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Abstract

In this thesis we consider hybrid structures of superconductors and geometrically
curved magnetic materials. In these structures the proximity effect induces supercon-
ducting correlations in the magnetic material and we study how these correlations
are influenced by geometric curvature and magnetic properties. We have conducted
theoretical and numerical investigations in order to unveil new properties and effects
for applications in the field of superconducting spintronics. The findings of our
research are reported in the 3 publications enclosed to this thesis. In Paper I, we
show that geometric curvature induces long-range supercurrents and a tunable 0−π
transition in Josephson junctions with curved ferromagnetic weak links. In Paper II,
we demonstrate how geometric curvature produces a superconducting spin-valve
effect in hybrid structures of superconductors and curved ferromagnets. In Paper
III, we present a mechanism producing superconductivity in high magnetic field
in multiband superconductors. In the main text of the thesis we present the basic
instruments and theories, as well as the main results obtained for the realization
of the enclosed publications. We also report original work, currently being pre-
pared for publication, on non-equilibrium dynamics, and on ferromagnetic and
antiferromagnetic helices proximity coupled to superconductors.
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Units and Notations

In this thesis we will use SI units. In some occasions and only when specified, we
will set the reduced Planck’s constant and Boltzmann’s constant to unity, ℏ = 1,
kB = 1.

We will follow the conventional notations used in literature, with scalars iden-
tified by symbols in italic and vectors in bold italic. Unit vectors in Cartesian
coordinates are identified by êx, êy and êz .

We will often deal with equations involving matrices of different dimensions.
No special notation for 2 × 2 matrices has been introduced, when present their
nature will be specified in the text. Matrices with higher rank are identified with a
specific notation, M̂ represents a 4× 4 matrix, and M̌ represents a 8× 8 matrix.
We will also consider vectors with matrix components, such as the Pauli vector
σ = σxêx + σy êy + σz êz , with the 2× 2 Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

When considering superconductivity we will often refer to a 4 × 4 space,
a combination of spin and particle-hole spaces. Matrices in this space will be
represented through the basis matrices τ̂0, being the 4× 4 identity matrix, τ̂1, τ̂2,
and τ̂3, corresponding to the Kronecker product of the Pauli matrices in spin space
and the identity matrix in electron-hole space.

We will often consider curvilinear orthonormal coordinates, where covariant
basis vectors are represented by eα and unit basis vectors by êα, with the index
α = {T,N,B} identifying the tangential, normal and binormal components. The
geometry of the space in a general curved structure will be described through the
three orthonormal unit vectors T̂ , N̂ and B̂, representing tangential, normal and
binormal directions. These three unit vectors will be used to define the Pauli vector
in the curved framework having components σT,N,B = σ · {T̂ , N̂ , B̂}.

xv





Chapter 1

Introduction

Throughout this work we will study the effects arising when a superconductor (S)
is coupled with curvilinear ferromagnets (Fs) and antiferromagnets (AFs). We
will present the theoretical tools needed to investigate heterostructures formed by
these two categories of materials. We will then perform numerical simulations for
different types of hybrid nanostructures and show the appearance of interesting
phenomena. These phenomena can open new possibilities for the design of novel
devices for superconducting spintronics applications.

In this introductory chapter, we will first give a brief summary of the field of
spintronics and its applications. We will then introduce ferromagnets and antifer-
romagnets, two classes of materials often used in spintronics devices. We will
conclude with an introduction to superconductivity and how it can be exploited for
new spintronics applications through the field of superconducting spintronics.

1.1 Spintronics

Spintronics is a relatively young field which uses the spin of solid-state systems in-
stead of or in conjunction with the electric charge to transport information, similarly
to what is done in electronics with the transport of charge alone.

The word spin refers to the intrinsic angular momentum of particles, which
behave as if they were spinning around their own axis. Considering electrons,
their spin when measured can be in one of two states, identified as spin-up and
spin-down, with respect to a certain axis, associated with clockwise and counter-
clockwise rotation, respectively. The spin s of an electron can be detected through
its associated magnetic moment µs ≃ −(eℏ/me)s, where e is the electron charge,
me its mass and ℏ is the reduced Planck’s constant. Typical materials where the
electron spin plays a crucial role are called ferromagnets. In these materials, like
iron, the majority of the spins are aligned in the same direction as a result of

1
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Figure 4. List of techniques to generate spin-polarized electrons in a non-magnetic medium.

be used to induce a population difference in spin-polarized
electrons in a non-magnetic material. However this is difficult
to control due to the precise definition of the edge shape.
An electric field can provoke the motion of spin-polarized
carriers in a non-magnetic material towards a favourable
direction based on spin Hall effects. Circularly polarized light
excites spin-polarized electrons in a semiconductor, dependent
upon an optical selection rule. The reverse effect generates
circularly polarized light emission by a spin-polarized electron
current. This can be extended further to spin generation
by electromagnetic waves, including spin pumping and high-
frequency spin induction [32]. In addition, a thermal gradient
has been found to produce a spin-polarized carrier flow due
to a spin Seebeck effect. In a DMS, Zeeman splitting induces
spin imbalance at the Fermi level.

Each of these techniques for spin-polarized carrier genera-
tion and corresponding spin-polarized transport properties are
described in section 2. Representative device designs are ex-
plained in section 3. Section 4 discusses six key technologies
to be developed for better spintronic device operation.

2. Spintronic device structures

Spintronic devices based on the manipulation of spin-
polarized electrons offer the promise of significant advances
in device performance in terms of speed, size scaling and
power requirements [7, 8]. Spintronic devices may be
grouped into four categories according to the material system
and the corresponding electronic structures: (i) all-metal
spin transistors including spin valves, (ii) magnetic tunnel

junctions (MTJ), (iii) ferromagnet/semiconductor hybrid diode
structures and (iv) organic devices, as listed in table 1. For
spin-valve and tunnel junctions, spin-polarized electrons are
electrically injected from a ferromagnet through an ohmic
contact and a tunnel barrier, respectively. The output signals
correspond to GMR and TMR effects, respectively. Finally,
organic structures utilize organic materials as spin media with
either ohmic or tunnel junctions at the spin injector (source) and
detector (drain). For hybrid diodes, spin-polarized electrons
are injected into a semiconductor either electrically through
a ferromagnet/semiconductor ohmic contact (or Schottky
barrier) or optically by introducing circularly polarized light
into a semiconductor. These injected spins travel in the
semiconductor and are detected using either optical light
emission or an electrical signal at another ferromagnetic drain.

2.1. All-metal structures

2.1.1. Diffusive transport. The motion of electrons in a
conducting material can be driven by applying an electric
field generating an electric current via Ohm’s law. For
spin-polarized electrons, both conduction-electron transport
in a conductor and spin-wave propagation in an insulator
can be described by the Bloch–Torrey equation without spin-
exchange diffusion [33]:

∂ �M
∂t

= γ ( �M × �H) −
�M

T2
+ χ0

�H
T1

+
�M · �H �H

H 2
×

(
1

T2
− 1

T1

)

+∇ · D∇( �M − �M0), (1)
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Figure 1.1: Methods used for the generation of spin-polarized electrons. Reproduced with permission
from [4] Copyright 2014, IOP Publishing.

the exchange interaction, a quantum mechanical consequence of the Coulomb
interaction and the Pauli exclusion principle. An important class of ferromagnets
is that of half metals, materials conducting only electrons with a certain spin
orientation.

In spintronics, one studies how the spin of electrons interact with their surround-
ings in solid-state materials to create devices with reduced power consumption
and increased memory capacity, compared to traditional electronics devices. An
important aspect, for the realization of spintronics devices, is the generation of spin-
polarized electrons, which can be done in different ways [4]: spin injection from a
ferromagnet, application of magnetic or electric fields, Zeeman splitting, circularly
polarized photoexcitation, or introduction of a thermal gradient (see Fig. 1.1). A
typical example is spin injection in a normal metal from a ferromagnetic material
through ohmic contacts or tunneling barriers. Other relevant mechanisms are rep-
resented by spin relaxation and spin dephasing, affecting for how long the system
retains a certain spin orientation. The time scales of these processes need to be large
enough so that the electrons can travel a sufficient distant to be detected before their
spin decays.

The first examples of spintronics related effects are tunneling magnetoresistance
(TMR) [5] and giant magnetoresistance (GMR) [6, 7], which have both been used
for the realization of hard disk drives (HDD) for data storage. TMR is observed in
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trilayers, consisting of two ferromagnets separated by an insulating barrier, and the
effect consists in different tunneling of electrons when the magnetizations of the
two ferromagnets are parallel or antiparallel. Similarly, GMR is observed in devices
where two ferromagnets are separated by a metallic barrier. In both cases, a measure
of the efficency of devices is given by the magnetoresistance ratio, corresponding
to the resistance change between antiparallel and parallel configurations relative to
the resistance of the parallel configuration. After its first observation below 4.2K in
1975 [5], TMR was achieved at room temperature with magnetoresistance ratios
slightly above 10% in 1995 [8, 9]. Since then higher ratios have been achieved, up
to 70% [10], ∼ 220% [11] in 2004, and an impressive 604% [12] in 2008. GMR
was discovered in 1988, later than TMR, with a resistance change of ∼ 50% at 4.2K
[6, 7]. However, GMR was observed earlier than TMR at room temperature, with a
magnetoresistance ratio of 65% in 1991 [13], and therefore was the first of the two
to be used in HDDs. Given the better performance of TMR devices, HDDs later
moved from GMR to TMR, with an increase in capacity of almost four times in the
last decade [14]. Moreover, TMR is used for the realization of magnetoresistive
random access memory (MRAM) devices, using magnetization to store data [15].

1.2 Ferromagnetism

Ferromagnetism refers to the characteristic of some materials, such as iron, cobalt
and nickel, to have a spontaneous magnetization even in the absence of an exter-
nal magnetic field, below a certain temperature known as the Curie Temperature.
Above the Curie temperature, a paramagnetic state is realized. In these materials,
the majority of magnetic moments of atoms or molecules are aligned in the same
direction1. As stated in the previous section, this alignment is generally a conse-
quence of Coulomb repulsion between electrons in combination with the exchange
interaction, a quantum mechanical effect arising from the Pauli exclusion principle.
When two electrons are on the same atom the exchange energy generally favors a
triplet state, i.e. electrons with parallel spin, consistently with Hund’s rules2. On the
contrary, when the two electrons sit on two different atoms, the exchange energy
will favor the singlet state.

In ferromagnetic materials the exchange interaction lowers the energy of the
configuration where the spins of electrons are aligned. Consequently, this interaction

1In most ferromagnets this is not true throughout the whole sample. Typical ferromagnetic
materials consists of multiple macroscopic domains with a spontaneous magnetizations, with the
magnetization of each domain pointing in a different direction. Ferromagnets in which the conduction
electrons have all the same spin direction are named half-metals.

2Hund’s rules are those followed by electrons when filling atomic orbitals. They state that electrons
singly occupy orbitals at the same level with aligned spins before doubly occupying any orbital.
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A-TYPE G-TYPEC-TYPE

(a) (b)

Figure 1.2: (a) A-, C- and G-type orderings on a cubic lattice. (b) Orientation of the Néel vector n
(black arrow) in a AF chain.

gives rise to an effective magnetic field, the exchange field, experienced by an
electron due to the surroundings. The strength of the exchange field is determined
by the strength of the exchange interaction and spins align with its direction. We
will later use the exchange field to describe ferromagnets in the diffusive theory.

Ferromagnetic materials are widely used in conventional and superconducting
spintronics. Their importance in the context of superconducting spintronics lies in
the proximity effect, which occurs when a superconductor is placed in contact with
another normal material. Due to the proximity effect, the superconducting properties
are partly transferred in the adjacent material. In a superconducting-ferromagnetic
hybrid structure, the superconductivity inside the ferromagnet acquires interesting
properties, which we will describe later in this introduction. At the same time an
inverse proximity effect is observed, a magnetization is induced in the superconduc-
tor causing the superconductivity in the superconductor to be slightly suppressed.
We will deal more specifically with the proximity effect later in this thesis.

1.3 Antiferromagnetism

Contrary to ferromagnetism, antiferromagnetism identifies materials where neigh-
bouring magnetic moments tend to align antiparallel to each other. Therefore,
antiferromagnets exhibit a net zero magnetization, despite the presence of local
individual magnetic moments. Similarly to ferromagnetism, this phenomenon arises
from the exchange interaction, which owing to specific material properties, can
favor antiparallel configurations. In general, antiferromagnetism is realized at tem-
peratures below the Néel temperature, while for higher temperatures paramagnetism
occurs.

There are different types of antiferromagnetic ordering in multilayered struc-
tures, the three most common types are depicted in Fig. 1.2(a). An A-type AF
occurs for ferromagnetic intraplanar coupling and antiferromagnetic interplanar
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coupling, B-type for antiferromagnetic intraplanar coupling and ferromagnetic
interplanar coupling, C-type for both intraplanar and interplanar antiferromagnetic
coupling.

Often antiferromagnetism occurs in systems which can be separated into two
distinct sublattices. In each of the two sublattices the magnetic moments point all
in the same direction, and opposite to the other sublattice. This allows to define the
total magnetizations of the two sublattices, whose sum gives the total magnetization
in the AF, equal to zero, and whose difference is a quantity named the Néel vector,
the antiferromagnetic order parameter. An important instrument in describing AFs,
the Néel vector identifies the direction along which the magnetic moments of the
two sublattices are antiparallel, as depicted in Fig. 1.2(b) with a black arrow.

Unlike for ferromagnets, the inclusion of AFs in the context of spintronics
happened only recently3. Owing to their stability in magnetic fields, absence of
stray fields and ultrafast dynamics, AFs could eventually substitute ferromagnets
in spintronics devices and potentially revolutionise the field. The first applications
of AFs in spintronics came in magnetic recording devices, exploiting the interface
coupling between ferromagnets and AFs. Other early applications came with
antiferromagnetic spin valves and tunnel junctions, where spin transfer torque is
used to control the AF order parameter [19, 20]. The spin transfer torque could
allow the switching of the Néel vector, providing the writing operation in AF-based
MRAMs. Various experiments successfully achieved manipulation of the AF order
parameter in spintronics devices [21–24].

Recently, much attention has been placed in the control of the interfacial spin
ordering, rather than the bulk. For instance, control of interfacial spins has been
achieved in antiferromagnetic-ferromagnetic-heavy metal heterostructures [25–27].
Depending on the AF type, the ordering at the interface of AFs can be defined
as compensated, i.e. antiferromagnetic ordering parallel to the interface, or un-
compensated, i.e. ferromagnetic ordering, achieved by an interface, e.g. along the
plane of an A-type, or a diagonal cut along C- or G-types, see Fig. 1.2(a). In
this context, theoretical studies have focused on the role of the interface order-
ing in antiferromagnetic-superconducting heterostructures [28–34]. For instance,
Ref.[28] studied the influence of the uncompensated and compensated ordering
on the bound states formed at the interface between an antiferromagnet and a
superconductor. Moreover, in Ref.[33] it was shown that through a compensated
interface it is possible to control the superconducting critical temperature in an
AF-S-F heterostructure.

Moreover, the ultrafast dynamics in AFs could enable information processing
and storage in the terahertz-frequency regime. For instance, a terahertz writing
speed has been reported in an antiferromagnetic memory device [35], and ultrafast

3For reviews on antiferromagnetic spintronics, see[16–18].
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terahertz radiation has been used to drive spin-lattice coupling in the AF CoF2 [36].
Furthermore, it has been shown that ultrafast spin-lattice coupling induces emission
of terahertz coherent magnons, i.e. collective excitations of the spin structure, in
bilayers made of the AF insulator NiO and Pt [37].

1.4 Superconductivity

The phenomenon of superconductivity was first discovered in 1911 by H. K. Onnes
[38], with observation of zero direct current resistance in mercury when cooled
down below a certain critical temperature. A vanishing electrical resistance, or per-
fect conductivity is the first defining characteristic of superconductivity. The second
fundamental feature is perfect diamagnetism, i.e. the expulsion of magnetic fields
from the interior of a material, known as the Meissner effect [39]. The first phe-
nomenological theory of superconductivity was developed in 1935 by the Londons
[40], describing the two fundamental electrodynamic properties [41]. However, for
decades, scientists failed in formulating a full theory of superconductivity, until in
1957 Bardeen, Cooper and Schrieffer [42], developed a microscopic theory, known
as BCS theory. In this theory, they showed that even a weak attractive interaction can
produce bound pairs of electrons, known as Cooper pairs, with equal and opposite
spins and momenta, which can be loosely identified as the superconducting charge
carriers. The BCS theory well describes the so-called conventional superconductors,
a category comprising materials which are metallic at room temperatures, such as
Hg, Pb, and Nb, with typically low critical temperature, the highest at atmospheric
pressure being 39K for MgB2 [43].

For a long time, all the superconductors discovered well agreed with the BCS
theory. Nowadays these compounds are named conventional superconductors, while
superconductors which do not follow the BCS theory are labeled as unconventional
superconductors.

Another breakthrough in the field was the discovery in 1987 of superconduc-
tivity up to 40K in a La-Ba-Cu-O compound [45]. This was then followed by the
discovery of superconductivity in many other cuprate compounds, with the highest
critical temperature of 138K achieved in HgBa2Ca2Cu3O8 + δ at ambient pressure
[46] and 164K at 45GPa [47]. These high critical temperatures are the reason
why cuprates are defined as high temperature superconductors. Another family
of superconductors belonging to this cathegory is that of iron-based superconduc-
tors, with the highest critical temperature achieved for FeSe thin films grown on
doped SrTiO3 above 100K [48]. Both cuprates and iron-based superconductors are
unconventional superconductors. Other unconventional superconductors include
heavy-fermion compounds, such as UPt3, strontium ruthenate Sr2RuO4, carbon-
based and nickel-based superconductors. Different families of superconductors are
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Figure 1.3: Historic timeline of discovered superconductors, with different symbols identifying
different cathegories, green circles for conventional superconductors, blue diamonds for cuprates,
orange squares for iron based superconductors, green stars for hevy fermion superconductors, purple
triangles for carbon-based superconductors, grey pentagon for strontium ruthenate, six-point pink star
for nickel-based superconductor. For reference we added in red the recent highly disputed hydride
compound from Ref.[44]. Adapted from P. J. Ray/CC BY-SA 4.0/Wikimedia.

reported in Fig. 1.3, with the date of their discovery and their critical temperature.

An important goal in the research of new superconductors is achieving room
temperature superconductivity. Critical temperatures close to room temperature
have been achieved at extremely high pressures first in sulfur hydride, with a
Tc of 203K at 155GPa [49], and later in lanthanum hydride, with Tc = 250K
at 270GPa [50]. Earlier this year, room temperature superconductivity at near-
ambient pressure has been reported in a N-doped lutetium hydride, with a critical
temperature of 294K at 1GPa [44]. However, this study is the object of great
debate about irregularities and scientific misconduct, given the recent retraction
by Nature of a previous similar study on the observation of room temperature
superconductivity in a carbonaceous sulfur hydride. The reason for the retraction is
the use of a “non-standard, user-defined procedure” of noise subtraction applied to
raw data used to generate the magnetic susceptibility plots. It must also be noted
that a more recent study performed on the same material as the one used in Ref.[44],
was not able to reproduce near-ambient superconductivity [51]. Therefore, the
claim of an achievement of superconductivity at ambient conditions must be taken
with extreme caution.
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One of the most common applications of superconductors is that of super-
conducting electromagnets, for the generation of high magnetic fields through
superconducting coils. Despite having to be cooled down to cryogenic tempera-
tures, superconducting electromagnets are energetically more efficient than their
non-superconducting counterpart, since they can support much larger currents with-
out any energy dissipation and generate higher magnetic fields. For this reason
they are commonly used in nuclear magnetic resonance and magnetic resonance
imaging machines, in magnetic confinement fusion reactors, in particle accelators
and in magnetic levitation trains. In 2019 scientists at the US National High Mag-
netic Field Laboratory (NHMFL) where able to generate a magnetic field of 45.5T
through a cuprate superconductor [52]. This is currently the highest magnetic field
intensity reached for a static magnetic field. Higher intensities, of the kilotesla
order, can be achieved without superconductors, but with pulsed magnetic fields
[53].

Superconductors are also used to realize devices known as Josephson junctions.
In their most basic version they consist of two superconductors coupled via a
weak link, which can be a material or a physical constriction. Owing to the
superconducting properties, a direct supercurrent can flow in this device without
any applied voltage, this is known as the DC Josephson effect. If a DC voltage
is applied instead, an alternating current flows through the device, realizing the
AC Josephson effect. Josephson junctions are used to realize superconducting
quantum interference devices (SQUIDs), which are extremely sensitive devices for
magnetic field measurements, and in superconducting qubits for quantum computing
applications.

1.4.1 Symmetry of the Superconducting Order Parameter

As stated above, superconductivity is characterized by bound pairs of electrons.
Therefore, the superconducting order parameter is identified as a two-fermion
correlation function, which must obey Fermi statistics, i.e. the order parameter must
be antisymmetric. This imposes restriction on the nature of the superconducting
correlations. For instance, in most superconductors electron pairs are bound together
in a spin-singlet state, which is antisymmetric, meaning that the orbital part must
be symmetric, or even under parity. Therefore, for a spin-singlet state, the spatial or
momentum symmetry of the order parameter must be s-wave, as in conventional
BCS superconductors, or d-wave, as in cuprates, and so on. Conversely, if the
Cooper pairs are in a spin-triplet state, the orbital part needs to be antisymmetric,
with spatial symmetry being p-wave, f-wave, and so on.

The states mentioned so far refer to equal time pairing, since the time coordinate
is often not taken into account, as in the BCS theory. However, considering the
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Figure 1.4: Singlet to triplet conversion, (a) conversion from singlet to long-range triplets through
spin mixing and spin rotation, (b) proximity effect between a superconductor and a ferromagnet: the
presence of magnetic inhomogenheities or spin-orbit coupling provides long-range triplet generation.
Based on figure in [55].

possibility for electrons to pair at different times, provides an additional symmetry
of the order parameter. For even in time pairing the above discussion remains valid.
The situation is different when superconducting correlations are odd in time or
frequency. This state is known as odd-frequency pairing and opens the possibility
for s-wave triplet or p-wave singlet states. This pairing can occur in superconducting
heterostructures such as those considered in this thesis and has recently become of
interest for the field of superconducting spintronics, given its robustness against
magnetic fields and impurity scattering4.

1.5 Superconducting Spintronics

As we discussed above, spintronics has the potential to realize more efficient
nanodevices, while superconductivity provides dissipationless charge transport.
Therefore, the combination of spintronics and superconductivity in the field of
superconducting spintronics [55, 56], provides further advances in the realization of
new energy efficient, high-performance devices, since it permits all the operations
typical of conventional spintronics with the advantage of no heat loss by virtue of
the dissipationless currents provided by superconductors.

Generally, superconductivity and ferromagnetism are two competing phases,
since typically superconductivity is characterized by Cooper pairs in a singlet state,
i.e. electrons with opposite spins, while ferromagnetism tends to align the spins,
making superconducting pairing energetically unfavourable. However, a solution
to this problem is provided by the superconducting proximity effect. This process
occurs when a superconductor is put in contact with another non-superconducting

4For a review on odd-frequency pairing see [54].
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material, resulting in the superconducting correlations leaking into the other material
and electrons into the superconductor.

1.5.1 Proximity Effects and Role of Spin-Orbit Coupling

The proximity effect is the reason why hybrid structures of superconductors and
ferromagnets are of particular importance in superconducting spintronics [57–59].
In diffusive heterostructures, covering a broad range of commonly available materi-
als which may have impurities or suboptimal interface transparencies, conventional
superconducting s-wave correlations typically penetrate only a short distance into a
ferromagnet, proportional to

√
DF /h, where DF is the diffusion constant and h

the magnitude of the exchange field of the ferromagnet.
At the SF interface, singlet correlations are also converted into the so-called

short-range triplet (SRT) correlations, carrying no net spin projection along the
quantization axis and decaying with the same length scale of the singlet correlations,
but this time with an oscillatory behavior. However, it was demonstrated that equal
spin triplet correlations can be generated by means of magnetic inhomogeneities
[60, 61], i.e. non constant magnetization orientation, through the processes of spin
mixing and spin rotation [55, 56, 62], see Fig. 1.4. This conversion occurs as
follows. In the spin mixing process, when a Cooper pair enters the interface with a
ferromagnet, the wave function acquires a spin dependent phase shift, due to the
spin-splitting field of the ferromagnet. The resulting wave function is a combination
of spin-singlet and spin-triplet with no net spin, or SRT, contributions. The presence
of an additional spin-splitting field aligned along a different axis provides a new
quantization axis with respect to which the SRT state is a combination of equal-
spin pairs, with up and down spin. The spin rotation process thus causes the
different spin-triplet components to transform into each other. These correlations,
not being affected by any pair-breaking due to the exchange field, penetrate for
longer distances in the ferromagnet of order

√
DF /T , where T is the temperature,

and are therefore named long-range triplet (LRT) correlations.
Magnetic inhomogeneities can be achieved through multiple misaligned mag-

netic layers [63], or rotating exchange textures such as those present in Holmium
[64]. In 2006, came the first experimental observation of LRT correlations, through
the measurement of a triplet supercurrent in a Josephson Junction with the half-
metallic ferromagnet CrO2 as weak link [65]. However, this observation was not
supported by a clear conversion mechanism. More robust observations, cementing
the understanding of the role of magnetic inhomogeneities, came in 2010, with
the two separate observations of long-range supercurrents in Josephson junctions
containing magnetic multilayers [63], and holmium [64]. Since then many other
experimental observations with different setups followed [63, 64, 66–71], showing
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the promising potential of superconducting spintronics and its applications.
Other than through magnetic inhomogeneities, it is possible to achieve LRT con-

version with the presence of spin-orbit coupling (SOC) [72, 73]. SOC corresponds
to the interaction of a particle momentum with its spin, originating when electrons
move in an electric field E. In its rest frame, an electron moving with momentum p
experiences an effective magnetic field Beff ∼ p×E. The energy of the electrons
in this magnetic field is given by the Zeeman coupling µBσ · Beff , leading to a
spin-orbit coupling HSO ∼ µBE · (p × σ). In solids, SOC originates when the
crystal structure lacks inversion symmetry, and can be of the Dresselhaus [74] or
Rashba [75] type. Dresselhaus coupling occurs in systems lacking an inversion
center, and in a 2D electron-gas confined along the ẑ direction it has the following
form:

HD =
β

ℏ
(pyσy − pxσx) , (1.1)

where β is the Dresselhaus coupling constant. In a 2D electron gas where the
inversion symmetry is broken along the ẑ direction, either due to the crystal structure
itself or due to interface with other materials, Rashba SOC can be written as:

HR =
α

ℏ
(p× σ) · ẑ, (1.2)

where α is the Rashba coupling constant. Being derived for 2D electron gases,
these two forms of SOC are useful approximations for thin film heterostructures.

Through its effect on the triplet correlations, SOC produces many interesting
effects. In general the interplay between SOC and exchange interaction in supercon-
ducting ferromagnetic hybrid structure, induces a strong coupling between charge,
spin and superconducting phase, e.g. allowing for control of the magnetoelectric
effect in Josephson junctions [76] and the magnetoresistance in thin metal films
[77]. Furthermore it was recently shown that this control can be exploited to realize
a Josephson phase-battery [78]. The study of SF bilayers, showed that presence of
SOC in the F provides control of the critical temperature of the hybrid structure [79,
80], realizing the so-called superconducting spin-valve effect. Moreover, it was
shown that SOC allows to generate spin-polarized supercurrents in SFS Josephson
junctions [81] and to obtain a giant proximity effect in a π-biased SFS junction, in
contrast with the suppression in absence of SOC [82]. Investigations of a hybrid SF
nanowire with intrinsic SOC and applied voltage bias, showed that SOC facilitates
the tuning of the magnetization [83].

In this thesis we will show that geometric curvature allows for geometric control
of magnetic textures and SOC, and can represent an alternative for achieving long-
range supercurrents, as shown in Paper I [1], or superconducting spin-valve effect,
as shown in Paper II [2].
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Chapter 2

Superconductivity

In this chapter we will first give an overview of the first successful theories of
conventional superconductivity1. We will start by discussing the first phenomeno-
logical theory of superconductivity provided by the Londons [40] and then show
how this theory is incorporated in the Ginzburg-Landau theory of superconductivity,
describing superconductors at the macroscopic level. We will then present the BCS
or microscopic theory of superconductivity. We will conclude by demonstrating a
new mechanism allowing for superconductivity at high magnetic fields.

2.1 Macroscopic Theory of Superconductivity

For years after the discovery of superconductivity, a microscopic understanding of
this phenomenon had been missing. Nonetheless, scientists successfully described
superconductors by formulating macroscopic and phenomenological theories, which
we will introduce in the following.

2.1.1 London Equations

The London equations provided the first description of the two basic electrodynamic
properties of superconductors. The two equations proposed by the Londons in 1935
[40] govern the microscopic electric field E and microscopic magnetic field h, and
they can be written as:

∂js
∂t

=
nse

2

m
E, (2.1a)

∇× js = −nse
2

m
h, (2.1b)

1We will not discuss unconventional superconductivity here, for a review see e.g. [84].
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where js is the total supercurrent and ns is the number density of superconducting
electrons. The first equation, Eq. (2.1a), describes perfect conductivity, stating that
superconducting electrons accelerate in an applied electric field since they do not
experience any scattering. The second equation, Eq. (2.1b) can be combined with
the Maxwell equation in static electric field ∇× h = 4πjs/c. Taking the curl of
Eq. (2.1b) and using the second Maxwell’s equation ∇ · h = 0, we can write:

∇2h =
4πnse

2

mc2
h. (2.2)

Considering a superconductor occupying the space for z > 0 in an applied field
along x and intensity H0, the microscopic magnetic field inside the superconductor
can be obtained from Eq. (2.2). The solution is h(z) = H0 exp(−z/λL), where

λL =

√
mc2

4πnse2
, (2.3)

is the London penetration depth. Thus, the magnetic field penetrates inside the
superconductor for a distance λL and is screened from its interior. This shows that
for 2D materials we expect magnetic fields to penetrate superconductors.

2.1.2 Ginzburg-Landau Theory

In 1950 another step forward in the study of superconductivity was provided by
Ginzburg and Landau [85], who formulated a theory from which the London equa-
tions can be derived. Despite being a phenomenological theory, it was later shown
by Gor’kov in 1959 [86], that it can also be derived microscopically, demonstrating
its fundamental importance.

The Ginzburg-Landau (GL) theory describes the superconducting electrons
through the complex order parameter ψ in the context of Landau’s theory of second
order phase transitions. The theory is based on a free energy expansion in terms of
ψ:

FS = FN + α |ψ|2 + 1

2
β |ψ|4 + 1

2m∗

∣∣∣∣(−iℏ∇+
e∗

c
A

)
ψ

∣∣∣∣2 + h2

8π
, (2.4)

where FN is the free energy of the normal state, m∗ and e∗ are effective mass and
charge, respectively, A is the vector potential and h = ∇×A is the microscopic
magnetic field. The parameters α and β are phenomenological constants, with
β assumed to be independet of temperature, while α ≡ α(T ) = (T − Tc)α

′.
Minimization of the free energy by taking variation of ψ,ψ∗ and A gives the
following two field equations:
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1

2m∗

(
−iℏ∇+

e∗

c
A

)2

ψ + αψ + βψ |ψ|2 = 0, (2.5a)

js =
e∗

m∗

[
i
ℏ
2
(ψ∗∇ψ − ψ∇ψ∗)− 1

c
|ψ|2A

]
. (2.5b)

As a simple case we consider a homogeneous system, which from Eq. (2.5a) in the
absence of any magnetic field has the following two solutions:

ψ = 0, |ψ| =
√
−α

′

β
(T − Tc). (2.6)

The first solution describes the normal state and the second is valid only for T <
Tc. It is clear that the superconducting solution leaves a freedom in the choice
of the phase of the order parameter ψ = |ψ| exp(iϕ), which is crucial when
including spatial variations of ψ since it ensures that the free energy and physical
observables are gauge invariant. The invariance of the magnetic field under the
gauge transformation A → A′ = A−∇χ, imposes a simultaneous transformation
on the phase ϕ→ ϕ′ = ϕ− e∗χ/ℏ2.

Another simple case to consider is the one dimensional case with h = 0. The
first GL equation becomes:

− ℏ2

2m∗
d2ψ

dz2
+ α(T )ψ + βψ |ψ|2 = 0. (2.7)

Defining the dimensionless order parameter f = (β/ |α(T )|)1/2ψ, Eq. (2.7) reads

−ξ(T )2d
2f

dz2
+ f3 − f = 0, (2.8)

where

ξ(T ) =
ℏ√

2m∗α′(Tc − T )
, (2.9)

is the GL coherence length, defining the characteristic length scale for the spatial
variation of the order parameter.

Now let us consider a uniform order parameter |ψ|∞ =
√
n∗s , defining an effec-

tive superconducting electron density. The supercurrent expression of Eq. (2.5b),
takes the following form:

js = −(e∗)2n∗s
m∗c

|ψ|2A, (2.10)
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corresponding to the second London equation Eq. (2.1b), with the penetration
depth:

λ(T ) =

√
m∗βc2

4π(e∗)2α′(Tc − T )
. (2.11)

2.1.3 Flux Quantization

The GL equation for the supercurrent Eq. (2.5b) allows to verify the quantization of
the flux in a superconductor. Substituting ψ = |ψ| exp(iϕ) in Eq. (2.5b) gives:

A+
m∗c

(e∗)2 |ψ|2
js = −ℏc

e∗
∇ϕ. (2.12)

Integrating this equation on a path C lying entirely in the superconductor we have:∮
dl ·A+

m∗c

(e∗)2

∮
dl · js
|ψ|2

= −ℏc
e∗

∮
l · ∇ϕ. (2.13)

In order for the order parameter to be single valued, the integral on the right side
must be equal to a multiple of 2π. With this and using Stokes’ theorem to rewrite
the first term, we obtain:∫

dS · h+
m∗c

(e∗)2

∫
dl · js
|ψ|2

= nΦ0, (2.14)

where n is an integer number and Φ0 = 2πℏc/e∗ is the flux quantum. The term
on the left side of Eq. (2.14) is named fluxoid, and is the magnetic flux plus an
additional contribution arising from the induced supercurrent.

2.1.4 Type I and Type II Superconductors

With Eqs. (2.9) and (2.11) we have defined two characteristic length scales for
the superconductor. It is then possible to introduce the following dimensionless
Ginzburg-Landau parameter

κ ≡ λ

ξ
. (2.15)

The importance of this parameter was demonstrated by Abrikosov [89], by studying
the energy associated with a surface separating normal and superconducting regions,
σns, in an applied magnetic field Hc. This surface energy determines the behavior
of a superconductor in an applied magnetic field, defining the distinction between
type I and type II superconductors, realized for σns > 0 (κ < 1/

√
2) and σns < 0
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Figure 2.1: (a) Phase diagram in the HT plane for type I (left) and type II (right) superconductors.
(b) Illustration of the magnetic field lines in the Meissner state (left), mixed state (center) and normal
state (right). Based on figures in [87, 88].

(κ > 1/
√
2), respectively. In type I superconductors, the positive surface energy

makes the sample spatially homogeneous, presenting a Meissner effect up to a
certain critical field Hc. On the other hand a type II superconductor exhibit an
intermediate or mixed state when the magnetic field exceeds a lower critical field
Hc1, where some magnetic flux penetrates the superconductor in quantized flux
lines. The amount of penetrating flux increases with the magnetic field until at a
certain upper critical field Hc2 there is a transition from the mixed to normal state.

2.2 Microscopic (BCS) Theory of Superconductivity

Here we present the microscopic theory introduced by Bardeen, Cooper and Schri-
effer [42]. This theory describes how an effective attractive interaction between
electrons, mediated by phonons, leads to the formation of bound pairs of electrons,
usually called Cooper pairs [90].
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2.2.1 Cooper Pairs

The underlying idea of the BCS theory, that a weak attractive interaction can bind
electrons in pairs, was first introduced by Cooper [90] in 1956. In his simple model,
Cooper showed that the Fermi sea becomes unstable with respect to the formation
of at least one bound pair, as long as an attractive interaction is present, no matter
how weak.

The general approach is to add two electrons to the Fermi sea at T = 0,
assuming that these extra electrons only interact with each other. After defining a
wave function of the two electrons one inserts it into the Schrödinger equation and
calculate the energy eigenvalue associated to it. Introducing the approximation that
the potential Vkk′ , representing the scattering of a pair of electrons with momenta
(k,−k) to (k′,−k′), is equal to −V for states with an energy cutoff ℏωc away
from the Fermi energy EF , and Vkk′ = 0 otherwise, it can be shown that the energy
eigenvalue is [41]:

E ≈ 2EF − 2ℏωce
−2/N(0)V , (2.16)

where N(0) is the density of states at the Fermi level and ℏωc a characteristic
energy. The energy of Eq. (2.16) shows that there is a bound state with negative
energy with respect to the Fermi surface.

2.2.2 The Attractive Interaction

To show how an attractive interaction can originate we consider the bare Coulomb
interaction V (r) = e2/r between two electrons at a distance r and calculate
its Fourier transform for unit normalization volume V (q) = 4πe2/q2. Taking
into account the screening due to the conducting electrons, described through the
Thomas-Fermi approximation of the dielectric function ϵ(q) = 1 + k2s/q

2, where
k−1
s ≈ 1Å is the screening length, the interaction is reduced by a factor ϵ−1(q):

V (q) =
4πe2

q2 + k2s
, (2.17)

which is still positive. To obtain a negative interaction we consider ion motion,
adding the phonon, i.e. lattice vibrations, contribution to the screening2. The
physical picture behind this is that a moving electron attracts the ions, producing a
polarized region of positive charge. This region of excess positive charge in turn
attracts a second electron, thus causing an effective attractive interaction.

2Phonons are not the only option for a negative interaction, but it was the first and the most
common. Other suggestions exist as valid extensions to BCS.
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Considering elecron-phonon interaction, if an electron is scattered from mo-
mentum k to k′, the phonon will carry a momentum q = k−k′. A realistic phonon
contribution to the screening [41] is proportional to (ω2 − ω2

q )
−1, with ωq being

the phonon frequency. It is clear that if ω < ωq the contribution is negative, so for
electron energy difference larger than ℏωq the effective interaction becomes repul-
sive. This means that the cutoff energy ℏωc of the effective attractive interaction
introduced in the previous section should be of the order of the characteristic energy
of phonons, the Debye energy ℏωD. A treatment of the electron-phonon coupled
system through a jellium model (homogeneous electron gas) gives the following
effective interaction [91]:

V (q) =
4πe2

q2 + k2s

ω2

ω2 − ω2
q

. (2.18)

This interaction is clearly attractive for every ω < ωq, but must not be con-
sidered as an universally reliable expression, it is rather meant to illustrate that it
is possible to achieve an effective attractive interaction between electrons using
simple considerations.

The phonon-mediated mechanism for the attractive interaction has been the
first one to be discoverd. Different mechanisms have been proposed, e.g. antifer-
romagnetic spin fluctuations in cuprates and iron based superconductors or the
Kohn-Luttinger mechanism [92] in twisted bilayer graphene.

It is important to note that, although the BCS theory was developed based on the
conventional mechanism for s-wave singlet superconductivity, it can be generalized
to different pairing mechanisms and symmetries, such as p-wave and d-wave, and
to spin-triplet superconductivity.

