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ABSTRACT This article proposes to design a distributed H∞ optimal control algorithm for Van der Pol
oscillators with unknown internal dynamics, input constraints and external disturbances, via event-triggering
signal transmission of the Internet of Things (IoT). First, the graph theory for the IoT is introduced. Second,
the dynamics of Van der Pol oscillators are transformed into the tracking dynamics which cooperate via
the IoT network. Third, unlike the existing online optimal control algorithms using adaptive dynamic
programming, we design anH∞ optimal control algorithm employing an event-triggering signal transmission
mechanism to reduce the burden of communication resource and computation bandwidth of the IoT network.
As the triggering condition and approximation parameter update policies are appropriately designed, the
algorithm guarantees that the Zeno phenomenon is free, the consensus errors are uniformly ultimately
bounded, and the external disturbance is compensated. Finally, numerical simulation results with comparison
to the time-triggering algorithms confirm the effectiveness of the proposed algorithm.

INDEX TERMS Communication resources, event-triggering, IoT, multi-agent systems, neural network, Van
der Pol oscillators.

I. INTRODUCTION
Internet of Things (IoT) technology has recently received sig-
nificant attention from research communities and industrial
societies due to the communication ability among devices
and intelligent selection ability of perception and execu-
tion [1], [2], [3]. The controller for each device in the IoT
can interact through the network to exchange data, generate
control signals, and send feedback to others [4], [5], [6], [7],
thanks to machine learning, distributed control algorithms
for devices/plants that have been widely studied for recent
years [6], [7], [8].

The non-IoT conventional distributed control algorithms
are based on the time-triggering mechanism, where the
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controllers sample the states with the same periods and
then exchange information with each other through the
communication network. This way of transmitting infor-
mation is inefficient because a device periodically contin-
uously sends the same information to others or its remote
controller [9]. To overcome the burden of communication
resource and computation bandwidth, the event-triggering
mechanism was first investigated for scheduling stabiliz-
ing control tasks [10], where a controller only receives
feedback states, updates its parameters and sends con-
trol signals to plant only when an event-triggering con-
dition is violated. Inspired by the idea, several works
related to event-triggered (ET) control for multiagent have
been developed [11], [12], [13], [14], [16]. In [11], the
ET decentralized control scheme for interconnected non-
linear systems is proposed. The event-triggering condition
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is designed suitably to reduce the computational burden
on the controllers. Narayanan and Jagannathan [12] pro-
posed a distributed optimal control scheme for interconnected
affine nonlinear systems, where observers used the trig-
gered system output to estimate the states of the subsystem.
Vamvoudakis et.al. [13] designed the ET optimal tracking
control algorithm using actor-critic structure in reinforcement
learning theory of machine learning. Tan [14] designed an ET
H∞ distributed control algorithm for large-scale systemswith
physical interconnection, external disturbances and input
constraints, where the subsystems are isolated and exchange
states and control signals over the network. Qin et.al. [15]
proposed a safe ET control method based on ADP and the
zero-sum game theory for nonlinear safety-critical systems
with safety constraints and input saturation.

However, the algorithms mentioned above, despite using
event-triggering mechanisms, are mainly designed for non-
IoT-controlled plants, which have the advantages of stable
limit cycles and stable equilibrium points at the origin. For
example, distributed control algorithms were devoted to con-
sensus problems of the systems with simple models in a kine-
matic form or a double integrator (see [17] for more details
about the applications). An ET control learning algorithm
was designed for an application of voltage source inverters
in [16], where the disturbance rejection policy and the optimal
control policy are approximated to drive the AC output to
the reference while minimizing energy loss. Unfortunately,
it only applies to single systems that are not connected to the
IoT network.

Recently, the Van der Pol oscillators, an original model
of an electrical circuit with a triode valve [18], have been
interconnected in IoT networks due to the requirement of
industrial applications [1, Ch. 6], [19]. The model is then
extended to dynamics of relaxation oscillations, elementary
bifurcations, and chaos [20], [21], [22], [23]. The different
models have been used to design various practical IoT appli-
cations in radio engineering, power systems, combustion pro-
cesses, biomedical engineering, and robotics. In [24], [25],
and [26], Van der Pol oscillators, including uncertain param-
eters and unmodeled dynamics, were controlled by adaptive
control algorithms using neural networks (NN). In [27], the
outputs of the oscillators were forced to track the refer-
ence by NN-based feedback linearizing control algorithms.
Experimentally, a sliding-mode observer was used to esti-
mate the states of the oscillators [28]. In optimal control, the
oscillators were presented by the strict-feedback nonlinear
systems [1, Ch. 6], [29], [30] and nonlinear systems with
input constraints [1, Ch. 6], [31]. The optimal control laws
were derived from adaptive dynamic programming (ADP)
principle.

Although Van der Pol oscillators are widely applied to
many engineering disciplines, IoT-based control with the
event-triggering signal transmission has not yet been con-
cerned about saving communication resources. Furthermore,
the oscillators in the IoT network, impacted by unknown
internal dynamics, input constraints and external distur-

bances, has been not considered. In this paper, the signals
of constrained control and disturbance estimation will be
exchanged over the IoT network for executing the con-
trol policies. The exchange is in the dynamic sampling
instants with variable inter-event time rather than fixed sam-
pling periods. These instants are generated by an adaptive
event-triggering condition to guarantee closed-loop stability.

Compared with the works mentioned above, the main con-
tributions of this article are three-fold:

1) Unlike the available algorithms of distributed optimal
control for nonlinear systems that are not connected to
the IoT network [11], [12], [13], [14], [16], we design
an algorithm for Van der Pol oscillators in the IoT
network dealing with neither controlled stable limit
cycles nor stable controllable equilibrium points at the
origin. Especially, the system model is in the presence
of unknown internal dynamics, input constraint and
external disturbance.

2) Unlike the optimal control methods for the Van der Pol
oscillators [1, Ch. 6], [29], [31], we further integrate the
event-triggering signal transmission of the IoT to ADP
and the two-person zero-sum game theory [32], [33] to
obtain a new ET control algorithm which can mitigate
the communication resource and computational band-
width in the IoT network. The ET solution of Hamilton-
Jacobi-Isaacs (HJI) is approximated online to find the
saddle point for control and disturbance compensation
policies. In addition, the difference between the ET
control algorithm in the paper and one in [30] is that
the distributed control via the IoT network is consid-
ered instead of decentralized control through non-IoT-
subsystem isolation.

