
Received: 17 November 2021 - Revised: 31 October 2022 - Accepted: 12 December 2022 - IET Information Security
DOI: 10.1049/ise2.12107

OR I G INAL RE SEARCH

Modelling penetration testing with reinforcement learning using
capture‐the‐flag challenges: Trade‐offs between model‐free
learning and a priori knowledge

Fabio Massimo Zennaro1 | László Erdődi2

1Department of Informatics, University of Oslo,
Oslo, Norway

2Department of Information Security and
Communication Technology, NTNU, Trondheim,
Norway

Correspondence

László Erdődi, Department of Information Security
and Communication Technology, NTNU,
Trondheim, Norway.
Email: laszlo.erdodi@ntnu.no

Abstract
Penetration testing is a security exercise aimed at assessing the security of a system by
simulating attacks against it. So far, penetration testing has been carried out mainly by
trained human attackers and its success critically depended on the available expertise.
Automating this practice constitutes a non‐trivial problem because of the range and
complexity of actions that a human expert may attempt. The authors focus their attention
on simplified penetration testing problems expressed in the form of capture the flag
hacking challenges, and analyse how model‐free reinforcement learning algorithms may
help solving them. In modelling these capture the flag competitions as reinforcement
learning problems the authors highlight the specific challenges that characterize pene-
tration testing. The authors show how this challenge may be eased by relying on different
forms of prior knowledge that may be provided to the agent. Since complexity scales
exponentially as soon as the set of states and actions for the reinforcement learning agent
is extended, the need to restrict the exploration space by using techniques to inject a
priori knowledge is highlighted, thus making it possible to achieve solutions more
efficiently.

KEYWORD S
capture the flag, imitation learning, penetration testing, Q‐learning, reinforcement learning

1 | INTRODUCTION

Securing modern systems and infrastructures is a central
challenge in computer security. As an increasing amount of
data and services are delivered through electronic platforms,
guaranteeing their correct functioning is crucial for the work-
ing of modern society.

A traditional approach to evaluating security adopts a
defencive stance, in which systems are analysed and hardened
from the point of view of a defender. An alternative pro‐
active perspective is offered by an offencive stance. Pene-
tration testing (PT), or ethical hacking, consists in per-
forming authorised simulated cyber‐attacks against a
computer system, with the aim of identifying weaknesses and

assessing the overall security. The usefulness of offencive
security as a tool to discover vulnerabilities is undisputed [1].
PT, though, is a complex and costly activity, requiring relevant
knowledge of the target system and of the potential attacks
that may be carried against it. Thus, in order to produce
relevant insights, PT needs experts able to carefully probe
a system and uncover known and, ideally, still unknown
vulnerabilities.

A way to train human experts and allow them to acquire
ethical hacking knowledge is offered by capture the flag (CTF)
competitions. In a CTF event, participants are given the op-
portunity to conduct different types of real‐world attacks
against dedicated systems, with the aim of exploiting vulnera-
bilities behind which they can collect a flag. A CTF challenge is

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2023 The Authors. IET Information Security published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Inf. Secur. 2023;17:441–457. wileyonlinelibrary.com/journal/ise2 - 441

https://doi.org/10.1049/ise2.12107
https://orcid.org/0000-0003-0195-8301
mailto:laszlo.erdodi@ntnu.no
https://orcid.org/0000-0003-0195-8301
https://ietresearch.onlinelibrary.wiley.com/journal/17518717
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fise2.12107&domain=pdf&date_stamp=2023-01-27

a simplified and well‐defined model of PT, usually designed as
an educational exercise.

Software applications have been developed to automate
some aspects of PT, but they mostly reduce to tools that carry
out specific tasks under the direction of a human user. Tradi-
tional approaches from artificial intelligence, such as planning,
were also deployed in the hope of further automating PT
through the generation of attack plans [2]; however, human
input is still critical to model the context and the target sys-
tem, and to finally derive conclusions about the actual
vulnerabilities.

Recent advances in artificial intelligence and machine
learning may offer a way to overcome some of the current
limitations in automating PT. In particular, the paradigm of
reinforcement learning (RL) [3] was proven to be a versatile
and effective method for solving complex problems involving
agents trying to behave optimally in a given environment. RL
applications embrace a large number of algorithms and
methods with varying degrees of computational and sample
complexity; in particular model‐free algorithms rely on minimal
a priori knowledge of an environment, and they allow to train
an agent simply by interacting with the environment, analo-
gously to the way a player may interact with a game to discover
its solution. Indeed games have provided for a long time an
excellent benchmark for RL, and model‐free methods have
achieved state‐of‐the‐art performances in solving many com-
plex games, ranging from traditional Go [4] to modern Atari
games [5, 6].

These developments suggest the possibility of adopting
model‐free RL for tackling the PT problem. As a form of
gamification of PT, CTF challenges provide an ideal setting
for deploying RL algorithms and training agents that, in the
long run, may learn to carry out complete PT independently
of human supervision. This idea is not new, and it was in fact
spearheaded some years ago by DARPA, which hosted in
2016 the Cyber Grand Challenge Event, a cyber‐hacking
tournament open to artificial agents trained using machine
learning [7].

In this paper, we address the question of the extent to
which model‐free RL algorithms may be used to solve CTF
challenges. While adopting model‐free RL to solve CTF
problems may seem a perfect fit, we highlight the specific
criticality inherent in PT: obscurity, that is the difficulty in
discovering the structure underlying a CTF problem. This
may be due either to a CTF system that prevents any sort of
information leak or to the presence of defence mechanisms
that adapt the target system according to the actions of the
agent. We analyse these problems experimentally, considering
high‐entropy and dynamic scenarios and evaluating how
different RL techniques, such as lazy loading, state aggrega-
tion, and imitation learning, may help in tackling these
challenges.

At the end we show that, while RL may in principle allow
for model‐free learning, reliance on some form of prior
knowledge may be in practice required to make the problem
solvable. We argue that RL provides an interesting avenue of
research for PT not because it allows for pure model‐free

learning (as in contrast with more traditional model‐based
artificial intelligence algorithms), but because it may offer a
more flexible way to trade off the amount of prior knowledge
an agent is provided and the amount of structure an agent is
expected to discover. We argue that evaluating this trade‐off
and implementing agent that take advantage of this would
constitute a productive direction of development.

The rest of the paper is organised as follows. Section 2
offers a review of the main ideas in PT and RL relevant to this
work, as well as a review of previous related work. Section 3
discusses the problem of modelling PT and CTF competitions
as a learning problem, and highlights the specific challenges
connected to security. Section 4 gives specific details of our
experimental modelling, Section 5 presents the results of
simulations, and Section 6 discusses the results in light of the
challenges we uncovered. Section 7 suggests future avenues of
research, while Section 8 expresses our ethical consider-
ations about this work. Finally, Section 9 summarises our
conclusions.

2 | BACKGROUND

In this section, we provide the basic concepts and ideas in the
fields of PT and RL, and we review previous applications of
machine learning to the PT problem.

2.1 | Penetration testing

Modern computer systems, digital devices, and networks may
present several types of vulnerabilities, ranging from low‐level
software binary exploitation to exploitation of network ser-
vices. These vulnerabilities can be the target of hackers having
multiple types of motivations and ways of attacking. PT as-
sumes the perspective of such hackers and performs attacks in
order to unveil potential vulnerabilities.

2.1.1 | Hacking attacks

Although there is no strict rule on how to carry out a hacking
attack, it is still possible to identify the steps that are common
in many scenarios. From the perspective of the attacker,
hacking basically consists of steps of information gathering
and steps of exploitation.

In the first stage of information gathering an attacker usually
collects technical information on the target by probing the
system (e.g., mapping the website content to finding useful in-
formation, identifying the input parameters of server side
scripts). Probing the system in order to acquire relevant infor-
mation to determine the presence of a specific vulnerability
often constitutes the bottleneck in the attack process. Vulner-
abilities may be very different, and the second step of exploi-
tation requires understanding the dynamics of the target system
and tailoring the actions to the identified weakness. An attacker
has generally to rely on a wide spectrum of competences, from

442 - ZENNARO AND ERDŐDI

 17518717, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ise2.12107 by N

tnu N
orw

egian U
niversity O

f Science &
 T

echnology, W
iley O

nline L
ibrary on [07/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

human logic to intuition, from technical expertise to previous
experiences. After successful exploitation the attacker usually
has multiple ways to proceed depending on the aim of the
attack. It may simply keep an open unauthorised channel to its
target, it may extract private or protected information, or it may
use the target system to carry on further attacks.

A notable example of hacking that may be the concern of
PT is web hacking. The process of web hacking can be
decomposed in several successive and alternative steps. Typi-
cally, the attacker starts by identifying a target web service
through a port scanning and by establishing a communication
with the service over the HTTP protocol. She can then access
the website files inside the webroot folder, download them,
process them within a web browser, and execute locally client‐
side scripts. Data can also be sent to the remote files in order
to be processed on the server‐side and obtain customised web
responses. Server‐side scripts can do many complex actions,
such as querying a database, or reading and writing local files;
the attacker may send well‐crafted inputs in order to
compromise these operations. Although web pages may pre-
sent different and sometimes unique vulnerabilities, typical
vulnerabilities can be identified and classified [8].

2.1.2 | Capture the flag hacking competitions

CTF contests are a practical learning platform for ethical
hackers [9]. CTF events are normally organised as limited time
competitions during which different hacking challenges are
provided to the participants.