2.2.3 BCS Theory in the Green’s Function Formalism

Here we present a derivation of the BCS theory through the Green’s function
formalism [86, 93, 94]. We will start by considering the following grand canonical
Hamiltonian for an electron gas with an attractive interaction, in absence of magnetic
fields and with ℏ = 1:

Ĥ=Ĥ0 + V̂ =−
∑
σ

∫
drψ†

σ(r)

(∇2

2m
−µ
)
ψσ(r)

− 1

2
g
∑
σσ′

∫
drψ†

σ(r)ψ
†
σ′(r)ψσ′(r)ψσ(r),

(2.19)

where the field operator ψ†
σ(r) (ψσ(r)) creates (annihilates) a particle in position

r with spin σ, and g > 0 is the strength of the interaction. We will now introduce
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a mean-field version of the Hamiltonian of Eq. (2.19) in the Cooper channel,
i.e. including the pairing of electrons with opposite spins in a bound Cooper pair,
and ignore all other channels. This is done by considering the following effective
Hamiltonian:

Ĥeff=Ĥ0 − g

∫
dr
{〈
ψ†
↓(r)ψ

†
↑(r)

〉
ψ↑(r)ψ↓(r)+ψ

†
↓(r)ψ

†
↑(r)

〈
ψ↑(r)ψ↓(r)

〉}
,

(2.20)
where the angle brackets represent an ensemble average evaluated with Ĥeff . We
now define the imaginary-time Heisenberg operators

ψHσ(r, τ) = exp
(
Ĥeffτ

)
ψσ(r) exp

(
−Ĥeffτ

)
, (2.21a)

ψ†
Hσ(r, τ) = exp

(
−Ĥeffτ

)
ψ†
σ(r) exp

(
Ĥeffτ

)
, (2.21b)

whose time evolution is given by

∂ψHσ(x)

∂τ
=

(∇2

2m
+ µ

)
ψHσ − g

〈
ψ↑ψ↓

〉
ψ†
Hσ′ , (2.22a)

∂ψ†
Hσ

∂τ
=−

(∇2

2m
+ µ

)
ψ†
Hσ − g

〈
ψ↑ψ↓

〉
ψHσ′ , (2.22b)

where x ≡ (r, τ). We can now define the following single particle Green’s function:

G(x, x′) = −
〈
Tτ
{
ψH↑(x)ψ

†
H↑(x

′)
}〉
, (2.23)

where Tτ represents the imaginary time-ordered product. By using Eqs. (2.22a)
and (2.22b) we get the following equation for the Green’s function:

(
− ∂

∂τ
+

∇2

2m
+ µ

)
G(x, x′) = δ(x−x′)+ g

〈
ψ↑(r)ψ↓(r)

〉〈
Tτ
{
ψ†
↓(x)ψ

†
↑(x

′)
}〉
,

(2.24)
where δ(x− x′) ≡ δ(r − r′)δ(τ − τ ′). By inspection of this equation it appears
natural to introduce two additional Green’s functions, also called anomalous Green’s
functions:

F (x, x′) = −
〈
Tτ
{
ψH↑(x)ψH↓(x

′)
}〉
, (2.25a)

F †(x, x′) = −
〈
Tτ
{
ψ†
H↓(x)ψH↑(x

′)
}〉
. (2.25b)
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For a time-dependent Hamiltonian the Green’s function G, F and F † depend only
on the time difference τ − τ ′, so that it is possible to define the superconducting
order parameter as:

∆(r) = gF (rτ, r′τ) = −g
〈
ψ↑(r)ψ↓(r)

〉
. (2.26)

Similarly to the case of G it is possible to obtain the equation of motion for F and
F ′. With the use of the definitions Eqs. (2.23), (2.25a), (2.25b) and (2.26) we can
write the equation of motion for G, F an F †

(
− ∂

∂τ
+

∇2

2m
+ µ

)
G(x, x′) = δ(x− x′)−∆(r)F (x, x′), (2.27a)(

− ∂

∂τ
+

∇2

2m
+ µ

)
F (x, x′) = ∆(r)G(x, x′), (2.27b)(

∂

∂τ
+

∇2

2m
+ µ

)
F †(x, x′) = ∆∗(r)G(x, x′), (2.27c)

which are known as the Gorkov equations. It is possible to rewrite Eqs. (2.27a)
to (2.27c) in a more compact form by introducing the two-component Nambu field
operator Ψ†

H(x) = (ψ†
↑(x), ψ↓(x)) and the 2× 2 Green’s function:

G(x, x′) =
(
G(x, x′) F (x, x′)
F †(x, x′) −G(x, x′)

)
. (2.28)

This allows us to write the following equation of motion:

DxG(x, x′) = τ̂0δ(x− x′), (2.29)

where τ̂0 is the 2× 2 identity matrix and we have define the following differential
operator:

Dx =

(
− ∂

∂τ + ∇2

2m + µ ∆(r)

∆∗(r) − ∂
∂τ − ∇2

2m − µ

)
. (2.30)

Since we have a time independent Hamiltonian with no external magnetic fields,
the Green’s functions of the system are functions of τ − τ ′ and r − r′. We then
consider the following Fourier representation for the Green’s function:

G(x− x′) =
1

β(2π)3

∑
n

∫
dke−iωn(τ−τ ′)+ik·(r−r′)G(k, ωn), (2.31)
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where ωn = (2n + 1)π/β are the Matsubara fermionic frequencies and β =
(kBT )

−1. In our case it is sufficient to consider the Gorkov equations Eqs. (2.27a)
and (2.27c) together with the gap equation Eq. (2.26), taking the following form:

(iωn − ξk)G(k, ωn) + ∆F †(k, ωn) = 1, (2.32a)

(−iωn − ξk)F
†(k, ωn)−∆∗G(k, ωn) = 0, (2.32b)

∆∗ =
g

β

∑
n

e−iωnζF †(r = 0, ωn), (2.32c)

where ξk = k2/(2m)−µ and ζ = 0+. The solutions for the normal and anomalous
Green’s functions are easily found to be:

G(k, ωn) = − iωn + ξk
ω2
n + E2

k

, (2.33a)

F †(k, ωn) =
∆∗

ω2
n + E2

k

, (2.33b)

where we have defined Ek =
√
ξ2k +∆2. It is useful to get a partial fraction

decomposition of F † in order to evaluate the order parameter from Eq. (2.32c).
We can use the residue theorem, the function (ω2

n + E2
k)

−1 has singularities in
iωn = ±Ek, so that its partial fraction decomposition can be obtained by calculating
the residues of the function in its singularities. The decomposition reads:

f(iωn) ≡
1

ω2
n + E2

k

=
Ak

iωn − Ek
+

Bk

iωn + Ek
, (2.34a)

Ak = Resz=Ek
f(z) = lim

z→Ek

(z − Ek)f(z) = − 1

2Ek
, (2.34b)

Bk = Resz=−Ek
f(z) = lim

z→−Ek

(z + Ek)f(z) =
1

2Ek
. (2.34c)

This allows us to rewrite the anomalous Green’s function as

F †(k, ωn) = − ∆∗

2Ek

(
1

iωn − Ek
− 1

iωn + Ek

)
. (2.35)

Since we are considering conventional s-wave superconductivity and we are in
absence of magnetic fields, the order parameter ∆ can be taken real. The self-
consistent gap equation Eq. (2.32c) takes the following form:
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∆ = − g

β(2π)3

∑
n

∫
dk

∆

2Ek

(
1

iωn − Ek
− 1

iωn + Ek

)
. (2.36)

We can sum over the Matsubara frequencies by using the identity β−1
∑

n(iωn ∓
Ek)

−1 = nF (±Ek), where nF (E) = (eβE + 1)−1 is the Fermi function. With
this, Eq. (2.36) becomes:

1

g
=

1

(2π)3

∫
dk

1

2Ek
tanh (βEk/2) , (2.37)

where we used the fact that nF (E)− nF (−E) = − tanh(βE/2). The next step is
to replace the integration in momentum space with an integration over the energies:

1

(2π)3

∫
dk →

∫
dξN(ξ), (2.38)

where N(ξ) is the density of states. Given the origin of the attractive interaction,
the energy integral has a cutoff at ωD. Furthermore, since ωD is much smaller than
the Fermi energy we can approximate the density of states with its value at the
Fermi surface N(0). The gap equation thus reads:

1

gN(0)
=

∫ ωD

0

dξ√
ξ2 +∆2

tanh
(
β
√
ξ2 +∆2/2

)
. (2.39)

This equation allows to calculate the gap function for any temperature, and it is
usually solved numerically, except the limiting cases T = 0 and T = Tc. At zero
temperature tanh(·) → 1, so that we can write:

1

gN(0)
=

∫ ωD

0

dξ√
ξ2 +∆2

0

= ln

√
ω2
D +∆2

0 + ωD

∆0
≈ ln

2ωD

∆0
, (2.40)

where we have used the fact that ωD ≫ ∆0. We then obtain the following expres-
sion for the gap at zero temperature

∆0 ≈ 2ωDe
−1/(gN(0)). (2.41)

In the opposite limit T = Tc we can set ∆ = 0 and obtain the following equation
for the critical temperature:

1

gN(0)
=

∫ ωD

0

dξ

ξ
tanh

(
ξ

2Tc

)
. (2.42)
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In order to calculate the integral we introduce the dimensionless variable x =
ξ/(2Tc), and then integrate by parts:

∫ ωD
2Tc

0

dx

x
tanh(x) = [ln(x) tanh(x)]

ωD
2Tc
0 −

∫ ωD
2Tc

0
dx

ln(x)

cosh2(x)

≈ ln

(
ωD

2Tc

)
−
∫ ∞

0
dx

ln(x)

cosh2(x)

≈ ln

(
2ωDe

γ

πTc

)
,

(2.43)

where we made use of the fact ωD ≫ Tc and we have approximated the definite
integral as ∫ ∞

0
dx

ln(x)

cosh2(x)
≈ − ln

(
4eγ

π

)
, (2.44)

with γ ≈ 0.577 Euler’s constant. With this we obtain the following expression for
the critical temperature

Tc =
2eγωD

π
e−1/(gN(0)) =

eγ

π
∆0. (2.45)

Combining Eqs. (2.41) and (2.45) we obtain the universal value for the ratio between
∆0 and Tc [41, 94]

∆0

Tc
= πe−γ ≈ 1.76, (2.46)

which is independent of the material under consideration.

2.3 High Magnetic Field Superconductivity in a Two-band
Superconductor

So far we have considered systems where only one band is in the proximity of the
Fermi level. In the following we take a step forward in the study of superconduc-
tivity, by considering multiband superconductors. With multiband superconductor
we refer to a system having multiple bands close to the Fermi level where super-
conducting pairing can occur. This fact provides additional possibilities for the
pairing, since now the electrons forming the Cooper pairs have also a band index.
Therefore, it is in principle possible to have both intraband Cooper pairs, i.e. the
electrons forming the pair come from the same band, and interband Cooper pairs,
i.e. electrons coming from two distinct bands. We will first present the theoretical
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formalism for multiband superconductivity with an external spin-splitting field, and
we will then employ it to study a two-band superconductor with spin-splitting in-
duced by an in-plane external magnetic field. As presented in Paper III [3], we show
that this system can host superconductivity at values of the external magnetic field
significantly higher than the usual limiting values for single band superconductors.

2.3.1 Brief Overview on Multiband Superconductors

Experimental studies on multiband superconductors have shown that these systems
can host interesting effects not achievable in single band systems. For instance,
in Ref.[95] it was demonstrated that MgB2, the first-ever discovered multiband
superconductor, can host Leggett modes, i.e. collective excitations correspond-
ing to relative phase fluctuations between two order parameters. More recently,
these modes have also been optically-controlled [96], showing the possibility to
control collective superconducting excitations through electromagnetic radiation.
Moreover, spontaneous time reversal symmetry breaking has been reported in
Ba1−xKxFe2As2, Sr2RuO4, UPt3 and many other multiband systems3.

The first extensions of the Bardeen–Cooper–Schrieffer (BCS) theory to multi-
band systems where provided by Suhl, Matthias and Walker [98] and Moskalenko
[99]. Since then, many studies have focused on a theoretical understanding of
the effects of a multiband description of superconductors. For instance, it has
been shown that two band superconductors can present a crossover from the weak
coupling (BCS) state of Cooper pairs to a Bose-Einstein condensate (BEC) of
strongly-coupled di-fermionic molecules [100–102].

In general, if two bands are close to each other or hybridized, it is possible
to obtain interband Cooper pairs (see e.g. [103]), where the electrons comprising
the pairs come from two distinct bands. Research on interband pairing has been
rather limited, but studies have found that it affects collective excitations [104]
and Josephson tunneling [105] and that it can induce odd-frequency pairing [106].
Furthermore, it is a crucial factor in demonstrating the presence of an anomalous
Hall effect in Sr2RuO4 [107], it can produce gapless states [108], and it influences
the BCS-BEC crossover [109].

It is worth noting that in the literature the term interband pairing is sometimes
used to refer to the hopping of intraband pairs, i.e. formed by electrons in the same
band, between different bands, also called pair-hopping. Here, when using the term
interband we will always mean Cooper pairs formed by electrons in distinct bands.

Among multiband superconductors, MgB2 and Fe-Based Superconductors
(FeBS) exhibit high critical temperatures and critical magnetic fields. For instance,
the critical temperature is 39K for MgB2 [43], 55K for SmO1−xFxFeAs [110]

3For an exhaustive review see [97].
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and 65K in FeSe films on SrTiO3 substrate [111], whereas the zero temperature
estimated values of the critical field are 25T in single crystal MgB2 [112], 70T in
C-doped MgB2 thin films [113] and up to 300T in FeBS [114–119].

2.3.2 Pauli-Chandrasekhar-Clogston Limit

A superconductor in external magnetic field is subject to two effects which are
detrimental to superconductivity: the orbital and Pauli paramagnetic pairbreaking
effects [120, 121]. The orbital effect describes the breaking of Cooper pairs when
the kinetic energy of electrons, resulting from the momentum acquired in a mag-
netic field, exceeds the superconducting gap. On the other hand, paramagnetic
pairbreaking occurs when Cooper pairing becomes energetically unfavourable as
the Zeeman energy of the electrons overcomes the superconducting gap. This hap-
pens when the exchange energy reaches a value given by the Pauli, or equivalently
the Chandrasekhar-Clogston, limit hc = ∆0/

√
2 = 1.86Tc, where ∆0 is the value

of the superconducting gap at zero temperature and zero applied field, and Tc is the
superconducting critical temperature.

Different mechanisms leading to a violation of this limit, or to an enhancement
of critical fields, have been proposed theoretically. For instance, it has been shown
that scattering by non-magnetic impurities enhances the upper critical field in dirty
two-band superconductors [122, 123], while application of a voltage bias in su-
perconducting ferromagnetic heterostructures allows to recover superconductivity
above the limiting value [124, 125]. Other studies have shown that the multiband
nature of the system also allows to overcome the limit, such as, e.g. the proximity of
two bands to each other [126–128], or pair-hopping in three band superconductors
[129, 130]. Furthermore, many experimental works have reported evidence for criti-
cal magnetic field violating the above limits in various superconductors, e.g. NbSe2
[131, 132], iron pnictides [133, 134], lanthanide infinite-layer nickelate [135],
moiré graphene [136], organic superconductors [137, 138], Eu-Sn molybdenum
chalcogenide [139], URhGe [140], and UTe2 [141].

2.3.3 Hamiltonian for a two-band superconductor

We consider a two-band superconducting thin-film with both intra- and interband
spin-singlet superconducting coupling, and an in-plane external magnetic field
producing Zeeman splitting. We ignore orbital pair-breaking effects and assume
the system does not experience any magnetic flux. The mean-field Hamiltonian of
the system is the following:



2.3. High Magnetic Field Superconductivity in a Two-band Superconductor 27

Intraband Cooper pairs
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Figure 2.2: Illustration of some of the superconducting pairing processes possible in a two-band
system for (a) intraband and (b) interband Cooper pairs. The red and blue circles represent the Fermi
surfaces of the two bands, the green and yellow lines identify the electrons forming the Cooper pairs
and the dotted lines indicates the scattering processes.

H =
∑
kσ

(ξ(1)k −Ec−σh)c(1)†kσc
(1)

kσ+
∑
kσ

(ξ(2)k +Ec−σh)c(2)†kσc
(2)

kσ

−
∑
k

∑
α,α′=1,2

(
∆αα′(k)c(α)†k↑ c

(α′)†
−k↓ + h.c.

)
, (2.47)

where the operator c(α)†kσ (c(α)kσ) creates (destroys) an electron in band α with disper-
sion ξ(α)k = εαk − µ and spin σ, Ec is half the band separation and h is the externally
applied in-plane magnetic field. The superconducting order parameters ∆αα′(k)
are defined by the following generalization of Eq. (2.26):

∆αα′(k) =
T

V

∑
ωn

∑
β,β′=1,2

∑
k′

gαα′,ββ′(k,k′)F ββ′
(k′, ωn), (2.48)

where ωn = (2n + 1)π/β is the fermionic Matsubara frequency and F ββ′
is the

anomalous component of the Green’s function. The terms ∆11 and ∆22 represent
the intraband order parameters, while ∆12 = ∆21 is the interband order parameter.

The superconducting coupling tensor gαα′,ββ′(k,k′) defines the different cou-
pling processes. The terms gαα,α′α′ describe hopping of intraband Cooper pairs
between the same band (α = α′) or different bands (α ̸= α′). This last term is often
referred to in the literature as interband scattering, or pair hopping, and must not be
confused with the use we make of the term interband. Processes involving interband
pairs instead are described by the elements gαα′,ββ′ with α ̸= α′ and/or β ̸= β′. In
Fig. 2.2 we illustrate the pairing processes we will consider in the following.
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2.3.4 Green’s function of the system

In the basis defined by ψ̂†
k =

(
c(1)†k↑ , c

(1)

−k↓, c
(2)†
k↑ , c

(2)

−k↓

)
the inverse Green’s function

for the Hamiltonian of Eq. (2.47) is:

G−1
0 =

(
(iωn + h)τ̂0 − ξ̃1τ̂3 +∆11τ̂1 ∆12τ̂1

∆12τ̂1 (iωn + h)τ̂0 − ξ̃2τ̂3 +∆22τ̂1

)
, (2.49)

where ξ̃1 = ξ(1)k − Ec, ξ̃2 = ξ(2)k + Ec and we restricted to s-wave pairing (real
order parameter). The two branches of the BCS quasiparticle excitation spectrum,
E+ and E−, are obtained by defining detG−1

0 ≡
(
ω̃2
n + E2

+

) (
ω̃2
n + E2

−
)
, where

ω̃n = ωn − ih. Inverting Eq. (2.49) we obtain the Green’s function of the system:

G0(k, ωn) =
1

detG−1
0

(
Â11(k, ω̃n) Â12(k, ω̃n)

Â21(k, ω̃n) Â22(k, ω̃n)

)
, (2.50)

where detG−1
0 =

(
ω̃2
n + E2

+

) (
ω̃2
n + E2

−
)

with ω̃n = ωn − ih. The two branches
have the following expression:

E2
± =

1

2

{
Ẽ2

1+Ẽ
2
2+2 |∆12|2 ±

[(
Ẽ2

1+Ẽ
2
2+2 |∆12|2

)2
−4
(
Ẽ2

1Ẽ
2
2+|∆12|4 +2ξ̃1ξ̃2 |∆12|2−2Re

{
∆11∆22∆

∗
12

2
})] 1

2

}
.

(2.51)

The components of the 2× 2 matrices Âαβ(k, ωn) are:

[
Â11(k, ω̃n)

]
11

=−
(
iω̃n + ξ̃1

)(
ω̃2
n+ξ̃2

2
+|∆22|2

)
−|∆12|2

(
iω̃n + ξ̃2

)
, (2.52a)[

Â11(k, ω̃n)
]
12

=∆11

(
ω̃2
n + ξ̃2

2
+ |∆22|2

)
−∆2

12∆
∗
22, (2.52b)[

Â12(k, ω̃n)
]
11

=
(
iω̃n + ξ̃1

)
∆12∆

∗
22

+∆11∆
∗
12

(
iω̃n + ξ̃2

)
, (2.52c)[

Â12(k, ω̃n)
]
12

=−
[(
iω̃n+ξ̃1

)(
iω̃n−ξ̃2

)
−|∆12|2

]
∆12

−∆11∆
∗
12∆22, (2.52d)[

Â21(k, ω̃n)
]
11

=
[
Â12(k,−ω̃∗

n)
]∗
11
, (2.52e)
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[
Â21(k, ω̃n)

]
12

=
[
Â12(k,−ω̃n)

]
12
, (2.52f)[

Âαβ(k, ω̃n)
]
22

=−
[
Âαβ(k,−ω̃n)

]
11
, (2.52g)[

Âαβ(k, ω̃n)
]
21

=
[
Âαβ(k, ω̃∗

n)
]∗
12
. (2.52h)

where Ẽα =
√
ξ̃2α + |∆αα|2, α = 1, 2, with ξ̃1 = ξ(1)k − Ec, ξ̃2 = ξ(2)k + Ec.

The elements of Â22(k, ωn) are obtained by exchanging the indices 1 and 2 in
the expressions for the elements of Â11(k, ωn). The inter- and intra-band normal
and anomalous Green’s functions are given by:

Gαβ(k, ω̃n) =

[
Âαβ(k, ω̃n)

]
11(

ω̃2
n + E2

+

) (
ω̃2
n + E2

−
) , (2.53a)

Fαβ(k, ω̃n) =

[
Âαβ(k, ω̃n)

]
12(

ω̃2
n + E2

+

) (
ω̃2
n + E2

−
) . (2.53b)

2.3.5 Gap equation for the interband order parameter

We derive the gap equation in the case of purely interband coupling, i.e. Cooper
pairs formed exclusively by electrons in different bands. To do so we consider the
following form of the coupling matrix:

gαα′ββ′ =

{
ginter, if α ̸= α′, β ̸= β′

0, otherwise.
(2.54)

Inserting this in Eq. (2.48) we obtain the following gap equation:

∆12 =
ginterT

V

∑
kωn

[
F 12(k, ωn − ih) + F 21(k, ωn − ih)

]
. (2.55)

Setting ∆11 = ∆22 = 0 in Eq. (2.51) we get:

E± =
ξ̃1 − ξ̃2

2
± E12, (2.56)

with E12 =
√
(ξ̃1 + ξ̃2)2/4 + |∆12|2. Using the relation, defined in the main text,

between the two bands ξ(2)k = γξ(1)k + (γ − 1)µ, we can write:
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E± =
(ξ(1)k + µ)(1− γ)

2
− Ec ± E12, (2.57a)

E12 =

√√√√(ξ(1)k (1 + γ)− µ(1− γ)

2

)2

+ |∆12|2. (2.57b)

The expression of the anomalous Green’s function is:

F 12(k, ωn − ih) = −

(
iω̃n + ξ̃1 + h

)(
iω̃n − ξ̃2 + h

)
− |∆12|2[

(ωn − ih)2 + E2
+

] [
(ωn − ih)2 + E2

−
] ∆12. (2.58)

After summing over the Matsubara frequency the gap equation Eq. (2.55) takes
the following form:

1

ginter
=− 1

V

∑
k

∑
s=±

s

2E12
[nF (Es − h)− nF (−Es − h)]

=
1

V

∑
k

∑
s=±

s

4E12

{
tanh

[
β

2
(Es + h)

]
+ tanh

[
β

2
(Es − h)

]}
,

(2.59)

where nF (ε) = (eβε + 1)−1 is the Fermi function and we have used:

nF (E± − h)− nF (−E± − h) = − sinhβE±
coshβE± + coshβh

= −1

2

{
tanh

[
β

2
(E± + h)

]
+ tanh

[
β

2
(E± − h)

]}
.

(2.60)

We now switch from the summation over momenta to integral over the energy:
V −1

∑
k(·) =

∫
dξ1N1(ξ1)(·), where N1(ξ1) is the density of state of band 1. We

then approximate the density of state with its value at the Fermi level N1(ξ1) ≃
N1(0) and, defining the dimensionless superconducting coupling constant as done
in the main text, we obtain the final expression for the interband gap equation:

1

λinter
=

∫ ωc

−ωc

dξ
∑
s=±

s

4E12(ξ)

{
tanh

[
β

2
(Es(ξ)+h)

]
+tanh

[
β

2
(Es(ξ)−h)

]}
.

(2.61)
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To obtain critical temperature and critical field, we linearize Eq. (2.61) with respect
to ∆12. The equation then takes the following simple form:

1

λinter
=

∫ ωc

−ωc

dξ

2(ξ̃1 + ξ̃2)

∑
α=1,2

{
tanh

[
βc
2

(
ξ̃α+hc

)]
+tanh

[
βc
2

(
ξ̃α−hc

)]}
.

(2.62)
We note that by setting Ec = 0 and γ = 1, we get ξ̃1 = ξ̃2 = ξ, the system reduces
to a single band superconductor. Therefore, Eq. (2.62) takes the usual form for a
single band spin-split superconductor:

1

λ
=

∫ ωc

−ωc

dξ

2ξ

{
tanh

[
βc
2
(ξ + hc)

]
+ tanh

[
βc
2
(ξ − hc)

]}
. (2.63)

2.3.6 Gap equation for the intraband order parameters

In order to consider purely intraband coupling we take the following form of the
coupling matrix:

gαα′ββ′ =

{
gintraαβ , if α = α′, β = β′

0, otherwise
(2.64)

Using this expression in Eq. (2.48) we get the following coupled gap equations:

∆11 =
gintra11 T

V

∑
kωn

F 11(k, ωn − ih) +
gintra12 T

V

∑
kωn

F 22(k, ωn − ih), (2.65a)

∆22 =
gintra21 T

V

∑
kωn

F 11(k, ωn − ih) +
gintra22 T

V

∑
kωn

F 22(k, ωn − ih). (2.65b)

The two branches of the BCS quasiparticle spectrum are simply E+ = E11 and
E− = E22 and we get the following expression for the anomalous Green’s function:

Fαα(k, ωn − ih) =
∆αα

(iωn + Eαα + h) (iωn − Eαα + h)
. (2.66)

Following the same steps as in the previous section we finally get the following:

∆αα =
∑
β=1,2

λαβ∆ββ

∫ ωn

−ωn

dξβ
4Eββ

(
tanh

Eββ + h

2T
+ tanh

Eββ − h

2T

)
. (2.67)
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Linearizing Eq. (2.67) with respect to the order parameters, again allows to obtain
the superconducting critical temperature and critical field. We set ∆αα = ϵδα,
where ϵ(T = Tc) = 0, and obtain the following system:(

δ1
δ2

)(
λ11I1(Tc, hc)− 1 λ12I2(Tc, hc)
λ21I1(Tc, hc) λ22I2(Tc, hc)− 1

)
= 0, (2.68)

where

Iα(T, h) =

∫ ωc

−ωc

dξ

4ξ̃α

{
tanh

[
β

2

(
ξ̃α + h

)]
+ tanh

[
β

2

(
ξ̃α − h

)]}
, (2.69)

with α = 1, 2. The critical parameters are found by setting to zero the determinant
of the matrix in Eq. (2.68).

2.3.7 Linearized gap equation for coupled interband and intraband
order parameters

When including the superconducting coupling constants representing scattering
processes connecting interband to intraband Cooper pairs, the gap equations for
the interband and intraband order parameters become coupled. In this case the
linearized gap equation yields the following system:

δ1δ2
δ3

λ11I1(Tc, hc)− 1 λ12I2(Tc, hc) λ13I3(Tc, hc)
λ21I1(Tc, hc) λ22I2(Tc, hc)− 1 λ23I3(Tc, hc)
λ31I1(Tc, hc) λ32I2(Tc, hc) λ33I3(Tc, hc)− 1

 = 0,

(2.70)
where the constants λα3 and λ3α, with α = 1, 2, represent the scattering processes
connecting interband to intraband Cooper pairs, and λ33 corresponds to λinter in
the main text. The terms Iα, α = 1, 2 are given in Eq. (2.69), while I3 corresponds
to the energy integral in Eq. (2.62). Again, the critical parameters are found by
setting to zero the determinant of the matrix in Eq. (2.70).

2.3.8 Results for a Two-Band Superconductor

We presented the linearized equations Eqs. (2.62) and (2.68) allowing to obtain the
curve hc(T ), for the interband and intraband domains, respectively. A remark here
is needed, as shown below for the interband curves, to each temperature (except the
maximum one), correspond two solutions for h. This is a problem for the numerical
solver. To address this, first we find the value of the critical field corresponding to
the maximum temperature of the superconducting curve. This can be done through
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Figure 2.3: Band structure of the system in the presence of an exchange field, for (a) small and (b)
large values of the field and generic values of Ec, γ, ωc, µ. The rectangles indicate the regions where
Cooper pair formation can occur.

analytical considerations as explained below. Having obtained this value we can
then find separately a solution for the critical field higher and lower than this value,
as a function of the temperature.

We consider a two bands system with spin-split hole-like parabolic bands:
ξ(α)k = −k2/(2mα) − µ with mα the effective mass of the band α and µ the
chemical potential. Defining the ratio between the two band masses as γ = m1/m2

we can write ξ(2)k = γξ(1)k + (γ − 1)µ. The band structure of the system for generic
values of Ec, γ, µ and two different limits of h is represented in Fig. 2.3, where we
also show the energy cutoff of the effective attractive interaction ωc. By examining
the case of small spin-splitting represented in Fig. 2.3(a), we note that intraband
pairing is favored, since bands with the same band index and opposite spin are close
to each other. On the other hand, the presence of a large spin-splitting field can
bring two bands with different band and spin indices closer to each other, favoring
an interband pairing mechanism, as shown in Fig. 2.3(b).

To simplify the problem, we neglect those scattering processes connecting
interband to intraband Cooper pairs and vice versa, i.e. we set gαα,αβ = gαβ,αα = 0
with α ̸= β. With these simplifications, from Eq. (2.48), the gap equation for
the intraband and interband order parameters are decoupled and we can solve
them separately. We set the chemical potential µ as the energy scale and choose
the energy cutoff for the effective attractive interaction and the band separation
to be ωc = 0.2 |µ| and Ec = 0.05 |µ|, respectively. Furthermore, we consider
dimensionless superconducting coupling constants: λintraαβ = Nα(0)gαα,ββ and
λinter = N1(0)gαβ,αβ , (α ̸= β), where Nα(0) is the density of states at the Fermi
energy for the band α. Their values are chosen to be λintra11 = 0.3, λinter = λintra22 =
2λintra12 = 0.2. We assume that λinter can be taken to be larger than some λintraαβ
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Figure 2.4: Critical field hc as a function of temperature T for different values of the band mass ratio
γ, for Ec = 0.05 |µ|, λintra

11 = 0.3, λinter = λintra
22 = 2λintra

12 = 0.2, and ωc = 0.2 |µ|. The dark
(light) gray areas represent the region of interband (intraband) superconducting coupling. Except
for the case γ = 1.1, we note a reentrant superconductivity, with the two disconnected intra- and
interband superconducting domains.

because of the external magnetic field, which may bring two different bands with
opposite spin very close to each other in energy, see e.g. Fig. 2.3(b).

We determine the critical values of temperature Tc and exchange field hc of our
system for different values of the effective mass ratio γ by linearizing Eq. (2.48)
with respect to ∆αα′ , separately for interband (α ̸= α′) and intraband (α = α′)
superconducting pairing. The linearized gap equation in the interband case is given
by Eq. (2.62) and the interband critical parameters are the values satisfying the
equation. In the intraband case, instead we have the system given by Eqs. (2.68)
and (2.69) and the intraband critical parameters are found by setting to zero the
determinant of the matrix in Eq. (2.68)4.

The results are shown in Fig. 2.4, displaying reentrant superconductivity, i.e. the
superconducting state present at zero magnetic field is first progressively destroyed
and then recovered at a finite value of the magnetic field. The figure shows the
inter- and intraband superconducting domains, delimited by the hc(T ) curves, for

4Following publication it was confirmed that the solutions for the order parameter reported here
minimize the free energy of the system.
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Figure 2.5: Critical temperature of the interband superconducting domains as a function of γ and h,
for Ec = 0.05 |µ|, λinter = 0.2, and ωc = 0.2 |µ|.

different values of γ, the lines correspond to the critical values of temperature and
exchange field, while the colored area identifies the superconducting region, with
dark gray color identifying the interband regions and light gray the intraband. From
Fig. 2.4, we immediately note that intraband regions develop around h = 0 for all
the values of γ, while the interband regions, except for the case γ = 1.1, they are
centered around a certain finite value of h.

Given these results, we can investigate how the band mass ratio γ influences
the value of the exchange field at which the interband superconducting domains
are centered. Cooper pairs are formed by electrons with opposite momenta close
to the Fermi momentum, and energies in a “shell" of width ωc around the Fermi
energy. Therefore, only electrons meeting these two criteria can form Cooper pairs.
In a multiband system with spin-split bands, each band will have its own intervals
of energies and momenta where this can be realized. When the intervals of two
different bands overlap, Cooper pair formation among them is feasible. These
overlap regions are represented by the rectangles in Fig. 2.3.

Qualitatively, the maximum in the size of the overlap, and thus in the super-
conducting critical temperature, occurs when the Fermi momenta of the two bands
involved are equal to each other. For Cooper pairs formed by one electron in band
1 ↓ and the other in 2 ↑, we have the equality for:
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Figure 2.6: Scatter plot of the exchange field value corresponding to maximum Tc of the interband
superconducting domains as a function of γ, for the same parameters as in Fig. 2.5. The color of dots
corresponds to the value of Tc. Empty dots stand for values which do not present superconductivity.

h =
γ − 1

γ + 1
µ+ Ec. (2.71)

While in the case of Cooper pairs formed by one electron in band 1 ↑ and the other
in band 2 ↓:

h = −γ − 1

γ + 1
µ− Ec. (2.72)

Having determined the value of h which produces a maximum of the overlap in the
different cases, with our choice of parameters we calculate numerically the critical
temperature of the interband domains as a function of γ and h. The numerical
results are plotted in Figs. 2.5 and 2.6 together with the theoretical prediction given
by Eqs. (2.71) and (2.72).

Observing Fig. 2.5, we can see that peaks in Tc can be found for rather high
values of the exchange field, up to h ≃ 1.6Ec. Therefore, when the system has both
intraband and interband superconducting pairing, it can present two disconnected
superconducting domains, one for low magnetic field due to the intraband pairing,
and one for high magnetic field coming exclusively from interband pairing.

Finally, it is worth noting that the case of two electron-like bands yields quali-
tatively similar results. The difference is in the value of the band mass ratio γ at
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Figure 2.7: electron-like bands: critical field hc as a function of temperature T for different values of
the band mass ratio γ, for same values as in Fig. 2.4. The pink (green) areas represent the regions of
interband (intraband) superconducting coupling.

which the band overlap occurs as can be seen in Fig. 2.7. The case where there is a
coupling between an electron-like and a hole-like band is more complicated and
would require a separate study.
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Chapter 3

Fabrication Techniques for
Curved Nanostructures

In this chapter we will present some of the recent advances in the fabrication of
curved nanostructures1.

3.1 Standard Fabrication Techniques

Conventional electronics and spintronics devices are manufactured with standard
thin-film deposition, lithography and chemical etching techniques. A typical tech-
nique for the realization of thin-films is sputtering, a physical vapour deposition
technique where the target material or cathode, is bombarded in a vacuum chamber
by ions in order to vaporise (or sputter) atoms or molecules from it. The sputtered
particles are then gradually deposited on a substrate or anode.

On the other hand, lithography in combination with etching can be used for
patterning of thin films, and the realization of nanowires, arrays of nanowires
and other structures. Some of the most common techniques are photolithography
(or optical lithography), electron-beam (e-beam) lithography, focused ion-beam
(FIO) lithography and dip-pen nanolithography (DPN). In photolithography, UV
light is used to pattern a material in a desired shapes: the film is exposed to the
radiation and then the exposed or unexposed areas are removed. This is done with
typical resolutions of 100nm, which can be pushed down to 15nm by means of
surface plasmon interference [146]. In e-beam and FIO lithography the same is
done through a focused beam of electrons or ions, respectively. The resolution of
e-beam lithography can be as down as 1nm [147], while for FIO it is ∼ 5nm [148].

1The following sections are not meant to be a complete review of fabrication methods for curved
systems. For further details, see the reviews [142–145].
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While all these techniques are negative lithography, since they remove parts of the
material, DPN, first introduced by Mirkin and coworkers [149], can be considered
as a positive technique, since it uses an atomic force microscope tip to deposit
molecules of a substance on top of a substrate by capillary action, with resolutions
lower than 50nm. These lithography methods are often coupled to chemical etching,
also known as chemical milling, a technique where layers of a material are removed
using etching chemicals. The use of masks to protect certain areas of the material
allow to realize the desired structure.

Over the past twenty years, significant progress has been made in the man-
ufacturing of geometrically curved nanostructures. The first breakthrough came
with the realization of nanotubes by rolling up thin films through use of chemical
etching: the films were deposited on top of an etchant-sensitive material, which was
then selectively etched away, causing the film to wrap up and fold back [150, 151].
This has been followed by the development of novel processes and techniques for
bending, wrinkling and buckling nanostructures. These techniques provide addi-
tional freedom for the design of new spintronics devices. For instance, independent
control of spin and charge resistances has been achieved in a curved nanochannel
realized through direct growth on curved templates [152].

3.2 Lithography Techniques

Generally, geometrically curved systems can be fabricated using techniques based
on thin film deposition and lithography, similarly to their straight counterparts. For
instance, e-beam lithography has been used to realize curved magnetic nanowires
[153, 159–161] (see Fig. 3.1(a)), nanorings [162–165] and spirals [166]. Another
common method is two-photon (TP) lithography, a technique similar to photolithog-
raphy, in which patterning is achieved through two-photon absorption. TP lithogra-
phy has been used to realize cylindrical nanowires [167], tetrapod structures and
their lattice [156, 168, 169] (see Fig. 3.1(d)).

Combination of lithography and strain engeneering techniques allows to realize
complex 3D nanostructures. Strain engeneering refers to the tuning of a material’s
properties through the modification of its structural or mechanical properties. This
can be achieved in different ways, such as lattice mismatch between a material
and its substrate, intrinsic and extrinsic defects, and mechanically shifting the
atomic structure by changing bond length and angle. For instance, these techniques
have been used for strain-induced bending of bilayers to realize nanotubes with
diameters ranging from ≈ 4µm to 4nm, and nanohelices with minimum diameter
of 7nm and their arrays [150, 151]. Additionally, photolithography combined with
sputter deposition and strain application allowed to realize wrinkled membranes
with thicknesses < 2µm and bending radii < 3µm [170–173]. Other structures
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(a) (b) (c)

(e) (f)

(d)

Figure 3.1: Fabrication of curved structures. (a) Parabolic stripe, patterned with electron beam
lithography and ion beam etching [153]. (b) Two-turns Ag-Cu alloy nanohelix realized through
Glancing Angle Deposition (GLAD), and energy-filtered TEM chemical mapping, the scale bar is
20nm [154]. (c) 3D printing of a cobalt double nanohelix through focused electron-beam induced
deposition (FEBID) and its colored scanning electron microscope image, the scale bar is 250nm
[155]. (d) Single tetrapod (left) and array of tetrapod structures (right), fabricated through two-
photon lithography and electrodeposition [156]. (e) Nanovolcano realized through FEBID, with outer
diameter of 300nm and crater diameter of 200nm [157]. (f) Side and top view of a nanoscale replica
of a human hand (left) and Möbius nanoring (right) fabricated by FEBID, scalebars are 1µm [158].
Image permissions listed in footnote2.
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realized with similar methods are microhelix coils [174], Swiss-rolls, i.e. rolled-up
nanomembranes, with diameters on the micrometer range [175–180], microscale
polyhedral [181, 182] and more complex micro-origami structures [183–185].

