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Abstract

Programming remains a challenging subject to learn and teach, with students
often encountering a variety of errors as they navigate through the intricacies of
languages such as Java and Python. Our study provides a comprehensive analysis
of these common errors made by novice programmers in both languages, and
explores the correlation between them. Additionally, we compare the error patterns
between different exam contexts, namely home and school exams.

The central research questions we aim to answer are:

1. What are the common errors made by novice programmers in Java?
2. What are the common errors made by novice programmers in Python?
3. Is there a correlation between the common errors made by novice programmers

in Java and Python?
4. Are there differences in the errors made during home exams compared to

school exams?

Our findings indicate that while some errors are unique to a specific language,
many others are prevalent across both languages, suggesting a shared set of challenges
for novice programmers. We have also identified subtle differences in error occurrence
between home and school exams, underscoring the potential influence of the
learning environment on programming difficulties.

These results hold significant implications for educators, helping them design
targeted interventions that can address the common areas of difficulty more effectively.
Further, the insights on the impact of the learning environment on error patterns
can guide the adaptation of teaching strategies according to the context.

The detailed presentation of our findings not only contributes to the existing
body of literature on computer science education, but also serves as a practical
guide for educators seeking empirical evidence to enhance their teaching strategies.
The potential correlations and differences identified through our research can
form the basis for further exploration and hypothesis formation in future studies.
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Chapter 1

Introduction

1.1 Objectives

1.1.1 Motivation

The motivation behind this research stems from the significant challenges faced
by novice programmers when learning to code. Programming requires not only a
solid grasp of syntax and language constructs but also the ability to think algorithmically
and solve problems systematically. Novice programmers often encounter difficulties
in translating their ideas into functional code, resulting in common errors and
misconceptions.

Understanding the specific errors made by novice programmers in Java and
Python is essential for several reasons. Firstly, it allows educators to design more
effective instructional strategies that address the specific challenges faced by students.
By targeting these common errors, instructors can provide targeted interventions,
clarifications, and examples to help students overcome misconceptions and improve
their programming skills.

Secondly, gaining insights into the common errors made in Java and Python
can inform the development of educational materials, including textbooks, tutorials,
and online resources. By identifying the most prevalent errors, content creators
can focus on addressing these areas in a comprehensive and accessible manner,
enhancing the learning experience for novice programmers.

Furthermore, understanding the differences and similarities in the errors made
between Java and Python can provide valuable insights into the unique challenges
associated with each programming language. This information can guide educators
in choosing appropriate programming languages for introductory courses and
tailoring their instructional approach to maximize student learning.

By examining both home and school exam errors, this research aims to shed
light on any distinctions that may arise in these different contexts. Understanding
these differences can help instructors adapt their teaching strategies and assessments
to better align with the challenges students face during different evaluation scenarios.

Overall, this research project seeks to contribute to the field of programming

1



1.1.2 Research Question 1.3 THESIS OVERVIEW

education by providing a comprehensive analysis of the common errors made by
novice programmers in Java and Python. By addressing these errors and misconceptions,
we aim to improve the teaching and learning of programming, ultimately leading
to more competent and confident programmers in the future.

1.1.2 Research Question

Considering the complexities and intricacies involved in programming, especially
for novice programmers, our study is guided by the following research questions:

• Q1: Which common errors are made by novice programmers in Java?
• Q2: Which common errors are made by novice programmers in Python?
• Q3: Are there any correlation between common errors made by novice programmers

in Java and Python?
• Q4: Are there differences in the errors made during home exams and school

exams?

1.2 The Scope of The Study

This study primarily focuses on identifying and analyzing the common errors
made by novice programmers, particularly in Java and Python programming languages.
The research is grounded in the context of the Norwegian University of Science
and Technology (NTNU). Specifically, we have examined student submissions from
both home and school exams in two introductory courses from NTNU. One course
in object oriented programming using Java, and one using Python.

Our analysis involves categorization and comparison of errors across different
conditions, highlighting the challenges faced by beginner students in their initial
encounter with programming. However, it is worth noting that while our research
attempts to provide a broad and comprehensive understanding, it is bounded
by the sample data derived from these specific courses at NTNU. Therefore, the
results may not encapsulate all possible programming errors made by novice programmers
globally, or in other programming languages. However, our research should offer
valuable insights into the struggles of first-time programming students at NTNU.

1.3 Thesis Overview

The structure of this thesis is as follows:

• Chapter 1 introduces the research team, presents the goals and the scope of
the study, and provides an overview of the thesis.
• Chapter 2 offers a comprehensive review of the relevant literature and frames

the context of this study within the broader field of computer science education
research.

2



1.3 THESIS OVERVIEW

• Chapter 3 details the methodology adopted for this research, explaining the
mixed-methods approach and the data collection and analysis procedures,
as well as the methodology used when conducting the literature review.
• Chapter 4 presents the findings of the study, highlighting the common errors

identified in Java and Python programming, as well as presenting some
examples of common errors.
• Chapter 5 discusses the implications of the findings, considering their relevance

for programming education, and explores potential avenues for future research.
• Chapter 6 concludes the thesis, summarizing the key points and reflecting

on the overall research journey.

This layout aims to provide a logical flow of ideas and findings, offering readers
a coherent and comprehensive understanding of the research.

3



Chapter 2

Literature review

There is a substantial amount of research focused on understanding misconceptions
and errors made during programming, particularly among novice student programmers.
These studies span a variety of programming languages, including Python and
Java, and consider a diverse range of demographics and methodologies. However,
there’s a wide spectrum of combinations of languages, demographics, and methods
that are yet to be fully explored. Delving into these different combinations could
offer valuable insights to enrich the current body of research in this area.

2.1 Java

The study of common errors in Java programming reveals a considerable amount
of diversity among different research papers. Predominantly, the data collection
methods are bifurcated into two major categories: automatic tools and surveys/interviews,
or a combination of both, presenting a natural division among various studies.
This subsection includes some information derived from our prior work on this
subject matter [1]. This variation in data collection approaches adds depth to the
research, but also points to the need for uniform methodologies to ensure the
comparability of findings across studies.

2.1.1 Automatic Tools

Automatic tools are highly efficient for identifying errors in code. Numerous studies
have leveraged these tools to analyze common mistakes made in Java programming.
The following are a selection of projects that closely align with our research focus.

Jadud attempted to identify the most common errors made by novice programmers,
when he explored novice compilation behaviour in 2006. By focusing entirely
on the "edit-compile" interactions students had with the Java compiler, he made
observations and gathered data he could use for his research. He recruited 130
first year students in the University of Kent and made them work in BlueJ, a
pedagogic programming environment intended to support the learning of Java
from an objects-first perspective [2][3]. BlueJ allowed him to gather snapshots

4



2.1.1 Automatic Tools 2.1 JAVA

of the students’ code every time they compiled their program, along with output
from the compiler and other useful metadata. The data was later used in different
analyses, e. g. counting the occurrences of different errors and capturing the time
between each compilation of errors [4]. He included a graph showcasing the most
common errors encountered in his article, but unfortunately the quality of it was
too low to be able to read. However, we can assume that it was mostly compilation
and run-time errors, because all the data was gathered directly from the compiler.

Tabanao et al. conducted a study aimed at early identification of at-risk novice
programmers during their initial stages of learning to code. To achieve this, the
researchers collected compilation data and tracked errors made during five exercise
sessions, utilizing a customized extension developed for BlueJ. Subsequently, the
data was analyzed and compared with the students’ midterm exam scores to
explore potential correlations between the quantity and types of errors made
and their performance on the exam. Additionally, the researchers examined the
overall frequency of errors and compiled a comprehensive list of the top 10 most
commonly encountered error types. There were a total of 52 different error types
encountered and they based their categories on the compiler error message itself.
The list of top 10 errors can be seen in table 2.1 below. Although the study yielded
more questions than answers, the researchers did find a correlation between a low
incidence of syntax errors and higher midterm exam scores [5]. Building upon this
work, the same authors further attempted to predict at-risk students by developing
a linear regression model. Unfortunately, the researchers were unable to achieve
accurate predictions, but gained valuable insights regarding the compilation behaviour
of the students [6]. Additionally, they used the same data in similar research where
they tried to study the behaviour of novice programmers [7].

Table 2.1: Top 10 programming mistakes, Tabanao et. al.[6]

Mistake Frequency (%)
cannot find symbol - variable 20
; expected 13
( or ) or [ or ] or { or } expected 10
missing return statement 8
cannot find symbol - method 6
illegal start of expression 6
incompatible types 4
<identifier>expected 4
class, interface, or enum expected 3
else without if 2

Under the leadership of Ioana Tuugalei Chan Mow, the Computing department
staff at the National University of Samoa conducted an extensive analysis of student
errors in three distinct undergraduate Java programming courses. The study involved
the meticulous logging of errors directly from the compilers and subsequent categorization

5



2.1.1 Automatic Tools 2.1 JAVA

of these errors based on their types. The cumulative number of unique errors
encountered ranged from 70 to 171 across the three courses. By meticulously
tallying the frequency of each specific error, the researchers identified and summarized
the top eight most prevalent mistakes observed throughout the three courses,
as presented in table 2.2. To provide further insights, the errors were classified
into three distinct categories: syntax, semantic, and logic errors. Interestingly, the
study revealed that a significant majority of the errors, 94.1%, fell within the
syntax category, while semantic and logical mistakes accounted for only 4.7%
and 1.2%, respectively [8].

Table 2.2: Top 8 programming mistakes, Mow et. al.[8]

Mistake HCS181 HCS281 HCS286 Total Frequency (%)
Variable not found 101 18 41 160 49.8
Identifier expected 23 22 0 45 14.0
Class not found 12 3 1 16 5.0
Mismatched brackets/parentheses 11 6 0 17 5.3
Invalid method declaration 7 5 0 12 3.7
Illegal start of type 5 6 0 11 3.4
; expected 2 4 1 7 2.2
Method not found 4 1 0 5 1.6

McCall and Kölling conducted a comprehensive investigation of common programming
mistakes, utilizing the Blackbox project as a valuable resource. The Blackbox project,
initiated in 2013, aimed to facilitate the availability and reusability of research-friendly
programming data. It operates as an ongoing data collection initiative, gathering
anonymous data from global users through the BlueJ IDE. The collected data is
made accessible to other researchers for their own studies [9].

The researchers conducted two distinct studies, with the latter building upon
the findings of the former. In their pursuit of more precise categorization of student
errors, McCall and Kölling opted for manual analysis rather than relying on automated
tools and diagnostics for error classification. The data collection occurred in two
phases, both utilizing the BlueJ IDE and encompassing Java code specifically written
in BlueJ. During the first phase, data was gathered from 240 volunteer students
enrolled in introductory Java courses at two different universities. This initial
dataset was used to develop error categories before acquiring additional data
through the Blackbox project, enabling a more extensive and diversified analysis.
Throughout the category development phase, the researchers manually refined
and structured the error categories, creating a hierarchical system that varied in
specificity within the hierarchy. This entire process was data-driven and carried
out manually. Subsequently, the second dataset underwent three distinct analyses:
error frequency, number and frequency of diagnostic messages, and coverage
levels of the most prevalent error categories. The results of these analyses are
presented in table 2.3, showcasing the top 10 most frequent errors [10].

6
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McCall and Kölling concluded that they made improvements on previous methodologies
by analysing logical errors instead of diagnostic messages, claiming it to be a more
reliable ranking of student error frequencies. They also pointed out a difference
between their own results and studies conducted prior to theirs, giving rise to the
hope that the production of automated diagnostic messages could be improved
[11].

Five years later, McCall and Kölling expanded their research by collecting and
analyzing a little over 1000 compilation events with errors, extracted from 199
user sessions. They developed a new hierarchical structure for error categorization,
consisting of 11 primary error categories with numerous subcategories (a total
of 90). This hierarchical structure was based on their earlier study conducted in
2014. A single researcher manually categorized the compilation events, forming
the basis for subsequent analysis. The study examined error frequency, severity,
and difficulty. The top 10 most frequent errors are presented in table 2.3. An
intriguing finding from this study revealed that the top 10 logical errors accounted
for 60% of all error occurrences. The researchers argue that by improving error
diagnostics for these top 10 errors, students would benefit from enhanced feedback
in 60% of error instances [10].

Table 2.3: Top 10 programming mistakes, McCall et. al. 2014 + 2019[11][10]

Mistake Freq. 2014 (%) Freq. 2019 (%)
Variable not declared 11.1 8.4
; missing 10.3 7.3
Variable name written incorrectly 8.4 7.4
Simple syntactical error 7.9 6.5
Method name written incorrectly 4.9 4.6
Missing parenthesis for constructor call 4.1 x
Unhandled exception 3.0 x
Class name written incorrectly 2.7 x
Method call: parameter type mismatch 2.4 x
Type mismatch in assignment 2.4 x
Semantic error x 4.8
Variable: incorrect variable declaration x 4.7
Variable: incorrect attempt to use variable x 4.6
Method: incorrect method declaration x 4.5
Class or type name written incorrectly x 4.4

Comparing the tables of the top 10 most frequent errors from both research
projects conducted by McCall and Kölling yields interesting insights. As depicted in
the above table, the distribution of error frequencies exhibits a striking similarity
between the two studies. This similarity could directly reflect the discrepancy
in results or be influenced by factors such as slight alterations in the category
definitions. Notably, the second project placed greater emphasis on manual analysis,
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offering a valuable opportunity to compare the accuracy of automatic error detection
by contrasting the outcomes of both papers.

The fact that the error distribution remained relatively unchanged between
2014 and 2019 could indicate the accuracy of automated error detection. However,
it is essential to consider other contributing factors that may have influenced these
findings. Furthermore, it is intriguing to note that the five most common errors
identified in the 2014 research experienced a significant decrease in frequency
in the 2019 study. This decline can be attributed to various factors, including
improved educators and the overall quality of education, students’ increased knowledge,
and advancements in technology. For instance, integrated development environments
(IDEs) have undergone notable enhancements over the years, incorporating features
such as syntax error warnings and auto-completion of variable names. These improvements
significantly enhance the coding experience, potentially contributing to the reduction
of common errors in the later study.

2.1.2 Surveys and Interview

Surveys and interviews serve as effective methods for gathering both quantitative
and qualitative data, making them valuable for identifying common programming
errors. When utilizing these approaches, insights can be obtained from students
and experienced educators, providing firsthand experiences that contribute to
the identification and understanding of prevalent programming mistakes. The
following research papers showcase the use of surveys and/or interviews as their
primary research methods:

Hristova et al. conducted a study where they collected data from various professors
and professionals to identify the most common Java mistakes made by novice
students. Based on the results, they compiled a list comprising 20 distinct errors,
which were subsequently categorized into three main categories: syntax, semantic,
and logic errors. Additionally, the researchers developed an error detection system.
Unfortunately, as they did not collect data directly from students, they did not
verify the accuracy of the identified errors or the functionality of the implemented
tool. Nevertheless, the list of mistakes and the developed tool remain valuable
resources that could be utilized in subsequent research endeavors. Table 2.4 presents
the list of identified mistakes [12].
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Table 2.4: List of 20 errors defined by Hristova, et. al.[12]

ID Mistake Type
A = vs. == Syntax
B == vs. .equals Syntax

C
Mismatching, miscounting and/or misuse of
{}, (), [], " ", and ’ ’

Syntax

D && vs. & and || vs. | Syntax

E

Incorrect semi-colon after and if -selection structure
before the if -statement or after the for or while
repetition structure before the respective for or
while loop

Syntax

F
Wrong separators in for loops (using commas instead
of semi-colons)

Syntax

G An if followed by a bracket instead of by a parenthesis Syntax
H Using keywords as method names or variable names Syntax
I Invoking parentheses after method call Syntax
J Forgetting parentheses after method call Syntax
K Incorrect semicolon at the end of a method header Syntax

L
Leaving a space after a period when calling a specific
method

Syntax

M >= and =< Syntax
N Invoking class method or object Semantic
O Improper casting Logic

P
Invoking a non-void method in a statement that requires
a return value

Logic

Q Flow reaches end of non-void method Logic

R
Methods with parameters: confusion between declaring
parameters of a method and passing parameters in a
method invocation

Logic

S
Incompatibility between the declared return type of a
method and in its invocation

Logic

T Class declared abstract because of missing function Logic

A notable study by Garner et al. in 2005 took a slightly different approach,
focusing on identifying common problems encountered by novice programmers.
The researchers developed a predefined list of 27 problems, which served as a
basis for data collection. Surveys were administered to teaching assistants following
student programming lab sessions. The teaching assistants recorded the specific
problems they had to address while assisting students and mapped them to the
predefined list of 27 problems. The study revealed an interesting finding: a significant
dominance of the problem category termed "Basic mechanics." This category encompassed
simple syntactical errors such as missing semicolons, highlighting the prevalence
of such mistakes among novice programmers [13].
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Another relevant study conducted by Kaczmarczyk et al. employed formal
interviews with students to identify common misconceptions among novice programmers.
The interviews took place at the University of California, San Diego, and involved
11 undergraduate students enrolled in CS1 courses during the spring of 2009.
From a concept inventory comprising 32 entries developed by Delphi experts in
2008 [14]. Kaczmarczyk et al. selected 10 concepts as the focus of their interviews.
The primary objective of the interviews was to identify misconceptions related to
these 10 concepts, while the secondary objective was to validate the conclusions
of the Delphi experts. Each student was presented with a subset of 18 problems
covering the 10 concepts during the one-hour interview session, which encompassed
questions on all the topics. The analysis of the interview results revealed four
prominent themes, as illustrated in table 2.5.