CTF competitions usually present a set of well‐defined
challenges. Each challenge is defined by one vulnerability (or
a chain of vulnerabilities) associated with a flag. The aim of a
participant is to exploit the vulnerability in each challenge, and
thus capture the associated flag. No further steps are required
from a player (such as, sending data to a command and control
server or maintaining the access); the capture of a flag provides
an unambiguous criterion to decide whether a challenge was
solved or not. Challenges may be classified according to the
type of problem they present (e.g. web hacking challenge or
binary exploitation). Normally, human factors are excluded
from the solution, so that an attacker has to rely on her
knowledge and reasoning, but not on social engineering. In
some instances, information about the target system and the
vulnerability may be provided to the participants.

Standard CTFevents run in Jeopardy mode, meaning that all
the participants are attackers, and they are presented with a
range of different fixed challenges. In other variants, partici-
pants may be subdivided in a red team, that is a team focussed
on attacking a target system, and a blue team, that is a team
tasked with defending the target system. Alternatively, each team
may be provided with an infrastructure they have to protect
while, at the same time, attacking the infrastructure of other
teams. These last two variants of CTF competitions defines
changing and evolving vulnerabilities, as the defenders in the
blue team can tweak the services at run time by observing the
red team actions and patching their own vulnerabilities.

In sum, CTF events, especially in the Jeopardy mode,
define a set of well‐defined problems that can capture the
essence of PT and that can be easily cast in the formalism of
games.

2.2 | Reinforcement learning

The reinforcement learning (RL) paradigm offers a flexible
framework to model complex control problems and solve
them using general‐purpose learning algorithms [3]. A RL
problem represents the problem of an agent trying to learn an
optimal behaviour or policy within a given environment. In
model‐free learning, the agent is given minimal information
about the environment, its dynamics, and the nature or the
effects of the actions it can perform; instead, the agent is ex-
pected to learn a sensible behaviour by interacting with the
environment, thus discovering which actions in which states
are more rewarding, and finally defining a policy that allows it
to achieve its objectives in the best possible way.

2.2.1 | Definition of a RL problem

Formally, a RL problem [3] is defined by a tuple or a signature:

〈S;A; T ;R〉 ð1Þ

where:

� S is the state set, that is the collection of all the states of the
given environment;

� A is the action set, that is the collection of all the actions
available to the agent;

� T : P stþ1jst; atð Þ is the transition function of the environ-
ment, that is the probability for the environment of tran-
sitioning from state st to state st+1 were the agent to take
action at;

� R : P rtjst; atð Þ is the reward function, that is the probability
for the agent of receiving reward rt were the agent to take
action at in state st.

In this setup, it is assumed that the state of the environ-
ment is perfectly known to the agent. This setup constitute a
fully observable Markov decision process (MDP) [3].

The behaviour of the agent is encoded in a behaviour
policy: π atjstð Þ ¼ P atjstð Þ; that is a probability distribution over
the available actions at given the state st of the environment.
The quality of a policy is measured as its return, that is the sum
of the expected rewards over a time horizon T:

Gπ
t ¼

XT

t¼0
γtE rt½ �; ð2Þ

where γ < 1 is a discount factor that underestimate rewards in
the far future with respect to rewards in the near future. The

ZENNARO AND ERDŐDI - 443

 17518717, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ise2.12107 by N

tnu N
orw

egian U
niversity O

f Science &
 T

echnology, W
iley O

nline L
ibrary on [07/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

discount factor provides a formal solution to the problem of a
potentially infinite sum (for T → ∞), and an intuitive weighting
that makes our agent favour close‐in‐time rewards instead of
postponement. Given this notion of return, the aim of the agent
is to learn the optimal policy π* that maximises the return G,
that is the policy π*, not necessarily unique, such that no other
policy π produces a higher return. Learning an optimal policy
requires the agent to balance between the drive for exploration
(finding previously unseen states and actions that provide high
reward) and for exploitation (ily choosing the states and actions
that currently are deemed to return the best rewards).

Interaction with the environment (and, therefore, learning)
happens over steps and episodes. A step is an atomic interaction
of the agent with the environment: taking a single action at
according to the policy π, collecting the reward rt, and
observing the environment evolving from state st to state st+1.
An episode is a collection of steps from an initial state to an
ending state.

Notice that during different episodes, even if the signature
of the RL problem 〈S;A; T ;R〉 is unchanged, the setup may
be different. An RL agent is trained not to solve just one
specific instance of a problem, but an entire set of problems
with a similar structure described by the formalism
〈S;A; T ;R〉. This variability among episodes is important,
and it allows a RL agent to generalise.

2.2.2 | Algorithms for RL

Several algorithms have been proposed to solve the RL
problem. One of the simplest, yet well‐performing, family of
RL algorithms is the family of action‐value methods. These
algorithms tackle the problem of learning an optimal policy π*
through a proxy function meant to estimate the value of each
pair of (state, action).

Formally, these methods define an action‐value function
for a policy π as:

qπ st; atð Þ ¼ E Gtjst; at½ �; ð3Þ

that is, the action‐value function for a pair (state, action) is the
expected return from state st after taking action at according to
policy π. Generally, action‐value methods follow an approach
to learning an optimal policy called generalised policy iteration
based on two steps:

1. given a starting policy π0 interact with the environment to
learn an approximation of the function qπ0 st; atð Þ;

2. improve the policy π0 by defining a new policy π1 where, in
each state st, the agent takes the action at that maximises the
action‐value function qπ0 st; að Þ, that is π1 atjstð Þ¼

1 if at ¼ arg maxaqπ0 st; að Þ

0 else

�

.

Iteratively repeating this process (and allowing space for
exploration), the agent will finally converge to the optimal
policy π*. While the second step is quite trivial, consisting just

of a maximising operation, the first step requires fitting the
action‐value function, and it may be more challenging and
time‐consuming. There are two main ways of representing the
action‐value function:

� Tabular representation: this representation relies on a ma-
trix or a tensor Q to exactly encode each pair of (state,
action) and estimate its value; tabular representations are
simple, easy to examine, and statistically sound; however
they have limited generalisation ability and they do not scale
well with the dimension of the state space S and the action
space A.

� Approximate representation: this representation relies on
fitting an approximate function q̂; usual choices for q̂ are
parametric functions ranging from simple linear regression
to complex deep neural networks; approximate functions
solve the problem of dealing with a large state space S and
action space A, and provide generalisation capabilities;
however they are harder to interpret and they often lack
statistical guarantees of convergence.

Once it has learnt an action‐value table Q (st, at) or
function q (st, at), the RL agent can choose an optimal action in
any state st by maximising over all the possible actions at.
During learning, however, always exploiting the current best
action, may prevent the agent from exploring other options
and discover better policies. A simple solution for this trade‐
off between exploitation and exploration is provided by
adopting a ϵ‐greedy policy: for a given 0 ≤ ϵ ≤ 1, the agent will
take a random action with probability ϵ, or it will take the
optimal action with probability 1 − ϵ.

2.2.3 | Q‐learning

A standard action‐value algorithm for solving the RL problem
is Q‐learning. Q‐learning is a temporal‐difference off‐policy
RL algorithm; temporal‐difference means that the algorithm
estimates the action‐value function q st; atð Þ starting from an
initial guess (bootstrap), and updates step‐by‐step its estima-
tion with reference to the value of future states and actions;
off‐policy means that Q‐learning is able to learn an optimal
policy π* while exploring the environment according to
another policy πb. Q‐learning constitutes a versatile algorithm
that allows to tackle many RL problems; it can be implemented
both with a tabular representation Q of the action‐value
function or with an approximate representation q̂ st; atð Þ.

Formally, given a RL problem 〈S;A; T ;R〉 with a dis-
count γ, an agent interacting with the environment in real‐time
can gradually construct an approximation of the true action‐
value function q st; atð Þ via a tabular representation by gradu-
ally updating its estimation according to the formula:

Q st; atð Þ← Q st; atð Þ þ α rt þ γmax
x

Q stþ1; xð Þ − Q st; atð Þ

� �

;

ð4Þ

444 - ZENNARO AND ERDŐDI

 17518717, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ise2.12107 by N

tnu N
orw

egian U
niversity O

f Science &
 T

echnology, W
iley O

nline L
ibrary on [07/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

where α ∈ R is a scalar defining a step‐size [3]. Intuitively, at
every step the estimation of Q st; atð Þ moves towards the true
action‐value function q st; atð Þ by a step α in a gradient ascent‐
like way.

The high‐level pseudo‐code for the Q‐learning algorithm is
provided in Algorithm 1.

Algorithm 1 Q-Learning [3]

Input: step size α, discount factor γ
Output: optimal policy from Q(s, a)
1: Initialise randomly Q(s, a)

▹ Bootstrap
2: for each episode do Initialise the

state of the environment to s0
3: repeat step t
4: Select greedily optimal action

at in state st from Q(s, a)
5: Take action at
6: Collect reward rt
7: Observe new state st+1
8: Update Q(st, at) using

Equation (4)
9: Set State of the environment

to st+1
10: until st+1 is final or a termination

condition is reached
11: end for

2.3 | Related work

Automated tools for PT consists mainly of security scanners
that can send predefined requests and analyse the answers in
order to detect specific vulnerabilities (e.g.: Nessus [10]). These
tools heavily rely on human knowledge: experts defines scripts
that encode the structure of the problem and analyse the
collected information. Some applications, such as sqlmap [11],
may perform exploitation too, although always with some
degree of user interaction.

