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A B S T R A C T   

As one of the main branches of extreme statistics, extreme value theory is widely used in marine engineering. Due 
to its special application in real ocean environmental states, the scale of the obtained monitoring data is limited. 
Aiming at the problem of extreme value prediction of different return periods with medium-scale data, this paper 
proposes a modified Enhanced Monte Carlo (EMC) extreme value prediction method based on the tail index 
correction. First, the Hill-type estimator is introduced to quantitatively evaluate the tail behavior of the data. Tail 
behavior analysis is then performed for sample data of various typical distribution functions, and a modified EMC 
method based on the tail index is proposed. Furthermore, tail estimator extrapolation is performed for a situation 
where the estimator does not converge to improve the engineering applicability of the proposed method. Based 
on a series of numerical and engineering examples, the extreme value prediction performance of the proposed 
method is compared with the classical extreme value prediction methods. The results show that the modified 
EMC extreme value prediction method proposed in this paper can provide useful guidance for the extreme value 
analysis of marine environmental loads and structural responses. At the same time, the method proposed in this 
paper introduces the slow-varying assumption in the classical EMC method, and the limitations caused by the 
assumption are also discussed.   

1. Introduction 

As one of the main branches of extreme statistics, extreme value 
theory is widely used in marine engineering (Lu and Wang, 2020; 
Galiatsatou et al., 2021; Sun, 2021). The assessment of the extreme 
environmental loads and structural responses for a given return period is 
of crucial importance in the preliminary design stage of any floating 
structure (Raed et al., 2020). Compared with onshore structures, marine 
structures are subjected to long-term environmental loads and are often 
affected by harsh conditions, such as typhoons. Therefore, accurate 
extreme value prediction methods are of great significance to the 
operation and maintenance of marine structures. 

Marine structures usually face a much harsher environment than 
onshore structures and are subject to both long-term external alternating 
environmental loads and corrosion behavior throughout their life cycle. 
Sensors must operate in complicated service conditions to conduct field 
monitoring of marine environmental loads and structural responses, 
which include high humidity, high salinity, and underwater pressure. As 

a result, it is much more difficult to ensure the long-term stability of the 
power supply and network systems required for sensor data acquisition, 
storage, and transmission (Du, 2016; Zhao et al., 2021). In addition, the 
response of marine engineering structures is mostly dominated by low 
frequencies (Du, 2016; Gao et al., 2021; Zhong, 2021). These factors 
limit the scale of marine engineering field monitoring data. To the best 
of the authors’ knowledge, a medium-sized data volume (103–104 orders 
of magnitude) is the most common case for marine engineering field 
measurement data. 

Classical extreme value theory mainly includes the generalized 
extreme value (GEV) distribution and peak over threshold (POT) 
method (Coles, 2001). It is based on asymptotic theory in statistics and 
assumes that the extreme values from observed data obey a specific form 
of asymptotic distribution. Because the classical extreme value theory 
has a sufficient theoretical basis and is often conservative in practical 
applications, it is still widely used in the extreme value prediction of 
environmental loads (Bruserud et al., 2018; Shao et al., 2018; Feng et al., 
2021) and structural responses (Stanisic et al., 2018; Su, 2020) in marine 
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engineering. However, the asymptotic theory assumes that the sample 
size tends to infinity, while the limited data size leads to an inevitable 
deviation of this assumption from the actual situation. Since it is difficult 
to predict the real distribution of extreme value samples, the extreme 
value prediction error caused by the asymptotic distribution assumption 
is also hard to evaluate accurately (Liu, 2018). 

Aiming to solve the problem of the approximate description of the 
distribution characteristics of random variables, Winterstein (1985, 
1988) proposed the Hermite series model of standard Gaussian random 
variables to establish an explicit nonlinear relationship between non- 
Gaussian random variables and standard Gaussian random variables 
(Gao, 2019). The method could approximate the data of interest with a 
standard Gaussian variable distribution sample. The determined pa
rameters could then be estimated by ensuring that the statistical mo
ments of the original sample and the fitted sample were approximately 
equal. Hermite models have been applied to the field of extreme value 
prediction (Gao et al., 2018; Gao, 2019; Zhang et al., 2019; Lin et al., 
2020). Among them, Gao et al. (2018) focused on the effect of Hermite 
models of different orders on the extreme value prediction of log- 
normally distributed sample data. However, there is still a lack of 
research on the accuracy and stability of Hermite models for predicting 
the extreme values of samples with different tail behaviors. Moreover, 
the amount of data used to study the performance of this method in the 
literature (Gao et al., 2018; Gao, 2019) reaches 105 magnitudes, while 
the corresponding discussion of medium-sized data is missing. 

In recent years, Naess and Gaidai (2009) proposed a more flexible 
extreme value analysis technique called the Average Conditional Ex
ceedance Rate (ACER) method. ACER introduced the conditional ex
ceedance rate into the Enhanced Monte Carlo (EMC) method (Naess 
et al., 2009) to consider the temporal correlation of the data series. In 
recent years, the ACER method has been gradually developed and 
applied to the extreme value prediction of marine environmental vari
ables (Teng, 2018; Yu et al., 2020) and structural response variables (Su, 
2020). However, it was also found that the calculation accuracy of the 
ACER method decreased in extreme value prediction with long return 
periods (Liu, 2018; Gao et al., 2018; Gao, 2019), limiting the application 
of EMC and ACER methods in extreme value prediction. 

Medium-scale monitoring data are often processed in practical ap
plications of marine engineering. However, as the current extreme value 
prediction methods may have inaccurate and unstable prediction re
sults, this paper proposes a modified EMC extreme value prediction 
method based on the tail index. First, the Hill-type estimator is intro
duced to evaluate the tail behavior of the data quantitatively. Then, the 
tail behavior of random sequences with various typical distribution 
functions is analyzed. A modified EMC method based on the tail index is 
presented, where an extrapolation strategy is proposed for the situation 
that the estimator does not converge to improve the engineering 
applicability of the proposed method. In addition, the extreme value 
prediction performance of the proposed method is compared with the 
classical extreme value prediction methods based on a series of nu
merical and engineering examples. The results indicate that the pro
posed modified EMC method is more accurate and stable in predicting 
extreme values. The method is also applicable to the correction of the 
ACER method, which can capture the tail characteristics of the sample 
distribution while considering the temporal correlation of the sample 
data series. At the same time, the method proposed in this paper in
troduces the slow-varying assumption in the classical EMC method, and 
the limitations caused by the assumption are also discussed. 

