax1.set_ylim(0,200)

fig2,ax2 =rotor.plot_modeshape(0,5640)

129

I.2. SYSTEMCLASS.PY

fig5,ax5 = rotor.plot_freqResponse(O,response_type=0, pos = 150.5)

plt.show()

I.2 SystemClass.py

import numpy as np

import matplotlib.pyplot as plt

from math import *

from numpy import linalg as LA

from scipy.sparse.linalg import eigsh

from mpl_toolkits import mplot3d

plt.rcParams['axes.labelsize'] = 14

plt.rcParams['axes.labelweight'] = 'bold'

plt.rcParams['axes.titleweight'] = 'bold'

plt.rcParams['font.family'] = 'serif'

class RotorSystem:

def __init__(self, coords, param, Bearing_position,beam_type

=1,include_disk=True, damping=False,BC_Type=2, fixed=False,**kwargs):↪→

r'''This class creates a rotor instance which is used to calculate

critical speeds, mode shapes, damping ratios, frequency↪→

responses, Operational deflections shapes, whirl orbits, natural

frequencies↪→

:parameter

coords: 2D List of rotor coordinates on the form [z,y]=

[[100,200,300..],[0,0,0..]↪→

param: List of parameters:

Material: Dictionary on the form {'E':, 'ro':, 've':, }

Shaft Param: List of External and Internal diameter of Shaft, ex:

[50,0]↪→

130

I.2. SYSTEMCLASS.PY

Disk Param: Dictionary of disk paramters on the form:{'D' :

[Diamter 1, Diameter..],↪→

'th':[thicknes..], 'pos': [position from bearing 1]↪→

'eps':

displacement at disk }↪→

Kb: Dictionary containing bearing stiffness propertis on the

form: {'kx':,'ky':,'kTheta':,'kPsi':}↪→

Cb: Dictionary containing bearing damping propertis on the form:

{'cx':,'cy':,'cTheta':,'cPsi':}↪→

beam_type: Integere (0 or 1) to choose between Bernoulli(0) or

Timoshenko(1) beam element, default =1↪→

include_disk: Boolean value to choose to include disk or not, default =

True↪→

damping: Boolean value to choose to include damping or not, default =

False'''↪→

General parameters

self.kwargs = kwargs

self.z_coords = coords[0]

self.y_coords = coords[1]

self.use_disk = include_disk

self.use_damping = damping

self.beam_type = beam_type #Beamtype=0 : Bernoulli Beam, Beamtype = 1,

Timoshenko Beam #Default is 1↪→

self.BC_Type = BC_Type # BC_Type =0 : Bearing at end. BC_Type = 1: exsakt

node, BC_Type = 2: nearest node.↪→

self.fixed_end = fixed

#Material Parameters:

self.material_param = param[0]

self.ro = self.material_param['ro']

self.E = self.material_param['E']

self.ve = self.material_param['ve']

self.bearing1 = Bearing_position[0]

self.bearing2 = Bearing_position[1]

Shaft parameters

131

I.2. SYSTEMCLASS.PY

self.shaft_params = param[1]

self.nNodes = len(self.z_coords)

self.Ds = self.shaft_params[0] # External diameter of shaft

self.A = np.pi * (self.Ds ** 2) / 4

self.I = np.pi * (self.Ds ** 4) / 64

Disk parameters

self.disk_dict = param[2]

Bearing parameters

self.Kb = param[3] # Kx1,Kx2,Ky1,Ky2

self.Cb = param[4] # Cx1,Cx2,Cy1,Cy2

def get_Element_lengths(self):

"""Method to create list containing all element length from coordinates.

:return Le: list of element lengths"""

Le = []

for elem in range(len(self.z_coords) - 1):

le = np.sqrt((self.z_coords[elem + 1] - self.z_coords[elem]) ** 2 + (

self.y_coords[elem + 1] - self.y_coords[elem]) ** 2)

Le.append(le)

#print ('Le',Le)

return Le

def get_Edofs(self):

'''Method to create an Nx8 list containig element degrees of freedom. N

is the number of elements,↪→

and the DOFs are zero indexed. Ex:

[[0,1,2,3,4,5,6,7][4,5,6,7,8,9,10,11][...]]↪→

:returns Edofs: Nx8 list containing element dofs '''

nElem = self.nNodes - 1

Edofs = np.zeros((nElem, 8), dtype=int)

for i in range(nElem):

Edofs[i, :] = np.array([0, 1, 2, 3, 4, 5, 6, 7], dtype=int) + i * 4

return Edofs

132

I.2. SYSTEMCLASS.PY

def get_K_sys_Bernoulli(self):

'''Method which creates system stiffness matrix with bernoulli elements

and lumped bearing stiffness,↪→

:returns K_sys: System stiffness matrix including lumped bearing

stiffness '''↪→

nDofs = 4 * self.nNodes

K_sys = np.zeros((nDofs, nDofs))

le = self.L / nElem

L_elements = self.get_Element_lengths()

Edofs = self.get_Edofs()

for iEl in range(self.nNodes - 1):

le = L_elements[iEl]

Edof = Edofs[iEl]

print(np.ix_(Edof,Edof))

Ke = np.array([[12, 0, 0, 6 * le, -12, 0, 0, 6 * le],

[0, 12, -6 * le, 0, 0, -12, -6 * le, 0],

[0, -6 * le, 4 * le ** 2, 0, 0, 6 * le, 2 * le ** 2,

0],↪→

[6 * le, 0, 0, 4 * le ** 2, -6 * le, 0, 0, 2 * le **

2],↪→

[-12, 0, 0, -6 * le, 12, 0, 0, -6 * le],

[0, -12, 6 * le, 0, 0, 12, 6 * le, 0],

[0, -6 * le, 2 * le ** 2, 0, 0, 6 * le, 4 * le ** 2,

0],↪→

[6 * le, 0, 0, 2 * le ** 2, -6 * le, 0, 0, 4 * le **

2]]) * ((self.E * self.I) / (le ** 3))↪→

K_sys[np.ix_(Edof, Edof)] += Ke

if self.fixed_end == True:

K_sys[0]+=self.K_fixed

K_sys[1]+=self.K_fixed

#bc1_loc is index of

BC = self.get_BC()

be1_loc = BC[0:4]

be2_loc = BC[4:8]

Kbe = self.get_bearing_Ke()

K_sys[np.ix_(be1_loc, be1_loc)] += Kbe[0]

133

I.2. SYSTEMCLASS.PY

K_sys[np.ix_(be2_loc, be2_loc)] += Kbe[1]

return K_sys

def get_K_sys_Timoshenko(self):

'''Method which creates system stiffness matrix with Timoshenko elements

and lumped bearing stiffness,↪→

:returns K_sys: System stiffness matrix including lumped bearing

stiffness '''↪→

nDofs = 4 * self.nNodes

K_sys = np.zeros((nDofs, nDofs))

le = self.L / nElem

L_elements = self.get_Element_lengths()

Edofs = self.get_Edofs()

for iEl in range(self.nNodes - 1):

le = L_elements[iEl]

Edof = Edofs[iEl]

G = self.E / (2 * (1 + self.ve))

kke = 6 * (1 + self.ve ** 2) / (7 + 12 * self.ve * 4 * self.ve ** 2)

PSI = (12 * self.E * self.I) / (kke * G * self.A * le ** 2)

kei = (self.E * self.I) / ((1 + PSI) * le ** 3)