Additionally, electrochemical synthesis techniques, such as coaxial lithography
(COAL) and atomic layer deposition (ALD) have also been implemented to realize
different curved nanostructures. COAL is a method involving sequential electrode-
position of conductive materials with different mechanical and chemical stabilities
within anodic alluminum oxide templates, and it has been used to realize core/shell
nanowires with diameters ranging from 20nm to 400nm and length from 8nm to
few micrometers [186, 187]. ALD involves growth of films by exposing the surface
of a template to different gaseous reactants, and it has been employed to realize
multi-layered nanotubes with diameters of ∼ 100nm [188, 189].

These techniques allow in many cases to realize curved structures at the
nanoscale when considering simple geometries. However, when dealing with
more complex geometries they seem to be restricted to the microscale.

3.3 Glancing Angle Deposition

Alternatives to lithography are represented by Glancing Angle Deposition (GLAD)
techniques [190]. GLAD is an extension of the oblique angle deposition (OAD)
growth method where physical vapor is deposited at an oblique angle on a substrate.
As evaporated single atoms or molecules reach the substrate nuclei are formed. Due
to the oblique angle there is a shadowing effect where other incoming particles are
prevented to condense in areas situated behind the previously formed nuclei. This
means that particles are incorporated in the structure at the point of impact, thereby
forming tilted columns. In addition to OAD, the substrate in GLAD can be rotated
in the polar and azimuthal directions, allowing to control the columnar shape and
therefore realize various different nanostructure designs, such as nanorods and
nanohelices.

One of the limitation of GLAD is that it is often difficult to achieve a uni-
form thickness of the structure, since some columns will grow faster than other

2(a) Reproduced with permission from [153] Copyright 2019, American Physical Society. (b)
Reproduced with permission from [154] Copyright 2014, Royal Society of Chemistry. (c) Reproduced
under the terms of the ACS Author Choice with CC-BY license (https://pubs.acs.org/page/policy/
authorchoice_ccby_termsofuse.html) from [155] Copyright 2020, American Chemical Society. (d)
Reproduced under the terms of the CC-BY 3.0 license (https://creativecommons.org/licenses/by/3.0/)
from [156] Copyright 2018 Authors, published by Royal Society of Chemistry. (e) Reproduced under
the terms of the CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/) from [157] Copyright
2021 AIP Publishing. (f) Reproduced under the terms of the ACS Author Choice with CC-BY license
(https://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) from [158] Copyright 2020,
American Chemical Society.

https://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
https://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/4.0/
https://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


3.4. Focused Electron Beam Induced Deposition 43

columns, with a consequent shadowing of the slower growing columns. Moreover,
a broadening increasing with the height of the structure is generally observed in
GLAD.

GLAD has been used for the fabrication of nanohelices with a minimum length
of ∼ 50nm and pitch ∼ 20nm [154, 191] (see Fig. 3.1(b)), nano-columns with
various shapes [192] and arrays of posts, chevrons and helices, with single elements
of nanoscale sizes [193–196].

3.4 Focused Electron Beam Induced Deposition

Recent advances in material science allow to overcome geometry-specific limita-
tions through 3D nanoprinting methods, which include multiple techniques of beam
and optical deposition. One of the most popular among these is focused electron-
beam induced deposition (FEBID) [197, 198], a direct write method with resolution
comparable to that of advanced e-beam lithography and to characteristic magnetic
length scales, additionally allowing to realize arbitrarily complex structures.

In FEBID, a scanning electron microscope (SEM) generates a focused electron
beam, which is then directed towards a precursor gas near the substrate. The inter-
action between the high-energy electrons and the precursor gas molecules results
in the dissociation of the precursor and deposition on the substrate surface. The
deposited material can be a metal, semiconductor, or insulator, depending on the
precursor. Parameters such as electron beam intensity, precursor gas flow rate,
and scan speed allow the control of composition and morphology of the deposited
structures. FEBID allows for the fabrication of three-dimensional structures with
dimensions below 10nm, with the world record pattern resolution of 1nm sized dots
[199]. Moreover, FEBID can be performed under ambient conditions, eliminating
the need for a high-vacuum environment. However, FEBID has a relatively low
growth rate compared to other nanofabrication techniques, and the deposited struc-
tures may exhibit higher levels of contamination and impurities. Furthermore, a
lateral broadening is observed: the lateral size of the grown structure is considerably
larger than the electron beam probe size.

FEBID has been used to fabricate nanohelices with 4− 12µm length and wire
diameters of ∼ 100nm [200], and with lengths of 2 ∼ µm, wire diameters of
∼ 65 ∼ nm and pitch of ∼ 2µm [201]. Moreover, double helices with length of
880nm, wire diameter of 68nm and pitch of 250nm have been realized [155] (see
Fig. 3.1(c)). More complex structures have also been realized, such as nanocubes
and nanotrees [202, 203], nanovolcanoes with outer diameter of 300nm and crater
diameter of 200nm [157] (see Fig. 3.1(e)), Möbius nanorings and nanoscale replicas
of human hands [158] (see Fig. 3.1(f)).

Given all these techniques, it is clear that there are plenty of possibilities in terms
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of shapes of geometrically curved materials. This in turns allows for a multitude of
device designs, which can be exploited for novel systems and applications.



Chapter 4

Curvature-Induced Effects and
Theory of Curved Nanostructures

In this chapter we will discuss the main effects and interesting phenomena arising
when geometric curvature is introduced in such systems. We will start by presenting
the general theoretical framework for the study of geometric curvature in nanostruc-
ture, and then we will give a review on the literature studying the effects in curved
nanostructures1.

4.1 Theoretical Framework for Curved Nanostructures

When studying geometrically curved systems it is convenient to switch from Carte-
sian to orthonormal curvilinear coordinates. The approach presented below allows
to study any arbitrarily curved nanostructures in 2D and 3D space. We will use the
following approach for a general structure curved in 3D space, described through
its curvature and torsion.

4.1.1 Frenet-Serret frame

As a start, we parametrize the 3D space as

R(s, n, b) = r(s) + nN̂ (s) + bB̂(s). (4.1)

Here r(s) is the parametrization of the curve in the plane of the curvature and
s, n and b are the arclength, normal and binormal coordinates respectively, as it
can be seen in Fig. 4.1. The geometry of the space can therefore be determined

1For a broader review and further details on curvature induced effects in nanostructures, see
[142–145, 204, 205].
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Figure 4.1: The figure shows the local coordinate system of a curved material, illustrating the
tangential, normal and binormal directions. The finite curvature κ = 1/R0 leads to regions with both
tensile (n < 0) and compressive (n > 0) strain in the material [206, 207].

from the set of three orthonormal unit vectors: T̂ (s) = ∂sr(s)/ |∂sr(s)|, N̂ (s) =

∂sT̂ (s)/
∣∣∣∂sT̂ (s)

∣∣∣ and B̂(s) = T̂ (s)× N̂ (s), representing the tangential, normal
and binormal curvilinear directions respectively. These obey the following Frenet-
Serret-type equation of motion:∂sT̂ (s)

∂sN̂ (s)

∂sB̂(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 T̂ (s)

N̂ (s)

B̂(s)

 , (4.2)

where κ(s) = |∂sT̂ (s)| and τ(s) = |∂sB̂(s)| identify the curvature and torsion of
the structure. By defining

u =

 T̂ (s)

N̂ (s)

B̂(s)

 , (4.3)

it is possible to rewrite Eq. (4.2) in a compact form:

∂suα = Fαβuβ. (4.4)

By comparison with Eq. (4.2) the Frenet tensor Fαβ is given by:

Fαβ =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 . (4.5)

The covariant basis vectors are defined by:
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eα = ∂αR(s, n, b), (4.6)

where α = {t, n, b} and we use the subscript t, n, b for the tangential, normal and
binormal components, respectively. In general the basis vectors are not orthogonal,
and both the length and direction can vary in space [208]. The metric tensor is
defined as

Gαβ = eα · eβ, (4.7)

meaning the unit basis vectors are given by êα = eα/
√

Gαα. The contravariant
basis vectors eα are related to the covariant basis vectors by eα · eβ = δβα.

From Eq. (4.6), using Eqs. (4.1) and (4.2), we get the following form for the
covariant basis vectors:

et = ∂sR = η(s, n)T̂ − bτ(s)N̂ + nτ(s)B̂, (4.8a)

en = ∂nR = N̂ , (4.8b)

eb = ∂bR = B̂, (4.8c)

where we have defined η(s, n) = 1− nκ(s). Using Eq. (4.7) and the above basis
vectors, we get the following metric tensor:

Gαβ =

η(s, n)2 + ζ(s, n, b)2 −bτ(s) nτ(s)
−bτ(s) 1 0
nτ(s) 0 1

 , (4.9)

where ζ(s, n, b) = τ(s)
√
n2 + b2.

Considering a general contravariant vector v = vβeβ , we can write its gradient
as:

∇v = eα∂αv
βeβ = eα

[(
∂αv

β
)
+ vβ (∂αeβ)

]
. (4.10)

We now define the Christoffel symbols of the second kind [208, 209]:

Γγ
αβeγ = ∂βeα, (4.11)

and obtain the following expression for the space covariant derivative of a con-
travariant vector:

Dαv
β = ∂αv

β + vγΓβ
γα. (4.12)
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From this expression it is clear that, in general, in a curvilinear coordinate system the
derivative of a vector contains additional terms with respect to Cartesian coordinate
system, due to its basis vectors varying in space.

Using the relation between covariant and contravariant basis vectors provided
above, we can relate the derivative of a contravariant basis vector to the Christoffel
symbols: ∂γeβ = −Γβ

αγeα. Therefore, we can write the space covariant derivative
of a covariant vector as:

Dαvβ = ∂αvβ − vγΓ
γ
αβ. (4.13)

It can be shown [208, 209] that the Christoffel symbols are related to the metric of
the systems through the following expression:

Γγ
αβ =

1

2
Gγλ [∂βGαλ + ∂αGλβ − ∂λGαβ] , (4.14)

where Gγλ is the inverse of the metric tensor of Eq. (4.9), given by:

Gαβ =
1

η(s, n)2

 1 bτ(s) −nτ(s)
bτ(s) η(s, n)2 + b2τ(s)2 −nbτ(s)2
−nτ(s) −nbτ(s)2 η(s, n)2 + n2τ(s)2

 . (4.15)

From Eq. (4.14) we see that Γγ
αβ is invariant under the exchange of the lower indices

α ↔ β. From Eq. (4.14), with the use of Eqs. (4.9) and (4.15), the Christoffel
symbols take the following form

Γs
αβ =

1

η(s, n)

∂sη(s, n) + bκ(s)τ(s) −κ(s) 0
−κ(s) 0 0

0 0 0

, (4.16a)

Γn
αβ =

1

η(s, n)


−η(s, n)2∂nη(s, n)+b∂s[η(s, n)τ(s)]

+κ(s)ζ(s, n, b)2−nτ(s)2 −bκ(s)τ(s) −τ(s)
−bκ(s)τ(s) 0 0

−τ(s) 0 0

,
(4.16b)

Γb
αβ =

1

η(s, n)

n[∂s(η(s, n))τ(s)− η(s, n)∂sτ(s)]−bτ(s)2 τ(s) 0
τ(s) 0 0
0 0 0

.
(4.16c)

It is important to note that, due to the space dependence of the length of the basis
vectors, the components vα of a vector, can generally have incorrect physical
dimensions. To solve this we introduce the physical components of a vector as:
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v⟨α⟩ = êα · v =
vα√
Gαα

. (4.17)

In Cartesian coordinates the metric is the identity matrix, and therefore the notion
of physical vector components is not necessary.

4.1.2 Curvature Induced Spin-Orbit Coupling

When a material with initially regular atomic lattice is induced to bend, the inter-
atomic distances become non-uniform, leading to tensile and compressive strains in
the material, see Fig. 4.1. The strain is directly related to the change in length of
the different coordinate axes when deforming the line segment [210], which for the
tangential component (see Eq. (4.8a)) results in a strain [206, 207, 211]:

ϵtt = −κ(s)n. (4.18)

The deformation leads to an additional potential in the material, which for small
strains is assumed to be linear in strain [212, 213],

V = −Λκ(s)n, (4.19)

where Λ is the deformation potential constant. This approximation should be
applicable when the thickness of the material is much smaller than the local radius
of curvature. The potential in turn leads to an electric field:

E = −∇V =
êα√
Gαα

∂αV =
Λn√

η(s, n)2 + ζ(s, n, b)2
[∂sκ(s)]T̂ + Λκ(s)N̂ ,

(4.20)

which when averaged over a volume with infinitesimal thickness ds in the tangential
direction results in an electric field pointing along the normal direction [206, 207],

⟨E⟩ = Λκ(s)N̂ . (4.21)

In the rest frame of an electron moving with momentum p = ℏk, this translates
to a magnetic field B ∼ p×E [214] which couples to the electron’s spin via the
Zeeman coupling, leading to an effective spin-orbit coupling
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HN =
αN

m∗ N̂ · [σ × p], (4.22)

due to the asymmetry in the normal direction. Here we have defined the curvature-
dependent spin-orbit constant αN = ℏΛg|e|κ(s)/4m∗c2 [1], where g is the g-factor
that characterizes the magnetic moment and angular momentum, e the electron
mass, and c is the speed of light.

4.2 Curvature-Induced Effects

In this section we will review some theoretical works in geometrically curved
systems, treating magnetic and non-magnetic systems separately. Here we will not
consider curved superconductors, for which fabrication methods and theoretical
studies are still in their infancy2. Later in this thesis we will focus on curved
structures proximity-coupled to bulk superconductors.

4.2.1 Non-magnetic Systems

For curved non-magnetic systems, theoretical investigations have been using mainly
a ballistic quantum motion approach. A fundamental tool for the study of curved
structures is the thin-wall quantization procedure [216, 217], where the quantum
motion of a particle in a 2D torsion-less curved surface is treated as equivalent to the
motion in a 3D space with the addition of lateral quantum confinement. The effects
of curvature are then included in a curvature-induced quantum geometric potential
(QGP). With this procedure, the energy of excitations in the normal direction results
far above the energy of the excitations in the tangential direction. This allows
to integrate out the motion in the normal direction and derive an effective 1D
Hamiltonian [206]. More recently this approach has been generalized to include
torsion [218], showing the appearance of an equivalent torsion-induced QGP, which
allows to apply the same procedure for the binormal direction.

Within this framework geometric curvature introduces two main effects: the
QGP, producing many interesting phenomena at the nanoscale [219–222] and a
strain field leading to a curvature-induced Rashba spin-orbit coupling (SOC) [206,
223, 224] (see Section 4.1.2). In addition, intrinsic SOC, which may or may not
be present in some materials, is governed by the geometry of the system [206,
218, 225]. Studies have focused on new properties appearing as a consequence of
these effects in different classes of materials, e.g. semiconductors [226–231] and
superconductors [232–235]. For instance, it was shown that geometric curvature

2For reviews on curved superconductors, see e.g. [145, 215].
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can promote topological surface states in deformed wires [219], edge states in
bent quantum wires with Rahsba SOC [227], bound states in toroidal surfaces
[221] and in rolled-up nanotubes [222], as well as topological superconductivity in
superconducting Rashba nanowires [233] and in curved 2D topological insulators
[235]. Moreover, various studies have shown the possibility of geometric control
of the spin phase of the electrons during their dynamics in curved circuits [226,
236–238], potentially driving topological transitions [239–242].

Aside from the quantum confinement effects due to curvature, curved nanostruc-
tures exhibit also classical geometry-induced effects. These effects have been
recently analyzed in Ref.[205], where they have been cathegorized as falling
into three broad areas: curved spintronics, geometric nonlinear Hall effect and
directional-dependent magnetotransport. Curved spintronics comprises all those
effects resulting from the geometry of curved channels, which, for instance can
allow independent control of charge and spin transport properties [152]. A non-
linear, geometric Hall effect, in absence of any externally applied magnetic field,
has been demonstrated in a semicircular curved wire [243]. Finally, considering
directional-dependent magnetotransport, a quadratic longitudinal magnetoresis-
tance has been experimentally observed in graphite nanotubules [244] and in a
single multiwalled carbon nanotube [245], and later demonstrated theoretically
[230]. Moreover, the oscillations of the effective magnetic field experienced by
electrons in carbon nanotubes cause the appearance of classical snake orbits [230].
These trajectories have an impact on the magnetotransport properties of tubular
nanostructures [205, 230, 246–248].

4.2.2 Micromagnetic Theory for Ferromagnetic Systems

One general theoretical description of curvature-induced effects in curved ferromag-
nets is based on micromagnetic frameworks. The first studies developed theories
based on specific geometries, to study the influence of the geometry of the systems
on magnetism in e.g. cylinders [249–251], necks and circular cones [251–253],
nanorings [254], nanotubes [255], toruses [256, 257], curved wires [258, 259] and
spherical shells [260, 261]. Later, Gaididei et al. [262] developed a framework for
generic curved geometries, showing that the effect of curvature can be treated as
the appearance of an effective magnetic field. More recently, Sheka et al. [263]
generalized this framework to include non-local magnetostatic interactions, leading
to a chiral interaction whose effect is to introduce handedness in intrinsically achiral
materials, potentially producing ferrotoroidic order and magnetoelectric response.

A micromagnetic framework for an uniaxial ferromagnet is formulated through
its energy density:
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E = Ex + EA + EDM + EMS, (4.23)

where Ex is the exchange energy density, EA is the anistropy energy density, EDM

is the Dzyaloshinskii–Moriya interaction (DMI) energy density and EMS is the
magnetostatic energy density. These contributions can be written in terms of the
normalized magnetization m in the following way:

Ex = −Am · ∇2m, (4.24a)

EA =
K

2
(m · êa)2, (4.24b)

EDM = D
∑
ijk

(mi∂kmj −mj∂kmi), (4.24c)

EMS =
1

2
M2

s

∫
dr′

[m(r) · ∇r] [m(r′) · ∇r′ ]

|r − r′| , (4.24d)

where A is the exchange constant, K and êa are the anisotropy constant and
anistropy axis, respectively, D is the DMI constant and Ms is the saturation magne-
tization.

In order to obtain curvature-induced effects, the system is then described in a
curvilinear reference frame, in which all the terms containing spatial derivatives
are consequently reshaped. One can group together all the terms according to their
spatial symmetry and rewrite the energy density of Eq. (4.23) as [263]:

E = E0 + ẼA + ẼDM + ẼMS, (4.25)

where the first term in the right hand side contains all the terms that do not explicitly
depend on the curvature. The second term ẼA, is the effective anisotropy and
contains the intrinsic anisotropy EA and an extrinsic curvature-induced contribution.
The extrinsic term in turn contains two contributions: one is driven by the exchange
interaction and the other is driven by DMI. Similarly, the effective DMI term ẼDM,
includes an intrinsic DMI written in the curvilinear framework and a curvature-
induced, extrinsic exchange-driven contribution. The last term ẼMS represents
the magnetostatic interaction. It is usually expressed by decomposing the volume
and surface magnetostatic charges in three components [263]: a surface charge
σ obtained from the normal component of the magnetization, a tangential charge
ρ from the tangential component and a geometrical charge g, representing the
coupling between the geometric curvature and the magnetization texture. The
magnetostatic interaction is then expressed as a sum of terms representing different
pair interactions between these three charges.
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Table 4.1: Table showing approximate exchange and anisotropy constants, and the
resulting maximum curvature κc [204] for a few ferromagnetic materials at low
temperatures.

Material A (J/m) |K| (J/m3) κc (nm−1)

Cobalt ∼ 2× 10−11 [271] ∼ 8× 105 [272] ∼ 0.1

Iron ∼ 2× 10−11 [273, 274] ∼ 5× 104 [274, 275] ∼ 0.03

Nickel ∼ 1× 10−11 [274] ∼ 1× 105 [274, 276] ∼ 0.07

Curvature-induced anisotropy and extrinsic DMI have been shown to be the
source of an effective curvature-induced magnetic field [204, 262]. These terms gen-
erally influence ground state magnetization and spin-wave dynamics. For instance,
in an helical wire with easy-tangential anisotropy the ground state magnetization is
tilted, resulting in a quasi-tangential state, and mirror symmetry is broken in the
spin-wave spectrum [264]. Curvature also produces a gap in the magnon spectrum
of nanotubes [265].

Another intriguing curvature-induced effect is the interplay between local and
global geometric aspects, supported by nonlocal magnetic interactions. This inter-
play manifests in the appearance of topologically protected magnetization textures
in topologically non-trivial curved geometries [144]. Some examples are the for-
mation of vortex and transverse domain walls in nanotubes [266], skyrmion and
vortex textures in hyperboloids [267], transversal and longitudinal domain walls
across and along Möbius rings [268], whirligig and 3D onion states in spherical
shells [269] and toroidal and poloidal vortices in toroidal nanoshells [270]. These
findings are interesting in the context of our study, since we will consider curved fer-
romagnetic wires coupled to bulk superconductors. We will show that the interplay
between curvature and proximity induced superconductivity in the ferromagnetic
wire generates magnetization components in different directions with respect to the
exchange field.

From all this it is clear that the curvature influences the magnetic state, inducing
more complicated magnetization textures than a purely tangential exchange field,
which we will assume later in this thesis. However, Sheka et al. [204] showed
theoretically for Heisenberg magnets that in a curved ferromagnetic wire with
tangential uniaxial anisotropy, the magnetic ground state remained oriented in the
tangential direction as long as the curvature was lower than a critical curvature
κc ≈ 0.657

√
|K|/A, where A and K are the exchange and anisotropy constants

respectively. The critical curvature is therefore inversely proportional to the domain
wall length [277]. Assuming that a similar analysis is applicable also to metallic
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ferromagnets, one should use materials with strong uniaxial anisotropy to ensure
a tangential exchange field. The critical curvatures, according to the results in
Ref. [204], for a few ferromagnetic materials relevant for spintronics systems are
given in Table 4.1.

Finally we conclude by mentioning a recent interesting effect which has been
observed experimentally, that is the appearance of superconducting triplet rim
currents in a spin-textured ferromagnetic disk coupled to a superconducting disk
[278]. From the analysis performed in this study the curved surfaces appear to be
central to obtain rim supercurrents, but their observation is not yet fully understood
from a theoretical perspective.

4.2.3 Antiferromagnetic Systems

While for curved ferromagnets there has been plenty of experimental and theoretical
investigations, for curvilinear antiferromagnets the field is still in its infancy. To the
best of our knowledge, only a few studies have been carried out so far for antifer-
romagnetic chains [279–282]. In the following we will summarize the theoretical
description of a curvilinear antiferromagnetic chain presented in Refs[145, 280],
highlighting some of their findings, useful for the analysis presented later in this
thesis.

A general Hamiltonian for a lattice of classical magnetic moments, valid both
in the straight and curvilinear case, can be written as [145, 280]:

H = S2
∑
⟨ij⟩

Jijmi ·mj + S2
∑
i

Ki (mi · êA)2 − µ
∑
i

mi ·Hd
i . (4.26)

The first term in Eq. (4.26) represents the exchange interaction, where mi is the
unit magnetic moment of site i, Jij is the exchange integral between sites i and
j and S is the spin length. The second term represents the anisotropy, with Ki

anisotropy constant of site i and êA anisotropy axis. The last term is the dipolar
interaction, where µ = gµBS with g Landé factor and µB Bohr magneton. The
dipolar field of site i is given by:

Hd
i = −µ

∑
j ̸=i

mjr
2
ij − 3rij (mj · rij)

r5ij
, (4.27)

where rij = ri − rj . To study a curvilinear antiferromagnet, it is assumed that the
system is described by a parametrization r(s) having curvature κ(s) and torsion
τ(s), where s is the arclength coordinate, defined in Section 4.1.1 and Fig. 3.1.
The next step is to switch to a continuum model and define two vector fields
from the magnetization of the two sublattices m1 and m2, the total magnetization
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m(s) = (m1+m2)/2 and the Néel vector n(s) = (m1−m2)/2. The Lagrangian
of the system is given by:

L = −2Ms

γ0

∫
ds

[
m ·

(
n× ∂n

∂t

)
− E

]
, (4.28)

where Ms is the saturation magnetization of one sublattice and γ0 is the giromag-
netic ratio. The energy density E is derived from the Hamiltonian of Eq. (4.26).

The model presented above, has been developed and applied in Ref.[280] in the
case of an antiferromagnetic helix chain, using the same method derived for curvi-
linear ferromagnets to obtain the effective energy density of the antiferromagnet in
a curvilinear reference frame.

If the total magnetization and its derivatives are small, then |m|, |m′|,|m′′| ≪
|n| and the effective energy density reads [280]:

E = Ex + EA + EDM +Kn2T , (4.29)

where Ex is the exchange contribution, and EA and EDM are curvature-induced
anisotropy and DMI, respectively. These contributions read:

Ex = A∂snα∂snα, (4.30a)

EA = AKαβnαnβ, (4.30b)

EDM = AFαβ(nα∂snβ − nβ∂snα), (4.30c)

where A is the exchange stiffness, Fαβ is the Frenet tensor defined in Eq. (4.5), and
Kαβ = FαγFβγ is the curvature-induced exchange driven anisotropy tensor. The
DM contribution is linear in curvature and torsion, while the anisotropy term is
quadratic. The last term in Eq. (4.29), is an effective hard axis anisotropy with axis
along the tangential direction, resulting from the dipolar interaction in the absence
of other anisotropy contributions [280].

The Néel vector orientation of the equilibrium state in the curvilinear coordinate
system can either be homogeneous, i.e. constant orientation with respect to the
curved reference frame, or periodic, i.e. varying as a function of the arclength
coordinate along the geometry of the structure, depending on the strength of the
DMI. We identify the direction of the Néel vector in the curvilinear coordinate
system with n = cos θT̂ + sin θ cosϕN̂ + sin θ sinϕB̂. The homogeneous state
is realized for τ < τb(κ) ≈ 0.85κ and the orientation of the Néel vector is given
by θ = π/2 − ψ and ϕ = π/2, with ψ ≈ κτL2, L being the length of the
chain. Thus the Néel vector lies in the TB plane. Conversely, the periodic state is
realized for τ > τb(κ) and the orientation of the Néel vector in this configuration
is approximately uniform in the plane perpendicular to the helix axis. For κ≪ τ ,
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the orientation of the Néel vector is given by θ = π/2 and ϕ = −τs, where s is the
arclength coordinate.

This analysis shows that a curvilinear antiferromagnetic helix has a chiral
behavior and that geometric curvature and torsion control the strength of the DMI
and the orientation of the Néel vector, realizing a homogeneous or periodic state
[280]. Later on we will make use of these findings in the context of a diffusive
treatment of proximity coupled superconductor-antiferromagnetic helix hybrid
structures, assuming the antiferromagnet to be in the homogeneous state.



Chapter 5

Diffusive Theory of
Superconductivity

In this chapter we will derive a transport equation for the quasiclassical Green’s
function in the diffusive limit at equilibrium. This transport equation, with suit-
able boundary conditions allows to study the proximity effect in superconductor-
ferromagnet hybrid structures. Finally, we will show how the equation is modified
in the context of curvilinear geometries.

5.1 Usadel Equation

The quasiclassical framework describes electronic transport in materials with high
number of impurities. It allows to define a system of second-order partial differential
equations for the Green’s functions of the systems. In this section we will first define
the Green’s function in the Keldysh formalism, and show how the quasiclassical
transport equations can be derived in the diffusive regime. We will then discuss how
these equations can be used to study different materials. Throughout this section
we will set ℏ = 1.

5.1.1 Green’s function in the Keldysh formalism

In quantum field theory, Green’s functions are defined in various ways, with slight
variations among them, generally including the expectation value of a product of
creation and annihilation operators. Here we define the single particle Green’s
function (see [94]) as:

Gσσ′(r, t; r′, t′) = −i
〈
Tψσ(r, t)ψ

†
σ′(r

′, t′)
〉
, (5.1)

57



58 Diffusive Theory of Superconductivity

where T is the time-ordered product, the field operator ψ†
σ′(r′, t′) creates a particle

with spin σ′, in position r′, at time t′, while ψσ(r, t) annihilates a particle with
spin σ, in position r and time t. If we assume t > t′, the Green’s function can be
regarded as the probability amplitude for a particle to propagate from r′, at time
t′, to position r, at time t. Therefore, Green’s functions are often referred to as
propagators.

In the Keldysh formalism [283–285], one defines the following three Green’s
functions

GR
σσ′(r, t; r′, t′) = −i

〈{
ψσ(r, t), ψ

†
σ′(r

′, t′)
}〉

θ(t− t′), (5.2)

GA
σσ′(r, t; r′, t′) = +i

〈{
ψσ(r, t), ψ

†
σ′(r

′, t′)
}〉

θ(t′ − t), (5.3)

GK
σσ′(r, t; r′, t′) = −i

〈[
ψσ(r, t), ψ

†
σ′(r

′, t′)
]〉
, (5.4)

where GR,A,K are the retarded, advanced, and Keldysh Green’s functions, respec-
tively. In the context of superconductivity, we need to describe the Cooper pairs.
This is done by defining the following anomalous components:

FR
σσ′(r, t; r′, t′) = −i

〈{
ψσ(r, t), ψ

σ′
(r′, t′)

}〉
θ(t− t′), (5.5)

FA
σσ′(r, t; r′, t′) = +i

〈{
ψσ(r, t), ψ

σ′
(r′, t′)

}〉
θ(t′ − t), (5.6)

FK
σσ′(r, t; r′, t′) = −i

〈[
ψσ(r, t), ψ

σ′
(r′, t′)

]〉
. (5.7)

Throughout this work, we will study proximity effects between superconducting
and magnetic materials. In this context, it is useful to introduce the following basis,
in the Nambu⊗spin space, describing particle and holes both with spin-up and
spin-down:

Ψ†(r, t) =
(
ψ†
↑(r, t), ψ

†
↓(r, t), ψ↓(r, t), ψ↑(r, t)

)
. (5.8)

In this basis, one can group together the normal and anomalous Green’s function in
Eqs. (5.4) and (5.7) in the following 4× 4 form:

ĜR(r, t; r′, t′) = −iτ̂3
〈{

Ψ(r, t),Ψ†(r′, t′)
}〉

θ(t− t′), (5.9)

ĜA(r, t; r′, t′) = +iτ̂3

〈{
Ψ(r, t),Ψ†(r′, t′)

}〉
θ(t′ − t), (5.10)

ĜK(r, t; r′, t′) = −iτ̂3
〈[

Ψ(r, t),Ψ†(r′, t′)
]〉
, (5.11)
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where τ̂3 = diag(1, 1,−1,−1). It is useful to express these in a single 8×8 matrix:

Ǧ(r, t; r′, t′) =

(
ĜR(r, t; r′, t′) ĜK(r, t; r′, t′)

0 ĜA(r, t; r′, t′)

)
. (5.12)

Many useful observables in superconducting hybrid structures can be expressed as
functions of the Green’s function of Eq. (5.12). In and out of equilibrium, we have
the following relation between retarded and advanced Green’s function:

ĜA = −τ̂3
(
ĜR
)†
τ̂3. (5.13)

5.1.2 Quasiclassical Approximation

To obtain the Green’s function of a system, an equation of motion is needed.
Typically, for superconducting hybrid systems, one can derive the Gor’kov equations
[86] for the Green’s function. However, for most of the systems, a series of
approximations must be introduced [284–286]. First, one performs a transformation
to center of mass (r, T ) and relative (s, t) space and time coordinates. Since
in this work we will focus on stationary problems, we can discard the variable
T . As first realized by Eilenberger [287] and Larkin and Ovchinikov [288], the
Green’s function oscillates rapidly as a function of the relative coordinate, on a
scale of the Fermi wavelength λF . We are interested in variations of the order
of the superconducting coherence length, much larger than λF , therefore, we can
ignore the short range variations by averaging over the relative space coordinate.
To do this, we Fourier transform the relative space and time coordinate s and t,
resulting in the Green’s function Ǧ(p, r, ε), function of the center of mass space
coordinate r and quasiparticle momentum and energy p and ε. These coordinates
are also known as Wigner coordinates. After Fourier transforming the relative space
coordinate, the Green’s function will be strongly peaked at the Fermi momentum
|pF | = pF . However, one has to pay attention to the dependence on the direction
of the Fermi momentum p̂F , which identifies the transport direction. This is done
by writing the Green’s function as Ǧ(ξp, p̂F , r, ε), where ξp = p2/(2m) − εF is
the kinetic energy relative to the Fermi energy εF , depending on the magnitude of
the momentum. This allows to define the quasiclassical Green’s function as

ǧ(r, p̂F , ε) =
i

π

∫
dξpǦ(ξp, p̂F , r, ε). (5.14)

From the Gorkov equation it is possible to derive the Eilenberger equation of motion
for the quasiclassical Green’s function:

vF p̂F · ∇ǧ(r, p̂F , ε) = i
[
ετ̌3 − Σ̌(r)− Σ̌imp(r,pF ), ǧ(r, p̂F

]
, (5.15)
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where τ̌3 = diag(τ̂3, τ̂3), Σ̌ is the self-energy of the system, describing, e.g. super-
conductivity, ferromagnetism etc, and Σ̌imp is the impurity self-energy, describing
impurity scattering.

It can be shown that the quasiclassical Green’s function is normalized:

ǧǧ = τ̌0, (5.16)

where τ̌0 is the 8× 8 identity matrix.

5.1.3 The Dirty Limit

In the limit of high impurity density, the scattering of particles with impurities
is so frequent that their momentum is randomly oriented in any direction. This
means that it is possible to expand the quasiclassical Green’s function to first order
in momentum, writing it in terms of an isotropic, s-wave component, ǧs and an
anisotropic, p-wave component, ǧp, with ǧp ≪ ǧs:

ǧ = ǧp + p̂F · ǧp. (5.17)

Inserting this expansion in Eq. (5.16) we get the following two conditions:

ǧsǧs = τ̌0, (5.18)

{ǧs, ǧp} = 0. (5.19)

The impurity self-energy can be expressed in terms of ǧs as:

Σ̌imp = − i

2τimp
ǧs. (5.20)

Substituting Eqs. (5.17) and (5.20) in Eq. (5.15), we get:

vF p̂F ·∇ǧs+vF p̂2
F∇· ǧp = i

[
ετ̌3 − Σ̌, ǧs

]
+ip̂F ·

[
ετ̌3 − Σ̌, ǧp

]
− 1

τimp
ǧsp̂F · ǧp,

(5.21)
where we made use of Eq. (5.19). Averaging Eq. (5.21) over the Fermi surface, the
odd terms in p̂F disappear and we are left with:

vF
3
∇ · ǧp = i

[
ετ̌3 − Σ̌, ǧs

]
. (5.22)

On the other hand, if we first multiply by p̂F and then take the average, we get:

vF∇ǧs = − 1

τimp
ǧsǧp, (5.23)
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where we have assumed that the equation is dominated by the impurity scatter-
ing. Multiplying Eq. (5.23) from the left by ǧs we obtain ǧp = −τimpvF ǧs∇ǧs.
Substituting this in Eq. (5.22) we finally obtain the Usadel equation [289]:

D∇ (ǧs∇ǧs) = −i
[
ετ̌3 − Σ̌, ǧs

]
. (5.24)

The quasiclassical Green’s function ǧ has the same structure as the full Green’s
function given in Eq. (5.12), and again, in and out of equilibrium, we have the
following relation between retarded and advanced components:

ĝA = −τ̂3
(
ĝR
)†
τ̂3. (5.25)

Additionally, the Keldysh component is given by:

ĝK = ĝRĥ− ĥĝA, (5.26)

where the matrix ĥ contains the distribution functions. At equilibrium we simply
have

ĥ = tanh (βε/2) , (5.27)

with β = 1/kBT . Therefore, at equilibrium it is sufficient to solve the Usadel
equation for the retarded Green’s function only.

The general form of the Usadel equation of Eq. (5.24) allows to consider
different materials, one only has to chose the appropriate form for the self energy
Σ̌. For a diffusive bulk normal metal, we simply have Σ̌ = 0, and the solution
for the retarded Green’s function is ĝR = τ̂3, which gives ĝA = −τ̂3 and ĝK =
2τ̂3 tanh (βε/2).

If the considered material presents spin-orbit coupling described by an SU(2)
spin-orbit field A, this can be included through the gauge covariant derivative:

∇(·) → ∇̃(·) = ∇(·)− i[Ǎ, ·], (5.28)

where:

Ǎ = diag(Â, Â), Â = diag(A,−A∗). (5.29)

When considering a conventional superconductor, we have:

Σ̌ = diag(∆̂, ∆̂), ∆̂ = antidiag(∆,−∆,∆∗,−∆∗), (5.30)

where ∆ is the order paramater describing the superconducting correlations.
Finally, in the case of a ferromagnetic metal the self-energy is:
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Σ̌ = diag(M̂, M̂). M̂ = h · σ̂, (5.31)

where h is the exchange field describing spin-splitting in the ferromagnet, and
σ̂ = diag(σ,σ∗), with σ Pauli vector.

5.1.4 Boundary Conditions

In order to solve the Usadel equation either analytically or numerically for super-
conducting hybrid systems, boundary conditions are needed. In this work we will
mainly employ the Kupryianov-Lukichev boundary conditions [290], which ensure
the continuity of the current flow through the interface:

Ljζj ǧj∇̃I ǧj = [ǧL, ǧR] . (5.32)

Here ∇̃I is the gauge covariant derivative at the interface, j refers to the different
materials comprising the hybrid system, with j = L,R denoting the materials
on the left and right side of the relevant interface, Lj represents the length of the
material and ζj = RB/Rj is the interface parameter given by the ratio between the
barrier resistance RB and its bulk resistance Rj .

When considering magnetic interfaces, the boundary conditions take a rather
more complicated form. The magnetic interfaces lead to a spin-dependent conduc-
tance, described through average transmission probability Tn and spin-polarization
Pn for each conduction channel n, and to spin-dependent phase shift for the reflec-
tion of quasiparticles. The boundary conditions can be derived through a scattering
description of the interface where one defines a scattering matrix for each conduc-
tion channel. Up to the first order in transmission probabilities and spin-dependent
phase shifts the boundary conditions take the following form [291]1:

2GLLLǧj∇̃I ǧL = Gq

∑
n

[
T̂LR
n ǧL(T̂

LR
n )† − iδϕLn(m · σ̂), ǧR

]
, (5.33)

where T̂LR = tn0 + tn1(mσ̂) is the transmission matrix for channel n, with
coefficients tn0 = (tn↑ + tn↓)/2 and tn1 = (tn↑ − tn↓)/2 defined from the spin-
dependent transmission coefficients tnσ. The term δϕLn = ϕL↑ − ϕL↓ is the spin-
dependent phase shift between reflection of spin-up and spin-down quasiparticles
in channel n at the left interface, the unit vector m identifies the direction of
the interface magnetization and Gq = 2e2/h is the conductance quantum. The
average transmission probability and spin-polarization can be written in terms

1For simplicity we only write the equation at the left interface. The corresponding equation for
the right interface is obtained simply by substituting L ↔ R.
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of the transmission coefficients of the channel, Tn = (t2n↑ + t2n↓)/2 and Pn =

(t2n↑ − t2n↓)/(t
2
n↑ + t2n↓).

It is possible to rewrite Eq. (5.33) in a more useful form for numerical calcula-
tions:

2GjLj ǧj∇̃I ǧj =G
0
[
ǧR, ǧL

]
+G1

[
m · σ̂ǧRm · σ̂, ǧL

]
+GMR

[
{m · σ̂, ǧR}, ǧL

]
− iGϕ

[
m · σ̂, ǧL

]
,

(5.34)

where we have defined

G0 = Gq

∑
n

Tn
(
1 +

√
1− P2

n

)
, (5.35a)

G1 = Gq

∑
n

Tn
(
1−

√
1− P2

n

)
, (5.35b)

GMR = Gq

∑
n

TnPn, (5.35c)

Gϕ = 2Gq

∑
n

δϕLn . (5.35d)

5.1.5 Riccati Parametrization

To solve numerically Eq. (5.24) it is useful to introduce a parametrization for the
quasiclassical Green’s function.