2. Extreme value prediction by the Enhanced Monte Carlo 
method 

In response to the problem of the high computational cost of the 
Monte Carlo (MC) method, Naess et al. (2009) proposed an enhanced 
MC method, i.e., the EMC method. This technique has been applied to 
the fields of building structures and marine engineering in recent years, 

demonstrating high computational efficiency and engineering 
practicality. 

Let the resistance and load of a considered component or structural 
system be R and S, respectively, and the safety margin eq. M = R – S. 
Failure behavior occurs when M < 0, and μM denotes the mean value of 
M. The safety margin equation can then be extended to the following 
form: 

M(λ) = M − μM(1 − λ), 0 ≤ λ ≤ 1 (1)  

where λ is the safety margin reduction factor. When λ = 1, Eq. (1) is 
reduced to the classical safety margin equation. 

Naess et al. (2009) presented the failure probability Pf as a function 
of the parameter λ based on the case where R and S are normal variables 
and extended this expression to the general reliability problem case as 
follows: 

Pf (λ) ≈ q(λ)exp{ − a(λ − b)c
}, λ→1 (2)  

where a, b, and c are positive constants. In the EMC method, q(λ) is 
assumed to be a slow-varying function, which is defined as: for a 
measurable function L : (0,+∞) → (0,+∞), if for all k > 0, lim

x→∞
L(kx)/

L(x) = 1, then the function L is named as a slow-varying function 
(Beirlant et al., 2004; Minkah et al., 2021). 

Naess et al. (2009) proposed that since the function q(λ) is assumed 
to be slowly varying for values of λ close to 1.0, a suitable constant value, 
q, is proposed to replace q(λ) for tail values of λ. That leads to a 
simplified form of Eq. (2) is used as: 

Pf (λ) ≈ qexp{ − a(λ − b)c
}, λl ≤ λ ≤ λu (3)  

where a, c, q ∈ (0,+∞), b ∈ (0,λl). In contrast to Eq. (2), q in Eq. (3) is 
treated as a constant value, and the range of applicability of the 
extrapolation function is determined through the tail bounds λl and λu 
within a certain range. Naess et al. (2009) concluded that within a 
certain range, the extrapolation results are insensitive to the values of 
the tail bounds λl and λu. 

Given a series of parameter values λi (0 ≤ λi < 1), the corresponding 
weakened systems are defined by Eq. (1), and the failure probability 
values Pfi can be obtained by the MC method. The variance of interest is 
the failure probability of the original system, which corresponds to the 
case of λ = 1, so this is a mathematical extrapolation problem, and Eq. 
(2) and its simplified form Eq. (3) are the extrapolation functions. Since 
the failure probability of the weakened component or system is higher 
than that of the original one, the number of simulations will be signifi
cantly reduced, thus improving the computational efficiency. Based on 
each given λ value and its corresponding empirically estimated value of 
failure probability, the undetermined parameters in Eq. (3) can be ob
tained using the Levenberg–Marquardt least squares estimation method. 

The EMC method can not only predict the failure probability of a 
given component or system but also give confidence intervals (CI) for 
the prediction results. Assuming that N-times MC simulations are per
formed for each given value of λ, and the failure frequency corre
sponding to each λ is obtained as Nf (λ), the corresponding empirical 
estimate of the failure probability can be obtained as: 

P̂f (λ) = Nf (λ)
/

N (4) 

The coefficient of variation of the failure probability is: 

Cov
[
P̂f (λ)

]
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − Pf (λ)
Pf (λ)N

√

(5) 

The upper and lower bounds of the 95% CI are: 

CI±(λ) = P̂f (λ)⋅
{

1± 1.96Cov
[
P̂f (λ)

] }
(6) 

Based on the derived CI for the failure probability, the objective 
function of the Levenberg–Marquardt least-squares estimation can be 
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modified as: 

F(q, a, b, c) =
∑M

i=1
wi
[
logP̂f (λi) − logq + a(λi − b)c ]2 (7)  

where λi and P̂f (λi) are the selected reduction factors and the corre
sponding empirically estimated failure probabilities, respectively, and 
wi = [logCI+(λj) − log CI− (λj)]− 2 is a weighting factor defined through 
the CI. 

The extreme value prediction problem can be regarded as an inverse 
reliability problem of finding the corresponding extreme value of a given 
failure probability. In the EMC method, the failure probability of the 
original component or system at λ = 1 can be obtained through the 
extrapolation expression (Eq. (3)). On the other hand, the value of λ for a 
given failure probability can also be calculated based on the extrapo
lation expression. Therefore, if a suitable reliability problem can be 
established, the extreme value of a given data series can be predicted by 
solving the problem. 

The steps for solving the extreme value problem based on the EMC 
method are as follows:  

1. Take the safety margin equation as M = R – S, where S is the variable 
corresponding to the sample data of the extreme value to be found, 
and R is a large value from the data (significantly greater than the 
mean of S) to ensure that the reliability problem established is valid. 
For example, consider S as a log-normal variable and R as the 99.99% 
quantile of a sample of S;  

2. Solve the above reliability problem by the EMC method to calculate 
the optimal parameters of the extrapolated expression (Eq. (3));  

3. For a given failure probability Pf0 (calculated based on sampling 
interval and given return period, see Section 4.1), the corresponding 
λ0 is obtained based on the extrapolated expression;  

4. Consider the definition of the weakened system (Eq. (1)), where: 

M(λ0) = R − S − (1 − λ0)(R − μS) = λ0R+(1 − λ0)μS − S (8) 

Thus, the extreme value to be found is λ0R + (1 − λ0)μS. 
It’s noted that although the form of the safety margin equation used 

above is the same as in the reliability calculation, the definitions of 
variables R and S, as well as the value range of parameter λ have all 
changed. This is because despite a large value is selected for R, it comes 
from a sample of S, and it is usually impossible to be higher than the 
extreme values to be calculated. As a result, the failure probability 
corresponding to R is higher than that of extreme values (for example, 
the return period of the variable S is required to be the extreme value of 
100 years, while R usually cannot reach the 100-yr extreme level). This 
means that in extreme value prediction, the original system will be 
strengthened instead, and the value of λ0 is usually >1. 

3. Modified Enhanced Monte Carlo method 

3.1. Hill-type estimator of Weibull-type distribution 

The EMC method is concerned with the tail behavior of the under
lying distribution of the sample data. A quantitative evaluation of the 
tail behavior will help improve the computational accuracy. For this 
reason, it is necessary to study the relationship between the parameters 
in the EMC extrapolation function (Eq. (3)) and the tail behavior of the 
distribution of sample data. 