Ke = np.array([[12, 0, 0, 6 * le, -12, 0, 0, 6 * le],

[0, 12, -6 * le, 0, 0, -12, -6 * le, 0],

[0, -6 * le, le ** 2 * (4 + PSI), 0, 0, 6 * le, le **

2 * (2 - PSI), 0],↪→

[6 * le, 0, 0, le ** 2 * (4 + PSI), -6 * le, 0, 0, le

** 2 * (2 - PSI)],↪→

[-12, 0, 0, -6 * le, 12, 0, 0, -6 * le],

[0, -12, 6 * le, 0, 0, 12, 6 * le, 0],

[0, -6 * le, le ** 2 * (2 - PSI), 0, 0, 6 * le, le **

2 * (4 + PSI), 0],↪→

[6 * le, 0, 0, le ** 2 * (2 - PSI), -6 * le, 0, 0, le

** 2 * (4 + PSI)]]) * kei↪→

K_sys[np.ix_(Edof, Edof)] += Ke

if self.fixed_end == True:

K_sys[0]+=self.K_fixed

K_sys[1]+=self.K_fixed

134

I.2. SYSTEMCLASS.PY

BC = self.get_BC()

be1_loc = BC[0:4]

be2_loc = BC[4:8]

Kbe = self.get_bearing_Ke()

K_sys[np.ix_(be1_loc, be1_loc)] += Kbe[0]

K_sys[np.ix_(be2_loc, be2_loc)] += Kbe[1]

return K_sys

def get_M_sys_Bernoulli(self):

'''Method which creates system mass matrix with bernoulli elements

including lumped disk masses and inertias,↪→

:returns M_sys: System mass matrix including lumped disk

properties'''↪→

nElem = self.nNodes - 1

nDofs = 4 * self.nNodes

M_sys = np.zeros((nDofs, nDofs))

le = self.L / nElem

L_elements = self.get_Element_lengths()

Edofs = self.get_Edofs()

for iEl in range(nElem):

le = L_elements[iEl]

Edof = Edofs[iEl]

Me = np.array([[156, 0, 0, 22 * le, 54, 0, 0, -13 * le],

[0, 156, -22 * le, 0, 0, 54, 13 * le, 0],

[0, -22 * le, 4 * le ** 2, 0, 0, -13 * le, -3 * le **

2, 0],↪→

[22 * le, 0, 0, 4 * le ** 2, 13 * le, 0, 0, -3 * le **

2],↪→

[54, 0, 0, 13 * le, 156, 0, 0, -22 * le],

[0, 54, -13 * le, 0, 0, 156, 22 * le, 0],

[0, 13 * le, -3 * le ** 2, 0, 0, 22 * le, 4 * le ** 2,

0],↪→

[-13 * le, 0, 0, -3 * le ** 2, -22 * le, 0, 0, 4 * le

** 2]]) * (↪→

(self.ro * self.A * le) / 420)

M_sys[np.ix_(Edof, Edof)] += Me

135

I.2. SYSTEMCLASS.PY

if self.use_disk == True:

DiskDOFS = self.get_DiskNodeDOFS()

Md = self.get_disk_Md()

for i in range(len(DiskDOFS)):

M_sys[np.ix_(DiskDOFS[i], DiskDOFS[i])] += Md[i]

return M_sys

else:

return M_sys

def get_M_sys_Timoshenko(self):

'''Method which creates system mass matrix with Timoshenko elements

including lumped disk masses and inertias,↪→

:returns M_sys: System mass matrix including lumped disk

properties'''↪→

nElem = self.nNodes - 1

nDofs = 4 * self.nNodes

M_sys = np.zeros((nDofs, nDofs))

le = self.L / nElem

L_elements = self.get_Element_lengths()

Edofs = self.get_Edofs()

for iEl in range(nElem):

le = L_elements[iEl]

Edof = Edofs[iEl]

G = self.E / (2 * (1 + self.ve))

kke = 6 * (1 + self.ve ** 2) / (7 + 12 * self.ve + 4 * self.ve ** 2)

PSI = (12 * self.E * self.I) / (kke * G * self.A * le ** 2)

m1 = (312 + 588 * PSI + 280 * PSI ** 2)

m2 = (44 + 77 * PSI + 35 * PSI ** 2) * le

m3 = (108 + 252 * PSI + 140 * PSI ** 2)

m4 = -(26 + 63 * PSI + 35 * PSI ** 2) * le

m5 = (8 + 14 * PSI + 7 * PSI ** 2) * le ** 2

m6 = -(6 + 14 * PSI + 7 * PSI ** 2) * le ** 2

m7 = (36)

m8 = (3 - 15 * PSI) * le

m9 = (4 + 5 * PSI + 10 * PSI ** 2) * le ** 2

m10 = (-1 - 5 * PSI + 5 * PSI ** 2) * le ** 2

met = self.ro * self.A * le / (840 * (1 + PSI) ** 2)

136

I.2. SYSTEMCLASS.PY

MEt = np.array([[m1, 0, 0, m2, m3, 0, 0, m4],

[0, m1, -m2, 0, 0, m3, -m4, 0],

[0, -m2, m5, 0, 0, m4, m6, 0],

[m2, 0, 0, m5, -m4, 0, 0, m6],

[m3, 0, 0, -m4, m1, 0, 0, -m2],

[0, m3, m4, 0, 0, m1, m2, 0],

[0, -m4, m6, 0, 0, m2, m5, 0],

[m4, 0, 0, m6, -m2, 0, 0, m5]]) * met

mei = self.ro * self.I / (30 * ((1 + PSI) ** 2) * le)

MEi = np.array([[m7, 0, 0, m8, -m7, 0, 0, m8],

[0, m7, -m8, 0, 0, -m7, -m8, 0],

[0, -m8, m9, 0, 0, m8, m10, 0],

[m8, 0, 0, m9, -m8, 0, 0, m10],

[-m7, 0, 0, -m8, m7, 0, 0, -m8],

[0, -m7, m8, 0, 0, m7, m8, 0],

[0, -m8, m10, 0, 0, m8, m9, 0],

[m8, 0, 0, m10, -m8, 0, 0, m9]]) * mei

Me = MEi + MEt

M_sys[np.ix_(Edof, Edof)] += Me

if self.use_disk == True:

DiskDOFS = self.get_DiskNodeDOFS()

Md = self.get_disk_Md()

for i in range(len(DiskDOFS)):

M_sys[np.ix_(DiskDOFS[i], DiskDOFS[i])] += Md[i]

return M_sys

else:

return M_sys

def get_G_sys_Bernoulli(self):

'''Method which creates system gyroscopic matrix with bernoulli elements

including lumped disk properties,↪→

:returns G_sys: System mass matrix including lumped disk

properties'''↪→

nElem = self.nNodes - 1

nDofs = 4 * self.nNodes

137

I.2. SYSTEMCLASS.PY

G_sys = np.zeros((nDofs, nDofs))

le = self.L / nElem

L_elements = self.get_Element_lengths()

Edofs = self.get_Edofs()

for iEl in range(nElem):

le = L_elements[iEl]

Edof = Edofs[iEl]