Automating the whole process of developing PT strategies
has been the object of study for some time, and different models
have been proposed to tackle the problem, such as attack
graphs, Markov decision process, partially observable Markov
decision processes [12], Stackelberg games [13], or Petri nets [14].
Many of the existing solutions follow a model‐based approach: a
PT scenario is first encoded in one of these well‐defined models
relying on domain expertise, and then processed using model
checking or artificial intelligence algorithms to produce optimal
plans [2, 15, 16]. Although effective, these models are always
limited by the necessity of having human experts defining the
dynamics of the models. More recently, the use of model‐free
RL algorithms has been proposed to tackle PT problems [14,
17]. Instead of relying on a model carefully designed by an
expert, a model‐free agent can interact with an environment by
itself and infer an optimal strategy. This line of research has been

studied in [18], with the implementation of tabular and
approximate Q‐learning algorithms; more recently, RL envi-
ronment designed for PT and defence have been designed [19],
and several works have considered the use of deep neural net-
works to tackle paradigmatic CTF problems [20–22]. Our work
follows the same approach, although our study focuses on a
critical assessment of model‐free RL agents across a set of
prototypical CTF problems, and on the evaluation of different
RL techniques aimed at addressing the specific problems we
have encountered.

It is also worth mentioning that the encounter between PT
and RL has been promoted by DARPA through the Cyber
Grand Challenge Event hosted in Las Vegas in 2016 [7]. This
challenge was a CTF‐like competition open to automated
agents. The organisers developed a special environment called
DECREE (DARPA Experimental Cyber Research Evaluation
Environment) where the operating system executed binary files
in a modified format and only 7 system calls were available.
Our work takes inspiration from this challenge, and it aims at
studying model‐free RL agents that may be deployed to solve
similar simplified CTF problems.

3 | MODELLING PT AS A RL PROBLEM

In this section, we discuss how we can model PT as a RL
problem by examining the challenges and the opportunities in
this task. We start by arguing that PT can be naively seen as
another game that can be solved by RL. We then move to
discuss the specific issue in dealing with PT as a game, that is,
the limited access to the structure of the learning problem
underlying the CTF challenge. Finally, we present some tech-
niques that may help with this problem by introducing small
amounts of a priori knowledge in our model.

3.1 | PT as a learning problem

PT, especially when distilled as a CTF problem, may be easily
expressed in terms of a game. It is immediate to identify the
players of the game (a red team and a blue team), the rules of
the game (the logic of the target system), and the victory
condition (capture of the flag). Given the success of RL in
tackling and solving games, it seems natural to try to express
PT as a game. Furthermore, at first sight, the distinction be-
tween the types of actions performed by an attacker (infor-
mation gathering and exploitation) seems to reflect the same
division between exploration actions and exploitation actions
in RL. Since RL is assumed to learn to balance exploration and
exploitation, it may seem that the PT problem would perfectly
fit the RL paradigm.

However, casting the PT problem as a simple game solv-
able by RL risks missing some challenges peculiar to PT. The
difficulty for an artificial agent to solve a CTF problem is due
several factor. Common challenges are the sheer size of the
action and state space which entails a high time and space
complexity (in the case of PT, the number of commands an

ZENNARO AND ERDŐDI - 445

 17518717, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ise2.12107 by N

tnu N
orw

egian U
niversity O

f Science &
 T

echnology, W
iley O

nline L
ibrary on [07/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

agent can send may be very large) and the limited number of
channels through which the agent may acquire information to
perform inferences (in the case of PT, an artificial agent may
learn only by trial‐and‐error while a human hacker may rely on
alternative sources of knowledge, deductions, hypothesis
testing, and social engineering). However, a very specific
challenge in solving PT problem follows from the limited and
non‐stationary structure of the problem.

3.2 | Structure of a learning problem

A RL agent is able to solve a problem by exploiting some
structure underlying the problem itself. In other words, the
problem presents some regularities, patterns, and weakness
that the agent may discover and exploit. The structure is
captured by an agent in the probability distribution of its
policy; as it interacts with the environment, the agent updates
its policy and reconstructs the structure of the problem.

Now, while games tend to have a defined structure
expressed in their rules, PT problems may actually expose little
structure by obfuscating the logic of the target system. From
the perspective of a red team agent, a target system may present
different levels of structure. At one extreme, we have perfect
systems, that is systems where defence has no vulnerabilities;
these systems are of no interest here, since nothing but failure
could be learnt either by a human or artificial attacker. Similarly
challenging are max‐entropy systems, that is systems that have a
vulnerability but they have no structure allowing an attacker to
find this vulnerability. A max‐entropy system is a system where
each action at or set of actions atif g of the attacker returns as
information only whether that action at or set of actions atif g
was successful or not; no further inference about other actions
may be drawn from the feedback. In this setup, if we represent
the starting knowledge of the agent as a policy with a uniform
distribution over all actions or over all set of actions, then every
interaction will provide only a single bit of information, that is
the binary outcome of the chosen action or set of actions; no
information is provided for the agent to learn about other
possible courses of action and thus decrease the entropy (un-
certainty) of its policy. A max‐entropy system is not absolutely
secure, but, provided that there must be a vulnerability, is the
safest possible static configuration for a defender. Indeed, the
only possible strategy for an attacker against such a system is
just to try out all the possible actions. As such, we do not take
into consideration this type of problem as the policy or strategy
to be learnt is structureless and trivial; such a setup may be
better suited to be formalised as a multi‐armed bandit prob-
lem [23]. We instead focus on CTF systems, that is systems that
have a vulnerability and have enough structure to allow an
attacker to find such a weakness. In this scenario, actions taken
by the agent may not lead to success, but they can still leak
information useful for the agent to infer the structure of the
problem and direct its future actions. This setup is consistent
with an actual CTF game, where the red team players, by
reasoning and following their intuitions, can discover and
exploit the vulnerability. By analogy, an artificial agent is

expected to exploit the structure of a system to learn an
optimal strategy.

Another radical difference between games and PT revolves
around stationarity. While games would normally be defined by a
stable structure enforced by a set of unchanging rules, the
behaviour of a target system may be radically changed in
response to the actions of an attacker. Such a change could be
absolutely non‐deterministic (e.g. initiated by a blue team player)
and it may alter the structure of the game to the point that all the
previous exploratory actions of the agents would be rendered
useless. When we consider non‐stationary environments, we
need to restrict our attention to systems which are steady enough
for the agent to map out and exploit the structure; otherwise,
agents that do not take into account this non‐stationarity would
be bound to fail in learning any meaningful structure.

Environments with limited, and potentially non‐stationary,
structure constitute a serious problem for model‐free RL agents.
From the point of view of the defender, a system to be protected
ideally exchanges with the potential attacker messages carrying
as little information as possible, and it changes its configuration
frequently. In such a setting, the biggest challenge for a red team
RL agent is not to learn on optimal strategy over a known
structure (as in the case of traditional games), but to discover
efficiently the structure of the system itself. Thus, CTF chal-
lenges stress the need for exploration: for an RL agent managing
an efficient exploration is as important as developing a complex
exploitation strategy. Good RL algorithms for PT should take
this aspect in particular consideration.

3.3 | A priori knowledge of the structure of a
problem

Although a RL agent may in principle learn structure from
scratch in a pure model‐free way, this may turn out to be a
computationally hard challenge: methods based on the explicit
enumeration of (state, action) pairs like tabular Q‐learning face
a combinatorial explosion of (state, action) pairs to evaluate;
even methods based on parametric approximation like neural
Q‐learning may need to sample and explore a large space.
Injecting some form of elementary a priori knowledge about
the structure of the problem may greatly simplify the learning
problem. Some basic forms of a priori knowledge are:

� Lazy loading [24]: this is an empirical method used with
tabular Q‐learning consisting in initialising new (state, ac-
tion) pairs only when the agent encounters them and eval-
uating them on‐the‐fly. The underlying assumption of this
technique is that the structure of the problem is sparse: most
of the possible (state, action) pairs will never be encoun-
tered, either because logically impossible or inconsistent.
Lazy loading may drastically reduce the complexity of
tabular Q‐learning and make it feasible.

� State aggregation [24]: this is a technique used to aggregate
together (state, action) pairs that are logically identical. This
corresponds to stating that the structure of the problem
presents equivalence classes over its states, and that the

446 - ZENNARO AND ERDŐDI

 17518717, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ise2.12107 by N

tnu N
orw

egian U
niversity O

f Science &
 T

echnology, W
iley O

nline L
ibrary on [07/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

agent may treat these states as equivalent. State aggregation
may allow better generalisation both in tabular and neural
Q‐learning.

� Imitation learning (or learning from demonstrations
[25]): this is a technique used to prime the policy of the
agent by providing it with samples of high‐performing
human or artificial behaviour. This is a data‐driven
approach where the structure of the problem is implic-
itly communicated to the agent through examples; instead
of starting with a blank slate knowledge of state and
actions, the agents is provided with examples of series of
actions that may lead to a solution. Imitation learning
may reduce the learning time of tabular and neural Q‐
learning algorithms. A high‐level pseudo‐code of the
imitation learning algorithm we adopt is provided in
Algorithm 2.

Algorithm 2 Imitation Learning Q-Learning [3]

Input: step size α, discount factor γ,
trajectory T = {a1, a2, …, aD}
Output: optimal policy from trajectory T
1: Initialise randomly Q(s, a)
2: Initialise the state of the environment

to s0
3: for each step t = 1…D do
4: Select action at from T
5: Take action at
6: Collect reward rt
7: Observe new state st+1
8: Update Q(st, at) using Equation 4
9: Set state of the environment to st+1
10: end for

These techniques may enrich the RL agent, and make
learning more efficient. Such an enriched agent goes, to a
certain measure, against the model‐free paradigm, in the sense
that it relies on a degree of expertise to be hard‐coded in its
algorithm; for instance, state aggregation requires knowledge
of which states may considered equivalent, while imitation
learning assumes the possibility of collecting or generating
successful samples of behaviour. In general, though, all these
techniques require less expertise and time that the definition of
an explicit model fully describing the logic of the target system.
For this reason, although a model relying on these methods is
not purely model‐free anymore, it is not usually considered
model‐based.