For the weakened system described by Eq. (1), the probability of 
failure is: 

Pf (λ) = P(M(λ) < 0 ) = P(M − μM(1 − λ)〈0 ) (9)  

where P(⋅) represents probability. For the aforementioned reliability 
problem established based on the extreme value prediction problem (M 
= R – S, where S is the variable corresponding to the sample data, and R 

is a constant), Eq. (9) becomes: 

Pf (λ) = P(λR+(1 − λ)μS < S ) (10) 

According to the definition of cumulative distribution function 
(CDF), we have: 

Pf (λ) = 1 − P(S ≤ λR+(1 − λ)μS ) = 1 − FS(λR+(1 − λ)μS ) (11)  

where FS (s) is the CDF of the variable S. Let x = λR + (1 − λ)μS, And 
substituting Eq. (3) into Eq. (11), we can get: 

1 − FS(x) = qexp
{

− a
(

x − μS

R − μS
− b

)c }

= qexp{ − aS(x − bS)
c
}, x > bS

(12)  

where aS = − a
(

1
R− μS

)c
, bS = (1 + b)μS + bR. Eq. (12) establishes the 

relationship between the underlying distribution of sample data and the 
parameters q, a, b, and c in the EMC extrapolation function. According to 
the above derivation, the tail distribution of the sample data under the 
framework of the EMC method is obtained, and the distribution function 
is same in form as the extrapolation function assumed by the EMC 
method. 

According to Eq. (12), the CDF and probability density function 
(PDF) of the underlying tail distribution of the sample data can be ob
tained, where the subscript S is omitted for the sake of brevity: 

F(x) = 1 − qexp{ − a(x − b)c
}, x > b (13)  

f (x) = qacexp{ − a(x − b)c
}⋅(x − b)c− 1

, x > b (14)  

where a, c, q ∈ (0,+∞), b ∈ (μS, (1 + λl)μS + λlR). Eq. (13) can be 
transformed into the following form: 

1 − F(x) = q⋅exp{ − a[(x − b)c
− xc ] }⋅exp{ − axc} = Q(x)⋅exp{ − axc}

(15)  

where Q(x) = q ⋅  exp {− a[(x − b)c − xc]} satisfies the definition of the 
aforementioned slow-varying function. Therefore, both the scale 
parameter q and the location parameter b do not affect the tail behavior 
of the underlying distribution of sample data. Let b = 0 and q = 1, and 
the above CDF and PDF can be simplified as: 

F(x) = 1 − exp( − axc) (16)  

f (x) = acexp( − axc)⋅xc− 1 (17)  

where the support and the ranges of parameters a and c are the same as 
Eq. (13). That is, the tail distribution of the sample data can reduce to a 
Weibull distribution, or the tail distribution is a Weibull-type distribu
tion. From the properties of the Weibull distribution, it is known that 
only parameter c affects the tail behavior of the underlying distribution 
of sample data (de Wet et al., 2016). This also means that the parameter 
c in the EMC model can be determined by studying the tail behavior of 
the sample data. After the value of parameter c is determined, least- 
squares estimation is performed on the remaining three parameters q, 
a, and b in the EMC model, which is expected to effectively reduce the 
uncertainty of the results. 

A commonly used tail index in the analysis of distribution function 
tail behavior is the Hill estimator (Hill, 1975), which is widely used to 
evaluate the tail behavior of distribution functions with power function 
tails. As for a Weibull-type distribution function, the tail behavior is 
described as: 

1 − F(x)→exp( − Cxα), x→∞ (18)  

where 1/α is called the Weibull tail-coefficient. In this paper, due to the 
properties of the EMC extrapolation function, the “tail index” that ap
pears in the following refers to the Weibull tail-coefficient. 
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Let X1, X2, …, Xn be a sequence of independent and identically 
distributed random variables with cumulative distribution function F, 
and X(1,n) ≤ X(2,n) ≤ ⋯ ≤ X(n,n) be the corresponding order statistics 
associated with the sample, where n is the sample size (Minkah et al., 
2021). Referring to the classical form of the Hill estimator, the estimator 
for the Weibull-type distribution function can be derived as (Girard, 
2004): 

θ̂
H
n =

∑k(n)− 1

i=1

[
log

(
X(n− i+1,n)

)
− log

(
X(n− k(n)+1 ,n)

) ]

∑k(n)− 1

i=1
{log[log(n/i) ] − log[log(n/k(n) ) ] }

(19)  

where the threshold k(n) is a positive integer. 
Eq. (19) is an estimator of the Weibull tail-coefficient 1/α in Eq. (18), 

which is known as a Hill-type estimator. In practice, the positive integer 

k(n) is given first, and then the corresponding estimator ̂θ
H
n is calculated. 

The “tail estimator” or “Hill-type estimator” that appears in the 

following refers to the reciprocal of θ̂
H
n , so that it corresponds directly to 

the shape parameter c in the EMC model. 
Fig. 1 plots the Hill-type estimator of a Weibull sample with expo

nents α = 1 and α = 2, respectively, with a sample size of 104. It can be 
observed that as k(n) increases, the tail estimators gradually converge to 
their true values (the red dashed line in the figure). When k(n) is 5% to 
10% of the sample size, the estimator reaches convergence. With the 
further increase of k(n), the estimator changes slowly and can be 
regarded as constant. 

Gardes and Girard (2008) extended the classical Hill-type estimator 
by introducing a weight function to give better results in terms of bias 
and mean square error: 

θ̂
G
n =

∑k(n)− 1

i=1
αi,n

[
log

(
X(n− i+1,n)

)
− log

(
X(n− k(n)+1 ,n)

) ]

∑k(n)− 1

i=1
αi,n{log[log(n/i) ] − log[log(n/k(n) ) ] }

(20)  

where αi, n are weight functions. In this paper the Zipf estimator pro
posed by Gardes and Girard (2008) is used: 

θ̂
Z
n =

∑k(n)− 1

i=1
{log[log(n/i) ] − ζn }log

(
X(n− i+1,n)

)

∑k(n)− 1

i=1
{log[log(n/i) ] − ζn }log[log(n/i) ]

(21)  

where 

ζn =
1

k(n) − 1
∑k(n)− 1

i=1
log[log(n/i) ]. (22) 

Fig. 2 shows the simulated values of the above classical Hill-type and 
Zipf-type tail estimators of a Weibull sample with exponents α = 1 and a 
sample size of 104. It can be found that both estimators can quantita
tively describe the tail behavior of the Weibull distribution function. For 
other alternative estimators, see He et al. (2020) and Caeiro et al. (2022) 
for further details. 