Ge = np.array([[0, 36, -3 * le, 0, 0,

-36, -3 * le, 0],↪→

[-36, 0, 0, -3 * le, 36,

0, 0, -3 * le],↪→

[3 * le, 0, 0, 4 * le ** 2, -3 *

le, 0, 0, -le ** 2],↪→

[0, 3 * le, -4 * le ** 2, 0, 0, -3 * le, le ** 2, 0],

[0, -36, 3 * le, 0, 0, 36, 3 * le, 0],

[36, 0, 0, 3 * le, -36, 0, 0, 3 * le],

[3 * le, 0, 0, -le ** 2, -3 * le, 0, 0, 4 * le ** 2],

[0, 3 * le, le ** 2, 0, 0, -3 * le, -4 * le ** 2, 0]])

* (↪→

(self.ro * self.I) / (15 * le))

G_sys[np.ix_(Edof, Edof)] += Ge#*0

G_sys = np.zeros((nDofs, nDofs))

if self.use_disk == True:

DiskDOFS = self.get_DiskNodeDOFS()

Gd = self.get_disk_Gd()

for i in range(len(DiskDOFS)):

G_sys[np.ix_(DiskDOFS[i], DiskDOFS[i])] += Gd[i]

return G_sys

else:

return G_sys

def get_G_sys_Timoshenko(self):

'''Method which creates system gyroscopic matrix with Timoshenko elements

including lumped disk properties,↪→

:returns G_sys: System mass matrix including lumped disk

properties'''↪→

nElem = self.nNodes - 1

138

I.2. SYSTEMCLASS.PY

nDofs = 4 * self.nNodes

G_sys = np.zeros((nDofs, nDofs))

le = self.L / nElem

L_elements = self.get_Element_lengths()

Edofs = self.get_Edofs()

for iEl in range(nElem):

le = L_elements[iEl]

Edof = Edofs[iEl]

G = self.E / (2 * (1 + self.ve))

kke = 6 * (1 + self.ve ** 2) / (7 + 12 * self.ve + 4 * self.ve ** 2)

PSI = (12 * self.E * self.I) / (kke * G * self.A * le ** 2)

gei = (self.ro * self.I) / ((15 * ((1 + PSI) ** 2) * le))

g1 = 36

g2 = (3 - 15 * PSI) * le

g3 = (4 + 5 * PSI + 10 * PSI ** 2) * le ** 2

g4 = (-1 - 5 * PSI + 5 * PSI ** 2) * le ** 2

Ge = np.array([[0, g1, -g2, 0, 0, -g1, -g2, 0],

[-g1, 0, 0, -g2, g1, 0, 0, -g2],

[g2, 0, 0, g3, -g2, 0, 0, g4],

[0, g2, -g3, 0, 0, -g2, -g4, 0],

[0, -g1, g2, 0, 0, g1, g2, 0],

[g1, 0, 0, g2, -g1, 0, 0, g2],

[g2, 0, 0, g4, -g2, 0, 0, g3],

[0, g2, -g4, 0, 0, -g2, -g3, 0]]) * gei

G_sys[np.ix_(Edof, Edof)] += Ge

if self.use_disk == True:

DiskDOFS = self.get_DiskNodeDOFS()

Gd = self.get_disk_Gd()

for i in range(len(DiskDOFS)):

G_sys[np.ix_(DiskDOFS[i], DiskDOFS[i])] += Gd[i]

return G_sys

else:

return G_sys

def get_C_sys(self):

139

I.2. SYSTEMCLASS.PY

'''Method which creates system damping matrix with lumped damping

properties of bearings,↪→

:returns C_sys: System damping matrix '''

nDofs = 4 * self.nNodes

C_sys = np.zeros((nDofs, nDofs))

if self.use_damping == True:

BC = self.get_BC()

be1_loc = BC[0:4]

be2_loc = BC[4:8]

Cbe = self.get_bearing_Ce()

C_sys[np.ix_(be1_loc, be1_loc)] += Cbe[0]

C_sys[np.ix_(be2_loc, be2_loc)] += Cbe[1]

return C_sys

else:

return C_sys

def get_DiskNodeDOFS(self):

'''Method to get the degrees of freedom of the nodes which have disks

attached to them.↪→

:returns DiskDofs: List of DOF's of disks'''

locations = self.disk_dict['pos']

Edofs = self.get_Edofs()

DiskDofs = []

for i in range(len(locations)):

node_idx = list(self.x_coords).index(self.disk_loc)

node_idx = list(self.z_coords).index(locations[i])

if node_idx != Edofs.shape[0]:

DiskDofs.append(Edofs[node_idx][0:4])

else:

DiskDofs.append(Edofs[node_idx-1][4:8]) # If disk at last node,

need to go one node back and↪→

use the last DOFs

of the element

instead

↪→

↪→

140

I.2. SYSTEMCLASS.PY

return DiskDofs

def get_BC(self):

'''Method to get the degrees of freedom of the nodes which have bearings

attached to them.↪→

:returns BC: List of DOF's of Bearings'''

if self.BC_Type == 0:

Edofs = self.get_Edofs()

BC1 = Edofs[0][0:int(len(Edofs[0]) / 2)] # First node

#print("BC1", BC1)↪→

BC2 = Edofs[-1][int(len(Edofs[0]) / 2):8] # Last Node

BC = np.hstack([BC1, BC2])

elif self.BC_Type == 1:

Edofs = self.get_Edofs()

bearing_node_idx_1 = list(self.z_coords).index(self.bearing1)

bearing_node_idx_2 = list(self.z_coords).index(self.bearing2)

BC1 = Edofs[bearing_node_idx_1][0:int(len(Edofs[0]) / 2)] # First

bearing node↪→

BC2 = Edofs[bearing_node_idx_2][0:int(len(Edofs[0]) / 2)] # Second

bearing node↪→

BC = np.hstack([BC1, BC2])

elif self.BC_Type == 2:

Edofs = self.get_Edofs()

node_idx_1 = min(range(len(self.z_coords)), key=lambda x:

abs(self.z_coords[x] - self.bearing1))↪→

node_idx_2 = min(range(len(self.z_coords)), key=lambda x:

abs(self.z_coords[x] - self.bearing2))↪→

BC1 = Edofs[node_idx_1][0:4] # First bearing node

BC2 = Edofs[node_idx_2][0:4] # Second bearing node

BC = np.hstack([BC1, BC2])

return BC

141

I.2. SYSTEMCLASS.PY

def get_diskMass(self):

'''Method which calculates the mass of the disks,

:returns md: List of disk masses'''

md = []

Dd = self.disk_dict['D']

ddi = self.disk_dict['d']

th = self.disk_dict['th']

for i in range(len(Dd)):

md = self.ro * np.pi * self.Dd ** 2 * self.t / 4

md.append((self.ro * np.pi *(Dd[i] ** 2 -ddi[i]**2)* th[i] / 4))

return md

def get_diskIp2(self):

'''Method which calculates the polar inertia of the disks,

:returns Ip: List of disk polar inertias'''

m = self.get_diskMass()

Dd = self.disk_dict['D']

ddi = self.disk_dict['d']

Ip = []

for i in range(len(m)):

Ip.append(m[i] * (Dd[i] ** 2) / 8)

Ip = m * self.Dd ** 2 / 8

return Ip

def get_diskIp(self):

'''Method which calculates the polar inertia of the disks,

:returns Ip: List of disk polar inertias'''

m = self.get_diskMass()

Dd = self.disk_dict['D']

ddi = self.disk_dict['d']

Ip = []

for i in range(len(m)):