Theme 1 and 4 revolve around language-specific misunderstandings and cover
general misconceptions. Theme 2 encompasses various misconceptions related to
an inadequate understanding of how while loops function, which is not entirely
language-dependent. Theme 3 represents a fundamental lack of understanding of
key aspects of Object-Oriented Programming. Within these themes, three significant
misconceptions were identified and described in detail: "Semantics to semantics,"
"Primitive no default," and "Uninstantiated memory allocation." The researchers
concluded that the gathered data provided valuable insights for instructors in
real-time. Additionally, the results were merged with additional data to be collected
and used in the development and validation of a CS1 curriculum for Programming
Fundamentals [15].

Table 2.5: Common themes throughout the interviews, Kaczmarczyk et. al.[15]

T1
Students misunderstand the relationship between language elements
and underlying memory usage.

T2 Students misunderstand the process of while loop operation.
T3 Students lack a basic understanding of the Object concept.
T4 Students can not trace code linearly.

Caceffo et al. pursued a distinct methodology to identify misconceptions in
Java by leveraging already established misconceptions in C and Python. Their
approach involved converting these existing misconceptions, where feasible, to
the context of Java. Following the conversion process, an open response test comprising
open-ended questions was administered to validate the proposed misconceptions.
A total of 27 misconceptions were identified and considered in the open response
test. Out of the 111 students who participated, 22 of these misconceptions were
observed in their responses. Additionally, the test revealed six new potential misconceptions,
expanding the pool of possible misunderstandings to 28. The occurrence frequency
of each programming mistake varied widely, ranging from one to 21 instances
among the total surveyed students. The researchers recorded the frequency of
each programming mistake, with the top 10 most frequent mistakes presented in
table 2.6.
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The paper also addressed the language independence of misconceptions identified
through Concept Inventories. Notably, they found that a higher percentage of
misconceptions (32%) were exclusively mapped from C to Java, as compared to
Python (10%). This observation highlights the nuanced nature of misconceptions
and the variations that arise when transitioning between programming languages
[16].

Table 2.6: Top 10 programming mistakes, Caceffo et. al.[16]

Mistake Frequency (%)
No return value in a function that returns something 18.9
Attempt to access parameter from outside scope 10.8
Class attribute invoked without being imported or with no class specified 9.0
Global variables assumed inaccessible from within function 5.4
Arithmetic expression instead of boolean expression 5.4
No parameters used when calling a method 4.5
Attempt to access local variables, except parameters, from outside scope 4.5
Wrong order in logical or arithmetic operations 4.5
Nested if-statements instead of boolean expression 3.6
Incorrect order of function parameters 2.7

2.1.3 Combination of Automatic Tools and Surveys/Interviews

Several projects have employed a combination of both automatic tools and surveys/interviews
to gather qualitative and quantitative data in their efforts to identify common
mistakes in Java. The integration of these methods provides researchers with
comprehensive insights. The following papers demonstrate the utilization of these
combined approaches:

A study conducted on freshmen at the United States Military Academy focused
on identifying the most common Java errors among novice programmers. The
researchers implemented a real-time automated error detection system called
"Gauntlet", which logged all errors to a central database. Gauntlet had been developed
approximately two years prior to the study [17]. Over the course of one semester,
the system collected a total of 559,419 errors. Among these errors, the top 10
accounted for 51.8% (290,134) of the total. The use of an automated system
enabled the researchers to precisely track each specific type of Java error, resulting
in highly accurate results. The top three errors, in descending order, were "cannot
resolve symbol," ";expected," and "illegal start of expression," with the first error
being significantly more frequent. The remaining top 10 errors are detailed in
table 2.7. Furthermore, the researchers conducted interviews with faculty members
to compare the errors identified by the automated system with those recognized
by the faculty. An interesting finding emerged: a discrepancy existed between the
errors identified by the automated system and those recognized by the faculty.
This discrepancy suggests that automated systems may have value in identifying
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errors and misconceptions. Alternatively, it could be attributed to the faculty’s
focus on significant logical errors made by students, while potentially paying less
attention to simple syntactical errors [18].

Table 2.7: Top 10 programming mistakes, Jackson et. al.[18]

Mistake Frequency
Faculty
identified

cannot resolve symbol 81655 Yes
; expected 47362 Yes
illegal start of expression 32107 No
class or interface expected 25650 No
<identifier expected> 25224 Yes
) expected 21412 Yes
incompatible types 15854 No
int 14185 No
not a statement 13878 No
} expected 12808 Yes

By combining methodologies previously mentioned, data set of student-written
code, automated error detection and surveys, Brown and Altadmri made three
separate attempts to identify the most common novice Java programming mistakes.
The first one, being in 2015, they decided to use previous work done by Hristova
et. al.[12] as a base for their research. They took the 20 student mistakes defined
by Hristova and removed two of them; first one being “leaving a space after a
period when calling a method”(L), because it was not a programming mistake in
their eyes, and the second one being “improper casting”(O) because it was not
described clearly enough. After defining their list of errors they created a survey
asking educators to rate each mistake on a scale of infrequent to frequent, by
making a mark along a visual analogue scale. The scales were then measured to
the nearest 1

100 of their length and recorded as a number between zero and 100.
The questionnaire was filled out by a total of 76 educators, forming the sample
set for the analysis of the educators’ beliefs. Student data was taken from the
Blackbox data set previously mentioned [9]. They used three different methods to
detect the 18 different student mistakes; the compiler error message, a post-lexing
analysis and a customised permissive parser. They then tracked the source file over
time, checking each compilation for one or more of the 18 mistakes and counting
their occurrences. The results from the survey showed that the educators form a
very weak consensus about which errors are most frequently made by students.
The results from the student data analysis can be seen in table 2.8 below. They
also concluded that educators are not very accurate compared to the large data
set of student mistakes and that an educator’s level of experience had no effect on
how closely the educator’s frequency rankings agreed with those from the dataset.
They continued the argument by claiming that these errors could be contextual,
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meaning each educator are correct about their own students mistakes [19].
During the second project they only used student data in their research, once

again gathered from the Blackbox dataset. They used the exact same mistake
categories previously defined as well so the setup was fairly similar, only this
time they had more data. One key difference was the fact that they included an
estimated time to fix based on the compilation data. The resulting frequencies of
mistakes can be seen in table 2.8 below, we have not included the median time to
fix for each mistake due to lack of relevancy to our own research. They concluded
that we should be careful not to over-interpret the results as it is greatly affected by
which mistakes they included in the study, but their results suggest that semantic
errors are a more serious challenge than syntax errors [20].

For the third project they went back to the methodology used in 2014; a
combination of student-written code, automated error detection and surveys. By
using the same set of 18 pre-defined errors, they collected student source files from
the Blackbox project, this time with even more compilation data. They recorded
the frequency of errors from the automated tools which can be seen in table 2.8
below [21]. They used the exact same educator survey data they collected for their
research paper in 2014, meaning that the results and conclusions surrounding the
data from educators are exactly the same as 2014.

It is interesting to see that the top three most frequent mistakes remain the
same over each research project. The frequency distribution in general are very
similar over all the 18 categories as well. This could potentially be an indication
that the education system have remained unchanged between the year 2014 and
2017. However, because every project used the Blackbox dataset there are most
likely a vast amount of duplicate data, only difference being additional data being
added in between years. This would also be an explanation for why the results
correlate so much over the years.

It is also unfortunate that they did not include a percentage of the mistakes in
the compilation data they collected, and without knowing whether they looked
for mistakes in all of the compilations recorded, the successful compilations, or
the unsuccessful ones, it is impossible to calculate. However, the total number of
compilation events each data set consisted of was 14,235,239 in 2014, 37,158,094
in 2015 and around 100 million, assuming they used the entire Blackbox dataset,
which gives us some indication of the normality for each mistake. Nevertheless,
the research they did is very interesting and could potentially have value when
attempting to optimize course development and improving teaching practices.
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Table 2.8: Frequency of mistakes made by students in 2014, 2015 and 2017,
Brown et. al.[19][20][21]

Mistake Type freq. 2014 freq. 2015 freq. 2017
C - mismatched parentheses Syntax 404560 793232 1861627
I - calling method with wrong
types

Type 165832 464075 1034788

O - missing return statement Semantic 137230 342891 817140
N - discarding method return Semantic 86107 121663 274963
A - confusing =with == Syntax 68254 173938 405748
B - using == to compare strings Semantic 45012 121172 274387
M - invoking instance method
as static

Semantic 30754 86625 202017

R - missing methods when
implementing interface

Semantic 24846 79462 186643

P - including types in actual
method arguments

Syntax 21694 52862 117295

E - spurious semi-colon
after if, for, while

Syntax 20264 49375 108717

K - spurious semi-colon
after method header

Syntax 16156 38001 86606

Q - type mismatch assigning
method result

Type 14371 16996 32435

D - confusing &with && Syntax 11212 29605 61965
J - forgetting parentheses when
calling methods

Syntax 8332 18955 43165

L - less-than/greater-than
operators wrong

Syntax 1916 4214 9381

F - wrong separator in for Syntax 1171 2719 6424
H - keyword as variable or
method name

Syntax 415 1097 2568

G - wrong brackets in if Syntax 63 118 284

Bulmer et. al. designed and built their own software to visualize code patterns
amongst novice programmers in Java. The code visualizer was designed to animate
the programming dynamically and summarize error metrics simultaneously. Their
reasoning was because they did not want to work with submitted code, as it has
usually gone through several iterations of changes before final submission. As
such, they felt that it limited their ability to analyze the kinds of errors students
come across throughout the coding process. As a start, the visualizer was designed
to detect a small number of errors and bad habits. The list of said errors and habits
was chosen based on a literature review and pas teaching experiences, and it can
be seen below:
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• Unclosed Scanners: Creating a Scanner object but never calling its close
method
• Brackets and Quotes Miscounts: The overall number of open brackets or

open single/double quotes being different from the number of close brackets
or quotes
• Brackets and Quotes Mismatches: Closing a bracket or a quote with a

different type of bracket or quote (e.g., “, []”)
• Misplaced Semi-colons: Placing a semi-colon after a condition in a conditional

statement or after a loop declaration
• Comparison vs. Assignment: Confusing the equality and assignment operators
• Misaligned Whitespaces: Failing to indent consistently within a block of

code

They gathered data from 77 students in a CS2-course, all of whom recently
completed a CS1 course. Over the month of January 2018 a system was available
online for the students, which included a series of exercises and a short confidence
survey covering core concepts taught in CS1 courses. The confidence survey asked
the students to rate their confidence level on 11 topics, while the exercises consisted
of 10 programming questions from the same list of topics. In addition to the errors
and habits mentioned above they also tracked the frequency of individual errors.
confidence level of students, amount of code written and number of mistakes per
user. The resulting frequency of errors and bad habits can be seen in table 2.9
below. Their analysis suggested that some of the bad habits result from students’
overreliance on IDE features. Additionaly, they found that more confident students
wrote more code, with fewer errors and bad habits. However, only 13 out of the
77 students completed all 10 exercises, while the rest of them only completed
half, which could potentially affect the results of the study [22].

Table 2.9: Frequency of errors and bad habits, Bulmer et. al.[22]

Mistake/habit Frequency
Unclosed scanners 293
Brackets and Quotes Miscounts 205
Comparison vs. Assignment 81
Brackets and Quotes Mismatches 44
Misaligned Whitespace 40
Misplaced Semi-Colons 11

Jegede et al. decided to use a different approach than the ones previously
mentioned. Instead of only identifying mistakes made by novice Java programmers
in general, they wanted to compare the mistakes made between; low, average and
high achieving novice students. They only had 5 pre-defined groups of mistakes,
which is really small compared to other studies. Results from the research showed
that the top three most common mistakes altogether were "Missing Symbol", "Mismatched
Symbol", and "Excessive Symbol" respectively. They also created multiple tables
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with interesting statistics, one of which compared the frequency of mistakes made
between different achievement levels, this can be seen in table 2.10 below. They
argued that the error types were the same across all achievement levels. However,
the low achieving students had a harder time writing bug free code in other
object concepts. In addition to identifying the most common errors they also
wanted to elicit information on the reasons leading to the errors. This was done by
conducting an interview where they selected 12 out of the 124 students that took
part in the research. However, there were no significant results or correlations
found from the interviews [23].

We find it interesting that the high achieving student made a significant higher
number of mistakes, compared to the average- and low-achieving students. However,
there were a total of 65 students in the high achieving cohort, which is quite high
compared to the total of 33 and 26 in the medium- and low-achieving cohorts,
giving us a natural explanation. Instead of showing us a table of the total distribution
of errors it would be interesting to see individual statistics for each cohort. Additionally,
it would also be interesting to see this study being conducted on a different demographic
for comparison.

Table 2.10: Frequency of mistakes between different achievement levels, Jegede
et. al.[23]

Invalid
symbol

Mismatched
symbol

Missing
symbol

Inappropriate
name

Excessive
symbol

Total

Low
achieving

8.7% 26% 40.2% 14.1% 11% 21.2%

Average
achieving

11.1% 26.3% 28.1% 8.2% 26.3% 28.6%

High
Achieving

13.7% 18.3% 32% 15.3% 20.7% 50.2%

2.2 Python

Similar to papers written on mistakes in Java, a natural division between different
methods for gathering data can be found in papers on Python as well. Automatic
tools and surveys/interviews are still the main methods, while a paper using a
combination of both was not found during the literature review.

2.2.1 Automatic Tools

In a study conducted by Veerasamy et. al. in 2014, they gathered final e-exam
answers from novice students taking an introductory programming course. There
were 69 students enrolled in the course, however only 39 attended the final
e-exam. The final exam contained two multiple choice questions, two code tracing
questions and six code writing questions using python as the programming language.
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After collecting all the exam data using VILLE collaborative tutorial software tool,
the researchers performed both a qualitative and quantitative analysis on said
data. In order to identify and categorise different types of misconceptions and
errors, they derived 10 topics from a 32 item long concept inventory developed
by Goldman et. al. using the Delphi method [14]. They later followed a pre-defined
analysis protocol for the qualitative analysis, where they among other things classified
the findings from all the exam answers based on the concept inventory of 10
topics. Additionally, they performed a quantitative analysis by counting the number
of mistakes that were identified in the qualitative analysis using statistical methods.
However, instead of using the concept inventory categories they decided to use
three different types instead; knowledge-, skill-based- and rule-based error. Their
results from the quantitative analysis showed that 69.2% made knowledge-based
errors, 5.1% made skill-based errors and a few students made rule-based errors
due to “assumption-based confusion” around the use of library functions in coding
their answers. A summary of the findings from the qualitative analysis can be
found in table 2.11 below [24]. Although Veerasamy et. al. used automatic tools in
order to aid their analytical process they also did a lot of manual labour, especially
during the qualitative analysis.

Table 2.11: Summary of findings from qualitative analysis, Veerasamy et. al.[24]

Key topics Misconception

Syntax and semantics
Student misunderstood the meaning of inbuilt
function and its application

Parameter scope
Student confused about the use of return statement
and data type of the parameter passing

Writing expressions for conditionals
Student misunderstood the process of control flow
statements, especially nested if

Tracing loop execution
The student misunderstand the process of for loop
operation

Defining and referencing list elements
Student was not clear with index position and
referencing list elements

A quantitative study on the mistakes of novice programmers were conducted
by Smith et. al. in 2019. The collected a large corpus of student implementations of
eight programming problems. These problems were collected from three massive
open online courses (MOOCs) all specializing in introductory Python programming.
All of the students developed their code in CodeSkulptor, which is a browser
based IDE with the ability to save their progress in a cloud storage during code
development. They collected in total over 330 000 implementations over 95 000
development chains, through an exhaustive data collection approach. The implementations
were then evaluated through auto-generated test suites, that according to them,
have been shown to provide better coverage than carefully hand-crafted tests.
The total amount of errors from all implementations were 196 315 or 58.3%. It
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should be noted that these implementations were gathered every time a student
saved their progress instead of looking at the finished product, possibly making the
code more error-prone. The errors collected were broken down into 16 different
types of run-time errors and 3 other error categories for more details. The 10
most common mistakes of said error categories can be seen in table 2.12 below.
They also provided insight into the duration and evolution of errors, causing clear
patterns to emerge, pointing to areas that merit additional attention by instructors
and researchers alike. They concluded that future studies should aim to tease
out the underlying reasons behind these patterns to better inform the decisions
instructors make as they help students overcome these mistakes [25].