In light of the challenges described above, we will aim to
show how crucial the role of structure is by showing that (a) in
the limit of a max‐entropy system or a highly non‐stationary
PT environment, a RL agent is bound to learn trivial policies
reducing to pure guessing; (b) priming an agent with a measure
of a priori knowledge may sensibly reduce the complexity of
the problem. These challenges will provide a criterion to study
the application of RL to PT and CTF contests, evaluate our
simulations, and suggest future developments.

4 | FORMALISATION OF A PT
PROBLEM

In this section, we move on to propose a formalisation of CTF
challenges using the formalism of RL. We first identify the
classes of CTF challenges that we will study experimentally,
and then present a precise formalisation of these CTF prob-
lems using the standards of RL.

4.1 | Types of CTF problems

CTF challenges may be categorised in groups according to the
type of vulnerability they instantiate and the type of exploita-
tion that a player is expected to perform. Each class of CTF
problems may exhibit peculiar forms of structure and may be
modelled independently. In this paper, we will consider the
following prototypical classes of CTF problems:

� Port scanning and intrusion: in this CTF problem, a target
server system exposes on the network a set of ports, and an
attacker is required to check them, determine a vulnerable
one, and obtain the flag beyond the vulnerable port using a
known exploit;

� Server hacking: in this CTF problem, a target server system
exposes on the network a set of services, and an attacker is
required to interact with them, discover a vulnerability,
either in the form of a simple unparameterised vulnerability
or as a parametrised vulnerability, and obtain the flag by
exploiting the discovered vulnerability;

� Website hacking: a sub‐type of server hacking, in this CTF
problem a target server system exposes on the network a
web site, and an attacker is required to check the available
pages, evaluate whether any contains a vulnerability, and
obtain the flag behind one of the pages by exploiting the
discovered vulnerability.

These three classes provide well‐known tasks that can be
modelled as RL problem at various levels of simplification and
abstraction.

4.2 | RL formalism

We use a RL agent to model a hacking player belonging to a PT
red team that it is trying to exploit with a vulnerable target sys-
tem. The target system constitutes the environment with which
the agent interact. The goal of the agent is to capture the flag in
the target environment in the fastest possible way. Given the RL
problem 〈S;A; T ;R〉 we set the following requirements and
conditions:

� The state space S is assumed to be an unstructured finite set
of states that encode the state of the environment and,
implicitly, the state of knowledge of the agent.

� The action space A is assumed to be an unstructured finite
set containing all the possible actions that may be

ZENNARO AND ERDŐDI - 447

 17518717, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ise2.12107 by N

tnu N
orw

egian U
niversity O

f Science &
 T

echnology, W
iley O

nline L
ibrary on [07/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

performed by the agent. Notice that the set is the same in
any state; even if some action may not be available to the
agent in some states, this information is not provided to the
agent; an agent is expected to learn by experience which
action are possible in any state.

� The transition function T is assumed to be a deterministic
function that encodes the logic of the specific CTF scenario
that will be considered.

� The reward function R is assumed to be a deterministic
function defining how well the agent is performing. Rewards
will normally be dense but not highly informative: we adopt
a model where the agent receives a small negative reward for
each attempt performed (−1), and a large positive reward
for achieving its objective (100); this setup will push the
agent to learn the most efficient strategy (in terms of at-
tempts) to capture a flag.

In the following experimental analysis we will focus on one
particular algorithm, that is, tabular Q‐learning. Our choice is
motivated by several factors: (1) in general, Q‐learning is a
classical and well‐performing algorithms, allowing us to relate
our results with the literature; (2) it guarantees that the agent will
converge to an optimal policy; (3) the use of a tabular repre-
sentation allows for a simpler interpretation of the results; (4) Q‐
learning is step‐wise fast and efficient, thus allowing us to easily
repeat experiments and guaranteeing reproducibility; (5) Q‐
learning has few hyper‐parameters, allowing for a more effec-
tive tuning. The main drawback of adopting tabular Q‐learning
is scalability, which, implicitly, reduces the complexity of the
problems that we will be able to consider. Despite this limita-
tion, though, our results will probe and validate the possibility of
solving CTF problems using RL, and they will allow us to assess
the relevance of the challenges we identified.

5 | EXPERIMENTAL ANALYSIS

In this section, we provide concrete instances of simple CTF
challenges, we model them in the form of RL problems using
the formalism discussed in Section 4, and we solve them using
Q‐learning. We consider CTF challenges with increasing
complexity, and as we face the challenges we identified in
Section 3, we evaluate the different methods for introducing a
priori knowledge that we have reviewed in Section 3. All the
simulations are implemented following the standard RL inter-
face defined in the OpenAI gym library [26, 27], and they are
made freely available online [28] to guarantee reproducibility
and further experiments and extensions. Detailed explanations
about the action set and hyperparameter configuration of each
simulation are provided in the Supplemental Material.

5.1 | Simulation 1: Port scanning CTF
problem

In this simulation, we consider a very simple port scanning
problem. We use the basic tabular Q‐learning algorithm to solve
it, and we analyse our results in terms of structure of the

solution and inference steps to convergence. This basic simu-
lation is aimed at showing the capabilities of RL agents in a well‐
behaved (limited structure available and stationary) scenario and
their dependence on the size of the problem.

5.1.1 | CTF scenario

The target system is a server which runs only one service
affected by a known vulnerability. The port number on which
the service runs is unknown; however, once the service port is
discovered, the agent knows for certain where the vulnerable
service is and how to exploit it. The red team agent can interact
with the server by running a port scan or by sending the
known exploit to a specific port. In this simplified scenario the
vulnerability can be targeted with a ready exploit with no pa-
rameters; also it is assumed that no actions are performed by
the blue team on the target system.

5.1.2 | RL setup

We define a target server exposing N ports, each one providing
a different service; one of the services is affected by a
vulnerability, and behind it lies the objective flag.

We model the action set A as a collection of N + 1 actions:
one port scan action, and one exploitation action for each of
the N existing ports. We also model the state set S as a
collection of N + 1 binary variables: one initial state repre-
senting the state of complete ignorance of the agent, and one
state for each port taking value of one when we discover it is
the vulnerable port. The dimensionality of a tabular action‐
value matrix Q scales as O(N2).

This simple exercise allows us to have a basic assessment of
the learning ability of the agent. Notice that the agent is not
meant to learn simply the solution to a single instance of this
CTF game; in other words, it is not learning that the flag will
always be behind port k. In every instance of the CTF game
the flag is placed behind a different port; thus, the agent has to
learn a generic strategy that allows it to solve the problem
independently from the initial setup.

In general terms, this problem constitutes a very simple
challenge, in which the optimal strategy is easily acknowledged
to be a two‐step policy of scanning and then targeting the
vulnerable port with an exploit. However, the RL agent is not
aware of the semantics of the available actions and it can not
reason out an optimal strategy, but it can only learn by trial and
error.

5.1.3 | Results

We run our simulation setting N = 64 ports. We randomly
initialise the policy of the agent and we run 1000 episodes. We
repeat each simulation 100 times in order to collect reliable
statistics.

As discussed, in this simple scenario we know what would
be the optimal policy and, therefore, what we expect the agent

448 - ZENNARO AND ERDŐDI

 17518717, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ise2.12107 by N

tnu N
orw

egian U
niversity O

f Science &
 T

echnology, W
iley O

nline L
ibrary on [07/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

to learn. Figure 1a shows a plot of the action‐value matrix Q at
the end of the 1000 episodes. The matrix shows a clear diag-
onal pattern, meaning that in state si, for 0 ≤ i ≤ N, the agent
has learnt to favour action ai. This makes sense: in the initial
complete‐ignorance state s0 the agent selects action a0 corre-
sponding to the port scan action; in state si, for 1 ≤ i ≤ N,
corresponding to the knowledge that port i is vulnerable, the
agent selects action ai, corresponding to an exploit on the
relative port. We can thus conclude that the agent has suc-
cessfully learnt the desired optimal strategy. The purple plot in
Figure 1b shows the convergence towards the optimal strategy
as a function of the number of episodes. The y‐axis reports the
ratio between the sum of the diagonal of Q, and the sum of all

the entries of Q, that is
PN

i¼0
QiiPN

i;j¼0
Qij

. Since we know that the

optimal strategy is encoded along the main diagonal of Q, this
statistics tells us how much of the mass of Q is distributed
along the diagonal. After around 400 episodes the learning of
the agent enters a phase of saturation. Notice that this ratio
would converge to one only in an infinite horizon. The blue
plot in Figure 1b illustrates the number of steps per episode
averaged over the 100 simulations, with the shaded blue area
representing the standard deviation. After around 200 episodes
the agent has learnt the optimal strategy and completes the
challenges in the minimum number of actions.

5.1.4 | Discussion

The success of RL in this proof‐of‐concept simulation is not
surprising; yet, it highlights the specific challenges of
addressing hacking using RL: solving the CTF challenge re-
quires learning the structure of the problem; this is feasible,
but, using only experiential data and inference means that the
RL agent has to rely strongly on exploration. Almost two
hundred episodes were necessary to converge to a solution, a
number of attempts far greater than what necessary for a
human red team to find an optimal strategy.

5.2 | Simulation 2: Non‐stationary port‐
scanning CTF problem

In this simulation, we extend the previous problem by
considering a more challenging scenario in which the target
system is not stationary, but it may randomly change in
response to the actions of the agent.