Ip.append(m[i] * (Dd[i] ** 2+ddi[i]**2) / 8)

Ip = m * self.Dd ** 2 / 8

return Ip

142

I.2. SYSTEMCLASS.PY

def get_diskId2(self):

'''Method which calculates the diametral inertia of the disks,

:returns Ip: List of disk diametral inertias'''

m = self.get_diskMass()

Ip = self.get_diskIp()

th = self.disk_dict['th']

ddi = self.disk_dict['d']

Id = []

for i in range(len(m)):

Id.append(Ip[i] / 2 + m[i] * th[i] ** 2 / 12)

Id = Ip / 2 + m * self.th ** 2 / 12

return Id

def get_diskId(self):

'''Method which calculates the diametral inertia of the disks,

:returns Ip: List of disk diametral inertias'''

m = self.get_diskMass()

#Ip = self.get_diskIp()

#th = self.disk_dict['th']

Dd = self.disk_dict['D']

ddi = self.disk_dict['d']

Id = []

for i in range(len(m)):

Id.append(m[i]*(Dd[i]**2-ddi[i]**2) / 16) #MR^2/4

Id = Ip / 2 + m * self.th ** 2 / 12

return Id

def get_disk_Md(self):

'''Method which creates the disk mass matrices,

:returns Md: nx4x4 matrix of the disk mass matrix '''

m = self.get_diskMass()

Id = self.get_diskId()

Md = []

for i in range(len(m)):

Md.append(np.array([[m[i], 0, 0, 0],

143

I.2. SYSTEMCLASS.PY

[0, m[i], 0, 0],

[0, 0, Id[i], 0],

[0, 0, 0, Id[i]]]))

return Md

def get_disk_Gd(self):

'''Method which creates the disk gyroscopic matrices,

:returns Gd: nx4x4 matrix of the disk gyroscopic matrix '''

Ip = self.get_diskIp()

Gd = []

for i in range(len(Ip)):

Gd.append(np.array([[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, Ip[i]],

[0, 0, -Ip[i], 0]]))

return Gd

def get_bearing_Ke(self):

'''Method which creates the lumped bearing stiffness matrices,

:returns KB: nx4x4 matrix of the bearing stiffness matrix '''

Kb_param = self.Kb

KB = []

for i in range(len(Kb_param['kx'])):

KB.append(np.array([[Kb_param['kx'][i], 0, 0, 0],

[0, Kb_param['ky'][i], 0, 0],

[0, 0, Kb_param['kTheta'][i], 0],

[0, 0, 0, Kb_param['kPsi'][i]]]))

return KB

def get_bearing_Ce(self):

'''Method which creates the lumped bearing damping matrices,

:returns KB: nx4x4 matrix of the bearing damping matrix '''

144

I.2. SYSTEMCLASS.PY

Cb_param = self.Cb

CB = []

for i in range(len(Cb_param['cx'])):

CB.append(np.array([[Cb_param['cx'][i], 0, 0, 0],

[0, Cb_param['cy'][i], 0, 0],

[0, 0, Cb_param['cTheta'][i], 0],

[0, 0, 0, Cb_param['cPsi'][i]]]))

return CB

def get_A(self, omega):

r'''Method which creates matrix A of the subspace formulation A\dot{x} +

Bx = 0,↪→

:parameter: Omega: Rotational Speed in RPM

:returns A: 2n*8 x 2n*8 matrix on the form A = [[G*Omega + C, M],

[M, 0]]'''

omega_rad = omega*(2*np.pi/60)

if self.beam_type == 0:

G_sys = self.get_G_sys_Bernoulli()

M_sys = self.get_M_sys_Bernoulli()

C_sys = self.get_C_sys()

MatSize = len(M_sys)

elif self.beam_type == 1:

G_sys = self.get_G_sys_Timoshenko()

M_sys = self.get_M_sys_Timoshenko()

C_sys = self.get_C_sys()

MatSize = len(M_sys)

A = np.zeros((2 * MatSize, 2 * MatSize)) # A = [[G*omega, M],[M,0]]

A[0:MatSize, 0:MatSize] = G_sys * omega_rad + C_sys

A[MatSize:2 * MatSize, 0:MatSize] = M_sys

A[0:MatSize, MatSize:2 * MatSize] = M_sys

return A

def get_B(self):

r'''Method which creates matrix B of the subspace formulation A\dot{x} +

Bx = 0,↪→

:returns B: 2n*8 x 2n*8 matrix on the form A = [[K, 0],

[0, -M]]'''

145

I.2. SYSTEMCLASS.PY

if self.beam_type == 0:

M_sys = self.get_M_sys_Bernoulli()

K_sys = self.get_K_sys_Bernoulli()

MatSize = len(M_sys)

elif self.beam_type == 1:

M_sys = self.get_M_sys_Timoshenko()

K_sys = self.get_K_sys_Timoshenko()

MatSize = len(M_sys)

B = np.zeros((2 * MatSize, 2 * MatSize)) # B = [[K, 0],[0,-M]]

B[0:MatSize, 0:MatSize] = K_sys

B[MatSize:2 * MatSize, MatSize:2 * MatSize] = -M_sys

return B

def sort_eig(self,w):

'''# Method used to generate an index that will sort eigenvalues and

eigenvectors↪→

based on the imaginary (w) part of the eigenvalues.

Positive eigenvalues will be positioned at the first half of the

array.↪→

Parameters

w: Array with the eigenvalues.

:returns idx: Sorted indices'''

evals_truncated = np.around(w, decimals=10)

a = np.imag(evals_truncated) # First column

b = np.absolute(evals_truncated) # Second column

#ind = np.lexsort((b, a)) # Sort by imag (wd), then by absolute (wn)

Positive eigenvalues first

#positive = [i for i in ind[len(a) // 2:]]

#negative = [i for i in ind[: len(a) // 2]]

#idx = np.array([positive, negative]).flatten()

146

I.2. SYSTEMCLASS.PY

ind = np.lexsort((a, b)) #Sort by Absolut and then imag

positive = [i for i in ind[1::2]] #positive first

negative = [i for i in ind[: :2]]

idx = np.array([positive, negative]).flatten()

return idx

def solve_Eigproblem(self, omega=0,output='rads'):

r'''Method which solves the eigenproblem A\dot{x} = -Bx

:parameter: Omega: Rotational Speed in RPM

output: Output unit, standard is Rad/s

:returns w: List of sorted eigenvalues as per method sort_eig,

v: Sorted eigenvectors where the vectors are the columns'''

A = self.get_A(omega)

B = self.get_B()

w, v = LA.eig(-LA.inv(A) @ B) # First Order: Ax' + Bx = 0

#w, v = LA.eig(LA.solve(A, -B)) # First Order: Ax' + Bx = 0

idx = self.sort_eig(w)

w = w[idx]

v = v[:,idx]

if output=='hz':

w = w/2/np.pi

return w, v

def plot_modeshape(self,modes,omega = 0, maxlines = True,only_diskpos =True):

'''Method to plot the 3D modeshapes at resonance for a given RPM. Plots

the REAL mode shape only.↪→

:parameter

mode: Modeshape(s) to be plotted, either int or list

omega: Rpm at which the modeshape is calculated, default is zero.