Table 2.12: Top 10 programming mistakes Smith et. al.[25]

Mistake Frequency (%)
SyntaxError 11.94
NameError 10.04
TypeError 8.92
IndexError 4.49
KeyError 4.46
ImportError 2.62
Timout 2.05
AttributeError 1.92
RuntimeError 1.31
UnboundLocalError 1.07

It is also worth to mention that they had a category called "Incorrect Result"
with a frequency of 50.29%, but because these implementations were gathered
from unfinished code we find a high frequency to be expected, which is why we
decided to leave it out of the table.

As a precursor to providing improved error messages in Python, Kohn collected
and analyzed Python programs written by high school students taking introductory
programming courses. By making their Python editor public, students were able to
send their error reports and copies of the corresponding programs anonymously to
the researchers. They collected a total of 6981 raw error messages of which 4091
were relevant to the study. During the analysis, the researchers characterized and
counted different mistakes and additionally which mistakes the students were
able to fix. They used this information among other things, as an indicator of how
effective the error messages were and to discover the most common mistakes
amongst the students. A list of the top five most common mistakes can be seen
in table 2.13 They concluded that a considerable part of the errors were due to
minor mistakes, such as misspellings which are easy to fix. The nature of other
errors or the students’ responses however, cannot always be reliably determined
without knowing the goals and plans behind the program. Moreover, the compiler
is not even able to detect all syntax errors or correctly classify them. The reason
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why enhancing CEMs (Compiler error message) so often appears to be ineffective
might thus be due to many errors being easy to fix even without further help, while
other error are not actually captured by the CEM at all. Additionally, if students
try to fix the CEM rather than the error itself, the recurrence of CEMs, say, might
not be a good indicator for a student’s progress [26].

Table 2.13: Top five programming mistakes Kohn[26]

Mistake Frequency Fixed
Name Error: Cannot Find Name 1462 1252
Wrong/Inconsistent Indentation 608 485
Type Error 349 287
Missing Comma or Operator 249 197
Missing/Mismatched brackets 240 223
Total 4091 3428

Although this study mostly focused on the compiler error messages and its
effectiveness we still get some insight into which programming mistakes are most
common amongst novice students, making this study relevant to our work as well.

Another study conducted on online courses was done in 2022 by Jeffries et. al..
The data used in the analysis were collected from the NCSS challenge, an online
programming course run for students at participating schools. The languague used
during the course is python 3 with several different streams avaiable targeting
different levels of prior experience. The analysis used data from the stream for
beginner programmers, where most of the students were from high-school and
some from primary school. There were 1,281,068 terminal runs recorded of which
328,476 (25.6%) resulted in errors reported by the python 3 interpreter and 3309
distinct messages in total. In order to understand the prevalence of the errors
being made the distinct error messages were manually inspected to identify similar
messages, grouping them together and reducing the set to 113 distinct messages
used in the analysis. They analysed the frequency of each error message resulting
in a table of top 10 errors made seen in table 2.14 below [27].
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Table 2.14: Top 10 programming mistakes Jeffries et. al.[27]

Mistake Frequency
SyntaxError: invalid syntax 40771
NameError: name — is not defined 14255
IndentationError: expected an indented block 11997
IndentationError: unexpected indent 8651
SyntaxError: EOL while scanning string literal 7529
TypeError: unsupported operand type(s)
for —; ’—’ and ’—’

7193

SyntaxError: unexpected EOF while parsin 5369
IndentationError: unindent does not match
any outer indentation level

3377

TypeError: — takes — positional arguments
but — given

2054

SyntaxError: Missing parentheses in call to
’print’

1505

We find it interesting that these studies were conducted on MOOCs which
often represents vast demographic differences. The students they collected data
from hailed from 180 different countries and ranged from the ages 16 to 94, with
an average of 39. This diversity could be argued as a strength, however we could
also argue towards the potential threat to internal validity of the results, as the
technological skill-set of the online students might be lesser than those of a college
student. These studies were also conducted on CS0 courses, whereas other similar
studies are usually conducted on CS1 or higher level courses.

2.2.2 Surveys and Interviews

Johnson, along with a few other professors from the University of Glasgow, conducted
a study where they documented their observations of level 1 university students
over several years. By teaching Python to a large cohort of first year students over
many years, the researchers were enabled to identify common misconceptions
amongst the novice programmers. By documenting their own observations and
supplying this with a survey designed to test the robustness of the mental models
of students that had been taught Python, they built evidence that their anecdotal
findings were more widespread and attempted to probe the nature of said misconceptions.
Based on the results from their first survey, carried out in 2018, they refined
their original hypothesis, and shifted their focus from obscure parts of the Python
language. In consequence, they developed and carried out a new survey in 2019.
It was the findings from their second survey they discussed in the paper leading up
to their conclusion. The survey consisted of questions posing a Python fragment,
asking for the output or final value of the variables from the code snippets. Additionally,
each question asked for the degree of confidence in all of each respondent’s answer

20



2.3 OTHER PROGRAMMING LANGUAGES

and for eventual additional comments or observations they may have had. The
survey attracted 42 responses, largely from students participating in a first year
Python programming course. Due to space constraints the researchers did not
cover all of their discussions in the paper, making it unclear which misconceptions
that were scrutinized during their research.

Broadly, they found that the confidence of the respondents matched the correctness
of their answers, concluding that this was a promising results; speaking on the
danger for program quality if a programmer is confident in their incorrect knowledge.
They also concluded that many students lack a clear understanding of many of
Python’s core language constructs. This lead up to their hypothesis that while
teaching Python alone is insufficient, teaching it alongside visual languages that
share a common notional machine improves students’ understanding [28].

2.3 Other Programming Languages

In addition to research conducted on students programming in Java, there are also
several research papers that look into students programming in other languages.
One example is a study by Ettles et al. This study focuses on common logic errors
made by novice programmers programming in C. The study analyzed 15,000
code fragments created by novice programming students that contained logic
errors, and classified the errors into algorithmic errors, misinterpretations of the
problem, and fundamental misconceptions. The study found that misconceptions
were the most frequent source of logic errors, and led to the most difficult errors
for students to resolve. The study suggests that targeting these common errors in
teaching practices may help to reduce student frustration [29].

A more recent example is a study from 2020, where Emerson et. al. attempted
to identify novice coding misconceptions in block-based programming. They conducted
their research using PRIME at a large university in southeastern United States.
PRIME is an adaptive block-based programming environment designed to support
novices as they learn introductory programming concepts. The target courses
were two online sections of an introductory course for undergraduate engineering
majors, where a total of 248 participated in the study. They logged on to the PRIME
system, allowing the researchers to analyze the programs of the 222 students who
attempted at least one activity. They performed a fairly complicated analysis by
clustering the student programs through cluster-based algorithms adopted from
Bayesian Gaussian Mixture Models[30], which attempt to find the smallest number
of clusters that separate the data, in this case, student programs. They identified
three distinct clusters; "Exploration", "Disorganized" and "Near miss" programs.
They concluded that the ability of identifying these clusters may be an indication
of the existence of more general identifiable patterns across block-based programs
that can be automatically detected. They continued by stating that identifying
these in real-time could lead to a better support system for novice programmers
who may otherwise disengage from the assignments [31].
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2.4 Summary and Findings

All of the papers mentioned in this section are to some degree relevant to our
research, and among these papers there are several methods and techniques applied
to answer similar research questions. The difference in methodology makes finding
any conclusive evidence difficult, however we can look for statistical relationships
that might indicate what types of errors are more common within several papers. It
should also be mentioned that there might be even more relevant research papers
out there, and this literature review was based on our own protocol described
later in section 3.2.

A vast majority of the research is based on compilation errors, and to some
extent run-time errors, compared to errors where the program compiles and runs,
but it gives the wrong result. The obvious explanation for this is likely that the
former type of errors have been much easier to find and categorize since, as it
can be collected automatically by tools, surveys or even direct observation by
teachers or students in the form of error messages. The "wrong result" type of
errors however, are harder to find automatically and needs a more thorough
analysis to find out what the cause of the mistake actually was. These types of
mistakes can be as valuable or even more so than compilation and run-time errors,
because they often represent a students misconception, whereas compilation- and
run-time errors often represent sloppy mistakes. One way of attempting to find
the "wrong result" type of errors is to conduct interviews with students and/or
educators like Hristova and Kaczmarczyk did [12][15].

One could also conduct case studies, where the researchers observe the students
while they are writing the code, e.g. having them think out loud or something
similar. One example of this is a master thesis written by Johansen from 2015.
During the research phase the researchers tasked 23 students of partaking in
interviews after they complete the mandatory assignments of a second semester
course in object oriented programming using Java. Additionally, the researchers
designed some smaller tasks for the research subjects, and observed them while
they completed them in order to gather some supplemental data for the study
[32]. A similar study was also conducted by Rørnes et. al., where they recruited
nine students for semi-structured interviews, asking the students to think out
loud and explain how different code snippets would be executed [33]. Although
the latter study was more focused towards program comprehension and mental
models these are still both good examples of methodology suited for finding the
"wrong result" type of errors. We believe that more research investigating these
types of mistakes could be highly valuable for educators, students and educational
systems in general, and that is why we should consider prioritizing in the future.

Another observation we have made is that most of the studies where student
written code is analyzed uses code submitted through assignments from targeted
courses or tasks designed by the researchers themselves. These programming
tasks all share the fact that the students are given several days to complete their
code before final delivery. This would give the students the possibility of multiple
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iterations of error handling before final delivery, allowing them to fix mistakes
which could have been included in the research. This could potentially give a
skewed interpretation of the most common error distribution amongst programmers,
leading to inaccurate results and conclusions. One way of avoiding this is to
monitor every single compilation throughout the entire coding process for each
task. This was done by Brown et. al. and Altadmri et. al.[9, 19, 21], allowing
them to gather all the errors as they were being made throughout the students
development phase and not just their final delivery.

A different consequence of code being gathered from assignments spanning
over several days, is the availability of different aids in such settings. Students can
use modern day IDEs with support for syntax error warnings and auto-completion
during the development phase, and with internet available it is very easy to find
good code examples similar to their own case online. This would obviously pose a
threat to the validity of the research as the data collected could potentially mislead
the researchers into finding common errors and misconceptions that does not
represent the novice students at all. There are several ways of eliminating this
issue, one of them being the previously mentioned methodology of observation
of students writing code and another one being analyzing final exam answers
instead of multiple day assignments. Veerasamy et. al.[24] did exactly this when
they conducted their research in 2016. It should be said that this research was
conducted on take-home e-exams, allowing the students to use these types of
different aids anyways, as they most likely were unsupervised. Additionally, it is
easy to cooperate with other people in this type of exam, and the only way of
catching the cheaters is through plagiarism checks, which is easy to work around.
This poses another threat for the validity of the research, as the code they analyze
for one student could have been written by a different person entirely. We believe
that gathering data from at-school exams with no aids allowed could potentially
give researchers a more accurate representation of students’ common misconceptions.
It should be mentioned that this approach also has some downsides, particularly
the fact that this is a unnatural way of working as a programmer. Professional
programmers typically use various aids, and the no-aids situation would typically
increase the amount of syntax errors and other "simple" errors, compared to the
errors indicating deeper misunderstandings. Perhaps a middle ground of supervised
e-exams with a list of relevant syntax and a simple e-exam system offering support
like syntax highlighting and automatic indentation could be a good solution.

2.4.1 Research Questions

Through this literature review we have attempted to find potential answers to
the research questions presented in chapter 1.1.2. The results found during the
literature review will be used as supplementation to the results found during our
own research, where we can look for similarities or differences between the two.

In terms of Q1 and Q2 we have observed that the most common mistakes for
both Java and Python identified are mainly syntactical. We believe that one of the
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main reasons for this is, as previously mentioned, the fact that many studies gather
compilation and run-time errors which are often caused by syntactical errors.
Identifying common specific error categories is hard, as different researchers tend
to have different categories.

Regarding Q3 there is the obvious correlation of them both having a high
concentration of syntactical errors. Apart from that, looking at existing literature
it seems like misconceptions identified for different programming languages are
very language independent. This claim is supported by the study from Caceffo et.
al[16], where they attempted to convert misconceptions from Python and C to
Java. They found that only 10% of misconceptions could be directly mapped from
Python to Java, which is quite a small portion.

Finally, in regards to Q4 we could not find any answers through the literature
review, as we did not find any similar research in any of the papers.

2.5 Contribution

There are several factors that argues the novelty of our research. One factor lays
in the demographic we use in our study. Studies conducted investigating errors
and misconceptions in Java and Python amongst novice Norwegian students are
scarce at best. Another factor is the fact that we analyze exams, both take-home
and regular in-class, taken by students in CS1 and CS2 courses. More often than
not the code analyzed in existing studies are written during assignments and given
tasks, rather than finals, which could potentially affect the results of the study, as
the students tend to focus and prepare more on their finals. The fact that we
analyze code from take-home and in-class exams also allows us to compare the
results from the two, something we have not found in any of the papers read
through our literature review. Additionally, a lot of the code we analyzed was
written in Inspera Assessment[34], which is a different tool than the ones we have
come across. Inspera Assessment is a generic e-exam system with very limited
support for coding. The only help one would get is some syntax highlighting,
whereas other features that would also be expected in a programming environment
or even rather simple coding editor (e.g., ability to compile and run, debug by
stepping through the code, auto-completion of words, etc....) is not provided by
Inspera. By discovering the most common errors made amongst Norwegian students,
we wish to form recommendations to inform course development and improve
teaching practices in Norway, more specifically courses directed at novice programmers
in Java and Python, at NTNU, Trondheim.
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Chapter 3

Methodology

This section outlines the methodology employed in our research study, designed to
answer the research questions regarding common errors encountered by novice
programming students at the Norwegian University of Science and Technology
(NTNU). Our research questions motivated the need for a comprehensive analysis
of a large number of exam submissions, to identify error patterns and understand
their causes.

3.1 Research Design

This study aimed to identify errors made by novice programmers at NTNU and
sought to understand the underlying challenges faced by students in their programming
journey.
Various research methodologies could be applicable to address these questions,
including ethnographic studies, surveys, experimental designs, or purely quantitative
analyses. However, each of these approaches has its limitations. For instance, an
ethnographic study might provide rich context but is time-consuming and difficult
to generalize. Surveys can yield broad responses but might miss the nuances
of individual coding challenges. Experimental designs, while providing causal
evidence, may not be practical in a natural classroom setting. Purely quantitative
analyses, on the other hand, would miss the context and the narrative around
student errors.

To best answer our research questions, we adopted a mixed-methods approach
that combines quantitative and qualitative methods. This approach, using a Python
program that automatically logs and categorizes student errors, provides a comprehensive
analysis of the most common errors and their patterns over time. Concurrently,
qualitative insights help us understand the context and reasons behind these errors.
This approach is widely recognized as an effective methodology for examining
complex phenomena, as it offers a more comprehensive understanding of the
subject matter and facilitates the validation of findings through data triangulation
[35–37]. Mixed-methods research has gained prominence in recent years due to
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its ability to provide more robust insights and a deeper understanding of the
research problem [38]. By employing this approach in our study, we can effectively
analyze and interpret the programming errors made by novice programmers while
accounting for various contextual factors that might influence their performance
[39].

3.1.1 Python Script and Unittest Customization

The Python script and unittests used in this study were meticulously customized
to address the specific needs of the research, ensuring accurate identification
and categorization of errors made by novice programmers at NTNU. The process
began with a thorough examination of the programming concepts and challenges
commonly encountered by novice programmers. Based on this assessment, the
research team identified the most relevant programming concepts to be tested in
the study. Next, a set of unittests was developed for each programming concept,
with the tests designed to target common errors made by novice programmers.
These unittests were derived from real-world examples of code previously submitted
by students, ensuring their relevance and effectiveness.

The Python script was then tailored to incorporate these customized unittests,
allowing for seamless and accurate error identification across a large number of
exam submissions. Furthermore, the script was designed to be flexible, enabling
adjustments to the unittests as needed throughout the study, in order to refine
their accuracy and comprehensiveness. This iterative process of selection and
refinement of unittests, combined with the customized Python script, ensured
that the research methodology was both rigorous and robust. As a result, the
study provided valuable insights into the programming errors made by novice
programmers

3.1.2 Generalizability

One of the primary limitations of a case study is its limited generalizability. Case
studies typically focus on a single or a few instances of a phenomenon, which may
provide valuable insights but may not be representative of the broader population
[40]. In contrast, the mixed-methods approach used in this study, as advocated by
Creswell & Plano Clark[39], allowed for the analysis of a larger sample of student
exam submissions. This provided a more comprehensive understanding of the
programming errors made by novice programmers at NTNU. This increased the
generalizability of the findings and made the results more applicable to a wider
range of programming students [41].