3) An adaptive triggering condition is designed and a rig-
orous proof is made to ensure that the closed dynamics
are asymptotically stable while the Zeno phenomenon
is excluded. Compared with the sampling period–based
control algorithm in terms of communication resource
and computation bandwidth in an application, the pro-
posed algorithm is shown to be more effective.

The rest of the paper is organized as follows. Section I
introduces the preliminaries including the graph theory for
the IoT and the system dynamics, Section III presents the
analysis and designs algorithms, Section IV applies the algo-
rithm in numerical simulation studies, and Section V briefly
concludes the paper.
Notation 1: Throughout this article, X ∈ Rn denotes vec-

tor X with the n-dimensional Euclidean space, and Y ∈ Rn×m

denotes matrix Y with the n×m-dimensional real space. ∥X∥

and ∥Y∥ are the Euclidean norm of X and the L2-norm of Y ,
respectively. λmin(.) denotes the minimum eigenvalue of a
matrix (·), σ (.) is the minimum singular value of a matrix (.),
and diag[X ] transforms vector X into a diagonal matrix.
Definition 1 (Uniformly Ultimately Bounded (UUB) [34]):

The equilibrium point x0 of dynamics ẋ = f (x, u), x ∈ Rn

is said to be UUB in a compact set � ∈ Rn if there exists
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a bound B and a time T (B, x0) for all x0 ∈ � such that
∥x − x0∥ ≤ B, ∀t > t0 + T .

II. PRELIMINARIES AND PROBLEM FORMULATION
A. GRAPH THEORY FOR IoT
A graph Ḡ(V, 4,A) in the graph theory is employed
to construct an IoT topology of devices/plants, where
V = {s1, . . . , sN } is a nodes set, 4 ⊆ V × V is the edge
set, A = [µij] is a weight matrix. If µij /∈ 4, µij = 0,
otherwiseµij = 1. If device/plant j can exchange information
to device/plant i, sj is a neighbor of si with j ∈ Ni ={
j : sj ∈ V, (si, sj) ∈ 4

}
. Define the Laplacian matrix L =

B − A ∈ RN×N , B = diag(βi), βi =
∑

j∈Ni
µij. The

edges from nodes to the root 0, namely leader, is presented
by C = diag [α1, α2, . . . , αN ]. If no edge from i to 0, αi = 0,
otherwise αi = 1. If there exists a directed edge between si
and sj, ∀(si, sj) ∈ V , si ̸= sj, L and A are irreducible [35].

B. DYNAMICS OF VAN DER POL OSCILLATORS
In this section, we present the normal dynamics of Van der
Pol oscillators, then by a definition of event-triggering sig-
nal transmission, the tracking errors are defined via the IoT
network.

Consider Van der Pol oscillator dynamics i, presented as
a strict-feedback nonlinear system with unknown internal
dynamics, input constraint and external disturbance:

ẋi,1 = fi,1(xi,2) + ki,1(xi,1)di,1
ẋi,2 = fi,2(xi,3) + ki,2(xi,2)di,2
...

ẋi,n−1 = fi,n−1(xi,n) + ki,n−1(xi,n−1)di,n−1

ẋi,n = −fi,n(xi,n) −
1
2
fi,n(xi,n)

(
1 − f 2i,n(xi,n−1)

)
−f 2i,n(xi,n−1)fi,n(xi,n) + gi,n

(
xi,1, . . . , xi,n

)
ui,n

+ki,n(xi,1, . . . , xi,n)di,n
(1)

where ui ∈ R is the control input constrained by ∥ui∥ ≤ ūi for
a positive constant ūi. For all l = 1, . . . , n, xi,l ∈ R is state
available for full feedback, fi,l(.) ∈ R is unknown function,
gi,n (.) ∈ R, ki,l(.) ∈ R, are state-dependent functions, di,l ∈

R, is external disturbance. The compact form of dynamics (1)
is written as

ẋi = f̄i(xi) + ḡi(xi)ui + k̄i(xi)di (2)

where xi = [xi,1, xi,2, . . . , xi,n]⊤ ∈ Rn, ḡi(xi) = [0, 0, . . . ,
gi,n]⊤ ∈ Rn, k̄i(xi) = diag[ki,1, ki,2, . . . , ki,n] ∈ Rn×n, di =

[di,1, di,2, . . . , di,n]⊤ ∈ Rn,

f̄i(xi) =



fi,1(x2)
fi,2(x3)
...

fi,n−1(xn)

−fi,n(xi,n) −
1
2
fi,n(xi,n)

(
1 − f 2i,n(xi,n−1)

)
−f 2i,n(xi,n−1)fi,n(xi,n)



Note that since fi,l(.), l = 1, . . . , n, is unknown, internal
dynamics f̄i(xi) is completely unknown. To facilitate the later
design, we adopt the following assumption.
Assumption 1: ḡi(xi) and k̄i(xi) are bounded for unknown

positive constants big, kik , i.e., ∥ḡi(xi)∥ ≤ big,
∥∥k̄i(xi)∥∥ ≤ bik ,

di ∈ L2 [0,∞), f̄i(xi) is Lipschitz continuous.
Remark 1: Assumption 1 is practical in many industrial

applications [28], [29], [31], where internal dynamics of (1)
is Lipschitz and the measured output is bounded. The upper
bounds in Assumption 1 are only used to prove stability (see
Appendix A) and are not used in the control law.
Consider the dynamics of the leader without disturbance:

ẋ0,1 = x0,2
ẋ0,2 = x0,3
...