:returns

fig,ax: 3D plot of the modeshape

'''

147

I.2. SYSTEMCLASS.PY

omega_rad= omega*2*np.pi/60

evals, evecs = self.solve_Eigproblem(omega)

colors = ['red', 'blue', 'm', 'green']

if type(modes)!=list:

whirl_mode = self.get_whirl_modes(4, omega)

mode = modes

u = np.zeros((len(self.z_coords), 100))

v = np.zeros((len(self.z_coords), 100))

w_0 = evals[mode]

T = 2 * np.pi / (w_0)

t = np.linspace(0, T * (0.96), 100)

for i in range(len(self.z_coords)):

u[i, :] = (evecs[4 * i, mode] * np.e ** (1j * w_0 * t)).real

v[i, :] = (evecs[4 * i + 1, mode] * np.e ** (1j * w_0 * t)).real

fig = plt.figure()

ax = plt.axes(projection='3d')

ampU = np.max((u[:, :])) * 1.3

ampV = np.max((v[:, :])) * 1.3

amp = np.max([ampU, ampV])

z0 = np.ones(len(self.z_coords))

x0 = np.zeros(len(self.z_coords))

y0 = np.zeros(len(self.z_coords))

ax.set_ylim(-amp, amp)

ax.set_zlim(-amp, amp)

ax.set_xlim(0, len(self.z_coords))

for i in range(len(self.z_coords)):

x0[i] = u[i, 0]

y0[i] = v[i, 0]

z0[i] *= i

x = u[i, :]

y = v[i, :]

z = i * np.ones(100)

if only_diskpos == True:

if self.z_coords[i] in self.disk_dict['pos']:

ax.plot(z, x, y, linewidth=1.5, color='black')

else:

148

I.2. SYSTEMCLASS.PY

ax.plot(z, x, y, linewidth=1.5, color='black')

if maxlines == True:

ax.plot([i, i], [x0[i], min(abs(x))], [y0[i], min(abs(y))],

'-', color='Black', linewidth=1)↪→

ax.plot([0, z0[-1] + 1], [0, 0], [0, 0], linestyle=(0, (3, 5, 1, 5)),

color='Black')↪→

ax.plot([0, z0[-1] + 1], [0, 0], [0, 0], linestyle=(0, (3, 5, 1,

5)), color='Black')↪→

ax.plot(z0, x0, y0, '.-', linewidth=3.5, color=colors[modes],

markersize=15)↪→

ax.tick_params(axis='both', which='major', labelsize=14)

ax.set_title('Modeshape #{}, Whirl Dir: {}, @ {}

RPM'.format(modes+1, whirl_mode[modes], omega))↪→

ax.set_xlabel('Nodes', labelpad=10)

ax.set_zticklabels([])

ax.set_yticklabels([])

ax.set_ylim(-amp, amp)

ax.set_zlim(-amp, amp)

ax.set_xlim(0, len(self.z_coords))

ax.set_zticks(np.round(np.linspace(-amp, amp, 4), 3))

ax.set_yticks(np.round(np.linspace(-amp, amp, 4), 3))

ax.set_xticks(np.arange(0,len(self.z_coords)))

ax.set_xticklabels(np.arange(1,len(self.z_coords)+1))

#

ax.set_zlabel('Displacement u', labelpad=15)

ax.set_ylabel('Displacement v', labelpad=15)

ax.w_xaxis.set_pane_color((1.0, 1.0, 1.0, 1.0))

ax.w_yaxis.set_pane_color((1.0, 1.0, 1.0, 1.0))

ax.w_zaxis.set_pane_color((1.0, 1.0, 1.0, 1.0))

return fig, ax

else:

fig = plt.figure()

whirl_mode = self.get_whirl_modes(len(modes), omega)

k =0

for mode in modes:

149

I.2. SYSTEMCLASS.PY

#print(mode)

u = np.zeros((len(self.z_coords), 100))

v = np.zeros((len(self.z_coords), 100))

w_0 = evals[mode]

T = 2 * np.pi / (w_0)

t = np.linspace(0, T * (0.96), 100)

for i in range(len(self.z_coords)):

u[i, :] = (evecs[4 * i, mode] * np.e ** (1j * w_0 * t)).real

v[i, :] = (evecs[4 * i + 1, mode] * np.e ** (1j * w_0 *

t)).real↪→

if len(modes)>2:

ax = fig.add_subplot(221 + k, projection='3d')

else:

ax = fig.add_subplot(121 + k, projection='3d')

ampU = np.max((u[:, :])) * 1.3

ampV = np.max((v[:, :])) * 1.3

amp = np.max([ampU, ampV])

z0 = np.ones(len(self.z_coords))

x0 = np.zeros(len(self.z_coords))

y0 = np.zeros(len(self.z_coords))

for i in range(len(self.z_coords)):

x0[i] = u[i, 0]

y0[i] = v[i, 0]

z0[i] *= i

x = u[i, :]

y = v[i, :]

z = i * np.ones(100)

if only_diskpos == True:

if self.z_coords[i] in self.disk_dict['pos']:

ax.plot(z, x, y, linewidth=1.5, color='black')

ax.scatter(i, x[-1], y[-1], marker='D',

color='black', s=15)↪→

if maxlines == True:

ax.plot([i, i], [x0[i], min(abs(x))], [y0[i],

min(abs(y))], '-', color='Black', linewidth=1)↪→

else:

150

I.2. SYSTEMCLASS.PY

ax.plot(z, x, y, linewidth=1.5, color='black')

ax.scatter(i, x[-1], y[-1],marker='D',color = 'black', s=

15)↪→

if maxlines == True:

ax.plot([i, i], [x0[i], min(abs(x))], [y0[i],

min(abs(y))], '-', color='Black', linewidth=1)↪→

ax.plot([0, z0[-1] + 1], [0, 0], [0, 0], linestyle=(0, (3, 5, 1,

5)), color='Black')↪→

ax.plot(z0, x0, y0, '.-', linewidth=3.5, color=colors[k],

markersize=10)↪→

ax.tick_params(axis='both', which='major', labelsize=14)

ax.set_title('Modeshape #{}, Whirl Dir: {}, @ {}

RPM'.format(mode+1, whirl_mode[k], omega))↪→

ax.set_xlabel('Nodes', labelpad=10)

ax.set_ylim(-amp, amp)

ax.set_zlim(-amp, amp)

ax.set_xlim(0, len(self.z_coords))

ax.set_zticks(np.round(np.linspace(-amp, amp, 4), 2))

ax.set_yticks(np.round(np.linspace(-amp, amp, 4), 2))

ax.set_xticks(np.arange(0, len(self.z_coords)))

ax.set_xticklabels(np.arange(1, len(self.z_coords) + 1))

ax.set_zlabel('Displacement u', labelpad=15)

ax.set_ylabel('Displacement v', labelpad=15)

ax.w_xaxis.set_pane_color((1.0, 1.0, 1.0, 1.0))

ax.w_yaxis.set_pane_color((1.0, 1.0, 1.0, 1.0))

ax.w_zaxis.set_pane_color((1.0, 1.0, 1.0, 1.0))

k+=1

return fig,ax

def get_Hmat(self,freq_index=0,node=0,omega=0,T_dict = False):

151

I.2. SYSTEMCLASS.PY

'''Method which creates the H matrix used to find the major and minor

orbits of the whirl ellipse.↪→

:parameter

freq_index: Index of which natural frequency to use, default = 0

node: Node to use, zero indexed, i.e. first node = 0, default = 0

omega: Rotational speed at which to calculate H

T_dict: If True, returns Dictionary with parameters to create H

matrix and H, if False, returns only H. '''↪→

evals,evec =self.solve_Eigproblem(omega)

vector = evec[4*node:4*node+2,freq_index]

u0,v0 = vector[0],vector[1]

ru, rv = np.absolute(u0), np.absolute(v0)

nu, nv = np.angle(u0), np.angle(v0)

T = np.array([[ru * np.cos(nu), -ru * np.sin(nu)],

[rv * np.cos(nv), -rv * np.sin(nv)]])

Tdic = {'ru': ru, 'rv': rv, 'nu': nu, 'nv': nv}

H = T @ T.T

if T_dict:

return H, Tdic

else:

return H

def get_Kappa(self,freq_index=0,node=0,omega=0,kappa_dict = False):

'''Method which is used to calculate the kappa value of the whirl orbit.