3.2. Modified EMC method based on tail index 

For data samples obeying a Weibull-type distribution, the Hill-type 
estimator can be used to describe the tail behavior of the distribution 
quantitatively, and these estimators will be used for the modification of 
the EMC method. In practice, the tail estimator is obtained by analyzing 
the sample data and is then used as the shape parameter c of the EMC 
extrapolation function. The remaining three parameters in the EMC 
model are estimated by least squares. 

However, as the data usually do not follow the Weibull distribution 
exactly, it is necessary to judge the convergence of the tail estimator. In 
addition to the Hill plot shown in Fig. 1, the Weibull probability plot 
commonly used in engineering can also be used as a convenient and 
intuitive method to discriminate the convergence of the tail estimator. 
The CDF of the Weibull distribution can be linearized as: 

log[ − log(1 − F) ] = kwlogx+ logλw (23) 

That is, the log[− log (1 − F)] and log (x) of a Weibull distribution 
are in a linear relationship, and the slope is the Weibull exponent. The 
empirical relationship curve of log[− log (1 − F)] and log (x) is the 
Weibull probability plot. It is worth noting that the tail estimator is an 
estimate of the slope of the Weibull probability plot, as can be seen from 
the definition of the Hill-type estimator. Therefore, the three estimators, 
i.e., the Hill-type estimator, the slope of the Weibull probability plot, 
and the shape parameter c of the EMC extrapolation function, are 
different empirical representations of the same mathematical quantity. 

A straightforward approach to the case of non-convergence of the tail 
estimator of the data samples is to take the estimator corresponding to a 
k(n) close to 1. However, a too small k(n) will lead to a large variance of 
the Hill-type estimator (Németh and Zempléni, 2020). Therefore, in this 
paper, the extrapolation of the Weibull slope corresponding to moderate 
k(n) values toward the tail of the distribution is considered to obtain 
estimates of the EMC shape parameter c. 
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Fig. 1. Simulated values of Hill-type estimator for Weibull distribution function.  
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We perform the extrapolation operation based on the empirical cu
mulative probabilities, i.e., the relationship between the shape param
eter c and the variable log[− log (1 − F)], which is the vertical axis 
variable of the Weibull probability plot. For the sake of computational 
simplicity and to avoid introducing too many undetermined parameters 
(to ensure the convenience of engineering applications and minimize the 
additional uncertainty introduced by the extrapolation process), the 
functional relationship is assumed to be linear. In the practical calcu
lation, a series of high cumulative probability values denoted as F1, F2, 
…, Fm can be selected, and each cumulative probability value corre
sponds to a k(n) value, i.e. 

ki(n) = ⌈n(1 − Fi) ⌉, i = 1, 2,…,m (24)  

where ⌈⋅⌉ denotes upward rounding. For each k(n) value, the value of the 
corresponding shape parameter ci can be calculated, and then a linear fit 
and extrapolation can be achieved by the obtained sequence of Fi and ci. 

The steps of the proposed modified EMC extreme value prediction 
method are summarized as follows:  

1. Obtain a Hill or Weibull probability plot based on the data and 
observe the convergence of the tail estimator;  

2. Based on the observation results, perform the following treatments, 
respectively: 

(i) If the tail estimator can converge quickly and remains approx
imately constant as k(n) increases (as in the case of the Weibull 
distribution), the Hill-type estimator can be directly applied as 
an estimate of the EMC shape parameter c. The threshold k(n) 
can ensure the reasonableness of the estimator as long as it is not 
too small (i.e., only the lower bound of k(n) should be 
concerned);  

(ii) If the tail estimator can converge but will change significantly as 
k(n) continues to increase it means that the sample distribution 
can be approximated as an EMC extrapolation function form 

only in the tail range. In this case, the Hill-type estimator can 
still be directly applied as an estimate of the EMC shape 
parameter c, but attention should be paid to the reasonable 
range of k(n) (i.e., both the lower and upper bounds of k(n) 
should be considered); 

(iii) If the tail estimator does not converge, the estimator corre
sponding to a certain cumulative probability should be obtained 
by an extrapolation operation (which can be combined with 
other auxiliary methods, such as qualitative analysis of the tail 
(Rojo, 1996; Rojo and Ott, 2010) to reduce the extrapolation 
uncertainty);  

3. Calculate the remaining three parameters in the EMC extrapolation 
expression by least-squares fitting, and finally obtain the extreme 
value prediction results (refer to Section 1). 

The proposed method is also applicable to the modification of the 
ACER method, which can be realized to capture the tail characteristics of 
the sample distribution while considering the temporal correlation of a 
sample data series to provide more accurate and reliable prediction 
results. 

4. Numerical studies of the modified Enhanced Monte Carlo 
method 

Section 3 presents the computational principles of the proposed 
modified EMC method. In this section, two kinds of numerical examples 
are considered: one includes random samples with typical distribution 
functions, and the other uses simulated wind speed samples with 
frequency-domain features. Based on the samples with different tail 
characteristics, the accuracy and stability of the proposed modified EMC 
method for extreme value prediction are tested by comparing with the 
Hermite model and the classical EMC method. 
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Fig. 2. Simulated values of Hill-type and Zipf-type estimators for Weibull distribution function with exponent α = 1.  
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4.1. Examples of random sequences obeying specific distributions 

4.1.1. Weibull distribution 
The PDF of the Weibull distribution is: 

f (x) =
kw

λw

(
x

λw

)kw − 1

e− (x/λw)
kw (25) 

Only kw affects the tail behavior of the distribution and is also the 
standard value of the aforementioned tail estimator. 

Different shape parameters kw and scale parameter λw = 1 are taken 
to generate the corresponding random numbers as sample data for 
extreme value prediction. If there are no special instructions, 100 sim
ulations are performed for each distribution function case in this paper. 
The sample size is chosen as 104 with a sampling interval of 1 h, which 
corresponds to a duration of 1.14 years for each sample data to fit the 
common medium-scale data situation in engineering. 