3.1.3 Depth and Breadth of Data

While case studies can provide rich, detailed information about specific instances,
they may not capture the full range of errors and challenges faced by novice
programmers [42]. The mixed-methods approach, as described by Creswell[35],
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adopted in this study enabled researchers to collect and analyze data from a large
quantity of exam submissions. This allowed for a more comprehensive analysis
of the errors made by students, capturing both the depth and breadth of the
programming challenges faced by the study population [36].

3.1.4 Efficiency and Resource Allocation

Conducting a case study can be time-consuming and resource-intensive, requiring
researchers to collect, analyze, and interpret large amounts of data from a single
or few instances. The mixed-methods approach used in this study allowed for
more efficient data collection and analysis, as the Python program with unittest
framework automated the process of identifying and logging errors made by students.
By leveraging the available data and technology, the researchers were able to
allocate their time and resources more effectively, focusing on analyzing the data
and deriving valuable insights for programming education.

3.1.5 Validity and Credibility

The mixed-methods approach used in this study facilitated data triangulation,
enhancing the credibility and validity of the research findings. By using both
quantitative and qualitative methods to collect, analyze, and interpret data, researchers
were able to cross-validate their findings and draw more robust conclusions about
the programming errors made by novice programmers. In contrast, a case study
may not provide the same level of data triangulation, limiting the potential for
cross-validation and increasing the risk of bias in the research findings.

In conclusion, the mixed-methods approach employed in this study offered
several advantages over a case study, including increased generalizability, a more
comprehensive understanding of the programming errors made by novice programmers,
improved efficiency and resource allocation, and enhanced credibility and validity
of the research findings. By using this approach, researchers were able to provide
valuable insights for programming education that can inform the development of
targeted instructional strategies and interventions to support novice programmers.

3.2 Literature Review

There are several methods and strategies one can employ when performing a
literature review. Perhaps the most common among them being narrative, integrative,
systematic or meta-analysis, as mentioned by Snyder [43]. We tried, to the best
of our ability, to do a systematic review in order to attempt to identify, evaluate
and interpret all available relevant research. The reason for this is because the
literature study itself was a major part of this project so we wanted to do it
thoroughly. We performed the review with a simplified version of the guidelines
described by Kitchenham and Charters [44]. The reason we chose to follow their
guidelines was because they were specified for Software Engineering and therefore
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a good fit. By creating our research questions and a simple review protocol, as seen
below, we tried to cover all available relevant research and review it.

Review protocol:

1. Perform a search with a suitable search query on either Oria NTNU or Google
Scholar.

2. Read the headings from the resulting articles from the search.
3. Read the abstracts of the articles with related headings.
4. Read the articles with related abstracts.

The initial search gave a lot of hits meaning we had to have some requirements
for the headlines to filter out the most relevant articles early on in the process.
Initially, any headline, from the predefined search queries, including any form of
the words; error, mistake, misconception or misunderstanding made it to the next
step of the protocol. However, after realizing that this might cause us to miss a lot
of relevant literature, we repeated the search process, adding new articles to the
next step of the protocol, solely based on our own judgement.

3.2.1 Finding Papers

To find good papers to include in a literature review, it is important to have a good
search query encompassing the most important aspects of the research question.
As the intention is to perform research on common programming mistakes made
by programmers in Java or Python, it is natural to include the key words common,
errors, programming and Java/Python when searching. In addition, as we are
looking for novice programmers, we can include words such as beginner or novice.
We also intend to research the errors made in an academic computer science
course, we need to include key words such as students, computer science, or
university to the search query. Combining these key words in to different search
queries gives many results containing relevant papers which can be used in the
literature review and analysis. Some examples of said search queries can be seen in
the list below. In order to come as close to a systematic review as possible we made
multiple searches with slight altercations. These altercations could be different
synonyms to "error", removing words like "student" and "computer science" from
the query entirely or adding new words like "coding". Most searches were made
on Google Scholar as we feel like it covers most research in general.

Example search queries:

• "Frequent Java errors made by beginner computer science students"
• "Common Python mistakes made by novice programmers"
• "Novice programming mistakes"
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3.3 Data Collection and Analysis

Sample Size and Selection: In this study, a total of 3,637 exam submissions were
analyzed, which were collected from three separate instances: an unsupervised
home exam in 2021 (H21) with 2,105 submissions, and two supervised on-campus
school exams in 2022 (S22) with 1,261 submissions from the morning session and
271 submissions from the evening session. The selection of exam submissions for
analysis was based on a stratified random sampling technique to ensure that the
sample was representative of the novice programming students at the Norwegian
University of Science and Technology (NTNU). The stratification was done according
to the different instances (H21, S22 morning, and S22 evening) to account for
potential variations in student performance and exam conditions. This sampling
method provided a diverse and robust sample of exam submissions, which allowed
for a more comprehensive understanding of the programming errors made by
novice programmers at NTNU. The large sample size and the careful selection
process strengthened the generalizability of the study findings, contributing to
the validity and credibility of the research results. Further information regarding
the specific exams, their corresponding tasks, and the suggested solutions can
be found in the appendices of this document. The appendices provide an in-depth
overview of the problems students were asked to solve during these examinations,
offering readers additional context for understanding the error analysis. By examining
the tasks and the proposed solutions, readers can gain a deeper comprehension of
the complexity and the requirements of the exam submissions, thus contributing
to a more nuanced understanding of the novice programming students’ challenges
at the Norwegian University of Science and Technology (NTNU).

Exam Instance Submissions Location Duration Tasks Aids
H21 2,105 At home 4 hours 11 All aids available

S22 Morning 1,261 On-campus 4 hours 3 Inspera browser
S22 Evening 271 On-campus 4 hours 3 Inspera browser

Table 3.1: Sample size and selection of exam submissions for analysis

3.3.1 Comparing Java Results

In order to provide a comprehensive understanding of the common programming
errors and difficulties faced by students, the results from a separate study on Java
exam submissions at the Norwegian University of Science and Technology (NTNU)
will be used as a point of comparison and to supplement the findings of this
study. This Java study, titled "Common mistakes made by novice programmers in
Java" (Bjerkeset, Cook, 2023), was conducted by the same authors, Ole-Christian
Bjerkeset and Sigmund William Cook, under the supervision of Guttorm Sindre.
The study focused on a manual review of 20 Java exam submissions, examining
the frequency of various error categories and providing valuable insights into the
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challenges faced by novice Java programmers at NTNU.
By comparing the error frequencies and categories observed in the Python

scripts from this study with the results obtained for Java submissions, we can
gain valuable insights into the general programming difficulties faced by students,
regardless of the programming language used. This integration allows us to identify
commonalities and differences in the types of errors and challenges experienced
by students across different programming languages.

This comparative analysis can potentially reveal patterns and trends that may
be language-specific or universally present across programming languages. Furthermore,
the inclusion of Java results in the methodology chapter can help in identifying
areas where targeted interventions and support might be needed to assist students
in overcoming their programming challenges, thereby contributing to their overall
learning experience and success in computer science courses.

Figure 3.1: Example of a test case

Figure 3.2: Example of code

In the Java study conducted by the same authors[1], a code example was
provided to illustrate common errors encountered by students (see Figure 2). In
this example, an error was found in the test
testIsMoreEffectiveThanLimitWithoutAnySick(), and incorrect output occurred in
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testIsMoreEffectiveThanLimit() and testIsMoreEffectiveThanLimitAllSickWithVaccine().
Upon selecting the error, the message "ArithmeticException / by zero" was displayed,
indicating that the code attempts to divide by zero within the isMoreEffectiveThanLimit()
function, which results in an undefined value and an error. Further examination
of the code revealed that the root cause of the error was the incorrect usage of
types. The candidate divided an int value by a double value, which produced
an unexpected value when calculating the output. Fixing this error by changing
the value to double resolved the issue, but did not address the incorrect logic
used when calculating vaccine efficiency. According to the task instructions, the
candidate should have returned the effectiveness based on the formula "1 - (number
of people that received the vaccine and got sick / number of people that got
sick)". In this example, the student encountered difficulties in understanding and
applying the correct types and logic, which aligns with the findings of common
errors identified in the larger Java study.

3.3.2 Manual Analysis of Python

In order to gain a deeper understanding of the common errors and misconceptions
among novice programmers in Python, we will employ the same manual analysis
method used in the Java study [1]. In the Java study, the authors analyzed the
exam results of 20 students studying the course TDT4100 at the Norwegian University
of Science and Technology (NTNU). These exams were written in Java and were
graded by the lecturers. The authors identified the most common errors made
by the students in their exam answers, compiled a list of these errors and their
respective frequencies.

The authors of the Java study also conducted a manual review of the first task
in 20 exam submissions that contained errors. These submissions were selected
randomly. The data contained exam submissions from students with the project
files, as well as a series of tests which had been performed on the students’ code.
These tests checked the code for the correct output and outputted an error message
or exception if the code was incorrect. The areas where the tests failed or ran into
an error were manually reviewed, and all errors, including submissions where
multiple errors occurred, were categorized based on the errors found.

Following this similar approach in our study, we hope to provide comparable
insights into the common errors made by students learning Python. This will allow
us to better compare the findings from both programming languages and assess
any similarities or differences in the challenges faced by new programmers.

Similar to the Java study, we will carefully review each Python submission to
identify errors and classify them according to their nature and severity. Examples
of errors we will be looking for include syntax errors, logic errors, incorrect use
of data types, and issues with control structures. During the analysis, we will pay
close attention to cases where multiple errors might be present, as well as the
underlying misconceptions that may have led to the errors.

Please note that this data is not meant to represent the overall performance of
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students in these exams, but rather to shed light on common error patterns and
their prevalence. Through this analysis, we aim to identify common error patterns,
which can guide future teaching strategies and inform students about potential
pitfalls to avoid during programming tasks. Furthermore, this analysis can aid in
the development of educational resources and support materials, with a focus on
addressing the most frequently encountered errors.

It is important to note that when running a Python program, the code execution
halts at the first instance of an error. Consequently, in situations where multiple
errors are encountered, the error message stops the program and only the first
error is recorded in the log. This means that a student could have mostly correct
code, but a simple typing mistake can result in the same error message as that
of a student who has misunderstood the programming concept as a whole. By
paying close attention to multiple errors and misconceptions during the analysis,
we can gain a more comprehensive understanding of the challenges faced by
novice programmers.

The manual analysis for this study was conducted on a carefully chosen subset
of Python exam submissions from NTNU students. The data used in the analysis,
as depicted in Table 4.11, was collected from a sample of examination submissions
from three distinct NTNU exams that were held in the autumn semesters of 2021
and 2022. Notably, the 2021 exam was a home exam, while the 2022 exams were
school exams.

To address the selection process more specifically, it’s important to note that
while the selection incorporated elements of randomness, it was not entirely random.
It was recognized early in the process that selecting an excessively weak or excessively
strong student’s submissions would not provide valuable insights for the purpose
of this study. Therefore, submissions that were almost blank or almost entirely
correct were deemed unsuitable and excluded from the selection pool.

Instead, the selection process aimed to sample a representation of students
who demonstrated a range of abilities, but who also exhibited a meaningful number
of errors. This approach allowed for a more targeted and insightful examination
of the types of errors that novice programmers tend to make. Consequently, while
the selection process did involve random elements, it was constrained by the
pre-established condition that the selected submissions should be of substantive
interest and value to the study.

The total number of submissions sampled per exam set were as follows: 33
submissions were analyzed from the H21 exam set, and 9 submissions each from
the S22Morgen and S22Kveld exam sets. This totals to 51 submissions across
the three exam sets. The errors in these submissions were then categorized and
quantified, with the results presented in Table 4.11, 4.12 and 4.13.

Through this analysis, we aim to identify common error patterns, which can
guide future teaching strategies and inform students about potential pitfalls to
avoid during programming tasks. Furthermore, this analysis can aid in the development
of educational resources and support materials, with a focus on addressing the
most frequently encountered errors. One example of a Python code error identified
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during the manual analysis is the following:

Code listing 3.1: Python example with errors

def alfa(streng, tall):
if int != 0:

return streng.max()
else:

return streng.min()

This code contains multiple errors, which we can break down in detail as
follows:

1. In the conditional statement if int != 0, the name int actually refers to
a built-in Python function for converting values to integers. The condition
should instead check if the variable tall is not equal to zero. The correct
statement would be if tall != 0.

2. The streng.max() and streng.min() methods do not exist for strings in
Python. Instead, the programmer likely intended to find the maximum or
minimum character in the string based on their Unicode code point. To
achieve this, the built-in Python functions max() and min() should be used.
The correct statements would be return max(streng) and return min(streng).

After identifying and correcting these errors, the fixed code would look like
this:

Code listing 3.2: Corrected Python example

def alfa(streng, tall):
if tall != 0:

return max(streng)
else:

return min(streng)

During the analysis, we will take note of the frequency and prevalence of each
error type, as well as any patterns or trends that emerge in the students’ code. The
findings from this manual analysis will then be compared to the results obtained
from the Java study to determine if there are any commonalities in the types
of errors encountered by novice programmers, regardless of the programming
language being used.

By using the same manual analysis method for both studies, we aim to ensure a
consistent and reliable approach to identifying and understanding the challenges
faced by new programmers. This will provide valuable insights for educators and
curriculum developers, enabling them to design more effective learning resources
and support for novice programmers.

3.3.3 Data Visualization

Data Visualization: In our study, we opted for tables and pie charts to effectively
communicate the findings and help readers better understand the patterns and
trends in programming errors made by novice programmers. Tables presented
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a clear and organized way to display the data, allowing for easy comparison of
error types and frequencies across different programming concepts. Pie charts, on
the other hand, provided a visual representation of the proportion of each error
type within the overall dataset, enabling readers to quickly grasp the relative
prevalence of specific errors made by students. By incorporating tables and pie
charts into our study, we successfully conveyed the insights gained from our research,
emphasizing the importance of targeted instructional strategies in addressing the
challenges faced by novice programmers.

Python Program Execution and Log File Generation

The Python program, designed with unittests, was executed on each of the Python
files submitted by the students. This automated process ensured consistent and
unbiased error identification across all submissions. Upon execution, the program
generated a log file containing the results of the unittesting process for each
submission. These log files served as the primary data source for both the qualitative
and quantitative analyses in the study.

The code and analysis scripts provided in the GitHub repository https://
github.com/sigmundcook/Master_results are specifically tailored for the exams
under investigation in this study. They are not designed as a general tool and are
not directly applicable to other exams or programming assessments. The customized
nature of the code enables a thorough examination of the unique challenges faced
by novice programmers in the context of these specific exams.

Error Identification and Categorization

The log files were analyzed to identify the errors made by novice programmers
during the exam. Errors were categorized using the categories assigned by Pythons
unittesting library. This categorization enabled researchers to analyze the data
more effectively and identify patterns and trends in the types of errors made
by students. Moreover, it provided a systematic framework for understanding
the challenges faced by novice programmers and informed the development of
targeted instructional strategies to address these issues.

3.3.4 Categorising Data

When the data is collected we will categorize the data. Python’s unittesting categorises
errors by default. Categorizing data using Python’s unittest categories can provide
a number of benefits in terms of identifying and addressing common coding issues,
as well as providing targeted feedback and instruction to students. Here are some
reasons why it is good to categorize data using Python’s unittest categories:

• Provides a standardized framework: Utilizing Python’s unittest categories
for error categorization provides educators and programmers with a standardized
framework. This approach ensures consistency in identifying and addressing
common coding issues.
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• Facilitates targeted instruction: Categorizing errors allows educators and
programmers to identify common issues that students encounter. This information
can be used to provide targeted instruction and resources to help students
understand programming concepts and improve their overall performance.
• Enables efficient debugging: Categorizing errors also helps streamline the

debugging process. Programmers can quickly identify the type of error that
has occurred, reducing the time and effort required for troubleshooting and
making corrections.
• Supports continuous improvement: Analyzing the types and frequency of

errors in programming tasks enables educators and programmers to identify
areas where students may be struggling. This knowledge can be used to
adjust the curriculum or instruction, supporting continuous improvement
and ensuring the continued relevance and effectiveness of programming
education.

Overall, categorizing data using Python’s unittest categories can help to streamline
the programming education process, provide targeted instruction, and support
continuous improvement. By identifying and addressing common coding issues,
students can gain a deeper understanding of programming concepts and become
more confident and capable programmers.