The kappa value is used to↪→

determine whirl direction.

:parameter

freq_index: Index of which natural frequency to use, default = 0

node: Node to use, zero indexed, i.e. first node = 0, default = 0

omega: Rotational speed at which to calculate kappa

kappa_dict: If True, returns dictionary with major and minor axis of

ellipse and kappa value,↪→

if False, returns only Kappa value. '''

H, Tdic = self.get_Hmat(freq_index,node,omega, T_dict=True)

152

I.2. SYSTEMCLASS.PY

nu, nv = Tdic['nu'], Tdic['nv']

lam = LA.eig(H)[0]

major = np.sqrt(max(lam))

if min (lam)<0:

minor = np.sqrt(-min(lam))

else:

minor = np.sqrt(min(lam))

minor = np.sqrt(min(lam))

kappa = minor / major

diff = nv - nu

if diff < -np.pi:

diff += 2 * np.pi

elif diff > np.pi:

diff -= 2 * np.pi

if diff == 0 or diff == np.pi:

kappa = 0

elif 0 < diff < np.pi:

kappa *= -1

if kappa_dict:

Kdict = {'major': major.real, 'minor': minor.real, 'kappa':

kappa.real}↪→

return Kdict

else:

return kappa

def get_Kappa_list(self,freq_index=0,omega=None,detailed = False):

'''Method which creates a list of kappa values of each node.

:parameter

freq_index:Index of which natural frequency to use,default =0

omega: Either list of rotational speeds at which to calculate the

kappa value,↪→

or integer value at which to calculate kappa values,

153

I.2. SYSTEMCLASS.PY

detiled: If True, returns 2D list of kappa values at each node for

every speed in the omega list,↪→

If False: Returns list of kappa values at the mean rotational

speed or the value given. '''↪→

nodes = self.z_coords

if type(omega) == list and detailed == True:

kappa_vals = np.empty((len(omega),len(nodes)))

for o in omega:

for i in range(len(nodes)):

kappa = self.get_Kappa(freq_index,i,omega=o)

kappa_vals[omega.index(o)][i] = kappa

return kappa_vals

elif type(omega) == list and detailed==False:

len_omega =len(omega) //2

omega_val = omega.index(omega[len_omega])

kappa_vals = []

for i in range(len(nodes)):

kappa_vals.append(self.get_Kappa(freq_index,i,omega_val))

return np.array(kappa_vals)

else:

kappa_vals = []

for i in range(len(nodes)):

kappa_vals.append(self.get_Kappa(freq_index, i, omega))

return np.array(kappa_vals)

def get_whirl_modes(self,n_modes,omega=None):

'''Method which creates a list of string values indicating the whirl

rotation direction.↪→

:parameter

n_modes: Integer, number of modes to include

omega: List or Integer with rotational speeds'''

modes = []

for mode in range(n_modes):

154

I.2. SYSTEMCLASS.PY

kappa_values = self.get_Kappa_list(mode,omega)

if all(kappa >= -1e-3 for kappa in kappa_values):

print('Mode #{} is a Forward Whirl'.format(mode + 1))

modes.append('FW')

elif all(kappa <= 1e-3 for kappa in kappa_values):

print('Mode #{} is a Backward Whirl'.format(mode + 1))

modes.append('BW')

else:

print('Mode #{} is a mixed mode'.format(mode + 1))

modes.append('Mixed')

return modes

def get_unbalance(self, eps, bet=0, DEL=0, GAM=0):

'''Method to create the b matrix containing the unbalance forces

functions at a given node↪→

:parameter

eps: float, Nodal displacement in millimeters of disk COG from

centerline of rotor↪→

bet: Shaft angle, default =0

DEL: Angle in u-direction of bent rotor at t = 0.

GAM: Angle in v-direction of bent rotor at t = 0

n_disk_unbalance: number of disks in unbalance, default = 1.

NOTE: only 1 disk is implemented. '''

md = (self.get_diskMass()[0])

Ip = self.get_diskIp()[0]

Id = self.get_diskId()[0]

b = np.array([[md * eps * np.e ** (1j * DEL)],

[-1j * md * eps * np.e ** (1j * DEL)],

[1j * (Id - Ip) * bet * np.e ** (1j * GAM)],

[(Id - Ip) * bet * np.e ** (1j * GAM)]])

return b

155

I.2. SYSTEMCLASS.PY

def get_b0(self):

'''Method which creates the load vector for the unbalanced rotor

:returns

b0: Vector containing loads'''

if len(self.disk_dict['eps']) ==1:

eps = self.disk_dict['eps'][0]

b = self.get_unbalance(eps)

Edof = self.get_Edofs()

disk_pos = self.disk_dict['pos'][0]

b0 = np.zeros((self.nNodes * 4, 1)) * 1j

if list(self.z_coords).index(disk_pos) +1 ==

len(list(self.z_coords)):↪→

b0[Edof[list(self.z_coords).index(disk_pos)-1][4:8]] = b

else:

b0[Edof[list(self.z_coords).index(disk_pos)][0:4]] = b

return b0

else:

for i in range(len(self.disk_dict['eps'])):

eps = self.disk_dict['eps'][i]

b = self.get_unbalance(eps)

Edof = self.get_Edofs()

disk_pos = self.disk_dict['pos'][i]

b0 = np.zeros((self.nNodes * 4, 1)) * 1j

b0[Edof[list(self.z_coords).index(disk_pos)][0:4]] = b

return b0

def get_nodeCoords_U_V(self, Omega):

'''Method which creates a 3D matrix containing containing the responses

in u and v direction of the rotor at↪→

a given rotational speed for a given displacement of the COG of the

disk.↪→

156

I.2. SYSTEMCLASS.PY

The time is the time it takes the rotor to do one revolution. The

responses are used↪→

to create the frequency response plot, the whirl orbit plot and the

operational deflection shapes.↪→

:parameter

Omega: Rotational speed in RPM

:returns

u: 3D matrix

3D matrix'''

O_rads = np.array(Omega) * 2 * np.pi / 60

if self.beam_type==0:

M, K, C, G = self.get_M_sys_Bernoulli(), self.get_K_sys_Bernoulli(),

self.get_C_sys(), self.get_G_sys_Bernoulli()↪→

elif self.beam_type == 1:

M, K, C, G = self.get_M_sys_Timoshenko(),

self.get_K_sys_Timoshenko(), self.get_C_sys(),

self.get_G_sys_Timoshenko()

↪→

↪→

b0 = self.get_b0()