According to the expressions of Hill-type and Zipf-type tail estima
tors (Eq. (19) and Eq. (21)), it can be found that these statistics depend 
on the selection of the threshold k(n). As mentioned earlier, a too small 
threshold k(n) will lead to a large variance, but at the same time, too 
large k(n) will also increase the bias of the tail estimators. In the 
calculation, the k(n) when convergence is reached in the Hill plot can be 
selected, or the bootstrap method can be used (Danielsson et al., 2001; 
Németh and Zempléni, 2020). The positive integer k(n) is taken as 1/10 
of the sample size in this example, i.e., k(n) = 103. 

To test the accuracy and stability of the proposed modified EMC 
method, in addition to the classical EMC method, the model with higher 
prediction accuracy among the Hermite central moment and L-moment 
models is also selected. Considering the accuracy, stability, and 
computational efficiency, the order of the Hermite model is set to 4. 
Table 1 shows the extreme value prediction errors of the proposed 
method, where the error distribution parameters in each cell are the 
mean and standard deviation of the percentage of prediction errors, 
respectively. In calculation, for a time series with sampling interval Δt 
(in seconds), the relationship between failure probability Pf0 and return 
period T0 is: 

Pf 0 =
Δt

T0⋅365⋅24⋅3600
(26) 

Fig. 3 shows the boxplot of the proposed modified EMC model and 
the models for comparison, with the vertical axis showing the percent
age error of the extreme value prediction results with a return period of 
10 years. The red dashed lines are used to separate the cases with 
different shape parameters kw, and the green dashed line is the zero error 
percentage standard line. The horizontal coordinates Hermite-4c, EMC, 
and Hill-EMC represent the fourth-order central moment Hermite 
model, the classical EMC model, and the proposed modified EMC model, 
respectively. It can be observed that the proposed model avoids over
estimation of the extreme values of the Weibull distribution, and the 
stability is significantly improved. In addition, it is found that the 

selection of Hill-type or Zipf-type tail estimators has no significant effect 
on the predicted extreme value. 

As mentioned earlier, the tail behavior described by the EMC 
extrapolation function is influenced only by the shape parameter c. 
Classical EMC methods obtain the parameter c through a least-squares 
fit, leading to higher uncertainty in this parameter and the extreme 
value prediction result. The proposed method, on the other hand, allows 
for a more accurate estimation of the parameter c. For the case of kw = 5, 
the histograms of parameter c obtained by the two methods are plotted 
in Fig. 4, respectively. As illustrated, the parameter c estimated by the 
classical EMC method has a high degree of dispersion, and the value is 
not accurately estimated even once. The proposed modified EMC 
method can estimate the shape parameter more accurately, which 
effectively improves the extreme value prediction accuracy. 

4.1.2. Normal distribution 
The PDF of the normal distribution is: 

f (x) =
1

σn
̅̅̅̅̅
2π

√ exp

[

−
1
2

(
x − μn

σn

)2
]

(27) 

Its skewness and kurtosis are constant, and the tail behavior does not 
change with the distribution parameters. 

The Weibull probability plot of a sample of a normal distribution 
with μn = 0, σn = 1 is shown in Fig. 5. As illustrated, the slope of the plot 
tends to increase gradually with the cumulative probability, i.e., the tail 
estimator does not converge, so extrapolation of the estimator is 
considered to obtain an estimate of the EMC shape parameter c. 

The normal distribution parameters μn = 0, and σn = 1 are taken with 
sample sizes of 104 and 105, respectively, and the corresponding random 
numbers are generated as sample data. The tail range of 75% to 95% 
quantiles Fi is taken, and the corresponding values of ci are calculated 
and then extrapolated to a certain return period cumulative probability. 
Table 2 shows the prediction errors for the extrapolation to the 10-year 
cumulative probability. 

4.1.3. Log-normal distribution 
The PDF of the log-normal distribution is: 

f (x) =
1

xσlo
̅̅̅̅̅
2π

√ exp

[

−
1
2

(
lnx − μlo

σlo

)2
]

(28) 

Only the parameter σlo affects the tail behavior of the log-normal 
distribution. 

The Weibull probability plot of a log-normal sample with μlo = 0, σlo 
= 0.5 is shown in Fig. 6, which indicates that the slope of the plot tends 
to decrease from the left tail to the right tail. 

Different parameters σlo and μlo = 0 are taken and the corresponding 
random numbers are generated as sample data. Taking the tail range of 
the 75% to 95% quantile, the corresponding ci are calculated and then 
extrapolated to a 10-year return period cumulative probability. Table 3 
and Fig. 7 show the extreme value prediction errors of the proposed 
method and the boxplot of the percent errors of predicted extreme 
values for different models with a return period of 10 years, respectively. 
It is found that the modified EMC method has higher stability than the 
classical EMC method but does not perform as well as the L-moment 
Hermite model. 

4.2. Examples of wind speed series 

The accuracy and stability of the proposed method are investigated 
in Section 4.1 using random samples of several typical distributions with 
different tail characteristics. However, the real ocean engineering data 
have both distribution and frequency domain features, and the above 
random sequence cannot truly reflect the actual situation of the field 
monitoring data. In this section, numerical samples satisfying both the 
given PDF and the given power spectral density (PSD) are generated, 

Table 1 
Modified EMC method extreme value prediction error distribution parameters 
(Weibull distribution case).   

Error parameters of 1- 
yr extreme value 

Error parameters of 
10-yr extreme value 

Error parameters of 
100-yr extreme value 

kw 

=

2 
0.138, 2.963 0.235, 3.834 0.327, 4.570 

kw 

=

5 
0.095, 1.161 0.134, 1.458 0.169, 1.712 

kw 

=

8 
0.071, 0.637 0.089, 0.806 0.105, 0.951  
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and the extreme value prediction performance of the proposed method is 
evaluated on this basis. 

The artificial wind speed samples employed in this work are obtained 
using the generation method proposed by Ambrosio et al. (2020) as 
follows:  

1. Generate a random sequence Xn,pdf based on a given PDF and a 
random sequence Xn,psd based on a given PSD.  

2. Calculate the amplitude spectrum An,psd of the sequence Xn,psd.  
3. Reorder the sequence Xn,pdf according to Xn,psd, that is, the minimum 

value of the sequence Xn,pdf must be located at the same location as 
the minimum value of the sequence Xn,psd, the location of the second 
smallest element of the sequence Xn,pdf must also be located at the 
same location as Xn,psd, and so on, to obtain a new sequence X̃n,pdf .  

4. Calculate the phase spectrum φn,psd of the new sequence X̃n,pdf by 
Fourier transform. Next, apply the inverse Fourier transform to the 
frequency domain signal formed by the combination of the 

amplitude spectrum An,psd and phase spectrum φn,psd, and take the 
real part of the obtained complex series as the new sequence X̃n,psd.  