The components of the 4× 4 quasiclassical retarded Green’s function ĝR are
not independent and can be written as:

ĝR(s, ε) =

(
g(s, ε) f(s, ε)

−f∗(s,−ε) −g∗(s, ε)

)
, (5.36)

where g and f are the 2× 2 quasiclassical normal and anomalous Green’s function,
respectively. Furthermore, making use of the normalization condition ĝ2R = 1, we
obtain an additional constraint on ĝR, relating its normal and anomalous compo-
nents:

g(s, ε)g(s, ε)− f(s, ε)f∗(s,−ε) = 1, (5.37a)

g(s, ε)f(s, ε)− f(s, ε)g∗(s,−ε) = 0. (5.37b)

We can now define the Riccati parametrization [79, 292], which satisfies the above
constraints, by expressing the retarded Green’s function as:
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ĝR =

(
N(1 + γγ̃) 2Nγ

−2Ñ γ̃ −Ñ(1 + γ̃γ)

)
, (5.38)

with N = (1− γγ̃)−1 and Ñ = (1− γ̃γ)−1 and the tilde conjugation denotes the
operation γ̃(s, ε) = γ∗(s,−ε). Therefore, with the use of this parametrization we
can reduce the Usadel equation and Kupriyanov-Lukichev boundary conditions for
the 4× 4 matrix ĝR to equations for the 2× 2 matrix γ.

A detailed derivation of Usadel equation and Kupryianov-Lukichev boundary
conditions in an SF bilayer in the presence of SOC in the F is provided in [79].
Considering transport along the z direction the Usadel equation in the ferromagnet
reads:

DF

{
∂2zγ + 2(∂zγ)Ñ γ̃(∂zγ)

}
=−2iεγ−i(h · σγ−γh · σ∗)

+DF

[
A2γ − γA∗2 + 2(Ajγ + γA∗

j )Ñ(A∗
j + γ̃Ajγ)

]
+2iDF

[
(AT+γA

∗
zγ̃)N(∂zγ)+(∂zγ)Ñ(A∗

z+γ̃Azγ)
]
.

(5.39)

While in the superconductor we have:

DF

{
∂2zγ + 2(∂zγ)Ñ γ̃(∂zγ)

}
=−2iεγ−∆σ2+γ∆

∗σ2γ, (5.40)

where σ2 = antidiag(−i, i) is the second Pauli matrix. The equations for the
boundary conditions at the superconductor-ferromagnet interface instead are:

∇IγS=
1

LSζS
(1−γS γ̃F )NF (γF−γS)+iAzγS+iγSA

∗
z, (5.41a)

∇IγF =
1

LF ζF
(1−γF γ̃S)NS(γF−γS)+iAzγF+iγFA

∗
z. (5.41b)

The corresponding equations for γ̃ are simply obtained by tilde conjugation of
Eqs. (5.39) to (5.41b).

5.1.6 Weak Proximity Effect

The Usadel equation is usually expressed in a quite complicated form. It is therefore
useful to introduce the weak proximity effect, an approximation which allows to get
more simple and easily interpretable equations. In this limit |γij | ≪ 1 and N ∼ 1,
so that γ = f/2, where f = (f0 + d · σ)iσ2. Here f is the anomalous Green’s
function, the off-diagonal block matrix in ĝR, and is defined in terms of the scalar
function f0 and the d-vector d = (dx, dy, dz) representing the condensate functions
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for the singlet and triplet components, respectively. This gives the following form
for the Riccati matrix

γ =
1

2

(
idy − dx dz + f0
dz − f0 idy + dx

)
. (5.42)

Expressions for the weak proximity equations in a ferromagnet in the presence of
SOC are provided in [79, 83]. Here we report the weak proximity equations for
singlet f0 and triplet components, defining short range triplets as d∥ ≡ d · h/ |h|
and long range triplets as d⊥ ≡ d× h/ |h|. In a ferromagnetic wire having axis
along z, exchange field lying in the xy plane h = h0(cos θ, sin θ, 0), and SOC field
A = (Ax, Ay, Az) with Ax = 0, Ay = 0 and Az = α(σx − σy), the equations
read:

DF∂
2
zf0 =− 2i(εf0 + h0d∥), (5.43a)

DF∂
2
zd∥ =− 2iεd∥ − 2ih0f0 + 4DFα

2[1− i cos(2θ)]d∥

+ 4iDFα
2 sin(2θ)d⊥ + 4DFα(cos θ + sin θ)∂zdz, (5.43b)

DF∂
2
zd⊥ =− 2iεd⊥ + 4DFα

2[1 + i cos(2θ)]d⊥

+ 4iDFα
2 sin(2θ)d∥ − 4DFα(cos θ + sin θ)∂zdz, (5.43c)

DF∂
2
zdz =− 2iεdz + 8DFα

2 − 4DFα∂z(dx + dy). (5.43d)

From these equations it is clear that the SOC introduces a coupling between all
the triplet components, and depending on the orientation of the exchange field it
is possible to achieve LRT generation. The singlet component acts as a source
for the SRT component d∥, which in turn, if θ ̸= 0 is converted into the LRT
component d⊥ with a term proportional to α and with maximum conversion being
achieved for θ = π/4. It can also be noted that SOC adds an imaginary energy
contribution, which corresponds to a damping term, proportional to α2. Therefore,
SOC facilitates LRT generation for low values (with respect to the relavant scales)
and contributes to a decay in the triplet components for high values.

5.2 Observables

Here we provide the expressions, in the quasiclassical approximation, of some
observables which we will use to analyze our systems in the following of this work.

5.2.1 Density of States

The density of states N(ε) can be expressed in terms of the Riccati matrices as
[79]:
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N(ε) =
1

2
Tr {N(1 + γγ̃)} . (5.44)

In the weak proximity limit the zero energy term N(0) can be written in terms of
singlet and triplet components by using Eq. (5.42)

N(0) = 1− |f0|2
2

+
1

2

∑
i

|di|2 , (5.45)

showing that singlets contribute to lower the density of states at zero energy, while
triplets contribute to increase it. Therefore the appearance of a gap in N(0) is a
signature of a singlet-dominated regime and a zero energy peak is a signature of
triplet-dominated regime [79, 293].

5.2.2 Proximity-Induced Magnetization

To calculate the proximity contribution to the magnetization we consider the spin
density expressed in terms of the field operators:

s(r) =
ℏ
2

∑
σσ′

ψ†
σ(r)σσσ′ψσ′(r). (5.46)

This allows to define the magnetization as:

M(r) = −gµB
ℏ

⟨s(r)⟩ , (5.47)

which in terms of the Green’s function in the Wigner representation is [294]:

M(r) = i
gµB
8

∫
dp

(2π)3

∫ ∞

−∞

dε

2π
Tr
{
σ̂ĜK(p, r, ε)

}
. (5.48)

Finally, introducing the quasiclassical approximation, we find the proximity contri-
bution to the magnetization in terms of the quasiclassical Green’s function:

M(r) =
gµBN(0)

16

∫ ∞

−∞
dεTr

{
σ̂ĝK(r, ε)

}
. (5.49)

With the use of Eqs. (5.26), (5.27) and (5.38) and the weak proximity expression of
the γ matrix of Eq. (5.42), we find the following expression for the magnetization
in the limit of weak proximity effect:

M(r) = −gµBN(0)

8

∫ ∞

−∞
dεRe [f0(r, ε)d(r, ε)] tanh(βε/2). (5.50)
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This expression states that the magnetization depends on the product of the singlet
and triplet condensate functions. Therefore, the magnetization in a certain direction
is a signature of the presence of triplet correlations with spins polarized in that
particular direction.

5.2.3 Charge Current Density

To calculate the charge current we consider the continuity equation for the current
density JQ:

∂

∂t
ρ+∇ · JQ = 0, (5.51)

where ρ = e
〈
ψ†
σ(r)ψσ(r)

〉
is the charge density. The time derivative of the charge

density can be expressed as [294]:

∂

∂t
ρ =

eℏ
4m

∇ ·
[

lim
r1→r2

(∇1 −∇2)Ĝ
K
σσ(r1, r2)

]
. (5.52)

This expression allows to obtain the current density, which once generalized to the
Nambu⊗spin spaces takes the following form:

JQ = − eℏ
8m

lim
r1→r2

(∇1 −∇2)Tr
{
τ̂3Ĝ

K
σσ(r1, r2)

}
. (5.53)

Writing the Green’s function in the Wigner representation, and then considering the
quasiclassical approximation and the diffusive limit we get the final expression for
the charge current density [294]:

JQ =
eN(0)D

16

∫ ∞

−∞
dεTr

{
τ̂3(ǧ∇ǧ)K

}
. (5.54)

Again we can derive a weak proximity expression for the current density, which
allows to separate it in singlet and triplet contributions JQ = J0 + Jt, where
Jt = Jx + Jy + Jz and

J0 = −eN(0)D

2

∫ ∞

−∞
dεRe

[
f̃0∇f0 − f0∇f̃0

]
tanh(βε/2), (5.55a)

Jj = −eN(0)D

2

∫ ∞

−∞
dεRe

[
d̃j∇dj − dj∇d̃j

]
tanh(βε/2), (5.55b)

with j = (x, y, z). This expression allows to analyze separately the weight of
singlets and triplets on the charge current, giving a useful tool for determining
whether the system is singlet or triplet dominated.
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5.2.4 Spin Current Density

Similarly to the charge current density, the spin current density is derived starting
from the continuity equation in terms of the spin density ρs(r) = ⟨s(r)⟩:

ρj
s +∇ · J j

s = 0, (5.56)

where J j
s is the spin current density for spin pointing along j = {x, y, z}. With the

same steps as the charge current density, the spin current density can be written as:

J j
s =

ℏN(0)D

32

∫ ∞

−∞
dεTr

{
σ̂j τ̂3(ǧ∇ǧ)K

}
. (5.57)

Once more we can write a weak proximity expression for the spin density for spins
polarized in different directions:

Jx
s =

ℏN(0)D

4

∫ ∞

−∞
dεIm

[
dy∇d̃z − d̃z∇dy + t.c.

]
tanh(βε/2), (5.58a)

Jy
s =

ℏN(0)D

4

∫ ∞

−∞
dεIm

[
dz∇d̃x − d̃x∇dz + t.c.

]
tanh(βε/2), (5.58b)

Jz
s =

ℏN(0)D

4

∫ ∞

−∞
dεIm

[
dx∇d̃y − d̃y∇dx + t.c.

]
tanh(βε/2), (5.58c)

where t.c. stands for the tilde conjugate of the preceding terms in the brackets.
From these expression we can see that the spin current density for spin polarized
in a certain direction depends on the triplet correlations with spin polarized in the
corresponding perpendicular directions. This is a hallmark of how the spins are
converted through spin precession.

5.3 Diffusion Equation in Curved Systems

In this section we will show how to modify the diffusion equation to include geo-
metric curvature. We will present a space covariant formulation of the Hamiltonian
and then we will do the same for the Usadel equation. The boundary value defined
by the Usadel equation for curved system and the appropriate boundary conditions
has been solved numerically to obtain the results presented in the next chapter.
Numerical simulations have been performed in MATLAB through the bvp6c solver
on the SAGA supercomputer provided by UNINETT Sigma2 - the National Infras-
tructure for High Performance Computing and Data Storage in Norway. The code
used in this work is inspired by the the set of numerical programs GENEUS openly
accessible on GitHub [295]. This code is modified to include geometric curvature
and is available upon reasonable request.
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5.3.1 Covariant Hamiltonian for Curved Geometries

The starting point is the the following Hamiltonian describing the motion of elec-
trons in the presence of spin-orbit coupling:

H =
ℏ2k2

2m∗ − ℏα · σ × k

m∗ , (5.59)

where k = −i∇, m∗ is the electron effective mass and σ is the Pauli vector. The
components of the vector α give the strength of the spin-orbit coupling due to asym-
metric confinement in the different directions. When dealing with a geometrically
curved system, the Hamiltonian of Eq. (5.59) can be written in a general covariant
form:

H = −ℏ2Gλµ

2m∗ DλDµ +
iℏ
m∗

ϵλµν√
G
αλσµDν , (5.60)

where we used the Einstein summation rule, with the Greek indices running over
the components t, n, b in the covariant basis defined in Section 4.1.1. The terms
Gλµ and G are the inverse and the determinant of the metric tensor respectively,
and ϵλµν is the Levi-Civita symbol. The space covariant derivatives are defined
through Eqs. (4.12) and (4.13), and the Christoffel symbols are given by Eq. (4.14).

To further simplify the derivation we exploit the last term in Eq. (5.60) to define
a (contravariant) spin-orbit field as:

Aν = ϵλµναλσµ/
√
G = GνµAµ. (5.61)

With the assumption of weak spin-orbit coupling, the Hamiltonian of Eq. (5.60)
can be written in a form manifestly showing a local SU(2) gauge invariance [296,
297]:

H = −ℏ2Gλµ

2m∗ (Dλ − iAλ) (Dµ − iAµ) . (5.62)

Therefore the SOC enters the Hamiltonian with the usual form of a 2× 2 matrix-
valued SU(2) vector field [72, 73]. The values of the components Aµ depend on
the physical system at hand, e.g. the intrinsic types of SOC in the system, and the
curvature-induced SOC discussed in the previous subsection.

5.3.2 Effective Hamiltonian for Curved Nanowire

In order to derive an effective Hamiltonian for a curved nanowire one can apply
a thin-wall quantization procedure [216, 217] to the Hamiltonian of Eq. (5.60),
additionally taking into account the effect of the constraining potential in the normal
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and binormal directions. These allow to expand the Hamiltonian in powers of n
and b, taking the zeroth order terms, and employ an adiabatic approximation to
separate the relevant degree of freedom s. This procedure has been performed in
[206] for a planarly curved wire, i.e. zero torsion, and in [218] with the addition of
torsion. Considering curvature-induced and intrinsic spin-orbit interaction, αN and
αB respectively, when both κ(s) and τ(s) are non-zero, one gets [206, 218]:

H =− ℏ2

2m∗∂
2
s −

ℏ2

8m∗κ(s)
2 − ℏ2

4m∗ τ(s)
2 − iℏ

m∗αN

(
σB∂s −

τ(s)

2
σN

)
+

iℏ
m∗αB

(
σN∂s −

κ(s)

2
σT +

τ(s)

2
σB

)
.

(5.63)

The second and third terms in the right hand side are the quantum geometric
potentials due to curvature and torsion respectively. These terms will be neglected
in the following as they lead to an overall energy shift.

With the use of Eq. (4.2) it is possible to reorganize the terms in the second line
of Eq. (5.63) and incorporate them in the following SU(2) spin-orbit field:

A = (αNσB − αBσN , 0, 0), (5.64)

having a vector structure in the geometric space and a 2× 2 matrix structure in spin
space.

5.3.3 Usadel equation for curved nanowires

We will make use of Green’s functions in the diffusive limit and study the dynamics
through the second order partial differential Usadel equation [289] derived in
Section 5.1

The Hamiltonian of Eq. (5.62) allows us to define the Usadel equation in a
covariant form and, with the right boundary conditions, describe the diffusion of
superconducting correlations in an SF hybrid structure with geometric curvature.

We restrict ourselves to the case of diffusive equilibrium, allowing us to consider
just the retarded component ĝR of the quasiclassical Green’s function to describe
the system [286]. The Usadel equation of Eq. (5.24), defined from the Hamiltonian
of Eq. (5.62) is generalized to:

DF GλµD̃λ(ĝRD̃µĝR) + i
[
ετ̂3 + ∆̂ + M̂, ĝR

]
= 0, (5.65)

where ∆̂ and M̂ = hµ diag(σµ, σ
∗
µ) are defined in Eqs. (5.30) and (5.31), respec-

tively, with the difference that the exchange field and Pauli vector components
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in the magnetization are now defined in the curvilinear coordinate system, with
µ = {T,N,B}. Here we have set ℏ = 1, and we have defined the space-gauge
covariant derivative as:

D̃λvµ = ∂̃λvµ − Γν
λµvν , (5.66)

where ∂̃λvµ = ∂λvµ − i[Âλ, vµ] is the gauge-only covariant derivative, with Âλ =
diag(Aλ,−A∗

λ).
We now wish to evaluate the first term in Eq. (5.65), by using the expression of

Eq. (5.66) for the space-gauge covariant derivative we can write:

DF GλµD̃λ(ĝRD̃µĝR) = DF Gλµ∂̃λ(ĝR∂̃µĝR)−DF GλµΓν
λµ(ĝR∂̃ν ĝR). (5.67)

With the use of Eqs. (4.15) and (4.16c), we can write the terms in Eq. (5.67)
respectively as:

DF Gλµ∂̃λ(ĝR∂̃µĝR) =
1

η(s, n)2

{
∂̃s(̂gR∂̃sĝR)+

(
η(s, n)2+b2τ(s)2

)
∂̃n

(̂
gR∂̃nĝR

)
+
(
η(s, n)2+n2τ(s)2

)
∂̃b

(̂
gR∂̃bĝR

)
+bτ(s)

[
∂̃s

(̂
gR∂̃nĝR

)
+∂̃n

(̂
gR∂̃sĝR

)]
− nτ(s)

[
∂̃s

(̂
gR∂̃bĝR

)
+∂̃b

(̂
gR∂̃sĝR

)]
−nbτ(s)2

[
∂̃n

(̂
gR∂̃bĝR

)
+∂̃b

(̂
gR∂̃nĝR

)]}
,

(5.68a)

DF GλµΓν
λµ(ĝR∂̃ν ĝR) =

1

η(s, n)3

{[
∂sη(s, n)− bκ(s)τ(s)

]
ĝR∂̃sĝR

+
[
η(s, n)2∂nη(s, n)+b∂s

(
η(s, n)τ(s)

)
+(n2−b2)κ(s)τ(s)2+nτ(s)2

]̂
gR∂̃nĝR

+
[
n
(
∂s(η(s, n))τ(s)−η(s, n)∂sτ(s)

)
+bτ(s)2

]
ĝR∂̃bĝR

}
.

(5.68b)

In this work we will only consider nanowires, allowing us to ignore the dependence
of ĝR on n and b and take the limit n, b→ 0. Therefore the Usadel equation takes
the form:

DF ∂̃s

(
ĝR∂̃sĝR

)
+ i
[
ερ̂3 + ∆̂ + M̂, ĝR

]
= 0, (5.69)

where the effects of the curvature enter the equation through the Pauli matrices
contained in the spin-orbit field and the magnetization.
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F
S

Figure 5.1: Superconductor-ferromagnet hybrid nanowire with a ferromagnet with constant curvature
κ = |∂sT̂ | and torsion τ = |∂sB̂|. The orthonormal unit vectors T̂ , N̂ , B̂ identifying the curvilinear
coordinates and the arclength coordinate s are also shown.

5.3.4 Riccati parametrization

To study a superconductor-ferromagnet hybrid system like the one depicted in
Fig. 5.1, we define the Usadel equation separately for a curved ferromagnet
with spin-orbit coupling, and a straight s-wave superconductor, using the Riccati
parametrization.

Substituting Eq. (5.38) into Eq. (5.69) we get the Usadel equation for the
ferromagnet:

DF

{
∂2sγ + 2(∂sγ)Ñ γ̃(∂sγ)

}
=−2iεγ

−i(h · σγ−γh · σ∗)−iDF

[
(∂sAT )γ +γ(∂sA

∗
T )
]

+DF

[
A2γ − γA∗2 + 2(Ajγ + γA∗

j )Ñ(A∗
j + γ̃Ajγ)

]
+2iDF

[
(AT+γA

∗
T γ̃)N(∂sγ)+(∂sγ)Ñ(A∗

T+γ̃ATγ)
]
,

(5.70)

and the superconductor:

DF

{
∂2yγ + 2(∂yγ)Ñ γ̃(∂yγ)

}
=−2iεγ−∆σ2+γ∆

∗σ2γ, (5.71)

where the index j runs over the physical components T,N,B of the SOC field
and σ2 = antidiag(−i, i). In Eq. (5.70) both the exchange field vector h =
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(hT , hN , hB) and the Pauli vector σ = (σT , σN , σB) are expressed in curvilinear
components.

We note that the result obtained here for the Riccati parametrization of the
Usadel equation is the same as in [79] (see Eqs. (5.39) and (5.40)) with the addition
of the last term in the second line of Eq. (5.70) due to the spatial dependence of the
spin-orbit field.

Upon substitution of Eq. (5.38) in Eq. (5.32) we get the following form for the
boundary conditions at the superconductor-ferromagnet interface:

∂IγS=
1

LSζS
(1−γS γ̃F )NF (γF−γS)+iATγS+iγSA

∗
T , (5.72a)

∂IγF =
1

LF ζF
(1−γF γ̃S)NS(γF−γS)+iATγF+iγFA

∗
T . (5.72b)

The corresponding equations for γ̃ are simply obtained by tilde conjugation of
Eqs. (5.70) to (5.72b).

5.3.5 Weak proximity effect equations

To interpret the effects of the geometrical curvature and spin-orbit coupling com-
ponents in our system, we will now study a ferromagnetic helix with constant
curvature and torsion in the limit of weak proximity effect. As in Section 5.1.6, we
can write the Riccati matrix as γ = (f0 + d · σ)iσ2/2, again defined in terms of
the scalar function f0 and the d-vector d = (dT , dN , dB) representing the conden-
sate functions for the singlet and triplet components in the curvilinear framework,
respectively.

An helical nanowire like the one depicted in Fig. 5.1, having radius R and
2cπ pitch, i.e. the height of a complete helix turn, can be defined in cilindrical
coordinates as:

x = R cosϕ (5.73a)

y = R sinϕ (5.73b)

z = cϕ (5.73c)

with ϕ = [0, 2nπ], and n defining the number of turns. The value of c determines
how much the nanowire is tilted out of plane. Curvature and torsion are respectively
given by κ = R/(R2 + c2) and τ = c/(R2 + c2). The arclength coordinate
s = ϕ

√
R2 + c2. The components σT,N,B(s) in the ferromagnet are obtained from

the following set of three unit vectors:
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T̂ (ϕ) =− cosα sinϕx̂+ cosα cosϕŷ + sinαẑ, (5.74a)

N̂ (ϕ) =− cosϕx̂− sinϕŷ, (5.74b)

B̂(ϕ) = sinα sinϕx̂− sinα cosϕŷ + cosαẑ, (5.74c)

with α = atan(τ/κ). Consequently, we get the following form for the γ matrix:

γ =
1

2

(
(idT cosα+dN−idB sinα) e−iϕ dT sinα+dB cosα+f0

dT sinα+dB cosα−f0 (idT cosα−dN−idB sinα) eiϕ

)
.

(5.75)
In this limit it becomes straightforward to identify the SRT d∥ = d · h/ |h| and
LRT d⊥ = d×h/ |h| components. For instance, if the exchange field h is directed
along the T̂ direction the SRT can be identified with dT , while dN and dB represent
the LRTs. The weak proximity limit allows us to consider only the terms linear in γ
both in the Usadel equation and in the Kupriyanov-Lukichev boundary conditions.
The linearized Usadel equation Eq. (5.70) in the ferromagnet can be written as:

DF∂
2
sγ =− 2iεγ − i(h · σγ − γh · σ∗) + iDF [(∂sAT )γ + γ(∂sA

∗
T )]

+DF (A
2γ + γA∗2 + 2AjγA

∗
j ) + 2iDF [AT (∂sγ) + (∂sγ)A

∗
T ].

(5.76)

With the spin-orbit field given by Eq. (5.64) and the form of γ from Eq. (5.75), after
some calculations we obtain the following differential equations for the d-vector
and singlet components:

iDF

2
∂2sdT−iDF (κ+2αN )∂sdN−2iDFαB∂sdB = f0hT

+

{
ε+

iDF

2

[
(κ+2αN )2+4α2

B

]}
dT+iDFαBτdN− iDF

2
(κ+2αN )τdB,

(5.77a)
iDF

2
∂2sdN+iDF (κ+2αN )∂sdT − iDF τ∂sdB = f0hN

+

{
ε+

iDF

2
(κ+2αN )2

}
dN+iDF ταBdT+iDFαB(κ+2αN )dB, (5.77b)

iDF

2
∂2sdB+2iDFαB∂sdT−iDF τ∂sdN = f0hB

+

{
ε+

iDF

2
(τ2+4α2

B)

}
dB− iDF

2
(κ+2αN )τdT+iDF (κ+2αN )αBdN ,

(5.77c)
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iDF

2
∂2sf0 = εf0 + h · d. (5.77d)

By inspecting these equations it is possible to understand how the mechanism for
singlet-triplet conversion works in the ferromagnet. Let us consider an exchange
field along the T̂ direction: at the SF interface on the ferromagnet side, due to
the proximity effect, singlets are present, which are partially converted into the
SRT component dT by the exchange field. The presence of any among geometric
curvature, torsion and spin-orbit coupling results then in the generation of LRT
components dN , dB .

The effect of κ, τ , αN and αB in Eqs. (5.77a) to (5.77c) is twofold: the
triplets undergo spin-precession and spin-relaxation. The former can be identified
with the terms having a first derivative of a triplet component and describes the
rotation of the spin of superconducting triplet correlations while moving along the
ferromagnet. The latter appears as an additional imaginary component of the triplet
energy and represents a loss of spin information due to frequent impurity scattering.
Consequently, curvature, torsion and spin-orbit coupling, all independently provide
a pathway for LRT generation. At the same time, if their value becomes too large,
they become detrimental for the triplets, as they would cause decoherence. For
instance, in the case of zero torsion and spin-orbit coupling, an estimate of the value
for the crossover between the two regimes can be provided by comparison of the
spin-precession prefactor ϵp ∼ DFκ/LF and the spin-relaxation prefactor ϵr ∼
DFκ

2/2, where we for simplicity consider geometric curvature only. Therefore, a
transition from spin-precession dominated to spin-relaxation dominated regimes
occurs when ϵp ∼ ϵr, i.e. when κLF ∼ 2 or κLF/π ∼ 0.6. The inclusion of torsion
and SOC terms will shift the transition towards 02.

Finally, we note that in Eqs. (5.77a) to (5.77c) κ and αN always appear together
in the same form, highlighting that they have the same effect on the d-vector
components. It is therefore possible to define an "effective" curvature κ̃ = κ+2αN

and consider αN as a factor which boosts the effects of the geometrical curvature.

5.3.6 Diffusion Equation in Nonequilibrium

As we mentioned in Section 5.1.3, at equilibrium it is sufficient to solve the Usadel
equation for the retarded Green’s function only. However, in the presence of an
external voltage bias we need to define the quantum kinetic equations allowing to
calculate the distribution matrix ĥ, and consequently the Keldysh Green’s function
ĝK = ĝRĥ − ĥĝA. Once the quantum kinetic equations are defined, we would
have all the tools to investigate hybrid structures of superconductors and curved
ferromagnets in the diffusive regime outside of equilibrium.

2For a finite αN we have the condition (κ+ 2αN )LF ∼ 2.
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The equation for the distribution matrix is found by taking the Keldysh compo-
nent of Eq. (5.24). The equation in a curved ferromagnet with SOC reads:

DF

{
∂2s ĥ−ĝR

(
∂2s ĥ
)
ĝA+

(
ĝR∂sĝ

R
)(
∂sĥ
)
−
(
∂sĥ
)(
ĝA∂sĝ

A
)
−
(
∂sĝ

R
)(
∂sĥ
)
ĝA

−ĝR
(
∂sĥ
)(
∂sĝ

A
)
+
[(
∂sĝ

R
)2
+ĝR

(
∂2s ĝ

R
)]
ĥ−ĥ

[(
∂sĝ

A
)2−(∂2s ĝA)]}

= i
[
ĝK , ετ̂3+M̂

]
+iDF

{
∂sĝ

R
[
ÂT , ĝ

K
]
+∂sĝ

K
[
ÂT , ĝ

A
]

−
(
ĝRÂT+ÂT ĝ

R
)
∂sĝ

K+
(
ĝKÂT+ÂT ĝ

K
)
∂sĝ

A−2
(
ĝR∂sĝ

K+ĝK∂sĝ
A
)
ÂT

+ĝR
[
∂sÂT , ĝ

K
]
+ĝK

[
∂sÂT , ĝ

A
]
+
[
ÂT , ĝ

RÂT ĝ
K+ĝKÂĝA

]}
.

(5.78)

Similarly the Kupryianov-Lukichev boundary conditions are:

2Ljζj

[
∂I ĥj−ĝRj

(
∂I ĥj

)
ĝAj +ĝRj (∂I ĝ

R
j )ĥj+ĥj ĝ

A
j (∂I ĝ

A
j )
]

= [ǧL, ǧR]
K + 2iLjζj

(
ĝRj Â

I
T ĝ

R
j ĥj−ĥj ĝAj ÂI

T ĝ
A
j +ĝRj ĥjÂ

I
T ĝ

A
j −ĝRj ÂI

T ĥj ĝ
A
j

)
.

(5.79)

with j = {L,R}, indicating the material at the left or right of the interface, and ∂I
and ÂI

T are the values of the derivative and the SO field at the interface.
The form in which Eqs. (5.78) and (5.79) are expressed is not suitable for

numerical calculations. In order to obtain a suitable form of these equations, it is
useful to introduce a decomposition of the distribution matrix ĥ as done in Ref.[125].
It is possible to decompose ĥ as follows:

ĥ = hnρ̂n, (5.80)

where the coefficients hm are defined as:

hn =
1

4
Tr
{
ĥρ̂n

}
. (5.81)

The set of basis matrices ρ̂n represents the block diagonal spin⊗Nambu space and
has the following elements:

ρ̂0 = τ̂0σ̂0, ρ̂1 = τ̂0σ̂1, ρ̂2 = τ̂0σ̂2, ρ̂3 = τ̂0σ̂3,
ρ̂4 = τ̂3σ̂0, ρ̂5 = τ̂3σ̂1, ρ̂6 = τ̂3σ̂2, ρ̂7 = τ̂3σ̂3.

(5.82)

Substituting Eq. (5.80) in Eq. (5.78), multiplying from the left by ρ̂m/4 and then
taking the trace we can rewrite the kinetic equations as:
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Mmn∂
2
shn=− (∂sMmn+Qmn+Amn) ∂shn−

(
∂sQmn+A

d
mn+A

q
mn+Vmn

)
hn,

(5.83)
where we have defined the following matrices:

Mmn =
1

4
Tr
{
ρ̂m
(
ρ̂n − ĝRρ̂nĝ

A
)}
, (5.84a)

Qmn =
1

4
Tr
{
ρ̂m
(
ĝR∂sĝ

Rρ̂n − ρ̂nĝ
A∂sĝ

A
)}
, (5.84b)

Amn =
i

4
Tr
{
ρ̂m

(
ĝRρ̂nĝ

AÂT − ÂT ĝ
Rρ̂nĝ

A + ĝRÂT ĝ
K
m + ĝKmÂT ĝ

A
)}

,

(5.84c)

Ad
mn =

i

4
Tr
{
ρ̂m

(
∂sĝ

R
(
ÂT ĝ

K
n − ĝKn ÂT

)
+
(
ÂT ĝ

K
n + ĝKn ÂT

)
∂sĝ

A
)

+
(
ĝRÂT + ÂT ĝ

R
)
∂sĝ

K
n + ∂sĝ

K
n

(
ÂT ĝ

A − ĝAÂT

)
−2
(
ĝR∂sĝ

K
n + ĝKn ∂sĝ

A
)
+ ĝKn ∂sÂT ĝ

A − ĝR∂sÂT ĝ
K
n

}
, (5.84d)

Aq
mn =

i

4
Tr
{
ρ̂mĝ

RÂT ĝ
K
n ÂT

}
, (5.84e)

Vmn =
i

4
Tr
{[
ρ̂m, ετ̂3 + M̂

] (
ĝRρ̂n − ρ̂nĝ

A
)}
, (5.84f)

where ĝKn = ĝRρ̂n − ρ̂nĝ
A. With the same approach the boundary conditions of

Eq. (5.79) become:

M j
mn∂Ih

j
n =

1

2Ljζj

(
CLR
mnh

R
n − CRL

mnh
L
n

)
−
(
Dj

mn +Aj
mn

)
hjm, (5.85)

with:

M j
mn =

1

4
Tr
{
ρ̂m
(
ρ̂n − ĝRj ρ̂nĝ

A
j

)}
, (5.86a)

Cij
mn =

1

4
Tr
{
ρ̂m
(
ĝRi ĝ

R
j ρ̂n + ρ̂nĝ

A
j ĝ

A
i − ĝRi ρ̂nĝ

A
j − ĝRj ρ̂nĝ

A
i

)}
, (5.86b)

Dj
mn =

1

4
Tr
{
ρ̂m
(
ĝRj ∂I ĝ

R
j ρ̂n − ρ̂nĝ

A
j ∂I ĝ

A
j

)}
, (5.86c)

Aj
mn =− i

4
Tr
{
ρ̂m

(
ĝRj Â

I
T ĝ

R
j ρ̂n − ρ̂nĝ

A
j Â

I
T ĝ

A
j + ĝRj ρ̂nÂ

I
T ĝ

A
j − ĝRj Â

I
T ρ̂nĝ

A
j

)}
.

(5.86d)
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The boundary conditions can then be used to include a voltage bias in the desired
system by placing at its interface a bulk material or reservoir. It is then required to
know the expression of the bulk distribution matrix in the reservoir, at equilibrium
we simply have ĥ = tanh(βε/2)ρ̂0. When a voltage V is introduced the distribution
matrix becomes:

ĥ =

(
tanh [β(ε+ eV )/2]σ0 0

0 tanh [β(ε− eV )/2]σ0

)
. (5.87)

More generally, it is possible to have a spin reservoir, which would allow to inject
a spin-polarized current. Such a reservoir can be described by introducing two
voltages for particles with different spins, V↑ and V↓. We then define V = (V↑ +
V↓)/2 and Vs = (V↑−V↓)/2 and an arbitrary spin quantization axis s = (sx, sy, sz).
Then the distribution matrix ĥ can be written in terms of its component hn defined
in Eq. (5.81):

h0 = h++ + h+− + h−+ + h−−, (5.88a)

h1 = (h++ − h+− + h−+ − h−−)sx, (5.88b)

h2 = (h++ − h+− + h−+ − h−−)sy, (5.88c)

h3 = (h++ − h+− + h−+ − h−−)sz, (5.88d)

h4 = h++ + h+− − h−+ − h−−, (5.88e)

h5 = (h++ − h+− − h−+ + h−−)sx, (5.88f)

h6 = (h++ − h+− − h−+ + h−−)sy, (5.88g)

h7 = (h++ − h+− − h−+ + h−−)sz. (5.88h)

(5.88i)

The formalism presented thus allows the study of superconducting hybrid structures
with a voltage bias. The bias is applied through the inclusion of a bulk normal metal
in the hybrid structure, and it will be considered in the study of a NFS structure
with a curved ferromagnet3.

3Related work has been carried out in collaboration with Alv J. Skarpeid, who considered similar
systems in his master thesis [298].



Chapter 6

Curvature Effects in
Superconductor-Ferromagnet
Hybrid Structures

In this chapter we will present some curvature induced effects in SF hybrid struc-
tures. Firstly, we will study an SFS junction with a planarly curved ferromagnet,
showing that the curvature induces a 0− π transition in the current flowing through
the junction. Moreover, we will analyze how curvature produces long-range triplets
in the system. Then we will consider an SF hybrid nanowire with a planarly curved
ferromagnet, demonstrating the existence of a spin-valve effect controlled by the
curvature. We will also consider an SFS junction with a ferromagnetic helix instead
of a planarly curved ferromagnet, and describe it through some observables like
magnetization, charge current and spin current. Finally, we will consider an NFS
hybrid structure with a planarly curved F, and a voltage bias introduced through the
normal metal N. Throughout this chapter, unless stated, we set ℏ = 1.

6.1 Diffusive SFS Josephson Junctions with Curved Fer-
romagnetic Weak Link

Josephson junctions containing a ferromagnetic weak link can exhibit a ground
state with a π phase difference between the superconducting contacts (π-state),
for some thicknesses and exchange field values of the weak link [58, 299, 300].
Junctions in such a state, named π-junctions, have been realized experimentally for
the first time in 2001 [301, 302], and they have been attracting much interest for
their potential applications in solid state quantum computing [303–306].

Tuning the transition between the 0 and π states, where the current flows in

79
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Figure 6.1: Model system. SFS junction having a ferromagnet with constant curvature as weak link.
The three orthonormal unit vectors T̂ (θ), N̂(θ) and B̂(θ) identifying the curvilinear coordinates are
also shown.

opposite directions through the junction, has direct applications for the realization
of Josephson MRAM devices for superconducting computers [307]. As mentioned
above the transition can be governed by altering the length of the ferromagnetic
weak link. However, this is not practicable to do in-situ and must be done by
preparing multiple samples of different lengths. However, in 2016 it has been shown
experimentally that it is possible to control the 0 − π transition in a Josephson
junction containing a ferromagnetic spin valve [308]. Moreover, it has recently
been predicted that the 0− π transition can be realized by altering the strength of
the SOC via voltage gating [309]. In this section and in Paper I [1], we show that
dynamically changing the curvature of the magnet via in-situ strain manipulation,
for example via photostriction, piezoelectrics or thermoelectric effects [310, 311],
allows for a single-sample 0− π transition in the diffusive regime, without the need
to apply a varying voltage. Moreover, we show that curvature can yield long-ranged
Josephson currents without any magnetic inhomogeneities or intrinsic SOC.

6.1.1 Diffusive equations

We consider the SFS junction with a planarly curved ferromagnet depicted in
Fig. 6.1, in absence of any intrinsic SOC. As discussed in Section 5.3.5 the curvature
κ and the curvature-induced SOC αN enter in the weak proximity equations in the
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same way, so that it is reasonable to ignore the curvature-induced SOC. Furthermore,
we assume BCS bulk superconductors at the two interfaces with the ferromagnet,
so that we do not need to solve self-consistently the Usadel equation in the whole
system.

The Riccati parametrized Usadel equation of Eq. (5.70) for the ferromagnet
thus becomes:

DF

{
∂2sγ+ 2(∂sγ)Ñ γ̃(∂sγ)

}
= −2iεγ − ih · (σ(s)γ − γσ∗(s)), (6.1)

where the dependence on the curvature is implicitly contained in the Pauli matrices
σT,N,B(s). Superconductivity is introduced in the system through the Kupryianov-
Lukichev boundary conditions from Eq. (5.72b)

∂IγF =
1

LF ζF
(1−γF γ̃S1)NS1(γF−γS1), (6.2a)

∂IγF =
1

LF ζF
(1−γF γ̃S2)NS2(γS2−γF ). (6.2b)

(6.2c)

We will consider our one-dimensional curved wire to be lying in the xy plane as
represented in Fig. 6.1, so that the set of three unit vectors is:

T̂ (s) = − sin θ(s)x̂+ cos θ(s)ŷ, (6.3a)

N̂(s) = − cos θ(s)x̂− sin θ(s)ŷ, (6.3b)

B̂(s) ≡ ẑ, (6.3c)

with θ(s) = κs.

6.1.2 Dynamic 0− π transition and long-ranged currents

Solving the Usadel equation, and therefore finding the quasiclassical Green function
of the system, allows us to calculate many interesting quantities. We will focus on
the charge current given by:

IQ
IQ0

=

∫ +∞

−∞
dεTr {τ̂3 (ĝR∂sĝR − ĝA∂sĝA)} tanh(βε/2). (6.4)

Here IQ0 = N0eDFA∆0/4LF , where N0 is the density of states at the Fermi
energy, A the interfacial contact area and ∆0 the bulk gap of the two superconduc-
tors. Lengths and energies have been normalized to LF (which in turn is scaled
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Figure 6.2: Magnitude of the critical current as a function of the curvature for different lengths LF of
the ferromagnet, with T = 0.005Tc, h⃗ = ∆0T̂ , ζ = 3. A 0− π transition occurs when changing the
curvature of the wire.

with the superconducting coherence length ξS) and superconducting bulk gap ∆0

respectively, so that the integral on the right side of Eq. (6.4) is dimensionless.