To better understand the different types of errors that can occur in Python,
let’s delve into some common categories, detailing the circumstances under which
each error might be raised:

• AssertionError occurs when an assertion made in the code fails. Assertions
are statements in the code that are used to test for a specified condition.
Assertions are commonly used to test preconditions, postconditions, and
invariants in the code. For example, an assertion might be used to test that
a variable is within a certain range or that a function returns a specific value.
• TypeError occurs when the code attempts to perform an operation on incompatible

data types or when using an unsupported operator. For example, trying to
multiply a string and an integer, or attempting to use the append method
on an integer object will raise a TypeError.
• ValueError occurs when a function or method is passed an argument of

the correct type but with an inappropriate value. For example, passing a
negative number to a function that only accepts positive integers will raise
a ValueError.
• AttributeError occurs when the code attempts to access an attribute of an

object that does not exist. For example, if a variable is not an instance of a
class and an attempt is made to access one of its attributes, an AttributeError
will be raised.
• IndexError occurs when the code attempts to access an index in a sequence

(e.g., a list or string) that is out of range. For example, if a list contains
only three elements and the code attempts to access the fourth element, an
IndexError will be raised.
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• KeyError occurs when the code attempts to access a dictionary key that does
not exist. For example, if the code attempts to access a value in a dictionary
using a key that is not present in the dictionary, a KeyError will be raised.
• NameError occurs when the code attempts to reference a variable or function

that does not exist or has not been defined. For example, if the code attempts
to use a variable that has not been assigned a value or a function that has
not been defined, a NameError will be raised.
• SyntaxError occurs when the code violates the rules of the Python syntax,

such as missing a colon or parenthesis. For example, if a colon is omitted in
a function definition, a SyntaxError will be raised.
• IndentationError occurs when the code contains incorrect indentation or

spacing. In Python, whitespace is used to indicate blocks of code, and incorrect
indentation can cause errors. For example, if a line of code is not properly
aligned with the rest of the block, an IndentationError will be raised.
• ImportError occurs when the code attempts to import a module that does

not exist or cannot be found. For example, if the code attempts to import a
module that has not been installed or is not in the current working directory,
an ImportError will be raised.

3.3.5 Data Analysis

The data collected from the log files was analyzed to identify the errors made
by novice programmers at NTNU. The errors were categorized by programming
concept, and the frequency of each error was calculated. The data was also analyzed
to identify any patterns or trends in the types of errors made by novice programmers.

Quantitative Analysis

The cornerstone of the quantitative analysis was the application of descriptive
statistics to present a detailed account of the error occurrences. The data from
Python’s unittest framework served as the primary dataset for this exploration.
This statistical approach facilitated the clear summarization of the error frequency
and distribution across the various categories in the dataset. Not only did this
allow for an understandable representation of the information, but it also highlighted
patterns and trends in the numerical data that could otherwise remain obscure.

By scrutinizing the frequency of each error category, researchers could pinpoint
the recurring errors made by novice programmers. These findings provide an
invaluable insight into the areas where new programmers typically face difficulties.
Moreover, by comparing these frequencies between the home exam of 2021 and
the regular exams of 2022, significant differences in the types of errors made in
each scenario were exposed. This comparative approach offers a more dynamic
understanding of the learning curve and possible effect of the exam environment
on the students’ performance.
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3.3.6 Qualitative Analysis

Complementing the quantitative findings, qualitative analysis was deployed to
add depth to the understanding of the types of errors made by novice programmers.
The qualitative approach aimed to unravel the hidden themes and recurring patterns
that might be missed by a purely numerical analysis. The raw data for this examination
were the log files, containing details of every error occurrence.

The analysis began with a thorough review of these logs, involving a manual
search for patterns and trends. This process demanded meticulous attention to
detail, as the objective was not only to identify the errors but also to discern any
underlying issues that might be leading to these errors.

An example of this is that among the major themes that emerged, we found a
consistent struggle with syntax errors among novice programmers. This suggests
that many students may not be fully familiar with the language’s syntactic rules,
highlighting a potential area for increased instructional focus. Furthermore, another
common struggle was related to the use of loops and conditional statements. This
could be indicative of a challenge in grasping fundamental programming logic
and could signal a need for further pedagogical emphasis on these concepts.

In sum, this multifaceted approach of employing both quantitative and qualitative
analysis methods allowed for a more comprehensive and nuanced understanding
of the difficulties novice programmers face while learning Python. This synthesis
of findings stands to inform and enhance educational strategies in programming
instruction.

3.3.7 Python Script Development

The Python script used in this study was developed to analyze the exam submissions
from students who study programming at NTNU. The script was designed to
extract the code from a large CSV sheet, run unittests on the code, and log the
results of the unittests to a CSV file containing the students’ errors.

The first step in developing the script was to identify the key programming
concepts that novice programmers at NTNU typically struggle with. Using this
information, the research team then developed a set of unit tests for each programming
concept. The unit tests were designed to identify common errors made by novice
programmers and were based on real-world examples of code that had been
previously submitted by students.

Once the script was developed, it was used to analyze the exam submissions
from students who study programming at NTNU. The script extracted the code
from the CSV sheet and ran the set of unit tests on the code. The results of
the unittests were then logged to a CSV file containing the students’ errors. The
CSV file was designed to be easily readable, with each row representing a single
error and columns indicating the programming concept and specific error that was
made.
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3.3.8 Ethical Considerations

The principal ethical consideration in this study pertains to the protection of
participants’ privacy. To uphold this, all data employed in this study was already
anonymized prior to the authors receiving it, ensuring the integrity of the privacy
of the participants. The researchers never had access to any identifiable features,
such as names, student IDs, or emails. The Python program was designed to only
collect data on the errors made by the participants, and no personally identifiable
information was collected or stored.

The anonymity of the participants is crucial to protect their privacy and to
ensure that the study is conducted in an ethical manner. The data collected from
the log files was analyzed in a way that ensures that individual participants could
not be identified. This means that the data collected in this study was combined
and presented in a way that did not allow for individual participants to be identified.
Instead of looking at individual student data, the researchers combined the data
so that it shows the overall patterns and trends in the errors made by novice
programmers.

This approach helps protect the privacy of the participants and ensures that
their personal information is not shared or used in a way that could potentially
identify them. Additionally, presenting data in an aggregated form can be useful
in identifying broad patterns and trends, which can be valuable in developing
effective teaching and learning strategies for programming courses at NTNU.

3.3.9 Conclusion

In conclusion, the methodology used in this study allowed for the development of
a Python script that automatically unittested a large number of exam submissions
from novice programming students at NTNU. The results of the study provided
valuable insights into the common errors made by the students and their overall
performance. The script developed in this study can be used as a tool for automating
the assessment of programming assignments, which can save time and resources
for instructors.
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Chapter 4

Results and Findings

In this results section, we present data on the frequency of errors made by students
in programming exams. Our analysis focuses on the 24 most frequent errors,
presented in a table. However, we also consider the total number of errors within
each category, including those that occur less frequently.

We begin by providing an overview of the errors made by students and the
frequency with which they occurred. We present a table that lists the 24 most
common errors, along with the number of times each error was made by students.
These errors are categorized by type, such as index errors, assertion errors, type
errors, name errors, among others.

Finally, we consider the total number of errors within each category, including
those that occur less frequently. By doing so, we can gain a more complete understanding
of the distribution of errors and identify any additional trends or patterns that may
be relevant to improving programming education.

Overall, this results section provides a comprehensive analysis of the frequency
and types of errors made by students in programming exams. The information
presented will be useful for identifying areas where students may be struggling
and for tailoring programming education to better address their needs.

4.1 Summarising Errors

Tables 4.1, 4.2, and 4.3 provide an overview of the unique errors encountered in
the Home exam autumn 2021, Morning School exam autumn 2022, and Evening
School exam autumn 2022, respectively.
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Unique Errors Home exam autumn 2021 count
NameError("name ’oppdater_matvare’ is not def... 669
NameError("name ’finn_pris’ is not defined")]] 479
AssertionError(’0 != 99’)]] 284
IndexError(’list index out of range’)]] 266
IndexError(’string index out of range’)]] 231
AssertionError("’odde’ != ’des’- odde+ de... 146
AssertionError("’des’ != ’odde’- des+ odd... 145
TypeError("’>’ not supported between instance... 110
AssertionError(’None != 0’)]] 106
AttributeError("’int’ object has no attribute... 103
AssertionError(’59 != 0’)]] 86
AssertionError(’1 != 2’)]] 80
AssertionError(’None != 1’)]] 80
NameError("name ’vare’ is not defined")]] 79
AssertionError(’None != []’)]] 71
AssertionError("’1’ != 1")]] 62
TypeError("unsupported operand type(s) for -:... 52
NameError("name ’vis_priser’ is not defined")]] 51
TypeError("’int’ object is not iterable")]] 50
NameError("name ’oppdater_beholdning’ is not ... 43
TypeError("’int’ object is not subscriptable")]] 43
NameError("name ’matvare’ is not defined")]] 42
NameError("name ’matvarer’ is not defined")]] 37
AssertionError("’0’ != 99")]] 35

Table 4.1: Counts of Unique Errors

4.1.1 Interpretation of Results Home Exam Autumn 2021

Table 4.1 provides a breakdown of the unique errors encountered during the
Home Exam in Autumn 2021, indicating the frequency of each error type.

• The most common error is NameError("name ’oppdater_matvare’ is not
defined"), with 669 instances. It’s important to note that the high frequency
of this error could be inflated. The error indicates that the function or variable
named oppdater_matvare was frequently referenced but was not defined or
imported correctly. This error could arise from the task’s setup, which allows
students to reference another function that may not have been correctly
imported into the unittest environment. It’s also worth noting that a contributing
factor could be the typical practice in exams where there is a progression
of subtasks where subsequent tasks build on the code from previous tasks.
In this case, the question states that students may assume that a function
sought in the previous task works as specified, even if they haven’t successfully
solved that task. This is done to avoid follow-up errors, for instance, when a
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student who fails to solve 3(a) but would be capable of solving 3(b) and 3(c)
using a function from 3(a), still has an opportunity to accomplish these tasks
instead of being penalized too harshly for failing a single subtask. Therefore,
there could be students who did not solve the function from the previous
task but were still allowed to solve the current function and would receive
a score for it. An example of this can be the following. The task 3.3, as
described in the exam, required the students to update the inventory of a
store given a list of changes in the format [[item_name, quantity],...].
Here is a suggested solution to the problem:

def oppdater_beholdning(beholdning, endringer):
for endring in endringer:

item, quantity = endring
beholdning[item] += quantity

return beholdning

This code iterates over the list of changes, unpacks each change into an item
name and a quantity, and updates the corresponding item’s quantity in the
inventory. The most common error found in this task was the NameError
stating "name ’oppdater_matvare’ is not defined".
However, this correct code would produce the NameError, because the function
oppdater_matvare is not imported into the unittest script. In order for the
unittest to use this function, the code must define it within the script itself or
correctly import it if it’s defined elsewhere. The high frequency of this error
can be attributed to the task’s requirements and the exam environment’s
setup, where the student could assume that functions written in a seperate
task were allowed to be used in another task.
• The second most frequent error, NameError("name ’finn_pris’ is not defined"),

follows a similar trend to the prior example. It also appears to be affected by
the setup of the task and the testing environment, as it occurred 479 times.
• Various types of AssertionError are also quite common, signifying that

there are several instances where conditions assumed to be true in the code
were not met. This type of error is usually found when assert statements are
used for debugging. The discrepancies between expected and actual values
during the execution of the code hint at potential misunderstandings about
the expected program behavior.
• The IndexError often occurs when there is an attempt to access an index

that is out of range in a list or a string. High frequencies of this error,
such as IndexError(’list index out of range’) with 266 instances and
IndexError(’string index out of range’) with 231 instances, suggest
that students may have struggled with managing index boundaries in data
structures.|
• Multiple instances of TypeError suggest that students applied operations

or functions to objects of inappropriate types. This could indicate confusion
about type compatibility and the correct use of certain functions and operations.
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Unique errors morning School exam autumn 2022 count
AssertionError(’False is not true : False’)]] 554
IndexError(’list index out of range’)]] 50
AssertionError(’False is not true : True’)]] 47
NameError("name ’lenght’ is not defined")]] 43
NameError("name ’np’ is not defined")]] 41
TypeError("’int’ object is not iterable")]] 38
ValueError(’The truth value of an array with ... 34
IndexError(’index 4 is out of bounds for axis... 33
IndexError(’arrays used as indices must be of... 33
AssertionError(’None is not true : False’)]] 30
AssertionError(’None is not true : True’)]] 24
IndexError(’index 5 is out of bounds for axis... 22
AssertionError(’0 != 11’)]] 20
AssertionError(’3 != 11’)]] 19
IndexError(’pop index out of range’)]] 19
NameError("name ’length’ is not defined")]] 17
IndexError(’index 4 is out of bounds for axis... 17
AssertionError(’0 is not true : 3’)]] 17
AssertionError(’None is not true : 3’)]] 16
AssertionError(’4 != 11’)]] 14
AssertionError(’None != 11’)]] 12
AssertionError(’7 != 11’)]] 12
AssertionError(’6 != 11’)]] 11
TypeError("’NoneType’ object is not iterable")]] 11

Table 4.2: Counts of Unique Errors

4.1.2 Interpretation of Results Morning School Exam Autumn 2022

Table 4.2 enumerates the unique errors encountered during the Morning School
Exam in Autumn 2022, with details of each error’s frequency.

• The most frequent error was AssertionError(’False is not true : False’),
with 554 occurrences. This error suggests that a certain condition was expected
to be true in the student’s code but evaluated to false. The frequency of this
error could indicate a general misunderstanding of Python’s boolean logic
or that a common question in the exam was frequently misunderstood.
• IndexError(’list index out of range’) occurred 50 times, which shows

that a common problem was mishandling of list indices. This error is raised
when a non-existent index is accessed in a list.
• NameError("name ’lenght’ is not defined") and NameError("name ’length’
is not defined")] were other common errors, with 43 and 17 instances
respectively. These errors suggest that students may have attempted to use a
variable or function that wasn’t defined or was misspelled. The high frequency
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of these errors indicates a potential difficulty in understanding or applying
Python’s syntax and variable naming conventions.
• With 41 instances, NameError("name ’np’ is not defined") signifies that

many students were trying to use the numpy library without correctly importing
it.
• TypeError("’int’ object is not iterable") occurred 38 times. This error

often arises when there is an attempt to iterate over an integer, which isn’t
possible since integers are not iterable objects. This suggests that there
might be some misunderstanding regarding the data types that are iterable
in Python.
• The high occurrence of ValueError(’The truth value of an array with
more than one element is ambiguous. Use a.any() or a.all()’) and
IndexError(’arrays used as indices must be of integer (or boolean)
type’ indicate that students struggled with correct use of arrays, specifically
numpy arrays. The former error points towards an incorrect attempt to
check the truth value of an entire array, and the latter indicates misuse of
arrays as indices.
• AssertionError(’None is not true : False’) and other assertion errors

like AssertionError(’0 != 11’) indicate that students’ functions are not
returning the expected results.
• Lastly, TypeError("’NoneType’ object is not iterable") suggests that

the students attempted to iterate over a NoneType object, which isn’t iterable.
This could indicate an issue where students might have failed to handle
default or exceptional cases where a function could return None.
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Unique Errors evening School exam autumn 2022 count
IndexError(’arrays used as indices must be of... 11
AssertionError(’0 != 15’)]] 10
IndexError(’list index out of range’)]] 9
TypeError(’only integer scalar arrays can be ... 7
ValueError(’The truth value of an array with ... 6
AssertionError(’None is not true : M3’)]] 6
TypeError("’int’ object is not subscriptable")]] 6
TypeError("’int’ object is not iterable")]] 6
IndexError(’index 4 is out of bounds for axis... 5
NameError("name ’M3’ is not defined")]] 4
AssertionError(’0 is not true : 38.2’)]] 4
TypeError(’only size-1 arrays can be converte... 4
IndexError(’index 4 is out of bounds for axis... 4
TypeError("object of type ’int’ has no len()")]] 4
NameError("name ’i’ is not defined")]] 4
TypeError("’tuple’ object is not callable")]] 3
NameError("name ’true’ is not defined")]] 3
AssertionError(’None is not true : 38.2’)]] 3
AssertionError(’None != 15’)]] 3
AttributeError("’numpy.float64’ object has no... 2
UnboundLocalError("local variable ’sum’ refer... 2
TypeError("unhashable type: ’list’")]] 2
TimeoutError()]] 2
AssertionError(’8 != 15’)]] 2

Table 4.3: Counts of Unique Errors

4.1.3 Interpretation of Results Evening School Exam Autumn 2022

Table 4.3 presents the unique errors encountered during the Evening School Exam
in Autumn 2022, detailing the frequency of each error type.