5. Repeat steps 2–4 until the final sequence X̃n,pdf and X̃n,psd converge, 
and the desired sequence is obtained. 

In this section, short-term wind speed sequences with a sampling 
frequency of 1 Hz and a sample size of 104 are considered, corresponding 
to a duration of about 3 h. The empirical Ochi and Shin spectrum is 
applied for design of offshore structures (DNV GL, 2017): 

fS(f )
u*2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

583f* for 0 ≤ f* ≤ 0.003

420f 0.7
*

(
1 + f 0.35

*
)11.5 for 0.003 < f* ≤ 0.1

838f*
(
1 + f 0.35

*
)11.5 for f* > 0.1

(29)  

Fig. 3. Boxplot of extreme value prediction errors of the modified EMC model and models for comparison (Weibull distribution case, return period = 10 yrs).  

Fig. 4. Histogram of simulated values of classical EMC and modified EMC for Weibull distribution shape parameter c (standard value kw = 5).  
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where f* =
f ⋅z

U10(z), z is the height above sea level, U10 is the 10-min mean 
wind speed, u* is the friction velocity. In this paper, the 1-h wind speed 
mean value U0 = 10 m/s at 10 m altitude is taken so that z = 10 m. 

Three distribution functions commonly used in ocean engineering 

are selected for the wind speed PDF, namely, Weibull distribution, 
Gamma distribution, and Gumbel distribution. The parameters of the 
distributions are determined by the sample mean and variance. The 
wind speed sample means are obtained by discounting through a loga
rithm model (DNV GL, 2017): 

Updf

U0
=

1 + 0.137ln z
H − 0.047ln T

T10

1 + 0.137ln z
H − 0.047ln T0

T10

(30)  

where Updf is the sample mean to be sought, H = 10 m, T0 = 1 h, T10 = 10 
min, and T is the sample duration. The wind speed sample variance is 
chosen as the zero-order spectral moment of the wind speed PSD, where 
the spectral moment is defined as: 

mj =

∫ ∞

0
f jSU(f )df (31)  

where f is the frequency, SU(f) is the given PSD, and j is the order. The 
above definition of the sample mean and variance ensures that the se
quences generated based on the given PSD and PDF have consistent 
statistical information. Fig. 8 shows the artificial series and its histogram 
with PSD for a sample obeying the Gumbel distribution obtained by the 
above method. 

Table 4 and Fig. 9 show the extreme value prediction errors of the 
proposed method and the boxplot of the percentage of prediction errors 
of different prediction models with a return period of 24 h, respectively. 
As illustrated, although there is a certain degree of underestimation in 
the method proposed for the Gumbel examples, the relative errors are 
always controlled within 10%. Besides, for all the three distributions, 
the proposed method has the highest stability. Therefore, the proposed 
modified EMC model has improved computational accuracy and sta
bility and can better meet the requirements of short-term extreme value 
prediction in marine engineering. 

5. Applications of the modified Enhanced Monte Carlo method 

This section will show the potential engineering applications of the 
proposed method through two engineering cases. The first case is the 
extreme value prediction of the current speed in each layer based on the 
measured current profile data. The second case concerns the hot-spot 
stress of catenary mooring lines on floating platforms, where the ten
sion is based on the catenary equation and the measured six-degree-of- 
freedom displacement of the platform. Through the above two cases, the 
performance of the proposed modified EMC method in extreme value 
prediction of environmental loads and structural responses is 
investigated. 

5.1. Current extreme value prediction 

The Liuhua 11–1 oilfield is located in the Pearl River Mouth Basin 
(East 115◦42′, North 20◦49′) and is located 220 km southeast of Hong 
Kong. The in situ monitoring platform is a semi-submersible drilling 
platform operating in the Liuhua 11–1 oilfield (Yu et al., 2020), as 
shown in Fig. 10. 

The measured data used in this paper come from the prototype 
monitoring system established on the platform by the research group 
(Du, 2016). A set of acoustic Doppler current profiler (ADCP) equipment 
is utilized to collect current profile information. The obtained current 
profile data are divided into 14 layers according to the water depth 

Fig. 5. Weibull probability plot for a normal distribution sample.  

Table 2 
Modified EMC method extreme value prediction error distribution parameters 
(normal distribution case, extrapolated to the cumulative probability of 10-yr 
return period).  

Sample 
size 

Error parameters of 
1-yr extreme value 

Error parameters of 
10-yr extreme value 

Error parameters of 
100-yr extreme value 

104 0.852, 3.426 1.414, 4.305 1.947, 5.059 
105 1.140, 0.994 1.696, 1.205 2.209, 1.384  

Fig. 6. Weibull probability plot for a log-normal distribution sample.  

Table 3 
Modified EMC method extreme value prediction error distribution parameters (log-normal distribution case).   

Error parameters of 1-yr extreme value Error parameters of 10-yr extreme value Error parameters of 100-yr extreme value 

σlo = 0.25 − 0.964, 3.869 − 2.137, 5.509 − 3.615, 7.004 
σlo = 0.5 − 1.269, 7.439 − 3.480, 10.867 − 6.370, 13.818 
σlo = 0.65 − 0.282, 11.800 − 2.226, 17.737 − 5.058, 22.779  
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(30–121 m) with an interlayer depth of 7 m. The current profile dataset 
has a total of 8205 current profiles, and the sampling interval is 1 h. The 
speed and direction distribution of the first layer is shown in Fig. 11. 

Since the measurement duration of the measured current data is 
about 1 yr, the prediction results of a long-term return period such as 
100 yrs. may have great uncertainty. Therefore, this paper only focuses 
on the return periods of 1 yr and 10 yrs. Table 5 shows the design values 
of the extreme current speeds in the sea area where the platform is 
located. For the water depths not involved in the table, the design speeds 
are obtained by linear interpolation. 

Due to the time correlation characteristics of the measured ocean 
current data series, the ACER method is used instead of the classical EMC 
method (Liu et al., 2018). The method proposed in this paper is also 
adjusted accordingly, that is, applying the tail index correction strategy 
to the ACER method. In addition, the GEV and POT models are selected 
as comparison models. Table 6 lists the prediction results and 95% CI of 
the above methods for the extreme speed of the first layer, where the 

95% CIs for the extreme values of the POT are calculated by a bootstrap 
method (Karpa and Naess, 2013). 