We investigate the system portrayed in Fig. 6.1 by solving numerically the
boundary value problem defined by Eqs. (6.1), (6.2a) and (6.2b) for various lengths
LF of the ferromagnet and multiple curvatures κ for each length. We set the
interface parameter with both superconductors to be ζ = 3 and the temperature to
T = 0.005Tc. We consider the exchange field inside the curved ferromagnet to be
tangential to its curvature profile at each point, h(s) ∥ T̂ (s). This assumption is
justified by the considerations of Section 4.2.2.

In Fig. 6.2 we plot the absolute value of the critical current as given by Eq. (6.4)
as a function of the curvature κ of the ferromagnet across the junction for different
lengths LF . From the figure we see that starting in the 0 state with a straight wire,
increasing the curvature results in a decreasing magnitude of the critical current.
For a certain κ, the current is completely suppressed, and further increasing the
curvature produces a revival of the critical current, which then flows in the opposite
direction with respect to the initial case, indicating the 0 − π transition. Similar
behaviors are observed for all the length shown in Fig. 6.2.
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Figure 6.3: Charge current as a function of the phase difference ϕ, showing separately the singlet
(solid lines) and triplet (dashed lines) contributions with T = 0.005Tc, h⃗ = ∆0T̂ , ζ = 3, and
LF = 2ξS , for a straight (κ = 0) and semi-circular (κLF = π) ferromagnetic wire. Increasing the
curvature causes the triplet contribution to change sign.

It is useful to split the charge current into singlet and triplet contributions, I0 and
It respectively. This will help us explain how the 0− π transition appears, and to
show that the role of the triplets is crucial in tuning it. It can be shown that the charge
current given by Eq. (6.4) only depends on the anomalous quasiclassical Green’s
function f . As usual f0 represents the singlet contribution and d = (dT , dN , dz)
the d-vector represents the triplet contribution. The charge current can be written as
IQ/IQ0 = I0 + It, where It = IT + IN + Iz + Iκ and:

I0 = −8

∫ ∞

0
dεRe

{
f̃0∂sf0 − f0∂sf̃0

}
tanh(βε/2), (6.5a)

Ij = 8

∫ ∞

0
dεRe

{
d̃j∂sdj − dj∂sd̃j

}
tanh(βε/2), (6.5b)

Iκ = 16κ

∫ ∞

0
dεRe

{
d̃NdT − d̃TdN

}
tanh(βε/2), (6.5c)

with j = (T,N, z). The terms I0 and Ij represent the contribution coming from
the singlet and triplets with spin aligned in the j direction respectively. The last
term Iκ instead defines an inverse Edelstein term due to the curvature. This kind of
contribution appears whenever the d-vector undergoes a rotation and is therefore
non zero only in the presence of finite curvature and/or spin-orbit coupling [312].

In Fig. 6.3 we plot these different contributions to the charge current for two
different values of κ and LF = 2ξS . It can be seen that for κ = 0 triplets and singlet
charge currents have opposite sign, with the triplets contribution, which comes only
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Figure 6.4: Singlet (solid line), short-range (dashed line) and long-range (dotted line) triplets contri-
butions to the critical current as a function of LF , with T = 0.005Tc, |h| = 50∆0, for κLF = π
and κ = 0 (inset).

from the short-range component IT , being generally bigger than the singlet one.
Interestingly however, when increasing the curvature the triplet current changes
sign, i.e. starts flowing in the opposite direction, because of the appearance of the
long-range component IN , while the singlet contribution does not. Hence, the 0−π
transition is tuned by the curvature through its effect on the triplets. Furthermore,
in the π-phase for κ = π/LF the singlet and triplet currents have the same sign
and thus flow in the same direction. Consequently, the two contributions add up,
resulting in a larger critical current in the π-phase at κ = π/LF compared to the
0-phase at κ = 0.

To highlight that the triplets generate a long range Josephson effect, we analyze
Fig. 6.4, where we plot the singlet and triplets contributions to the critical current
as a function of LF for a strong exchange field |h| = 50∆0. While for κ = 0, in
the inset of the figure, there is no long-range component, the case κLF = π shows
the long-range component IN decaying with a much larger decay length than the
singlet contribution I0 and the short-range triplet contribution IT .

It is useful to consider the limit of weak proximity effect. Setting τ = αN =
αB = 0 in Eqs. (5.77a) to (5.77d), we get the following equations for the singlet
and triplet components:
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DF

2
∂2sf0 = −iεf0 − ih · d, (6.6a)

DF

2

(
∂2sdT−2κ∂sdN

)
=

(
−iε+DFκ

2

2

)
dT−if0hT , (6.6b)

DF

2

(
∂2sdN+2κ∂sdT

)
=

(
−iε+DFκ

2

2

)
dN−if0hN , (6.6c)

DF

2
∂2sdz = −iεdz − if0hz. (6.6d)

As already highlighted in Section 5.3.5, by inspecting the linearized Usadel equation
for the triplet components, we see that the curvature produces Dyakonov-Perel
terms, describing the spin-relaxation due to precession around the exchange field.
A curvature of κLF = π gives a strong spin-relaxation term which causes a fast
decay even for the LRT component. From a qualitative perspective we can see
that, since the exchange field varies with the position, a LRT component flowing
through the wire will acquire an increasing component parallel to h, i.e. a quickly
decaying short-range component. The SRT component likewise acquires a LRT,
but the conversion region is restricted to the typical decay of the SRT ∼ 1/

√
h. In

order to maximise the LRT generation from the SRT, one should therefore have a
region of high curvature over the spatial decay of the SRT near the superconducting
interface, and then minimal or zero curvature beyond.

Finally, we propose a possible device design for the realization of the 0 − π
transition discussed here. It is generally not practical in experiments to have a full
variation from straight wire to semicircular ring, since the structure the nanowire
would experience high amount of strain and potentially break. However, if one
would manufacture the ferromagnetic weak link with curvature at the value where
no current flow is observed, then increasing or decreasing the curvature by minimal
amounts, would allow to the achieve control of the direction of the current.

6.2 Diffusive SF hybrid nanowires with curvature

The critical temperature Tc of superconducting hybrid structures can be influenced
and controlled through the magnetic properties of ferromagnets, allowing in some
cases to realize so-called superconducting spin-valves. Such devices were proposed
in the form of SF1F2 [313] and of F1SF2 [314, 315] structures: for both it was
shown that the critical temperature of the system is sensitive to the relative orien-
tation of the magnetizations of the two ferromagnets. Furthermore, experiments
studying CuNi/Nb/CuNi trilayers demonstrated that it is possible to control the
critical temperature of the structure by switching between parallel and antiparallel
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Figure 6.5: Superconductor-ferromagnet hybrid nanowire with a ferromagnet with constant curvature.
The orthonormal unit vectors T̂ , N̂ identifying the curvilinear coordinates are also shown.

orientation of the magnetization in the CuNi layers [316, 317]. Control of the
critical temperature can not be achieved in an SF system with a single ferromagnet,
since the critical temperature is not sensitive to the orientation of the magnetization
of the single F layer. However, the presence of spin-orbit coupling changes this
picture as was shown in Ref.[79] for an SF bilayer, where control of the critical
temperature was provided by the presence of Rashba and Dresselhaus SOC in
the ferromagnet. This was confirmed experimentally in a system were Nb was
proximity coupled to an asymmetric Pt/Co/Pt trilayer [80].

Here and in Paper II [2] we show that geometric curvature alone allows for
control of the superconducting critical temperature of an SF structure with a curved
ferromagnet, thereby realizing a superconducting spin-valve effect. We also show
that the inclusion of SOC can increase the magnitude of this effect.

6.2.1 Diffusive Equations and Weak Proximity Effect

We consider the system depicted in Fig. 6.5, a hybrid SF nanowire with a planarly
curved ferromagnet. Here we allow for the presence of both curvature-induced
and intrinsic SOC. Since the aim is to calculate the critical temperature of the
hybrid structure, we can no longer assume a bulk solution for the superconductor.
Therefore, we need to find a self-consistent solution for the quasiclassical Green’s
function of the hybrid system, which we will then use to compute the critical
temperature of the system.
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The Usadel equations in the S and F and the boundary conditions defining the
boundary value problem are given in Eqs. (5.70), (5.71), (5.72a) and (5.72b). For
the sake of convenience we rewrite these equations. The Usadel equation in the
ferromagnet and in the superconductor are respectively:

DF

{
∂2sγ + 2(∂sγ)Ñ γ̃(∂sγ)

}
=−2iεγ

−i(h · σγ−γh · σ∗)−iDF

[
(∂sAT )γ +γ(∂sA

∗
T )
]

+DF

[
A2γ − γA∗2 + 2(Ajγ + γA∗

j )Ñ(A∗
j + γ̃Ajγ)

]
+2iDF

[
(AT+γA

∗
T γ̃)N(∂sγ)+(∂sγ)Ñ(A∗

T+γ̃ATγ)
]
, (6.7a)

DF

{
∂2yγ + 2(∂yγ)Ñ γ̃(∂yγ)

}
=−2iεγ−∆σ2+γ∆

∗σ2γ, (6.7b)

where the SU(2) SO field is A = (αNσB − αBσN , 0, 0). The boundary conditions
at the SF interface are:

∂IγS=
1

LSζS
(1−γS γ̃F )NF (γF−γS)+iATγS+iγSA

∗
T , (6.8a)

∂IγF =
1

LF ζF
(1−γF γ̃S)NS(γF−γS)+iATγF+iγFA

∗
T . (6.8b)

It is useful to consider the weak proximity equations in the ferromagnet. The
equations for the triplets components are obtained by setting τ = 0 in Eqs. (5.77a)
to (5.77c), while the singlet one remains unchanged. These equations read:

iDF

2
∂2sdT−iDF (κ+2αN )∂sdN−2iDFαB∂sdz = f0hT

+

{
ε+

iDF

2

[
(κ+2αN )2+4α2

B

]}
dT , (6.9a)

iDF

2
∂2sdN+iDF (κ+2αN )∂sdT = f0hN

+

{
ε+

iDF

2
(κ+2αN )2

}
dN+iDFαB(κ+2αN )dz, (6.9b)

iDF

2
∂2sdz+2iDFαB∂sdT =f0hz

+
{
ε+ 2iDFα

2
B

}
dz−iDFαB(κ+2αN )dN , (6.9c)

iDF

2
∂2sf0 = εf0 + h · d. (6.9d)
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As specified in Section 5.3.5, κ, αN and αB induce both spin-precession, which
provides LRT generation, and spin-relaxation, which causes a decay in all triplet
components. We already provided an estimate of the value for the crossover
between the regime of LRT generation and triplet decay by comparing the spin-
precession prefactor. Considering geometric curvature only the crossover occurs
when κLF/π ∼ 0.6. The inclusion of SOC terms will shift the transition towards 0.
This effect is crucial to understand how curvature and spin-orbit coupling influence
the critical temperature of the system.

6.2.2 Triplet spin-valve effect controlled by curvature

In order to obtain numerical results for the hybrid system of Fig. 6.5, we look for a
self-consistent solution to the Usadel equation given by Eqs. (6.7a) and (6.7b), with
the boundary conditions of Eqs. (6.8a) and (6.8b), and the following gap equation
[79]:

∆(s) = N0λ

∫ ∆0 cosh(1/N0λ)

0
dε Re {f0(ε, s)}

× tanh

(
π

2eγ
ε/∆0

T/Tc0

)
, (6.10)

where λ is the coupling constant between electrons, N0 is the density of states
at the Fermi level, γ ≃ 0.577 is the Euler-Mascheroni constant, and T is the
temperature. ∆0 and Tc0 are the superconducting gap and critical temperature of
the bulk superconductor, respectively.

To calculate the critical temperature numerically we make use of a binary search
algorithm. With this, after calculating ∆(s, T ) for N different values of T , we
obtain the critical temperature with a precision of Tc0/2N+1. The binary search
algorithm is presented in [318] and can be found as part of the set of numerical
programs GENEUS openly accessible on GitHub [295].

Once a self-consistent solution is found, we can extract the critical temperature
of the system for different values of the geometrical curvature κ, the intrinsic and
extrinsic (curvature-induced) spin-orbit coupling constants αB and αN , and ferro-
magnet and superconductor lengths LF and LS . Again, we consider the exchange
field of the ferromagnet to be along the tangential direction and the interface pa-
rameter to be ζ = 3. Similarly to the previous section energies are renormalized
to the bulk gap of the superconductor at zero temperature ∆0, and lengths to its
(diffusive) coherence length ξ0. Furthermore, we consider a conventional s-wave
superconductor with the material parameter N0λ = 0.2.

We note that the critical temperature of the hybrid system will always be
smaller than the bulk critical temperature of the superconductor. This is due to the
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Figure 6.6: Critical temperature of the system Tc divided by the critical temperature of the isolated
superconductor Tc0 as a function of curvature of the ferromagnet κ, for LS = 0.55ξ0 and LS = ξ0
(inset) and different lengths of the ferromagnet LF , with h = 10∆0T̂ and zero spin-orbit coupling.

proximity effect, where singlet correlations leak into the ferromagnet. As is clear
from Eq. (6.10) a decrease in singlets in the superconductor directly corresponds to a
reduction of the singlet order parameter and consequently of the critical temperature.

Analyzing the curvature dependence of the critical temperature of the hybrid
system, a range of parameters gives a significant variation with respect to the bulk
critical temperature, suggesting a superconducting triplet spin-valve effect tunable
via the geometrical curvature. To understand how this effect works we consider
again the weak proximity effect limit.

To study this spin-valve effect, we start by considering the case of zero spin-orbit
coupling. We consider two different lengths of the superconductor: LS = 0.55ξ0
and LS = ξ0. In Fig. 6.6 we plot the behavior of the critical temperature as a
function of κLF /π, for LS = 0.55ξ0 and different lengths of the ferromagnet
LF . For a very short ferromagnetic wire, LF = 0.20ξ0, the critical temperature
Tc of the SF structure undergoes a variation of ∼ 40% of the value of the bulk
critical temperature of the superconductor Tc0, thus giving a very good spin-valve
effect. For such a short ferromagnet to be realizable, one would require a large
coherence length ξ0. For LF = 0.40ξ0 and LF = 0.50ξ0 there is still a significant
variation of Tc: ∼ 20% and ∼ 15% of the value of Tc0, respectively. Interestingly,
for LS = 0.55ξ0 and LF ̸= 0.2ξ0 we note a non-monotonic behavior of Tc: at
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Figure 6.7: Critical temperature of the system Tc divided by the critical temperature of the isolated
superconductor Tc0 as a function of curvature of the ferromagnet κ, for different values of the
exchange field h, with LS = 0.55ξ0, LF = 0.50ξ0 and zero spin-orbit coupling.

small values of κ, Tc decreases and then starts to increase again, due to the interplay
of spin-precession and relaxation mechanisms. There is no decrease in Tc at
small κ for LS = 0.55ξ0 and LF = 0.2ξ0 because in this case the length of the
ferromagnet is too small for the spin-precession to contribute significantly. In the
inset of Fig. 6.6, on the other hand, we plot the case LS = ξ0 and we note two
differences: (i) the critical temperature of the hybrid system is much closer to that
of the bulk superconductor and (ii) its variation when changing the curvature is
substantially reduced. This is not surprising since we expect the superconductivity
to be more robust with respect to proximity effects when increasing the length of
the superconductor. Therefore, in order to have a stronger spin-valve effect, we will
from now on consider the case LS = 0.55ξ0.

We also analyze the effect of varying the magnitude of the exchange field
h in the curved ferromagnet. In Fig. 6.7 we plot the ratio Tc/Tc0 as a func-
tion of the curvature κ for three values of the magnitude of the exchange field
|h| = (∆0, 10∆0, 50∆0) with LS = 0.55ξ0, LF = 0.50ξ0 and zero spin-orbit
coupling. Increasing the magnitude of the exchange field reduces Tc due to the
inverse proximity effect. The higher the value of the magnetization the more the
singlet correlations are suppressed inside the superconductor, reducing the critical
temperature of the system.

We now consider the presence of curvature-induced spin-orbit coupling αN .
As we discussed in Section 4.1.2, αN is proportional to the curvature, so that we
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(a) (c)(b)

Figure 6.8: Critical temperature of the system Tc divided by the critical temperature of the isolated
superconductor Tc0 as a function of curvature of the ferromagnet κ, for: (a) LF = 0.2ξ0, (b)
LF = 0.5ξ0, (c) LF = ξ0 and different values of the curvature-induced spin-orbit proportionality
constant a, with LS = 0.55ξ0, LF = 0.50ξ0, h = 10∆0T̂ and αB = 0. The inset of (b) shows
Tc/Tc0 as a function of the curvature for κLF /π values up to 4, for αN = 0.

can define it to be αN = aκ, with a = ℏΛg|e|/4mc2. In Fig. 6.8 we plot Tc/Tc0 as
a function of κ for different lengths of the ferromagnet and four different values
of the curvature-induced SOC proportionality constant a each, with LS = 0.55ξ0,
h = 10∆0T̂ . The introduction of a finite a results in a rescaling of the a = 0
curves. As was noted in Section 5.3.5, in Eqs. (6.9a) to (6.9c) κ and αN always
appear together in a way that allows us to introduce an effective curvature κ̃ =
κ + 2αN = κ(1 + 2a). Therefore, the case of finite αN can be considered as
equivalent to the a = 0 case extended to higher curvatures. To make this more clear,
in the inset of Fig. 6.8(b) we plot Tc/Tc0 as a function of the curvature for κLF

ranging from 0 to 4π, for LS = 0.55ξ0, LF = 0.50ξ0, h = 10∆0T̂ and a = 0.
Comparing in Fig. 6.8(b) the a = 0.5 curve with the inset, we note that the two
curves look equivalent, showing the effect quantitatively. This equivalency also
shows that the weak proximity effect limit is a very good approximation to the full
Usadel equation in this case.

Again, we can provide a suggestion which could facilitate the realization of
devices to exploit the superconducting spin-valve effect in SF hybrid nanowires
with curvature. To circumvent the problem of achieving large curvature variation in
the curved ferromagnet, one could fabricate the device with the value of curvature
corresponding to where our results suggest a steep variation of the critical temper-
ature, e.g. see the dark blue curve in Fig. 6.8(a). Consequently, slightly varying
the curvature from that value would allow to achieve a considerable change in the
critical temperature.
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Figure 6.9: (a) Illustration of an SFS junction with right-handed (helicity ε = ±1) ferromagnetic helix
with constant curvature and torsion, showing the unit vectors T̂ , N̂ and B̂ identifying the curvilinear
coordinates. (b) Illustration of the parameters used to define the helix in cylindrical coordinates.

6.3 Diffusive SFS Josephson Junctions with Ferromag-
netic Helix

Here we will consider an SFS junction with a ferromagnetic helix in the absence of
intrinsic SOC. We will analyze the effect of the inclusion of torsion in the system,
as well as the handedness of the helix. Again we will assume a bulk solution for the
superconductors and consider the exchange field to be in the tangential direction.

A helical nanowire, having radius R, 2cπ pitch, i.e. the height of a complete
helix turn, can be defined in cylindrical coordinates as:

x = R cosϕ, (6.11a)

y = εR sinϕ, (6.11b)

z = cϕ, (6.11c)

where ϕ = [0, 2nπ], n defines the number of turns, and ε = ±1 is the helicity,
i.e. ε = 1 identifies a right-handed helix and ε = −1 identifies a left-handed helix.
The value of c determines how much the nanowire is tilted out of plane. Curvature
and torsion are respectively given by κ = R/(R2 + c2) and τ = c/(R2 + c2).
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The arclength coordinate is s = ϕ
√
R2 + c2. The helix can be parametrized

through the function r(ϕ) = R cosϕεx̂ + R sinϕŷ + cϕẑ, which, with the usual
definitions T̂ (ϕ) = ∂ϕr(ϕ)/ |∂sr(ϕ)|, N̂ (ϕ) = ∂ϕT̂ (ϕ)/

∣∣∣∂ϕT̂ (ϕ)
∣∣∣ and B̂(ϕ) =

T̂ (ϕ)× N̂ (ϕ), allows to get:

T̂ (ϕ) =− cosα sinϕx̂+ ε cosα cosϕŷ + sinαẑ, (6.12a)

N̂ (ϕ) =− cosϕx̂− ε sinϕŷ, (6.12b)

B̂(ϕ) =ε sinα sinϕx̂− sinα cosϕŷ + ε cosαẑ, (6.12c)

where we have defined α = atan(τ/κ). The components σT,N,B(s) in the ferro-
magnet are obtained from this set of three unit vectors.

6.3.1 Current-Phase Relation

First of all we analyze the current phase relation of the system by calculating the
charge current as given by Eq. (6.4). We note that the charge current IQ is not
sensitive to the helicity of the helix.

It is worth noting that, in order to analyze results for a fixed helix length
when varying κ and τ , we need to establish a relationship between curvature and
torsion. The length of the helix for a given number of turns of the helix n is given
by L = 2nπ

√
R2 + c2 = 2nπ/

√
κ2 + τ2, which provides us of the relationship

needed.
In Fig. 6.10 we report the current-phase relation of the junction for LF = 2ξ0,

T = 0.005Tc, |h| = ∆0 and zero SOC, and number of turns of the helix ranging
from 0.5 to 3. An interesting effect of the inclusion of torsion is that the current
phase relation acquires a 2ϕ behavior for some κ and τ pairs, rather than the usual
sinϕ. This is observed for any number of turns.

Similar higher harmonics contributions have been predicted in SF1F2S with
noncollinear magnetization [319], as well as in SFS junctions in the clean and
diffusive limits [320–323]. They have also been predicted and observed in d-wave
superconductors [324, 325]. The appearance of the higher harmonic contributions
is generally attributed to the coexistence of stable and metastable 0 and π states
[320].

The ferromagnetic helix is a limiting case of multiple noncollinear layers, where
the curvature to torsion ratio governs the relative rates and angle of spin precession
and relaxation, which in turn govern the 0 − π crossover, as shown previously
in this chapter and in Paper I [1]. Therefore, it is reasonable to assume a similar
mechanism for the appearance of the higher harmonic contributions also in this
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Figure 6.10: Current phase relation for an SFS junction with ferromagnetic helix as weak link for
different values of n, with LF = 2ξ0, T = 0.005Tc, h = ∆0T̂ and zero SOC.

case, due to the influence of κ and τ on singlet and triplet components of the charge
current.

6.3.2 Magnetization

Here we discuss the proximity induced magnetization in the ferromagnet as a
function of the position at zero phase difference between the superconductors,
in right-handed and left-handed helices. The handedness of the helix is intro-
duced by choosing the value of the helicity ε in the parametrization Eqs. (6.12a)
to (6.12c), used for the numerical calculations. The magnetization is obtained
through Eq. (5.49). The results are reported in Fig. 6.11 for the magnetization in
the different directions. It is possible to note the influence of the handedness of
the helix, comparing the right-handed helix of Fig. 6.11(a) with the left-handed
helix of Fig. 6.11(b). We can see that, while the magnetization in the tangential and
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Figure 6.11: Magnetization for the different spin directions T,N,B, in (a) ε = +1 right-handed
ferromagnetic helix and (b) ε = −1 left-handed helix as a function of the position, for different
values of n, with LF = 2ξ0, T = 0.005Tc, h = ∆0T̂ and zero SOC.

normal direction coincide for the two helicities, the magnetization in the binormal
direction has opposite sign between right-handed and left-handed helix. It is also
interesting to note that the magnetization in the tangential and binormal direction
are symmetric throughout the helix, while the magnetization in the normal direction
is asymmetric. Moreover, we highlight the plateau in the binormal magnetization,
realized for n ̸= 0.5, which produces a constant component for a good portion of
the helix, see e.g. the case n = 1.

6.3.3 Spin Current

Finally we calculate the spin current in the ferromagnet as a function of the position
at zero phase difference, comparing right-handed and left-handed helices. The
formula for the spin current flowing in the wire is obtained from spin current
density of Eq. (5.57):

IµS (s) = IS0

∫ ∞

−∞
dεjµS(s, ε), (6.13)

where µ = {T,N,B}, IS0 = ℏN(0)D/32L and we have defined the spectral spin
current jµS = Tr

{
σ̂µτ̂3(ǧ∂sǧ)

K
}

. We report the results in Fig. 6.12. Again we can
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Figure 6.12: Spin currents with spins pointing in the T,N,B directions, in (a) ε = +1 right-handed
ferromagnetic helix and (b) ε = −1 left-handed helix as a function of the position, for different
values of n, with LF = 2ξ0, T = 0.005Tc, h = ∆0T̂ and zero SOC.

note the differences occurring between the right-handed helix of Fig. 6.12(a) and
the left-handed helix of Fig. 6.12(b). Differently from the magnetization, the spin
current with spin directed along the tangential and normal directions have opposite
sign for the two helicities, while the spin current with spin along the binormal
direction coincides. Again, tangential and binormal components are symmetric
while the normal components is asymmetric. We also observe oscillations in all the
components of the spin currents, with the number of oscillations increasing with
the number of turns n.

We note that the spin current does not present a conserved component as a
consequence of the geometry dependent exchange field, differently from what is
observed in superconducting hybrid structures with a straight ferromagnet with
constant exchange field [81, 326]. Nonetheless, it is possible to define a conserved
quantity through analytical considerations. Using the Frenet-Serret formulas of
Eq. (4.2) we can define the following constant spin current component:

ĪS(s)

IS0
=

∫ ∞

−∞
dε

{
j
∥
S(s, ε)−

∫ s

0
ds′
[
hN
(
−κjTS (s′)+τjBS (s′)

)
+(κhT−τhB) jNS (s′)

]}
,

(6.14)
where j∥S = Tr

{
(σ̂ · h)τ̂3(ǧ∂sǧ)K

}
is the spectral spin current with spin parallel to
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Figure 6.13: Normal metal-superconductor-ferromagnet hybrid nanowire with a ferromagnet with
constant curvature. The orthonormal unit vectors T̂ , N̂ identifying the curvilinear coordinates are
also shown.

the exchange field and hT , hN , hB are the components of the exchange field along
the T̂ , N̂ , B̂ directions. When the exchange field is directed along the tangential
direction Eq. (6.14) reduces to:

ĪS(s)

IS0
=

∫ ∞

−∞
dε

{
jTS (s, ε)− κhT

∫ s

0
ds′jNS (s′)

}
. (6.15)

Despite being mathematically conserved along the helix structure, this spin compo-
nent does not constitute a realistic observable on its own.

6.4 Non Equilibrium Spin Currents in Diffusive NFS hy-
brid structure with curved ferromagnet

To conclude this chapter we consider a normal metal-ferromagnet-superconductor
hybrid nanowire with a curved ferromagnet, where we assume bulk solutions
both for the normal metal and the superconductor. The normal metal is used to
apply a voltage bias to the nanostructure. In this case together with the Usadel
equation Eq. (6.1) we need to solve the kinetic equation for the distribution matrix
ĥ Eq. (5.78). As usual, the exchange field in the ferromagnet is chosen in the
tangential direction: h⃗ = ∆0T̂ , and we set the interface parameters at the NF
interface ζ1 = 15 and at the FS interface ζ2 = 3. We consider a situation were a
spin current is injected through the normal metal, by applying voltages for the two
spin directions V↑ = 0.25∆0/e and V↓ = −0.25∆0/e, and we solve the equations
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Figure 6.14: Spin current components inside the ferromagnet as a function of the position, for an
injected spin currents with spin quantization axis at the NF interface along −x̂ (left column) and ẑ
(right column) through the voltages V↑ = 0.25∆0/e and V↓ = −0.25∆0/e, and different values of
the curvature κ of the ferromagnet, with length LF = 2ξS , h⃗ = ∆0T̂ , ζ1 = 15 and ζ2 = 3.

for the retarded Green’s function and the distribution matrix. With the solutions we
can calculate the spin current flowing in the ferromagnet through

IµS (s) = IS0

∫ ∞

−∞
dεTr

{
σ̂µτ̂3(ĝ

R∂sĝ
K + ĝK∂sĝ

A)
}
, (6.16)

where ĝK = (ĝRĥ− ĥĝA) and µ = {T,N, z}.
The results for a ferromagnet of length LF = 2ξS are shown in Fig. 6.14, where

we plot the spin current components inside the ferromagnet as a function of the
position, for two different directions of the spin quantization axis of the injected spin
current at the NF interface and different values of the curvature of the ferromagnet.
We compare the injection of a spin current with spin along −x̂ and with spin along
ẑ at the NF interface s/LF = 0. In both cases the spin direction of the injected spin
current is rotated due to precession around the exchange field in the ferromagnet,
resulting in a conversion to other components with different spins. We observe that
the various components of the spin current do not decay completely through the
ferromagnet, and residual values are found at the FS interface s/LF = 1. These
values are quite small compared to the magnitude of the injected spin current, as an
effect of the process of spin relaxation given the large length of the ferromagnet.
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Figure 6.15: Spin current components inside the ferromagnet as a function of the position, for an
injected spin currents with spin quantization axis at the NF interface along −x̂ (left column) and ẑ
(right column)through the voltages V↑ = 0.25∆0/e and V↓ = −0.25∆0/e, and different values of
the curvature κ of the ferromagnet, with length LF = 0.8ξS , h⃗ = ∆0T̂ , ζ1 = 15 and ζ2 = 3.

In Fig. 6.15 we plot again the spin current components for a shorter ferromagnet
with LF = 0.8ξS , again for an injected spin current with two different spin quanti-
zation axis. We note that in this case, higher values of the spin currents are obtained
at the FS interface since the spin relaxation has less impact in this shorter system,
see e.g. the case κLF /π = 2. Moreover, in Fig. 6.15 we plot with a yellow line
ĪS defined in Eq. (6.15). This component is conserved, confirming our analytical
predictions, and appears to have a maximum achieved κLF /π = 1.5, as it can be
seen in Fig. 6.15.
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Chapter 7

Curvature Effects in
Superconductor-Antiferromagnet
Hybrid Structures

In this chapter we present a formulation of the quasiclassical theory for diffusive
curvilinear antiferromagnets. First, we provide details on the newly developed
quasiclassical theory of antiferromagnetic metals in the dirty limit and the corre-
sponding Usadel equation and boundary conditions [327]. Then we generalize
the theory to include geometric curvature in the antiferromagnet and derive a
new form of the Usadel equation. We conclude by applying these equations to a
superconducting-antiferromagnetic helix hybrid structure1.

7.1 Diffusive Theory of Curved Antiferromagnetic Metals

The approach used so far to derive the quasiclassical theory in normal metals,
superconductors and ferromagnetic metals needs to be modified when treating
antiferromagnetic metals (AFMs), owing to their alternating magnetization on the
two different sublattices. Recently, a quasiclassical theory for superconductors and
AFMs has been developed in Ref.[327]. This theory has been applied to the study of
the proximity effect in a S/AFM hybrid structure, showing the appearance of LRTs
[34]. We note that a quasiclassical theory for AF insulators with superconductivity
has also been developed in Ref.[329]. This shows a growing interest in the study
of potential applications of AF within superconducting spintronics. At the same
time, as outlined in Chapter 4, the study of curvilinear antiferromagnetism is also

1This project has been carried out in collaboration with Magnus S. Skjærpe for the realization of
his master thesis [328].
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experiencing significant advances. Therefore, it seems natural, in the context of
this work, to incorporate geometric curvature in the newly developed quasiclassical
theory of AFMs, in order to investigate new effects for superconducting spintronics
applications.

In this section we will summarize the quasiclassical theory of AFMs developed
in Ref. [327], and will discuss how it can be modified to include geometric curvature.
The result is a quasiclassical equation of motion for two sub-lattice AFMs with the
presence of superconductivity, impurities, spin-orbit coupling and external fields.
Moreover, Ref.[327] provides also spin-active boundary conditions for compensated
and uncompensated interfaces.

An important difference in the derivation of the equation of motion for AF is
the presence of two sub-lattices. This means that the system presents an additional
degree of freedom with respect to what we have presented so far. However, Ref.
[327] presents a way to circumvent this: the sub-lattice degree of freedom is
eliminated by deriving equations for the Green’s function of the conduction band
crossing the Fermi level. This is possible because only states close to the Fermi
level contribute to the quasiclassical Green’s function.

7.1.1 Tight Binding Hamiltonian

The Hamiltonian of an AFM within a tight binding model, ignoring any time
dependence, can be expressed as:

H =
∑

n,m∈A
ψ†
n (H0 + V )nm ψm, (7.1)

where A is the set of unit cells in the material. Each unit cell n contains one orbital
of sublattice A at position rn and one orbital of sublattice B at position rn + δ.
The basis ψ†

n is defined as:

ψ†
n =

(
c†nA↑, c

†
nA↓, c

†
nB↑, c

†
nB↓, cnA↓,−cnA↑, cnB↓,−cnB↑

)
, (7.2)

where the operators c†nAσ, c†nBσ (cnAσ, cnBσ) create (annihilate) an electron with
spin σ in unit cell n at sublattice A and B respectively. The non-interacting part of
the Hamiltonian of Eq. (7.1) is:

(H0)nm=− t

4
[(ρx+iρy)τzχ(rn−rm−δ)+(ρx−iρy)τzχ(rn−rm+δ)]

− 1

2
δnm

{
µτz−Jρzσ ·

[
1+ρz
2

n(rn)+
1−ρz
2

n(rn+δ)

]}
,

(7.3)
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where the parameter t is the nearest neighbor hopping, assumed to occur only
within different sublattices, J is the exchange energy between conducting electrons
and localized spins, µ is the chemical potential and χ(r) is a nearest neighbor
characteristic function, which equals 1 if r is a nearest neighbor vector and 0
otherwise. The vectors σ, τ and ρ have as elements the Pauli matrices in the spin,
Nambu and sublattice spaces. The unit vector n = (sin θ cosϕ, sin θ sinϕ, cos θ),
with θ and ϕ azimuthal and polar angles respectively, identifies the direction of the
Néel vector.

The term V in Eq. (7.1) contains additional effects which may be present in the
system, like superconductivity, spin-splitting or spin-orbit coupling.

The next step taken in Ref.[327] to simplify the Hamiltonian is to rotate the
spin space in order to have the Néel vector always oriented along the z axis. This is
done through the following rotation matrix:

R(r) = exp

{
−i θ

2 sin θ
[n(r)× ez] · σ

}
. (7.4)

With this it is possible to write the new basis vector as:

ψ̃n =

[
1 + ρz

2
R†(rn) +

1− ρz
2

R†(rn + δ)

]
ψn. (7.5)

The Hamiltonian can now be written as

H =
∑

n,m∈A
ψ̃†
n

(
H̃0 + Ṽ

)
nm

ψ̃m, (7.6)

with

(H̃0)nm =− 1

2
δnm (Jρzσz + µτz) +

1

2
Knmτz

− τz
2
{(rn − rm)Knm + [ρBδ,Knm]} ·

(
R†∇R

)
(r),

(7.7)

where ρB = (1− ρz)/2 is the projection operator on the B sublattice and

Knm =
t

2
[(ρx+iρy)τzχ(rn−rm−δ)+(ρx−iρy)τzχ(rn−rm+δ)] . (7.8)

With this Hamiltonian, the next step is to define the Green’s functions in the
Keldysh formalism, similarly to Section 5.1.1, with the additional sub-lattice degree
of freedom, and then derive the Gor’kov equations. As presented in Section 5.1.2,
the problem is simplified by switching to center of mass and relative coordinates



104 Curvature Effects in Superconductor-Antiferromagnet Hybrid Structures

and then perform a Fourier transformation of the relative coordinates, so as to obtain
the Green’s functions as function of the Wigner coordinates. Differently from the
approach presented previously, before defining the quasiclassical Green’s function
and the Eilenberger equation, it is necessary to extract the relevant conduction
band. This is done by diagonalizing the Hamiltonian of the system and redefining
the Green’s function in the new basis. From this new Green’s function, it is then
possible to identify the component associated with the energy band crossing the
Fermi level and continue the derivation only for this component.

7.1.2 Usadel Equation

Having taken the Green’s function of the conduction band crossing the Fermi
level, the dimensionality is then reduced by a factor of two, and we are back to
a Green’s function with the same dimensions as in the conventional case. From
this component it is possible to define the quasiclassical Green’s function like in
Eq. (5.14). A requirement for the quasiclassical theory to be valid in this context is
that, defining ∆E as the smallest energy difference between the Fermi level and
the edges of the conduction band, ∆E must be much larger than any other energy
scale of the system, with the exception of the exchange energy J . After some
simplifications it is possible to obtain an Eilenberger equation similar to Eq. (5.15),
with the difference that the gradient operator ∇ is replaced by a discrete finite
difference operator, since the Green’s function was defined from a lattice model.
However, the distance between neighboring points is short compared to the center
of mass characteristic length scale, so that the quasiclassical Green’s function can
be approximated as a continuous function and the discrete finite difference operator
can be replaced with the gradient operator ∇.

Following similar steps to those presented in Section 5.1.3 it is possible to
derive the equation of motion in the dirty limit for diffusive systems, i.e. the Usadel
equation. The Usadel equation for the quasiclassical Green’s function ǧ is [327]:

i∇ · ǰ +

[
τzϵ− Σ̌ + i

J2

2τimpη2
σzτz ǧσzτz, ǧ

]
= 0, (7.9)

where ǰ is the matrix current, τimp is the elastic impurity scattering time and η =√
J2 +K2, wit K kinetic energy. Again, like in Eq. (5.24), Σ̌ contains appropriate

additional terms which may be present in the material under consideration. The
antiferromagnetic ordering modifies the expression of the matrix current which is
given by:

ǰ = −Dǧ∇ǧ − J2

2η2
ǧ
[
σzτz ǧσzτz, ǰ

]
, (7.10)
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where D is the diffusion constant. Another modification to the Usadel equation
due to antiferromagnetic ordering is represented by the last term in the commutator
of Eq. (7.9), which represents effective magnetic impurities with scattering time
τimpη

2/J2 [327]. Taking advantage of the fact that by definition J2/η2 < 1 it is
possible to solve for ǰ by iteratively inserting it in the right hand side of Eq. (7.10),
and consequently rewrite the equation as:

ǰ = − 1

1 + (J/µ)2

{
Dǧ∇ǧ + J2

2η2
ǧ
[
σzτz [ǧ, σzτz] , ǰ

]}
. (7.11)

This expression is particularly useful to get a series expansion with a fast conver-
gence rate. In the limit of small J/η or vanishing [ǧ, σzτz], the matrix current
becomes:

ǰ ≈ − 1

1 + (J/η)2
Dǧ∇ǧ, (7.12)

which is equivalent to have a renormalized diffusion constantD→ [1+(J/η)2]−1D
and greatly simplifies the solution of the Usadel equation.

To summarize, the Usadel equation for AFMs has three main modifications.
Firstly, because of the procedure of extraction of the conduction band, all the
quantitaties involved, e.g. the self-energy, must be projected into the conduction
band according to the matrix of the change of basis. Secondly, the coupling
between spin and sublattice degrees of freedom resulting from this procedure
produces effective magnetic impurities. Lastly, this magnetic impurities modify
the expression for the matrix current which in the conventional case is simply
ǰ = −Dǧ∇ǧ.