ẋ0,n−1 = x0,n

ẋ0,2 = −x0,1 −
1
2
x0,2(1 − x20,1) − x20,1x0,2 + x0,1u0

(3)

where control input u0 is constrained by |u0| ≤ ū0, ū0 > 0.
With the event-triggering signal transmission and the

topology of IoT, we define the consensus local tracking error
among systems i, neighbors j and leader 0, x0 = [x0,1, x0,2]⊤,
as

δi =

∑
j∈Ni

µij(xi − xj) + αi(xi − x0) (4)

C. IoT-BASED CONSENSUS TRACKING ERRORS
Assume that at t ik ∈ T , T = {t i0, t

i
1, ..., t

i
k , t

i
k+1, ..., |t

i
0 < t i1 <

. . . < t ik < t ik+1 < . . .}, the control input of (1) is updated
when an triggering condition, to be designed later, is violated.
The triggered dynamics of (2) is rewritten as

ẋi = f̄i(xi) + ḡi(xi)ui + k̄i(xi)di (5)

where ui, i = 1, 2, . . . ,N , is updated at t ik , k = 0, 1, . . . ., and
held until t ik+1 by the zero-order hold (ZOH).
We define the triggering consensus local tracking error

between system i and its neighbors as

δi =

∑
j∈Ni

µij(x i − x j) + αi(x i − x0) (6)

where x i = xi(t ik ), x j = xj(t
j
h), h = argminl∈Ni

{t − t jl : t ≥

t jl , t ∈ [t ik , t
i
k+1)}, x0 = x0(t0k ). Let δ = [δ⊤1 , δ

⊤

2 , . . . , δ
⊤
N ]

⊤

and x = [x⊤

1 , x
⊤

2 , . . . , x
⊤
N ]

⊤
∈ RNn be the overall vectors, the

triggering consensus global tracking error vector via param-
eters of the graph Ḡ(V, 4,A) is defined as

δ = ((L+ C) ⊗ In) (x − 1̄N ⊗ Inx0 ∈ RNn)

= ((L+ C) ⊗ In) e (7)

where ⊗ is the Kronecker product, 1̄N = [1, . . . , 1]⊤ ∈ RN ,
In is an identity matrix of size n, e = x − 1̄N ⊗ Inx0 ∈ RNn

is the event-triggered global tracking error.
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The constraint of the triggering consensus local tracking
error and triggering consensus global tracking error is fol-
lowed by Lemma 1.
Lemma 1 ([35]): The bounded local tracking error leads

to bounded global tracking error if the following inequality is
satisfied with the minimum singular value ofL+C, σ (L+C):∥∥e∥∥ ≤

∥∥δ∥∥ /σ (L+ C) (8)
Control Objective: By Lemma 1, the control objective is to

design the locally distributed control policy of each system
with unknown internal dynamics, input constraints, and exter-
nal disturbances. The design employs the event-triggering
signal transmission of IoT to reduce the burden of commu-
nication resources and computation bandwidth.

III. IoT-BASED DISTRIBUTED H∞ ET CONTROL
In this section, an event-triggering signal transmission cost
function is defined and the HJI equation is derived. Then,
an online algorithm is designed for approximate control pol-
icy and disturbance compensation policy.

Define d i = di(t ik ) ̸= 0, k = 0, 1, . . . , i = 1, . . . ,N is
disturbance compensation policy to be designed later. u

−i =

uj = uj(t
j
h), j ∈ Ni, h = 0, 1, . . ., d

−i = d j = dj(t
j
h), j ∈

Ni, h = 0, 1, . . . ̸= 0, η
i
(t) =

[
δ⊤i (t) u

⊤
i (t) u

⊤
−i(t)

]⊤
.

Inspired by the work in [37] for H∞ optimal control with
the disturbance compensation, the performance output η

i
is

required to beminimized such that the boundedL2-gain holds
the following condition:∫

∞

0

∥∥∥η2i ∥∥∥dt =

∫
∞

0

(
δ⊤i Qiδi + U (ui) +

∑
j∈Ni

U (uj)
)
dt

≤

∫
∞

0

(
γ 2
i d

⊤

i d i + γ 2
j

∑
j∈Ni

d⊤

j d j

)
dt (9)

whereQi is a positive definite matrix. By expanding the work
in [37], there exists an attenuation level, γi > 0, for the
boundedL2-gain condition (9) to be satisfied, ∀i = 1, . . . ,N .
For constrained input control problems, the nonnegative func-
tionU (ui) is selected by evolving from a single system in [31]
and [36] as

U (ui) = 2ūi

∫ ui

0
(tanh−1)⊤(s/ūi)Rids (10)

where Ri is the main diagonal elements of a positive definite
matrix.
Remark 2: The nonnegative function (10) uses the hyper-

bolic tangent function, which is a one-to-one real-analytic
integrable function of class Cη, η ≥ 1, used to map R onto
the interval (-ūi, ūi).
The triggering local consensus performance index function

is defined based on [14] as

Ji
(
δi(0), d i, d−i, ui, u−i

)
=

∫
∞

0

(
δ⊤i Qiδi + U (ui)

+

∑
j∈Ni

U (uj) − γ 2
i d

⊤

i d i − γ 2
j

∑
j∈Ni

d⊤
j d j

)
dt (11)

Remark 3: In the cost function (11), different from work
in [14], the event-triggering signal transmission is employed
for not only the ET control policy but aslo the ET disturbance
compensation policy.

Let inputs ui and d i be depended on states. Then, the
triggering local consensus value function is written as

Vi(δi) =

∫
∞

t
Ki

(
δi, d i, d−iui, u−i,

)
dt (12)

where Ki = δ⊤i Qiδi + U (ui) +
∑

j∈Ni
U (uj) − γ 2

i d
⊤
i d i −

γ 2
j

∑
j∈Ni

d⊤
j d j. By adopting the two-person zero-sum game

theory, we introduce the optimal value V ⋆i
(
δi

)
[38] as

V ⋆i (δi) = min
ui

max
d i
Ji(δi(0), d i, d−i, ui, u−i) (13)

The saddle point (u⋆i , d
⋆
i ) to (13) exists if the following Nash

condition holds [38]

min
ui

max
d i

Ji
(
δi(0), d i, d−i, ui, u−i

)
= max

ui
min
d i

Ji
(
δi(0), d i, d−i, ui, u−i

)
(14)

Applying the ET control laws and ET disturbance compensa-
tion policies to dynamics (4), the consensus tracking dynam-
ics is rewritten as