Fig. 12 shows the extreme value prediction results and their 95% CI 
of the above models for the speed of each layer with a 10-yr return 
period. The blue curve in each subplot represents the current speed 
design values, the red solid line represents the predicted values, and the 
red dotted lines represent the 95% CI. Each subplot has the same di
mensions and axis ranges. It can be found that the spatial distribution of 
extreme speeds of the proposed method is most consistent with the 
design values. On the other hand, there is a big difference between the 
spatial distribution characteristics of the design values and the extreme 
speeds of the GEV method and the POT method, and the POT method 
gives an overly wide CI. 

5.2. Mooring hot-spot stress extreme value prediction 

The mooring system of the aforementioned platform is a multi-point 
catenary mooring system, which adopts a mooring method in which 11 
mooring chains are arranged asymmetrically (Shen et al., 2020), as 
shown in Fig. 13. Since the focus of this paper is not on the accurate 
analysis of the mooring responses, the catenary equation is used to 
calculate the top tension of mooring line 1#, ignoring the effect of 
current loads and other dynamic effects, including the effect of drag 
force on the mooring line and the influence of vortex-induced vibration 
(DNV GL, 2017; Yu et al., 2020). 

Each mooring line consists of four segments. From the platform to the 
seabed, they are the platform anchor chain, the suspension cable, the 

Fig. 7. Boxplot of extreme value prediction errors of the modified EMC model and models for comparison (log-normal distribution case, return period = 10 yrs).  

Fig. 8. Short-term simulation time history, statistical and frequency domain information of an artificial wind speed series obeying Gumbel distribution.  

Table 4 
Modified EMC method extreme value prediction error distribution parameters 
(artificial wind speed series).  

Distribution Error parameters of 
12-h extreme value 

Error parameters of 
24-h extreme value 

Error parameters of 
72-h extreme value 

Weibull − 4.60 × 10− 4, 
0.544 

− 0.001, 0.574 − 0.003, 0.619 

Gamma − 0.926, 1.365 − 1.085, 1.475 − 1.348, 1.641 
Gumbel − 2.161, 2.296 − 2.507, 2.518 − 3.069, 2.861  
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lying anchor chain, and the anchor cable. The theoretical design lengths 
of each segment of mooring line 1# are 220.98 m, 502.92 m, 524.26 m, 
and 121.92 m, respectively, and the weight parameters of each segment 
are shown in Table 7 (Shen et al., 2020). The mooring line material 
(used in each segment) is the R4 grade anchor chain steel introduced in 
DNVGL-OS-E302 (DNV GL, 2018), with a yield strength of 580 MPa and 
a tensile strength of 860 MPa (both are minimum mechanical 
properties). 

The six-degree-of-freedom motion response information of the 
floating structure of the platform is monitored by the Differential Global 
Positioning System (DGPS) and the Inertial Navigation System (INS) 
(Du, 2016). The DGPS data include longitude, latitude, and altitude, and 
surge, sway and heave information can be obtained based on the 
calculation of ellipsoid meridian arc length and the coordinate trans
formation (Li, 1995; Jiang and Yan, 1998), as well as the initial position 
coordinates of the platform and the position of the center of gravity. The 
INS data include roll angle, pitch angle, and heading angle, and the roll, 
pitch, and yaw information can be obtained based on the initial state of 
the platform. 

The sampling frequencies of the DGPS and INS data are 1 Hz and 10 
Hz, respectively, and the total data duration is the same as that of the 
aforementioned current data. The calculated six-degree-of-freedom data 
are divided into short-term series according to the 3-h duration, and the 
maximum value of the absolute value is taken for each short-term time 

Fig. 9. Boxplot of extreme value prediction errors of the modified EMC model and models for comparison (artificial wind speed series case, return period = 24 h).  

Fig. 10. In situ monitoring platform.  

Fig. 11. Measured current speed and direction distribution of layer 1.  

Table 5 
Design values of current speeds in the platform sea area.  

Return period Design values 

1 yr Depth(m) 0 23 68 113 159 
Speed(m/s) 1.46 1.30 1.00 0.86 0.76 

10 yrs Depth (m) 0 23 68 113 159 
Speed (m/s) 1.73 1.57 1.27 1.05 0.91  

Table 6 
Predicted extreme values for the current speed of the first layer by the proposed 
method, GEV, and POT.  

Method Return period/yr Extreme speed/m⋅s− 1 95% CI/m⋅s− 1 

Proposed method 1 1.17 (1.04, 1.25) 
GEV 1 1.23 (1.14, 1.32) 
POT 1 1.38 (1.17, 1.60) 
Proposed method 10 1.36 (1.19, 1.46) 
GEV 10 1.43 (1.30, 1.56) 
POT 10 1.53 (1.24, 1.87)  
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course to obtain extreme value samples of each degree of freedom. The 
GEV distribution is used to fit the extreme values of each degree of 
freedom, and the corresponding distribution type and the extreme 
values predicted by the GEV model are obtained as shown in Table 8. 

In this paper, based on the above distributions, a six-degree-of- 
freedom responses dataset is generated. The sampling interval is set to 
3 h, and the data duration is 1 yr, so the length of each sequence is 2920. 

Based on the catenary equation, the governing equation of the afore
mentioned four-component mooring line is constructed (Wu et al., 
2016). Combined with the top displacement calculated from the motion 
data, the time series of the top tension of the 1# mooring line is ob
tained. The hot spot stress sequence is then calculated by finite element 
simulation, and the stress approximately obeys the Weibull distribution, 
as shown in Fig. 14. 

Table 9 lists the prediction results and 95% CI of the hot spot stress of 
the 1# mooring line of the proposed method, GEV, and POT method. It 

Fig. 12. Extreme current speeds with a 10-yr return period and comparison of ocean environmental design index in Liuhua sea area.  

Fig. 13. Schematic diagram of mooring system layout.  

Table 7 
Weight parameters of each mooring line.   

Platform 
anchor chain 

Suspension 
cable 

Lying anchor 
chain 

Anchor 
cable 

Dry weight 
(103 kg/m) 0.27461 0.07072 0.36909 0.07072 

Wet weight 
(103 kg/m) 0.31639 0.08415 0.41437 0.08415  

Table 8 
Top tension at the equilibrium position of each mooring line.  