7.1.3 Boundary Conditions

To include AFMs in hybrid structures suitable boundary conditions are needed.
These are also derived in the diffusive regime in Ref.[327], for a superconductor
(S)-antiferromagnet (A) interface. The boundary condition for the matrix current
going from material a = {S,A} to material b = {S,A} is [34, 327]:

en · ǰa = [T̂abǧbT̂ba + iR̂a, ǧa], (7.13)

where en is the outward unit vector normal to the interface, T̂ab is the tunneling ma-
trix and R̂a is the reflection matrix. This equation coincides with the generalization
of the Kupryianov-Lukichev boundary conditions for spin-active interfaces.

In the case of compensated interfaces T̂ab = t and R̂a are scalars and the bound-
ary conditions of Eq. (7.13) reduce to the usual Kupryianov-Lukichev boundary
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conditions. For compensated interfaces, assuming that the tunneling occurs between
the superconductor and the A sublattice, the tunneling matrix is [34]:

T̂SA =
1

2
(t0 + t1m · σ̂) , (7.14)

where t0 = t(
√
η +

√
1− J/η) and t1 = t(

√
η −

√
1− J/η). The unit vector m

identifies the direction of the interface magnetization. The reflection matrix can be
set equal at both sides of the interface, and taking the value [34] R̂S = R̂A = rm·σ̂.

7.2 Usadel Equation for Curved Antiferromagnets

We now consider a curvilinear antiferromagnetic helix with constant curvature
and torsion, and consider the antiferromagnet to be in the homogeneous state. As
specified in Section 4.2.3, in this case the Néel vector lies in the TB plane, and its
orientation is given by n = sinψT̂ + cosψB̂, with ψ ≈ κτL2, L being the length
of the antiferromagnet.

In the limit of small J/η, the matrix current is given by Eq. (7.12), we follow
the same steps of Section 5.3.3 to introduce the space-gauge covariant derivative.
The Usadel equation of Eq. (7.9) for the retarded component of the quasiclassical
Green’s function takes the following form:

−i D

1+(J/η)2
∂̃s

(̂
gR∂̃sĝR

)
+

[
τzϵ− Σ̌+i

J2

2τimpµ2
(n · σ̂)τz ĝR(n · σ̂)τz, ĝR

]
=0,

(7.15)
where σ̂ = diag(σ,σ∗) and the Pauli vector is expressed in curvilinear coordinates
σ = (σT , σN , σB).

7.2.1 Riccati Parametrization

We now introduce the Riccati parametrization for Eq. (7.15) as done in Section 5.3.4.
We obtain the following equation for the AFM in the absence of spin-orbit coupling:

D

1+(J/η)2

{
∂2sγ + 2(∂sγ)Ñ γ̃(∂sγ)

}
=−2iεγ+

J2

τimpη2
[
(n · σ)N(n · σ)γ

+ γ(n · σ)∗Ñ(n · σ)∗+(n · σ)Nγ(n · σ)∗+γ(n · σ)∗Ñ γ̃(n · σ)γ−γ
]
.

(7.16)

The equation in the S is given by Eq. (5.71).
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Regarding the boundary conditions, to solve numerically in the case of com-
pensated interfaces we can use similar equations as those given in Eqs. (5.72a)
and (5.72b). In the case of uncompensated interfaces the expression for the boundary
condition becomes more complicated, as we need to use the spin-active boundary
conditions of Eq. (7.13). The equation for the AFM side of the interface can be
written as:

1

1 + (J/η)2
∂IγAF =

t

4
(1− γAF γ̃AF )(I1γAF + I2), (7.17)

where the terms I1 and I2 are:

I1 =− (gAF gS − fAF f̃S)(t
2
0 + t0t1m · σ)

+ (t20 + t0t1m · σ)(gSgAF − fS f̃AF )

− (gAFm · σgS − fAFm · σ∗f̃S)(t0t1 + t21m · s)
+ (t0t1 + t21m · σ)(gSm · σgAF − fSm · σ∗f̃AF )

+ ir(m · σgAF − gAFm · σ), (7.18a)

I2 =− (gAF fS − fAF g̃S)(t
2
0 + t0t1m · σ∗)

+ (t20 + t0t1m · σ)(gSfAF − fS g̃AF )

− (gAFm · sfS − fAFm · σ∗g̃S)(t0t1 + t21m · s∗)
+ (t20 + t0t1m · σ)(gSm · σfAF − fSm · σ∗g̃AF )

+ ir(fAFm · σ∗ −m · σfAF ), (7.18b)

and ga = 2Na − 1, fa = 2Naγa are the 2 × 2 normal and anomalous Green’s
functions. A similar equation to Eq. (7.17) holds for the S side of the interface.

7.2.2 Weak Proximity Effect

We will now consider the limit of weak proximity effect with the three unit vectors
given by Eqs. (5.74a) to (5.74c) and the expression of the γ matrix of Eq. (5.75). For
simplicity we consider the Néel vector to be along the binormal direction (ψ = 0),
and we get the following equations for the d-vector and singlet components:

iD

2(1+J2/η2)

(
∂2sdT−iDκ∂sdN

)
=

(
ε− J2

τimpη2
+

iDF

2(1+J2/η2)
κ2
)
dT−

iDF

2(1+J2/η2)
κτdB, (7.19a)
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AF

S

Figure 7.1: Superconductor-antiferromagnet hybrid nanowire with a antiferromagnetic helix. The
orthonormal unit vectors T̂ , N̂ identifying the curvilinear coordinates are also shown.

iD

2(1+J2/η2)

(
∂2sdN+iDκ∂sdT − iDF τ∂sdB

)
=

(
ε− J2

τimpη2
+

iD

2(1+J2/η2)
κ2
)
dN , (7.19b)

iD

2(1+J2/η2)

(
∂2sdB−iDτ∂sdN

)
=

(
ε+

iD

2(1+J2/η2)
τ2
)
dB− iDF

2(1+J2/η2)
κτdT , (7.19c)

iD

2(1+J2/η2)
∂2sf0 = εf0. (7.19d)

From these equations we note that no conversion to triplets occurs if they are
not already present in the system, motivating the need of spin-active boundary
conditions. Considering the boundary with a superconductor, the magnetization at
the interface will convert singlet correlations in triplets with spin parallel to it. Once
triplets are generated at the interface, curvature and torsion govern the conversion
between the different components. We also note that the antiferromagnetic exchange
J/η introduces a shift in the energy of the triplets dT and dN .



7.3. Diffusive Superconducting-Antiferromagnetic Helix Hybrid Nanowire 109

7.3 Diffusive Superconducting-Antiferromagnetic Helix
Hybrid Nanowire

Here we consider a superconducting-antiferromagnetic helix hybrid nanowire,
solving the Usadel equation Eq. (7.15) in the antiferromagnet using a bulk solution
for the superconductor. We employ the spin-active boundary conditions of Eq. (7.17)
with interface magnetization parallel to the tangential direction. We will assume
the Néel vector to be oriented along the binormal direction, we choose the elastic
impurity scattering time τ∆0 = 0.01 with ∆0 bulk gap of the superconductor, the
interface parameters t/

√
∆0ξS = 2 and r/∆0ξS = 1. In the following we will

present results for the density of states and magnetization in the antiferromagnet.

7.3.1 Density of States

In Fig. 7.2, we plot the density of states as a function of the energy in the center
of the antiferromagnetic helix with multiple curvature and torsion pairs, for n = 1
number of turns, different values of the antiferromagnetic exchange J and two
lengths of the helix LAF . As we discussed in Section 5.2.1, if the density of states
at zero energy is suppressed, the system is singlet dominated, while if it presents
a peak the system is instead triplet dominated. In Fig. 7.2(a) we plot the results
for LAF = 0.8ξS and we immediately note that to achieve triplet conversion is
necessary to have finite J and τ . When J = 0 the system presents an essentially
featureless density of states for any value of κ and τ , while when J ̸= 0 the
system is gapped whenever τ = 0. Progressively increasing the torsion causes the
appearance of a peak in the density of states. This increase in the density of states at
zero energy for increasing torsion is monotonic for J2/η2 = 0.01 with a maximum
achieved for κ = 0. On the other hand, for J2/η2 = 0.04 the maximum peak is
achieved for a finite κ < τ , increasing the torsion and reducing the curvature from
that value causes a decrease in the peak. The case J2/η2 = 0.05 also presents a
non monotonic behavior but the maximum in the density of states at zero energy is
achieved for κ = 0.

Analyzing the case of a longer antiferromagnet with length LAF = 2ξS , shown
in Fig. 7.2(b), we note a similar behavior. However, it is worth noting some
interesting differences. Firstly, the gap in the density of states is reduced due
to the longer length of the helix which causes more suppression of the singlets.
Secondly, when the density of states features peaks, these are sharper than those for
LAF = 0.8ξS , signaling the presence of long range triplets which survive for longer
distances compared to singlets and short range triplets. Finally, we note again a
monotonic behavior of the density of states at zero energy for J2/η2 = 0.01 and a
non monotonic behavior for J2/η2 = 0.04 and J2/η2 = 0.05. Again a maximum
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Figure 7.2: Density of states as a function of the energy in the center of an antiferromagnetic helix
with n = 1 number of turns for (a) LAF = 0.8ξS and (b) LAF = 2ξS , for different values of
the antiferromagnetic exchange J and curvature and torsion pairs, with τ∆0 = 0.01 and interface
parameters t/

√
∆0ξS = 2, r/∆0ξS = 1.

peak is achieved for J2/η2 = 0.04 for a finite κ < τ , however a reduction in the
curvature and increase in the torsion from the maximum peak causes the appearance
of two peaks shifted from ε = 0, which can be noted observing the κ = 0 and
J2/η2 = 0.04 yellow line in Fig. 7.2(b).

In Fig. 7.3 we show the density of states for n = 2 turns and LAF = 2ξS .
Similarly to the case n = 1 and LAF = 2ξS , for J2/η2 = 0.01 the density of
states at zero energy presents a monotonic increase for increasing torsion, while
J2/η2 = 0.04 and J2/η2 = 0.05 show a non monotonic behavior. Again we
note the appearance of two peaks slightly shifted from ε = 0 when κ = 0 and
J2/η2 = 0.04. Differently from the case n = 1 and LAF = 2ξS , the two shifted
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Figure 7.3: Density of states as a function of the energy in the center of an antiferromagnetic helix
with n = 2 number of turns for different curvature and torsion pairs, with LAF = 2ξS , τ∆0 = 0.01
and interface parameters t/

√
∆0ξS = 2, r/∆0ξS = 1.

peaks are also observed for a slightly smaller torsion and for J2/η2 = 0.05.

7.3.2 Magnetization

In Fig. 7.4 we plot the magnetization in the antiferromagnetic helix as a function
of the position for LAF = 2ξS , J/η2 = 0.01 comparing n = 1 (Fig. 7.4(a)) with
n = 2 number of turns (Fig. 7.4(b)). Consistently with what we observed for
the density of states we note a robust presence of triplets in the system, given
the finite magnetization components. The magnetization is finite even for τ = 0,
but given what we saw for the density of states the singlets are still dominating
over the triplets. Introducing a finite torsion substantially increases the order of
magnitude of the magnetization along the binormal direction at the interface with
the superconductor (see plots with κLAF /π = 1.78 for n = 1 in Fig. 7.4(a), and
with κLAF /π = 3.56 for n = 2 in Fig. 7.4(b)).

We note oscillations in the magnetization components as an effect of the conver-
sion happening from one component to the other. For τ = 0 we observe oscillations
only in the tangential and normal components, while the binormal, i.e. along ẑ,
is simply decaying, meaning that the conversion happens only between MT and
MN due to the curvature. Conversely, when κ = 0 only the normal and binormal
components oscillate, with conversion happening due to the torsion. The amplitude
of the oscillations of the magnetization along the binormal direction observed for
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Figure 7.4: Magnetization as a function of the position in the antiferromagnetic helix with LAF = 2ξS ,
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τ ̸= 0 increases with increasing torsion and decreasing curvature. The opposite
is observed for the amplitude of the tangential component. Comparing Fig. 7.4(a)
with Fig. 7.4(b) we note that the frequency of the oscillations increases with the
number of turns of the antiferromagnetic helix. We also note that going from the
planarly curved wire (τ = 0) to the fully twisted wire (κ = 0) the magnetization in
the tangential direction is suppressed, and no oscillations are observed for κ = 0.

To conclude, we note that for high torsion and small curvature the magnetization
along the normal and binormal directions appear to oscillate without decaying. This
absence of decay is rather surprising given the high length of the helix, and further
analysis would be needed to fully understand this behavior2.

2More investigations are being carried out in a manuscript in preparation.



Chapter 8

Outlook

In this work we have investigated new avenues for the field of superconducting
spintronics. We focused particularly on curved magnetic nanostructures, study-
ing their properties and how they can provide novel effects and flexibility when
incorporated in hybrid structures with superconductors. We demonstrated how
a curved ferromagnetic weak link in a Josephson junction provides long range
triplet generation and a dynamically tunable 0− π transition where the direction
of the current can be inverted by changing the curvature of the weak link. The
transition can be realized in a single sample without application of an external
voltage bias, and can therefore potentially improve existing devices and provide
more freedom for the realization of new ones. In Section 6.1, we proposed that such
new devices can be designed by realizing a junction at the value of the curvature
of the ferromagnetic weak link where there is no current flow. Thus, increasing or
decreasing the curvature by small amounts, for example via strain, would produce a
current switching in the desired direction.

Moreover, we showed that tuning geometric curvature in a ferromagnetic wire
proximity coupled to a superconductor, controls the critical temperature of the
hybrid structure through its effect on the superconducting triplet correlations in the
system. This effect permits the realization of a very efficient superconducting spin-
valve, a device of extreme importance for superconducting spintronics applications.
Again in Section 6.2, we suggested a promising design for new superconducting
spin-valve devices. One could fabricate an hybrid superconducting-curved ferro-
magnetic nanowire, with the curvature of the ferromagnet close to the point of
steepest variation of the critical temperature suggested by our results. Slightly
varying the curvature from this point would result in substantial changes in the
critical temperature Tc of the structure. Doing this at a fixed temperature T ≳ Tc, an
increase of the curvature would then make Tc higher than T . Therefore, increasing
and decreasing the curvature allows to switch on and off superconductivity realizing
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a superconducting spin-valve.
Besides the curvature effects, we discussed a new mechanism for achieving

high magnetic field superconductivity in a multiband superconductor, beyond the
conventional limits. The coexistence between superconductivity and magnetism
is of paramount interest for superconducting spintronics. Therefore, the effect we
investigated can prove to be a new way of operating superconductors with higher
magnetic fields, still preserving the superconducting properties. In this context
it is worth noting that geometric curvature and torsion have also an effect on the
band structure of materials due to strain1. Analysis of the effect of strain suggests
that the bands would be separated in energy by curvature, while the opposite is
true when torsion is included. Furthermore, it has been shown that geometry can
control topological transitions in electron spin transport [239–242]. This may reveal
promising directions for geometric manipulation of energy bands in the future,
potentially providing new avenues for the realization of systems with flat bands and
topological materials2.

Overall in this thesis we gave an overview of some of the phenomena that can
be achieved by including curvature in the magnetic elements of superconducting
heterostructures. There are multiple possible directions for extending these investi-
gations. For instance, throughout this thesis we considered the case of a constant
curvature, but situations of non constant curvature [298], which is being explored
in a manuscript under preparation, can definitely provide further advances. Another
possibility is to extend the existing 2D Usadel framework, which uses the finite
element method [294], to the curvilinear case. This framework has already been
applied to the study of disk-shaped planar Josephson junctions [332], and could
allow the investigation of topological effects such as skyrmions in curved surfaces
[232].

Additional fascinating prospects could involve applying geometric curvature
directly to superconductors and study the system in the diffusive regime. Various
theoretical studies have already shown the appearance of interesting physics and the
experimental realization of curved superconductors is attracting increasing interest3.
However, an extensive diffusive proximity theory of curved superconductors is still
missing, and its development could unveil further interesting phenomena, such as a
possible influence of geometric curvature in the realization of chiral and topological
states in curved superconductors4.

With the technological advances we are currently witnessing, there are plenty
of possibilities in terms of shapes of geometrically curved materials, and even more

1For strain effects on the band structure of semiconductors see the review [330].
2For a review on topological materials see [331].
3See the reviews [145, 215] and references therein.
4For revies on chiral and topological superconductors see [333–335].
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are surely going to appear in the future. As we showed in this thesis, even simply
curving a structure in-plane, allows to achieve effects which usually need extremely
complex and marginal device designs, realizable only in limited scales. Moreover,
geometric manipulation allows for designable, variable and controllable effective
SOC throughout the structure. This possibility has been lacking in the past and
could reveal extremely useful for a whole range of applications. Consequently,
more complex geometries could provide even more interesting and novel effects. It
is therefore clear that we should not limit ourselves to the conventional and rigid
device design we have inherited from the past, and we should rather exploit the
freedom provided by geometric curvature. After all, the DNA, a vital component
for all living species, has a helical shape, and similar geometries could prove to be
similarly pivotal for the next generation of nanodevices.

Nowadays, superconductors have already found many widespread applications,
however, as we showed in this thesis with the inclusion of geometrically curved
magnetic materials in superconducting heterostructures, there is still plenty of
potential for the development of novel devices which could revolutionise their
applications in superconducting spintronics. This abundance of possibilities is
probably the most intriguing aspect of superconducting systems and why we should
keep pursuing the effects of geometry in superconductors and their heterostructures
to unlock their full potential.
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We report that spin supercurrents can be induced in diffusive superconductor-ferromagnet-superconductor
Josephson junctions without any magnetic misalignment or intrinsic spin-orbit coupling. Instead, the pathway
to spin-triplet generation is provided via geometric curvature, and results in a long-range Josephson effect. In
addition, the curvature is shown to induce a dynamically tunable 0-π transition in the junction. We provide the
analytic framework and discuss potential experimental and innovation implications.
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Introduction. In the last two decades there have been sub-
stantial advances in the experimental realization of curved
nanostructures. Since the realization of nanotubes by rolling
up thin solid films [1], many new techniques of bending,
wrinkling, and buckling nanostructures in up to three dimen-
sions have been developed [2,3], as well as direct growth
on curved templates [4], electron beam lithography [5–7],
and many more (see, e.g., Ref. [8] and references therein).
These techniques open a broad new range of spintronic device
design, and have already been shown to enable independent
control of spin and charge resistances [4].

Geometric curvature introduces two main effects: a quan-
tum geometric potential, producing many interesting phe-
nomena at the nanoscale [9–12], and a strain field leading
to a curvature-induced Rashba spin-orbit coupling (SOC),
with strength proportional to the curvature [13]. Several stud-
ies have investigated new properties triggered by curvature,
e.g., in semiconductors [14–18], magnets [4,7,8], and su-
perconductors [19–21]. Curved nanostructures with induced
superconductivity can display geometric control of spin-
triplet correlations in the clean limit [22], and proximizing
a superconductor with a curved semiconductor can result in
topological edge states [15]. The curved topological supercon-
ductor/straight semiconductor Josephson junction counterpart
has been predicted to display a 0-π transition and φ-junction
behavior [20].

Hybrid structures of superconductors and ferromagnets
are of great interest for the field of superconducting spin-
tronics [23,24] since at the superconductor/ferromagnet (SF)
interface the proximity effect allows the property of one
material to “leak” into the other [25–27]. A coexistence of
superconductivity and magnetism may therefore enable data
processing, encoded in spin and charge degrees of freedom,
to be performed without the heat loss associated with tradi-
tional electronics. In diffusive heterostructures, which cover

*Corresponding author: tancredi.salamone@ntnu.no

a range of commonly available materials that may have im-
purities or suboptimal interface transparencies, conventional
s-wave superconducting correlations typically penetrate a
ferromagnet for extremely short distances, proportional to√

DF /h, with DF the diffusion constant and h the exchange
field strength. Significant theoretical and experimental effort
has focused on the conversion of singlet correlations into
so-called long-range triplet correlations (LRTCs), which pen-
etrate for longer distances, on the order of

√
DF /T , where

T is the temperature. This conversion can take place in
the presence of magnetic inhomogeneities [28–30] or due
to intrinsic spin-orbit coupling either in the superconductor
or in the ferromagnet [31,32]. The role of geometric cur-
vature as a source of designable and dynamically alterable
SOC in diffusive structures has not been investigated in this
context, and we address this here. By considering a model
superconductor-ferromagnet-superconductor (SFS) junction
with constant curvature shown in Fig. 1, we show that the
curvature alone can induce long-range supercurrents due to
the generation of triplet correlations. Moreover, we show that
these systems display a tunable 0-π transition.

The possibility of 0-π state switching has been of much
interest, in part due to its potential role in solid state quan-
tum computing [25,33–37]. Investigations have confirmed the
transition can be governed by altering the length of the fer-
romagnetic weak link. However, this is not practicable to do
in situ and must be done by preparing multiple samples of
different lengths. It has recently been predicted that the 0-π
transition can also be accessed out of equilibrium, by altering
the strength of the SOC via voltage gating [38]. In this Let-
ter, we show that dynamically changing the curvature of the
magnet via in situ strain manipulation, for example via pho-
tostriction, piezoelectrics, or thermoelectric effects [39,40],
allows for a single-sample 0-π transition in the diffusive
regime, without the need to apply a varying voltage. More-
over, we show that curvature can yield long-range Josephson
currents without any magnetic inhomogeneities or intrinsic
SOC.
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FIG. 1. Model system. SFS junction having a ferromagnet with
constant curvature as a weak link. The three orthonormal unit vectors
T̂ (θ ), N̂ (θ ), and B̂(θ ) identifying the curvilinear coordinates are also
shown.

Theoretical framework. A fundamental tool for the study
of curved structures is the thin-wall quantization procedure,
where the quantum motion of a particle in a two-dimensional
(2D) curved surface is treated as equivalent to the motion in
a 3D space with the addition of lateral quantum confinement
[41,42]. This procedure allows one to derive the Hamiltonian
for the motion of electrons constrained to a curved planar one-
dimensional structure [43,44].

When dealing with a ferromagnet, further effects of the
curvature must be taken into account, namely in how it af-
fects its exchange field. Recent studies have developed a
fully 3D approach for thin magnetic shells of arbitrary shape
and extended it to 2D shells and 1D wires [45,46]. This
showed that curvature induces two effective magnetic inter-
actions: an effective magnetic anisotropy and an effective
Dzyaloshinskii-Moriya interaction (DMI). When dealing with
a 1D curved wire below a certain critical curvature, the mag-
netic anisotropy and the DMI, which results in an effective
Rashba SOC, both combine to give an effective field tangen-
tial to the wire. The geometrically defined SOC is therefore
both designable and tunable, and gives greater freedom in the
manipulation of superconducting proximity effects.

We parametrize the curve by its arc length s, and de-
fine a set of three orthonormal unit vectors T̂ (s), N̂ (s), B̂(s)
representing the tangential, normal, and binormal curvilinear
coordinates, respectively, as indicated in Fig. 1. These obey
the following Frenet-Serret-type equation of motion,⎛

⎝∂sT̂ (s)
∂sN̂ (s)
∂sB̂(s)

⎞
⎠ =

⎛
⎝ 0 κ (s) 0

−κ (s) 0 0
0 0 0

⎞
⎠

⎛
⎝T̂ (s)

N̂ (s)
B̂(s)

⎞
⎠, (1)

where κ (s) is the curvature of the wire, whose role and effect
will be discussed in detail below. Deriving the Hamiltonian
for a wire, which may include intrinsic SOC in general, we
find [44]

H = − h̄2

2m
∂2

s − h̄2

8m
κ (s)2 − ih̄αNσB∂s

+ ih̄αB

(
σN∂s − κ (s)

2
σT

)
. (2)

The SOC constants αN,B represent the spin-orbit field with
axis along the normal and binormal direction, respectively,
and σT,N,B(s) = σ · {T̂ , N̂, B̂}(s) are the set of three Pauli ma-
trices in curvilinear coordinates. By using Eqs. (1) we can
incorporate the last three terms in Eq. (2) in a SU(2) spin-orbit
field term,

A = (αNσB − αBσN , 0, 0), (3)

which has a vector structure in the geometric space and a
2×2 matrix structure in spin space. It is worth distinguishing
between the two terms entering the SU(2) field, namely αB

and αN . The former represents the intrinsic, not induced by the
curvature, SOC term which may or may not exist according to
the material taken into consideration. The latter is curvature
induced, and is proportional to the curvature strength. In nat-
ural units we have αN = gλκ (s)/(4m), where g is the g-factor
and the parameter λ > 0 is a characteristic energy scale for the
material. Inspection of the relevant diffusion equations for the
system shows that αN and κ (s) appear together in such a way
that the former always acts as a strengthening factor for the
latter. Therefore, considering a material with no intrinsic term
we can ignore spin-orbit coupling as a whole, and consider the
κ (s) term only.

Having set up the Hamiltonian, we employ Green’s func-
tions in the diffusive limit at equilibrium. Here, the dynamics
are describable by the second-order partial differential Usadel
equation [47], which, with suitable boundary conditions, de-
scribes the diffusion of superconducting correlations inside
the ferromagnet. Treating the case of diffusive equilibrium, it
is sufficient to consider just the retarded component ĝR of the
quasiclassical Green’s function to describe the system [48].
Using Eq. (2) the Usadel equation in a curved ferromagnet
with constant curvature reads (from now on we set h̄ = 1)

DF ∂s(ĝR∂sĝR) + i[ετ̂3 + M̂, ĝR] = 0, (4)

with τ̂3 = diag(1, 1,−1,−1), ε the quasiparticle energy, and
magnetization M̂ = h · diag(σ, σ∗). The components of both
vectors h = (hT , hN , hB) and σ = (σT , σN , σB) are expressed
in curvilinear coordinates. To solve the Usadel equation we
employ the Kuprianov-Lukichev boundary conditions [49],

Ljζ j ĝR j∇I ĝR j = [ĝR1, ĝR2]. (5)

Here, ∇I is the derivative at the interface, j refers to the vari-
ous components of the hybrid system, with j = 1, 2 denoting
the materials on the left and right side of the relevant interface,
Lj represents the length of the material, and ζ j = RB/Rj is
the interface parameter given by the ratio between the barrier
resistance RB and its bulk resistance Rj .

If desirable, the intrinsic SOC can be retained, in which
case one also introduces the gauge covariant derivative [32],

∂s(·) → ∂̃s(·) ≡ ∂s(·) − i[ÂT , ·], (6)

with ÂT = diag(AT ,−A∗
T ) and AT is the tangential component

of the SO field of Eq. (3).
To treat the system we will use the Riccati parametrization

[50,51] for the quasiclassical Green’s function,

ĝR =
(

N (1 + γ γ̃ ) 2Nγ

−2Ñ γ̃ −Ñ (1 + γ̃ γ )

)
, (7)
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where the normalization matrices are N = (1 − γ γ̃ )−1 and
Ñ = (1 − γ̃ γ )−1 and the tilde operation denotes γ̃ (ε) =
γ ∗(−ε). The Usadel equation (4) thus becomes

DF
{
∂2

s γ + 2(∂sγ )Ñ γ̃ (∂sγ )
}

= −2iεγ − ih · [σ(s)γ − γσ∗(s)].
(8)

Here, the dependence on the curvature is implicitly contained
in the Pauli matrices σT,N,B(s).

We will consider our one-dimensional curved wire to be
lying in the xy plane as represented in Fig. 1, so that the set of
three unit vectors is

T̂ (s) = − sin θ (s)x̂ + cos θ (s)ŷ, (9a)

N̂ (s) = − cos θ (s)x̂ − sin θ (s)ŷ, (9b)

B̂(s) ≡ ẑ, (9c)

with θ (s) = κs. It is useful to note that, when considering
Eq. (8), the curved ferromagnet can be regarded as equiva-
lent to a straight wire with a rotating exchange field, i.e., a
tangential exchange field in a curved wire is equivalent to a
position-dependent exchange field in a straight wire, varying
as �h(s) = h0[sin θ (s),− cos θ (s), 0], with θ (s) = πs/LF and
LF being the length of the ferromagnet.

Results. Solving the Usadel equation, and therefore finding
the quasiclassical Green’s function of the system, allows us
to calculate many interesting quantities. In this Letter we
will focus mainly on the charge current, a quantity directly
measurable in experiments, given by

IQ

IQ0
=

∫ +∞

−∞
dε Tr{τ̂3(ĝR∂sĝR − ĝA∂sĝA)} tanh(βε/2). (10)

Here, ĝA = −τ̂3ĝ†
Rτ̂3 is the advanced quasiclassical Green’s

function and β = (kBT )−1 is the inverse temperature,
with kB being the Boltzmann constant. Moreover, IQ0 =
N0eDF A�0/4LF , where N0 is the density of states at the Fermi
energy, A the interfacial contact area, and �0 the bulk gap
of the two superconductors. Lengths and energies have been
normalized to LF (which in turn is scaled with the supercon-
ducting coherence length ξS) and superconducting bulk gap
�0, respectively, so that the integral on the right-hand side of
Eq. (10) is dimensionless.

We investigate the system portrayed in Fig. 1 by solving
numerically Eq. (8) for various lengths LF of the ferromagnet
and multiple curvatures κ for each length. We set the inter-
face parameter with both superconductors to be ζ = 3 and
the temperature to T = 0.005Tc. We consider the exchange
field inside the curved ferromagnet to be tangential to its
curvature profile at each point, h(s) ‖ T̂ (s), which we expect
to be the case in 1D curved structures below a certain critical
curvature [46].

Two interesting effects of the curvature appear immedi-
ately from our results. First, we show in Fig. 2 that it is
possible to induce a 0-π transition in the junction by changing
the curvature of the ferromagnetic wire while keeping its
length fixed. Second, we will show in Fig. 3 that even for a
long junction, where the singlet contribution to the supercur-
rent is negligible, a Josephson effect still appears for a nonzero
κ due to the presence of long-range triplets.

FIG. 2. Magnitude of the critical current as a function of the cur-
vature for different lengths LF of the ferromagnet, with T = 0.005Tc,
�h = �0T̂ , ζ = 3. A 0-π transition occurs when changing the curva-
ture of the wire.

In Fig. 2 we plot the absolute value of the critical current
as given by Eq. (10) as a function of the curvature κ of the
ferromagnet across the junction for different lengths LF . From
the figure we see that starting in the 0 state with a straight wire,
increasing the curvature results in a decreasing magnitude
of the critical current, until it completely disappears for a
certain κ , indicating a 0-π transition. A further increase in the
curvature produces a revival of the critical current, which now
flows in the opposite direction with respect to the straight case.
We also note that increasing the length of the ferromagnet
reduces not only the overall magnitude of the critical current
but also the curvature at which the 0-π transition takes place.

In order to better understand how this 0-π transition ap-
pears, and to show that the role of the triplets is crucial in
tuning it, we split the charge current into singlet and triplet
contributions, I0 and It , respectively. It can be shown that

FIG. 3. Charge current as a function of the phase difference φ,
showing separately the singlet (solid lines) and triplet (dashed lines)
contributions with T = 0.005Tc, �h = �0T̂ , ζ = 3, for a straight (κ =
0) and semicircular (κLF = π ) ferromagnetic wire. (a) LF = 2ξS:
Increasing the curvature causes the triplet contribution to change
sign. (b) LF = 6ξS: Increasing the curvature causes the singlet con-
tribution to be negligible with respect to the triplet one, signaling
that the charge current is transported almost exclusively by the triplet
correlations.
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the charge current given by Eq. (10) only depends on the
anomalous Green’s function f which is the off-diagonal block
matrix in the retarded Green’s function. We define f = ( f0 +
d · σ )iσy, with f0 representing the singlet contribution and
d = (dT , dN , dz ) the d vector representing the triplet contri-
bution, and obtain that the charge current can be written as
IQ/IQ0 = I0 + It , where It = IT + IN + Iz + Iκ and

I0 = −8
∫ ∞

0
dε Re{ f̃0∂s f0 − f0∂s f̃0} tanh(βε/2), (11a)

I j = 8
∫ ∞

0
dε Re{d̃ j∂sd j − d j∂sd̃ j} tanh(βε/2), (11b)

Iκ = 16κ

∫ ∞

0
dε Re{d̃N dT − d̃T dN } tanh(βε/2), (11c)

with j = (T, N, z). The terms I0 and I j represent the contri-
bution coming from the singlet and triplets with spin aligned
in the j direction, respectively. Equation (11c) describes in-
stead an inverse Edelstein effect [52]. A nonzero Iκ requires
that there be a nonzero, energy-dependent phase difference
between dT and dN . Hence, this contribution only appears
when the d vector undergoes a rotation. In our case, such a
rotation is maintained by the presence of a finite curvature
and/or spin-orbit coupling.

The short-range IT and long-range IN triplet contribu-
tions to the charge current are sufficient to demonstrate that
the current system exhibits a 0-π transition and long-range
Josephson effect, i.e., one has to show that the long-range term
dominates over the short-range one, as shown in Fig. 3. As the
other contributions to the charge current, the inverse Edelstein
term Iκ has a conventional sinusoidal dependence on the phase
difference φ across the junction in this case, but may deviate
for other configurations.

In Fig. 3(a) we plot singlet and triplet contributions to the
charge current for two different values of κ and LF = 2ξS .
It can be seen that for κ = 0 triplet and singlet charge cur-
rents have opposite sign, with the triplet contribution, which
comes only from the short-range component IT , being gener-
ally bigger than the singlet one. Interestingly however, when
increasing the curvature the triplet current changes sign, i.e.,
starts flowing in the opposite direction, because of the ap-
pearance of the long-range component IN , while the singlet
contribution does not. Hence, the 0-π transition is tuned by
the curvature through its effect on the triplets. Furthermore,
we note from Fig. 3(a) that in the π phase for κ = π/LF the
singlet and triplet currents have the same sign and thus flow
in the same direction. Consequently, the two contributions
add up, resulting in a larger critical current in the π phase
at κ = π/LF compared to the 0 phase at κ = 0.

We point out that curvature also introduces a spin current
to the system, which is absent in a straight nanowire. This
exchange spin current, as it is known in the literature, is caused
by the misalignment of the magnetization in the system and is
nonzero even at phase differences of φ = 0 and φ = π , where
there are no charge currents [53,54]. The magnitude of the
spin current is affected by the curvature, thereby providing
means by which it can be externally manipulated.

To highlight that the triplets generate a long-range Joseph-
son effect, we consider a long junction, LF = 6ξS , and plot
in Fig. 3(b) separately singlet and triplet contributions for a
straight (κ = 0) and semicircular (κLF = π ) wire. We see
that, while for κ = 0 the triplet term is essentially zero and
the singlet term is finite, for κLF = π the singlet contribution
is negligible compared to the triplet one, which addition-
ally presents a long-range component IN dominating over the
short-range one IT . Going from a straight to a semicircular
ferromagnet produces a significant singlet to triplet conver-
sion, of which component in the normal direction is long
ranged, i.e., dN = |d×ĥ|, since in the case considered the dz

component is zero. In the simple example of a long wire with
constant curvature chosen here, the magnitude of this LRT
component is quite small, but we explain how this can be
increased and manipulated below.

To better understand the role played by the curvature, it
is useful to consider the weak proximity effect, meaning that
|γi j | 	 1 and N 
 1. The γ matrix can be then expressed in
terms of f : γ = f /2. We then obtain the following linearized
version of the Usadel equation,

DF

2
∂2

s f0 = −iε f0 − ih · d, (12a)

DF

2

(
∂2

s dT − 2κ∂sdN
) =

(
−iε + DF κ2

2

)
dT − i f0hT ,

(12b)

DF

2

(
∂2

s dN + 2κ∂sdT
) =

(
−iε + DF κ2

2

)
dN − i f0hN ,

(12c)

DF

2
∂2

s dz = −iεdz − i f0hz. (12d)

By inspecting the linearized Usadel equation for the triplet
components, given in (12a)–(12c), we see that the curvature
produces a Dyakonov-Perel term, describing the spin relax-
ation due to precession around the exchange field. A curvature
of κLF = π gives a strong spin-relaxation term which causes
a fast decay even for the LRT component. From a qualitative
perspective we can see that, since the exchange field varies
with the position, a LRT component flowing through the
wire will acquire an increasing component parallel to h, i.e.,
a quickly decaying short-range component. The short-range
triplet (SRT) component likewise acquires a LRT, but the
conversion region is restricted to the typical decay of the SRT
∼1/

√
h. In order to maximize the LRT generation from the

SRT, one should therefore have a region of high curvature
over the spatial decay of the SRT near the superconduct-
ing interface, and then minimal or zero curvature beyond.
Alternatively, one may start with an intrinsically triplet su-
perconductor, or have a compensating spin-orbit field in the
ferromagnet that can negate the effect of the curvature.

Concluding remarks. We have shown that curvature is
a designable and tunable parameter that can generate and
control long-range supercurrents in diffusive SFS Joseph-
son junctions without any magnetic inhomogeneities or
intrinsic SOC. The system displays a curvature-controlled
0-π transition, which can be manipulated dynamically in
situ with a single sample. This can facilitate experimental
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investigation of the transition, and improve our understand-
ing of the coexistence of superconductivity and magnetism
in different phases. In the longer term this opens a diverse
toolkit for the design and control of diffusive supercon-
ducting spintronic systems, and may be a useful implemen-
tation in solid state quantum computing. Since this field
is still in its infancy, with several exciting directions still
to be explored, we anticipate that curvature in such sys-
tems will be integral to the new generation of spintronic
designs.
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Coupling a conventional s-wave superconductor to a ferromagnet allows us, via the proximity effect, to
generate superconducting triplet correlations. This feature can be employed to achieve a superconducting
triplet spin-valve effect in superconductor-ferromagnet (SF) hybrid structures, for example by switching the
magnetizations of the ferromagnets between parallel and antiparallel configurations in F1SF2 and SF1F2 trilayers,
or in SF bilayers with both Rashba and Dresselhaus spin-orbit coupling (SOC). It was recently reported that
geometric curvature can control the generation of long-ranged triplets. We use this property to show that
the superconducting critical temperature of an SF hybrid nanowire can be tuned by varying the curvature
of the ferromagnetic side alone, with no need of another ferromagnet or SOC. We show that the variation
of the critical temperature as a function of the curvature can be exploited to obtain a robust, curvature-controlled,
superconducting triplet spin-valve effect. Furthermore, we perform an analysis with the inclusion of spin-orbit
coupling and explain how it modifies the spin-valve effect both quantitatively and qualitatively.

DOI: 10.1103/PhysRevB.105.134511

I. INTRODUCTION

In recent years, progress in the fabrication of nanostruc-
tures with curved geometries have opened new perspectives
regarding their properties and applications. From etching [1,2]
and compressive buckling [3], to electron beam lithogra-
phy [4–6], two-photon lithography [7,8], and glancing angle
deposition [9], to cite just some, the possibilities for the
realization of different structures and shapes in up to three
dimensions are manifold. Moreover, many processes, such
as photostriction, piezoelectics, thermoelectric effects, tuning
of the surface chemistry, and more [10–12], allow one to
dynamically change and control the strain and curvature of
nanostructures. This gives good prospects for rapid, in situ
manipulation of geometric curvature in spintronic devices in
the future. The application of geometrical curvature to mag-
netic nanoarchitectures is seeing a rising interest, with the
growing research area of curvilinear magnetism aiming to
explain and characterize curvature-induced effects [13–15].

Micromagnetic studies show that geometric curvature in
magnetic materials induces two main effects, an anisotropy
term and a chiral or extrinsic Dzyaloshinskii-Moriya interac-
tion (DMI) [16], source of an effective magnetic field [17],
and many other peculiar features. The curvature-induced DMI
causes, for instance, the appearance of chiral and topolog-
ical spin textures of the effective magnetization in toroidal
nanomagnets [18,19], bent nanotubes [20,21], curved surfaces
[22], nanohelices [23,24], and spherical shells [17,25,26].