• The most frequent error was IndexError(’arrays used as indices must
be of integer (or boolean) type’), with 11 occurrences. This error suggests
that the students might have used arrays as indices that weren’t of integer
or boolean type. This indicates a common misunderstanding regarding the
usage of array indices in Python, specifically in the numpy library.

import numpy as np
A = np.array([1, 2, 3])
indices = np.array([0.5, 1.5, 2.5])
print(A[indices])

In the example above, using a numpy array of float indices to index another
numpy array would result in the IndexError. Students need to ensure that
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they use only integer or boolean values for indexing arrays.
• The second most frequent error, AssertionError(’0 != 15’), and other

assertion errors indicate that the students’ functions didn’t return the expected
results. For example, the AssertionError(’0 != 15’) error suggests that
the output of a student’s function was 0 when the expected result was 15.
• Similar to the Home exam, IndexError(’list index out of range’) is

also prevalent in the Evening exam, with 9 instances. This error often suggests
a misunderstanding of how indexing works in Python, specifically the handling
of index boundaries in data structures.
• Multiple instances of TypeError, like TypeError(only integer scalar arrays
can be converted to a scalar index’) and TypeError("’int’ object
is not subscriptable")] indicate that students were not using the correct
data types for certain operations or functions. This points towards potential
gaps in understanding Python’s type system and the compatibility of different
data types with different operations and functions.
• The error ValueError(’The truth value of an array with ... indicates

a misunderstanding about the evaluation of arrays in boolean contexts.
Students seem to have been checking the truth value of an entire array,
which is ambiguous, instead of checking the truth values of the individual
elements or using numpy array methods like numpy.all() or numpy.any().
• Lastly, NameError like NameError("name ’M3’ is not defined")] and NameError("name
’i’ is not defined")] suggest that there were instances where students
attempted to use variables or functions that had not been defined in the
scope of their use.

4.1.4 Comparative Analysis of Errors Across Exams

In this section, we compare and contrast the nature and frequency of errors across
the Home exam Autumn 2021, the Evening School exam Autumn 2022, and the
Morning School exam Autumn 2022.

• The most common error in both the Home exam and the Morning School
exam was related to assertions. In the Home exam, students often encountered
errors when their code did not align with the expected results in the unittest
environment. This is due to incorrect logic or misunderstanding of the task.
This pattern was observed again in the Morning School exam with AssertionError(’False
is not true : False’). This error suggests that students had a misunderstanding
about Python’s boolean logic or the requirements of the question. On the
other hand, the most common error in the Evening School exam involved
incorrect handling of array indices.
• Both the Home exam and the Evening School exam frequently reported

NameError, which was commonly due to either the specific setup of the
exams or students’ misunderstanding of Python’s scope rules for variables
and functions. Students frequently referenced functions or variables that
weren’t appropriately defined or imported. While this error was less prominent
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in the Morning School exam, the discrepancy may be attributed to the exam
structure of the Home exam in 2021, where students were allowed to reference
functions written in previous tasks. This could potentially inflate the number
of NameErrors as a correct answer might still raise an error if the testing
environment does not have access to the referenced function. Thus, the
high incidence of NameErrors in the Home exam may not entirely reflect
students’ misunderstanding, but instead could be partially due to limitations
in the testing environment’s setup.
• TypeError and ValueError were common across all three exams, often

caused by misuse of data types and data structures. The prevalence of these
errors indicates a potential struggle among students in understanding and
applying Python’s type system, as well as confusion about the appropriate
use of various Python functions and methods.
• In both School exams, students encountered issues with handling array

indices, leading to IndexError. The high frequency of this error suggests
that managing index boundaries in data structures may be a common challenge.
• The Home exam and the Morning School exam saw errors related to an

undefined variable named ’length’ or ’lenght’, suggesting difficulties in managing
variable names and possibly, typos.
• The Morning School exam also highlighted the students’ struggles with correctly

importing and using the numpy library, as indicated by the error NameError("name
’np’ is not defined").

In conclusion, the unique error breakdown of these exams helps identify areas
of common difficulty among students, which include handling Python’s type system,
understanding boolean logic, managing index boundaries, and correctly defining
and using variables and functions. There are also issues related to the correct
import and use of external libraries like numpy. This analysis provides valuable
insights that could be used to better structure and focus Python learning materials
and instruction.

Sum of error categories Home exam autumn 2021 count
NameError 1853
AssertionError 1724
TypeError 611
IndexError 510
AttributeError 232
UnboundLocalError 57
ValueError 83
KeyError 45

Table 4.4: Caption
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Sum of Error Categories morning School exam autumn 2022 count
AssertionError 814
NameError 240
IndexError 181
TypeError 149
ValueError 46
AttributeError 41
UnboundLocalError 31
KeyError 0

Table 4.5: Sum of Error Categories

Sum of Error Categories evening School exam autumn 2022 count
TypeError 44
NameError 38
AssertionError 36
IndexError 31
AttributeError 10
UnboundLocalError 8
ValueError 7
KeyError 0

Table 4.6: Sum of Error Categories

4.2 Proportions of Error Categories in Different Exams

Error Category Home Exam 2021 School Exam Morning 2022 School Exam Evening 2022
NameError 1853 (36.4%) 240 (16.0%) 38 (21.8%)
AssertionError 1724 (33.8%) 814 (54.2%) 36 (20.7%)
TypeError 611 (12.0%) 149 (9.9%) 44 (25.3%)
IndexError 510 (10.0%) 181 (12.1%) 31 (17.8%)
AttributeError 232 (4.6%) 41 (2.7%) 10 (5.7%)
UnboundLocalError 57 (1.1%) 31 (2.1%) 8 (4.6%)
ValueError 83 (1.6%) 46 (3.1%) 7 (4.0%)
KeyError 45 (0.9%) 0 (0%) 0 (0%)
Total Errors 5095 1502 174

Table 4.7: Error Categories Proportions in Exams

4.2.1 Error Category Proportions in Different Exams

The table 4.7 provides a detailed breakdown of error categories and their proportions
in the Home Exam of 2021, and the Morning and Evening School Exams of 2022.
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Figure 4.1: Home Exam 2021
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Figure 4.2: School Exam Morning 2022
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Figure 4.3: School Exam Evening 2022

• NameError was most prevalent in the Home exam, constituting 36.4% of
all errors. This proportion was significantly higher compared to the Morning
School exam (16.0%) and the Evening School exam (21.8%). This could
be largely attributed to the structure of the Home exam, which allowed
students to reference previously defined functions in their solutions. If the
testing environment did not have access to these referenced functions, a
NameError was raised, likely leading to an inflated count in this category.
• AssertionError was most common in the Morning School exam, making up

over half of all errors (54.2%). This error was also prominent in the Home
exam (33.8%), but was less frequent in the Evening School exam (20.7%).
The high proportion of AssertionError in the Morning School exam might
indicate that students had a greater difficulty understanding the requirements
and constraints of the tasks, or that other errors were more prevalent, causing
the code to stop running.
• TypeError and IndexError were present across all three exams, but their

frequencies varied. TypeError was most prevalent in the Evening School
exam (25.%), followed by the Home exam (12.0%) and the Morning School
exam (9.9%). IndexError, on the other hand, was more common in the
Morning School exam (12.1%), compared to the Home exam (10.0%) and
the Evening School exam (17.8%). These errors often stem from incorrect
usage of data types and operations or inappropriate handling of data structures,
suggesting that these areas could be challenging for students.
• AttributeError, UnboundLocalError, and ValueError made up smaller proportions

of the total errors in all three exams. Their occurrences could indicate misconceptions
or misunderstandings about object properties, local/global scope, and function
parameters, respectively.
• KeyError was unique to the Home exam, where it constituted a minor proportion
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of total errors (0.9%). This error did not occur in either the Morning or
Evening School exams, suggesting that it might be related to the specific
tasks in the Home exam that involved handling dictionaries.

Task Errors Percentage of students made an error on this task
Oppgave 2a 269 12.80%
Oppgave 2b 131 6.23%
Oppgave 2c 639 30.41%
Oppgave 2g 310 14.75%
Oppgave 2h 637 30.32%
Oppgave 2i 514 24.46%
Oppgave 3.1 774 36.84%
Oppgave 3.2 15 0.71%
Oppgave 3.3 838 39.88%
Oppgave 3.4 538 25.61%
Oppgave 3.5 475 22.61%

Table 4.8: Sum of errors and percentage of students that made an error for each
task home exam 2021

Task Errors Percentage of students made an error on this task
Oppgave 1 372 29.49%
Oppgave 2 782 61.97%
Oppgave 3 353 27.99%

Table 4.9: Errors and error percentages for each task morning exam 2022

Task Errors Percentage of students made an error on this task
Oppgave 1 51 28.88%
Oppgave 2 29 20.74%
Oppgave 3 96 35.55%

Table 4.10: Errors and error percentages for each task evening exam 2022
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4.2.2 Manual Analysis of Python Code Results

Table 4.11: Results of manual analysis of Eksamen H2021

Error Description Count
Incorrect variable usage 12
Incorrect dictionary usage 3
Incorrect string manipulation 4
Incorrect function usage 3
Incorrect return usage 6
TypeError 5
ValueError 3
Incorrect list manipulation 2
Incomplete code 3
Incorrect return type 1
Total 39

Table 4.12: Results of manual analysis of Eksamen S2022 Morgen

Error Type Count
Incorrect variable usage in loop 1
Incorrect range for iteration 1
Incorrect usage of string/list methods 1
Naming errors (incorrect variable names, typos) 2
Incorrect logic (assertion, comparison) 1
Incorrect usage of quotes around variables 1
Incorrect index access (bounds, direction) 2
Incorrect array comparisons 1
Total 10

Table 4.13: Results of manual analysis of Eksamen S2022 Kveld

Error Type Count
Naming errors (incorrect variable names, typos) 4
Incorrect usage of parentheses 1
Incorrect iteration over the function 1
Incorrect variable usage 2
Incorrect variable for list index 1
Total 9

The results of the manual error analysis conducted on Python code submitted in
the exams for Eksamen H2021, Eksamen S2022 Morgen, and Eksamen S2022
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Kveld are summarized in Tables 4.11, 4.12, and 4.13, respectively.
During the Eksamen H2021 (Table 4.11), a total of 39 errors were identified.

It is important to note that the H2021 exam consisted of more tasks than the
subsequent exams, thereby giving rise to more opportunities for errors to occur.
The most common error was Incorrect Variable Usage with a count of 12, followed
by Incorrect Return Usage with a count of 6, and TypeError, which occurred 5
times. Other error categories, including Incorrect Dictionary Usage, Incorrect String
Manipulation, Incorrect Function Usage, ValueError, Incorrect List Manipulation,
and Incomplete Code, were also present but less common, with occurrences ranging
from 1 to 4.

In the Eksamen S2022 Morgen (Table 4.12), the total count of errors dropped
to 10. Naming errors, specifically incorrect variable names and typos, and Incorrect
Index Access (bounds, direction) became the most common errors, each with 2
occurrences. The rest of the errors, including Incorrect Variable Usage in Loop,
Incorrect Range for Iteration, Incorrect Usage of String/List Methods, Incorrect
Logic (assertion, comparison), Incorrect Usage of Quotes around Variables, and
Incorrect Array Comparisons, were spread evenly across the remaining categories
with a count of 1 each.

In the Eksamen S2022 Kveld examination (Table 4.13), the total number of
errors observed was 9. Naming Errors (incorrect variable names, typos) remained
the most common error, though the frequency decreased to 4 occurrences. Incorrect
Variable Usage errors increased slightly in this examination to 2 occurrences.
Other error types, including Incorrect Usage of Parentheses, Incorrect Iteration
over the Function, and Incorrect Variable for List Index, occurred once.

4.2.3 Java Results

In a parallel study conducted by the same authors[1], an analysis of common
mistakes made by novice programmers in Java was performed. The study focused
on 20 manually-reviewed submissions from students at the Norwegian University
of Science and Technology (NTNU). The results of the study are presented below
in Table 4.14 and can serve as a comparative reference to the current Python study.

The most frequent error observed among the Java submissions was "Incompatible
types" (14 occurrences), which refers to assigning a value of a different type to
a variable than it was declared as. The second most common error was "Use
== instead of .equals()" (5 occurrences), indicating the students’ struggle with
properly comparing object values. The third most common error was "No exception
thrown" (5 occurrences), which occurs when a student fails to include a try-catch
block in their code to handle potential exceptions.

Other common errors included "Incorrect calculation" (4 occurrences), "Incorrect
return" (1 occurrence), "Try catch error" (1 occurrence), "Incorrect logic" (1 occurrence),
"Undefined method" (1 occurrence), and "Incomplete code" (1 occurrence). These
results reveal a pattern of challenges faced by novice Java programmers, such as
type compatibility, proper use of comparison methods, and exception handling.
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Error Frequency
Incompatible types 14

Use == instead of .equals() 5
No exception thrown 5
Incorrect calculation 4

Incorrect return 1
Try catch error 1
Incorrect logic 1

Undefined method 1
Incomplete code 1

Table 4.14: Frequency of errors in Java submissions from the NTNU study

By comparing the Java results to the Python results from this study, we can
gain insight into the similarities and differences in the challenges faced by novice
programmers across different programming languages. This comparison may provide
valuable information for educators in designing more effective programming curricula
and support materials for students. The detailed implications of these findings,
specifically their ramifications for educational design in programming, will be
explored in the subsequent Discussion chapter, offering more thorough reflections
and elaborations on this crucial aspect.
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Chapter 5

Discussion

5.1 General Overview

Examining the unique errors from the home exam of Autumn 2021 and the morning
and evening school exams of Autumn 2022, several notable patterns become
apparent. These patterns elucidate the common challenges novice programmers
encounter, and differ according to the specific exam contexts.

5.1.1 Analysis of Autumn 2021 Home Exam

In the home exam of Autumn 2021, NameError, specifically related to undefined
functions such as "oppdater_matvare" and "finn_pris", was the most frequent error.
Importantly, these NameErrors often occurred due to unattempted tasks, resulting
in the absence of required function definitions. This trend doesn’t necessarily
suggest a misunderstanding of function definition or variable scoping. Rather,
it could be indicative of issues related to time management, understanding task
requirements, or foundational gaps in programming knowledge that deterred students
from attempting these tasks. However, several similar studies on novice errors in
Python identified NameError in the top two most common errors, further indicating
that novice programmers tend to make these mistakes on a regular basis [25–27].

5.1.2 AssertionErrors in Exam Patterns

Several AssertionErrors, such as ’0 != 99’ and ’None != 0’, also frequently occurred
during the exam. These errors indicate that students’ code ran without crashing
but the output was incorrect as per the task requirements. This suggests that while
students had a functional understanding of syntax to avoid run-time errors, they
faced challenges in achieving the correct logic or understanding the expected
outcomes of their code. This claim is supported by a similar study conducted
by Veerasamy et. al. on an introductory Python programming e-exam [24]. They
found that 69.2% of the students participating in the study made knowledge-based
errors, meaning their code contained logical fallacies.
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5.1.3 Analysis of Autumn 2022 Morning and Evening Exams

In the morning and evening school exams of Autumn 2022, AssertionErrors and
IndexErrors were the most frequent errors. AssertionErrors such as ’False is not
true’ and ’None is not true’ indicate that students’ code ran without crashing but
the output was incorrect as per the task requirements. The high frequency of
IndexErrors and TypeErrors signifies difficulties with complex data structures like
lists and arrays, suggesting a need for strengthening understanding and manipulation
of these structures. This claim is also supported by Veerasamy et. al.[24], as their
qualitative analysis found that "Students were not clear with index position and
referencing list elements" also suggesting the same need for strengthening the
students’ knowledge around complex data structures.

5.1.4 Concluding Observations

In conclusion, the analysis indicates that novice programmers are grappling with
challenges related to task interpretation, time management, logical reasoning,
understanding of complex data structures, and achieving the correct output for
given tasks. Therefore, effective pedagogical interventions should address both
technical programming skills and broader problem-solving strategies. These might
include a focus on understanding task requirements, managing time effectively,
and cultivating an in-depth understanding of data structures, alongside strategies
for debugging and validation of output.

5.2 Analysis of Error Categories Across Exams

Considering the sum of error categories from the home exam in Autumn 2021
and the morning and evening school exams in Autumn 2022, certain trends and
observations become clear:

5.2.1 Autumn 2021 Home Exam

In the home exam of Autumn 2021, the two most common error categories were
NameError and AssertionError. As discussed earlier, many NameErrors can be
attributed to unattempted tasks, where students did not create the required functions,
leading to these undefined name errors. On the other hand, the prevalence of
AssertionError suggests that students’ code often produced results that did not
match the expected output. This implies a certain proficiency in writing code that
runs without crashing, but also underscores difficulties in crafting correct logic or
understanding task requirements.

5.2.2 Autumn 2022 Morning Exam

In the Autumn 2022 Morning School exam, the recurring trend of AssertionError
being among the most common errors persisted, underscoring the difficulties students
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encounter when correctly implementing their code logic to fulfill task requirements.
However, there was a significantly lower incidence of NameError compared to the
home exam. This could indicate increased task engagement or improved skills in
defining functions. Another contributing factor could be the structure of the 2022
exams, which likely contained fewer tasks requiring students to utilize a function
from a previous task, thus reducing the opportunity for NameErrors to occur.

5.2.3 Autumn 2022 Evening Exam

In contrast, the evening school exam of Autumn 2022 showed a considerable
increase in TypeError and a decrease in both AssertionError and NameError. This
shift suggests that the challenges faced by students in this context may have been
more focused on correctly using and manipulating different data types, as opposed
to defining correct functions or achieving correct outputs.