5.2.1 | CTF scenario

In this scenario the blue team is not passive anymore, but it
can act in response to actions perpetrated by the red team. We
setup the same target system as before: the server has a single
exploitable service running on a port whose number is un-
known to the attacker. To model an attack‐defence scenario,

we suppose that the blue team is aware of the exploitable
service but that they cannot stop it because this would affect
their continuous business operation. The blue team cannot
filter out traffic, and the only option they have is to move the
service to another port if they observe actions that may pre-
lude to an attack. This case is rather unrealistic, but we use it as
a simplified attack‐defence contest with limited actions.

5.2.2 | RL setup

We consider the same port scanning scenario defined in the
previous simulation. However, we add a non‐stationary

F I GURE 1 Results of simulation 1. (a) Learnt action‐value matrix Q.

(b) Plot of ratio
PN

i¼0
QiiPN

i;j¼0
Qij

as a function of the number of episodes (purple

dashed line), and average number of steps as a function of the number of
episodes (blue solid line); the shaded area accounts for the standard deviation
computed over the 100 simulations.

ZENNARO AND ERDŐDI - 449

 17518717, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ise2.12107 by N

tnu N
orw

egian U
niversity O

f Science &
 T

echnology, W
iley O

nline L
ibrary on [07/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

dynamic: whenever the attacker uses a port scan action, the
target server detects it with probability p; if the detection is
successful the flag is randomly re‐positioned behind a new
port. Given the non‐stationarity, this problem constitutes a
more challenging learning problem than the previous one. In
particular, knowledge of the structure gained by the agent via
port scanning may not be reliable. In this stochastic setting, the
optimal strategy is not necessarily the deterministic policy used
in Simulation 1.

5.2.3 | Results

We run our simulation setting N = 16 ports. All the remaining
parameters of this simulation are the same as in Simulation 1.
We consider all the possible values of p in the set {0, 0.1, 0.2,
…, 0.9, 1.0}. We repeat each simulation 100 times in order to
collect reliable statistics.

Figure 2 reports the action‐value matrices learnt for the
representative values of p = 0.1, p = 0.5 and p = 1. While for
small value of p the action‐value matrix Q resembles closely
the pattern we observed in Simulation 1, for higher values of p
we lose this structure. In the almost‐deterministic case p = 0.1
(Figure 2a) it is reasonable to use a port scan action at the
beginning, followed by an exploit action that has a high
probability of success; therefore we observe the usual diagonal
shape. In the more stochastic case p = 0.5 (Figure 2b) it is likely
that a port scan action is detected and that the flag is moved;
yet using a port scanning action and a targeted action is still a
reasonable bet, even if less effective (notice the different scale
for the matrices in Figure 2a,b). Finally in the completely
random case p = 1 (Figure 2c) a port scan action certainly
results in a detection, and no plan can be built over the in-
formation gathered; the agent is basically reduced to resort to
plain random guessing. Consistently, Figure 3 shows the
number of steps per episode when using p = 0.1, p = 0.5,
p = 1, averaged over 100 simulations. In the almost‐
deterministic case, the number of episodes sets almost
immediately close to optimal; as we increase the stochasticity
the number of steps increases because the agent can only try to
guess the location of the vulnerability. Notice that the average
number of steps in the completely random setting is higher
than the number of ports; this is due to the fact that the agent
tries out from time to time the port scan action, thus causing
the flag to move, and requiring the agent to re‐try its exploit on
already checked ports.

5.2.4 | Discussion

The introduction of a non‐stationary dynamics makes the
problem more challenging, by preventing the agent to learn the
exact structure of the problem with certainty. Despite this,
thanks to its formalisation, a Q‐learning agent is still able to
solve this CTF problem in a reasonable, yet sub‐optimal, way,
as allowed by the degree of stochasticity and non‐stationarity.
For p = 0, the CTF system has a clear structure and it can learn

an optimal policy; as p increases, we slowly move from what we
defined as a CTF system to a max‐entropy system (see Sec-
tion 3). Indeed, for p = 1 our problem represents a max‐

F I GURE 2 Results of Simulation 2. Learnt action‐value matrix Q for:
(a) p = 0.1, (b) p = 0.5, and (c) p = 1.

450 - ZENNARO AND ERDŐDI

 17518717, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ise2.12107 by N

tnu N
orw

egian U
niversity O

f Science &
 T

echnology, W
iley O

nline L
ibrary on [07/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

entropy system: no action provides actual information on the
structure of the target server (the port scan action is essentially
unreliable and useless); unable to reconstruct any structure, RL
has a very limited use: all we can do is just guessing, that is
trying out one by one all the ports looking for the vulnerability.
This underlies the role of structure in learning using RL agents.

5.3 | Simulation 3: Server hacking CTF
problem with lazy loading

In this simulation, we consider a more realistic problem rep-
resenting a simple server hacking scenario. Although very
simplified, this problem already presents a serious challenge to
the tabular Q‐learning agent because of the size of its Q‐table.
To solve this obstacle we rely on a priori knowledge in the
form of lazy loading, thus controlling the dimensionality of the
state and action space and pruning non‐relevant states. We
analyse how learning happens under this scenario, and what is
the effect of the adopted approach on inference.

5.3.1 | CTF scenario

In this simulation a target server provides different standard
services, such as web, FTP, or SSH. Each service may have a
vulnerability, either a simple vulnerability easily exploitable
without a parameter (such as a Wordpress page with a plugin
that may lead to an information disclosure in a specific known
URL) or a vulnerability requiring the attacker to send a special
input (such as a Wordpress plugin with SQL injection).

The attacker can carry out three types of information
gathering actions. (1) It can check for open ports and services
on the server. (2) It can try to interact with the services using

well‐known protocols; this allows it to obtain basic information
(such as banner information), and discover known vulnerabil-
ities, such as weaknesses recorded in a vulnerability databases.
(3) It can interact more closely with potentially unique service
setups or customised web pages; this will allow the attacker to
identify undocumented vulnerabilities and the input parameters
necessary for exploitation; for instance, in case of a FTP service,
the agent may discover the input parameters for username and
password, or, in the case of more complex services such as web,
it may obtain GET and POST web parameters. In addition, the
attacker has also two exploitation actions. (1) It can exploit a
non‐parametrised vulnerability by accessing the vulnerable
service and retrieving the flag. (2) It can choose a parameter out
of a finite pre‐defined set, and send it to a service to exploit a
parametrised vulnerability and obtain the flag. In this scenario
we make the simplified assumption that the agent can identify
just a parameter name from a fixed and limited set, and it does
not need to select a parameter value.

5.3.2 | RL setup

We define a target server exposing N ports, each providing one
of V different services. One of the services is taken to be
flawed, and behind it lies the objective flag. The vulnerability
may be a simple non‐parametrised vulnerability or a para-
metrised vulnerability. In the last case, the vulnerability may
be already known, or it may be previously unknown thus
requiring deeper probing and analysis of the service. The
parameter for the parametrised vulnerability is chosen out of a
set of M possible parameters.

The collection of basic actions available to the agent gives
rise to a larger set A of concrete actions, where each action
type is instantiated against a specific port. The set of states S
has a large dimensionality as well, due to the problem of
tracking what the agent has learnt during its interaction with
the server. As a rough estimation, in our implementation we
estimate the number of total states as:

Sj j ≈ 211N3VM: ð5Þ

Refer to the Supplemental Material for the derivation of this
approximation. The encoding used to track the state forms a
sufficient statistics that tracks all the actions of the agent and
records all its knowledge. It is not meant to be an optimal
encoding, and the dimensionality of the set S may be reduced
through a smarter representations of the states. However, even
if we were to make the encoding more efficient, the overall
dimensionality would quickly become unmanageable when the
parameters N, M, or V were to grow. A pure tabular Q‐learning
agent would require a prohibitively large amount of memory
just to instantiate its Q‐table. However, just relying on the
simple knowledge that several (state, action) pairs that may not
be relevant or informative, we adopt a lazy‐loading approach:
instead of instantiating from the start a large unmanageable
action‐value matrix Q, we progressively build up the

F I GURE 3 Results of simulation 2. Average number of steps as a
function of episodes for p = 0.1 (blue line), p = 0.5 (orange line), p = 1
(green line). The shaded area accounts for the standard deviation computed
over the 100 simulations; notice that, while the standard deviation may
achieve negative value, no simulation actually run in a negative number of
steps; negative values are simply a mathematical consequence of the
symmetry of the standard deviation.

ZENNARO AND ERDŐDI - 451

 17518717, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ise2.12107 by N

tnu N
orw

egian U
niversity O

f Science &
 T

echnology, W
iley O

nline L
ibrary on [07/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

data structure of Q as the agent experiences new (state, action)
pairs.

This problem constitutes a more realistic model of a CTF
challenge, presenting a target system with multiple services,
each one potentially having different types of weaknesses
(unparameterised and parametrised vulnerabilities) at different
levels (easy vulnerabilities already known or more treacherous
vulnerabilities yet unknown). In this more challenging problem
it is harder to define a simple deterministic optimal solution as
it was in Simulation 1. A standard approach is undoubtedly to
use more exploratory actions at the beginning, and leave
exploitative actions for the end. However, the variability in the
location of the flag and the sharp dynamics of the system make
the problem far from trivial.

5.3.3 | Results

We run our simulation setting N = 4 ports, V = 5 services,
M = 4 parameters. We randomly initialise pairs of (state, action)
at run‐time, and we run the agent for 106 episodes. We repeat
each simulation 20 times in order to collect reliable statistics in
a feasible amount of time.