The effects of geometric curvature in nanostructures have
been extensively studied in the ballistic framework. In these
systems curvature has two main consequences: the appear-
ance of a quantum geometric potential causing interesting

phenomena at the nanoscale [27–30] and of a strain field
producing a curvature-induced Rashba-type spin-orbit cou-
pling (SOC) [31–33]. Theoretical studies have focused on new
properties appearing in semiconductors [34–38] as well as
in superconductors [39–42]. For instance, it was shown that
geometric curvature can promote topological edge states in
bent quantum wire with Rahsba SOC [35] and topological su-
perconductivity in curved two-dimensional (2D) topological
insulators [42].

Interestingly, it has been demonstrated that Rashba spin-
orbit coupling in magnetic structure leads to DMI and
magnetic anisotropy [43–45], highlighting the close relation-
ship between the curvature-induced DMI and anisotropy term
obtained in the micromagnetic framework, and the curvature-
induced Rashba SOC from ballistic studies.

The fact that geometric curvature has nontrivial conse-
quences on nanostructures suggests that the inclusion of
geometrically curved materials, and in particular magnetic
materials, could provide new prospects for the model-
ing of spintronic devices, as we already showed for a
superconductor/ferromagnet/superconductor (SFS) Joseph-
son junction in our previous work [46].

In the field of superconducting spintronics [47,48], hybrid
structures of superconductors and ferromagnets play a crucial
role, since at the SF interface the properties of one material
can leak into the other due to the proximity effect [49–51].
Thus, the combination of magnetism with superconductivity
permits all the operations typical of conventional spintronics
with the advantage of no heat loss by virtue of the dissipation-
less currents provided by superconductors. Superconducting
s-wave correlations in diffusive heterostructures typically pen-
etrate only a short distance into a ferromagnet, proportional
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to
√

DF /h, where DF is the diffusion constant and h is the
magnitude of the exchange field of the ferromagnet. Extensive
experimental and theoretical studies have been performed in
order to achieve conversion of spin-singlet correlations into
the so-called long-range triplet (LRT) correlations, penetrat-
ing for longer distances of order

√
DF /T , where T is the

temperature. It has been shown that this conversion can be ac-
complished by means of magnetic inhomogeneities [52–54],
spin-orbit coupling [55,56], or geometric curvature [46] in the
system.

The critical temperature Tc of superconducting hybrid
structures can be influenced and controlled through the mag-
netic properties of ferromagnets, allowing us in some cases
to realize so-called superconducting spin valves. Such devices
were proposed in the form of SF1F2 [57] and of F1SF2 [58,59]
structures: for both it was shown that the critical temperature
of the system is sensitive to the relative orientation of the
magnetizations of the two ferromagnets. Furthermore, experi-
ments studying CuNi/Nb/CuNi trilayers demonstrated that it
is possible to control the critical temperature of the structure
by switching between parallel and antiparallel orientation of
the magnetization in the CuNi layers [60,61]. Control of the
critical temperature cannot be achieved in an SF system with
a single ferromagnet, since the critical temperature is not
sensitive to the orientation of the magnetization of the single
F layer. However, the presence of spin-orbit coupling changes
this picture as was shown in Ref. [62] for an SF bilayer,
where control of the critical temperature was provided by the
presence of Rashba and Dresselhaus SOC in the ferromagnet.
This was confirmed experimentally in a system where Nb was
proximity coupled to an asymmetric Pt/Co/Pt trilayer [63].

In this work we show that geometric curvature alone al-
lows for control of the superconducting critical temperature
of an SF structure with a curved ferromagnet, thereby re-
alizing a superconducting spin-valve effect. We also show
that the inclusion of SOC can increase the magnitude of this
effect. The article is organized as follows: in Sec. II we intro-
duce the relevant Hamiltonian and treat it within a covariant
formulation for the introduction of geometric curvature. In
Sec. III we extend the formalism to the Usadel equation,
focusing on a curved nanowire. We then present our numerical
results in Sec. IV, followed by a discussion and summary
in Sec. V.

II. HAMILTONIAN FOR CURVED SYSTEMS

We will start by considering the following Hamiltonian
describing the motion of electrons in the presence of spin-orbit
coupling:

H = h̄2k2

2m∗ − h̄α · σ × k
m∗ , (1)

where k = −i∇, m∗ is the electron effective mass, and σ is the
Pauli vector. The components of the vector α give the strength
of the spin-orbit coupling due to asymmetric confinement in
the different directions. In order to study how the Hamiltonian
of Eq. (1) is modified when dealing with a curved system, in
the following we will develop a covariant formulation.

FIG. 1. The local coordinate system of a curved material, illus-
trating the tangential, normal, and binormal directions. The finite
curvature κ = 1/R0 leads to regions with both tensile (n < 0) and
compressive (n > 0) strain in the material [32,64].

A. Frenet-Serret frame

As a start, we parametrize the three-dimensional (3D)
space as R(s, n, b) = r(s) + nN̂ (s) + bB̂(s). Here r(s) is the
parametrization of the curve in the plane of the curvature and
s, n, and b are the arclength, normal, and binormal coordi-
nates, respectively, as it can be seen in Fig. 1. The geometry of
the space can therefore be determined from the set of three or-
thonormal unit vectors: T̂ (s) = ∂sr(s), N̂ (s) = ∂sT̂ (s)/κ (s),
and B̂(s) = T̂ (s) × N̂ (s), representing the tangential, nor-
mal, and binormal curvilinear directions respectively. Here we
have defined the curvature κ (s) = |∂sT̂ (s)|. These obey the
following Frenet-Serret-type equation of motion:

⎛
⎝∂sT̂ (s)

∂sN̂ (s)
∂sB̂(s)

⎞
⎠ =

⎛
⎝ 0 κ (s) 0

−κ (s) 0 0
0 0 0

⎞
⎠

⎛
⎝ T̂ (s)

N̂ (s)
B̂(s)

⎞
⎠. (2)

With this, as shown in the Appendix, we obtain the following
metric tensor:

Gμν =
⎛
⎝η(s, n)2 0 0

0 1 0
0 0 1

⎞
⎠, (3)

where η(s, n) = 1 − κ (s)n.

B. Curvature-induced spin-orbit coupling

When a material with initially regular atomic lattice is in-
duced to bend, the interatomic distances become nonuniform,
leading to tensile and compressive strains in the material, see
Fig. 1. The strain is directly related to the change in length of
the different coordinate axes when deforming the line segment
[65], which for the tangential component [see Eq. (A15a)]
results in a strain [32,64,66]:

εtt = −κ (s)n. (4)

The deformation leads to an additional potential in the mate-
rial, which for small strains is assumed to be linear in strain
[67,68],

V = −�κ (s)n, (5)

where � is the deformation potential constant. This ap-
proximation should be applicable when the thickness of the
material is much smaller than the local radius of curvature.
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The potential in turn leads to an electric field [see Eq. (A6)]

E = −∇V = �n

η(s, n)
[∂sκ (s)]T̂ + �κ (s)N̂ , (6)

which when averaged over a volume with infinitesimal thick-
ness ds in the tangential direction results in an electric field
pointing along the normal direction [32,64],

〈E〉 = �κ (s)N̂ . (7)

In the rest frame of an electron moving with momentum
p = h̄k this translates to a magnetic field B ∼ p × E [69]
which couples to the electron’s spin via the Zeeman coupling,
leading to an effective spin-orbit coupling

HN = αN

m∗ N̂ · [σ × p] (8)

due to the asymmetry in the normal direction. Here we have
defined the curvature-dependent spin-orbit constant αN =
h̄�g|e|κ (s)/4m∗c2 [46], where g is the g factor, e is the elec-
tron mass, and c is the speed of light.

C. Covariant formulation of Hamiltonian

In order to derive the correct form of the Usadel equa-
tion for a general curved manifold we rewrite the Hamiltonian
of Eq. (1) in a general covariant form:

H = − h̄2G λμ

2m∗ DλDμ + ih̄

m∗
ελμν

√
G

αλσμDν, (9)

where we used the Einstein summation rule, with the Greek
indices running over the components t , n, b in the covariant
basis defined in the Appendix. The terms G λμ and G are the
inverse and the determinant of the metric tensor, respectively,
and ελμν is the Levi-Civita symbol.

The (space) covariant derivatives are defined through their
action on any general covariant vector vμ as Dλvμ = ∂λvμ −
�ν

λμvν , with �ν
λμ representing the Christoffel symbols:

�ν
λμ = 1

2 G νγ (∂μGγ λ + ∂λGγμ − ∂γ Gλμ). (10)

To further simplify the derivation we exploit the last term
in Eq. (9) to define a (contravariant) spin-orbit field as Aν =
ελμναλσμ/

√
G = G νμAμ.

With the assumption of weak spin-orbit coupling, the
Hamiltonian of Eq. (9) can be written in a form manifestly
showing a local SU(2) gauge invariance [70,71]:

H = − h̄2G λμ

2m∗ (Dλ − iAλ)(Dμ − iAμ). (11)

Therefore, the SOC enters the Hamiltonian with the usual
form of a 2 × 2 matrix-valued SU(2) vector field [55,56]. The
values of the components Aμ depend on the physical system
at hand, e.g., the intrinsic types of SOC in the system, and the
curvature-induced SOC discussed in the previous subsection.

D. Effective Hamiltonian for a curved nanowire

In order to derive an effective Hamiltonian for a curved
nanowire one can apply a thin-wall quantization procedure
[72,73] to the Hamiltonian of Eq. (9), additionally taking
into account the effect of the constraining potential in the
normal and binormal directions. These allow us to expand

the Hamiltonian in powers of n and b, taking the zeroth order
terms, and employ an adiabatic approximation to separate the
relevant degree of freedom s. Considering curvature-induced
and intrinsic spin-orbit interaction, αN and αB, respectively,
one gets [32,74]

H = − h̄2

2m∗ ∂2
s − h̄2

8m∗ κ (s)2

− ih̄

m∗ αNσB∂s + ih̄

m∗ αB

(
σN∂s − κ (s)

2
σT

)
. (12)

The second term is the quantum geometric potential, which is
neglected in the following as it only leads to an overall energy
shift. With the use of Eq. (2) it is possible to reorganize the
terms in the second line of Eq. (12) and incorporate them in
the following SU(2) spin-orbit field:

A = (αNσB − αBσN , 0, 0), (13)

having a vector structure in the geometric space and a 2 × 2
matrix structure in spin space.

III. USADEL EQUATION FOR CURVED NANOWIRES

In this work we will make use of Green’s functions in the
diffusive limit and study the dynamics through the second or-
der partial differential Usadel equation [75]. The Hamiltonian
of Eq. (11) allows us to define the Usadel equation in a co-
variant form and, with the right boundary conditions, describe
the diffusion of superconducting correlations in an SF hybrid
structure with geometric curvature. We restrict ourselves to
the case of diffusive equilibrium, allowing us to consider just
the retarded component ĝR of the quasiclassical Green’s func-
tion to describe the system [76]. The Usadel equation defined
from the Hamiltonian of Eq. (11) reads

DF G λμD̃λ(ĝRD̃μĝR) + i [ερ̂3 + �̂ + M̂, ĝR] = 0, (14)

where ρ̂3 = diag(1, 1,−1,−1), ε is the quasiparticle en-
ergy, and �̂ = antidiag(�,−�,�∗,−�∗) with � the su-
perconducting order parameter and magnetization M̂ =
hμdiag(σμ, σ ∗

μ ). Here we have set h̄ = 1. We have also defined
the space-gauge covariant derivative as

D̃λvμ = ∂̃λvμ − �ν
λμvν, (15)

where we have defined the gauge-only covariant derivative
∂̃λvμ = ∂λvμ − i[Âλ, vμ], with Âλ = diag(Aλ,−A∗

λ).
We now rewrite the first term of Eq. (14) by inserting the

expression for the covariant derivative of Eq. (15). With the
use of Eqs. (3) and (10), we get

DF G λμD̃λ(ĝRD̃μĝR)

= DF

η(s, n)
{[∂̃s(η(s, n)−1ĝR∂̃sĝR) + ∂̃n(η(s, n)ĝR∂̃nĝR)]

+ ∂̃b(η(s, n)ĝR∂̃bĝR)}. (16)

For the case of a nanowire we can ignore the dependence of ĝR

on n and b and take the limit n, b → 0. Therefore, the Usadel
equation takes the form

DF ∂̃s(ĝR∂̃sĝR) + i[ερ̂3 + �̂ + M̂, ĝR] = 0, (17)
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FIG. 2. Superconductor-ferromagnet hybrid nanowire with a fer-
romagnet with constant curvature. The orthonormal unit vectors T̂ ,
N̂ identifying the curvilinear coordinates are also shown.

where the effects of the curvature enter the equation through
the Pauli matrices, contained in the spin-orbit field and the
magnetization.

In order to solve the Usadel equation either analytically or
numerically for superconducting hybrid systems, boundary
conditions are needed. In this work we will employ the
Kupryianov-Lukichev boundary conditions [77], which

ensure the continuity of the current flow through the interface:

Ljζ j ĝR j ∂̃I ĝR j = [ĝR1, ĝR2]. (18)

Here ∂̃I is the gauge covariant derivative at the interface, j
refers to the different materials comprising the hybrid system,
with j = 1, 2 denoting the materials on the left and right side
of the relevant interface, Lj represents the length of the mate-
rial, and ζ j = RB/Rj is the interface parameter given by the ra-
tio between the barrier resistance RB and its bulk resistance Rj .

A. Riccati parametrization

To solve numerically Eq. (17) it is useful to introduce a
parametrization for the quasiclassical Green’s function. Here
we employ the Riccati parametrization [62,78]:

ĝR =
(

N (1 + γ γ̃ ) 2Nγ

−2Ñ γ̃ −Ñ (1 + γ̃ γ )

)
, (19)

with N = (1 − γ γ̃ )−1 and Ñ = (1 − γ̃ γ )−1 and the tilde con-
jugation denotes the operation γ̃ (s, ε) = γ ∗(s,−ε). There-
fore, with the use of this parametrization we have reduced
the equation for the 4 × 4 matrix ĝR to one for the 2 × 2
matrix γ .

To study the system depicted in Fig. 2 we define the Usadel
equation separately for a curved ferromagnet with spin-orbit
coupling, and a straight s-wave superconductor. We will then
solve the two Usadel equations self-consistently, employing
the Kupriyanov-Lukichev boundary conditions at the SF in-
terface.

Substituting Eq. (19) into Eq. (17) we get the Usadel equa-
tion for the ferromagnet and the superconductor, respectively:

DF
{
∂2

s γ + 2(∂sγ )Ñ γ̃ (∂sγ )
} = −2iεγ − i(h · σγ − γ h · σ∗) − iDF [(∂sAT )γ + γ (∂sA

∗
T )]

+ DF [A2γ − γ A∗2 + 2(Ajγ + γ A∗
j )Ñ (A∗

j + γ̃ Ajγ )]

+ 2iDF [(AT + γ A∗
T γ̃ )N (∂sγ ) + (∂sγ )Ñ (A∗

T + γ̃ AT γ )], (20a)

DF
{
∂2

y γ + 2(∂yγ )Ñ γ̃ (∂yγ )
} = −2iεγ − �σ2 + γ�∗σ2γ , (20b)

where the index j runs over the physical components [see
Eq. (A17)] T, N, B of the SOC field and σ2 = antidiag(−i, i).
In Eq. (20a) both the exchange field vector h = (hT , hN , hB)
and the Pauli vector σ = (σT , σN , σB) are expressed in curvi-
linear components.

We note that the result obtained here for the Riccati
parametrization of the Usadel equation is the same as in
[62] with the addition of the last term in the second line of
Eq. (20a) due to the spatial dependence of the spin-orbit field.

Upon substitution of Eq. (19) into Eq. (18) we get
the following form for the boundary conditions at the
superconductor-ferromagnet interface:

∂IγS = 1

LSζS
(1 − γS γ̃F )NF (γF − γS ) + iAT γS + iγSA∗

T ,

(21a)

∂IγF = 1

LF ζF
(1 − γF γ̃S )NS (γF − γS ) + iAT γF + iγF A∗

T .

(21b)

The corresponding equations for γ̃ are simply obtained by
tilde conjugation of Eqs. (20a) to (21b).

B. Weak proximity effect equations

To interpret the effects of the geometrical curvature and
spin-orbit coupling components in our system, we will
now study the curved ferromagnet in the limit of weak
proximity effect. In this limit |γi j | � 1 and N ∼ 1, so
that γ = f /2, where f = ( f0 + d · σ)iσ2. Here f is the
anomalous Green’s function, the off-diagonal block matrix
in ĝR, and is defined in terms of the scalar function f0

and the d vector d = (dT , dN , dB) representing the con-
densate functions for the singlet and triplet components,
respectively.

For the system of Fig. 2 the components σT,N,B(s) in
the ferromagnet are obtained from the following set of
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three unit vectors:

T̂ (s) = − sin θ (s)x̂ + cos θ (s)ŷ, (22a)

N̂ (s) = − cos θ (s)x̂ − sin θ (s)ŷ, (22b)

B̂(s) ≡ ẑ, (22c)

with θ (s) = κs. Consequently, we get the following form for
the γ matrix:

γ = 1

2

(
(idT + dN )e−iθ dz + f0

dz − f0 (idT − dN )eiθ

)
. (23)

In this limit it becomes straightforward to identify the
short-range triplet (SRT) d‖ = d · h/|h| and LRT d⊥ =
d × h/|h| components. For instance, if the exchange
field h is directed along the T̂ direction the SRT can
be identified with dT , while dN and dB represent the
LRTs.

The weak proximity limit allows us to consider only
the terms linear in γ both in the Usadel equation and
in the Kupriyanov-Lukichev boundary conditions. With the
SO field given by Eq. (13) and the γ matrix of Eq. (23)
the linearized Usadel equation in the ferromagnet takes the
following form:

iDF

2
∂2

s dT − iDF (κ + 2αN )∂sdN − 2iDF αB∂sdz = f0hT +
{
ε + iDF

2

[
(κ + 2αN )2 + 4α2

B

]}
dT , (24a)

iDF

2
∂2

s dN + iDF (κ + 2αN )∂sdT = f0hN +
{
ε + iDF

2
(κ + 2αN )2

}
dN − iDF αB(κ + 2αN )dN , (24b)

iDF

2
∂2

s dz + 2iDF αB∂sdT = f0hz + {
ε + 2iDF α2

B

}
dz − iDF αB(κ + 2αN )dN , (24c)

iDF

2
∂2

s f0 = ε f0 + h · d. (24d)

By inspecting these equations it is possible to understand
how the mechanism for singlet-triplet conversion works in the
ferromagnet. Let us consider an exchange field along the T̂
direction: at the SF interface on the ferromagnet side, due to
the proximity effect, singlets are present, which are partially
converted into the SRT component dT by the exchange field.
The presence of geometrical curvature and/or spin-orbit cou-
pling results then in the generation of LRT components dN , dz.

C. Physical interpretation of the weak proximity
effect equations

The effect of κ , αN , and αB in Eqs. (24a) to (24c) is
twofold: the triplets undergo spin precession and spin relax-
ation. The former can be identified with the terms having
a first derivative of a triplet component and describes the
rotation of the spin of superconducting triplet correlations
while moving along the ferromagnet. The latter appears as
an additional imaginary component of the triplet energy and
represents a loss of spin information due to frequent impurity
scattering. Consequently, both curvature and spin-orbit cou-
pling independently provide a pathway for LRT generation.
At the same time, if their value becomes too large, they be-
come detrimental for the triplets. An estimate of the value
for the crossover between the two regimes can be provided
by comparison of the spin-precession prefactor εp ∼ DF κ/LF

and the spin-relaxation prefactor εr ∼ DF κ2/2, where we for
simplicity consider geometric curvature only. Therefore, a
transition from spin-precession dominated to spin-relaxation
dominated regimes occurs when εp ∼ εr , i.e., when κLF ∼ 2
or κLF/π ∼ 0.6. The inclusion of SOC terms will shift the
transition towards 0 [79]. This effect is crucial for the results
presented in this work and will be discussed in more detail in
the next section.

Finally, we note that in Eqs. (24a) to (24c) κ and αN always
appear together in the same form, highlighting that they have

the same effect on the d-vector components. It is therefore
possible to define an “effective” curvature κ̃ = κ + 2αN and
consider αN as a factor which boosts the effects of the geo-
metrical curvature.

IV. CURVATURE-CONTROLLED TRIPLET SPIN VALVE

In order to obtain numerical results for the hybrid system
of Fig. 2, we look for a self-consistent solution to the Usadel
equation given by Eqs. (20a) and (20b), with the boundary
conditions of Eqs. (21a) and (21b), and the following gap
equation [62]:

�(s) = N0λ

∫ �0 cosh(1/N0λ)

0
dε Re{ f0(ε, s)}

× tanh

(
π

2eγ

ε/�0

T/Tc0

)
, (25)

where λ is the coupling constant between electrons, N0 is the
density of states at the Fermi level, γ � 0.577 is the Euler-
Mascheroni constant, and T is the temperature. �0 and Tc0

are the superconducting gap and critical temperature of the
bulk superconductor, respectively.

To calculate the critical temperature numerically we make
use of a binary search algorithm. With this, after calculating
�(s, T ) for N different values of T , we obtain the critical
temperature with a precision of Tc0/2N+1. The binary search
algorithm is presented in [80] and can be found as part of
the set of numerical programs GENEUS openly accessible
on GitHub [81]. This code is modified to include geometric
curvature via a change in coordinate system and Pauli ma-
trices, as well as inclusion of position dependent exchange
and spin-orbit fields in the curved ferromagnet, as presented
in Sec. III.

Once a self-consistent solution is found, we can extract
the critical temperature of the system for different values
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of the geometrical curvature κ , the intrinsic and extrinsic
(curvature-induced) spin-orbit coupling constants αB and αN ,
and ferromagnet and superconductor lengths LF and LS . The
critical temperature plots were obtained through a spline in-
terpolation of 17 data points for geometric curvature between
0 (straight wire) and 2π/LF (ring). We consider the exchange
field of the ferromagnet to be along the tangential direction
h � T̂ and the interface parameter ζ = 3. We normalize ener-
gies to the bulk gap of the superconductor at zero temperature
�0, and lengths to its (diffusive) coherence length ξ0. Further-
more, we considered a conventional s-wave superconductor
with the material parameter N0λ = 0.2.

We note that the critical temperature of the hybrid system
will always be smaller than the bulk critical temperature of
the superconductor. This is due to the proximity effect, where
singlet correlations leak into the ferromagnet. As is clear from
Eq. (25) a decrease in singlets in the superconductor directly
corresponds to a reduction of the singlet order parameter and
consequently of the critical temperature.

Analyzing the curvature dependence of the critical tem-
perature of the hybrid system, a range of parameters gives a
significant variation with respect to the bulk critical temper-
ature, suggesting a superconducting triplet spin-valve effect
tunable via the geometrical curvature. To understand how this
effect works we consider again the weak proximity effect
limit.

As discussed in the previous section, curvature κ and
spin-orbit coupling constants αN and αB have two effects
on the SRT and LRT components: spin precession and spin
relaxation. While the former, linear in curvature and SOC
constants, converts SRTs into LRTs, the latter, proportional
to the square curvature and SOC constants, causes their spin
to decay while diffusing in the ferromagnet. Therefore, for
small κ and/or αN , αB the precession mechanism dominates
over the relaxation, and SRT correlations are converted into
LRT allowing for more singlets to be converted in SRTs, thus
reducing the number of singlets in the superconductor and
lowering the critical temperature. On the other hand, when
the relaxation term dominates, for high κ and/or αN , αB, as
discussed in the previous section, the triplet components are
subjected to spin relaxation, causing them to decay faster.
Consequently, κ , αN , and αB result in an increased suppression
of these superconducting correlations in this case, giving a
higher critical temperature of the system.

To study this spin-valve effect, we start by considering the
case of zero spin-orbit coupling. We consider two different
lengths of the superconductor: LS = 0.55ξ0 and LS = ξ0. In
Fig. 3 we plot the behavior of the critical temperature as a
function of κLF /π , for LS = 0.55ξ0 and different lengths of
the ferromagnet LF . The quantity κLF /π represents the angle
(in units of π ) which is spanned by the portion of circular
ring formed by the ferromagnetic wire when keeping fixed its
length LF and changing its curvature κ . We see how, for a
very short ferromagnetic wire, LF = 0.20ξ0, the critical tem-
perature Tc of the SF structure undergoes a variation of ∼40%
of the value of the bulk critical temperature of the super-
conductor Tc0, thus giving a very good spin-valve effect. For
such a short ferromagnet to be realizable, one would require
a large coherence length ξ0. Considering LF = 0.40ξ0 and
LF = 0.50ξ0 we still note a significant variation of Tc: ∼20%

FIG. 3. Critical temperature of the system Tc divided by the crit-
ical temperature of the isolated superconductor Tc0 as a function of
curvature of the ferromagnet κ , for LS = 0.55ξ0 and LS = ξ0 (inset)
and different lengths of the ferromagnet LF , with h = 10�0T̂ and
zero spin-orbit coupling.

and ∼15% of the value of Tc0, respectively. Interestingly, for
LS = 0.55ξ0 and LF 
= 0.2ξ0 we note a nonmonotonic behav-
ior of Tc: at small values of κ , Tc decreases and then starts
to increase again, due to the interplay of spin-precession and
relaxation mechanisms discussed above. There is no decrease
in Tc at small κ for LS = 0.55ξ0 and LF = 0.2ξ0 because
in this case the length of the ferromagnet is too small for
the spin precession to contribute significantly. In the inset of
Fig. 3, on the other hand, we plot the case LS = ξ0 and we
note two differences: (i) the critical temperature of the hybrid
system is much closer to that of the bulk superconductor and
(ii) its variation when changing the curvature is substantially
reduced. This is not surprising since we expect the supercon-
ductivity to be more robust with respect to proximity effects
when increasing the length of the superconductor. Therefore,
in order to have a stronger spin-valve effect, we will from now
on consider the case LS = 0.55ξ0.

It is worth analyzing the effect of varying the magnitude
of the exchange field h in the curved ferromagnet. In Fig. 4
we plot the ratio Tc/Tc0 as a function of the curvature κ for
three values of the magnitude of the exchange field |h| =
(�0, 10�0, 50�0) with LS = 0.55ξ0, LF = 0.50ξ0, and zero
spin-orbit coupling. We note that increasing the magnitude
of the exchange field reduces Tc. This is due to the inverse
proximity effect, which produces a magnetization inside the
superconductor proportional to the value of h. The higher
the value of the magnetization the more the singlet correla-
tions are suppressed inside the superconductor, reducing the
critical temperature of the system. Upon inspection of Fig. 4
we can conclude that an intermediate magnitude of the ex-
change field will result in greatest variation of Tc, without a
significantly detrimental suppression of the overall value.
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FIG. 4. Critical temperature of the system Tc divided by the crit-
ical temperature of the isolated superconductor Tc0 as a function of
curvature of the ferromagnet κ , for different values of the exchange
field h, with LS = 0.55ξ0, LF = 0.50ξ0, and zero spin-orbit coupling.

A. Spin-valve effect with curvature-induced SOC

We now consider the presence of curvature-induced spin-
orbit coupling αN . Since we previously saw that αN is
proportional to the curvature we can define it to be αN = aκ ,
with a = h̄�g|e|/4mc2. In Fig. 5 we plot Tc/Tc0 as a func-
tion of κ for different lengths of the ferromagnet and four
different values of the curvature-induced SOC proportionality
constant a each, with LS = 0.55ξ0, h = 10�0T̂ . Looking at
the figure it is possible to note how the introduction of a
finite a results in a rescaling of the a = 0 curves. As was
noted in the previous section, in Eqs. (24a) to (24c) κ and αN

always appear together in a way that allows us to introduce
an effective curvature κ̃ = κ + 2αN = κ (1 + 2a). Therefore,

the case of finite αN can be considered as equivalent to the
a = 0 case extended to higher curvatures. To make this more
clear, in the inset of Fig. 5(b) we plot Tc/Tc0 as a function of
the curvature for κLF ranging from 0 to 4π , for LS = 0.55ξ0,
LF = 0.50ξ0, h = 10�0T̂ , and a = 0. Comparing in Fig. 5(b)
the a = 0.5 curve with the inset, we note that the two curves
look equivalent, showing the effect quantitatively. This equiv-
alency also shows that the weak proximity effect limit is a very
good approximation to the full Usadel equation in this case.

We briefly note that the a = 0 curve was obtained by letting
κ span from 0 to 4πLF in the numerical calculations. This case
is of course unrealistic since we cannot go over κ = 2πLF

(closed ring), but it is useful for interpreting the results for
a 
= 0. Another effect of the presence of the curvature-induced
SOC is to broaden the variation over the curvature of Tc. This
is not so evident in Fig. 5(a) for LF = 0.2ξ0, but in Fig. 5(b)
for LF = 0.5ξ0 we note that for a = 0.5 the variation of the
critical temperature is increased about 10%. Interestingly, we
can see this effect also for the case LF = ξ0 in Fig. 5(c),
where the superconductivity is quite weak: while for a = 0 the
critical temperature undergoes a variation of ∼1%, if a 
= 0 it
is possible to enlarge it, and for a = 0.5 we reach a change
of ∼5%.

The effective curvature picture also helps to understand
the second region of decreasing Tc in Figs. 5(a) and 5(b)
for higher curvatures. In the same way as we defined an
effective curvature, it is possible to define an effective ex-
change field (in Cartesian coordinates) h̃ = h0[− sin (κ (1 +
2a)s), cos (κ (1 + 2a)s), 0]. This effective field has a smaller
periodicity than the actual exchange field, which is 2π pe-
riodic, so if the geometric curvature is such that κLF >

2π/(1 + 2a), the effective field will be parallel in any
pair of points s = u and s′ = LF /(1 + 2a) + u with u ∈
[0, 2aLF /(1 + 2a)]. Hence, at certain points in the ferro-
magnet, the triplet correlations will experience an effective
exchange field pointing in the same direction, favoring a more
robust spin precession. However, if κ is increased further, the
relaxation term dominates again, suppressing the triplets and
increasing Tc.

(a) (c)(b)

FIG. 5. Critical temperature of the system Tc divided by the critical temperature of the isolated superconductor Tc0 as a function of curvature
of the ferromagnet κ , for: (a) LF = 0.2ξ0, (b) LF = 0.5ξ0, (c) LF = ξ0, and different values of the curvature-induced spin-orbit proportionality
constant a, with LS = 0.55ξ0, LF = 0.50ξ0, h = 10�0T̂ , and αB = 0. The inset of (b) shows Tc/Tc0 as a function of the curvature for κLF /π

values up to 4, for αN = 0.
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)b()a( (c)

FIG. 6. Critical temperature of the system Tc divided by the critical temperature of the isolated superconductor Tc0 as a function of curvature
of the ferromagnet κ , for: (a) LF = 0.2ξ0, (b) LF = 0.5ξ0, (c) LF = ξ0, and different values of the intrinsic spin-orbit coupling αB, with
LS = 0.55ξ0, h = 10�0T̂ , and a = 0.

B. Spin-valve effect with intrinsic SOC

Let us now neglect the curvature-induced SOC and focus
only on the intrinsic term proportional to αB. For the sake of
completeness we note that this component of the spin-orbit
coupling could also be induced extrinsically by generating an
asymmetry in the confinement of the nanowire, for instance
by an electric field pointing in the binormal direction.

In Fig. 6 we plot Tc/Tc0 as a function of κ for different
lengths of the ferromagnet and four different values of αB

each, with LS = 0.55ξ0, h = 10�0T̂ . The overall effect of the
inclusion of an intrinsic SOC αB 
= 0 is to increase the critical
temperature of the system with respect to the αB = 0 curve,
with the exception of the region of small κ . The different
behavior close to κ = 0 may once again be understood in
terms of the spin-precession and spin-relaxation mechanisms.
For LF = 0.2ξ0 in Fig. 6(a), the length of the ferromagnet
is so small that the spin precession is negligible. Hence, the
addition of the intrinsic SOC simply intensifies the effect of
the spin-relaxation term, suppressing the triplets and increas-
ing Tc. On the other hand, for LF = 0.5ξ0 and LF = ξ0 in
Figs. 6(b) and 6(c), where spin precession is not negligible
anymore, at κ = 0 the critical temperature is decreased for
values of αBξ0 up to 2, signaling that these values support
a better singlet to triplet conversion compared to the αB = 0
case. However, when the SOC constant is big enough, αBξ0 =
5, we note a crossover: the contribution to the spin-relaxation
term dominates over the spin precession, and the critical tem-
perature is again increased. By comparison of Figs. 6(b) and
6(c) it can be seen that the range of values for which spin
precession dominates over the spin relaxation is larger for the
shorter wire: for LF = 0.5ξ0 at κ = 0 the critical temperature
of the αBξ0 = 2 is smaller than the critical temperature of the
αBξ0 = 0.5 curve, while the opposite is true for LF = ξ0.

In general, in Fig. 6 we note again that with the inclusion of
SOC the critical temperature variation is broadened, although
to a smaller extent with respect to the curvature-induced SOC,
and the highest increase in the variation is about 5%. For
instance, for LF = ξ0 in Fig. 6(c), the αB = 0 curve has a
variation of ∼1% while the αBξ0 = 5 curve has ∼6%. On the
other hand, in Fig. 6(a) for αBξ0 = 5 the variation of Tc is

slightly reduced. Hence, the intrinsic SOC appears to be more
advantageous for the improvement of the spin-valve effect if
the ferromagnet is long rather than short.

C. Spin-valve effect with curvature-induced and intrinsic SOC

We conclude with an analysis of the case where both
curvature-induced and intrinsic SOC are present. In Fig. 7 we
plot Tc/Tc0 as a function of κ for two values of the curvature-
induced SOC proportionality constant a, each for four values
of αB, plotted together with the case of no SOC, with the
parameters: LS = 0.55ξ0, LF = 0.5ξ0, h = 10�0T̂ . Again we
note a similar effect to the case of zero curvature-induced
SOC: for small intrinsic SOC and curvature, the singlet-triplet
conversion is favored, resulting in a smaller Tc with respect
to the zero SOC case. Hence, at zero curvature between the
values αBξ0 = 0.5 and αBξ0 = 2, we note a crossover from a
case where Tc is diminished, to one where it is increased. In
general, from Fig. 7 we see that increasing αB progressively
reduces the effects of the spin precession of the triplets, both
for κ close to zero and close to the value where the periodicity
of the effective exchange field mentioned above is met, until,
we get a monotonic Tc vs κ dependence. This, for a = 0.1
in Fig. 7(a), can be seen at αBξ0 = 2, while for a = 0.5 in
Fig. 7(b), happens around αBξ0 = 5.

V. DISCUSSION AND SUMMARY

The curvature-induced SOC constant normalized to the
curvature a = αN/κ depends primarily on two parameters:
the deformation potential � and the effective mass m∗ of
the electrons. To obtain a rough estimate for the size of a
we consider gallium manganese arsenide (Ga,Mn)As, a fer-
romagnetic semiconductor with effective mass m∗ ∼ 0.09me,
where me is the bare electron mass [82]. Assuming that the
deformation potential is similar to that in GaAs, |e�| ∼ 1
to 10 eV [83], the resulting curvature-induced SOC constant
in natural units is a ∼ 1 × 10−5 to 1 × 10−4, meaning that
the effective curvature κ̃ is not significantly renormalized by
the curvature-induced SOC in this case. Moreover, for the
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(a)

(b)

FIG. 7. Critical temperature of the system Tc divided by the crit-
ical temperature of the isolated superconductor Tc0 as a function of
curvature of the ferromagnet κ , for: (a) a = 0.1, (b) a = 0.5, and
different values of the intrinsic spin-orbit coupling αB compared
to the case of zero SOC (black dashed curve), with LS = 0.55ξ0,
LF = 0.5ξ0, h = 10�0T̂ .

curvature-induced SOC to be significant � either has to be
significantly larger than 1 eV or the effective mass has to be
many orders of magnitude smaller than the electron mass,
and a is therefore expected to be small for most materials
following this analysis, in line with its relativistic origins.
However, it is sometimes found that using the energy gap
rather than the mass gap gives better estimates for the Rashba
coefficient [84]. This would result in much larger values for
αN , possibly of the same order of magnitude as κ , and could
therefore significantly affect the effective curvature κ̃ . The
precise magnitude of a is therefore difficult to predict. How-
ever, we point out that the main results do not rely on the size
of a, as the effect of αN is to boost the effect of the curvature,
and does not introduce new effects.

We can also see that a wide range of values of αBξ0/h̄
is in principle possible depending on the combination of
ferromagnet and superconductor. The Rashba SOC strength
varies greatly between materials, but typically lie in the range

TABLE I. Approximate exchange and anisotropy constants, and
the resulting maximum curvature κc [26] for a few ferromagnetic
materials at low temperatures.

Material A (J/m) |K | (J/m3) κc (nm−1)

Cobalt ∼2 × 10−11 [87] ∼8 × 105 [88] ∼ 0.1
Iron ∼2 × 10−11 [89,90] ∼5 × 104 [90,91] ∼ 0.03
Nickel ∼1 × 10−11 [90] ∼1 × 105 [90,92] ∼ 0.07

αBm∗/h̄ ∼ 1 × 10−3 to 1 × 10−1 eV nm for semiconductors
and heavy metals [84], meaning the dimensionless quantity
αBξ0/h̄ ∼ 0.01–1 ξ0[nm]m∗/me. Estimating the diffusive co-
herence length ξ0 = √

lξ using mean free path l = 5 nm and
coherence lengths ξAl = 1600 nm and ξNb = 38 nm for alu-
minum and niobium, respectively [65], we get ξAl

0 = 89 nm
and ξNb

0 = 14 nm, resulting in dimensionless Rashba coeffi-
cients αBξ0/h̄ ∼ 0.1–100 m∗/me.

The curvature of the FM is expected to also affect the
magnetic state [13], possibly inducing more complicated mag-
netization textures than a purely tangential field assumed in
this study. SOC in general acts as a fieldlike torque on the spin
[85], and thus geometric curvature, which acts as an effective
SOC, would be expected to have a similar effect. However,
Sheka et al. [26] showed theoretically for Heisenberg magnets
that in a curved ferromagnetic wire with tangential uniaxial
anisotropy, the magnetic ground state remained oriented in
the tangential direction as long as the curvature was lower
than a critical curvature κc ≈ 0.657

√|K|/A, where A and K
are the exchange and anisotropy constants, respectively. The
critical curvature is therefore inversely proportional to the
domain wall length [86]. Assuming that a similar analysis
is applicable also to metallic ferromagnets, one should use
materials with strong uniaxial anisotropy to ensure a tangen-
tial exchange field. The critical curvatures, according to the
results in Ref. [26], for a few ferromagnetic materials relevant
for spintronics systems are given in Table I. Moreover, the
effect of the curvature enters as the dimensionless constant
κLF , where the ferromagnet length is of the order of the super-
conducting coherence length. It is therefore likely beneficial
to use superconductors with long coherence lengths in order
to avoid curvature effects on the magnetization direction. For
instance using LF = 0.5ξAl

0 , a half-circular wire results in
a curvature κ = π/LF ≈ 0.07 nm−1, which is similar to the
critical curvature of nickel, but below that of cobalt.

In summary, we have discussed the effects arising in ge-
ometrically curved diffusive nanostructures and presented a
covariant formalism for the Usadel framework, allowing us to
study an SF hybrid nanowire where the ferromagnet presents
geometric curvature. By solving the Usadel equation we have
calculated the critical temperature of the structure as a func-
tion of the geometric curvature, for various parameters, with
and without spin-orbit coupling, which predicts the behav-
ior for a broad range of possible material choices. We have
found that our system presents promising characteristics for
the realization of a superconducting spin valve: the critical
temperature can be controlled by varying the curvature of
the ferromagnet alone. For the right choice of parameters the
critical temperature of the structure undergoes a consistent
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variation when varying the curvature, up to 40% of the critical
temperature of the bulk superconductor. Moreover, we have
explored the effects of curvature-induced and intrinsic spin-
orbit coupling and observed that in some cases their presence
boosts the spin-valve effect. We also noted that analyzing the
dependence of the critical temperature on the curvature can
help understand how relevant the spin-orbit coupling is in the
system. Furthermore, a possible extension of this study would
be to consider the more general case of nonconstant curvature,
which would modify the results quantitatively.