δ̇i = f̄i(zi) + (βi + αi)
(
ḡi(x i)ui + k̄i(x i)d i

)
−

∑
j∈Ni

µij

(
ḡj(x j)uj + k̄j(x j)d j

)
(15)

where f̄i(zi) = f̄i(x i) +
∑

j∈Ni
µij f̄j(x j). Then, we define the

Hamiltonian as

Hi
(
δi, d i, d−i, ui, u−i

)
= Ki

+∇V ⋆⊤i

(
f̄i(zi) + (βi + αi)

(
ḡi(x i)ui + k̄i(x i)d i

)
−

∑
j∈Ni

µij

(
ḡj(x j)uj + k̄j(x j)d j

))
(16)

where ∇V ⋆i (δi) = ∂V ⋆i (δi)/∂δi. Apply the stationary condi-
tion to (16), control and disturbance compensation policies
are computed as follows:

d⋆i =
1

2γ 2
i

(βi + αi)k̄⊤
i (x i)∇V

⋆
i (δi) (17)

u⋆i = − ūi tanh(M⋆
i ), M

⋆
i =

βi + αi

2ūi
R−1
i ḡ⊤

i (x i)∇V
⋆
i (δi)

(18)

Substituting (18) and (17) to (16) we have the triggered HJI
equation:

H⋆
i
(
δi, d⋆i , d

⋆
−i, u

⋆
i , u

⋆
−i

)
= K⋆i

+∇V ⋆⊤i

(
f̄i(zi) + (βi + αi)

(
ḡi(x i)u

⋆
i + k̄i(x i)d

⋆
i

)
−

∑
j∈Ni

µij

(
ḡj(x j)u

⋆
j + k̄j(x j)d

⋆
j

))
= 0 (19)
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where K⋆i = δ⊤i Qiδi + U (u⋆i ) +
∑

j∈Ni
U (u⋆j ) − γ 2

i d
⋆⊤
i d⋆i −

γ 2
j

∑
j∈Ni

d⋆⊤j d⋆j .
According to [37], there exists a positive definite smooth

minimum solution V ⋆i (δi) to the triggered HJI (19). However,
as f̄i(zi) is unknown and (19) is high-order nonlinear differen-
tial, the analytical solution cannot be found. NN combined
with event-triggering is our choice to learn the solution.
The smooth optimal value function V ⋆i (δi), i = 1, . . . ,N ,
is therefore approximated by the Weierstrass higher-order
approximation theorem [36] as

V ⋆i (δi) = W⊤
i φi(δi) + εi(δi) (20)

where φi(δi) : Rn
→ Rh, Wi and εi are the activation

functions, the ideal weights and the NN approximation errors,
respectively. By the higher-order approximation property we
have the following assumption [39].
Assumption 2: If φi(δi) is a complete independent basis

set, then εi(δi) → 0 and ∇εi(δi) → 0 when h → ∞. If h
is a finite number,

∥∥εi(δi)∥∥ ≤ biε,
∥∥∇εi(δi)

∥∥ ≤ bi∇ε, where
biε, bi∇ε are positive constants.
We obtain the NN-based triggered HJI by substituting (20)

to (18)–(19):

H⋆
i

(
δi,W

⊤
i ∇φi, u⋆i , d

⋆
i

)
= K⋆i +W⊤

i ∇φi(δi)
(
f̄i(zi) + (βi + αi)

(
ḡi(x i)u

⋆
i + k̄i(x i)d

⋆
i

)
−

∑
j∈Ni

µij

(
ḡj(x j)u

⋆
j + k̄j(x j)d

⋆
j

))
− εiH = 0 (21)

where

εiH = H⋆
i − Hi = −∇ε⊤i

(
f̄i(zi) + (βi + αi)

(
ḡi(x i)u

⋆
i

+k̄i(x i)d
⋆
i

)
−

∑
j∈Ni

µij

(
ḡj(x j)u

⋆
j + k̄j(x j)d

⋆
j

))
(22)

Remark 4: Recall Assumption 2 we have the bounded-
ness of εiH on a compact set, i.e. ∀biH > 0, ∃N (biH ) :

supδi∈� ∥εiH∥ ≤ biH . In addition, ∥εiH∥ → 0 when h →

∞ [36].
Since the ideal NN weights are not available, the value

function (20) is estimated by

V̂i = Ŵ⊤
i φi(δi) (23)

From (17), (18) and (23), the disturbance compensation pol-
icy and the optimal control policy are approximated by

d̂ i =
1

2γ 2
i

(βi + αi)k̄⊤
i (x i)∇V̂i (24)

ûi = − ūi tanh(M̂ i), M̂ i =
1
2ūi

(βi + αi)R
−1
i ḡ⊤

i (x i)∇V̂i

(25)

Using (24), (25) for (21), one obtains the approximate Hamil-
ton as

Ĥi(δi, Ŵi) = K̂i + Ŵ⊤
i ∇φi(δi)

(
f̄i(zi) + (βi + αi)(

ḡi(x i)ûi + k̄i(x i)d̂ i
)

−

∑
j∈Ni

µij

(
ḡj(x j)ûj + k̄j(x j)d̂ j

))
(26)

where K̂i = U (ûi)+
∑
j∈Ni

U (ûj)−γ
2
i d̂

⊤

i d̂ i−γ
2
j

∑
j∈Ni

d̂
⊤

j d̂ j.

Next, we propose a NN-weight tuning law to force
Ŵi → Wi for all i = 1, . . . ,N . In other words, our goal is
to obtain Ĥi → H⋆

i ≡ 0. To remove the system identification
procedure for internal dynamics f̄i(zi), the integrated rein-
forcement learning technique [40] is used in the paper, i.e.,
the residual error function, which we establish to minimize,
is Ei,Ĥ =

1
2ψ

⊤
i ψi,

ψi =

t∫
t−T

Ĥi
(
δi, Ŵi

)
dτ (27)

where T > 0 is a small interval. To ensure the NN-weights
converge to global values but avoid using the persistent
excitation (PE) condition in adaptive control [41], we fol-
low the concurrent learning technique [42]. The total inte-
gral past residual error, Ei,P =

∑Pi
l=1 Ei,Ĥ (tl), is utilized.