DOF = self.nNodes * 4

q0 = np.zeros((DOF, len(O_rads))) * 1j

u = np.zeros((self.nNodes, len(O_rads), 100))

v = np.zeros((self.nNodes, len(O_rads), 100))

for i in range(1, len(O_rads)):

T = 2 * np.pi / (O_rads[i])

t = np.linspace(0, T * (.96), 100)

a = (np.linalg.inv(-O_rads[i] ** 2 * M + 1j * O_rads[i] * (O_rads[i]

* G + C) + K) @ (O_rads[i] ** 2 * b0))↪→

q0[:, i] = a[:, 0]

for k in range(self.nNodes):

if k == 0 and self.fixed_end == True:

u[k, i , :] = 0

v[k, i , :] = 0

157

I.2. SYSTEMCLASS.PY

else:

u[k, i, :] = (q0[4 * k, i] * np.e ** (1j * O_rads[i] *

t)).real↪→

v[k, i, :] = (q0[4 * k + 1, i] * np.e ** (1j * O_rads[i] *

t)).real↪→

return u, v

def get_freqResponse(self, Omega):

'''Method used to create the frequency response amplitudes in x-, and

y-directions as well as the total↪→

amplitude of the unbalance "eps" at a given rotational speed.

:parameter

Omega: List Rotational speed

:returns

ampX: Amplitude in X-direction

ampY: Amplitude in Y-direction

amp: Total ampltidue np.sqrt(ampX**2 + ampY**2)'''

u, v = self.get_nodeCoords_U_V(Omega)

S = u.shape

nodes = S[0]

Omax = S[1]

ampX = np.zeros((nodes, Omax))

ampY = np.zeros((nodes, Omax))

for i in range(nodes):

for j in range(Omax):

ampX[i, j] = max(abs(u[i, j, :]))

#print ("ampX", ampX)

ampY[i, j] = max(abs(v[i, j, :]))

amp = np.sqrt(ampX ** 2 + ampY ** 2)

158

I.2. SYSTEMCLASS.PY

return ampX, ampY, amp

def plot_freqResponse(self, Omega, response_type=1, pos = None):

'''Method used to create frequency response plot:

:parameter

Omega: Rotational speed In RPM

response type 1: Amplitude in X and Y at Disk position 1

response type 2: Amplitude in X and Y at Disk position 2

response type 3: Absolute amplitude in X and Y at Disk position 1 &

2'''↪→

if self.use_disk and pos == None:

positions = self.disk_dict['pos']

else:

positions = [pos]

nodes = self.z_coords

ampX, ampY, amp = self.get_freqResponse(Omega)

fig, ax = plt.subplots()

ax.tick_params(axis='both', which='major', labelsize=14)

if response_type == 0:

ax.semilogy(Omega, amp[list(nodes).index(positions[0]), :],

color='Red',↪→

label='Response at Node:

{}'.format(list(nodes).index(positions[0])+1))↪→

elif response_type == 1:

ax.semilogy(Omega, ampX[list(nodes).index(positions[0]), :],

color='Red',↪→

label='Response in X - dir at Node:

{}'.format(list(nodes).index(positions[0])+1))↪→

ax.semilogy(Omega, ampY[list(nodes).index(positions[0]), :],

color='Green',↪→

label='Response in Y - dir at Node:

{}'.format(list(nodes).index(positions[0])+1))↪→

elif response_type == 2:

ax.semilogy(Omega, ampX[list(nodes).index(positions[1]), :],

color='Red',↪→

159

I.2. SYSTEMCLASS.PY

label='Responsein X - dir at Node:

{}'.format(list(nodes).index(positions[1])+1))↪→

ax.semilogy(Omega, ampY[list(nodes).index(positions[1]), :],

color='Green',↪→

label='Response in Y - dir at Node:

{}'.format(list(nodes).index(positions[1])+1))↪→

elif response_type == 3:

for i in range(len(positions)):

if i == 0:

color = 'Red'

line='-'

elif i == 1:

color = 'Green'

line='-.'

ax.semilogy(Omega, amp[list(nodes).index(positions[i]), :],line,

color=color,↪→

label='Response at Node:

{}'.format(list(nodes).index(positions[i])+1))↪→

ax.semilogy(Omega, amp[list(nodes).index(positions[i]), :],

color='Green',↪→

label='Response at Node:

{}'.format(list(nodes).index(positions[i])))↪→

ax.legend()

ax.set_title('Frequency response, Displacement:

{}mm'.format(self.disk_dict['eps'][0]))↪→

ax.set_xlabel(r'Rotor speed Ω [RPM]')

ax.set_ylabel('Amplitude [mm]')

ax.grid(which='Both')

plt.show()

return fig,ax

def plot_CampBell_Diagram(self, Omega, n_frequencies=6,

n_multiple_omega=1,wD=True,wN=False,plot_dampratio=False, include_mode =

False):

↪→

↪→

160

I.2. SYSTEMCLASS.PY

r'''Campbell Diagram.

This method returns a plot of the natural damped or undamped frequencies

as a function↪→

of rotational speed of a rotor system.

:parameter

Omega: list of rotor speeds in RPM (Will be converted to RAD/S)

n_frequencies: Integer of number of desired frequencies, default = 6

n_multiple_omega: Integer of number of multiples of Omega, i.e. load

frequency, default = 1↪→

wD: Returns plot of damped frequencies, default = True

wN: Returns plot of undamped frequencies, default = False

plot_dampratio: Returns plot of the damping ratios as a function of rotor

speed, default = False'''↪→

modes = self.get_whirl_modes(n_frequencies,Omega) #List of calculated

whirl directions↪→

wd = np.empty((n_frequencies,(len(Omega))))

wn = np.empty((n_frequencies,(len(Omega))))

zi = np.empty((n_frequencies,(len(Omega))))

for o in Omega:

w, v = self.solve_Eigproblem(2 * np.pi * o / 60)

w, v = self.solve_Eigproblem(o)

w_len = len(w) // 2

zi_i = ((-np.real(w) / np.absolute(w)))[0:w_len]

#print("zi_i:", zi_i)

for i in range(n_frequencies):

wd[i][Omega.index(o)] = w[i].imag/2/np.pi

#wn[i][Omega.index(o)] = np.absolute(w[i])/2/np.pi

wn[i][Omega.index(o)] = np.abs(w[i])/(2*np.pi)

zi[i][Omega.index(o)] = zi_i[i]

fig, ax = plt.subplots(1, 1)

a = 1

for i in range(n_frequencies):

161

I.2. SYSTEMCLASS.PY

if wD:

ax.plot(Omega,wd[i,:],label = 'Frequency #{}'.format(i+1))

ax.text(max(wd[i]/2),(max(Omega)//2),modes[i])

if include_mode:

a*=-1

ax.text(((max(Omega)//2)), (max(wd[i])+min(wd[i]))/2+4*a,

modes[i],fontsize=14)↪→

elif wN:

ax.plot(Omega,wn[i,:].real,label = 'Frequency #{}'.format(i+1))

if include_mode:

a*=-1

ax.text(((max(Omega)//2)), (max(wd[i])+min(wd[i]))/2+4*a,

modes[i],fontsize=14)↪→

if n_multiple_omega == 1:

ax.plot(Omega, np.array(Omega) * (1 / (60)), '-.',

label=r'ω=Ω')↪→

elif n_multiple_omega == 2:

ax.plot(Omega, np.array(Omega) * (1 / (60)), '-.',

label=r'ω=Ω')↪→

ax.plot(Omega, np.array(Omega) * (2 / (60)), '-.',

label=r'ω=$2\times\Omega$')↪→

elif n_multiple_omega == 3:

ax.plot(Omega, np.array(Omega) * (1 / (60)), '-.',

label=r'ω=Ω')↪→

ax.plot(Omega, np.array(Omega) * (2 / (60)), '-.',

label=r'ω=$2\times\Omega$')↪→

ax.plot(Omega, np.array(Omega) * (3 / 60), '-.',

label=r'ω=$3\times\Omega$')↪→

ax.tick_params(axis='x', which='major', labelsize=14)

ax.tick_params(axis='y', which='major', labelsize=18)

if wD:

ax.set_ylabel('Damped Natural Frequency [Hz]')

elif wN:

ax.set_ylabel(' Natural Frequency [Hz]')