Figure 4a reports the smoothed average number of steps
taken by our agent to complete a task, and, conversely
Figure 4b shows the smoothed averaged reward obtained by
the agent. Smoothing reduce the noise, and it highlights the
improvement over the episodes: we see a drop in the number
of steps and an increase in the amount of reward collected.
The variance in the results is in part due to the highly
exploratory behaviour of the agent (ϵ = 0.3) that leads the
agent to take a random action almost one third of the times.
Interestingly, though, the upper bound of the reward curve
approaches a reward of 75 or higher, pointing out that the
agent was indeed able to learn a sensible strategy as it was
able to solve the CTF problem in few actions compared to
the large number of possible combinations of actions it
could try. Figure 4c shows the number of entries in the
action‐value table Q during the episodes. The plot seems to
have a parabolic behaviour growing fast at the beginning and
slowing down towards the end. This makes sense, as at the
beginning every state encountered by the agent is new and
needs to be added to the table Q. The continual increase in
size is due to the strong exploratory policy (ϵ = 0.3) followed
by the agent. The variance in this growth is stronger at the
end of the training when there is more uncertainty on
whether the agent will encounter new states. Notice, that if
we were to substitute the values of N, V, and M of this
simulation in Equation (5) we would get a rough estimate for
jSj of over 2 ⋅ 106; therefore the number of states learnt so
far is an order of magnitude smaller (3.5 ⋅ 105), and it has
allowed the agent to learn swiftly a reasonable policy with a
significantly smaller consumption of memory. A sensitivity
analysis proving that these results are robust to change in the
value of the exploration parameter ϵ are provided in the
Supplemental Material.

F I GURE 4 Results of simulation 3. (a) Plot of average number of
steps as a function of the number of episodes; the solid line is computed by
smoothing with an averaging filter with window 100, while the shaded area
accounts for the standard deviation of the data without smoothing in the
range trimmed at [0, 200]. (b) Plot of average reward as a function of the
number of episodes; the solid line is computed by smoothing with an
averaging filter with window 100, while the shaded area accounts for the
standard deviation of the data without smoothing in the range trimmed at
[−50, 150]. (c) Average number of entries in the action‐value table Q as a
function of number of episodes; the shaded area accounts for the standard
deviation.

452 - ZENNARO AND ERDŐDI

 17518717, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ise2.12107 by N

tnu N
orw

egian U
niversity O

f Science &
 T

echnology, W
iley O

nline L
ibrary on [07/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

5.3.4 | Discussion

This more realistic simulations highlights at the same time the
standard strengths and weaknesses of RL agents. An RL agent
may be able to tackle a challenging problem with a subtle and
sharp structure like the one presented, but, potentially, at a high
computational cost. A trivial implementation may still be able
to solve the problem, but it may quickly become unmanageable
if it were to treat explicitly all the possible states. Instead of
relying on the knowledge that some states are important and
others are not, lazy loading has allowed the agent to discrim-
inate between relevant and non‐relevant states based on its
experience.

5.4 | Simulation 4: Website hacking CTF
problem with state aggregation

Lazy loading is a simple technique to inject a priori knowledge
that may allow an agent to learn effectively in moderately
complex environment by neglecting non‐relevant (state, action)
pairs. However the usefulness of lazy loading is limited, since,
within inherently complex environments with a large amount
of relevant states, the number of (state, action) pairs to be
recorded may be unmanageable. In this simulation we run an
environment similar to the previous one, but we adopt the
additional strategy of performing state aggregation over similar
states. Again, we run our simulations and we study the dy-
namics and the performance of inference and learning.

5.4.1 | CTF scenario

In this simulation we assume that the attacker knows the
location of a target web page, so no port scan or protocol
identification is required. The webpage consists of a set of
files: starting from an index file, the attacker can map the
visible files by reading the HTML content and by following the
links inside the content. The webpage may also host hidden
files not linked to the index. Some of the files contain server‐
side scripts and the attacker may identify customised inputs
that may be sent to perform an exploitation and capture the
flag. The attacker is given three types of information gathering
actions. (i) It can read the index file, follow recursively all links,
and thus obtain a map of all the linked files on the server. (ii) It
can try to find hidden files by parsing the content of a visible
file and infer the existence of hidden files; for instance, looking
at a file on a Wordpress site, the attacker may suspect the
existence of/wp‐login/index.php. (iii) It can analyse a visible
or hidden file in order to find input parameters that can be
used for an exploitation. A single exploitation action is
possible. (i) The attacker can send an input parameter to a file
and, if correctly targeting the vulnerable file, obtain the flag.
Here, again we restrict our model to the problem of identifying
a vulnerable parameter name out of a set, and not its param-
eter value.

5.4.2 | RL setup

We define a target server hosting N files, partitioned in Nvis
visible files and Nhid hidden files. Visible files are linked to the
index file and connected among them in a complete graph;
hidden files are files not openly linked to the index files but
referenced or related to one of the visible files. One of the files,
either visible or hidden, contains a parametrised vulnerability
behind which lies a flag. The vulnerable parameter is chosen
out of a set of M possible parameters.

As before, the dimensionality of the action‐value matrix
grows exponentially with the number of files N and the
number of parameters M. In order to make the problem
manageable we introduce a degree of prior knowledge in our
model. We know that files on the target servers may be
different, but the way to interact with them is uniform: we
explore and inspect files using the same actions; we target files
with the same vulnerability in an identical way (read, parse,
analyse). Notice that, in the real‐world, the concrete way in
which we implement actions on different files may be different,
but these distinctions are abstracted away in the current model.
The dynamics of interacting with files are taken then to be
homogeneous among all the files. Thus, instead of requiring
the agent to learn a specific strategy on each file, we instruct it
to learn a single policy that will be used on all the files. We
achieve this simplification using state aggregation [3], that is,
grouping together in a single state multiple files. At each time
step, the agent will be focussed only on a single file, interact
with it and update a global policy valid for any file.

5.4.3 | Results

We run our simulations randomly setting 2 ≤ Nvis ≤ 4 visible
files and 0 ≤ Nhid ≤ 2 hidden files. We randomly initialise pairs
of (state, action) using lazy loading and state aggregation. We
train an agent for 105 episodes and then we test it on 100
episodes during which we set the exploration parameter ϵ to 0.
During testing with zero exploration rate, we set a maximum
number of steps to 20 to prevent the agent getting stuck in
possibly unexplored states; the value of 20 is based on previous
experiments, and well over the number of steps necessary to
solve the problem to a properly trained agent. We repeat each
simulation 20 times in order to collect reliable statistics in a
feasible amount of time.

Figure 5a shows the average number of (state, action) pairs
in the action‐value tableQ of our agents during the 105 episodes
of learning. The number of states shows some variability during
the first episodes, but it always saturates very quickly, enumer-
ating all the ~180 states encountered by the agent. Figure 5b
shows the average number of steps on further 100 episodes
when running the same agent with the exploration parameter (ϵ)
set to zero. This average oscillates between 6 and 12 (corre-
sponding to a reward between 89 and 95), well below the arti-
ficial limit set to 20 steps. Removing the exploration parameter
is a risky choice that may lead the agent to get stuck if it were to

ZENNARO AND ERDŐDI - 453

 17518717, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ise2.12107 by N

tnu N
orw

egian U
niversity O

f Science &
 T

echnology, W
iley O

nline L
ibrary on [07/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

face sudden changes in the environment, but it allows us to
better appreciate the fact that the agent indeed was able to learn
a clear policy that allowed it to capture a flag with a minimal
number of actions; eight to 10 steps is indeed what is necessary
to probe the target server, collect information on the files, and
finally retrieve the flag. A sensitivity analysis proving that these
results are robust to change in the value of the exploration
parameter ϵ are provided in the Supplemental Material.

5.4.4 | Discussion

This simulation preserves most of the complexity of Simula-
tion 3, and it shows how using proper RL algorithms and
techniques (lazy loading and state aggregation), a RL agent may
manage to solve effectively a challenging CTF problem. Notice

that state aggregation allowed us to introduce a form of
knowledge that a RL agent would not normally have. A human
red team player may reach the conclusion that it is reasonable
to act in a uniform way with different files from her previous
experience with files; this knowledge provides her with an
effective shortcut to reach a solution. A RL agent has no
similar possibility as it has no formal concept of files; it could
end up learning by inference a policy that is actually uniform
for all the files, but this would require collecting a large sample
of experiences. State aggregation allowed to inject useful prior
information about the structure of the problem, thus simpli-
fying exploration and reducing the number of (state, action)
pairs.

Another interesting feature of this simulation is the use of a
graph to represent the filesystem on the target website. In this
simulation, given the small size of the graph comprising be-
tween two and six files we relied on a simple linear exploration
of the graph; however, smarter and more sophisticated way of
manipulating and exploring the graph may be taken into
consideration to exploit the knowledge of this structure and
improve the performance of the agent.

5.5 | Simulation 5: Web hacking CTF
problem with imitation learning

Lazy loading and state aggregation improve the performance
of the agent by reducing the size of the state space; however, if
the agent has to explore a large state space and the optimal (or
satisfactory) solution occupies a small volume of this space, the
search process may take unreasonably long. In this simulation
we consider a way to direct the learning process more explicitly
by using imitation learning (see Algorithm 2), which emulates
learning in a teacher‐and‐student setting, where expert para-
digmatic behaviours are offered to a student to speed up its
learning. We analyse the behaviour of the agent under this
setup and we compare the results of this process with the
results obtained in the previous simulations.

5.5.1 | Hacking scenario

We consider again the same server hacking problem presented
in Simulation 3, as this constitutes the most challenging
problem we have faced so far.

5.5.2 | RL setup

We consider the same setup used in Simulation 3. Beyond lazy‐
loading, this time we also rely on another standard RL tech-
nique, that is, imitation learning. In imitation learning, an agent
is provided with a set of D trajectories defined by human ex-
perts; in our case, these trajectories encode the behaviour of a
hypothetical human red team player trying to solve the web
hacking CTF problem. These trajectories represent samples of
successful behaviour and provide information to the RL agent

F I GURE 5 Results of simulation 4. (a) Average number of entries in
the action‐value matrix Q as a function of the number of episodes; the
shaded area accounts for the standard deviation computed over 20
simulations; notice the logarithmic scale on the x‐axis. (b) Average number
of steps after training and setting exploration rate to 0, as a function of the
number of episodes; the shaded area account for the standard deviation
computed over 20 simulations.