Then, the NN-weight tuning law is derived from modify-
ing the Levenberg-Marquardt algorithm, such that ˙̂Wi =

−ρi
1φi

(1φi⊤1φi+1)2
∂Ei,Ĥ/∂Ŵi − ρi

∑Pi
l=1

1φi(tl )
(1φi(tl )⊤1φi(tl )+1)2

∂Ei,P/∂Ŵi

⇒
˙̂Wi = −ρi

1φi

(1φi⊤1φi + 1)2

(
1φi

⊤Ŵi +

t∫
t−T

K̂i(τ )dτ

−ρi

Pi∑
l=1

1φi(tl)
(
1φ⊤

i (tl)Ŵi +

∫ tl

tl−T
K̂i(τ )dτ

) )
(28)

where ρi is an update rate, and

1φi(δi(t)) =

t∫
t−T

∇φi

(
f̄i(zi) + (βi + αi)

(
ḡi(x i)ûi

+k̄i(x i)d̂ i
)

−

∑
j∈Ni

µij

(
ḡj(x j)ûj + k̄j(x j)d̂ j

))
dτ

=

t∫
t−T

∇φiδ̇idτ = φi
(
δi(t)

)
− φi(δi(t − T )

)
(29)

1φi(δi(tl)), K̂i(tl) at tl = {t0, t1, . . . , tPi} < t are stored
in sets {1φi(tl)}

Pi
l=1, {K̂i}

Pi
l=0. It worth noting that {1φi(tl)}

Pi
l=0

must be linearly independent or rank
[
1φ1(t0),

1φ2(t1), . . . ,1φi(tPi )
]

= Pi [42].
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Remark 5: As the unknown internal dynamics, f̄i(zi),
is absent from (29), a system identification procedure for
unknown function is unnecessary.

Let the triggering error be defined as ei = δi − δi, by the
Assumption 2, the following assumption is satisfied:
Assumption 3: For a positive constant Li∇φ , ∇φi(δi) is

Lipschitz continuous

∥∇φi(δi) − ∇φi(δi)∥ ≤ Li∇φ∥δi − δi∥ = Li∇φ∥ei∥ (30)
Next, we design the triggering condition based on the trig-
gering errors and Lyapunov theory. The condition guarantees
that the closed- system is stable.
Condition 1 (Event-triggering condition): The consensus

tracking errors are sampled and the parameters of distur-
bance compensation policy and the optimal control policy
are updated only when the following triggering condition is
violated:

∥ei∥ <
∥∥eiT∥∥ = (1 − κi)

(1 − ζi)λmin(Qi)
∥∥δi∥∥2 + U (ûi) − γ 2

i

∥∥d̂ i∥∥2( 1
ζi

− 1
)
λmin(Qi) +32

i

∥∥Ŵi
∥∥2 (31)

where ∥eiT ∥ is a triggering threshold, 0 < ζi < 1, 0 ≤ κi <

1 are design parameters, λmin(Qi) is the smallest eigenvalue
of Qi, 32

i = ū2i b
2
igL

2
i∇φ

∥∥R−1
i

∥∥.
The IoT-based ET robust optimal control structure for each

system is presented in Fig. 1. In the structure, all systems
exchange the states, control and disturbance compensation
signals over the network. Each system updates the policy
parameters only when the triggering gates are enabled. t ik or t

j
h

are governed by the triggering conditions. The parameters of
the disturbance compensation policy and the optimal control
policy are adjusted via NN outputs while the NN-weights
are adjusted by the online weight tuning law. It is worth
emphasizing that all consensus tracking errors are sampled
non-periodically.
Remark 6: Although states δj, j ∈ Ni are continuously

transferred though the network for system i to compute the
triggering error ei, the control signals and disturbance com-
pensation signals of neighbors j are only transferred when
the triggering condition 1 is violated, otherwise they use
zero-order hold (ZOH). Compared with the time-triggering
mechanism, where the signal is transmitted continuously
according to the fixed sampling period, the communication
load in the event-triggering mechanism is mitigated.

A. STABILITY ANALYSIS AND ZENO PHENOMENON
EXCLUSION
In the following theorem, we analyze the stability and the
exclusion of the Zeno phenomenon. The Zeno phenomenon
occurs if the minimum inter-event interval is zero, result-
ing in excessively increasing the cumulative number of
events.
Theorem 3.1: Consider the Van der Pol oscillators (1),

which are networked with the topology resented by the com-
munication graph Ḡ(V, 4,A). Let the consensus tracking

FIGURE 1. IoT-based ET robust optimal control structure.

errors be defined in (6). Let the ET disturbance compensa-
tion policy and the ET distributed optimal control policy be
approximated in (25) and (24). Let the triggering threshold
be designed in (31). Then, the closed-loop dynamics of each
system is stable and the approximation errors are ultimately
uniformly bounded (UUB). In addition, the Zeno behavior is
excluded since

t imin = min
k
(t ik+1 − t ik ) ≥

1
0i

ln
(
1+min

k∈N

∥∥eiT (t i−k+1)
∥∥

∥δi∥ + Oi

)
(32)

where 0i,Oi are positive upper bounds.
Proof: See Appendix A.

Remark 7: In Appendix A, the closed-loop is stable when
L̇i < −

(
(1− ζi)λmin(Qi)

∥∥δi∥∥2 +U (ûi)− γ 2
i ∥d̂ i∥

2
)
< 0. It is

guaranteed in (31) that
∥∥eiT (t i−k+1)

∥∥ > 0.

IV. NUMERICAL SIMULATION
In this section, a numerical simulation study of the pro-
posed distributed robust optimal control algorithm for Van
der Pol oscillator agents is conducted. The comparison results
between the ET control algorithm and the time-triggered (TT)
control algorithm [1, Ch. 6] are performed.

The consensus network topology of IoT is presented in
Fig. 2, where the leader (a0), sends its states x0 and con-
trol signal û0 to agents 1 and 2 (a1, a2). Agent 1 sends
its information, including x1, control signal û1, and distur-
bance compensation signal d̂1 to agent 2. Then, agent 1 and
agent 2 send their triggered information, including x1 and
x2, control signals û1 and û2, and disturbance compensa-
tion signals d̂1 and d̂2, to agent 3 (a3) at the triggering
moments.