5.2.4 Interpreting the Data of 2022 Evening and Morning Exams

When interpreting the data from the Autumn 2022 Morning Exam and the Autumn
2022 Evening Exam, it’s crucial to consider some notable elements that were
observed. The structure and the scope of topics covered in both exams were nearly
identical; this was because they were two versions of the same test for one class,
divided solely due to the limited seating capacity in the exam venue. To avoid
giving an undue advantage to the students taking the second session, the instructors
took intentional measures to ensure that the exams were as closely aligned as
possible, while avoiding the use of identical questions.

Moreover, efforts were made to ensure equivalent student strengths across
the two sessions, with a near-proportional representation of students from various
programs in each session. As such, one might anticipate similar performance across
these two sessions.

Regarding the Autumn 2022 Morning Exam, the trend of AssertionError being
among the most common errors persisted, further substantiating the difficulties
students encounter in correctly implementing their code to meet task requirements.
The NameError incidence was significantly lower compared to the home exam,
potentially suggesting better task engagement or improved skills in function definition.

Conversely, the Autumn 2022 Evening Exam demonstrated a considerable
increase in TypeError and a decrease in both AssertionError and NameError. This
shift may imply that students’ challenges in this context were more focused on
correctly manipulating and using different data types, rather than defining correct
functions or achieving the correct outputs.

However, it’s also worth considering that despite the random selection of students
from each group, the differences observed may be due to sampling effects. For
instance, the increased number of TypeErrors in one of the sessions could be
attributed to pure coincidence. Consequently, such factors should be considered
when interpreting the results.
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5.3 Error Distribution Across Tasks

Looking at the distribution of errors across different tasks in the Home Exam of
2021, and the Morning and Evening Exams of 2022, it is evident that certain tasks
posed more difficulties than others.

5.3.1 Task Challenges in Autumn 2021 Home Exam

In the home exam of 2021, we observed that certain tasks exhibited a higher error
rate than others. Specifically, "Oppgave 3.3" had a striking 39.88% of students
making errors, with "Oppgave 3.1" close behind at 36.84%. Moreover, "Oppgave
2c" and "Oppgave 2h" both saw error rates above 30%. The reasons behind these
heightened error rates can be multi-faceted, stemming from task complexity, required
skill levels, or clarity of instructions.

Upon closer examination, one distinguishing feature becomes evident. Task
3, which contained the sub-tasks with the highest error rates, presents a larger,
more complex problem for students to tackle. This contrasts with Task 2, which
is composed of numerous smaller, independent problems. The larger context of
Task 3 could introduce additional cognitive load for the students, thus resulting
in more errors.

Interestingly, during the analysis, we encountered a technical issue that further
complicated our understanding of the error rates. Many errors, specifically those
categorized as NameErrors, were not due to mistakes in the student’s code. Instead,
they were the product of limitations inherent to the testing framework utilized.
In python, interdependence between cells is common. A function defined in one
cell may be used in another, and students were allowed to apply this intercellular
logic in their solutions accross the different tasks in this exam. However, when
the student’s code was extracted for testing, this cell-to-cell context was lost.
The Python unittest framework, which we used to test the submissions, does not
support the import of functions across different files and directories. This resulted
in a NameError, despite the student’s code being theoretically correct within the
original notebook context. This means that the errors on task 3_1 and 3_2 are
inflated due to the tests recording an error message on code that is at the minimum
partially correct.

Aditionally, this exam contains a large quantity of assertionerrors. This error
category would likely be much larger if the presence of NameErrors was not so
large. The task "Oppgave 3.1" asks students to write a function that manipulates
and returns certain data. Here’s an example of how the correct implementation
might look:

def finn_pris(matvarer, let_etter):
for vare in matvarer:

if let_etter == vare[0]:
return vare[1]

return 0

57



5.3.2 Task Challenges 5.3 ERROR DISTRIBUTION ACROSS TASKS

In this task, the function finn_pris is meant to traverse a list of items matvarer,
each represented as a list of an item name and its price. The function is supposed
to return the price of the item specified by let_etter if it exists in the matvarer list,
and return 0 if the item doesn’t exist.

When students attempt this task, a common error that leads to an AssertionError
is not correctly handling the case when the item is not found in the list. For
example, if they forget to include the return 0 at the end of the function, the
function will return None by default when the item is not found. This return value
will not match the expected output of 0, resulting in an AssertionError during
testing.

Another potential pitfall in this task is the incorrect comparison of the item
name with the entire vare sublist (which includes the item name and the price),
rather than just with the item name (vare[0]). This mistake can also lead to the
function returning None instead of 0, again causing an AssertionError.

In conclusion, "Oppgave 3.1" can lead to a high number of AssertionErrors
due to common oversights in handling specific cases. Proper error handling and
attention to detail are crucial for passing the automated tests and successfully
solving such tasks.

These findings warrant further research. The potential role of task instructions
and the comparative structure of the tasks—Task 2’s isolated problems versus Task
3’s larger case—could be investigated in greater depth. By exploring these aspects
more thoroughly, we can gain a more nuanced understanding of the challenges
faced by novice programmers at NTNU.

5.3.2 Task Challenges in Autumn 2022 Morning Exam

In the morning exam of 2022, "Oppgave 2" stood out with 61.97% of students
making an error, indicating a substantial difficulty faced by the majority of students.
This task, potentially representing a complex problem or a difficult-to-grasp concept,
may warrant a deeper exploration to identify the root cause of the common errors
and address them in future teaching.

This task’s main challenge seems to lie in its multi-layered conditions. It required
students to correctly implement control flow statements and possess a robust
understanding of Python’s comparison operators.

For clarity, the task was to create a Python function that checks whether a
football field is within acceptable size limits (in meters). Note that stricter size
constraints apply for international matches compared to national ones.
Below is the solution to the task:

def ok_size(length, width, intl):
if intl:

return 100 <= length <= 110 and 64 <= width <= 75
else:

return 90 <= length <= 120 and 45 <= width <= 90
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The function ok_size() takes three parameters: the length and width of the
football field, and a boolean value indicating whether the game is international.
The function should return True if the dimensions of the field are within the
acceptable range based on the game type, and False otherwise.

Common pitfalls that students might encounter in this task include:

• Misunderstanding of the requirements: The task involves multiple conditions
for the length and width depending on whether the game is international or
not. Misunderstanding or misinterpretation of these conditions could lead
to incorrect logic in the function.
• Incorrect use of comparison operators: Python’s chained comparisons (e.g.,

100 <= length <= 110) might be unfamiliar to some students, leading
to potential errors in their implementation. However, it’s worth noting that
the students were not specifically required to use chained expressions. They
could have also written conditions such as ’length >= 100 and length <=
110’ or even split the decision across several ’if’ statements instead of using
just one. Therefore, it might be more precise to suggest that students may
have had problems with formulating complex conditions, rather than attributing
mistakes specifically to the use of chained expressions.
• Edge case handling: Students might struggle with handling edge cases. For

instance, a field size that is exactly on the limit is acceptable, but one that
is even slightly outside the limit is not.

As such, this task tests not only the students’ understanding of control flow
and comparison operators but also their attention to detail and ability to correctly
interpret and implement complex requirements. Given these challenges, it’s understandable
that a significant proportion of students would make errors in this task. To help
students overcome these challenges, future teaching could place greater emphasis
on conditional logic, operator usage, and careful reading of problem statements.
The most common error AssertionError(’False is not true : False’) occurs on this
task. This error is raised when an assert statement fails. In the context of unittest,
assert statements are used to verify that the output of a function is as expected. If
the output does not match the expected result, an AssertionError is raised.

In relation to the ok_size() function task, this error would suggest that a test
case expected the function to return True, but the function instead returned False.
The details of why this happened would depend on the specific test case and the
student’s implementation of the ok_size() function.

One potential cause for this error that many students seem to have encountered
could be that the student misunderstood or incorrectly implemented the requirements
for acceptable field sizes, particularly for edge cases. For example, they might have
used< or> instead of<= or>=, which would result in their function incorrectly
returning False for a field size that is exactly on the limit. Such edge cases seem
to be a common source of errors in this task. This aligns with the findings of
Robins et. al.[45] who discussed common difficulties students face in learning to
program, including misunderstanding requirements and trouble handling edge
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cases. Furthermore, a multinational, multi-institutional study by McCracken et.
al.[46] found that students often struggle with accurately implementing program
requirements, especially in terms of edge cases and boundary conditions.

5.3.3 Task Challenges in Autumn 2022 Evening Exam

In contrast, the evening exam of 2022 presented the most significant challenge in
"Oppgave 3", with a 35.55% of students making errors. This highlights "Oppgave
3" as an area where students have a higher rate of errors in comparison to the
other tasks. Oppgave 3 on both the morning and evening exams are very similar in
format, and logic, and also seem to be quite close in student errors. This is because
the tasks are designed to test for identical knowledge. In "Oppgave 3", students
were asked to program the function "sum_near_whole(A)" which receives a two-dimensional
numpy array as a parameter and is expected to return the sum of only certain
numbers within the array. Specifically, the function should consider only the numbers
that are located above, below, or beside a whole number. This task essentially tests
the students’ understanding of multi-dimensional array manipulation using the
numpy library, as well as their ability to apply conditional logic to identify and
sum only the numbers that fulfill the given condition. The complexity of the task
is further heightened due to the need to consider the position of numbers relative
to whole numbers within the array. Consequently, errors in this task could emerge
from multiple sources such as difficulties in correctly identifying and accessing
elements adjacent to whole numbers in the array, or confusion in distinguishing
between whole numbers and numbers with decimal parts. This task underscores
the importance of a strong understanding of array manipulation and conditional
logic in Python programming, and serves as a challenging exercise for novice
programmers.

5.4 Identifying Common Error Types

From the manual analysis of the exams, it is possible to identify some common
error types that students committed. This analysis further emphasizes the necessity
of reinforcing certain coding concepts and practices in teaching. Here is a summary
of the main findings:

5.4.1 Errors in Autumn 2021 Exam (Eksamen H2021)

In the 2021 exam, the most common error was related to incorrect variable usage
(12 occurrences), followed by incorrect return usage (6 occurrences) and TypeErrors
(5 occurrences). Other common errors include incorrect string manipulation, dictionary
usage, function usage, and list manipulation. Furthermore, some students produced
incomplete code or returned an incorrect type from a function. This suggests that
students may have struggled with understanding the specific requirements of tasks
or had difficulty managing different data types in Python.
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5.4.2 Errors in Autumn 2022 Morning Exam (Eksamen S2022 Morgen)

For the 2022 morning exam, there was a wider distribution of error types, with
naming errors (including incorrect variable names and typos) and incorrect index
access being the most frequent. Students also struggled with the incorrect usage of
string/list methods, variable usage in loops, and logical assertions or comparisons.
It seems that a more detailed understanding of Python’s built-in methods and
correct indexing is necessary, along with a stronger grasp of logical constructs in
Python. Also, the high occurrence of naming errors highlights the importance of
proper code writing and debugging practices.

5.4.3 Errors in Autumn 2022 Evening Exam (Eksamen S2022 Kveld)

In the 2022 evening exam, the most common error was again related to naming,
followed by incorrect variable usage. Other errors include incorrect usage of loops,
conditions, and return usage. These patterns suggest the need for reinforcement of
fundamental coding concepts, including the appropriate use of variables, loops,
and conditionals, as well as an understanding of function behavior in Python,
including how to correctly return values from a function.

5.5 Commonalities and Differences in Errors Across Home
and School Exams

Across the home and school exams, certain errors emerged as common stumbling
blocks for novice programmers. However, there were also significant differences
that reflect the unique challenges posed by different exam contexts and programming
languages.

5.5.1 Common Errors

One of the most consistent error types across both the home and school exams
was "Incorrect variable usage". This type of error occurred when students did not
utilize variables correctly according to the task requirements or the conventions
of the programming language. This suggests that understanding and manipulating
variables is a fundamental skill that students across different programming languages
and contexts struggle with.

Another shared error was "Incorrect function usage" or issues related to function
definition, which featured in both the home and morning school exams. This
points to potential difficulties in comprehending task requirements or possibly
gaps in foundational programming knowledge related to defining and using functions
effectively.

Both the home exam and the school exams saw instances of "Incomplete code",
where students failed to fully complete the tasks at hand. This type of error could
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be indicative of challenges related to time management, task interpretation, or
perceived difficulty of the task.

5.5.2 Differences in Errors

Despite these commonalities, there were also significant differences in error types
across the exams, likely reflective of the unique challenges of different exam
contexts and the specific characteristics of the programming languages used.
One notable distinction between the exams was the occurrence of the "NameError",
often resulting from unattempted tasks leading to missing function definitions, in
the home exam. This error was notably absent from the school exams. This could
possibly be attributed to differences in the design of the exams. Specifically, the
home exam might have had more interconnected subtasks where students were
supposed to use a function defined in a previous task, leading to more instances
of "NameError" when those prior tasks were not imported correctly to the testing
environment. On the other hand, the school exams from the following year might
have had fewer such interconnected tasks, thus reducing the likelihood of this
error. Alternatively, the absence of "NameError" in the school exams could also
suggest improvements in task engagement or function definition skills over time,
or it could reflect changes in the complexity or framing of the tasks between the
exams.
In the school exams, "AssertionError" was a common error, implying that while
students could write code that runs without crashing, they often failed to implement
the correct logic to meet task requirements. This error was less prominent in the
home exam, suggesting a possible shift in challenges faced by students over time
or under different exam conditions.

The school exams also saw a higher frequency of "IndexError" and "TypeError",
suggesting struggles with complex data structures and their manipulation – a
theme that was less prevalent in the home exam.

An important aspect to consider when interpreting these results is the discrepancy
between the available tools and environments in the home and school exams.
At home, students had access to a range of resources that were not available to
them in the school exam setting. Specifically, they could freely use their preferred
programming environment, enabling them to write and test their code more comfortably.
Additionally, they could search the internet for solutions to similar problems,
which might help in understanding and fixing errors they encounter. This access to
tools and resources likely facilitated a more iterative and dynamic problem-solving
process, where students could validate their code and adjust it based on feedback
and additional information.
On the other hand, during the school exams, students were confined to a more
restrictive environment. They were unable to test their code or seek online help,
which might have led to a higher occurrence of certain types of errors. This difference
in the available resources and environments could contribute to the variations in
error types observed between the home and school exams. Hence, it’s crucial to
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consider these factors when interpreting the study’s findings and extrapolating
them to other contexts.
In addition to these factors, it is necessary to address the potential issue of academic
dishonesty during home exams. According to a study by Sindre et. al.[47], there is
evidence that some students might have cheated during these exams. The paper
analyses the same home exam and found several cases f cheating. However, it’s
essential to note that while some instances of cheating were detected, others might
have slipped through unnoticed. Detected cases often involved students receiving
code from others on specific tasks that had several variants. Nonetheless, other
forms of dishonesty, such as having a more proficient individual complete the
exam on behalf of the student, would likely have evaded this detection method.
This potential for undetected dishonesty poses a significant challenge in evaluating
students’ actual programming abilities based on home exam performance.
Another consideration worth discussing involves the classification of "NameError"
in our study. We observed that "NameError" often resulted from blank answers,
which aren’t necessarily indicative of a name error from the student’s perspective,
but rather a byproduct of our testing framework. In these instances, the absence
of function definitions due to unattempted tasks was flagged as "NameError".
However, it’s important to note that such cases fundamentally differ from instances
where students have genuinely committed a "NameError".
For instance, true "NameError" occurrences might arise from mistakes such as
mistyping a variable name or attempting to use a variable before it’s defined.
These errors reflect a misunderstanding or oversight in the student’s code and
can provide meaningful insights into the common pitfalls encountered by novice
programmers. In contrast, a "NameError" resulting from a blank answer does not
offer the same level of insight into a student’s understanding or proficiency in
Python programming.
Therefore, future analyses could benefit from distinguishing between these two
types of "NameError" occurrences. This differentiation would not only provide a
more nuanced understanding of the errors but also contribute to a more accurate
representation of students’ programming proficiency and the challenges they face.

5.5.3 Implications

The comprehensive analysis of common and distinct errors across different exam
settings provides a valuable foundation to inform pedagogical practices for teaching
programming. Recognizing the challenges novice programmers face is critical for
adapting teaching strategies that effectively address these issues.

Our findings suggest that the understanding and manipulation of variables and
functions pose consistent challenges across all exam contexts. Educators should
emphasize these foundational concepts to reinforce students’ programming skills.
Similarly, the prevalent difficulties with data structures and edge case scenarios
in the school exams indicate a need for additional practice in these areas.

Moreover, the differences in error types between home and school exam contexts
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underscore the need for adaptive teaching strategies. These should cater to diverse
learning environments and take into account the specific characteristics and requirements
of different programming languages.