Degree of 
freedom 

Distribution 1-yr extreme 
value 

10-yr extreme 
value 

100-yr 
extreme value 

Rolling Weibull 2.84◦ 2.87◦ 2.88◦

Pitching Weibull 2.65◦ 2.86◦ 3.00◦

Yawing Fréchet 4.22◦ 6.58◦ 10.04◦

Surging Gumbel 5.45 m 6.76 m 8.10 m 
Swaying Gumbel 5.40 m 6.82 m 8.30 m 
Heaving Weibull 1.74 m 1.86 m 1.93 m  
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can be found that the extreme value and CI predicted by the proposed 
method are close to the results of the GEV model, while the POT method 
significantly overestimates the extreme value. 

It should be noted that when predicting the extreme value of the 
structural response, the rationality of the method needs to be evaluated 
in advance. For this engineering example, the hot spot stress is signifi
cantly below the yield limit of the material. Considering that mooring 
lines are frequently replaced, complex mechanical behaviors such as 
creep and yielding of materials during service can be ignored. 

6. Discussion 

According to the aforementioned calculation process and results, the 
proposed modified EMC method has insufficient stability in the heavy- 
tailed distribution prediction results. This is mainly because of the 
assumption introduced by the EMC method, that is, the function q(λ) in 
Eq. (2) is assumed to be a slow-varying function. For heavy-tailed dis
tributions, this assumption usually does not hold, leading to insufficient 
applicability of EMC, ACER, and the proposed method to heavy-tailed 
distribution data. 

In the case that the sample size cannot be increased, the treatment of 
long-tailed distribution samples should be considered. Logarithmic 
transformation is a common data processing tool in statistical analysis, 
which can effectively reduce the skewness and kurtosis of the distribu
tion and the non-Gaussianity of samples with significant super-Gaussian 
characteristics (Nam and Hong, 2021). Typical long-tailed distributions 
include log-normal and Pareto distributions. It is well known that taking 
the logarithm of a log-normal sample will make the new sample obey a 
normal distribution, while a similar operation on a Pareto sample can 
make the new sample obey exponential distribution. Therefore, the 
logarithm operation can theoretically handle the extreme value pre
diction problem of long-tailed distribution. 

For the practical calculation, S refers to the sample and R refers to a 

large sample value. The safety margin equation is then taken as M = log 
(R) – log(S). Based on the proposed extreme value prediction model in 
Section 3, the logarithmic extreme value is calculated, and then the 
extreme value to be sought is obtained through the exponent operation. 

The PDF of the Pareto distribution is: 

f (x) =
αpxαp

p

xαp+1 (32)  

where αp and xp are the shape and scale parameters, respectively. Only 
αp affects the tail behavior of the distribution, and a larger αp corre
sponds to a smaller skewness and kurtosis. 

Here, we take the logarithm of a Pareto distribution sample with xp 
= 1, αp = 5, and the Weibull probability plot of the new sample is shown 
in Fig. 15. As good linearity can be observed in the figure, the afore
mentioned Hill-type estimator is directly applied as an estimate of the 
EMC shape parameter c. 

Different shape parameters αp and scale parameter xp = 1 are then 
taken to generate the corresponding random numbers as sample data, 
where k(n) = 103. Table 10 and Fig. 16 show the extreme value pre
diction errors of the proposed method and the boxplot of errors for 
extreme values with a return period of 10 years for different models, 
respectively. According to the results, the modified EMC method after 
the logarithmic operation has the highest stability among the three 
models and avoids the overall underestimation of extreme values. 
However, for lower αp, the stability of the prediction results of the 
proposed method is not satisfactory. After further inspection, it is found 
that the proposed method has good prediction accuracy for the loga
rithm of estimated extreme values, but the exponentiation operation 
leads to a significant increase in the uncertainty of the final results. 

In summary, for sample data with a non-converging tail estimator 
and long-tailed characteristics, the data can be processed by logarithmic 
transformation. The extreme value prediction can then be performed 
based on the proposed modified EMC method. However, the accuracy 
and stability of the proposed method may still not meet the engineering 
requirements. While this aspect is beyond the scope of this paper, we 
suggest choosing other appropriate functions instead of the original 
EMC extrapolation function (Eq. (3)), such as using the Pareto distri
bution function or its extended form (Lee and Kim, 2019, Andria, 2022). 
However, to the best of the authors’ knowledge, the measured data of 
marine environmental loads and structural responses rarely show severe 
long-tail effects. Thus, the proposed method has sufficient accuracy and 
stability for extreme value prediction in the usual marine engineering 
application scenarios. 

Fig. 14. Hot spot stress distribution of 1# mooring line.  

Table 9 
Predicted extreme values for the hot spot stress of 1# mooring line by the pro
posed method, GEV, and POT.  

Method Return period/yr Extreme value/MPa 95% CI/ MPa 

Proposed method 1 271.67 (266.23, 276.26) 
GEV 1 270.25 (265.17, 275.91) 
POT 1 285.43 (270.52, 304.14) 
Proposed method 10 281.79 (274.19, 288.15) 
GEV 10 277.63 (271.13, 285.04) 
POT 10 294.00 (272.10, 324.59)  

Fig. 15. Weibull probability plot for a log-transformed Pareto distribu
tion sample. 
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7. Conclusions 

As one of the most important disciplines of statistics of extremes in 
applied science, extreme value theory is widely used in the field of 
marine engineering. Due to its special application in real ocean envi
ronmental states, the scale of the monitoring data obtained is limited. 
Aiming to solve the problem of extreme value prediction based on 
medium-scale data, this paper proposes a modified EMC extreme value 
prediction method based on the tail index correction, and the conclu
sions are as follows:  

1. The Hill-type estimator was adopted to quantitatively evaluate the 
tail behavior of data samples. This modified the EMC method, which 
could also be used as a quantitative index to evaluate the tail 
behavior of data.  

2. Compared with the classical EMC method, the modified EMC method 
proposed in this paper had higher accuracy and stability in extreme 
value prediction, and the prediction error of the proposed method 
was also more suitable than the Hermite model for the engineering 
requirements for most of the distribution functions under study.  

3. For some cases where the tail estimator could not reach convergence, 
an extrapolation method for the estimator was proposed. It was easy 
to operate and insensitive to the selected extrapolated cumulative 
probabilities, further improving the engineering applicability of the 
proposed method. 

In conclusion, this paper investigated the ability of the Hill-type 
estimator to quantitatively assess the tail behavior of medium-scale 
data, and on this basis, a modification of the classical EMC method 
was achieved. The method was also applicable to the correction of ACER 
extreme value prediction results, which could capture the tail charac
teristics of the sample distribution while considering the temporal cor
relation of the sample data series. The proposed method provides useful 

guidance for the extreme value analysis of marine environmental load
ings and structural responses. 
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