The states of the leader is generated by applying the fol-
lowing control law to dynamics (3) with ū0 = 0.1:

û0 = −ū0 tanh(M̂0), M̂0 =
1
2ū0

R−1
0 ḡ⊤

0 (x0)∇φ
⊤

0 (x0)Ŵ0
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FIGURE 2. Consensus network topology of leader and agents.

FIGURE 3. Evolution of states of leader and agents for xh,1, h = 0, . . . , 3.

where Ŵ0 is updated by the law (28) with K̂0 = U (û0). The
triggering condition of the leader is

∥e0∥ <
∥∥e0T∥∥ = (1 − κ0)

(1 − ζ0)λmin(Q0)
∥∥x0∥∥2 + U (û0)( 1

ζ0
− 1

)
λmin(Q0) +32

0

∥∥Ŵ0
∥∥2

The dynamics of all agents are presented in the form of (1),
where f̄i(xi) = [xi,1,−xi,2 −

1
2xi,2(1 − x2i,1) − x2i,1xi,2]

⊤,
ḡi(xi) = [0, xi,1]⊤, k̄i(xi) = diag[0, 0, . . . , sin(4xi,1 − 1)xi,2].
The control input limits ūi = 0.1. For h = 0, 1, .., 3, the
initial weights Ŵh(0) = 0, φh = [x2h,1, xh,1xh,2, x

2
h,2]

⊤,
Qh = I , Rh = 0.25, 3h = 0.1, ζh = 0.25, κh = 0,
γh = 5(h ̸= 0), the update rates ρh = 25, the sampling
period Tc = T = 0.1(s). The dimension of past data
Ph = 20. In the first 2 seconds, a small probing noise
sin2(t) + 0.5 cos(t) − 0.1sin2(t) cos(t) + sin5(t) is added to
the control inputs to excite the system and collect the past data
fully.

Figures 3 and 4 show that after 20s, when NN weights
converge, the state trajectory of agents 1 and 2 synchronize
with the states of the leader while the state trajectory of
agent 3 synchronizes with the states of agents 1 and 2. From
Fig. 5, it can be seen that the state trajectory of the leader and
all agents approach to the origin in finite time. The costs of
the leader and agents are presented in Fig. 6, where all signals
converge to the near-optimal values.

The control inputs of both ET and TT algorithms, an exam-
ple of agents 0 and 2, are compared in Figs. 7 and 8. Although
the control signals are saturated at the maximum and min-
imum values, the closed systems are always stable. The
control inputs of the time-triggering algorithm are smoother

FIGURE 4. Evolution of states of leader and agents for xh,2, h = 0, . . . , 3.

FIGURE 5. 3-D phase plane plot of leader and agents.

FIGURE 6. Cost functions of leader and agents.

FIGURE 7. Comparison of control inputs between ET and TT of leader.

than those of ET control algorithm over time because the
ET control policies do not need to update parameters at
each sampling times, and do not generate the control signals,
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FIGURE 8. Comparison of control inputs between ET and TT of agent 2.

TABLE 1. Communication times for leader and agents.

FIGURE 9. Triggering errors and thresholds of leader.

FIGURE 10. Triggering errors and thresholds of agent 1.

FIGURE 11. Triggering errors and thresholds of agent 2.

which are the same values as previous. Within the inter-event
times, the systems are controlled by last triggered control
signals.

FIGURE 12. Triggering errors and thresholds of agent 3.

FIGURE 13. Inter-event intervals of leader and agents.

In Figs. 9–12, the thresholds ∥ehT ∥, h = 0, 1, 2, 3 are
reduced accordingly the consensus achievement. The trig-
gering errors are less than the thresholds all the time. The
inter-event intervals generated by the ET control algorithm
is shown in Fig. 13, where the minimum inter-event time is
0.3s. Observing Figs. 9–13 we see that the Zeno phenomenon
is excluded.

The effectiveness of reducing burden of communication
cost is described in Table 1. The total number of communica-
tion times for the event-triggering algorithm is 236 while the
total number for the time-triggering algorithm is 1200.

V. CONCLUSION
This paper proposed a method based on the event-triggering
signal transmission of the IoT. Such a method is required
for the design of the algorithm of distributed H∞ optimal
control for Van der Pol oscillators with unknown internal
dynamics, input constraint, and external disturbance. The
system dynamics have been transformed into the trigger-
ing consensus tracking dynamics, for which the distributed
robust optimal control algorithms have been constructed. The
algorithm have employed the event-triggering signal trans-
mission of the IoT to reduce the burden of the communica-
tion resource and computation bandwidth. As a result, the
optimal control policy and disturbance compensation policy
have been derived based on the adaptive dynamic program-
ming and two-player zero-sum game theory. The triggering
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condition has been established such that the Zeno phe-
nomenon is excluded and the stability of the overall closed
systems is guaranteed. The numerical simulation results with
comparison to the time-triggering algorithms have confirmed
the effectiveness of the proposed algorithm. In the future
work, we shall concentrate on switching IoT topologies with
time-delay.

APPENDIX A
PROOF OF THE THEOREM 1

Proof: Followed by Lemma 1, one only needs to prove
the stability of each agent. Note that by setting k̄0 = 0, x0 =

δi, and x0 = δi, it is easy to infer the proof for the leader
based on the proof for the agent. First, we propose a Lyapunov
function candidate for agent i as

Li =

∫ t

t−T
V ⋆i (δi)dτ︸ ︷︷ ︸
Li1

+
1
2

∫ t

t−T
trace

(
W̃⊤
i W̃i

)
dτ︸ ︷︷ ︸

Li2

+V ⋆i (δi)︸ ︷︷ ︸
Li3

(33)

for the optimal value functions V ⋆i (δi) and V
⋆
i (δi). We divide

the proof into two situations: within the triggering intervals
and at the triggering time.