However, the suggestions derived from our study should not be considered in
isolation. It is crucial to compare our findings and consequent advice with similar
literature. For example, other studies might identify similar issues, leading to
parallel or complementary recommendations for pedagogical approaches. These
existing insights can provide a broader context for our findings and enable a more
informed decision-making process for educators. Unfortunately, it is difficult to
compare the results from our manual analysis to similar existing studies as their
error categorization are less detailed compared to our own. Thus, further research
on common novice errors in Python, using manual analysis with clearly defined
error categories, could provide valuable insight and confirm the accuracy of our
analysis.

In conclusion, the amalgamation of findings from our study and similar literature
can lead to a comprehensive set of practical recommendations for educators.
These can then guide the design and implementation of more effective teaching
strategies in programming education, tailored to address specific learning challenges
encountered by novice programmers.

5.6 Summary

To summarize, it appears that novice programmers often face challenges in understanding
and implementing task requirements, managing different data types in Python,
and utilizing proper code writing and debugging practices. In order to improve
student performance in these areas, teaching strategies could involve focused
training on understanding task requirements, handling different data types, implementing
logic correctly, and cultivating best practices in code writing and debugging.
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Chapter 6

Conclusion

6.1 General Findings

The study provided an in-depth analysis of the common errors made by novice
programmers in Java and Python at the Norwegian University of Science and
Technology. Through a systematic examination of exam submissions, we gained
valuable insights into the challenges faced by these students. The results demonstrated
that the most frequent errors made were not necessarily language-specific but
were rather linked to fundamental programming concepts.

The findings underscored a noteworthy trend: many of the most frequently
encountered errors weren’t specifically tied to the particularities of Java or Python.
Instead, they seemed to revolve around core concepts inherent to programming as
a discipline. Errors such as ’AssertionError’, ’TypeError’, ’IndexError’ and ’NameError’
were common among the data sets. This signifies fundamental misunderstandings
related to variable declaration, function usage, and conditional logic. Furthermore,
errors related to data structures like lists and arrays were also notably common.
This argument is opposed by the findings from our literature review, claiming that
common errors are highly language dependant. This is likely a result of differences
between the methodology of different studies, such as error categorization and
data gathering/analysis. Existing studies mostly looked into compilation and run-time
errors, which is language dependant causing a comparison between studies on
different languages to come to the same conclusion.

Interestingly, there was a higher prevalence of type-related errors in Java
submissions. This might be attributed to Java’s statically-typed nature, which enforces
stricter type checking rules during compile-time, compared to Python’s dynamic
typing. Misunderstandings or negligence regarding data type compatibility can
lead to such errors, underscoring the importance of a solid understanding of data
types and their rules in Java.

However, it’s important to note that the above comparison between Java and
Python is made with caution due to differences in the nature of exams and the
small sample size of Java. Although certain patterns and trends are evident, these
findings should be validated with larger and more homogenous data sets to draw
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more definitive conclusions about the distinct challenges faced by students of Java
and Python.

Understanding these general findings is pivotal for educators and curriculum
designers. It encourages a focus on reinforcing understanding of fundamental
programming concepts, which could lead to marked improvements in learning
outcomes for novice programmers. The results underline the significance of a
robust foundational knowledge in programming education, potentially influencing
future curriculum design and teaching methodologies.

6.2 Limitations

When interpreting the findings of this study, several limitations must be acknowledged.
First and foremost, the unit testing script used in this research was specifically

designed for Python code. As a result, the transferability of these results to other
programming languages may be limited, potentially constraining the broader applicability
of our findings within the extensive domain of computer programming education.

Furthermore, our script was designed to focus on a specific set of programming
concepts. This focus may not encapsulate the entirety of skills and knowledge
required in more advanced programming courses or in professional scenarios.
Hence, our conclusions might not fully reflect students’ programming expertise or
their ability to apply these skills in diverse or complex situations.

Another important consideration is the specificity of our participant group and
the details of the exams used in this study. Certain demographic attributes, levels
of experience, or instructional methodologies may have influenced the outcomes,
and these factors might not perfectly represent the larger population of programming
students. This specificity could affect the generalizability of our findings, a factor
to be accounted for when applying these conclusions to varied situations or learner
populations.

A noteworthy limitation of our study is its emphasis on procedural programming
in Python, largely overlooking object-oriented programming. While students did
use object method calls for elements such as lists, strings, and numpy arrays,
the course did not explicitly focus on enhancing comprehension and application
of object-oriented programming (OOP). As such, students were not expected to
define their own classes or solve problems using an object-oriented approach.

This emphasis on procedural programming suggests that our findings might
not represent the spectrum of possible errors or misunderstandings related to
object-oriented concepts. The limited focus on object-oriented programming means
our study may not fully capture students’ competence or deficiencies in this critical
area. Given the importance of OOP in many settings, this omission limits the
breadth of our study’s conclusions and their applicability in environments where
OOP is a key element.

To improve the comprehensiveness and utility of future research, studies should
strive to incorporate a broader range of both procedural and object-oriented programming
concepts. This approach would provide a more holistic view of student capabilities
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and the potential pitfalls in different programming paradigms, thereby enhancing
the relevance and value of the research findings across a wider range of educational
and professional contexts.

6.3 Future Research

This analysis provides valuable insights into the types of errors encountered by
novice programmers in different exam contexts. However, it also sets the stage for
further investigation and poses several questions that warrant deeper exploration.

Understanding Root Causes of Errors: Further research could delve into
the root causes of common errors such as NameErrors and AssertionErrors. Our
observations revealed that the NameErrors often stemmed from incomplete code,
or code that attempts to execute undefined functions, and that AssertionErrors
executed without overt errors, but failed to yield the correct results. Identifying
whether these errors are primarily due to lack of knowledge, misunderstandings
about task requirements, issues related to time management, or limited access to
resources could shed light on the underlying factors. This deeper understanding
could enable the development of more effective teaching interventions and strategies.

Examining the Impact of Teaching Strategies: There is potential to explore
the effectiveness of various teaching strategies on error reduction. It is pertinent
to understand which methods are most beneficial in helping students comprehend
and rectify their errors. Do specific interventions work better for certain types of
errors, or are they more effective under different exam conditions? Answering
these questions could significantly enhance the teaching and learning experience
in programming education.

Exploring Other Programming Languages: While this study is focused on
Python code, future research could broaden its scope to include other programming
languages. Comparing error patterns across a diverse range of languages could
enhance our understanding of how students learn, their common stumbling blocks,
and how these challenges may vary with different programming languages.

6.3.1 Potential Research Directions

Future research could delve deeper into the impact of various pedagogical strategies
on the types of errors made by novice programmers. Investigating these connections
could provide insights into how teaching methodologies influence learning outcomes
in programming education. Some potential areas of exploration could include:

Peer Programming: Peer programming, also known as pair programming,
involves two students working together on the same programming task. This
collaborative approach could potentially reduce errors, as one student codes while
the other reviews the work in real time, allowing immediate feedback and error
correction [48]. Future research could examine how this cooperative method influences
the frequency and types of errors made by novice programmers.
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Interactive Online Platforms: Interactive online platforms provide an engaging
way for students to learn programming concepts. They often include real-time
feedback and opportunities to practice coding skills in a variety of contexts. Research
such as that done by Nariman[49] could explore how the use of these platforms
impacts the types of errors students make and how quickly they can correct these
errors.

Flipped Classroom Models: In a flipped classroom model, students review
lecture materials at home and use class time for problem-solving and practical
application of the concepts learned. This model allows for more personalized
attention from the instructor and a deeper engagement with the material. Future
studies, like the one conducted by Amresh et. al.[50], could investigate the impact
of this teaching model on the types of errors made by novice programmers and
their overall proficiency in programming. The aforementioned study finds that
the learning method shows promise, but the research also highlights that some
students find the new approach to be intimidating and overwhelming at times.

By examining these and other pedagogical strategies, future research could
provide valuable insights into how best to support novice programmers. This could
contribute to the design of more effective teaching methods and resources, thereby
improving learning outcomes in programming education.

Exploring Object-Oriented Programming (OOP): A critical aspect of programming
that warrants further research is the exploration and comparison of errors within
Object-Oriented Programming (OOP). Given the widespread use of OOP in many
modern programming languages, it is important to understand the unique challenges
novice programmers might face while dealing with classes, objects, inheritance,
and other OOP principles. Future studies could compare the error patterns of
procedural and object-oriented programming. This could not only shed light on
the nuances of mistakes made in different programming paradigms but also contribute
to developing pedagogical strategies that address specific areas of difficulty in
OOP. This in-depth exploration of OOP could help bridge the gap in the existing
literature and enrich our understanding of programming education as a whole.

6.4 Connection with Research Questions

Our research embarked on a journey to explore and answer four specific questions:

1. Which common errors are made by novice programmers in Java?
2. Which common errors are made by novice programmers in Python?
3. Are there any correlations between common errors made by novice programmers

in Java and Python?
4. Are there differences in the errors made during home exams and school

exams?

Through a systematic analysis of exam submissions from an introductory programming
course at NTNU, we managed to identify the common errors made by novice
programmers in both Java and Python (Q1 and Q2). We found that errors such as
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’AssertionError’, ’TypeError’, ’IndexError’, and ’NameError’ were prevalent across
both languages. This revealed that students often struggled with the same core
programming concepts, regardless of the language being used.

Moreover, our research discerned a correlation between the errors made by
students in Java and Python (Q3). Many of the mistakes were not exclusive to a
particular language, but were rooted in fundamental misunderstandings of essential
programming principles. This highlighted the universality of certain challenges
faced by novice programmers, regardless of the programming language in use.

However, the differences in errors made during home exams and school exams
(Q4) require further investigation. Our study did not gather sufficient evidence to
conclusively determine if the setting significantly influenced the type or frequency
of errors made by students. The potential impact of the exam context on students’
programming mistakes remains a ripe area for future research.

6.5 Revisiting the Introduction

In the beginning, we set out to explore the errors that novice programmers typically
make in Java and Python, within the specific context of the Norwegian University
of Science and Technology. The goal was to shed light on the struggles faced by
beginner students in their initial encounter with programming. By comprehending
these challenges, we hoped to inform pedagogical strategies that could potentially
alleviate these hurdles and enhance learning outcomes.

Today, we conclude our journey having made significant strides towards achieving
our initial goals. We not only identified the common errors made by novice programmers
in both Java and Python, but we also unveiled the foundational nature of these
errors, irrespective of the programming language. We found that the struggles of
these students often stemmed from the basic principles of programming rather
than the specific syntax or semantics of Java or Python.

However, this conclusion is not the end; instead, it signifies a new beginning.
It reveals a landscape ripe for further investigation and raises several questions
for future research. We hope that our study contributes to the growing body of
knowledge in the field of computer science education and serves as a stepping
stone for future investigations exploring programming learning and teaching strategies.
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Figure A.1: Exam Tasks and Suggested Solutions Home Exam 2021

Oppgave 2 (40%) 

Oppgave 2 består av 9 ulike oppgaver (2a - 2i) med programmering og dra-og-slipp / 

innfylling i programkode. Til sammen utgjør disse oppgavene 40% av karakteren. På 

oppgaver hvor du kan teste om koden din virker, vil du normalt score mer poeng ved å ha et 

program som passerer iallfall noen av testene, enn ved å ha et program som prøver å få til 

alt, men får kjørefeil og ikke passerer noen av testene. Det er likevel bedre å levere noe 

kode selv om den ikke virker, enn å levere blankt, da sensor med et levert svar kan ha 

mulighet til å se over koden manuelt og vurdere om det kan gis litt poeng for delvis riktig 

tankegang. 

2a - Max Manus (3%) 

Pythons standardfunksjon max() returnerer den største av verdiene i en sekvens. For 

eksempel vil max("manus") gi verdien "u" fordi u er lengst ut i alfabetet av bokstavene i 

manus. Tilsvarende vil min("manus") gi verdien "a". Skriv en funksjon alfa(streng, tall) som 

får inn en tekststreng pluss et tall. Hvis tallet er 0 skal funksjonen returnere det minste tegnet 

i strengen (dvs. fremst i alfabetet), hvis tallet er noe annet enn 0, skal den returnere det 

største tegnet i strengen. 

def alfa(streng, tall): 

if tall == 0: 

return min(streng) 

else: 

return max(streng) 

2b - Byer i Belgia (3%) 

Gitt ei ordbok kalt geografi som har land som nøkkelverdi, og for hver nøkkel ei liste av byer i 

dette landet. Et eksempel på mulig innhold er: geografi = {'Irland': ['Dublin', 'Cork'], 'Polen': 

['Lodz', 'Krakow', 'Gdansk'], 'Belgia': ['Bryssel', 'Gent', 'Liege', 'Namur'] } Funksjonen 

ant_land(geografi) skal returnere antallet land som fins i ordboka. Med eksemplet over skal 

dette kallet returnere tallet 3 fordi det fins info om tre land i ordboka. Hint: funksjonen len() 

gir antall element i f.eks. strenger, lister, tupler, mengder, ordbøker. NB: Funksjonen din skal 

også virke for ordbøker med annet antall land enn eksemplet gitt her, men strukturen kan 

alltid antas å være den samme (land som nøkkelverdi, så liste med byer for hvert land). 

def ant_land(geografi): 

return len(geografi) 

2c - Sjekk tall (4%) 

Skriv en funksjon sjekk(tall) som får inn et tall. Hvis tallet er et oddetall, skal funksjonen 

returnere strengen "odde", hvis partall returnere strengen "par", og hvis tallet har en 

desimaldel > 0, skal funksjonen returnere strengen "des". (Dvs. f.eks., 3 -> "odde", 3.0 -> 

"odde", 3.1 -> "des", 4.0 -> "par", 4.2 -> "des") NB: Funksjonen skal returnere tekststrengen, 

IKKE printe den. 

def sjekk(tall): 

if tall % 2 == 0: 

Tasks and Suggested Solution for Home Exam 2021

75



6.5 REVISITING THE INTRODUCTION

Figure A.2: Exam Tasks and Suggested Solutions Evening School Exam 2022

Oppgave 1 

Å gå i løkke gjennom ei liste gjøre en eller annen aggregeringsoperasjon – f.eks. summere tallene – er nærmest et 
standardproblem i intro prog.fag. Her er det lagt inn en ekstra liten komplikasjon med at man ikke skal summere alle 
tallene, ellers ville det vært for lett (bare putte hele lista inn i den innebygde sum-funksjonen) 

Her viser vi tre eksempler på løsning, først det typiske skoleeksemplet med å initialisere variabel til null, gå i løkke 
gjennom, teste betingelsen, summere opp, og returnere etter løkka (NB: viktig at return er rykket ut på rett marg, 
retur inni løkka vil gjøre at vi avslutter etter det første tallet). Mange har nok løsninger cirka som denne, det er 
selvsagt også helt greit å bruke for-løkke som itererer på indeks, eller while-løkke.  

Det andre eksemplet er en mer kompakt løsning, putter et generator-objekt inn i Python sin sum-funksjon. Neppe 
mange som har gjort akkurat dette, men en del kan ha gjort nesten det samme med list comprehension, dvs.  

sum( [x for x in numlist if x > n] ) , selvsagt også helt ok, selv om man da bruker litt mer minne på å lage ekstra liste. 
Det fins også andre fikse muligheter man kan bruke, f.eks. Python sin filter()-funksjon, men den var ikke  i pensum, så 
vil nok være få eller ingen løsninger med den (og er vel dessuten overkill for å så enkelt problem som dette) 

Nederst, konverterer lista til et numpy array – siden det ofte gir mulighet for kompakte løsninger på problemer som 
dette. For eksempel vil notasjonen i nederste kodelinje gjøre at vi får et array med bare tallene > 5, som vi så kan 
putte inn i np.sum-funksjonen. 

Tasks and Solution from Evening School Exam 2022
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Figure A.3: Exam Tasks and Suggested Solutions Morning School Exam 2022

Oppgave 1 

Selv om dette er – og var ment å være - en forholdsvis enkel oppgave, kan den gjøres på mange ulike måter, bildet 
opp til høyre viser 3 alternativ. 

• Øverst: rett fram løsning med for-løkke og if-setning. For-løkka kunne alternativt også ha iterert på indeks,
eller man kunne ha brukt while-løkke (selv om litt mer tungvint).

• Midt: mer kompakt løsning, putter et generator-objekt inn i Python sin sum-funksjon. Neppe mange som har
gjort akkurat dette, men en del kan ha gjort nesten det samme med list comprehension, dvs. sum([x for…]),
selvsagt også helt ok, selv om man strengt tatt ikke trenger bruke minneplass på å lage ei ekstra liste her.

• Nederst: løsning hvor man konverterer lista til et numpy array og benytter seg av en kompakt notasjon som
numpy har for da å lage tilsvarende array uten tallet n, som puttes inn i numpy.sum-funksjonen.

Man kan bruke hvilken fremgangsmåte man vil – en av de tre over eller noe annet. Perfekt fungerende løsning vil få 
full pott. Ikke-perfekte løsninger vurderes etter hvor stor andel man har greid av det som funksjonen skulle gjøre. 

Tasks and Suggested Solutions to Morning School Exam 2022
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