454 - ZENNARO AND ERDŐDI

 17518717, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ise2.12107 by N

tnu N
orw

egian U
niversity O

f Science &
 T

echnology, W
iley O

nline L
ibrary on [07/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

about the relevance of different options. Indeed, in imitation
learning, the agent, instead of starting in a state of complete
ignorance, is offered examples of how actions can be com-
bined to reach a solution of the problem. This simplifies the
exploration problem: instead of searching uniformly in the
whole space of policies, the search is biased towards expert‐
defined policies. This bias allows to solve the problem more
efficiently, but it also makes less likely that the agent will
discover policies that are substantially different from human
behaviour.

5.5.3 | Results

We run our simulations using the same setting used in Simu-
lation 3. First, we train a standard RL agent for 105 episodes.
Then, we train three imitation learning agent, each one being
provided with 100, 200, and 500 demonstrations respectively;
after that the three imitation learning agents are further trained
for 100 episodes. We repeat each simulation 20 times in order
to collect reliable statistics.

Figure 6 shows the rewards obtained by the different
agents. The plot shows that the standard RL agent needs to be
trained around 3000 episodes before reaching the average
reward that an imitation learning agent can achieve with 100 or
200 demonstrations; similarly, more than 4000 episodes are
necessary to reliably match an imitation learning agent pro-
vided with 500 demonstrations. The overall rewards are still far

from being optimal, but imitation learning allows for a
reduction of the number of episodes of training of one order
of magnitude.

5.5.4 | Discussion

Imitation learning proved to be an effective techniques to
enable faster learning for the RL agent. This improvement is
again due to the possibility of introducing in the agent
knowledge on the structure of the problem. Indeed, demon-
strations are an implicit way to express human knowledge
about the structure of the CTF problem: instead of encoding
knowledge on the structure of the problem in a formal
mathematical way, we provide the RL agent with concrete
observations about the structure of the problem. This infor-
mation can successfully be exploited by the agent in order to
learn an optimal policy.

6 | DISCUSSION

The simulations in this paper showed the feasibility of using RL
for solving CTF problems, as well as the central role that the
challenges of discovering structure and providing prior
knowledge play in this context. While RL was able to solve
optimally a simple CTF instance with an elementary structure
(Simulation 1), we observed that changes in the structure of the
CTF problem may make the problem harder to solve. We
considered two ways in which the structure of the problem may
change and raise concrete challenges. First, a progressively more
undefined problem structure, shifting from a stationary CTF
system to a max‐entropy system, highlighted the limits of
learning by inference (Simulation 2). Second, a stationary CTF
problem with a progressively more complex structure required
an exponential number of samples for the agent to work out the
structure of the problem. In this last case, we showed how RL
techniques, such as lazy loading, state aggregation, or imitation
learning, may allow the RL agent to tackle more complex
problems (Simulation 3, 4, 5). These techniques were explained
and justified in terms of providing the agent with elementary
prior information about the structure of the problem. Lazy
loading corresponded to the assumption that certain configu-
rations in the problem space would never be experienced, and
therefore could be ignored; state aggregation expressed the
assumption that certain configurations would be pragmatically
identical to others; and imitation learning codified the as-
sumptions that an optimal solution would not be too far from
well‐known demonstrations. Notice that while imitation
learning necessarily require expert knowledge, lazy loading and
state aggregation are based on simple assumptions needing
limited expertise. Although implemented in specific simula-
tions, all these forms of prior knowledge are not semantically
tied to a specific problem, and they may be easily deployed
across a wide range of other CTF problems. Discovering
structure is an essential step in solving CTF problem in which
an attacker aims at uncovering and exploiting vulnerabilities.

F I GURE 6 Results of simulation 5. Reward achieved by RL agents
with and without imitation learning. The blue line shows the average reward
obtained by the standard RL agent during training; the solid line is
computed by smoothing with an averaging filter with window 100; the
shaded area accounts for the standard deviation computed over 20
simulations. The dotted lines represent the average reward obtained by the
imitation learning agent during the 100 episodes of training with a different
number of 100 episodes for imitation learning (orange), 200 (green) and
500 (red). Notice that these lines are independent from the scale on the x‐
axis and are plotted as constants for reference. Notice that the green and
orange line overlap and that, for readability, we did not plot the standard
deviation; mean reward and standard deviation for each imitation learning
agent are 38.994 � 5.361 (D = 100), 38.998 � 9.508 (D = 200), and
41.537 � 6.110 (D = 500).

ZENNARO AND ERDŐDI - 455

 17518717, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ise2.12107 by N

tnu N
orw

egian U
niversity O

f Science &
 T

echnology, W
iley O

nline L
ibrary on [07/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Our observations highlighted and remarked this point, leading
to the conclusion that an ideal learning agent would properly
negotiate between discovering structure autonomously and
relying on a priori knowledge. Although fully model‐free RL
agents have the theoretical possibility of discovering relevant
structure, complexity considerations and practical limitations
suggest that the introduction of a priori knowledge may be
desirable. While fully model‐based agents may not be ideal
because hard to encode and not very versatile, RL agents that
combine model‐free algorithms with rich a priori knowledge
may strike the ideal balance to make them effective and useful.

7 | FUTURE WORK

Several of the scenarios that we considered in this paper were
simplified versions of CTF challenges paired with basic RL
algorithms; however, this setup has allowed us to make and
illustrate our points clearly. Progress towards solving real‐world
competitions would require, at the same time, scaling the
complexity of CTF problems and improving the way in which
a RL agent manages structure and prior knowledge. In terms
of scaling structure, a direct way to achieve this would be to
increase the sheer complexity of the problems by expanding
the size of state and action space in order to resemble more
closely what we see in reality. Complexity may also be increased
by consistently adopting the assumption of non‐stationarity, as
we briefly did in Simulation two; this would reflect challenges
where the target systems rely on randomness in their config-
uration, or where a defender may adversarially change the
configuration of the machines at run‐time. In terms of learning
the structure of the problem and integrate prior knowledge,
better generalisation (and scalability) can be achieved by
switching from tabular algorithms to approximate algorithms,
thus sacrificing interpretability in exchange for efficiency. Deep
reinforcement learning models using policy gradient methods
[29] represent the state of the art in many fields, and they can
easily deal with large action and state space; however, these
algorithms too have limit on their scalability, and they may
require injection of a priori knowledge to solve real‐world
problems efficiently. It may also be worth noticing that
adopting an algorithm that relies on a neural network may be
seen as an injection of (weak) a priori knowledge; using a
neural network implies, for instance, the assumption of a level
of smoothness in the solution space.

More interestingly, it is possible to consider the possibility
of learning through multiple channels or relying on other
forms of prior knowledge; promising directions would be the
integration of planning [4], hierarchical decomposition of a
CTF competition in sub‐tasks, reliance on relational inductive
biases [30], or integration of logical knowledge in the learning
process [31].

Tangentially, other challenges include the use of model
learning [32], in order to allow the agent to learn its own
approximate model of the transition function of the environ-
ment, so that it could learn off‐line via simulation; and proper
reward shaping, that is, providing rewards that may better

guide the learning process. Finally, real‐world agents may have
to consider the problem of transfer learning [33], that is
how to port the knowledge obtained from a class of CTF
problems to another set of CTF problems.

8 | ETHICAL CONSIDERATIONS
Although this study considers and analyses strengths and
challenges of model‐free RL agents on artificial problems, it is
important to acknowledge that the development of real‐world
RL agents able to carry out actual PT presents the potential for
malicious use. We would then like to stress that our results and
suggestions are meant to foster the development of tools that
may be of use to ethical hacker and find use in legitimate
settings. We do not support and condemn the implementation
of tools developed to attack and to harm, especially in a mil-
itary context [34].

9 | CONCLUSIONS

In this work, we considered CTF competitions as concrete
instances of PT, and we modelled them as RL problems. We
highlighted that a crucial challenge for a RL agent confronting
a CTF problem is discovering a structure that is often limited
and protected. We ran a varied set of simulations, imple-
menting tabular Q‐learning agents solving diverse CTF prob-
lems and exploring the contribution of injecting into the agent
different forms of a priori knowledge. For instance, in Simu-
lation 3 we showed that lazy loading avoids the need for the RL
agent to allocate an unmanageable Q‐table, and it allows it to
learn progressively over 105 episodes by instantiating 3 ⋅ 105

entries in its Q‐table and working out a policy able to achieve a
solution in around 30 steps; or, in Simulation 5 we showed that
by using as little as 500 trajectories for imitation learning, the
RL agent could achieve the same performance that it would
learn only after 4000 episodes. Our results confirmed the
relevance of the challenges we identified, and we showed how
different RL techniques (lazy loading, state aggregation,
imitation learning) may be adopted to address these challenges
and make RL feasible.

We observed that while a strength of RL is its ability to
solve model‐free problems with minimal prior information,
some forms of side information may be extremely useful for
allowing the solution of a CTF challenge in a reasonable time.
Even simple scenarios, like Web and Website hacking we
considered in Simulation 4 and 5, may grow exponentially in
complexity with the cardinality of the state and the action set,
thus requiring a significant amount of computation for the RL
agent to find a solution. We believe a constructive approach
would be for RL to learn from standard artificial intelligence
model‐based methods and balance RL model‐free inference
with model‐based deductions and inductive biases.