Situation 1:L̇i3 is zero as V ⋆i (δi) doesn’t change within the
triggering intervals. Taking the derivative of Li1 along (15)
and using ∇V ⋆i (δiϑ )fi from (19), we have

L̇i1 =

∫ t

t−T
V̇ ⋆i (δiϑ )dτ =

∫ t

t−T
∇V ⋆i (δiϑ )δ̇iϑdτ = L̇ ii1 + L̇ ji1

(34)

where

L̇ ii1 =

∫ t

t−T

(
− δ⊤i Qiδi − U (u⋆i ) + γ 2

i ∥d⋆i ∥
2

− ∇V ⋆⊤i
(
ḡiu⋆i + k̄id⋆i

)
+ ∇V ⋆⊤i

(
ḡiûi + k̄id̂i

))
dτ

(35)

L̇ ji1 =

∫ t

t−T

(
−

∑
j∈Ni

aijU (u⋆j ) +

∑
j∈Ni

aijγ 2
j ∥d⋆j ∥

2
)
dτ

(36)

Substituting u⋆i from (18) to (10), one has

U (u⋆i ) = ūi(∇V ⋆i )
⊤ tanh

( 1
2ūi

R−1
i ḡ⊤

i ∇V ⋆i
)

+ū2i R̄i ln
(
1̄11 − tanh2

( 1
2ūi

R−1
i ḡ⊤

i ∇V ⋆i
))

(37)

where R̄i is a vector containing main diagonal elements of Ri
and 1̄11 = [1, 1, 1, 1]⊤. Replacing (10) into (37) one obtains

L̇ ii1 =

∫ t

t−T

(
∇V ⋆⊤i

(
ḡi(ûi + k̄id̂ i − k̄id⋆i

)
−δ⊤i Qiδi + γ 2

i ∥d⋆i ∥
2
− ū2i R̄i ln

(
1̄11 − tanh2(M⋆

i )
) )

dτ

(38)

We change the last term in (38) to

ūiR̄i ln
(
1̄11 − tanh2(M⋆

i )
)

=

∫ u⋆i

ûi

2ūi tanh−T (s/ρ)Rds

+U (ûi) − ūi∇V ⋆⊤i ḡi tanh(M⋆
i ) (39)

One can perform the equivalent transformations:

∇V ⋆⊤i ḡiûi =

∫ ûi

u⋆i

2ūiM⋆⊤
i Rids− ūi∇V ⋆⊤i ḡi tanh(M⋆

i ),

k̄⊤
i ∇V ⋆i = 2γ 2

i d
⋆⊤
i , 2γ 2

i d
⋆⊤
i d̂ i ≤ γ 2

i

(
∥d⋆i ∥

2
+ ∥d̂ i∥

2
)
,

δ⊤i Qiδi = δ⊤i Qiδi − 2δ⊤i Qiei + e⊤i Qiei

≥ (1 − ζi)λmin(Qi)∥δi∥
2
−

(1
ζ i

− 1
)
λmin(Qi)∥ei∥2.

Employing the above statements and (39) for (38) we obtain

L̇ ii1 ≤

∫ t

t−T

(
− (1 − ζi)λmin(Qi)

∥∥∥δi∥∥∥2
+

( 1
ζi

− 1
)
λmin(Qi)∥ei∥2−U (ûi)−9i+γ

2
i ∥d̂ i∥

2
)
dτ

(40)

where

9i =

∫ ûi

u⋆i

2ūi
(
tanh−1(s/ūi) +M⋆

i

)⊤

Rids (41)

Changing variable s = −ūi tanh(v) one has

9i ≤

∫ M̂ i

M⋆
i

2ū2i
(
νi −M⋆

i
)⊤ Ridν

= ū2i
(
M̂ i −M⋆

i

)⊤

Ri
(
M̂ i −M⋆

i

)
≤ ū2i ∥Ri∥∥M̂ i −M⋆

i ∥
2 (42)

Using∇V ⋆i from (20) forM⋆
i and changingM

⋆
i and M̂ i in (42)

by (25) one yields

9i ≤
1
2
ū2i

∥∥R−1
i

∥∥(∥∥∥ḡ⊤
i ∇φ⊤

i (δi)

−ḡ⊤
i ∇φ⊤

i (δi)
∥∥∥2∥∥∥Ŵi

∥∥∥2
+

∥∥∥ḡ⊤
i ∇φ⊤

i (δi)
(
W̃i + ∇ε(δi)

)∥∥∥2) (43)

Employing the inequality (xy−uv)2 ≤ 2x2(y−v)2 +2v2(x−

u)2 and Assumptions 1 and 2 one obtains∥∥∥ḡ⊤
i (qi)∇φ

⊤(δi) − ḡ⊤
i (qi)∇φ

⊤
i (δi)

∥∥∥2 ≤ b2igL
2
i∇φ∥ei∥

2 (44)

Replacing (43), (44) to (40) one yields

L̇ ii1 ≤

∫ t

t−T

(
− (1 − ζi)λmin(Qi)

∥∥∥δi∥∥∥2 − U (ûi)

+γ 2
i ∥d̂ i∥

2
+

((1
ζ i

− 1
)
λmin(Qi) +32

i

∥∥Ŵi
∥∥2)∥∥ei∥∥2

+µ1
∥∥W̃i

∥∥2 + µ2∥W̃i∥ + µ0

)
dτ (45)

8946 VOLUME 11, 2023



L. N. Tan et al.: H∞ Control for Oscillator Systems With Event-Triggering Signal Transmission of Internet of Things

where32
i = χiL2i∇φ , χi =

1
2 ū

2
i b

2
ig

∥∥R−1
i

∥∥,µ1 = χib2i∇φ, µ2 =

2χib2i∇φbi∇ε, µ0 = χb2i∇φb
2
i∇ε.