We have shown that geometric curvature alone can tune
properties for which previously magnetic inhomogeneities or
multiple spin-orbit coupling components were needed. Cur-
vature control of the superconducting proximity effect and
long-range triplet generation therefore open for many new
possibilities in superconducting spintronics device designs
and function. Realization and characterization of geomet-
rically curved nanostructures, especially those including
magnetic materials, is still in an early phase, so that many new
possibilities are yet to be explored.
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APPENDIX: CURVILINEAR COORDINATE SYSTEMS

A vector in a three-dimensional curvilinear coordinate sys-
tem can be described by the generalized coordinates qα and
basis vectors eα , with α = {1, 2, 3},

R = qαeα, (A1)

where the Einstein summation convention is used. From the
above we see that the covariant basis vectors are given by

eα = ∂αR, (A2)

where we use the shorthand notation ∂α = ∂/∂qα . In general
the basis vectors are not orthogonal, and both the length
and direction can vary in space [93]. The metric tensor is
defined as

Gαβ = eα · eβ, (A3)

meaning the unit basis vectors are given by êα = eα/
√

Gαα .
The contravariant basis vectors eα are related to the covariant
basis vectors by eα · eβ = δβ

α .
The gradient of a scalar φ can be defined by considering

the small change [69]

dφ = ∂αφ dqα = ∂αφ eα · dR, (A4)

where we have used dR = eαdqα from Eq. (A1). In order to
write the change in φ as

dφ = ∇φ · dR, (A5)

we define the gradient operator [94]

∇ = eα ∂

∂qα
= êα√

Gαα

∂α. (A6)

The fact that basis vectors can vary in space has consequences
when considering the gradient of vectors. Considering the
gradient of a contravariant vector V = V αeα , we get

∇V = eα∂αV βeβ = eα[(∂αV β )eβ + V β (∂αeβ )]. (A7)

Defining the Christoffel symbols of the second kind [93,94],

�
γ

αβeγ = ∂βeα, (A8)

we get

∇αV β = ∂αV β + V γ �β
γα, (A9)

meaning the gradient of a vector can have additional terms in
a general curvilinear coordinate system compared to, e.g., the
Cartesian coordinate system.

From the relation between the covariant and contravari-
ant basis vectors, we find an expression for the derivative
of the contravariant basis vectors in terms of the Christoffel
symbols [93],

0 = (∂γ eα ) · eβ + eα · (∂γ eβ )

⇒ ∂γ eβ = − �β
αγ eα. (A10)

The gradient of a covariant vector is therefore given by

∇αVβ = ∂αVβ − Vγ �
γ

αβ. (A11)

In the main text we use the notation Dα for the gradient of
covariant vector components to highlight the distinction from
the gradient in a Cartesian coordinate system.

The Christoffel symbols can be expressed in terms of the
metric as [93,94]

�
γ

αβ = 1
2 G γ λ[∂βGαλ + ∂αGλβ − ∂λGαβ], (A12)

where we see that �
γ

αβ is invariant when α ↔ β.
Due to the variation of the length of the basis vectors in

space, the components Vα of a vector do not necessarily have
the correct physical dimensions. We therefore introduce the
physical vector components

V〈α〉 = êα · V = Vα√
Gαα

. (A13)

In Cartesian coordinates the metric is the identity matrix, and
therefore the notion of physical vector components is not
necessary.

In the local coordinate system following a space curve
parametrized by the arclength s as r(s), we can define a vector

R = r(s) + nN̂ (s) + bB̂(s), (A14)

where N̂ and B̂ are the directions normal and binormal to the
tangent T̂ = ∂sr of the curve at s, namely N̂ = ∂sT̂ /κ (s) and
B̂ = T̂ × N̂ , with κ = |∂sT̂ |. The derivatives of the tangent,
normal and binormal vectors are related by the Frenet-Serret
equations of motion in Eq. (2) in the absence of torsion.
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The covariant basis vectors are then given by

et = ∂sR = η(s, n)T̂ , (A15a)

en = ∂R
∂n

= N̂ , (A15b)

eb = ∂R
∂b

= B̂, (A15c)

where we have defined η(s, n) = 1 − nκ (s), and use the
subscript t, n, b for the tangential, normal, and binormal com-
ponents respectively. Using Eq. (A3) and the above basis
vectors, we get the metric given in Eq. (3). Note that by
definition the basis vectors are orthogonal, as seen by the
diagonal form of the metric, but only en and eb are always
unit basis vectors.

The only nonzero derivatives of the elements of metric are
∂sGtt = 2η∂sη and ∂nGtt = 2η∂nη, resulting in the Christoffel
symbols [64]

�t
tt = ∂sη(s, n)

η(s, n)
, (A16a)

�n
tt = −η(s, n)∂nη(s, n), (A16b)

�t
tn = ∂nη(s, n)

η(s, n)
. (A16c)

The physical components of a vector V are given by

VT,N,B = V · {T̂ , N̂ , B̂}, (A17)

where we use uppercase indexes to denote the physical
components.
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We present a mechanism allowing for superconductivity at high magnetic fields, beyond the Pauli-
Chandrasekhar-Clogston limit. We consider spin splitting induced by an in-plane external magnetic field in a
superconductor with two relevant bands close to the Fermi level. The magnetic field therefore controls which
bands are available for Cooper pair formation. The presence of interband superconducting pairing, i.e., Cooper
pairs formed by electrons with different band indices, produces high-field reentrant superconducting domains,
whose critical magnetic field violates the Pauli-Chandrasekhar-Clogston limit. We analyze how the interband
superconducting domains are influenced by the band parameters, and show that, for a certain range of parameters,
the system presents two separate superconducting regions, for low and high magnetic field.

DOI: 10.1103/PhysRevB.107.174516

I. INTRODUCTION

Over the past two decades, multiband superconductors
have been attracting great interest because of increasing ex-
perimental evidence of interesting effects not achievable in
single-band systems. For instance, in the first-ever discovered
multiband superconductor, MgB2, Leggett modes have been
observed [1] and more recently optically controlled [2]. More-
over, spontaneous time reversal symmetry breaking has been
reported in Ba1 − xKxFe2As2, Sr2RuO4, UPt3 and many other
multiband systems (for an exhaustive review see [3]).

Since the extension of the Bardeen-Cooper-Schrieffer
(BCS) theory to multiband systems by Suhl, Matthias and
Walker [4] and Moskalenko [5], many studies have focused
on a theoretical understanding of the effects of a multiband
description of superconductors [6–17]. In general, if two
bands are close to each other or hybridized, it is possible
to form interband Cooper pairs (see, e.g., [18]), where the
electrons comprising the pairs come from two distinct bands.
Research on interband pairing has been rather limited, but
studies have found that it affects Josephson tunneling [7], it
is an important factor in obtaining an anomalous Hall effect
[19], it can produce gapless states [13], and it influences the
BCS-BEC crossover [20]. We note that, in the context of this
work, the term interband will always refer to Cooper pairs
formed by electrons in distinct bands, and it must not be
confused with the same term often found in the literature,
also called pair-hopping, referring to the hopping of intraband
pairs, i.e., formed by electrons in the same band, between
different bands.

Among multiband superconductors, MgB2 and Fe-based
superconductors (FeBS) are particularly interesting because
of their high critical temperatures and critical magnetic fields.
For instance, the critical temperature is 39 K for MgB2 [21],
55 K for SmO1 − xFxFeAs [22], and 65 K in FeSe films on
SrTiO3 substrate [23], whereas the zero temperature estimated

values of the critical field are 25 T in single crystal MgB2 [24],
70 T in C-doped MgB2 thin films [25], and up to 300 T in
FeBS [26–31]. It is worth noting, however, that these values
are often extrapolated from low-magnetic field data obtained
close to the critical temperature. Therefore, the extrapolated
low-temperature dependence of the critical field and its T = 0
value may be a bad estimate. However, the application of
pulsed fields allows one to reach higher magnetic field values
and obtain more reliable estimations [30].

The simultaneous presence of superconductivity and mag-
netism is of great interest for the field of superconducting
spintronics [32] where the proximity effect is exploited to
achieve dissipationless information transport. However, these
two phenomena are often mutually exclusive since two effects
contribute to destroying superconductivity when an external
magnetic field is applied: the orbital and Pauli paramagnetic
pair-breaking effects [33,34]. The orbital effect describes the
breaking of Cooper pairs when the kinetic energy of elec-
trons, resulting from the momentum acquired in a magnetic
field, exceeds the superconducting gap. On the other hand,
paramagnetic pair breaking occurs when Cooper pairing be-
comes energetically unfavorable as the Zeeman energy of
the electrons overcomes the superconducting gap. This hap-
pens when the exchange energy reaches a value given by
the Pauli, or equivalently the Chandrasekhar-Clogston, limit
hc = �0/

√
2 = 1.86Tc, where �0 is the value of the super-

conducting gap at zero temperature and zero applied field, and
Tc is the superconducting critical temperature.

Various mechanisms producing the limit violation, or
enhancement of critical fields have been proposed, e.g., scat-
tering by nonmagnetic impurities [35,36], spin-triplet super-
conductivity [37], Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
pairing [38,39], strong superconducting coupling, spin-orbit
coupling [40,41], application of a voltage bias [42,43], the
proximity of two bands to each other [44–46], and pair
hopping in three-band superconductors [47,48]. Furthermore,
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FIG. 1. Illustration of some of the superconducting pairing processes possible in a two-band system for (a) intraband and (b) interband
Cooper pairs. The red and blue circles represent the Fermi surfaces of the two bands, the green and yellow lines identify the electrons forming
the Cooper pairs, and the dotted lines indicate the scattering processes.

many experimental works have reported evidence for critical
magnetic field violating the above limits in multiple supercon-
ductors, e.g., NbSe2 [40,49], iron pnictides [50,51], lanthanide
infinite-layer nickelate [52], moiré graphene [53], organic
superconductors [54,55], Eu-Sn molybdenum chalcogenide
[56], and URhGe [57]. References [53–57] are particularly
interesting for the purpose of this work because their results
present two disconnected superconducting domains, for small
and large external magnetic field, due to non-spin-singlet
Cooper pairs in Ref. [53] and to the Jaccarino-Peter effect in
Refs. [54–56].

In this work, we present a simple mechanism which allows
one to overcome the conventional limit. We consider a two-
band s-wave superconductor in the presence of an in-plane ex-
ternal magnetic field, producing Zeeman splitting. We obtain
the critical magnetic field by the paramagnetic pair-breaking
effect and demonstrate that the inclusion of interband pair-
ing allows one to overcome the limiting value of the critical
field found in conventional superconductors. Within a BCS
framework we show that for a certain range of parameters,
our system exhibits superconductivity for significantly high
values of the external magnetic field. Furthermore, we show
that the system can exhibit two separate superconducting do-
mains, for small and large external magnetic field, and we
provide an explanation of the mechanism producing these
results.

II. THEORY

We consider a two-band superconducting thin film with
both intra- and interband spin-singlet superconducting cou-
pling, and an in-plane external magnetic field producing
Zeeman splitting. We ignore orbital pair-breaking effects
and assume the system does not experience any magnetic
flux. The mean-field Hamiltonian of the system is the

following:

H =
∑
kσ

(
ξ

(1)
k − Ec − σh

)
c(1)†

kσ
c(1)

kσ

+
∑
kσ

(
ξ

(2)
k + Ec − σh

)
c(2)†

kσ
c(2)

kσ

−
∑

k

∑
α,α′=1,2

(
�αα′ (k)c(α)†

k↑ c(α′ )†
−k↓ + H.c.

)
, (1)

where the operator c(α)†
kσ

(c(α)
kσ

) creates (destroys) an electron in
band α with dispersion ξ

(α)
k = εα

k − μ and spin σ , Ec is half
the band separation, and h is the externally applied in-plane
magnetic field. We note that the Hamiltonian in Eq. (1) is a
generalization to a two-band spin-split superconductor of the
one presented in Ref. [58] for a single band. The supercon-
ducting order parameters �αα′ (k) are defined by

�αα′ (k) = T

V

∑
ωn

∑
β,β ′=1,2

∑
k′

gαα′,ββ ′ (k, k′)Fββ ′
(k′, ωn), (2)

where ωn = (2n + 1)π/β is the fermionic Matsubara fre-
quency and Fββ ′

is the anomalous component of the Green’s
function.

The superconducting coupling matrix gαα′,ββ ′ (k, k′) de-
fines the different coupling processes, and the terms gαα,α′α′

describe processes involving intraband Cooper pairs formed
by electrons in the same band, hopping between the same band
(α = α′) or different bands (α �= α′). This last term is often
referred to in the literature as interband scattering, or pair hop-
ping, and must not be confused with the use we make of the
term interband. Processes involving interband pairs instead
are described by those elements gαα′,ββ ′ with α �= α′ and/or
β �= β ′. The superconducting pairing processes relevant for
the purpose of this work are illustrated in Fig. 1 for a two-band
system.

The terms �11 and �22 represent the intraband order parameters, while �12 = �21 is the interband order parameter.
In the basis defined by ψ̂

†
k = (c(1)†

k↑ , c(1)
−k↓, c(2)†

k↑ , c(2)
−k↓) the inverse Green’s function for the Hamiltonian of Eq. (1) is

G−1
0 =

(
(iωn + h)τ̂0 − ξ̃1τ̂3 + �11τ̂1 �12τ̂1

�12τ̂1 (iωn + h)τ̂0 − ξ̃2τ̂3 + �22τ̂1

)
, (3)
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FIG. 2. Band structure of the system in the presence of an ex-
change field, for (a) small and (b) large values of the field and generic
values of Ec, γ , ωc, μ. The rectangles indicate the regions where
Cooper pair formation can occur.

where ξ̃1 = ξ
(1)
k − Ec, ξ̃2 = ξ

(2)
k + Ec, and we restricted to

s-wave pairing (real order parameter). The two branches
of the BCS quasiparticle excitation spectrum, E+ and E−,
are obtained by defining detG−1

0 ≡ (ω̃2
n + E2

+)(ω̃2
n + E2

−),
where ω̃n = ωn − ih. Inverting Eq. (3) we obtain the Green’s
function of the system which allows us to analyze when super-
conductivity occurs. Details of the form of the Greens function
are given in Appendix A.

III. RESULTS

We consider a two-band system with spin-split holelike
parabolic bands: ξ

(α)
k = −k2/(2mα ) − μ with mα the effective

mass of the band α and μ the chemical potential. Defining
the ratio between the two band masses as γ = m1/m2 we
can write ξ

(2)
k = γ ξ

(1)
k + (γ − 1)μ. The band structure of the

system for generic values of Ec, γ , μ, and two different limits
of h is represented in Fig. 2, where we also show the energy
cutoff of the effective attractive interaction ωc. By examining
the case of small spin splitting represented in Fig. 2(a), we
note that intraband pairing is favored, since bands with the
same band index and opposite spin are close to each other. On
the other hand, the presence of a large spin-splitting field can
bring two bands with different band and spin indices closer
to each other, favoring an interband pairing mechanism, as
shown in Fig. 2(b).

To simplify the problem, we neglect those scattering pro-
cesses connecting interband to intraband Cooper pairs and
vice versa, i.e., we set gαα,αβ = gαβ,αα = 0 with α �= β. This
simplification is justified by the fact that, for sufficiently large
Ec, either interband or intraband pairing processes will dom-
inate over the other, depending on h and γ . Simultaneously,
the processes of intraband pair hopping in interband pairs, or
vice versa, are either forbidden due to energy or momentum
conservation, or strongly suppressed compared to the nonmix-
ing processes, since they would meet energy and momentum
conservation criteria for significantly smaller ranges.

With these simplifications, from Eq. (2), it is clear that
the gap equation for the intraband and interband order pa-
rameters are decoupled and we can solve them separately.
We set the chemical potential μ as the energy scale and
choose the energy cutoff for the effective attractive interac-
tion and the band separation to be ωc = 0.2|μ| and Ec =

0.05|μ|, respectively. Furthermore, we consider dimension-
less superconducting coupling constants: λintra

αβ = Nα (0)gαα,ββ

and λinter = N1(0)gαβ,αβ, (α �= β ), where Nα (0) is the density
of states at the Fermi energy for the band α. Their values are
chosen to be λintra

11 = 0.3, λinter = λintra
22 = 2λintra

12 = 0.2. We
assume that λinter can be taken to be larger than some λintra

αβ

because of the external magnetic field, which may bring two
different bands with opposite spin very close to each other in
energy; see, e.g., Fig. 2(b).

Having chosen the values of our parameters we can es-
tablish whether the system exhibits superconductivity. We
determine the critical values of temperature Tc and exchange
field hc of our system for different values of the effective mass
ratio γ by linearizing Eq. (2) with respect to �αα′ , separately
for interband (α �= α′) and intraband (α = α′) superconduct-
ing pairing. The linearized gap equations are derived in
Appendixes B and C. In the interband case we have the fol-
lowing equation:

1

λinter
=

∫ ωc

−ωc

dξ

2(ξ̃1 + ξ̃2)

∑
α=1,2

{
tanh

[
βc

2
(ξ̃α + hc)

]

+ tanh

[
βc

2
(ξ̃α − hc)

]}
, (4)

where βc = 1/Tc, ξ̃1 = ξ − Ec, and ξ̃2 = γ ξ + (γ − 1)μ +
Ec. The interband critical parameters are the values satis-
fying Eq. (4). We note that by setting Ec = 0 and γ = 1,
we get ξ̃1 = ξ̃2 = ξ , and Eq. (4) reduces to that of a single-
band superconductor in external magnetic field, reported in
Appendix B. In the intraband case we have the following
system of equations:(

δ1

δ2

)(
λ11I1(Tc, hc) − 1 λ12I2(Tc, hc)

λ21I1(Tc, hc) λ22I2(Tc, hc) − 1

)
= 0, (5)

where the terms δα are defined through �αα = εδα , ε(T =
Tc) = 0, and

Iα (T, h)=
∫ ωc

−ωc

dξ

4ξ̃α

{
tanh

[
β

2
(ξ̃α+h)

]
+ tanh

[
β

2
(ξ̃α−h)

]}
,

(6)
with α = 1, 2, and β = 1/T . The intraband critical parame-
ters are found by setting to zero the determinant of the matrix
in Eq. (5). More details on the procedure used to obtain the
critical parameters are reported in Appendix E.

The results are shown in Fig. 3, displaying reentrant su-
perconductivity. The figure shows the inter- and intraband
superconducting domains, delimited by the hc(T ) curves, for
different values of γ ; the lines correspond to the critical values
of temperature and exchange field, while the colored area
identifies the superconducting region, with dark gray color
identifying the interband regions and light gray the intraband.
From Fig. 3, we immediately note a substantial difference
between the superconductivity induced by each type of cou-
pling. The intraband region develops around h = 0 for all the
values of γ , with the highest critical temperature obtained
in the absence of any external field. On the other hand, the
interband regions show an interesting behavior: Except for
the case γ = 1.1, they are not present in the zero-field case
but around a certain finite value of h, thus their appearance is
conditioned to the presence of an external field. Therefore,
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FIG. 3. Critical field hc as a function of temperature T for dif-
ferent values of the band mass ratio γ , for Ec = 0.05|μ|, λintra

11 =
0.3, λinter = λintra

22 = 2λintra
12 = 0.2, and ωc = 0.2|μ|. The dark (light)

gray areas represent the region of interband (intraband) supercon-
ducting coupling. Except for the case γ = 1.1, we note a reentrant
superconductivity, with the two disconnected intra- and interband
superconducting domains.

analyzing Fig. 3, we note that for certain values of γ it is
possible to find two distinct/disconnected superconducting re-
gions: the intraband one for low exchange field values and the
interband one developing around substantially higher values
of the exchange field. We note that the value γ = 1.1 as a
certain significance, since it approximately corresponds to the
point where the difference in band curvature compensates for
the band separation 2Ec, so that the Fermi momenta of the two
bands become the same. Hence, any h �= 0 has a detrimental
effect for superconductivity.

These results can be explained by considering the band
structure provided in Fig. 2 and the conditions for supercon-
ducting pairing to occur. In the BCS theory, Cooper pairs are
formed by electrons with opposite momenta close to the Fermi
momentum, and energies in a “shell” of width ωc around
the Fermi energy. Therefore, only electrons meeting these
two criteria can form Cooper pairs. In a multiband system
with spin-split bands, each band will have its own intervals
of energies and momenta where this can be realized. When
the intervals of two different bands overlap, Cooper pair for-
mation among them is feasible. These overlap regions are
represented by the rectangles in Fig. 2.

In the absence of spin splitting, and in the case of intraband
pairing Cooper pair formation is of course always possible.
When an external field is applied, instead, the spin-up and
spin-down bands separate from each other, with their distance
increasing with h, thus reducing the size of the overlap region
where the formation of Cooper pairs is possible. Conse-
quently, for purely intraband pairing, the critical temperature
of the system has a maximum at zero field.

This picture changes when considering the case of inter-
band pairing. While in the intraband case the exchange field
pulls the two pairs of spin-split bands apart from each other, in
the interband case it can have the opposite effect. Supercon-

ductivity involving interband pairs can result from different
cases. With spin-split bands, we can have formation of Cooper
pairs with (i), one electron in band 1 ↓ and the other in 2 ↑ and
(ii), one electron in band 1 ↑ and the other in band 2 ↓. With-
out spin splitting, instead, we have (iii), one electron in band
1 and the other in band 2. The choice of the parameters Ec, h,
and γ determines the size of the overlap between the different
bands and the size of the superconducting coupling constant
λinter influences in which of the three cases superconductivity
is realized.

Qualitatively, in each case the maximum in the size of the
overlap, and thus in the superconducting critical temperature,
occurs when the Fermi momenta of the two bands involved are
equal to each other. Therefore, equating the Fermi momenta
of the two bands for each of these cases, we can obtain, as a
function of the other parameters, the value of h which deter-
mines the match of the momenta, allowing for Cooper pair
formation. In case (i) we have kF1↓ = √−2m(μ + Ec − h)
and kF2↑ = √−2m1/γ (μ − Ec + h), equating the two we ob-
tain:

h = γ − 1

γ + 1
μ + Ec. (7)

In case (ii) we get kF1↑ = √−2m1(μ + Ec + h) and
kF2↓ = √−2m1/γ (μ − Ec − h), yielding

h = −γ − 1

γ + 1
μ − Ec. (8)

In case (iii) it is clear that h = 0.
We note that the value of hc at which the interband su-

perconducting domains present a maximum in Tc, depends
only on the band parameters μ, Ec, and γ , and not on the
superconducting coupling constants. These instead, together
with other factors, such as, e.g., impurity scattering, influence
the value of Tc, and therefore, whether superconductivity is
realized.

Having determined the value of h which produces a maxi-
mum of the overlap in the different cases, with our choice of
parameters we calculate numerically the critical temperature
of the interband domains as a function of γ and h. The numer-
ical results are plotted in Fig. 4 together with the theoretical
prediction given by Eqs. (7) and (8).

We observe that for a good range of γ values (0.95 �
γ � 1.05 and 1.15 � γ � 1.3) the numerical results follow
the analytical results and superconductivity comes from case
(i) or case (ii), showing peaks in Tc for nonzero values of h.
Instead, for 1.06 < γ < 1.14, the superconducting domains
are centered in h = 0, away from the analytical prediction,
except for γ � 1.1. Therefore, for this choice of parameters,
and this range of γ values, the system favors superconduc-
tivity in the absence of spin splitting. Considering instead
those points which do not exhibit superconductivity, for γ <

0.95 and γ > 1.3, we can state that the overlap between the
bands is not large enough for the chosen value of the inter-
band superconducting coupling constant. However, choosing
a higher coupling would yield superconductivity for values of
γ smaller than 0.95 and higher than 1.3.

Observing Fig. 4, we can see that peaks in Tc can be found
for rather high values of the exchange field, up to h � 1.6Ec.
Therefore, when the system has both intraband and interband
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FIG. 4. Critical temperature of the interband superconducting
domains as a function of γ and h, for Ec = 0.05|μ|, λinter = 0.2, and
ωc = 0.2|μ|.

superconducting pairing, it can present two disconnected su-
perconducting domains, one for low magnetic field due to the
intraband pairing, and one for high magnetic field coming
exclusively from interband pairing.

Finally, it is worth noting that the case of two electronlike
bands would yield qualitatively similar results. The difference
would be in the value of the band mass ratio γ at which the
band overlap occurs. The case where there is a coupling be-
tween an electronlike and a holelike band is more complicated
and would require a separate study.

IV. MINIMAL MODELS FOR TWO-DIMENSIONAL
MgB2 AND Ba0.6K0.4Fe2As2

The simple model presented in this work, for an ideal case,
can be realized in a two-dimensional multiband superconduc-
tor with the application of an in-plane external magnetic field.
On the material side many superconductors have been shown
to have multiple holelike bands close to the Fermi energy at
the � point. For instance, band structure calculations in few
monolayers (MLs) MgB2 in Ref. [59] have shown that each
ML contributes to the band structure with a pair of σ bands,
σ1, and σ2 having different effective masses and chemical
potential μ � 500 meV, with each pair of bands separated by
Ec � 37.5 meV. Therefore, we consider a minimal model for
2ML two-dimensional MgB2, taking only a pair of σ bands
separated by 37.5 meV. In this case we retain the supercon-
ducting coupling constants representing scattering processes
connecting interband to intraband Cooper pairs and vice versa,
which were previously neglected. This means that in this
case the intraband and interband order parameters are cou-
pled, the resulting set of linearized gap equations is given in
Appendix D. We reduce the indices of the λαα′,ββ ′ coupling
constants in the following way:

αα′ ≡
{
α if α = α′,
3 if α �= α′.

Therefore, the index 3 represents the interband pairing
channel. Following Ref. [13] we consider the following su-

FIG. 5. Superconducting critical curves from a minimal model
for (a) two-dimensional MgB2 and (b) Ba0.6K0.4Fe2As2, with the
highlighted high (dark gray) and low (light) field superconducting
domains.

perconducting coupling matrix:

λ̂ =
⎛
⎝0.275 0.032 λ13

0.032 0.274 λ23

λ31 λ32 λ33

⎞
⎠, (9)

where the upper 2 × 2 block represents the conventional su-
perconducting coupling for a two-band system, the terms λα3

and λ3α , α = 1, 2, represent interband Cooper pairs scattering
to intraband Cooper pairs and vice versa. Finally λ33 repre-
sents purely interband scattering processes, and corresponds
to the constant λinter. To obtain the correct value of the critical
temperature at zero field (Tc ≈ 39 K), we set λα3 = λ3α =
0.045 and λ33 = 0.2. In Fig. 5(a) we report the superconduct-
ing domain delimited by the hc-Tc critical curves. As in the
previous section we find two disconnected superconducting
domains for low and high magnetic field, with the high mag-
netic field one centered at a value B = μBEc ≈ 650 T.

Also, among FeBS, many materials in the iron-pnictides
family, like LaFeAsO1 − xFx [60–62] and Ba1 − xKxFe2As2

[63], exhibit multiple holelike bands at the � points, mainly
originating from the 3-d Fe orbitals. Again, we consider a
minimal model for optimally doped Ba0.6K0.4Fe2As2, with the
two holelike α and β bands at the � point, separated by Ec =
5 meV [63]. Following Ref. [13] we take the superconducting
coupling matrix to be

λ̂ =
⎛
⎝ 0.51 −0.005 λ13

−0.0025 0.39 λ23

λ31 λ32 λ33

⎞
⎠, (10)

where the elements 12 and 21 are set to negative values as
required by the s± superconducting phase typical of FeBS.
However, we note that the critical temperature and field of
the system are not sensitive to this negative sign since the
intraband gaps are effectively decoupled from the interband
gap for the parameters used. Once more, we set λα3 = λ3α =
0.05, α = 1, 2, and λ33 = 0.25 to obtain the right critical
temperature at zero field (Tc ≈ 36 K) and report the results in
Fig. 5(b). Again we note two disconnected superconducting
domains with the high field one centered around hc ≈ 90 T.

V. CONCLUSIONS

In summary, we have considered a superconducting sys-
tem with two relevant low-energy bands in the presence of
a spin-splitting field. In the present treatment, we ignore or-
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bital depairing effects and flux related phenomena, such as
Abrikosov vortices, which would need to be added to the gap
equation for estimates in bulk superconductors rather than
thin films with an in-plane magnetic field. We have shown
that the inclusion of interband superconducting pairing pro-
cesses, i.e, allowing for the presence of Cooper pairs with the
two electrons coming from two different bands, can result in
reentrant superconducting domains centered at a high value
of the spin-splitting field. These domains are exclusively due
to the interband pairing and generally do not overlap with the
superconducting domains originating from intraband pairing,
which are always centered at zero spin-splitting field.

ACKNOWLEDGMENTS

Computations have been performed on the SAGA su-
percomputer provided by UNINETT Sigma2—the National
Infrastructure for High Performance Computing and Data
Storage in Norway. We acknowledge funding via the Out-
standing Academic Fellows programme at NTNU, the Re-
search Council of Norway, Grant No. 302315, as well as its
Centres of Excellence funding scheme, Project No. 262633,
QuSpin. Nordita is supported in part by NordForsk.

APPENDIX A: GREEN’S FUNCTION OF THE SYSTEM

The Green’s function of the system is obtained by inverting
Eq. (3) in the main text:

G0(k, ωn) = 1

detG−1
0

(
Â11(k, ω̃n) Â12(k, ω̃n)
Â21(k, ω̃n) Â22(k, ω̃n)

)
, (A1)

where detG−1
0 = (ω̃2

n + E2
+)(ω̃2

n + E2
−) with ω̃n = ωn − ih.

The two branches have the following expression:

E2
± = 1

2

{
Ẽ2

1 + Ẽ2
2 + 2|�12|2 ± [(

Ẽ2
1 + Ẽ2

2 + 2|�12|2
)2

− 4
(
Ẽ2

1 Ẽ2
2 + |�12|4 + 2ξ̃1ξ̃2|�12|2

− 2Re
{
�11�22�

∗
12

2})] 1
2
}
. (A2)

The components of the 2 × 2 matrices Âαβ (k, ωn) are

[Â11(k, ω̃n)]11 = −(iω̃n + ξ̃1)
(
ω̃2

n + ξ̃2
2 + |�22|2

)
− |�12|2(iω̃n + ξ̃2), (A3a)

[Â11(k, ω̃n)]12 = �11
(
ω̃2

n + ξ̃2
2 + |�22|2

) − �2
12�

∗
22,

(A3b)

[Â12(k, ω̃n)]11 = (iω̃n + ξ̃1)�12�
∗
22 + �11�

∗
12(iω̃n + ξ̃2),

(A3c)

[Â12(k, ω̃n)]12 = −[(iω̃n + ξ̃1)(iω̃n − ξ̃2) − |�12|2]�12

−�11�
∗
12�22, (A3d)

[Â21(k, ω̃n)]11 = [Â12(k,−ω̃∗
n )]∗11, (A3e)

[Â21(k, ω̃n)]12 = [Â12(k,−ω̃n)]12, (A3f)

[Âαβ (k, ω̃n)]22 = −[Âαβ (k,−ω̃n)]11, (A3g)

[Âαβ (k, ω̃n)]21 = [Âαβ (k, ω̃∗
n )]∗12. (A3h)

where Ẽα =
√

ξ̃ 2
α + |�αα|2 , α = 1, 2, with ξ̃1 = ξ

(1)
k −

Ec, ξ̃2 = ξ
(2)
k + Ec.

The elements of Â22(k, ωn) are obtained by exchanging
the indices 1 and 2 in the expressions for the elements of
Â11(k, ωn). The inter- and intraband normal and anomalous
Green’s functions are given by

Gαβ (k, ω̃n) = [Âαβ (k, ω̃n)]11(
ω̃2

n + E2+
)(

ω̃2
n + E2−

) , (A4a)

Fαβ (k, ω̃n) = [Âαβ (k, ω̃n)]12(
ω̃2

n + E2+
)(

ω̃2
n + E2−

) . (A4b)

APPENDIX B: GAP EQUATION FOR THE INTERBAND
ORDER PARAMETER

We derive the gap equation in the case of purely interband
coupling, i.e., Cooper pairs formed exclusively by electrons
in different bands. To do so we consider the following form of
the coupling matrix:

gαα′ββ ′ =
{

ginter, if α �= α′, β �= β ′
0, otherwise.

(B1)

Inserting this in Eq. (2) we obtain the following gap equa-
tion:

�12 = ginterT

V

∑
kωn

[F 12(k, ωn − ih) + F 21(k, ωn − ih)].

(B2)
Setting �11 = �22 = 0 in Eq. (A2) we get

E± = ξ̃1 − ξ̃2

2
± E12, (B3)

with E12 =
√

(ξ̃1 + ξ̃2)2/4 + |�12|2. Using the relation, de-
fined in the main text, between the two bands ξ

(2)
k = γ ξ

(1)
k +

(γ − 1)μ, we can write

E± =
(
ξ

(1)
k + μ

)
(1 − γ )

2
− Ec ± E12, (B4a)

E12 =

√√√√
(

ξ
(1)
k (1 + γ ) − μ(1 − γ )

2

)2

+ |�12|2. (B4b)

The expression of the anomalous Green’s function is

F 12(k, ωn − ih) = − (iω̃n + ξ̃1 + h)(iω̃n − ξ̃2 + h) − |�12|2
[(ωn − ih)2 + E2+][(ωn − ih)2 + E2−]

�12. (B5)
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After summing over the Matsubara frequency the gap equation Eq. (B2) takes the following form:

1

ginter
= − 1

V

∑
k

1

2E12
[nF (E+ − h) − nF (−E+ − h) − nF (E− − h) + nF (−E− − h)]

= 1

V

∑
k

∑
s=±

s

4E12

{
tanh

[
β

2
(Es + h)

]
+ tanh

[
β

2
(Es − h)

]}
, (B6)

where nF (ε) = (eβε + 1)−1 is the Fermi function and we have used

nF (E± − h) − nF (−E± − h) = − sinh βE±
cosh βE± + cosh βh

= −1

2

{
tanh

[
β

2
(E± + h)

]
+ tanh

[
β

2
(E± − h)

]}
.

We now switch from the summation over momenta to integral over the energy: V −1 ∑
k(·) = ∫

dξ1N1(ξ1)(·), where N1(ξ1)
is the density of state of band 1. We then approximate the density of state with its value at the Fermi level N1(ξ1) � N1(0) and,
defining the dimensionless superconducting coupling constant as done in the main text, we obtain the final expression for the
interband gap equation:

1

λinter
=

∫ ωc

−ωc

dξ
∑
s=±

s

4E12(ξ )

{
tanh

[
β

2
(Es(ξ ) + h)

]
+ tanh

[
β

2
(Es(ξ ) − h)

]}
. (B7)

To obtain critical temperature and critical field, we linearize Eq. (B7) with respect to �12. The equation then takes the
following simple form:

1

λinter
=

∫ ωc

−ωc

dξ

2(ξ̃1 + ξ̃2)

∑
α=1,2

{
tanh

[
βc

2
(ξ̃α + hc)

]
+ tanh

[
βc

2
(ξ̃α − hc)

]}
. (B8)

We note that by setting Ec = 0 and γ = 1, we get ξ̃1 = ξ̃2 = ξ , the system reduces to a single-band superconductor. Therefore,
Eq. (B8) takes the usual form for a single-band spin-split superconductor:

1

λ
=

∫ ωc

−ωc

dξ

2ξ

{
tanh

[
βc

2
(ξ + hc)

]
+ tanh

[
βc

2
(ξ − hc)

]}
. (B9)

APPENDIX C: GAP EQUATION FOR THE INTRABAND ORDER PARAMETERS

In order to consider purely intraband coupling we take the following form of the coupling matrix:

gαα′ββ ′ =
{

gintra
αβ , if α = α′, β = β ′

0, otherwise
. (C1)

Using this expression in Eq. (2) we get the following coupled gap equations:

�11 = gintra
11 T

V

∑
kωn

F 11(k, ωn − ih) + gintra
12 T

V

∑
kωn

F 22(k, ωn − ih), (C2a)

�22 = gintra
21 T

V

∑
kωn

F 11(k, ωn − ih) + gintra
22 T

V

∑
kωn

F 22(k, ωn − ih). (C2b)

The two branches of the BCS quasiparticle spectrum are simply E+ = E11 and E− = E22 and we get the following expression
for the anomalous Green’s function:

Fαα (k, ωn − ih) = �αα

(iωn + Eαα + h)(iωn − Eαα + h)
. (C3)

Following the same steps as in the previous section we finally get the following:

�αα =
∑

β=1,2

λαβ�ββ

∫ ωn

−ωn

dξβ

4Eββ

(
tanh

Eββ + h

2T
+ tanh

Eββ − h

2T

)
. (C4)
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Linearizing Eq. (C4) with respect to the order parameters again allows one to obtain the superconducting critical temperature
and critical field. We set �αα = εδα , where ε(T = Tc) = 0, and obtain the following system:(

δ1

δ2

)(
λ11I1(Tc, hc) − 1 λ12I2(Tc, hc)

λ21I1(Tc, hc) λ22I2(Tc, hc) − 1

)
= 0, (C5)

where

Iα (T, h) =
∫ ωc

−ωc

dξ

4ξ̃α

{
tanh

[
β

2
(ξ̃α + h)

]
+ tanh

[
β

2
(ξ̃α − h)

]}
, (C6)

with α = 1, 2. The critical parameters are found by setting to zero the determinant of the matrix in Eq. (C5).

APPENDIX D: LINEARIZED GAP EQUATION FOR COUPLED INTERBAND AND INTRABAND ORDER PARAMETERS

When including the superconducting coupling constants representing scattering processes connecting interband to intraband
Cooper pairs, the gap equations for the interband and intraband order parameters become coupled. In this case the linearized gap
equation yields the following system:⎛

⎝δ1

δ2

δ3

⎞
⎠

⎛
⎝λ11I1(Tc, hc) − 1 λ12I2(Tc, hc) λ13I3(Tc, hc)

λ21I1(Tc, hc) λ22I2(Tc, hc) − 1 λ23I3(Tc, hc)
λ31I1(Tc, hc) λ32I2(Tc, hc) λ33I3(Tc, hc) − 1

⎞
⎠ = 0, (D1)

where the constants λα3 and λ3α , with α = 1, 2, represent the scattering processes connecting interband to intraband Cooper
pairs, and λ33 corresponds to λinter in the main text. The terms Iα , α = 1, 2 are given in Eq. (C6), while I3 corresponds to the
energy integral in Eq. (B8). Again, the critical parameters are found by setting to zero the determinant of the matrix in Eq. (D1).

APPENDIX E: CRITICAL TEMPERATURE AND CRITICAL FIELD

We presented the linearized equations [Eqs. (B8) and (C5)] allowing one to obtain the curve hc(T ) for the interband and
intraband domains, respectively. A remark here is needed, since as is clear from Fig. 3 in the main text, in the interband curves,
to each temperature (except the maximum one), correspond two solutions for h. This is a problem for the numerical solver. To
address this, first we find the value of the critical field corresponding to the maximum temperature of the superconducting curve.
This can be done through analytical considerations as explained in the main text [see Eqs. (7) and (8)]. Having obtained this
value we then find separately a solution for the critical field higher and lower than this value, as a function of the temperature.
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