Our implementations are open and use standard interfaces
adopted in the RL research community. It is our hope that this
would make an exchange between the fields easier, with re-
searchers in security able to borrow state‐of‐the‐art RL agents
to solve their problems, and RL researchers given the

456 - ZENNARO AND ERDŐDI

 17518717, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ise2.12107 by N

tnu N
orw

egian U
niversity O

f Science &
 T

echnology, W
iley O

nline L
ibrary on [07/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

possibility of developing new insights by tackling the specific
challenges instantiated in CTF games.

AUTHOR CONTRIBUTIONS
Fabio Massimo Zennaro: Conceptualisation, Data curation,
Formal analysis, Investigation, Methodology, Software, Vali-
dation, Visualisation, Writing–original draft, Writing–review &
editing. László Erdődi: Methodology, Writing–original draft,
Writing–review & editing.

CONFLICT OF INTEREST
The author declares that there is no conflict of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly
available at https://github.com/FMZennaro/CTF‐RL.

ORCID
Fabio Massimo Zennaro https://orcid.org/0000-0003-
0195-8301

REFERENCES
1. Stefinko, Y., Piskozub, A., Banakh, R.: Manual and automated penetra-

tion testing. benefits and drawbacks. modern tendency. In: 2016 13th
International Conference on Modern Problems of Radio Engineering,
Telecommunications and Computer Science (TCSET), pp. 488–491.
IEEE, Washington (2016)

2. Hoffmann, J.: Simulated penetration testing: from “dijkstra” to “turing
test++”. In: Twenty‐Fifth International Conference on Automated
Planning and Scheduling (2015)

3. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction.
MIT Press, Cambridge (2018)

4. Silver, D., et al.: Mastering the game of go without human knowledge.
Nature 550(7676), 354–359 (2017). https://doi.org/10.1038/nature
24270

5. Mnih, V., et al.: Human‐level control through deep reinforcement
learning. Nature 518(7540), 529–533 (2015). https://doi.org/10.1038/
nature14236

6. Badia, A.P., et al.: Agent57: Outperforming the Atari Human Benchmark.
arXiv preprint arXiv:2003.13350

7. Cyber Grand Challenge (CGC). https://www.darpa.mil/program/cyber‐
grand‐challenge. Accessed 09 May 2020

8. Owasp Top Ten. https://owasp.org/www‐project‐top‐ten/. Accessed 09
May 2020

9. CTF Time. https://ctftime.org/. Accessed 09 May 2020
10. Nessus Plugin Families. https://www.tenable.com/plugins/nessus/

families. Accessed 09 May 2020
11. Sqlmap, Automatic Sql Injection and Database Takeover Tool. http://

sqlmap.org/. Accessed 09 May 2020
12. Sarraute, C., Buffet, O., Hoffmann, J.: Penetration testing== POMDP

solving? arXiv preprint arXiv:1306.4714
13. Speicher, P., et al.: Towards automated network mitigation analysis. In:

Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing, pp. 1971–1978 (2019)

14. Bland, J.A., et al.: Machine learning cyberattack and defense strategies.
Comput. Secur. 92, 101738 (2020). https://doi.org/10.1016/j.cose.2020.
101738

15. Boddy, M.S., et al.: Course of action generation for cyber security using
classical planning. In: ICAPS, pp. 12–21 (2005)

16. Applebaum, A., et al.: Intelligent, automated red team emulation. In:
Proceedings of the 32nd Annual Conference on Computer Security
Applications, pp. 363–373 (2016)

17. Ghanem, M.C., Chen, T.M.: Reinforcement learning for efficient network
penetration testing. Information 11(1), 6 (2020). https://doi.org/10.
3390/info11010006

18. Pozdniakov, K., et al.: Smart Computer Security Audit: Reinforcement
Learning with a Deep Neural Network Approximator

19. Baillie, C., et al.: Cyborg: An Autonomous Cyber Operations Research
Gym. arXiv preprint arXiv:2002.10667

20. Tran, K., et al.: Deep Hierarchical Reinforcement Agents for Automated
Penetration Testing. arXiv preprint arXiv:2109.06449

21. Zhou, S., et al.: Autonomous penetration testing based on improved deep
q‐network. Appl. Sci. 11(19), 8823 (2021). https://doi.org/10.3390/
app11198823

22. Foley, M., et al.: Autonomous network defence using reinforcement
learning. In: Proceedings of the 2022 ACM on Asia Conference on
Computer and Communications Security, pp. 1252–1254 (2022)

23. Lattimore, T., Szepesvári, C.: Bandit Algorithms, 28. preprint (2018)
24. Russel, S., et al.: Artificial Intelligence: A Modern Approach. Pearson

Education Limited, London (2013)
25. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement

learning. In: Proceedings of the Twenty‐First International Conference
on Machine Learning, 1 (2004)

26. Openai Gym. https://gym.openai.com/. Accessed 03 March 2022
27. Brockman, G., et al.: Openai Gym. arXiv preprint arXiv:1606.01540
28. Github: CTF‐RL. https://github.com/FMZennaro/CTF‐RL. Accessed

03 March 2022
29. Schulman, J., et al.: Proximal Policy Optimization Algorithms. arXiv

preprint arXiv:1707.06347
30. Battaglia, P.W., et al.: Relational Inductive Biases, Deep Learning, and

Graph Networks. arXiv preprint arXiv:1806.01261
31. Besold, T.R., et al.: Neural‐symbolic Learning and Reasoning: A Survey

and Interpretation. arXiv preprint arXiv:1711.03902
32. Ha, D., Schmidhuber, J.: World Models. arXiv preprint arXiv:1803.10122
33. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl.

Data Eng. 22(10), 1345–1359 (2009). https://doi.org/10.1109/tkde.
2009.191

34. Autonomous weapons: an open letter from AI and robotics researchers.
https://futureoflife.org/2016/02/09/open‐letter‐autonomous‐weapons‐
ai‐robotics/. Accessed 03 March 2022

SUPPORTING INFORMATION
Additional supporting information can be found online in the
Supporting Information section at the end of this article.

How to cite this article: Zennaro, F.M., Erdődi, L.:
Modelling penetration testing with reinforcement
learning using capture‐the‐flag challenges: trade‐offs
between model‐free learning and a priori knowledge.
IET Inf. Secur. 17(3), 441–457 (2023). https://doi.org/
10.1049/ise2.12107

ZENNARO AND ERDŐDI - 457

 17518717, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ise2.12107 by N

tnu N
orw

egian U
niversity O

f Science &
 T

echnology, W
iley O

nline L
ibrary on [07/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/FMZennaro/CTF-RL
https://orcid.org/0000-0003-0195-8301
https://orcid.org/0000-0003-0195-8301
https://orcid.org/0000-0003-0195-8301
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://owasp.org/www-project-top-ten/
https://ctftime.org/
https://www.tenable.com/plugins/nessus/families
https://www.tenable.com/plugins/nessus/families
http://sqlmap.org/
http://sqlmap.org/
https://doi.org/10.1016/j.cose.2020.101738
https://doi.org/10.1016/j.cose.2020.101738
https://doi.org/10.3390/info11010006
https://doi.org/10.3390/info11010006
https://doi.org/10.3390/app11198823
https://doi.org/10.3390/app11198823
https://gym.openai.com/
https://github.com/FMZennaro/CTF-RL
https://doi.org/10.1109/tkde.2009.191
https://doi.org/10.1109/tkde.2009.191
https://futureoflife.org/2016/02/09/open-letter-autonomous-weapons-ai-robotics/
https://futureoflife.org/2016/02/09/open-letter-autonomous-weapons-ai-robotics/
https://doi.org/10.1049/ise2.12107
https://doi.org/10.1049/ise2.12107
https://orcid.org/0000-0003-0195-8301

	Modelling penetration testing with reinforcement learning using capture‐the‐flag challenges: Trade‐offs between model‐free ...
	1 | INTRODUCTION
	2 | BACKGROUND
	2.1 | Penetration testing
	2.1.1 | Hacking attacks
	2.1.2 | Capture the flag hacking competitions

	2.2 | Reinforcement learning
	2.2.1 | Definition of a RL problem
	2.2.2 | Algorithms for RL
	2.2.3 | Q‐learning

	2.3 | Related work

	3 | MODELLING PT AS A RL PROBLEM
	3.1 | PT as a learning problem
	3.2 | Structure of a learning problem
	3.3 | A priori knowledge of the structure of a problem

	4 | FORMALISATION OF A PT PROBLEM
	4.1 | Types of CTF problems
	4.2 | RL formalism

	5 | EXPERIMENTAL ANALYSIS
	5.1 | Simulation 1: Port scanning CTF problem
	5.1.1 | CTF scenario
	5.1.2 | RL setup
	5.1.3 | Results
	5.1.4 | Discussion

	5.2 | Simulation 2: Non‐stationary port‐scanning CTF problem
	5.2.1 | CTF scenario
	5.2.2 | RL setup
	5.2.3 | Results
	5.2.4 | Discussion

	5.3 | Simulation 3: Server hacking CTF problem with lazy loading
	5.3.1 | CTF scenario
	5.3.2 | RL setup
	5.3.3 | Results
	5.3.4 | Discussion

	5.4 | Simulation 4: Website hacking CTF problem with state aggregation
	5.4.1 | CTF scenario
	5.4.2 | RL setup
	5.4.3 | Results
	5.4.4 | Discussion

	5.5 | Simulation 5: Web hacking CTF problem with imitation learning
	5.5.1 | Hacking scenario
	5.5.2 | RL setup
	5.5.3 | Results
	5.5.4 | Discussion

	6 | DISCUSSION
	7 | FUTURE WORK
	8 | ETHICAL CONSIDERATIONS
	9 | CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