162

I.2. SYSTEMCLASS.PY

ax.set_xlabel(r'Rotor speed Ω [RPM] ')

ax.set_title('Critical Speed Map')

ax.set_xticks(np.linspace(0,max(Omega),20))

ax.legend(loc = 'best')

#ax.legend(loc='upper center', shadow=True, fontsize='x-large')

#ax.legend(loc=4, shadow=False, fontsize='medium')

ax.grid()

plt.show()

if plot_dampratio:

fig2,ax2 = plt.subplots(1,1)

for i in range(n_frequencies):

ax2.plot(Omega, zi[i, :], label=r'Damping Ratio ξ

#{}'.format(i + 1), linewidth=2)↪→

ax2.legend()

ax2.grid(which = 'Both')

ax2.set_xlabel(r'Rotor speed Ω [RPM] ')

ax2.set_ylabel(r'Damping Ratio, ξ')

ax2.set_title("Damping Ratio's")

return fig,ax

def plot_OperatingDeflection(self, Omega,RPM,only_disk = False,maxlines =

False):↪→

'''Method used to plot the operational deflection of the rotor as well as

the whirl orbit of the nodes.↪→

:parameter

Omega: List of rotational speeds

RPM: Operational RPM to plot

Maxlines: Creates lines from the rotor node to the maximal orbit

radius.↪→

'''

O = Omega.index(RPM)

u,v = self.get_nodeCoords_U_V(Omega)

n_nodes = (len(self.z_coords))

163

I.2. SYSTEMCLASS.PY

z0 = np.ones(n_nodes)

x0 = np.zeros(n_nodes)

y0 = np.zeros(n_nodes)

if len(self.disk_dict['pos']) > 1:

disk_node_pos_lst = []

for i in range(len(self.disk_dict['pos'])):

disk_node_pos_lst.append(list(self.z_coords)

.index(self.disk_dict['pos'][i]))↪→

else:

disk_node_pos = list(self.z_coords).index(self.disk_dict['pos'])

ampU = np.max((u[:, O, :])) * 1.1

ampV = np.max((v[:, O, :])) * 1.1

amp = max([ampU, ampV])

fig = plt.figure()

ax = plt.axes(projection='3d')

ax.set_ylim(-(amp+0.3*amp), amp+0.3*amp)

ax.set_zlim(-(amp+0.3*amp), amp+0.3*amp)

ax.set_xlim(0, n_nodes)

for i in range(n_nodes):

if only_disk :

a=0

else:

a=1

if i in disk_node_pos_lst:

color = 'Red'

linewidth = 2.5

a=1

else:

color = 'Black'

linewidth = 1.5

x0[i] = u[i, O, 0]

y0[i] = v[i, O, 0]

z0[i] *= i

164

I.2. SYSTEMCLASS.PY

x = np.squeeze(u[i, O, :])*a

y = np.squeeze(v[i, O, :])*a

z = i * np.ones(100)

ax.plot(z, y,x, linewidth=linewidth,color = color)

ax.scatter(z[i], x[0], y[0], marker='*', color='Red', s=50)

ax.scatter(z[i],x[-1],y[-1],marker= 'D', color = 'c',s = 50)

if maxlines == True:

ax.plot([i,i],[y0[i],min(abs(y))],[x0[i],min(abs(x))],

'-',color='Black',linewidth = 1)↪→

ax.plot([0,z0[-1]+1],[0,0],[0,0],linestyle=(0,(3,5,1,5)),color = 'Black')

ax.plot(z0, y0,x0, '.-', linewidth=2, color='Blue')

ax.tick_params(axis='both', which='major', labelsize=14)

ax.set_title('Operating Deflection at {} RPM'.format(RPM))

ax.set_xlabel('Nodes',labelpad=10)

ax.set_zlabel('Displacement u [mm]',labelpad=20)

ax.set_ylabel('Displacement v [mm]',labelpad=15)

ax.set_xticks(np.arange(0,len(z0)+1,1))

#ax.set_xticklabels(np.arange(1,int(len(z0))+1,1))

ax.w_xaxis.set_pane_color((1.0, 1.0, 1.0, 1.0))

ax.w_yaxis.set_pane_color((1.0, 1.0, 1.0, 1.0))

ax.w_zaxis.set_pane_color((1.0, 1.0, 1.0, 1.0))

plt.show()

return fig,ax

165

	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Problem Description
	Project Scope
	Thesis Structure

	Theory
	Rotor Dynamics
	Coordinates and Degrees of Freedom
	Gyroscopic Couples
	Rigid Rotor
	Forward and Backward Whirl
	Damping
	Flexible Rotor with Rigid Bearings
	Frequency Response

	Finite Element Method
	Beam Element

	Method
	Physical Rig
	NX Nastran
	1D BEAM Element
	Simulation of 1D Beam Element
	Transient Analysis of 1D Beam Element
	Complex Modal Analysis on 1D Beam

	Fedem
	Model Reduction in Fedem
	Model Setup
	Control System
	Analysis Setup

	Analytical
	Input Parameters
	Extra Parameters
	Make Matrix
	Solve Matrix
	Plot Campbell Diagram
	Plot Frequency Response and Operating Deflection
	Plot Modeshape

	Result
	Physical Bently Nevada RK0 Rig
	1D Beam Element in NX Nastran
	Simulation in Fedem
	Original Bearing Parameters
	NX Bearing Parameters

	Analytical Result

	Discussion
	Bently Nevada RK0
	Displacement
	Frequency

	NX
	Effect of the Bearing Stiffness and Damping
	Boundary Condition
	Effect of DTMAX
	Learning Material

	Fedem
	Displacement
	Natural Frequency
	Different in Bearing Properties

	Analytical Solution Using Python
	Frequency Response and Natural Frequencies
	Geometry and Model
	Gyroscopic Effect

	Comparison of the Results
	Element Size

	Conclusion
	Further Work
	References
	Appendices
	Bernoulli and Timoshenko Matrices
	Bernoulli
	Timoshenko

	Modeshapes in NX
	Mode 1
	Mode 2
	Mode 3
	Mode 4

	Modeshape in Python
	Mode 1
	Mode 2
	Mode 3
	Mode 4

	FFT of DTMAX
	Damping Plot Using Transient Response
	Damping at Node 3
	FFT at Node 3

	Stiffness Plot Using Transient Response
	Stiffness at Node 3
	FFT at Node 3

	Damping Plot Using Complex Modal Analysis
	Stiffness Plot Using Complex Modal Analysis
	Python Code Used in the Analytical Solution
	rotor.py
	SystemClass.py