Next, according to (10) one has

U (u⋆j ) =

∫ u⋆j

ûj

2ūj tanh−⊤(s/ūj)Rjds+ 2U (ûj) − U (ûj)(46)

where β1 =

∫ u⋆j

ûj

2ūj tanh−⊤(s/ūj)Rjds is transformed as

β1 ≤ −ūj(Wj − W̃i)⊤∇φjḡj tanh(M̂ j)

+ūj(∇φjWj + ∇εj)⊤∇φjḡj tanh(M∗
j )

+ū2j R̄j
(
ln(1 − tanh2(M̂ j)) − ln(1 − tanh2(M∗

j ))
)
(47)

In the fact that ∥ tanh(v)∥ ≤ 1,∀v, ln(v) ≤ 1− v,−1 ≤ ∀v ≤

1, then ū2j R̄j(ln(1 − tanh2(M̂j)) − ln(1 − tanh2(M∗
j ))) ≤ β2,

where β2 is a positive constant. UsingAssumptions 2 and (47)
we have

β1 ≤ β3∥W̃j∥ + β4 (48)

where β3 = ūjbjW bj∇φbjg, β4 = ūjbj∇εbj∇φbjg + 2β3 + β2.
It can be seen that from (46) 2∥U (ûj)∥ ≤ β5 and by changing
s = −ūj tanh(ν), −U (ûj) becomes

−U (ûj) =

∫ 0

ûj

2ūj tanh−⊤(s/ūj)Rjds

≤

∫ 0

ûj

2ū2j Rjνdν ≤ −
1
4
β6∥W̃j∥

2
+

1
2
β7∥W̃j∥ (49)

where β6 = b2j∇φmin
j∈Ni

(bjR), λ7 = b2j∇φmax
j∈Ni

(bjR), bjR =

∥R−1
j ∥b2jg. By replacing (47) and (49) to (46), then using the

result for (36) one yields

L̇ ji1 ≤ −

∑
j∈Ni

(
1
4
β6∥W̃j∥

2
− β8∥W̃j∥

)
+ β4 (50)

where β8 = β3 +
1
2β7.

On the other hand, taking differential Li2 along (28),
we have

L̇i2 =

∫ t

t−T

(
− αW̃⊤

i �iW̃i

+αW̃⊤
i

(
1φiεiH +

Pi∑
l=1

1φi(tl)εiH (tl)
))

dτ (51)

where �i = 1φi1φ
⊤
i +

∑Pi
l=11φi(tl)1φi(tl)

⊤, �i > 0.
Using the Young’s inequality and the upper bound of εiH (.),
The last term of (51) becomes

L̇i2 ≤ −(ρi − 1)λmin(�i)
∫ t

t−T

∥∥∥W̃i

∥∥∥2 dτ
+
ρ2i

4
(Pi + 1)

∫ t

t−T
b2iεHdτ (52)

Substituting (52) and (45) to (33) yields

L̇i ≤

∫ t

t−T

(
− (1 − ζi)λmin(Qi)

∥∥∥δi∥∥∥2 − U (ûi)

+

(( 1
ζi

− 1
)
λmin(Qi) +32

i

∥∥Ŵi
∥∥2)∥∥ei∥∥2

+γ 2
i ∥d̂ i∥

2
− µ3

(
∥W̃i∥ −

µ2

2µ3

)2
−

∑
j∈Ni

β6

(
1
2
∥W̃j∥ −

β8

β6

)2

+ µ4

)
dτ (53)

where µ3 = ρi − µ1 − 1. µ3 > 0. If the convergence rate

is chosen ρi > µ1 + 1. µ4 = µ0 +
ρ2i
4 (Pi + 1)b2iεH +

µ2
2

4µ3
+ β4 +

β28
β6
. Define biW̃ =

√
µ4/µ3 +

µ2
2µ3

, bjW̃ =
√
µ4/β6 +

β8
β6
, noting the triggering condition (31) and when

∥W̃i∥ > biW̃ or 1
2

∑
j∈Ni

∥W̃j∥ > bjW̃ , we have L̇i <

−
1
T β((1 − ζi)λmin(Qi)

∥∥δi∥∥2 + U (ûi) − γ 2
i ∥d̂ i∥

2) < 0, ∀t .
Therefore, by Definition 1, the consensus NN approximation
errors are UUB and the closed dynamics guarantees to be
asymptotically stable. Note that by choosing ρi appropriately,
the approximation errors will be asymptotic to arbitrarily
small values.

Situation 2: ∀t = t ik ,∀k ∈ N, taking the difference of (33)
one obtains

1Li = V ⋆i (δi(t
i
k )) − V ⋆i (δi(t

i
k−1))

+

∫ t ik

t ik−T
V ⋆(δi)dτ −

∫ t i−k

t i−k −T
V ⋆i (δi(t

−))dτ

+
1
2
W̃⊤
i (t ik )W̃i(t ik ) −

1
2
W̃⊤
i (t−)W̃i(t−) (54)

From (53), as L̇i < 0 and the trajectories of (28) and (15) are
continuous, we have∫ t ik

t ik−T
V ⋆i (δi(t

i
k ))dτ ≤

∫ t i−k

t i−k −T
V ⋆i (δi(t

−))dτ (55)

W̃⊤
i (t ik )W̃i(t ik ) ≤ W̃⊤

i (t−)W̃i(t−) (56)

Then, we rewrite 1Li as

1Li ≤ V ⋆i (δi(t
i
k )) − V ⋆(δi(t

i
k−1))

≤ V ⋆i (δi(t
−)) − V ⋆i (δi(t

i
k−1))

≤ −κi∥δi(t−) − δi(t
i
k−1)∥ = −κi∥ei(t ik−1)∥ (57)

where κi is in a class-κ function [41]. Recalling (54), it can
be seen that the Lyapunov function (33) it is continuously
reducing at any triggering time, t = t ik , k ∈ N.

From (53) and (57), it can be included that the closed
dynamics has been asymptotically stable.

To prove the Zeno behavior is excluded, we observe (24),
(25) and Lipschitz property of fi(zi). The dynamics (15), ∀t ∈

[t ik , t
i
k+1), satisfies∥∥δ̇i∥∥ ≤ bif

∥∥δi∥∥ + 0i0
∥∥Ŵi

∥∥∥∥δi∥∥ (58)
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where 0i0 = ∥R−1
i ∥/2b2igLi∇δi +b2ik/(2γ

2
i )Li∇δi , fi ≤ bif ∥δi∥,

bif > 0. For a small positive real number ai, we have∥∥ėi∥∥ ≤ 0i
∥∥ei∥∥ + 0i

(∥∥δi∥∥ + ai
)

(59)

where 0i = 0i0 + bif . Formally, we can follow from [43] to
prove the rest of the proof.

This completes the proof.
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